mm.h 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/sched.h>
  4. #include <linux/errno.h>
  5. #include <linux/capability.h>
  6. #ifdef __KERNEL__
  7. #include <linux/gfp.h>
  8. #include <linux/list.h>
  9. #include <linux/mmzone.h>
  10. #include <linux/rbtree.h>
  11. #include <linux/prio_tree.h>
  12. #include <linux/fs.h>
  13. #include <linux/mutex.h>
  14. #include <linux/debug_locks.h>
  15. #include <linux/backing-dev.h>
  16. struct mempolicy;
  17. struct anon_vma;
  18. #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
  19. extern unsigned long max_mapnr;
  20. #endif
  21. extern unsigned long num_physpages;
  22. extern void * high_memory;
  23. extern unsigned long vmalloc_earlyreserve;
  24. extern int page_cluster;
  25. #ifdef CONFIG_SYSCTL
  26. extern int sysctl_legacy_va_layout;
  27. #else
  28. #define sysctl_legacy_va_layout 0
  29. #endif
  30. #include <asm/page.h>
  31. #include <asm/pgtable.h>
  32. #include <asm/processor.h>
  33. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  34. /*
  35. * Linux kernel virtual memory manager primitives.
  36. * The idea being to have a "virtual" mm in the same way
  37. * we have a virtual fs - giving a cleaner interface to the
  38. * mm details, and allowing different kinds of memory mappings
  39. * (from shared memory to executable loading to arbitrary
  40. * mmap() functions).
  41. */
  42. /*
  43. * This struct defines a memory VMM memory area. There is one of these
  44. * per VM-area/task. A VM area is any part of the process virtual memory
  45. * space that has a special rule for the page-fault handlers (ie a shared
  46. * library, the executable area etc).
  47. */
  48. struct vm_area_struct {
  49. struct mm_struct * vm_mm; /* The address space we belong to. */
  50. unsigned long vm_start; /* Our start address within vm_mm. */
  51. unsigned long vm_end; /* The first byte after our end address
  52. within vm_mm. */
  53. /* linked list of VM areas per task, sorted by address */
  54. struct vm_area_struct *vm_next;
  55. pgprot_t vm_page_prot; /* Access permissions of this VMA. */
  56. unsigned long vm_flags; /* Flags, listed below. */
  57. struct rb_node vm_rb;
  58. /*
  59. * For areas with an address space and backing store,
  60. * linkage into the address_space->i_mmap prio tree, or
  61. * linkage to the list of like vmas hanging off its node, or
  62. * linkage of vma in the address_space->i_mmap_nonlinear list.
  63. */
  64. union {
  65. struct {
  66. struct list_head list;
  67. void *parent; /* aligns with prio_tree_node parent */
  68. struct vm_area_struct *head;
  69. } vm_set;
  70. struct raw_prio_tree_node prio_tree_node;
  71. } shared;
  72. /*
  73. * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
  74. * list, after a COW of one of the file pages. A MAP_SHARED vma
  75. * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
  76. * or brk vma (with NULL file) can only be in an anon_vma list.
  77. */
  78. struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
  79. struct anon_vma *anon_vma; /* Serialized by page_table_lock */
  80. /* Function pointers to deal with this struct. */
  81. struct vm_operations_struct * vm_ops;
  82. /* Information about our backing store: */
  83. unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
  84. units, *not* PAGE_CACHE_SIZE */
  85. struct file * vm_file; /* File we map to (can be NULL). */
  86. void * vm_private_data; /* was vm_pte (shared mem) */
  87. unsigned long vm_truncate_count;/* truncate_count or restart_addr */
  88. #ifndef CONFIG_MMU
  89. atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */
  90. #endif
  91. #ifdef CONFIG_NUMA
  92. struct mempolicy *vm_policy; /* NUMA policy for the VMA */
  93. #endif
  94. };
  95. /*
  96. * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
  97. * disabled, then there's a single shared list of VMAs maintained by the
  98. * system, and mm's subscribe to these individually
  99. */
  100. struct vm_list_struct {
  101. struct vm_list_struct *next;
  102. struct vm_area_struct *vma;
  103. };
  104. #ifndef CONFIG_MMU
  105. extern struct rb_root nommu_vma_tree;
  106. extern struct rw_semaphore nommu_vma_sem;
  107. extern unsigned int kobjsize(const void *objp);
  108. #endif
  109. /*
  110. * vm_flags..
  111. */
  112. #define VM_READ 0x00000001 /* currently active flags */
  113. #define VM_WRITE 0x00000002
  114. #define VM_EXEC 0x00000004
  115. #define VM_SHARED 0x00000008
  116. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  117. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  118. #define VM_MAYWRITE 0x00000020
  119. #define VM_MAYEXEC 0x00000040
  120. #define VM_MAYSHARE 0x00000080
  121. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  122. #define VM_GROWSUP 0x00000200
  123. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  124. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  125. #define VM_EXECUTABLE 0x00001000
  126. #define VM_LOCKED 0x00002000
  127. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  128. /* Used by sys_madvise() */
  129. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  130. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  131. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  132. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  133. #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
  134. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  135. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  136. #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
  137. #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
  138. #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
  139. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  140. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  141. #endif
  142. #ifdef CONFIG_STACK_GROWSUP
  143. #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  144. #else
  145. #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  146. #endif
  147. #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
  148. #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
  149. #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
  150. #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
  151. #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
  152. /*
  153. * mapping from the currently active vm_flags protection bits (the
  154. * low four bits) to a page protection mask..
  155. */
  156. extern pgprot_t protection_map[16];
  157. /*
  158. * These are the virtual MM functions - opening of an area, closing and
  159. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  160. * to the functions called when a no-page or a wp-page exception occurs.
  161. */
  162. struct vm_operations_struct {
  163. void (*open)(struct vm_area_struct * area);
  164. void (*close)(struct vm_area_struct * area);
  165. struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type);
  166. int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock);
  167. /* notification that a previously read-only page is about to become
  168. * writable, if an error is returned it will cause a SIGBUS */
  169. int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
  170. #ifdef CONFIG_NUMA
  171. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  172. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  173. unsigned long addr);
  174. int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
  175. const nodemask_t *to, unsigned long flags);
  176. #endif
  177. };
  178. struct mmu_gather;
  179. struct inode;
  180. /*
  181. * Each physical page in the system has a struct page associated with
  182. * it to keep track of whatever it is we are using the page for at the
  183. * moment. Note that we have no way to track which tasks are using
  184. * a page, though if it is a pagecache page, rmap structures can tell us
  185. * who is mapping it.
  186. */
  187. struct page {
  188. unsigned long flags; /* Atomic flags, some possibly
  189. * updated asynchronously */
  190. atomic_t _count; /* Usage count, see below. */
  191. atomic_t _mapcount; /* Count of ptes mapped in mms,
  192. * to show when page is mapped
  193. * & limit reverse map searches.
  194. */
  195. union {
  196. struct {
  197. unsigned long private; /* Mapping-private opaque data:
  198. * usually used for buffer_heads
  199. * if PagePrivate set; used for
  200. * swp_entry_t if PageSwapCache;
  201. * indicates order in the buddy
  202. * system if PG_buddy is set.
  203. */
  204. struct address_space *mapping; /* If low bit clear, points to
  205. * inode address_space, or NULL.
  206. * If page mapped as anonymous
  207. * memory, low bit is set, and
  208. * it points to anon_vma object:
  209. * see PAGE_MAPPING_ANON below.
  210. */
  211. };
  212. #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
  213. spinlock_t ptl;
  214. #endif
  215. };
  216. pgoff_t index; /* Our offset within mapping. */
  217. struct list_head lru; /* Pageout list, eg. active_list
  218. * protected by zone->lru_lock !
  219. */
  220. /*
  221. * On machines where all RAM is mapped into kernel address space,
  222. * we can simply calculate the virtual address. On machines with
  223. * highmem some memory is mapped into kernel virtual memory
  224. * dynamically, so we need a place to store that address.
  225. * Note that this field could be 16 bits on x86 ... ;)
  226. *
  227. * Architectures with slow multiplication can define
  228. * WANT_PAGE_VIRTUAL in asm/page.h
  229. */
  230. #if defined(WANT_PAGE_VIRTUAL)
  231. void *virtual; /* Kernel virtual address (NULL if
  232. not kmapped, ie. highmem) */
  233. #endif /* WANT_PAGE_VIRTUAL */
  234. };
  235. #define page_private(page) ((page)->private)
  236. #define set_page_private(page, v) ((page)->private = (v))
  237. /*
  238. * FIXME: take this include out, include page-flags.h in
  239. * files which need it (119 of them)
  240. */
  241. #include <linux/page-flags.h>
  242. #ifdef CONFIG_DEBUG_VM
  243. #define VM_BUG_ON(cond) BUG_ON(cond)
  244. #else
  245. #define VM_BUG_ON(condition) do { } while(0)
  246. #endif
  247. /*
  248. * Methods to modify the page usage count.
  249. *
  250. * What counts for a page usage:
  251. * - cache mapping (page->mapping)
  252. * - private data (page->private)
  253. * - page mapped in a task's page tables, each mapping
  254. * is counted separately
  255. *
  256. * Also, many kernel routines increase the page count before a critical
  257. * routine so they can be sure the page doesn't go away from under them.
  258. */
  259. /*
  260. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  261. */
  262. static inline int put_page_testzero(struct page *page)
  263. {
  264. VM_BUG_ON(atomic_read(&page->_count) == 0);
  265. return atomic_dec_and_test(&page->_count);
  266. }
  267. /*
  268. * Try to grab a ref unless the page has a refcount of zero, return false if
  269. * that is the case.
  270. */
  271. static inline int get_page_unless_zero(struct page *page)
  272. {
  273. VM_BUG_ON(PageCompound(page));
  274. return atomic_inc_not_zero(&page->_count);
  275. }
  276. static inline int page_count(struct page *page)
  277. {
  278. if (unlikely(PageCompound(page)))
  279. page = (struct page *)page_private(page);
  280. return atomic_read(&page->_count);
  281. }
  282. static inline void get_page(struct page *page)
  283. {
  284. if (unlikely(PageCompound(page)))
  285. page = (struct page *)page_private(page);
  286. VM_BUG_ON(atomic_read(&page->_count) == 0);
  287. atomic_inc(&page->_count);
  288. }
  289. /*
  290. * Setup the page count before being freed into the page allocator for
  291. * the first time (boot or memory hotplug)
  292. */
  293. static inline void init_page_count(struct page *page)
  294. {
  295. atomic_set(&page->_count, 1);
  296. }
  297. void put_page(struct page *page);
  298. void put_pages_list(struct list_head *pages);
  299. void split_page(struct page *page, unsigned int order);
  300. /*
  301. * Multiple processes may "see" the same page. E.g. for untouched
  302. * mappings of /dev/null, all processes see the same page full of
  303. * zeroes, and text pages of executables and shared libraries have
  304. * only one copy in memory, at most, normally.
  305. *
  306. * For the non-reserved pages, page_count(page) denotes a reference count.
  307. * page_count() == 0 means the page is free. page->lru is then used for
  308. * freelist management in the buddy allocator.
  309. * page_count() > 0 means the page has been allocated.
  310. *
  311. * Pages are allocated by the slab allocator in order to provide memory
  312. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  313. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  314. * unless a particular usage is carefully commented. (the responsibility of
  315. * freeing the kmalloc memory is the caller's, of course).
  316. *
  317. * A page may be used by anyone else who does a __get_free_page().
  318. * In this case, page_count still tracks the references, and should only
  319. * be used through the normal accessor functions. The top bits of page->flags
  320. * and page->virtual store page management information, but all other fields
  321. * are unused and could be used privately, carefully. The management of this
  322. * page is the responsibility of the one who allocated it, and those who have
  323. * subsequently been given references to it.
  324. *
  325. * The other pages (we may call them "pagecache pages") are completely
  326. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  327. * The following discussion applies only to them.
  328. *
  329. * A pagecache page contains an opaque `private' member, which belongs to the
  330. * page's address_space. Usually, this is the address of a circular list of
  331. * the page's disk buffers. PG_private must be set to tell the VM to call
  332. * into the filesystem to release these pages.
  333. *
  334. * A page may belong to an inode's memory mapping. In this case, page->mapping
  335. * is the pointer to the inode, and page->index is the file offset of the page,
  336. * in units of PAGE_CACHE_SIZE.
  337. *
  338. * If pagecache pages are not associated with an inode, they are said to be
  339. * anonymous pages. These may become associated with the swapcache, and in that
  340. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  341. *
  342. * In either case (swapcache or inode backed), the pagecache itself holds one
  343. * reference to the page. Setting PG_private should also increment the
  344. * refcount. The each user mapping also has a reference to the page.
  345. *
  346. * The pagecache pages are stored in a per-mapping radix tree, which is
  347. * rooted at mapping->page_tree, and indexed by offset.
  348. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  349. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  350. *
  351. * All pagecache pages may be subject to I/O:
  352. * - inode pages may need to be read from disk,
  353. * - inode pages which have been modified and are MAP_SHARED may need
  354. * to be written back to the inode on disk,
  355. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  356. * modified may need to be swapped out to swap space and (later) to be read
  357. * back into memory.
  358. */
  359. /*
  360. * The zone field is never updated after free_area_init_core()
  361. * sets it, so none of the operations on it need to be atomic.
  362. */
  363. /*
  364. * page->flags layout:
  365. *
  366. * There are three possibilities for how page->flags get
  367. * laid out. The first is for the normal case, without
  368. * sparsemem. The second is for sparsemem when there is
  369. * plenty of space for node and section. The last is when
  370. * we have run out of space and have to fall back to an
  371. * alternate (slower) way of determining the node.
  372. *
  373. * No sparsemem: | NODE | ZONE | ... | FLAGS |
  374. * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
  375. * no space for node: | SECTION | ZONE | ... | FLAGS |
  376. */
  377. #ifdef CONFIG_SPARSEMEM
  378. #define SECTIONS_WIDTH SECTIONS_SHIFT
  379. #else
  380. #define SECTIONS_WIDTH 0
  381. #endif
  382. #define ZONES_WIDTH ZONES_SHIFT
  383. #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
  384. #define NODES_WIDTH NODES_SHIFT
  385. #else
  386. #define NODES_WIDTH 0
  387. #endif
  388. /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
  389. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  390. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  391. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  392. /*
  393. * We are going to use the flags for the page to node mapping if its in
  394. * there. This includes the case where there is no node, so it is implicit.
  395. */
  396. #define FLAGS_HAS_NODE (NODES_WIDTH > 0 || NODES_SHIFT == 0)
  397. #ifndef PFN_SECTION_SHIFT
  398. #define PFN_SECTION_SHIFT 0
  399. #endif
  400. /*
  401. * Define the bit shifts to access each section. For non-existant
  402. * sections we define the shift as 0; that plus a 0 mask ensures
  403. * the compiler will optimise away reference to them.
  404. */
  405. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  406. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  407. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  408. /* NODE:ZONE or SECTION:ZONE is used to lookup the zone from a page. */
  409. #if FLAGS_HAS_NODE
  410. #define ZONETABLE_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  411. #else
  412. #define ZONETABLE_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  413. #endif
  414. #define ZONETABLE_PGSHIFT ZONES_PGSHIFT
  415. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
  416. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
  417. #endif
  418. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  419. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  420. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  421. #define ZONETABLE_MASK ((1UL << ZONETABLE_SHIFT) - 1)
  422. static inline enum zone_type page_zonenum(struct page *page)
  423. {
  424. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  425. }
  426. struct zone;
  427. extern struct zone *zone_table[];
  428. static inline int page_zone_id(struct page *page)
  429. {
  430. return (page->flags >> ZONETABLE_PGSHIFT) & ZONETABLE_MASK;
  431. }
  432. static inline struct zone *page_zone(struct page *page)
  433. {
  434. return zone_table[page_zone_id(page)];
  435. }
  436. static inline unsigned long zone_to_nid(struct zone *zone)
  437. {
  438. return zone->zone_pgdat->node_id;
  439. }
  440. static inline unsigned long page_to_nid(struct page *page)
  441. {
  442. if (FLAGS_HAS_NODE)
  443. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  444. else
  445. return zone_to_nid(page_zone(page));
  446. }
  447. static inline unsigned long page_to_section(struct page *page)
  448. {
  449. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  450. }
  451. static inline void set_page_zone(struct page *page, enum zone_type zone)
  452. {
  453. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  454. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  455. }
  456. static inline void set_page_node(struct page *page, unsigned long node)
  457. {
  458. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  459. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  460. }
  461. static inline void set_page_section(struct page *page, unsigned long section)
  462. {
  463. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  464. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  465. }
  466. static inline void set_page_links(struct page *page, enum zone_type zone,
  467. unsigned long node, unsigned long pfn)
  468. {
  469. set_page_zone(page, zone);
  470. set_page_node(page, node);
  471. set_page_section(page, pfn_to_section_nr(pfn));
  472. }
  473. /*
  474. * Some inline functions in vmstat.h depend on page_zone()
  475. */
  476. #include <linux/vmstat.h>
  477. #ifndef CONFIG_DISCONTIGMEM
  478. /* The array of struct pages - for discontigmem use pgdat->lmem_map */
  479. extern struct page *mem_map;
  480. #endif
  481. static __always_inline void *lowmem_page_address(struct page *page)
  482. {
  483. return __va(page_to_pfn(page) << PAGE_SHIFT);
  484. }
  485. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  486. #define HASHED_PAGE_VIRTUAL
  487. #endif
  488. #if defined(WANT_PAGE_VIRTUAL)
  489. #define page_address(page) ((page)->virtual)
  490. #define set_page_address(page, address) \
  491. do { \
  492. (page)->virtual = (address); \
  493. } while(0)
  494. #define page_address_init() do { } while(0)
  495. #endif
  496. #if defined(HASHED_PAGE_VIRTUAL)
  497. void *page_address(struct page *page);
  498. void set_page_address(struct page *page, void *virtual);
  499. void page_address_init(void);
  500. #endif
  501. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  502. #define page_address(page) lowmem_page_address(page)
  503. #define set_page_address(page, address) do { } while(0)
  504. #define page_address_init() do { } while(0)
  505. #endif
  506. /*
  507. * On an anonymous page mapped into a user virtual memory area,
  508. * page->mapping points to its anon_vma, not to a struct address_space;
  509. * with the PAGE_MAPPING_ANON bit set to distinguish it.
  510. *
  511. * Please note that, confusingly, "page_mapping" refers to the inode
  512. * address_space which maps the page from disk; whereas "page_mapped"
  513. * refers to user virtual address space into which the page is mapped.
  514. */
  515. #define PAGE_MAPPING_ANON 1
  516. extern struct address_space swapper_space;
  517. static inline struct address_space *page_mapping(struct page *page)
  518. {
  519. struct address_space *mapping = page->mapping;
  520. if (unlikely(PageSwapCache(page)))
  521. mapping = &swapper_space;
  522. else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
  523. mapping = NULL;
  524. return mapping;
  525. }
  526. static inline int PageAnon(struct page *page)
  527. {
  528. return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
  529. }
  530. /*
  531. * Return the pagecache index of the passed page. Regular pagecache pages
  532. * use ->index whereas swapcache pages use ->private
  533. */
  534. static inline pgoff_t page_index(struct page *page)
  535. {
  536. if (unlikely(PageSwapCache(page)))
  537. return page_private(page);
  538. return page->index;
  539. }
  540. /*
  541. * The atomic page->_mapcount, like _count, starts from -1:
  542. * so that transitions both from it and to it can be tracked,
  543. * using atomic_inc_and_test and atomic_add_negative(-1).
  544. */
  545. static inline void reset_page_mapcount(struct page *page)
  546. {
  547. atomic_set(&(page)->_mapcount, -1);
  548. }
  549. static inline int page_mapcount(struct page *page)
  550. {
  551. return atomic_read(&(page)->_mapcount) + 1;
  552. }
  553. /*
  554. * Return true if this page is mapped into pagetables.
  555. */
  556. static inline int page_mapped(struct page *page)
  557. {
  558. return atomic_read(&(page)->_mapcount) >= 0;
  559. }
  560. /*
  561. * Error return values for the *_nopage functions
  562. */
  563. #define NOPAGE_SIGBUS (NULL)
  564. #define NOPAGE_OOM ((struct page *) (-1))
  565. /*
  566. * Different kinds of faults, as returned by handle_mm_fault().
  567. * Used to decide whether a process gets delivered SIGBUS or
  568. * just gets major/minor fault counters bumped up.
  569. */
  570. #define VM_FAULT_OOM 0x00
  571. #define VM_FAULT_SIGBUS 0x01
  572. #define VM_FAULT_MINOR 0x02
  573. #define VM_FAULT_MAJOR 0x03
  574. /*
  575. * Special case for get_user_pages.
  576. * Must be in a distinct bit from the above VM_FAULT_ flags.
  577. */
  578. #define VM_FAULT_WRITE 0x10
  579. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  580. extern void show_free_areas(void);
  581. #ifdef CONFIG_SHMEM
  582. struct page *shmem_nopage(struct vm_area_struct *vma,
  583. unsigned long address, int *type);
  584. int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
  585. struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
  586. unsigned long addr);
  587. int shmem_lock(struct file *file, int lock, struct user_struct *user);
  588. #else
  589. #define shmem_nopage filemap_nopage
  590. static inline int shmem_lock(struct file *file, int lock,
  591. struct user_struct *user)
  592. {
  593. return 0;
  594. }
  595. static inline int shmem_set_policy(struct vm_area_struct *vma,
  596. struct mempolicy *new)
  597. {
  598. return 0;
  599. }
  600. static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
  601. unsigned long addr)
  602. {
  603. return NULL;
  604. }
  605. #endif
  606. struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
  607. extern int shmem_mmap(struct file *file, struct vm_area_struct *vma);
  608. int shmem_zero_setup(struct vm_area_struct *);
  609. #ifndef CONFIG_MMU
  610. extern unsigned long shmem_get_unmapped_area(struct file *file,
  611. unsigned long addr,
  612. unsigned long len,
  613. unsigned long pgoff,
  614. unsigned long flags);
  615. #endif
  616. static inline int can_do_mlock(void)
  617. {
  618. if (capable(CAP_IPC_LOCK))
  619. return 1;
  620. if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
  621. return 1;
  622. return 0;
  623. }
  624. extern int user_shm_lock(size_t, struct user_struct *);
  625. extern void user_shm_unlock(size_t, struct user_struct *);
  626. /*
  627. * Parameter block passed down to zap_pte_range in exceptional cases.
  628. */
  629. struct zap_details {
  630. struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
  631. struct address_space *check_mapping; /* Check page->mapping if set */
  632. pgoff_t first_index; /* Lowest page->index to unmap */
  633. pgoff_t last_index; /* Highest page->index to unmap */
  634. spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
  635. unsigned long truncate_count; /* Compare vm_truncate_count */
  636. };
  637. struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
  638. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  639. unsigned long size, struct zap_details *);
  640. unsigned long unmap_vmas(struct mmu_gather **tlb,
  641. struct vm_area_struct *start_vma, unsigned long start_addr,
  642. unsigned long end_addr, unsigned long *nr_accounted,
  643. struct zap_details *);
  644. void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
  645. unsigned long end, unsigned long floor, unsigned long ceiling);
  646. void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
  647. unsigned long floor, unsigned long ceiling);
  648. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  649. struct vm_area_struct *vma);
  650. int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
  651. unsigned long size, pgprot_t prot);
  652. void unmap_mapping_range(struct address_space *mapping,
  653. loff_t const holebegin, loff_t const holelen, int even_cows);
  654. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  655. loff_t const holebegin, loff_t const holelen)
  656. {
  657. unmap_mapping_range(mapping, holebegin, holelen, 0);
  658. }
  659. extern int vmtruncate(struct inode * inode, loff_t offset);
  660. extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
  661. extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot);
  662. extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot);
  663. #ifdef CONFIG_MMU
  664. extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma,
  665. unsigned long address, int write_access);
  666. static inline int handle_mm_fault(struct mm_struct *mm,
  667. struct vm_area_struct *vma, unsigned long address,
  668. int write_access)
  669. {
  670. return __handle_mm_fault(mm, vma, address, write_access) &
  671. (~VM_FAULT_WRITE);
  672. }
  673. #else
  674. static inline int handle_mm_fault(struct mm_struct *mm,
  675. struct vm_area_struct *vma, unsigned long address,
  676. int write_access)
  677. {
  678. /* should never happen if there's no MMU */
  679. BUG();
  680. return VM_FAULT_SIGBUS;
  681. }
  682. #endif
  683. extern int make_pages_present(unsigned long addr, unsigned long end);
  684. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  685. void install_arg_page(struct vm_area_struct *, struct page *, unsigned long);
  686. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
  687. int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
  688. void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
  689. int __set_page_dirty_buffers(struct page *page);
  690. int __set_page_dirty_nobuffers(struct page *page);
  691. int redirty_page_for_writepage(struct writeback_control *wbc,
  692. struct page *page);
  693. int FASTCALL(set_page_dirty(struct page *page));
  694. int set_page_dirty_lock(struct page *page);
  695. int clear_page_dirty_for_io(struct page *page);
  696. extern unsigned long do_mremap(unsigned long addr,
  697. unsigned long old_len, unsigned long new_len,
  698. unsigned long flags, unsigned long new_addr);
  699. /*
  700. * Prototype to add a shrinker callback for ageable caches.
  701. *
  702. * These functions are passed a count `nr_to_scan' and a gfpmask. They should
  703. * scan `nr_to_scan' objects, attempting to free them.
  704. *
  705. * The callback must return the number of objects which remain in the cache.
  706. *
  707. * The callback will be passed nr_to_scan == 0 when the VM is querying the
  708. * cache size, so a fastpath for that case is appropriate.
  709. */
  710. typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask);
  711. /*
  712. * Add an aging callback. The int is the number of 'seeks' it takes
  713. * to recreate one of the objects that these functions age.
  714. */
  715. #define DEFAULT_SEEKS 2
  716. struct shrinker;
  717. extern struct shrinker *set_shrinker(int, shrinker_t);
  718. extern void remove_shrinker(struct shrinker *shrinker);
  719. /*
  720. * Some shared mappigns will want the pages marked read-only
  721. * to track write events. If so, we'll downgrade vm_page_prot
  722. * to the private version (using protection_map[] without the
  723. * VM_SHARED bit).
  724. */
  725. static inline int vma_wants_writenotify(struct vm_area_struct *vma)
  726. {
  727. unsigned int vm_flags = vma->vm_flags;
  728. /* If it was private or non-writable, the write bit is already clear */
  729. if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
  730. return 0;
  731. /* The backer wishes to know when pages are first written to? */
  732. if (vma->vm_ops && vma->vm_ops->page_mkwrite)
  733. return 1;
  734. /* The open routine did something to the protections already? */
  735. if (pgprot_val(vma->vm_page_prot) !=
  736. pgprot_val(protection_map[vm_flags &
  737. (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]))
  738. return 0;
  739. /* Specialty mapping? */
  740. if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
  741. return 0;
  742. /* Can the mapping track the dirty pages? */
  743. return vma->vm_file && vma->vm_file->f_mapping &&
  744. mapping_cap_account_dirty(vma->vm_file->f_mapping);
  745. }
  746. extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
  747. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  748. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  749. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
  750. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  751. /*
  752. * The following ifdef needed to get the 4level-fixup.h header to work.
  753. * Remove it when 4level-fixup.h has been removed.
  754. */
  755. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  756. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  757. {
  758. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  759. NULL: pud_offset(pgd, address);
  760. }
  761. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  762. {
  763. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  764. NULL: pmd_offset(pud, address);
  765. }
  766. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  767. #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
  768. /*
  769. * We tuck a spinlock to guard each pagetable page into its struct page,
  770. * at page->private, with BUILD_BUG_ON to make sure that this will not
  771. * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
  772. * When freeing, reset page->mapping so free_pages_check won't complain.
  773. */
  774. #define __pte_lockptr(page) &((page)->ptl)
  775. #define pte_lock_init(_page) do { \
  776. spin_lock_init(__pte_lockptr(_page)); \
  777. } while (0)
  778. #define pte_lock_deinit(page) ((page)->mapping = NULL)
  779. #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
  780. #else
  781. /*
  782. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  783. */
  784. #define pte_lock_init(page) do {} while (0)
  785. #define pte_lock_deinit(page) do {} while (0)
  786. #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
  787. #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
  788. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  789. ({ \
  790. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  791. pte_t *__pte = pte_offset_map(pmd, address); \
  792. *(ptlp) = __ptl; \
  793. spin_lock(__ptl); \
  794. __pte; \
  795. })
  796. #define pte_unmap_unlock(pte, ptl) do { \
  797. spin_unlock(ptl); \
  798. pte_unmap(pte); \
  799. } while (0)
  800. #define pte_alloc_map(mm, pmd, address) \
  801. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
  802. NULL: pte_offset_map(pmd, address))
  803. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  804. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
  805. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  806. #define pte_alloc_kernel(pmd, address) \
  807. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  808. NULL: pte_offset_kernel(pmd, address))
  809. extern void free_area_init(unsigned long * zones_size);
  810. extern void free_area_init_node(int nid, pg_data_t *pgdat,
  811. unsigned long * zones_size, unsigned long zone_start_pfn,
  812. unsigned long *zholes_size);
  813. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  814. /*
  815. * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
  816. * zones, allocate the backing mem_map and account for memory holes in a more
  817. * architecture independent manner. This is a substitute for creating the
  818. * zone_sizes[] and zholes_size[] arrays and passing them to
  819. * free_area_init_node()
  820. *
  821. * An architecture is expected to register range of page frames backed by
  822. * physical memory with add_active_range() before calling
  823. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  824. * usage, an architecture is expected to do something like
  825. *
  826. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  827. * max_highmem_pfn};
  828. * for_each_valid_physical_page_range()
  829. * add_active_range(node_id, start_pfn, end_pfn)
  830. * free_area_init_nodes(max_zone_pfns);
  831. *
  832. * If the architecture guarantees that there are no holes in the ranges
  833. * registered with add_active_range(), free_bootmem_active_regions()
  834. * will call free_bootmem_node() for each registered physical page range.
  835. * Similarly sparse_memory_present_with_active_regions() calls
  836. * memory_present() for each range when SPARSEMEM is enabled.
  837. *
  838. * See mm/page_alloc.c for more information on each function exposed by
  839. * CONFIG_ARCH_POPULATES_NODE_MAP
  840. */
  841. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  842. extern void add_active_range(unsigned int nid, unsigned long start_pfn,
  843. unsigned long end_pfn);
  844. extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
  845. unsigned long new_end_pfn);
  846. extern void remove_all_active_ranges(void);
  847. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  848. unsigned long end_pfn);
  849. extern void get_pfn_range_for_nid(unsigned int nid,
  850. unsigned long *start_pfn, unsigned long *end_pfn);
  851. extern unsigned long find_min_pfn_with_active_regions(void);
  852. extern unsigned long find_max_pfn_with_active_regions(void);
  853. extern void free_bootmem_with_active_regions(int nid,
  854. unsigned long max_low_pfn);
  855. extern void sparse_memory_present_with_active_regions(int nid);
  856. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  857. extern int early_pfn_to_nid(unsigned long pfn);
  858. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  859. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  860. extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long);
  861. extern void setup_per_zone_pages_min(void);
  862. extern void mem_init(void);
  863. extern void show_mem(void);
  864. extern void si_meminfo(struct sysinfo * val);
  865. extern void si_meminfo_node(struct sysinfo *val, int nid);
  866. #ifdef CONFIG_NUMA
  867. extern void setup_per_cpu_pageset(void);
  868. #else
  869. static inline void setup_per_cpu_pageset(void) {}
  870. #endif
  871. /* prio_tree.c */
  872. void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
  873. void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
  874. void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
  875. struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
  876. struct prio_tree_iter *iter);
  877. #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
  878. for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
  879. (vma = vma_prio_tree_next(vma, iter)); )
  880. static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
  881. struct list_head *list)
  882. {
  883. vma->shared.vm_set.parent = NULL;
  884. list_add_tail(&vma->shared.vm_set.list, list);
  885. }
  886. /* mmap.c */
  887. extern int __vm_enough_memory(long pages, int cap_sys_admin);
  888. extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
  889. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  890. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  891. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  892. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  893. struct mempolicy *);
  894. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  895. extern int split_vma(struct mm_struct *,
  896. struct vm_area_struct *, unsigned long addr, int new_below);
  897. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  898. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  899. struct rb_node **, struct rb_node *);
  900. extern void unlink_file_vma(struct vm_area_struct *);
  901. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  902. unsigned long addr, unsigned long len, pgoff_t pgoff);
  903. extern void exit_mmap(struct mm_struct *);
  904. extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
  905. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  906. extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
  907. unsigned long len, unsigned long prot,
  908. unsigned long flag, unsigned long pgoff);
  909. static inline unsigned long do_mmap(struct file *file, unsigned long addr,
  910. unsigned long len, unsigned long prot,
  911. unsigned long flag, unsigned long offset)
  912. {
  913. unsigned long ret = -EINVAL;
  914. if ((offset + PAGE_ALIGN(len)) < offset)
  915. goto out;
  916. if (!(offset & ~PAGE_MASK))
  917. ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
  918. out:
  919. return ret;
  920. }
  921. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  922. extern unsigned long do_brk(unsigned long, unsigned long);
  923. /* filemap.c */
  924. extern unsigned long page_unuse(struct page *);
  925. extern void truncate_inode_pages(struct address_space *, loff_t);
  926. extern void truncate_inode_pages_range(struct address_space *,
  927. loff_t lstart, loff_t lend);
  928. /* generic vm_area_ops exported for stackable file systems */
  929. extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *);
  930. extern int filemap_populate(struct vm_area_struct *, unsigned long,
  931. unsigned long, pgprot_t, unsigned long, int);
  932. /* mm/page-writeback.c */
  933. int write_one_page(struct page *page, int wait);
  934. /* readahead.c */
  935. #define VM_MAX_READAHEAD 128 /* kbytes */
  936. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  937. #define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before
  938. * turning readahead off */
  939. int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
  940. pgoff_t offset, unsigned long nr_to_read);
  941. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  942. pgoff_t offset, unsigned long nr_to_read);
  943. unsigned long page_cache_readahead(struct address_space *mapping,
  944. struct file_ra_state *ra,
  945. struct file *filp,
  946. pgoff_t offset,
  947. unsigned long size);
  948. void handle_ra_miss(struct address_space *mapping,
  949. struct file_ra_state *ra, pgoff_t offset);
  950. unsigned long max_sane_readahead(unsigned long nr);
  951. /* Do stack extension */
  952. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  953. #ifdef CONFIG_IA64
  954. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  955. #endif
  956. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  957. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  958. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  959. struct vm_area_struct **pprev);
  960. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  961. NULL if none. Assume start_addr < end_addr. */
  962. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  963. {
  964. struct vm_area_struct * vma = find_vma(mm,start_addr);
  965. if (vma && end_addr <= vma->vm_start)
  966. vma = NULL;
  967. return vma;
  968. }
  969. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  970. {
  971. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  972. }
  973. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  974. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  975. struct page *vmalloc_to_page(void *addr);
  976. unsigned long vmalloc_to_pfn(void *addr);
  977. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  978. unsigned long pfn, unsigned long size, pgprot_t);
  979. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  980. struct page *follow_page(struct vm_area_struct *, unsigned long address,
  981. unsigned int foll_flags);
  982. #define FOLL_WRITE 0x01 /* check pte is writable */
  983. #define FOLL_TOUCH 0x02 /* mark page accessed */
  984. #define FOLL_GET 0x04 /* do get_page on page */
  985. #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
  986. #ifdef CONFIG_PROC_FS
  987. void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
  988. #else
  989. static inline void vm_stat_account(struct mm_struct *mm,
  990. unsigned long flags, struct file *file, long pages)
  991. {
  992. }
  993. #endif /* CONFIG_PROC_FS */
  994. #ifndef CONFIG_DEBUG_PAGEALLOC
  995. static inline void
  996. kernel_map_pages(struct page *page, int numpages, int enable)
  997. {
  998. if (!PageHighMem(page) && !enable)
  999. debug_check_no_locks_freed(page_address(page),
  1000. numpages * PAGE_SIZE);
  1001. }
  1002. #endif
  1003. extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
  1004. #ifdef __HAVE_ARCH_GATE_AREA
  1005. int in_gate_area_no_task(unsigned long addr);
  1006. int in_gate_area(struct task_struct *task, unsigned long addr);
  1007. #else
  1008. int in_gate_area_no_task(unsigned long addr);
  1009. #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
  1010. #endif /* __HAVE_ARCH_GATE_AREA */
  1011. /* /proc/<pid>/oom_adj set to -17 protects from the oom-killer */
  1012. #define OOM_DISABLE -17
  1013. int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
  1014. void __user *, size_t *, loff_t *);
  1015. unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
  1016. unsigned long lru_pages);
  1017. void drop_pagecache(void);
  1018. void drop_slab(void);
  1019. #ifndef CONFIG_MMU
  1020. #define randomize_va_space 0
  1021. #else
  1022. extern int randomize_va_space;
  1023. #endif
  1024. const char *arch_vma_name(struct vm_area_struct *vma);
  1025. #endif /* __KERNEL__ */
  1026. #endif /* _LINUX_MM_H */