reassembly.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679
  1. /*
  2. * IPv6 fragment reassembly
  3. * Linux INET6 implementation
  4. *
  5. * Authors:
  6. * Pedro Roque <roque@di.fc.ul.pt>
  7. *
  8. * $Id: reassembly.c,v 1.26 2001/03/07 22:00:57 davem Exp $
  9. *
  10. * Based on: net/ipv4/ip_fragment.c
  11. *
  12. * This program is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU General Public License
  14. * as published by the Free Software Foundation; either version
  15. * 2 of the License, or (at your option) any later version.
  16. */
  17. /*
  18. * Fixes:
  19. * Andi Kleen Make it work with multiple hosts.
  20. * More RFC compliance.
  21. *
  22. * Horst von Brand Add missing #include <linux/string.h>
  23. * Alexey Kuznetsov SMP races, threading, cleanup.
  24. * Patrick McHardy LRU queue of frag heads for evictor.
  25. * Mitsuru KANDA @USAGI Register inet6_protocol{}.
  26. * David Stevens and
  27. * YOSHIFUJI,H. @USAGI Always remove fragment header to
  28. * calculate ICV correctly.
  29. */
  30. #include <linux/errno.h>
  31. #include <linux/types.h>
  32. #include <linux/string.h>
  33. #include <linux/socket.h>
  34. #include <linux/sockios.h>
  35. #include <linux/jiffies.h>
  36. #include <linux/net.h>
  37. #include <linux/list.h>
  38. #include <linux/netdevice.h>
  39. #include <linux/in6.h>
  40. #include <linux/ipv6.h>
  41. #include <linux/icmpv6.h>
  42. #include <linux/random.h>
  43. #include <linux/jhash.h>
  44. #include <linux/skbuff.h>
  45. #include <net/sock.h>
  46. #include <net/snmp.h>
  47. #include <net/ipv6.h>
  48. #include <net/ip6_route.h>
  49. #include <net/protocol.h>
  50. #include <net/transp_v6.h>
  51. #include <net/rawv6.h>
  52. #include <net/ndisc.h>
  53. #include <net/addrconf.h>
  54. #include <net/inet_frag.h>
  55. struct ip6frag_skb_cb
  56. {
  57. struct inet6_skb_parm h;
  58. int offset;
  59. };
  60. #define FRAG6_CB(skb) ((struct ip6frag_skb_cb*)((skb)->cb))
  61. /*
  62. * Equivalent of ipv4 struct ipq
  63. */
  64. struct frag_queue
  65. {
  66. struct inet_frag_queue q;
  67. __be32 id; /* fragment id */
  68. struct in6_addr saddr;
  69. struct in6_addr daddr;
  70. int iif;
  71. unsigned int csum;
  72. __u16 nhoffset;
  73. };
  74. struct inet_frags_ctl ip6_frags_ctl __read_mostly = {
  75. .high_thresh = 256 * 1024,
  76. .low_thresh = 192 * 1024,
  77. .timeout = IPV6_FRAG_TIMEOUT,
  78. .secret_interval = 10 * 60 * HZ,
  79. };
  80. static struct inet_frags ip6_frags;
  81. int ip6_frag_nqueues(void)
  82. {
  83. return ip6_frags.nqueues;
  84. }
  85. int ip6_frag_mem(void)
  86. {
  87. return atomic_read(&ip6_frags.mem);
  88. }
  89. static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff *prev,
  90. struct net_device *dev);
  91. /*
  92. * callers should be careful not to use the hash value outside the ipfrag_lock
  93. * as doing so could race with ipfrag_hash_rnd being recalculated.
  94. */
  95. static unsigned int ip6qhashfn(__be32 id, struct in6_addr *saddr,
  96. struct in6_addr *daddr)
  97. {
  98. u32 a, b, c;
  99. a = (__force u32)saddr->s6_addr32[0];
  100. b = (__force u32)saddr->s6_addr32[1];
  101. c = (__force u32)saddr->s6_addr32[2];
  102. a += JHASH_GOLDEN_RATIO;
  103. b += JHASH_GOLDEN_RATIO;
  104. c += ip6_frags.rnd;
  105. __jhash_mix(a, b, c);
  106. a += (__force u32)saddr->s6_addr32[3];
  107. b += (__force u32)daddr->s6_addr32[0];
  108. c += (__force u32)daddr->s6_addr32[1];
  109. __jhash_mix(a, b, c);
  110. a += (__force u32)daddr->s6_addr32[2];
  111. b += (__force u32)daddr->s6_addr32[3];
  112. c += (__force u32)id;
  113. __jhash_mix(a, b, c);
  114. return c & (INETFRAGS_HASHSZ - 1);
  115. }
  116. static unsigned int ip6_hashfn(struct inet_frag_queue *q)
  117. {
  118. struct frag_queue *fq;
  119. fq = container_of(q, struct frag_queue, q);
  120. return ip6qhashfn(fq->id, &fq->saddr, &fq->daddr);
  121. }
  122. int ip6_frag_equal(struct inet_frag_queue *q1, struct inet_frag_queue *q2)
  123. {
  124. struct frag_queue *fq1, *fq2;
  125. fq1 = container_of(q1, struct frag_queue, q);
  126. fq2 = container_of(q2, struct frag_queue, q);
  127. return (fq1->id == fq2->id &&
  128. ipv6_addr_equal(&fq2->saddr, &fq1->saddr) &&
  129. ipv6_addr_equal(&fq2->daddr, &fq1->daddr));
  130. }
  131. EXPORT_SYMBOL(ip6_frag_equal);
  132. /* Memory Tracking Functions. */
  133. static inline void frag_kfree_skb(struct sk_buff *skb, int *work)
  134. {
  135. if (work)
  136. *work -= skb->truesize;
  137. atomic_sub(skb->truesize, &ip6_frags.mem);
  138. kfree_skb(skb);
  139. }
  140. void ip6_frag_init(struct inet_frag_queue *q, void *a)
  141. {
  142. struct frag_queue *fq = container_of(q, struct frag_queue, q);
  143. struct ip6_create_arg *arg = a;
  144. fq->id = arg->id;
  145. ipv6_addr_copy(&fq->saddr, arg->src);
  146. ipv6_addr_copy(&fq->daddr, arg->dst);
  147. }
  148. EXPORT_SYMBOL(ip6_frag_init);
  149. static void ip6_frag_free(struct inet_frag_queue *fq)
  150. {
  151. kfree(container_of(fq, struct frag_queue, q));
  152. }
  153. /* Destruction primitives. */
  154. static __inline__ void fq_put(struct frag_queue *fq)
  155. {
  156. inet_frag_put(&fq->q, &ip6_frags);
  157. }
  158. /* Kill fq entry. It is not destroyed immediately,
  159. * because caller (and someone more) holds reference count.
  160. */
  161. static __inline__ void fq_kill(struct frag_queue *fq)
  162. {
  163. inet_frag_kill(&fq->q, &ip6_frags);
  164. }
  165. static void ip6_evictor(struct inet6_dev *idev)
  166. {
  167. int evicted;
  168. evicted = inet_frag_evictor(&ip6_frags);
  169. if (evicted)
  170. IP6_ADD_STATS_BH(idev, IPSTATS_MIB_REASMFAILS, evicted);
  171. }
  172. static void ip6_frag_expire(unsigned long data)
  173. {
  174. struct frag_queue *fq;
  175. struct net_device *dev = NULL;
  176. fq = container_of((struct inet_frag_queue *)data, struct frag_queue, q);
  177. spin_lock(&fq->q.lock);
  178. if (fq->q.last_in & COMPLETE)
  179. goto out;
  180. fq_kill(fq);
  181. dev = dev_get_by_index(&init_net, fq->iif);
  182. if (!dev)
  183. goto out;
  184. rcu_read_lock();
  185. IP6_INC_STATS_BH(__in6_dev_get(dev), IPSTATS_MIB_REASMTIMEOUT);
  186. IP6_INC_STATS_BH(__in6_dev_get(dev), IPSTATS_MIB_REASMFAILS);
  187. rcu_read_unlock();
  188. /* Don't send error if the first segment did not arrive. */
  189. if (!(fq->q.last_in&FIRST_IN) || !fq->q.fragments)
  190. goto out;
  191. /*
  192. But use as source device on which LAST ARRIVED
  193. segment was received. And do not use fq->dev
  194. pointer directly, device might already disappeared.
  195. */
  196. fq->q.fragments->dev = dev;
  197. icmpv6_send(fq->q.fragments, ICMPV6_TIME_EXCEED, ICMPV6_EXC_FRAGTIME, 0, dev);
  198. out:
  199. if (dev)
  200. dev_put(dev);
  201. spin_unlock(&fq->q.lock);
  202. fq_put(fq);
  203. }
  204. /* Creation primitives. */
  205. static struct frag_queue *
  206. ip6_frag_create(__be32 id, struct in6_addr *src, struct in6_addr *dst,
  207. struct inet6_dev *idev, unsigned int hash)
  208. {
  209. struct inet_frag_queue *q;
  210. struct ip6_create_arg arg;
  211. arg.id = id;
  212. arg.src = src;
  213. arg.dst = dst;
  214. q = inet_frag_create(&ip6_frags, &arg, hash);
  215. if (q == NULL)
  216. goto oom;
  217. return container_of(q, struct frag_queue, q);
  218. oom:
  219. IP6_INC_STATS_BH(idev, IPSTATS_MIB_REASMFAILS);
  220. return NULL;
  221. }
  222. static __inline__ struct frag_queue *
  223. fq_find(__be32 id, struct in6_addr *src, struct in6_addr *dst,
  224. struct inet6_dev *idev)
  225. {
  226. struct frag_queue *fq;
  227. struct hlist_node *n;
  228. unsigned int hash;
  229. read_lock(&ip6_frags.lock);
  230. hash = ip6qhashfn(id, src, dst);
  231. hlist_for_each_entry(fq, n, &ip6_frags.hash[hash], q.list) {
  232. if (fq->id == id &&
  233. ipv6_addr_equal(src, &fq->saddr) &&
  234. ipv6_addr_equal(dst, &fq->daddr)) {
  235. atomic_inc(&fq->q.refcnt);
  236. read_unlock(&ip6_frags.lock);
  237. return fq;
  238. }
  239. }
  240. read_unlock(&ip6_frags.lock);
  241. return ip6_frag_create(id, src, dst, idev, hash);
  242. }
  243. static int ip6_frag_queue(struct frag_queue *fq, struct sk_buff *skb,
  244. struct frag_hdr *fhdr, int nhoff)
  245. {
  246. struct sk_buff *prev, *next;
  247. struct net_device *dev;
  248. int offset, end;
  249. if (fq->q.last_in & COMPLETE)
  250. goto err;
  251. offset = ntohs(fhdr->frag_off) & ~0x7;
  252. end = offset + (ntohs(ipv6_hdr(skb)->payload_len) -
  253. ((u8 *)(fhdr + 1) - (u8 *)(ipv6_hdr(skb) + 1)));
  254. if ((unsigned int)end > IPV6_MAXPLEN) {
  255. IP6_INC_STATS_BH(ip6_dst_idev(skb->dst),
  256. IPSTATS_MIB_INHDRERRORS);
  257. icmpv6_param_prob(skb, ICMPV6_HDR_FIELD,
  258. ((u8 *)&fhdr->frag_off -
  259. skb_network_header(skb)));
  260. return -1;
  261. }
  262. if (skb->ip_summed == CHECKSUM_COMPLETE) {
  263. const unsigned char *nh = skb_network_header(skb);
  264. skb->csum = csum_sub(skb->csum,
  265. csum_partial(nh, (u8 *)(fhdr + 1) - nh,
  266. 0));
  267. }
  268. /* Is this the final fragment? */
  269. if (!(fhdr->frag_off & htons(IP6_MF))) {
  270. /* If we already have some bits beyond end
  271. * or have different end, the segment is corrupted.
  272. */
  273. if (end < fq->q.len ||
  274. ((fq->q.last_in & LAST_IN) && end != fq->q.len))
  275. goto err;
  276. fq->q.last_in |= LAST_IN;
  277. fq->q.len = end;
  278. } else {
  279. /* Check if the fragment is rounded to 8 bytes.
  280. * Required by the RFC.
  281. */
  282. if (end & 0x7) {
  283. /* RFC2460 says always send parameter problem in
  284. * this case. -DaveM
  285. */
  286. IP6_INC_STATS_BH(ip6_dst_idev(skb->dst),
  287. IPSTATS_MIB_INHDRERRORS);
  288. icmpv6_param_prob(skb, ICMPV6_HDR_FIELD,
  289. offsetof(struct ipv6hdr, payload_len));
  290. return -1;
  291. }
  292. if (end > fq->q.len) {
  293. /* Some bits beyond end -> corruption. */
  294. if (fq->q.last_in & LAST_IN)
  295. goto err;
  296. fq->q.len = end;
  297. }
  298. }
  299. if (end == offset)
  300. goto err;
  301. /* Point into the IP datagram 'data' part. */
  302. if (!pskb_pull(skb, (u8 *) (fhdr + 1) - skb->data))
  303. goto err;
  304. if (pskb_trim_rcsum(skb, end - offset))
  305. goto err;
  306. /* Find out which fragments are in front and at the back of us
  307. * in the chain of fragments so far. We must know where to put
  308. * this fragment, right?
  309. */
  310. prev = NULL;
  311. for(next = fq->q.fragments; next != NULL; next = next->next) {
  312. if (FRAG6_CB(next)->offset >= offset)
  313. break; /* bingo! */
  314. prev = next;
  315. }
  316. /* We found where to put this one. Check for overlap with
  317. * preceding fragment, and, if needed, align things so that
  318. * any overlaps are eliminated.
  319. */
  320. if (prev) {
  321. int i = (FRAG6_CB(prev)->offset + prev->len) - offset;
  322. if (i > 0) {
  323. offset += i;
  324. if (end <= offset)
  325. goto err;
  326. if (!pskb_pull(skb, i))
  327. goto err;
  328. if (skb->ip_summed != CHECKSUM_UNNECESSARY)
  329. skb->ip_summed = CHECKSUM_NONE;
  330. }
  331. }
  332. /* Look for overlap with succeeding segments.
  333. * If we can merge fragments, do it.
  334. */
  335. while (next && FRAG6_CB(next)->offset < end) {
  336. int i = end - FRAG6_CB(next)->offset; /* overlap is 'i' bytes */
  337. if (i < next->len) {
  338. /* Eat head of the next overlapped fragment
  339. * and leave the loop. The next ones cannot overlap.
  340. */
  341. if (!pskb_pull(next, i))
  342. goto err;
  343. FRAG6_CB(next)->offset += i; /* next fragment */
  344. fq->q.meat -= i;
  345. if (next->ip_summed != CHECKSUM_UNNECESSARY)
  346. next->ip_summed = CHECKSUM_NONE;
  347. break;
  348. } else {
  349. struct sk_buff *free_it = next;
  350. /* Old fragment is completely overridden with
  351. * new one drop it.
  352. */
  353. next = next->next;
  354. if (prev)
  355. prev->next = next;
  356. else
  357. fq->q.fragments = next;
  358. fq->q.meat -= free_it->len;
  359. frag_kfree_skb(free_it, NULL);
  360. }
  361. }
  362. FRAG6_CB(skb)->offset = offset;
  363. /* Insert this fragment in the chain of fragments. */
  364. skb->next = next;
  365. if (prev)
  366. prev->next = skb;
  367. else
  368. fq->q.fragments = skb;
  369. dev = skb->dev;
  370. if (dev) {
  371. fq->iif = dev->ifindex;
  372. skb->dev = NULL;
  373. }
  374. fq->q.stamp = skb->tstamp;
  375. fq->q.meat += skb->len;
  376. atomic_add(skb->truesize, &ip6_frags.mem);
  377. /* The first fragment.
  378. * nhoffset is obtained from the first fragment, of course.
  379. */
  380. if (offset == 0) {
  381. fq->nhoffset = nhoff;
  382. fq->q.last_in |= FIRST_IN;
  383. }
  384. if (fq->q.last_in == (FIRST_IN | LAST_IN) && fq->q.meat == fq->q.len)
  385. return ip6_frag_reasm(fq, prev, dev);
  386. write_lock(&ip6_frags.lock);
  387. list_move_tail(&fq->q.lru_list, &ip6_frags.lru_list);
  388. write_unlock(&ip6_frags.lock);
  389. return -1;
  390. err:
  391. IP6_INC_STATS(ip6_dst_idev(skb->dst), IPSTATS_MIB_REASMFAILS);
  392. kfree_skb(skb);
  393. return -1;
  394. }
  395. /*
  396. * Check if this packet is complete.
  397. * Returns NULL on failure by any reason, and pointer
  398. * to current nexthdr field in reassembled frame.
  399. *
  400. * It is called with locked fq, and caller must check that
  401. * queue is eligible for reassembly i.e. it is not COMPLETE,
  402. * the last and the first frames arrived and all the bits are here.
  403. */
  404. static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff *prev,
  405. struct net_device *dev)
  406. {
  407. struct sk_buff *fp, *head = fq->q.fragments;
  408. int payload_len;
  409. unsigned int nhoff;
  410. fq_kill(fq);
  411. /* Make the one we just received the head. */
  412. if (prev) {
  413. head = prev->next;
  414. fp = skb_clone(head, GFP_ATOMIC);
  415. if (!fp)
  416. goto out_oom;
  417. fp->next = head->next;
  418. prev->next = fp;
  419. skb_morph(head, fq->q.fragments);
  420. head->next = fq->q.fragments->next;
  421. kfree_skb(fq->q.fragments);
  422. fq->q.fragments = head;
  423. }
  424. BUG_TRAP(head != NULL);
  425. BUG_TRAP(FRAG6_CB(head)->offset == 0);
  426. /* Unfragmented part is taken from the first segment. */
  427. payload_len = ((head->data - skb_network_header(head)) -
  428. sizeof(struct ipv6hdr) + fq->q.len -
  429. sizeof(struct frag_hdr));
  430. if (payload_len > IPV6_MAXPLEN)
  431. goto out_oversize;
  432. /* Head of list must not be cloned. */
  433. if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC))
  434. goto out_oom;
  435. /* If the first fragment is fragmented itself, we split
  436. * it to two chunks: the first with data and paged part
  437. * and the second, holding only fragments. */
  438. if (skb_shinfo(head)->frag_list) {
  439. struct sk_buff *clone;
  440. int i, plen = 0;
  441. if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
  442. goto out_oom;
  443. clone->next = head->next;
  444. head->next = clone;
  445. skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
  446. skb_shinfo(head)->frag_list = NULL;
  447. for (i=0; i<skb_shinfo(head)->nr_frags; i++)
  448. plen += skb_shinfo(head)->frags[i].size;
  449. clone->len = clone->data_len = head->data_len - plen;
  450. head->data_len -= clone->len;
  451. head->len -= clone->len;
  452. clone->csum = 0;
  453. clone->ip_summed = head->ip_summed;
  454. atomic_add(clone->truesize, &ip6_frags.mem);
  455. }
  456. /* We have to remove fragment header from datagram and to relocate
  457. * header in order to calculate ICV correctly. */
  458. nhoff = fq->nhoffset;
  459. skb_network_header(head)[nhoff] = skb_transport_header(head)[0];
  460. memmove(head->head + sizeof(struct frag_hdr), head->head,
  461. (head->data - head->head) - sizeof(struct frag_hdr));
  462. head->mac_header += sizeof(struct frag_hdr);
  463. head->network_header += sizeof(struct frag_hdr);
  464. skb_shinfo(head)->frag_list = head->next;
  465. skb_reset_transport_header(head);
  466. skb_push(head, head->data - skb_network_header(head));
  467. atomic_sub(head->truesize, &ip6_frags.mem);
  468. for (fp=head->next; fp; fp = fp->next) {
  469. head->data_len += fp->len;
  470. head->len += fp->len;
  471. if (head->ip_summed != fp->ip_summed)
  472. head->ip_summed = CHECKSUM_NONE;
  473. else if (head->ip_summed == CHECKSUM_COMPLETE)
  474. head->csum = csum_add(head->csum, fp->csum);
  475. head->truesize += fp->truesize;
  476. atomic_sub(fp->truesize, &ip6_frags.mem);
  477. }
  478. head->next = NULL;
  479. head->dev = dev;
  480. head->tstamp = fq->q.stamp;
  481. ipv6_hdr(head)->payload_len = htons(payload_len);
  482. IP6CB(head)->nhoff = nhoff;
  483. /* Yes, and fold redundant checksum back. 8) */
  484. if (head->ip_summed == CHECKSUM_COMPLETE)
  485. head->csum = csum_partial(skb_network_header(head),
  486. skb_network_header_len(head),
  487. head->csum);
  488. rcu_read_lock();
  489. IP6_INC_STATS_BH(__in6_dev_get(dev), IPSTATS_MIB_REASMOKS);
  490. rcu_read_unlock();
  491. fq->q.fragments = NULL;
  492. return 1;
  493. out_oversize:
  494. if (net_ratelimit())
  495. printk(KERN_DEBUG "ip6_frag_reasm: payload len = %d\n", payload_len);
  496. goto out_fail;
  497. out_oom:
  498. if (net_ratelimit())
  499. printk(KERN_DEBUG "ip6_frag_reasm: no memory for reassembly\n");
  500. out_fail:
  501. rcu_read_lock();
  502. IP6_INC_STATS_BH(__in6_dev_get(dev), IPSTATS_MIB_REASMFAILS);
  503. rcu_read_unlock();
  504. return -1;
  505. }
  506. static int ipv6_frag_rcv(struct sk_buff *skb)
  507. {
  508. struct frag_hdr *fhdr;
  509. struct frag_queue *fq;
  510. struct ipv6hdr *hdr = ipv6_hdr(skb);
  511. IP6_INC_STATS_BH(ip6_dst_idev(skb->dst), IPSTATS_MIB_REASMREQDS);
  512. /* Jumbo payload inhibits frag. header */
  513. if (hdr->payload_len==0) {
  514. IP6_INC_STATS(ip6_dst_idev(skb->dst), IPSTATS_MIB_INHDRERRORS);
  515. icmpv6_param_prob(skb, ICMPV6_HDR_FIELD,
  516. skb_network_header_len(skb));
  517. return -1;
  518. }
  519. if (!pskb_may_pull(skb, (skb_transport_offset(skb) +
  520. sizeof(struct frag_hdr)))) {
  521. IP6_INC_STATS(ip6_dst_idev(skb->dst), IPSTATS_MIB_INHDRERRORS);
  522. icmpv6_param_prob(skb, ICMPV6_HDR_FIELD,
  523. skb_network_header_len(skb));
  524. return -1;
  525. }
  526. hdr = ipv6_hdr(skb);
  527. fhdr = (struct frag_hdr *)skb_transport_header(skb);
  528. if (!(fhdr->frag_off & htons(0xFFF9))) {
  529. /* It is not a fragmented frame */
  530. skb->transport_header += sizeof(struct frag_hdr);
  531. IP6_INC_STATS_BH(ip6_dst_idev(skb->dst), IPSTATS_MIB_REASMOKS);
  532. IP6CB(skb)->nhoff = (u8 *)fhdr - skb_network_header(skb);
  533. return 1;
  534. }
  535. if (atomic_read(&ip6_frags.mem) > ip6_frags_ctl.high_thresh)
  536. ip6_evictor(ip6_dst_idev(skb->dst));
  537. if ((fq = fq_find(fhdr->identification, &hdr->saddr, &hdr->daddr,
  538. ip6_dst_idev(skb->dst))) != NULL) {
  539. int ret;
  540. spin_lock(&fq->q.lock);
  541. ret = ip6_frag_queue(fq, skb, fhdr, IP6CB(skb)->nhoff);
  542. spin_unlock(&fq->q.lock);
  543. fq_put(fq);
  544. return ret;
  545. }
  546. IP6_INC_STATS_BH(ip6_dst_idev(skb->dst), IPSTATS_MIB_REASMFAILS);
  547. kfree_skb(skb);
  548. return -1;
  549. }
  550. static struct inet6_protocol frag_protocol =
  551. {
  552. .handler = ipv6_frag_rcv,
  553. .flags = INET6_PROTO_NOPOLICY,
  554. };
  555. void __init ipv6_frag_init(void)
  556. {
  557. if (inet6_add_protocol(&frag_protocol, IPPROTO_FRAGMENT) < 0)
  558. printk(KERN_ERR "ipv6_frag_init: Could not register protocol\n");
  559. ip6_frags.ctl = &ip6_frags_ctl;
  560. ip6_frags.hashfn = ip6_hashfn;
  561. ip6_frags.constructor = ip6_frag_init;
  562. ip6_frags.destructor = ip6_frag_free;
  563. ip6_frags.skb_free = NULL;
  564. ip6_frags.qsize = sizeof(struct frag_queue);
  565. ip6_frags.equal = ip6_frag_equal;
  566. ip6_frags.frag_expire = ip6_frag_expire;
  567. inet_frags_init(&ip6_frags);
  568. }