node.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789
  1. /*
  2. * fs/f2fs/node.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/mpage.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/pagevec.h>
  17. #include <linux/swap.h>
  18. #include "f2fs.h"
  19. #include "node.h"
  20. #include "segment.h"
  21. #include <trace/events/f2fs.h>
  22. static struct kmem_cache *nat_entry_slab;
  23. static struct kmem_cache *free_nid_slab;
  24. static void clear_node_page_dirty(struct page *page)
  25. {
  26. struct address_space *mapping = page->mapping;
  27. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  28. unsigned int long flags;
  29. if (PageDirty(page)) {
  30. spin_lock_irqsave(&mapping->tree_lock, flags);
  31. radix_tree_tag_clear(&mapping->page_tree,
  32. page_index(page),
  33. PAGECACHE_TAG_DIRTY);
  34. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  35. clear_page_dirty_for_io(page);
  36. dec_page_count(sbi, F2FS_DIRTY_NODES);
  37. }
  38. ClearPageUptodate(page);
  39. }
  40. static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  41. {
  42. pgoff_t index = current_nat_addr(sbi, nid);
  43. return get_meta_page(sbi, index);
  44. }
  45. static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  46. {
  47. struct page *src_page;
  48. struct page *dst_page;
  49. pgoff_t src_off;
  50. pgoff_t dst_off;
  51. void *src_addr;
  52. void *dst_addr;
  53. struct f2fs_nm_info *nm_i = NM_I(sbi);
  54. src_off = current_nat_addr(sbi, nid);
  55. dst_off = next_nat_addr(sbi, src_off);
  56. /* get current nat block page with lock */
  57. src_page = get_meta_page(sbi, src_off);
  58. /* Dirty src_page means that it is already the new target NAT page. */
  59. if (PageDirty(src_page))
  60. return src_page;
  61. dst_page = grab_meta_page(sbi, dst_off);
  62. src_addr = page_address(src_page);
  63. dst_addr = page_address(dst_page);
  64. memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
  65. set_page_dirty(dst_page);
  66. f2fs_put_page(src_page, 1);
  67. set_to_next_nat(nm_i, nid);
  68. return dst_page;
  69. }
  70. /*
  71. * Readahead NAT pages
  72. */
  73. static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
  74. {
  75. struct address_space *mapping = sbi->meta_inode->i_mapping;
  76. struct f2fs_nm_info *nm_i = NM_I(sbi);
  77. struct blk_plug plug;
  78. struct page *page;
  79. pgoff_t index;
  80. int i;
  81. blk_start_plug(&plug);
  82. for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
  83. if (nid >= nm_i->max_nid)
  84. nid = 0;
  85. index = current_nat_addr(sbi, nid);
  86. page = grab_cache_page(mapping, index);
  87. if (!page)
  88. continue;
  89. if (PageUptodate(page)) {
  90. f2fs_put_page(page, 1);
  91. continue;
  92. }
  93. if (f2fs_readpage(sbi, page, index, READ))
  94. continue;
  95. f2fs_put_page(page, 0);
  96. }
  97. blk_finish_plug(&plug);
  98. }
  99. static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
  100. {
  101. return radix_tree_lookup(&nm_i->nat_root, n);
  102. }
  103. static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
  104. nid_t start, unsigned int nr, struct nat_entry **ep)
  105. {
  106. return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
  107. }
  108. static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
  109. {
  110. list_del(&e->list);
  111. radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
  112. nm_i->nat_cnt--;
  113. kmem_cache_free(nat_entry_slab, e);
  114. }
  115. int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
  116. {
  117. struct f2fs_nm_info *nm_i = NM_I(sbi);
  118. struct nat_entry *e;
  119. int is_cp = 1;
  120. read_lock(&nm_i->nat_tree_lock);
  121. e = __lookup_nat_cache(nm_i, nid);
  122. if (e && !e->checkpointed)
  123. is_cp = 0;
  124. read_unlock(&nm_i->nat_tree_lock);
  125. return is_cp;
  126. }
  127. static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
  128. {
  129. struct nat_entry *new;
  130. new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
  131. if (!new)
  132. return NULL;
  133. if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
  134. kmem_cache_free(nat_entry_slab, new);
  135. return NULL;
  136. }
  137. memset(new, 0, sizeof(struct nat_entry));
  138. nat_set_nid(new, nid);
  139. list_add_tail(&new->list, &nm_i->nat_entries);
  140. nm_i->nat_cnt++;
  141. return new;
  142. }
  143. static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
  144. struct f2fs_nat_entry *ne)
  145. {
  146. struct nat_entry *e;
  147. retry:
  148. write_lock(&nm_i->nat_tree_lock);
  149. e = __lookup_nat_cache(nm_i, nid);
  150. if (!e) {
  151. e = grab_nat_entry(nm_i, nid);
  152. if (!e) {
  153. write_unlock(&nm_i->nat_tree_lock);
  154. goto retry;
  155. }
  156. nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
  157. nat_set_ino(e, le32_to_cpu(ne->ino));
  158. nat_set_version(e, ne->version);
  159. e->checkpointed = true;
  160. }
  161. write_unlock(&nm_i->nat_tree_lock);
  162. }
  163. static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
  164. block_t new_blkaddr)
  165. {
  166. struct f2fs_nm_info *nm_i = NM_I(sbi);
  167. struct nat_entry *e;
  168. retry:
  169. write_lock(&nm_i->nat_tree_lock);
  170. e = __lookup_nat_cache(nm_i, ni->nid);
  171. if (!e) {
  172. e = grab_nat_entry(nm_i, ni->nid);
  173. if (!e) {
  174. write_unlock(&nm_i->nat_tree_lock);
  175. goto retry;
  176. }
  177. e->ni = *ni;
  178. e->checkpointed = true;
  179. BUG_ON(ni->blk_addr == NEW_ADDR);
  180. } else if (new_blkaddr == NEW_ADDR) {
  181. /*
  182. * when nid is reallocated,
  183. * previous nat entry can be remained in nat cache.
  184. * So, reinitialize it with new information.
  185. */
  186. e->ni = *ni;
  187. BUG_ON(ni->blk_addr != NULL_ADDR);
  188. }
  189. if (new_blkaddr == NEW_ADDR)
  190. e->checkpointed = false;
  191. /* sanity check */
  192. BUG_ON(nat_get_blkaddr(e) != ni->blk_addr);
  193. BUG_ON(nat_get_blkaddr(e) == NULL_ADDR &&
  194. new_blkaddr == NULL_ADDR);
  195. BUG_ON(nat_get_blkaddr(e) == NEW_ADDR &&
  196. new_blkaddr == NEW_ADDR);
  197. BUG_ON(nat_get_blkaddr(e) != NEW_ADDR &&
  198. nat_get_blkaddr(e) != NULL_ADDR &&
  199. new_blkaddr == NEW_ADDR);
  200. /* increament version no as node is removed */
  201. if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
  202. unsigned char version = nat_get_version(e);
  203. nat_set_version(e, inc_node_version(version));
  204. }
  205. /* change address */
  206. nat_set_blkaddr(e, new_blkaddr);
  207. __set_nat_cache_dirty(nm_i, e);
  208. write_unlock(&nm_i->nat_tree_lock);
  209. }
  210. static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
  211. {
  212. struct f2fs_nm_info *nm_i = NM_I(sbi);
  213. if (nm_i->nat_cnt < 2 * NM_WOUT_THRESHOLD)
  214. return 0;
  215. write_lock(&nm_i->nat_tree_lock);
  216. while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
  217. struct nat_entry *ne;
  218. ne = list_first_entry(&nm_i->nat_entries,
  219. struct nat_entry, list);
  220. __del_from_nat_cache(nm_i, ne);
  221. nr_shrink--;
  222. }
  223. write_unlock(&nm_i->nat_tree_lock);
  224. return nr_shrink;
  225. }
  226. /*
  227. * This function returns always success
  228. */
  229. void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
  230. {
  231. struct f2fs_nm_info *nm_i = NM_I(sbi);
  232. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  233. struct f2fs_summary_block *sum = curseg->sum_blk;
  234. nid_t start_nid = START_NID(nid);
  235. struct f2fs_nat_block *nat_blk;
  236. struct page *page = NULL;
  237. struct f2fs_nat_entry ne;
  238. struct nat_entry *e;
  239. int i;
  240. memset(&ne, 0, sizeof(struct f2fs_nat_entry));
  241. ni->nid = nid;
  242. /* Check nat cache */
  243. read_lock(&nm_i->nat_tree_lock);
  244. e = __lookup_nat_cache(nm_i, nid);
  245. if (e) {
  246. ni->ino = nat_get_ino(e);
  247. ni->blk_addr = nat_get_blkaddr(e);
  248. ni->version = nat_get_version(e);
  249. }
  250. read_unlock(&nm_i->nat_tree_lock);
  251. if (e)
  252. return;
  253. /* Check current segment summary */
  254. mutex_lock(&curseg->curseg_mutex);
  255. i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
  256. if (i >= 0) {
  257. ne = nat_in_journal(sum, i);
  258. node_info_from_raw_nat(ni, &ne);
  259. }
  260. mutex_unlock(&curseg->curseg_mutex);
  261. if (i >= 0)
  262. goto cache;
  263. /* Fill node_info from nat page */
  264. page = get_current_nat_page(sbi, start_nid);
  265. nat_blk = (struct f2fs_nat_block *)page_address(page);
  266. ne = nat_blk->entries[nid - start_nid];
  267. node_info_from_raw_nat(ni, &ne);
  268. f2fs_put_page(page, 1);
  269. cache:
  270. /* cache nat entry */
  271. cache_nat_entry(NM_I(sbi), nid, &ne);
  272. }
  273. /*
  274. * The maximum depth is four.
  275. * Offset[0] will have raw inode offset.
  276. */
  277. static int get_node_path(long block, int offset[4], unsigned int noffset[4])
  278. {
  279. const long direct_index = ADDRS_PER_INODE;
  280. const long direct_blks = ADDRS_PER_BLOCK;
  281. const long dptrs_per_blk = NIDS_PER_BLOCK;
  282. const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
  283. const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
  284. int n = 0;
  285. int level = 0;
  286. noffset[0] = 0;
  287. if (block < direct_index) {
  288. offset[n] = block;
  289. goto got;
  290. }
  291. block -= direct_index;
  292. if (block < direct_blks) {
  293. offset[n++] = NODE_DIR1_BLOCK;
  294. noffset[n] = 1;
  295. offset[n] = block;
  296. level = 1;
  297. goto got;
  298. }
  299. block -= direct_blks;
  300. if (block < direct_blks) {
  301. offset[n++] = NODE_DIR2_BLOCK;
  302. noffset[n] = 2;
  303. offset[n] = block;
  304. level = 1;
  305. goto got;
  306. }
  307. block -= direct_blks;
  308. if (block < indirect_blks) {
  309. offset[n++] = NODE_IND1_BLOCK;
  310. noffset[n] = 3;
  311. offset[n++] = block / direct_blks;
  312. noffset[n] = 4 + offset[n - 1];
  313. offset[n] = block % direct_blks;
  314. level = 2;
  315. goto got;
  316. }
  317. block -= indirect_blks;
  318. if (block < indirect_blks) {
  319. offset[n++] = NODE_IND2_BLOCK;
  320. noffset[n] = 4 + dptrs_per_blk;
  321. offset[n++] = block / direct_blks;
  322. noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
  323. offset[n] = block % direct_blks;
  324. level = 2;
  325. goto got;
  326. }
  327. block -= indirect_blks;
  328. if (block < dindirect_blks) {
  329. offset[n++] = NODE_DIND_BLOCK;
  330. noffset[n] = 5 + (dptrs_per_blk * 2);
  331. offset[n++] = block / indirect_blks;
  332. noffset[n] = 6 + (dptrs_per_blk * 2) +
  333. offset[n - 1] * (dptrs_per_blk + 1);
  334. offset[n++] = (block / direct_blks) % dptrs_per_blk;
  335. noffset[n] = 7 + (dptrs_per_blk * 2) +
  336. offset[n - 2] * (dptrs_per_blk + 1) +
  337. offset[n - 1];
  338. offset[n] = block % direct_blks;
  339. level = 3;
  340. goto got;
  341. } else {
  342. BUG();
  343. }
  344. got:
  345. return level;
  346. }
  347. /*
  348. * Caller should call f2fs_put_dnode(dn).
  349. * Also, it should grab and release a mutex by calling mutex_lock_op() and
  350. * mutex_unlock_op() only if ro is not set RDONLY_NODE.
  351. * In the case of RDONLY_NODE, we don't need to care about mutex.
  352. */
  353. int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
  354. {
  355. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  356. struct page *npage[4];
  357. struct page *parent;
  358. int offset[4];
  359. unsigned int noffset[4];
  360. nid_t nids[4];
  361. int level, i;
  362. int err = 0;
  363. level = get_node_path(index, offset, noffset);
  364. nids[0] = dn->inode->i_ino;
  365. npage[0] = get_node_page(sbi, nids[0]);
  366. if (IS_ERR(npage[0]))
  367. return PTR_ERR(npage[0]);
  368. parent = npage[0];
  369. if (level != 0)
  370. nids[1] = get_nid(parent, offset[0], true);
  371. dn->inode_page = npage[0];
  372. dn->inode_page_locked = true;
  373. /* get indirect or direct nodes */
  374. for (i = 1; i <= level; i++) {
  375. bool done = false;
  376. if (!nids[i] && mode == ALLOC_NODE) {
  377. /* alloc new node */
  378. if (!alloc_nid(sbi, &(nids[i]))) {
  379. err = -ENOSPC;
  380. goto release_pages;
  381. }
  382. dn->nid = nids[i];
  383. npage[i] = new_node_page(dn, noffset[i]);
  384. if (IS_ERR(npage[i])) {
  385. alloc_nid_failed(sbi, nids[i]);
  386. err = PTR_ERR(npage[i]);
  387. goto release_pages;
  388. }
  389. set_nid(parent, offset[i - 1], nids[i], i == 1);
  390. alloc_nid_done(sbi, nids[i]);
  391. done = true;
  392. } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
  393. npage[i] = get_node_page_ra(parent, offset[i - 1]);
  394. if (IS_ERR(npage[i])) {
  395. err = PTR_ERR(npage[i]);
  396. goto release_pages;
  397. }
  398. done = true;
  399. }
  400. if (i == 1) {
  401. dn->inode_page_locked = false;
  402. unlock_page(parent);
  403. } else {
  404. f2fs_put_page(parent, 1);
  405. }
  406. if (!done) {
  407. npage[i] = get_node_page(sbi, nids[i]);
  408. if (IS_ERR(npage[i])) {
  409. err = PTR_ERR(npage[i]);
  410. f2fs_put_page(npage[0], 0);
  411. goto release_out;
  412. }
  413. }
  414. if (i < level) {
  415. parent = npage[i];
  416. nids[i + 1] = get_nid(parent, offset[i], false);
  417. }
  418. }
  419. dn->nid = nids[level];
  420. dn->ofs_in_node = offset[level];
  421. dn->node_page = npage[level];
  422. dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
  423. return 0;
  424. release_pages:
  425. f2fs_put_page(parent, 1);
  426. if (i > 1)
  427. f2fs_put_page(npage[0], 0);
  428. release_out:
  429. dn->inode_page = NULL;
  430. dn->node_page = NULL;
  431. return err;
  432. }
  433. static void truncate_node(struct dnode_of_data *dn)
  434. {
  435. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  436. struct node_info ni;
  437. get_node_info(sbi, dn->nid, &ni);
  438. if (dn->inode->i_blocks == 0) {
  439. BUG_ON(ni.blk_addr != NULL_ADDR);
  440. goto invalidate;
  441. }
  442. BUG_ON(ni.blk_addr == NULL_ADDR);
  443. /* Deallocate node address */
  444. invalidate_blocks(sbi, ni.blk_addr);
  445. dec_valid_node_count(sbi, dn->inode, 1);
  446. set_node_addr(sbi, &ni, NULL_ADDR);
  447. if (dn->nid == dn->inode->i_ino) {
  448. remove_orphan_inode(sbi, dn->nid);
  449. dec_valid_inode_count(sbi);
  450. } else {
  451. sync_inode_page(dn);
  452. }
  453. invalidate:
  454. clear_node_page_dirty(dn->node_page);
  455. F2FS_SET_SB_DIRT(sbi);
  456. f2fs_put_page(dn->node_page, 1);
  457. dn->node_page = NULL;
  458. trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
  459. }
  460. static int truncate_dnode(struct dnode_of_data *dn)
  461. {
  462. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  463. struct page *page;
  464. if (dn->nid == 0)
  465. return 1;
  466. /* get direct node */
  467. page = get_node_page(sbi, dn->nid);
  468. if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
  469. return 1;
  470. else if (IS_ERR(page))
  471. return PTR_ERR(page);
  472. /* Make dnode_of_data for parameter */
  473. dn->node_page = page;
  474. dn->ofs_in_node = 0;
  475. truncate_data_blocks(dn);
  476. truncate_node(dn);
  477. return 1;
  478. }
  479. static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
  480. int ofs, int depth)
  481. {
  482. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  483. struct dnode_of_data rdn = *dn;
  484. struct page *page;
  485. struct f2fs_node *rn;
  486. nid_t child_nid;
  487. unsigned int child_nofs;
  488. int freed = 0;
  489. int i, ret;
  490. if (dn->nid == 0)
  491. return NIDS_PER_BLOCK + 1;
  492. trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
  493. page = get_node_page(sbi, dn->nid);
  494. if (IS_ERR(page)) {
  495. trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
  496. return PTR_ERR(page);
  497. }
  498. rn = (struct f2fs_node *)page_address(page);
  499. if (depth < 3) {
  500. for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
  501. child_nid = le32_to_cpu(rn->in.nid[i]);
  502. if (child_nid == 0)
  503. continue;
  504. rdn.nid = child_nid;
  505. ret = truncate_dnode(&rdn);
  506. if (ret < 0)
  507. goto out_err;
  508. set_nid(page, i, 0, false);
  509. }
  510. } else {
  511. child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
  512. for (i = ofs; i < NIDS_PER_BLOCK; i++) {
  513. child_nid = le32_to_cpu(rn->in.nid[i]);
  514. if (child_nid == 0) {
  515. child_nofs += NIDS_PER_BLOCK + 1;
  516. continue;
  517. }
  518. rdn.nid = child_nid;
  519. ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
  520. if (ret == (NIDS_PER_BLOCK + 1)) {
  521. set_nid(page, i, 0, false);
  522. child_nofs += ret;
  523. } else if (ret < 0 && ret != -ENOENT) {
  524. goto out_err;
  525. }
  526. }
  527. freed = child_nofs;
  528. }
  529. if (!ofs) {
  530. /* remove current indirect node */
  531. dn->node_page = page;
  532. truncate_node(dn);
  533. freed++;
  534. } else {
  535. f2fs_put_page(page, 1);
  536. }
  537. trace_f2fs_truncate_nodes_exit(dn->inode, freed);
  538. return freed;
  539. out_err:
  540. f2fs_put_page(page, 1);
  541. trace_f2fs_truncate_nodes_exit(dn->inode, ret);
  542. return ret;
  543. }
  544. static int truncate_partial_nodes(struct dnode_of_data *dn,
  545. struct f2fs_inode *ri, int *offset, int depth)
  546. {
  547. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  548. struct page *pages[2];
  549. nid_t nid[3];
  550. nid_t child_nid;
  551. int err = 0;
  552. int i;
  553. int idx = depth - 2;
  554. nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  555. if (!nid[0])
  556. return 0;
  557. /* get indirect nodes in the path */
  558. for (i = 0; i < depth - 1; i++) {
  559. /* refernece count'll be increased */
  560. pages[i] = get_node_page(sbi, nid[i]);
  561. if (IS_ERR(pages[i])) {
  562. depth = i + 1;
  563. err = PTR_ERR(pages[i]);
  564. goto fail;
  565. }
  566. nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
  567. }
  568. /* free direct nodes linked to a partial indirect node */
  569. for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
  570. child_nid = get_nid(pages[idx], i, false);
  571. if (!child_nid)
  572. continue;
  573. dn->nid = child_nid;
  574. err = truncate_dnode(dn);
  575. if (err < 0)
  576. goto fail;
  577. set_nid(pages[idx], i, 0, false);
  578. }
  579. if (offset[depth - 1] == 0) {
  580. dn->node_page = pages[idx];
  581. dn->nid = nid[idx];
  582. truncate_node(dn);
  583. } else {
  584. f2fs_put_page(pages[idx], 1);
  585. }
  586. offset[idx]++;
  587. offset[depth - 1] = 0;
  588. fail:
  589. for (i = depth - 3; i >= 0; i--)
  590. f2fs_put_page(pages[i], 1);
  591. trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
  592. return err;
  593. }
  594. /*
  595. * All the block addresses of data and nodes should be nullified.
  596. */
  597. int truncate_inode_blocks(struct inode *inode, pgoff_t from)
  598. {
  599. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  600. int err = 0, cont = 1;
  601. int level, offset[4], noffset[4];
  602. unsigned int nofs = 0;
  603. struct f2fs_node *rn;
  604. struct dnode_of_data dn;
  605. struct page *page;
  606. trace_f2fs_truncate_inode_blocks_enter(inode, from);
  607. level = get_node_path(from, offset, noffset);
  608. page = get_node_page(sbi, inode->i_ino);
  609. if (IS_ERR(page)) {
  610. trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
  611. return PTR_ERR(page);
  612. }
  613. set_new_dnode(&dn, inode, page, NULL, 0);
  614. unlock_page(page);
  615. rn = page_address(page);
  616. switch (level) {
  617. case 0:
  618. case 1:
  619. nofs = noffset[1];
  620. break;
  621. case 2:
  622. nofs = noffset[1];
  623. if (!offset[level - 1])
  624. goto skip_partial;
  625. err = truncate_partial_nodes(&dn, &rn->i, offset, level);
  626. if (err < 0 && err != -ENOENT)
  627. goto fail;
  628. nofs += 1 + NIDS_PER_BLOCK;
  629. break;
  630. case 3:
  631. nofs = 5 + 2 * NIDS_PER_BLOCK;
  632. if (!offset[level - 1])
  633. goto skip_partial;
  634. err = truncate_partial_nodes(&dn, &rn->i, offset, level);
  635. if (err < 0 && err != -ENOENT)
  636. goto fail;
  637. break;
  638. default:
  639. BUG();
  640. }
  641. skip_partial:
  642. while (cont) {
  643. dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]);
  644. switch (offset[0]) {
  645. case NODE_DIR1_BLOCK:
  646. case NODE_DIR2_BLOCK:
  647. err = truncate_dnode(&dn);
  648. break;
  649. case NODE_IND1_BLOCK:
  650. case NODE_IND2_BLOCK:
  651. err = truncate_nodes(&dn, nofs, offset[1], 2);
  652. break;
  653. case NODE_DIND_BLOCK:
  654. err = truncate_nodes(&dn, nofs, offset[1], 3);
  655. cont = 0;
  656. break;
  657. default:
  658. BUG();
  659. }
  660. if (err < 0 && err != -ENOENT)
  661. goto fail;
  662. if (offset[1] == 0 &&
  663. rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) {
  664. lock_page(page);
  665. wait_on_page_writeback(page);
  666. rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
  667. set_page_dirty(page);
  668. unlock_page(page);
  669. }
  670. offset[1] = 0;
  671. offset[0]++;
  672. nofs += err;
  673. }
  674. fail:
  675. f2fs_put_page(page, 0);
  676. trace_f2fs_truncate_inode_blocks_exit(inode, err);
  677. return err > 0 ? 0 : err;
  678. }
  679. /*
  680. * Caller should grab and release a mutex by calling mutex_lock_op() and
  681. * mutex_unlock_op().
  682. */
  683. int remove_inode_page(struct inode *inode)
  684. {
  685. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  686. struct page *page;
  687. nid_t ino = inode->i_ino;
  688. struct dnode_of_data dn;
  689. page = get_node_page(sbi, ino);
  690. if (IS_ERR(page))
  691. return PTR_ERR(page);
  692. if (F2FS_I(inode)->i_xattr_nid) {
  693. nid_t nid = F2FS_I(inode)->i_xattr_nid;
  694. struct page *npage = get_node_page(sbi, nid);
  695. if (IS_ERR(npage))
  696. return PTR_ERR(npage);
  697. F2FS_I(inode)->i_xattr_nid = 0;
  698. set_new_dnode(&dn, inode, page, npage, nid);
  699. dn.inode_page_locked = 1;
  700. truncate_node(&dn);
  701. }
  702. /* 0 is possible, after f2fs_new_inode() is failed */
  703. BUG_ON(inode->i_blocks != 0 && inode->i_blocks != 1);
  704. set_new_dnode(&dn, inode, page, page, ino);
  705. truncate_node(&dn);
  706. return 0;
  707. }
  708. int new_inode_page(struct inode *inode, const struct qstr *name)
  709. {
  710. struct page *page;
  711. struct dnode_of_data dn;
  712. /* allocate inode page for new inode */
  713. set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
  714. page = new_node_page(&dn, 0);
  715. init_dent_inode(name, page);
  716. if (IS_ERR(page))
  717. return PTR_ERR(page);
  718. f2fs_put_page(page, 1);
  719. return 0;
  720. }
  721. struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
  722. {
  723. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  724. struct address_space *mapping = sbi->node_inode->i_mapping;
  725. struct node_info old_ni, new_ni;
  726. struct page *page;
  727. int err;
  728. if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
  729. return ERR_PTR(-EPERM);
  730. page = grab_cache_page(mapping, dn->nid);
  731. if (!page)
  732. return ERR_PTR(-ENOMEM);
  733. get_node_info(sbi, dn->nid, &old_ni);
  734. SetPageUptodate(page);
  735. fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
  736. /* Reinitialize old_ni with new node page */
  737. BUG_ON(old_ni.blk_addr != NULL_ADDR);
  738. new_ni = old_ni;
  739. new_ni.ino = dn->inode->i_ino;
  740. if (!inc_valid_node_count(sbi, dn->inode, 1)) {
  741. err = -ENOSPC;
  742. goto fail;
  743. }
  744. set_node_addr(sbi, &new_ni, NEW_ADDR);
  745. set_cold_node(dn->inode, page);
  746. dn->node_page = page;
  747. sync_inode_page(dn);
  748. set_page_dirty(page);
  749. if (ofs == 0)
  750. inc_valid_inode_count(sbi);
  751. return page;
  752. fail:
  753. clear_node_page_dirty(page);
  754. f2fs_put_page(page, 1);
  755. return ERR_PTR(err);
  756. }
  757. /*
  758. * Caller should do after getting the following values.
  759. * 0: f2fs_put_page(page, 0)
  760. * LOCKED_PAGE: f2fs_put_page(page, 1)
  761. * error: nothing
  762. */
  763. static int read_node_page(struct page *page, int type)
  764. {
  765. struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
  766. struct node_info ni;
  767. get_node_info(sbi, page->index, &ni);
  768. if (ni.blk_addr == NULL_ADDR) {
  769. f2fs_put_page(page, 1);
  770. return -ENOENT;
  771. }
  772. if (PageUptodate(page))
  773. return LOCKED_PAGE;
  774. return f2fs_readpage(sbi, page, ni.blk_addr, type);
  775. }
  776. /*
  777. * Readahead a node page
  778. */
  779. void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
  780. {
  781. struct address_space *mapping = sbi->node_inode->i_mapping;
  782. struct page *apage;
  783. int err;
  784. apage = find_get_page(mapping, nid);
  785. if (apage && PageUptodate(apage)) {
  786. f2fs_put_page(apage, 0);
  787. return;
  788. }
  789. f2fs_put_page(apage, 0);
  790. apage = grab_cache_page(mapping, nid);
  791. if (!apage)
  792. return;
  793. err = read_node_page(apage, READA);
  794. if (err == 0)
  795. f2fs_put_page(apage, 0);
  796. else if (err == LOCKED_PAGE)
  797. f2fs_put_page(apage, 1);
  798. return;
  799. }
  800. struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
  801. {
  802. struct address_space *mapping = sbi->node_inode->i_mapping;
  803. struct page *page;
  804. int err;
  805. page = grab_cache_page(mapping, nid);
  806. if (!page)
  807. return ERR_PTR(-ENOMEM);
  808. err = read_node_page(page, READ_SYNC);
  809. if (err < 0)
  810. return ERR_PTR(err);
  811. else if (err == LOCKED_PAGE)
  812. goto got_it;
  813. lock_page(page);
  814. if (!PageUptodate(page)) {
  815. f2fs_put_page(page, 1);
  816. return ERR_PTR(-EIO);
  817. }
  818. got_it:
  819. BUG_ON(nid != nid_of_node(page));
  820. mark_page_accessed(page);
  821. return page;
  822. }
  823. /*
  824. * Return a locked page for the desired node page.
  825. * And, readahead MAX_RA_NODE number of node pages.
  826. */
  827. struct page *get_node_page_ra(struct page *parent, int start)
  828. {
  829. struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
  830. struct address_space *mapping = sbi->node_inode->i_mapping;
  831. struct blk_plug plug;
  832. struct page *page;
  833. int err, i, end;
  834. nid_t nid;
  835. /* First, try getting the desired direct node. */
  836. nid = get_nid(parent, start, false);
  837. if (!nid)
  838. return ERR_PTR(-ENOENT);
  839. page = grab_cache_page(mapping, nid);
  840. if (!page)
  841. return ERR_PTR(-ENOMEM);
  842. err = read_node_page(page, READ_SYNC);
  843. if (err < 0)
  844. return ERR_PTR(err);
  845. else if (err == LOCKED_PAGE)
  846. goto page_hit;
  847. blk_start_plug(&plug);
  848. /* Then, try readahead for siblings of the desired node */
  849. end = start + MAX_RA_NODE;
  850. end = min(end, NIDS_PER_BLOCK);
  851. for (i = start + 1; i < end; i++) {
  852. nid = get_nid(parent, i, false);
  853. if (!nid)
  854. continue;
  855. ra_node_page(sbi, nid);
  856. }
  857. blk_finish_plug(&plug);
  858. lock_page(page);
  859. page_hit:
  860. if (!PageUptodate(page)) {
  861. f2fs_put_page(page, 1);
  862. return ERR_PTR(-EIO);
  863. }
  864. mark_page_accessed(page);
  865. return page;
  866. }
  867. void sync_inode_page(struct dnode_of_data *dn)
  868. {
  869. if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
  870. update_inode(dn->inode, dn->node_page);
  871. } else if (dn->inode_page) {
  872. if (!dn->inode_page_locked)
  873. lock_page(dn->inode_page);
  874. update_inode(dn->inode, dn->inode_page);
  875. if (!dn->inode_page_locked)
  876. unlock_page(dn->inode_page);
  877. } else {
  878. update_inode_page(dn->inode);
  879. }
  880. }
  881. int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
  882. struct writeback_control *wbc)
  883. {
  884. struct address_space *mapping = sbi->node_inode->i_mapping;
  885. pgoff_t index, end;
  886. struct pagevec pvec;
  887. int step = ino ? 2 : 0;
  888. int nwritten = 0, wrote = 0;
  889. pagevec_init(&pvec, 0);
  890. next_step:
  891. index = 0;
  892. end = LONG_MAX;
  893. while (index <= end) {
  894. int i, nr_pages;
  895. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  896. PAGECACHE_TAG_DIRTY,
  897. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  898. if (nr_pages == 0)
  899. break;
  900. for (i = 0; i < nr_pages; i++) {
  901. struct page *page = pvec.pages[i];
  902. /*
  903. * flushing sequence with step:
  904. * 0. indirect nodes
  905. * 1. dentry dnodes
  906. * 2. file dnodes
  907. */
  908. if (step == 0 && IS_DNODE(page))
  909. continue;
  910. if (step == 1 && (!IS_DNODE(page) ||
  911. is_cold_node(page)))
  912. continue;
  913. if (step == 2 && (!IS_DNODE(page) ||
  914. !is_cold_node(page)))
  915. continue;
  916. /*
  917. * If an fsync mode,
  918. * we should not skip writing node pages.
  919. */
  920. if (ino && ino_of_node(page) == ino)
  921. lock_page(page);
  922. else if (!trylock_page(page))
  923. continue;
  924. if (unlikely(page->mapping != mapping)) {
  925. continue_unlock:
  926. unlock_page(page);
  927. continue;
  928. }
  929. if (ino && ino_of_node(page) != ino)
  930. goto continue_unlock;
  931. if (!PageDirty(page)) {
  932. /* someone wrote it for us */
  933. goto continue_unlock;
  934. }
  935. if (!clear_page_dirty_for_io(page))
  936. goto continue_unlock;
  937. /* called by fsync() */
  938. if (ino && IS_DNODE(page)) {
  939. int mark = !is_checkpointed_node(sbi, ino);
  940. set_fsync_mark(page, 1);
  941. if (IS_INODE(page))
  942. set_dentry_mark(page, mark);
  943. nwritten++;
  944. } else {
  945. set_fsync_mark(page, 0);
  946. set_dentry_mark(page, 0);
  947. }
  948. mapping->a_ops->writepage(page, wbc);
  949. wrote++;
  950. if (--wbc->nr_to_write == 0)
  951. break;
  952. }
  953. pagevec_release(&pvec);
  954. cond_resched();
  955. if (wbc->nr_to_write == 0) {
  956. step = 2;
  957. break;
  958. }
  959. }
  960. if (step < 2) {
  961. step++;
  962. goto next_step;
  963. }
  964. if (wrote)
  965. f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL);
  966. return nwritten;
  967. }
  968. static int f2fs_write_node_page(struct page *page,
  969. struct writeback_control *wbc)
  970. {
  971. struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
  972. nid_t nid;
  973. block_t new_addr;
  974. struct node_info ni;
  975. wait_on_page_writeback(page);
  976. /* get old block addr of this node page */
  977. nid = nid_of_node(page);
  978. BUG_ON(page->index != nid);
  979. get_node_info(sbi, nid, &ni);
  980. /* This page is already truncated */
  981. if (ni.blk_addr == NULL_ADDR) {
  982. dec_page_count(sbi, F2FS_DIRTY_NODES);
  983. unlock_page(page);
  984. return 0;
  985. }
  986. if (wbc->for_reclaim) {
  987. dec_page_count(sbi, F2FS_DIRTY_NODES);
  988. wbc->pages_skipped++;
  989. set_page_dirty(page);
  990. return AOP_WRITEPAGE_ACTIVATE;
  991. }
  992. mutex_lock(&sbi->node_write);
  993. set_page_writeback(page);
  994. write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
  995. set_node_addr(sbi, &ni, new_addr);
  996. dec_page_count(sbi, F2FS_DIRTY_NODES);
  997. mutex_unlock(&sbi->node_write);
  998. unlock_page(page);
  999. return 0;
  1000. }
  1001. /*
  1002. * It is very important to gather dirty pages and write at once, so that we can
  1003. * submit a big bio without interfering other data writes.
  1004. * Be default, 512 pages (2MB), a segment size, is quite reasonable.
  1005. */
  1006. #define COLLECT_DIRTY_NODES 512
  1007. static int f2fs_write_node_pages(struct address_space *mapping,
  1008. struct writeback_control *wbc)
  1009. {
  1010. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  1011. struct block_device *bdev = sbi->sb->s_bdev;
  1012. long nr_to_write = wbc->nr_to_write;
  1013. /* First check balancing cached NAT entries */
  1014. if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) {
  1015. f2fs_sync_fs(sbi->sb, true);
  1016. return 0;
  1017. }
  1018. /* collect a number of dirty node pages and write together */
  1019. if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES)
  1020. return 0;
  1021. /* if mounting is failed, skip writing node pages */
  1022. wbc->nr_to_write = bio_get_nr_vecs(bdev);
  1023. sync_node_pages(sbi, 0, wbc);
  1024. wbc->nr_to_write = nr_to_write -
  1025. (bio_get_nr_vecs(bdev) - wbc->nr_to_write);
  1026. return 0;
  1027. }
  1028. static int f2fs_set_node_page_dirty(struct page *page)
  1029. {
  1030. struct address_space *mapping = page->mapping;
  1031. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  1032. SetPageUptodate(page);
  1033. if (!PageDirty(page)) {
  1034. __set_page_dirty_nobuffers(page);
  1035. inc_page_count(sbi, F2FS_DIRTY_NODES);
  1036. SetPagePrivate(page);
  1037. return 1;
  1038. }
  1039. return 0;
  1040. }
  1041. static void f2fs_invalidate_node_page(struct page *page, unsigned long offset)
  1042. {
  1043. struct inode *inode = page->mapping->host;
  1044. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  1045. if (PageDirty(page))
  1046. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1047. ClearPagePrivate(page);
  1048. }
  1049. static int f2fs_release_node_page(struct page *page, gfp_t wait)
  1050. {
  1051. ClearPagePrivate(page);
  1052. return 1;
  1053. }
  1054. /*
  1055. * Structure of the f2fs node operations
  1056. */
  1057. const struct address_space_operations f2fs_node_aops = {
  1058. .writepage = f2fs_write_node_page,
  1059. .writepages = f2fs_write_node_pages,
  1060. .set_page_dirty = f2fs_set_node_page_dirty,
  1061. .invalidatepage = f2fs_invalidate_node_page,
  1062. .releasepage = f2fs_release_node_page,
  1063. };
  1064. static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
  1065. {
  1066. struct list_head *this;
  1067. struct free_nid *i;
  1068. list_for_each(this, head) {
  1069. i = list_entry(this, struct free_nid, list);
  1070. if (i->nid == n)
  1071. return i;
  1072. }
  1073. return NULL;
  1074. }
  1075. static void __del_from_free_nid_list(struct free_nid *i)
  1076. {
  1077. list_del(&i->list);
  1078. kmem_cache_free(free_nid_slab, i);
  1079. }
  1080. static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
  1081. {
  1082. struct free_nid *i;
  1083. if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
  1084. return 0;
  1085. retry:
  1086. i = kmem_cache_alloc(free_nid_slab, GFP_NOFS);
  1087. if (!i) {
  1088. cond_resched();
  1089. goto retry;
  1090. }
  1091. i->nid = nid;
  1092. i->state = NID_NEW;
  1093. spin_lock(&nm_i->free_nid_list_lock);
  1094. if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
  1095. spin_unlock(&nm_i->free_nid_list_lock);
  1096. kmem_cache_free(free_nid_slab, i);
  1097. return 0;
  1098. }
  1099. list_add_tail(&i->list, &nm_i->free_nid_list);
  1100. nm_i->fcnt++;
  1101. spin_unlock(&nm_i->free_nid_list_lock);
  1102. return 1;
  1103. }
  1104. static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
  1105. {
  1106. struct free_nid *i;
  1107. spin_lock(&nm_i->free_nid_list_lock);
  1108. i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
  1109. if (i && i->state == NID_NEW) {
  1110. __del_from_free_nid_list(i);
  1111. nm_i->fcnt--;
  1112. }
  1113. spin_unlock(&nm_i->free_nid_list_lock);
  1114. }
  1115. static int scan_nat_page(struct f2fs_nm_info *nm_i,
  1116. struct page *nat_page, nid_t start_nid)
  1117. {
  1118. struct f2fs_nat_block *nat_blk = page_address(nat_page);
  1119. block_t blk_addr;
  1120. int fcnt = 0;
  1121. int i;
  1122. /* 0 nid should not be used */
  1123. if (start_nid == 0)
  1124. ++start_nid;
  1125. i = start_nid % NAT_ENTRY_PER_BLOCK;
  1126. for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
  1127. if (start_nid >= nm_i->max_nid)
  1128. break;
  1129. blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
  1130. BUG_ON(blk_addr == NEW_ADDR);
  1131. if (blk_addr == NULL_ADDR)
  1132. fcnt += add_free_nid(nm_i, start_nid);
  1133. }
  1134. return fcnt;
  1135. }
  1136. static void build_free_nids(struct f2fs_sb_info *sbi)
  1137. {
  1138. struct free_nid *fnid, *next_fnid;
  1139. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1140. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1141. struct f2fs_summary_block *sum = curseg->sum_blk;
  1142. nid_t nid = 0;
  1143. bool is_cycled = false;
  1144. int fcnt = 0;
  1145. int i;
  1146. nid = nm_i->next_scan_nid;
  1147. nm_i->init_scan_nid = nid;
  1148. ra_nat_pages(sbi, nid);
  1149. while (1) {
  1150. struct page *page = get_current_nat_page(sbi, nid);
  1151. fcnt += scan_nat_page(nm_i, page, nid);
  1152. f2fs_put_page(page, 1);
  1153. nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
  1154. if (nid >= nm_i->max_nid) {
  1155. nid = 0;
  1156. is_cycled = true;
  1157. }
  1158. if (fcnt > MAX_FREE_NIDS)
  1159. break;
  1160. if (is_cycled && nm_i->init_scan_nid <= nid)
  1161. break;
  1162. }
  1163. /* go to the next nat page in order to reuse free nids first */
  1164. nm_i->next_scan_nid = nm_i->init_scan_nid + NAT_ENTRY_PER_BLOCK;
  1165. /* find free nids from current sum_pages */
  1166. mutex_lock(&curseg->curseg_mutex);
  1167. for (i = 0; i < nats_in_cursum(sum); i++) {
  1168. block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
  1169. nid = le32_to_cpu(nid_in_journal(sum, i));
  1170. if (addr == NULL_ADDR)
  1171. add_free_nid(nm_i, nid);
  1172. else
  1173. remove_free_nid(nm_i, nid);
  1174. }
  1175. mutex_unlock(&curseg->curseg_mutex);
  1176. /* remove the free nids from current allocated nids */
  1177. list_for_each_entry_safe(fnid, next_fnid, &nm_i->free_nid_list, list) {
  1178. struct nat_entry *ne;
  1179. read_lock(&nm_i->nat_tree_lock);
  1180. ne = __lookup_nat_cache(nm_i, fnid->nid);
  1181. if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
  1182. remove_free_nid(nm_i, fnid->nid);
  1183. read_unlock(&nm_i->nat_tree_lock);
  1184. }
  1185. }
  1186. /*
  1187. * If this function returns success, caller can obtain a new nid
  1188. * from second parameter of this function.
  1189. * The returned nid could be used ino as well as nid when inode is created.
  1190. */
  1191. bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
  1192. {
  1193. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1194. struct free_nid *i = NULL;
  1195. struct list_head *this;
  1196. retry:
  1197. mutex_lock(&nm_i->build_lock);
  1198. if (!nm_i->fcnt) {
  1199. /* scan NAT in order to build free nid list */
  1200. build_free_nids(sbi);
  1201. if (!nm_i->fcnt) {
  1202. mutex_unlock(&nm_i->build_lock);
  1203. return false;
  1204. }
  1205. }
  1206. mutex_unlock(&nm_i->build_lock);
  1207. /*
  1208. * We check fcnt again since previous check is racy as
  1209. * we didn't hold free_nid_list_lock. So other thread
  1210. * could consume all of free nids.
  1211. */
  1212. spin_lock(&nm_i->free_nid_list_lock);
  1213. if (!nm_i->fcnt) {
  1214. spin_unlock(&nm_i->free_nid_list_lock);
  1215. goto retry;
  1216. }
  1217. BUG_ON(list_empty(&nm_i->free_nid_list));
  1218. list_for_each(this, &nm_i->free_nid_list) {
  1219. i = list_entry(this, struct free_nid, list);
  1220. if (i->state == NID_NEW)
  1221. break;
  1222. }
  1223. BUG_ON(i->state != NID_NEW);
  1224. *nid = i->nid;
  1225. i->state = NID_ALLOC;
  1226. nm_i->fcnt--;
  1227. spin_unlock(&nm_i->free_nid_list_lock);
  1228. return true;
  1229. }
  1230. /*
  1231. * alloc_nid() should be called prior to this function.
  1232. */
  1233. void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
  1234. {
  1235. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1236. struct free_nid *i;
  1237. spin_lock(&nm_i->free_nid_list_lock);
  1238. i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
  1239. BUG_ON(!i || i->state != NID_ALLOC);
  1240. __del_from_free_nid_list(i);
  1241. spin_unlock(&nm_i->free_nid_list_lock);
  1242. }
  1243. /*
  1244. * alloc_nid() should be called prior to this function.
  1245. */
  1246. void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
  1247. {
  1248. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1249. struct free_nid *i;
  1250. spin_lock(&nm_i->free_nid_list_lock);
  1251. i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
  1252. BUG_ON(!i || i->state != NID_ALLOC);
  1253. i->state = NID_NEW;
  1254. nm_i->fcnt++;
  1255. spin_unlock(&nm_i->free_nid_list_lock);
  1256. }
  1257. void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
  1258. struct f2fs_summary *sum, struct node_info *ni,
  1259. block_t new_blkaddr)
  1260. {
  1261. rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
  1262. set_node_addr(sbi, ni, new_blkaddr);
  1263. clear_node_page_dirty(page);
  1264. }
  1265. int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
  1266. {
  1267. struct address_space *mapping = sbi->node_inode->i_mapping;
  1268. struct f2fs_node *src, *dst;
  1269. nid_t ino = ino_of_node(page);
  1270. struct node_info old_ni, new_ni;
  1271. struct page *ipage;
  1272. ipage = grab_cache_page(mapping, ino);
  1273. if (!ipage)
  1274. return -ENOMEM;
  1275. /* Should not use this inode from free nid list */
  1276. remove_free_nid(NM_I(sbi), ino);
  1277. get_node_info(sbi, ino, &old_ni);
  1278. SetPageUptodate(ipage);
  1279. fill_node_footer(ipage, ino, ino, 0, true);
  1280. src = (struct f2fs_node *)page_address(page);
  1281. dst = (struct f2fs_node *)page_address(ipage);
  1282. memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
  1283. dst->i.i_size = 0;
  1284. dst->i.i_blocks = cpu_to_le64(1);
  1285. dst->i.i_links = cpu_to_le32(1);
  1286. dst->i.i_xattr_nid = 0;
  1287. new_ni = old_ni;
  1288. new_ni.ino = ino;
  1289. set_node_addr(sbi, &new_ni, NEW_ADDR);
  1290. inc_valid_inode_count(sbi);
  1291. f2fs_put_page(ipage, 1);
  1292. return 0;
  1293. }
  1294. int restore_node_summary(struct f2fs_sb_info *sbi,
  1295. unsigned int segno, struct f2fs_summary_block *sum)
  1296. {
  1297. struct f2fs_node *rn;
  1298. struct f2fs_summary *sum_entry;
  1299. struct page *page;
  1300. block_t addr;
  1301. int i, last_offset;
  1302. /* alloc temporal page for read node */
  1303. page = alloc_page(GFP_NOFS | __GFP_ZERO);
  1304. if (IS_ERR(page))
  1305. return PTR_ERR(page);
  1306. lock_page(page);
  1307. /* scan the node segment */
  1308. last_offset = sbi->blocks_per_seg;
  1309. addr = START_BLOCK(sbi, segno);
  1310. sum_entry = &sum->entries[0];
  1311. for (i = 0; i < last_offset; i++, sum_entry++) {
  1312. /*
  1313. * In order to read next node page,
  1314. * we must clear PageUptodate flag.
  1315. */
  1316. ClearPageUptodate(page);
  1317. if (f2fs_readpage(sbi, page, addr, READ_SYNC))
  1318. goto out;
  1319. lock_page(page);
  1320. rn = (struct f2fs_node *)page_address(page);
  1321. sum_entry->nid = rn->footer.nid;
  1322. sum_entry->version = 0;
  1323. sum_entry->ofs_in_node = 0;
  1324. addr++;
  1325. }
  1326. unlock_page(page);
  1327. out:
  1328. __free_pages(page, 0);
  1329. return 0;
  1330. }
  1331. static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
  1332. {
  1333. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1334. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1335. struct f2fs_summary_block *sum = curseg->sum_blk;
  1336. int i;
  1337. mutex_lock(&curseg->curseg_mutex);
  1338. if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
  1339. mutex_unlock(&curseg->curseg_mutex);
  1340. return false;
  1341. }
  1342. for (i = 0; i < nats_in_cursum(sum); i++) {
  1343. struct nat_entry *ne;
  1344. struct f2fs_nat_entry raw_ne;
  1345. nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
  1346. raw_ne = nat_in_journal(sum, i);
  1347. retry:
  1348. write_lock(&nm_i->nat_tree_lock);
  1349. ne = __lookup_nat_cache(nm_i, nid);
  1350. if (ne) {
  1351. __set_nat_cache_dirty(nm_i, ne);
  1352. write_unlock(&nm_i->nat_tree_lock);
  1353. continue;
  1354. }
  1355. ne = grab_nat_entry(nm_i, nid);
  1356. if (!ne) {
  1357. write_unlock(&nm_i->nat_tree_lock);
  1358. goto retry;
  1359. }
  1360. nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
  1361. nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
  1362. nat_set_version(ne, raw_ne.version);
  1363. __set_nat_cache_dirty(nm_i, ne);
  1364. write_unlock(&nm_i->nat_tree_lock);
  1365. }
  1366. update_nats_in_cursum(sum, -i);
  1367. mutex_unlock(&curseg->curseg_mutex);
  1368. return true;
  1369. }
  1370. /*
  1371. * This function is called during the checkpointing process.
  1372. */
  1373. void flush_nat_entries(struct f2fs_sb_info *sbi)
  1374. {
  1375. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1376. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1377. struct f2fs_summary_block *sum = curseg->sum_blk;
  1378. struct list_head *cur, *n;
  1379. struct page *page = NULL;
  1380. struct f2fs_nat_block *nat_blk = NULL;
  1381. nid_t start_nid = 0, end_nid = 0;
  1382. bool flushed;
  1383. flushed = flush_nats_in_journal(sbi);
  1384. if (!flushed)
  1385. mutex_lock(&curseg->curseg_mutex);
  1386. /* 1) flush dirty nat caches */
  1387. list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
  1388. struct nat_entry *ne;
  1389. nid_t nid;
  1390. struct f2fs_nat_entry raw_ne;
  1391. int offset = -1;
  1392. block_t new_blkaddr;
  1393. ne = list_entry(cur, struct nat_entry, list);
  1394. nid = nat_get_nid(ne);
  1395. if (nat_get_blkaddr(ne) == NEW_ADDR)
  1396. continue;
  1397. if (flushed)
  1398. goto to_nat_page;
  1399. /* if there is room for nat enries in curseg->sumpage */
  1400. offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
  1401. if (offset >= 0) {
  1402. raw_ne = nat_in_journal(sum, offset);
  1403. goto flush_now;
  1404. }
  1405. to_nat_page:
  1406. if (!page || (start_nid > nid || nid > end_nid)) {
  1407. if (page) {
  1408. f2fs_put_page(page, 1);
  1409. page = NULL;
  1410. }
  1411. start_nid = START_NID(nid);
  1412. end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
  1413. /*
  1414. * get nat block with dirty flag, increased reference
  1415. * count, mapped and lock
  1416. */
  1417. page = get_next_nat_page(sbi, start_nid);
  1418. nat_blk = page_address(page);
  1419. }
  1420. BUG_ON(!nat_blk);
  1421. raw_ne = nat_blk->entries[nid - start_nid];
  1422. flush_now:
  1423. new_blkaddr = nat_get_blkaddr(ne);
  1424. raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
  1425. raw_ne.block_addr = cpu_to_le32(new_blkaddr);
  1426. raw_ne.version = nat_get_version(ne);
  1427. if (offset < 0) {
  1428. nat_blk->entries[nid - start_nid] = raw_ne;
  1429. } else {
  1430. nat_in_journal(sum, offset) = raw_ne;
  1431. nid_in_journal(sum, offset) = cpu_to_le32(nid);
  1432. }
  1433. if (nat_get_blkaddr(ne) == NULL_ADDR &&
  1434. !add_free_nid(NM_I(sbi), nid)) {
  1435. write_lock(&nm_i->nat_tree_lock);
  1436. __del_from_nat_cache(nm_i, ne);
  1437. write_unlock(&nm_i->nat_tree_lock);
  1438. } else {
  1439. write_lock(&nm_i->nat_tree_lock);
  1440. __clear_nat_cache_dirty(nm_i, ne);
  1441. ne->checkpointed = true;
  1442. write_unlock(&nm_i->nat_tree_lock);
  1443. }
  1444. }
  1445. if (!flushed)
  1446. mutex_unlock(&curseg->curseg_mutex);
  1447. f2fs_put_page(page, 1);
  1448. /* 2) shrink nat caches if necessary */
  1449. try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
  1450. }
  1451. static int init_node_manager(struct f2fs_sb_info *sbi)
  1452. {
  1453. struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
  1454. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1455. unsigned char *version_bitmap;
  1456. unsigned int nat_segs, nat_blocks;
  1457. nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
  1458. /* segment_count_nat includes pair segment so divide to 2. */
  1459. nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
  1460. nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
  1461. nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
  1462. nm_i->fcnt = 0;
  1463. nm_i->nat_cnt = 0;
  1464. INIT_LIST_HEAD(&nm_i->free_nid_list);
  1465. INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
  1466. INIT_LIST_HEAD(&nm_i->nat_entries);
  1467. INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
  1468. mutex_init(&nm_i->build_lock);
  1469. spin_lock_init(&nm_i->free_nid_list_lock);
  1470. rwlock_init(&nm_i->nat_tree_lock);
  1471. nm_i->init_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
  1472. nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
  1473. nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
  1474. version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
  1475. if (!version_bitmap)
  1476. return -EFAULT;
  1477. nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
  1478. GFP_KERNEL);
  1479. if (!nm_i->nat_bitmap)
  1480. return -ENOMEM;
  1481. return 0;
  1482. }
  1483. int build_node_manager(struct f2fs_sb_info *sbi)
  1484. {
  1485. int err;
  1486. sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
  1487. if (!sbi->nm_info)
  1488. return -ENOMEM;
  1489. err = init_node_manager(sbi);
  1490. if (err)
  1491. return err;
  1492. build_free_nids(sbi);
  1493. return 0;
  1494. }
  1495. void destroy_node_manager(struct f2fs_sb_info *sbi)
  1496. {
  1497. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1498. struct free_nid *i, *next_i;
  1499. struct nat_entry *natvec[NATVEC_SIZE];
  1500. nid_t nid = 0;
  1501. unsigned int found;
  1502. if (!nm_i)
  1503. return;
  1504. /* destroy free nid list */
  1505. spin_lock(&nm_i->free_nid_list_lock);
  1506. list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
  1507. BUG_ON(i->state == NID_ALLOC);
  1508. __del_from_free_nid_list(i);
  1509. nm_i->fcnt--;
  1510. }
  1511. BUG_ON(nm_i->fcnt);
  1512. spin_unlock(&nm_i->free_nid_list_lock);
  1513. /* destroy nat cache */
  1514. write_lock(&nm_i->nat_tree_lock);
  1515. while ((found = __gang_lookup_nat_cache(nm_i,
  1516. nid, NATVEC_SIZE, natvec))) {
  1517. unsigned idx;
  1518. for (idx = 0; idx < found; idx++) {
  1519. struct nat_entry *e = natvec[idx];
  1520. nid = nat_get_nid(e) + 1;
  1521. __del_from_nat_cache(nm_i, e);
  1522. }
  1523. }
  1524. BUG_ON(nm_i->nat_cnt);
  1525. write_unlock(&nm_i->nat_tree_lock);
  1526. kfree(nm_i->nat_bitmap);
  1527. sbi->nm_info = NULL;
  1528. kfree(nm_i);
  1529. }
  1530. int __init create_node_manager_caches(void)
  1531. {
  1532. nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
  1533. sizeof(struct nat_entry), NULL);
  1534. if (!nat_entry_slab)
  1535. return -ENOMEM;
  1536. free_nid_slab = f2fs_kmem_cache_create("free_nid",
  1537. sizeof(struct free_nid), NULL);
  1538. if (!free_nid_slab) {
  1539. kmem_cache_destroy(nat_entry_slab);
  1540. return -ENOMEM;
  1541. }
  1542. return 0;
  1543. }
  1544. void destroy_node_manager_caches(void)
  1545. {
  1546. kmem_cache_destroy(free_nid_slab);
  1547. kmem_cache_destroy(nat_entry_slab);
  1548. }