sched.c 229 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/stop_machine.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/debugfs.h>
  70. #include <linux/ctype.h>
  71. #include <linux/ftrace.h>
  72. #include <linux/slab.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include <asm/mutex.h>
  76. #include "sched_cpupri.h"
  77. #include "workqueue_sched.h"
  78. #include "sched_autogroup.h"
  79. #define CREATE_TRACE_POINTS
  80. #include <trace/events/sched.h>
  81. /*
  82. * Convert user-nice values [ -20 ... 0 ... 19 ]
  83. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  84. * and back.
  85. */
  86. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  87. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  88. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  89. /*
  90. * 'User priority' is the nice value converted to something we
  91. * can work with better when scaling various scheduler parameters,
  92. * it's a [ 0 ... 39 ] range.
  93. */
  94. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  95. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  96. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  97. /*
  98. * Helpers for converting nanosecond timing to jiffy resolution
  99. */
  100. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  101. #define NICE_0_LOAD SCHED_LOAD_SCALE
  102. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  103. /*
  104. * These are the 'tuning knobs' of the scheduler:
  105. *
  106. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  107. * Timeslices get refilled after they expire.
  108. */
  109. #define DEF_TIMESLICE (100 * HZ / 1000)
  110. /*
  111. * single value that denotes runtime == period, ie unlimited time.
  112. */
  113. #define RUNTIME_INF ((u64)~0ULL)
  114. static inline int rt_policy(int policy)
  115. {
  116. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  117. return 1;
  118. return 0;
  119. }
  120. static inline int task_has_rt_policy(struct task_struct *p)
  121. {
  122. return rt_policy(p->policy);
  123. }
  124. /*
  125. * This is the priority-queue data structure of the RT scheduling class:
  126. */
  127. struct rt_prio_array {
  128. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  129. struct list_head queue[MAX_RT_PRIO];
  130. };
  131. struct rt_bandwidth {
  132. /* nests inside the rq lock: */
  133. raw_spinlock_t rt_runtime_lock;
  134. ktime_t rt_period;
  135. u64 rt_runtime;
  136. struct hrtimer rt_period_timer;
  137. };
  138. static struct rt_bandwidth def_rt_bandwidth;
  139. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  140. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  141. {
  142. struct rt_bandwidth *rt_b =
  143. container_of(timer, struct rt_bandwidth, rt_period_timer);
  144. ktime_t now;
  145. int overrun;
  146. int idle = 0;
  147. for (;;) {
  148. now = hrtimer_cb_get_time(timer);
  149. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  150. if (!overrun)
  151. break;
  152. idle = do_sched_rt_period_timer(rt_b, overrun);
  153. }
  154. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  155. }
  156. static
  157. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  158. {
  159. rt_b->rt_period = ns_to_ktime(period);
  160. rt_b->rt_runtime = runtime;
  161. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  162. hrtimer_init(&rt_b->rt_period_timer,
  163. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  164. rt_b->rt_period_timer.function = sched_rt_period_timer;
  165. }
  166. static inline int rt_bandwidth_enabled(void)
  167. {
  168. return sysctl_sched_rt_runtime >= 0;
  169. }
  170. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  171. {
  172. ktime_t now;
  173. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  174. return;
  175. if (hrtimer_active(&rt_b->rt_period_timer))
  176. return;
  177. raw_spin_lock(&rt_b->rt_runtime_lock);
  178. for (;;) {
  179. unsigned long delta;
  180. ktime_t soft, hard;
  181. if (hrtimer_active(&rt_b->rt_period_timer))
  182. break;
  183. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  184. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  185. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  186. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  187. delta = ktime_to_ns(ktime_sub(hard, soft));
  188. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  189. HRTIMER_MODE_ABS_PINNED, 0);
  190. }
  191. raw_spin_unlock(&rt_b->rt_runtime_lock);
  192. }
  193. #ifdef CONFIG_RT_GROUP_SCHED
  194. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  195. {
  196. hrtimer_cancel(&rt_b->rt_period_timer);
  197. }
  198. #endif
  199. /*
  200. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  201. * detach_destroy_domains and partition_sched_domains.
  202. */
  203. static DEFINE_MUTEX(sched_domains_mutex);
  204. #ifdef CONFIG_CGROUP_SCHED
  205. #include <linux/cgroup.h>
  206. struct cfs_rq;
  207. static LIST_HEAD(task_groups);
  208. /* task group related information */
  209. struct task_group {
  210. struct cgroup_subsys_state css;
  211. #ifdef CONFIG_FAIR_GROUP_SCHED
  212. /* schedulable entities of this group on each cpu */
  213. struct sched_entity **se;
  214. /* runqueue "owned" by this group on each cpu */
  215. struct cfs_rq **cfs_rq;
  216. unsigned long shares;
  217. atomic_t load_weight;
  218. #endif
  219. #ifdef CONFIG_RT_GROUP_SCHED
  220. struct sched_rt_entity **rt_se;
  221. struct rt_rq **rt_rq;
  222. struct rt_bandwidth rt_bandwidth;
  223. #endif
  224. struct rcu_head rcu;
  225. struct list_head list;
  226. struct task_group *parent;
  227. struct list_head siblings;
  228. struct list_head children;
  229. #ifdef CONFIG_SCHED_AUTOGROUP
  230. struct autogroup *autogroup;
  231. #endif
  232. };
  233. /* task_group_lock serializes the addition/removal of task groups */
  234. static DEFINE_SPINLOCK(task_group_lock);
  235. #ifdef CONFIG_FAIR_GROUP_SCHED
  236. # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  237. /*
  238. * A weight of 0 or 1 can cause arithmetics problems.
  239. * A weight of a cfs_rq is the sum of weights of which entities
  240. * are queued on this cfs_rq, so a weight of a entity should not be
  241. * too large, so as the shares value of a task group.
  242. * (The default weight is 1024 - so there's no practical
  243. * limitation from this.)
  244. */
  245. #define MIN_SHARES 2
  246. #define MAX_SHARES (1UL << 18)
  247. static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
  248. #endif
  249. /* Default task group.
  250. * Every task in system belong to this group at bootup.
  251. */
  252. struct task_group root_task_group;
  253. #endif /* CONFIG_CGROUP_SCHED */
  254. /* CFS-related fields in a runqueue */
  255. struct cfs_rq {
  256. struct load_weight load;
  257. unsigned long nr_running;
  258. u64 exec_clock;
  259. u64 min_vruntime;
  260. struct rb_root tasks_timeline;
  261. struct rb_node *rb_leftmost;
  262. struct list_head tasks;
  263. struct list_head *balance_iterator;
  264. /*
  265. * 'curr' points to currently running entity on this cfs_rq.
  266. * It is set to NULL otherwise (i.e when none are currently running).
  267. */
  268. struct sched_entity *curr, *next, *last, *skip;
  269. unsigned int nr_spread_over;
  270. #ifdef CONFIG_FAIR_GROUP_SCHED
  271. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  272. /*
  273. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  274. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  275. * (like users, containers etc.)
  276. *
  277. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  278. * list is used during load balance.
  279. */
  280. int on_list;
  281. struct list_head leaf_cfs_rq_list;
  282. struct task_group *tg; /* group that "owns" this runqueue */
  283. #ifdef CONFIG_SMP
  284. /*
  285. * the part of load.weight contributed by tasks
  286. */
  287. unsigned long task_weight;
  288. /*
  289. * h_load = weight * f(tg)
  290. *
  291. * Where f(tg) is the recursive weight fraction assigned to
  292. * this group.
  293. */
  294. unsigned long h_load;
  295. /*
  296. * Maintaining per-cpu shares distribution for group scheduling
  297. *
  298. * load_stamp is the last time we updated the load average
  299. * load_last is the last time we updated the load average and saw load
  300. * load_unacc_exec_time is currently unaccounted execution time
  301. */
  302. u64 load_avg;
  303. u64 load_period;
  304. u64 load_stamp, load_last, load_unacc_exec_time;
  305. unsigned long load_contribution;
  306. #endif
  307. #endif
  308. };
  309. /* Real-Time classes' related field in a runqueue: */
  310. struct rt_rq {
  311. struct rt_prio_array active;
  312. unsigned long rt_nr_running;
  313. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  314. struct {
  315. int curr; /* highest queued rt task prio */
  316. #ifdef CONFIG_SMP
  317. int next; /* next highest */
  318. #endif
  319. } highest_prio;
  320. #endif
  321. #ifdef CONFIG_SMP
  322. unsigned long rt_nr_migratory;
  323. unsigned long rt_nr_total;
  324. int overloaded;
  325. struct plist_head pushable_tasks;
  326. #endif
  327. int rt_throttled;
  328. u64 rt_time;
  329. u64 rt_runtime;
  330. /* Nests inside the rq lock: */
  331. raw_spinlock_t rt_runtime_lock;
  332. #ifdef CONFIG_RT_GROUP_SCHED
  333. unsigned long rt_nr_boosted;
  334. struct rq *rq;
  335. struct list_head leaf_rt_rq_list;
  336. struct task_group *tg;
  337. #endif
  338. };
  339. #ifdef CONFIG_SMP
  340. /*
  341. * We add the notion of a root-domain which will be used to define per-domain
  342. * variables. Each exclusive cpuset essentially defines an island domain by
  343. * fully partitioning the member cpus from any other cpuset. Whenever a new
  344. * exclusive cpuset is created, we also create and attach a new root-domain
  345. * object.
  346. *
  347. */
  348. struct root_domain {
  349. atomic_t refcount;
  350. cpumask_var_t span;
  351. cpumask_var_t online;
  352. /*
  353. * The "RT overload" flag: it gets set if a CPU has more than
  354. * one runnable RT task.
  355. */
  356. cpumask_var_t rto_mask;
  357. atomic_t rto_count;
  358. struct cpupri cpupri;
  359. };
  360. /*
  361. * By default the system creates a single root-domain with all cpus as
  362. * members (mimicking the global state we have today).
  363. */
  364. static struct root_domain def_root_domain;
  365. #endif /* CONFIG_SMP */
  366. /*
  367. * This is the main, per-CPU runqueue data structure.
  368. *
  369. * Locking rule: those places that want to lock multiple runqueues
  370. * (such as the load balancing or the thread migration code), lock
  371. * acquire operations must be ordered by ascending &runqueue.
  372. */
  373. struct rq {
  374. /* runqueue lock: */
  375. raw_spinlock_t lock;
  376. /*
  377. * nr_running and cpu_load should be in the same cacheline because
  378. * remote CPUs use both these fields when doing load calculation.
  379. */
  380. unsigned long nr_running;
  381. #define CPU_LOAD_IDX_MAX 5
  382. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  383. unsigned long last_load_update_tick;
  384. #ifdef CONFIG_NO_HZ
  385. u64 nohz_stamp;
  386. unsigned char nohz_balance_kick;
  387. #endif
  388. unsigned int skip_clock_update;
  389. /* capture load from *all* tasks on this cpu: */
  390. struct load_weight load;
  391. unsigned long nr_load_updates;
  392. u64 nr_switches;
  393. struct cfs_rq cfs;
  394. struct rt_rq rt;
  395. #ifdef CONFIG_FAIR_GROUP_SCHED
  396. /* list of leaf cfs_rq on this cpu: */
  397. struct list_head leaf_cfs_rq_list;
  398. #endif
  399. #ifdef CONFIG_RT_GROUP_SCHED
  400. struct list_head leaf_rt_rq_list;
  401. #endif
  402. /*
  403. * This is part of a global counter where only the total sum
  404. * over all CPUs matters. A task can increase this counter on
  405. * one CPU and if it got migrated afterwards it may decrease
  406. * it on another CPU. Always updated under the runqueue lock:
  407. */
  408. unsigned long nr_uninterruptible;
  409. struct task_struct *curr, *idle, *stop;
  410. unsigned long next_balance;
  411. struct mm_struct *prev_mm;
  412. u64 clock;
  413. u64 clock_task;
  414. atomic_t nr_iowait;
  415. #ifdef CONFIG_SMP
  416. struct root_domain *rd;
  417. struct sched_domain *sd;
  418. unsigned long cpu_power;
  419. unsigned char idle_at_tick;
  420. /* For active balancing */
  421. int post_schedule;
  422. int active_balance;
  423. int push_cpu;
  424. struct cpu_stop_work active_balance_work;
  425. /* cpu of this runqueue: */
  426. int cpu;
  427. int online;
  428. unsigned long avg_load_per_task;
  429. u64 rt_avg;
  430. u64 age_stamp;
  431. u64 idle_stamp;
  432. u64 avg_idle;
  433. #endif
  434. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  435. u64 prev_irq_time;
  436. #endif
  437. /* calc_load related fields */
  438. unsigned long calc_load_update;
  439. long calc_load_active;
  440. #ifdef CONFIG_SCHED_HRTICK
  441. #ifdef CONFIG_SMP
  442. int hrtick_csd_pending;
  443. struct call_single_data hrtick_csd;
  444. #endif
  445. struct hrtimer hrtick_timer;
  446. #endif
  447. #ifdef CONFIG_SCHEDSTATS
  448. /* latency stats */
  449. struct sched_info rq_sched_info;
  450. unsigned long long rq_cpu_time;
  451. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  452. /* sys_sched_yield() stats */
  453. unsigned int yld_count;
  454. /* schedule() stats */
  455. unsigned int sched_switch;
  456. unsigned int sched_count;
  457. unsigned int sched_goidle;
  458. /* try_to_wake_up() stats */
  459. unsigned int ttwu_count;
  460. unsigned int ttwu_local;
  461. #endif
  462. };
  463. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  464. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  465. static inline int cpu_of(struct rq *rq)
  466. {
  467. #ifdef CONFIG_SMP
  468. return rq->cpu;
  469. #else
  470. return 0;
  471. #endif
  472. }
  473. #define rcu_dereference_check_sched_domain(p) \
  474. rcu_dereference_check((p), \
  475. rcu_read_lock_sched_held() || \
  476. lockdep_is_held(&sched_domains_mutex))
  477. /*
  478. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  479. * See detach_destroy_domains: synchronize_sched for details.
  480. *
  481. * The domain tree of any CPU may only be accessed from within
  482. * preempt-disabled sections.
  483. */
  484. #define for_each_domain(cpu, __sd) \
  485. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  486. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  487. #define this_rq() (&__get_cpu_var(runqueues))
  488. #define task_rq(p) cpu_rq(task_cpu(p))
  489. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  490. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  491. #ifdef CONFIG_CGROUP_SCHED
  492. /*
  493. * Return the group to which this tasks belongs.
  494. *
  495. * We use task_subsys_state_check() and extend the RCU verification
  496. * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
  497. * holds that lock for each task it moves into the cgroup. Therefore
  498. * by holding that lock, we pin the task to the current cgroup.
  499. */
  500. static inline struct task_group *task_group(struct task_struct *p)
  501. {
  502. struct task_group *tg;
  503. struct cgroup_subsys_state *css;
  504. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  505. lockdep_is_held(&task_rq(p)->lock));
  506. tg = container_of(css, struct task_group, css);
  507. return autogroup_task_group(p, tg);
  508. }
  509. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  510. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  511. {
  512. #ifdef CONFIG_FAIR_GROUP_SCHED
  513. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  514. p->se.parent = task_group(p)->se[cpu];
  515. #endif
  516. #ifdef CONFIG_RT_GROUP_SCHED
  517. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  518. p->rt.parent = task_group(p)->rt_se[cpu];
  519. #endif
  520. }
  521. #else /* CONFIG_CGROUP_SCHED */
  522. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  523. static inline struct task_group *task_group(struct task_struct *p)
  524. {
  525. return NULL;
  526. }
  527. #endif /* CONFIG_CGROUP_SCHED */
  528. static void update_rq_clock_task(struct rq *rq, s64 delta);
  529. static void update_rq_clock(struct rq *rq)
  530. {
  531. s64 delta;
  532. if (rq->skip_clock_update)
  533. return;
  534. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  535. rq->clock += delta;
  536. update_rq_clock_task(rq, delta);
  537. }
  538. /*
  539. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  540. */
  541. #ifdef CONFIG_SCHED_DEBUG
  542. # define const_debug __read_mostly
  543. #else
  544. # define const_debug static const
  545. #endif
  546. /**
  547. * runqueue_is_locked - Returns true if the current cpu runqueue is locked
  548. * @cpu: the processor in question.
  549. *
  550. * This interface allows printk to be called with the runqueue lock
  551. * held and know whether or not it is OK to wake up the klogd.
  552. */
  553. int runqueue_is_locked(int cpu)
  554. {
  555. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  556. }
  557. /*
  558. * Debugging: various feature bits
  559. */
  560. #define SCHED_FEAT(name, enabled) \
  561. __SCHED_FEAT_##name ,
  562. enum {
  563. #include "sched_features.h"
  564. };
  565. #undef SCHED_FEAT
  566. #define SCHED_FEAT(name, enabled) \
  567. (1UL << __SCHED_FEAT_##name) * enabled |
  568. const_debug unsigned int sysctl_sched_features =
  569. #include "sched_features.h"
  570. 0;
  571. #undef SCHED_FEAT
  572. #ifdef CONFIG_SCHED_DEBUG
  573. #define SCHED_FEAT(name, enabled) \
  574. #name ,
  575. static __read_mostly char *sched_feat_names[] = {
  576. #include "sched_features.h"
  577. NULL
  578. };
  579. #undef SCHED_FEAT
  580. static int sched_feat_show(struct seq_file *m, void *v)
  581. {
  582. int i;
  583. for (i = 0; sched_feat_names[i]; i++) {
  584. if (!(sysctl_sched_features & (1UL << i)))
  585. seq_puts(m, "NO_");
  586. seq_printf(m, "%s ", sched_feat_names[i]);
  587. }
  588. seq_puts(m, "\n");
  589. return 0;
  590. }
  591. static ssize_t
  592. sched_feat_write(struct file *filp, const char __user *ubuf,
  593. size_t cnt, loff_t *ppos)
  594. {
  595. char buf[64];
  596. char *cmp;
  597. int neg = 0;
  598. int i;
  599. if (cnt > 63)
  600. cnt = 63;
  601. if (copy_from_user(&buf, ubuf, cnt))
  602. return -EFAULT;
  603. buf[cnt] = 0;
  604. cmp = strstrip(buf);
  605. if (strncmp(cmp, "NO_", 3) == 0) {
  606. neg = 1;
  607. cmp += 3;
  608. }
  609. for (i = 0; sched_feat_names[i]; i++) {
  610. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  611. if (neg)
  612. sysctl_sched_features &= ~(1UL << i);
  613. else
  614. sysctl_sched_features |= (1UL << i);
  615. break;
  616. }
  617. }
  618. if (!sched_feat_names[i])
  619. return -EINVAL;
  620. *ppos += cnt;
  621. return cnt;
  622. }
  623. static int sched_feat_open(struct inode *inode, struct file *filp)
  624. {
  625. return single_open(filp, sched_feat_show, NULL);
  626. }
  627. static const struct file_operations sched_feat_fops = {
  628. .open = sched_feat_open,
  629. .write = sched_feat_write,
  630. .read = seq_read,
  631. .llseek = seq_lseek,
  632. .release = single_release,
  633. };
  634. static __init int sched_init_debug(void)
  635. {
  636. debugfs_create_file("sched_features", 0644, NULL, NULL,
  637. &sched_feat_fops);
  638. return 0;
  639. }
  640. late_initcall(sched_init_debug);
  641. #endif
  642. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  643. /*
  644. * Number of tasks to iterate in a single balance run.
  645. * Limited because this is done with IRQs disabled.
  646. */
  647. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  648. /*
  649. * period over which we average the RT time consumption, measured
  650. * in ms.
  651. *
  652. * default: 1s
  653. */
  654. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  655. /*
  656. * period over which we measure -rt task cpu usage in us.
  657. * default: 1s
  658. */
  659. unsigned int sysctl_sched_rt_period = 1000000;
  660. static __read_mostly int scheduler_running;
  661. /*
  662. * part of the period that we allow rt tasks to run in us.
  663. * default: 0.95s
  664. */
  665. int sysctl_sched_rt_runtime = 950000;
  666. static inline u64 global_rt_period(void)
  667. {
  668. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  669. }
  670. static inline u64 global_rt_runtime(void)
  671. {
  672. if (sysctl_sched_rt_runtime < 0)
  673. return RUNTIME_INF;
  674. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  675. }
  676. #ifndef prepare_arch_switch
  677. # define prepare_arch_switch(next) do { } while (0)
  678. #endif
  679. #ifndef finish_arch_switch
  680. # define finish_arch_switch(prev) do { } while (0)
  681. #endif
  682. static inline int task_current(struct rq *rq, struct task_struct *p)
  683. {
  684. return rq->curr == p;
  685. }
  686. static inline int task_running(struct rq *rq, struct task_struct *p)
  687. {
  688. #ifdef CONFIG_SMP
  689. return p->on_cpu;
  690. #else
  691. return task_current(rq, p);
  692. #endif
  693. }
  694. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  695. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  696. {
  697. #ifdef CONFIG_SMP
  698. /*
  699. * We can optimise this out completely for !SMP, because the
  700. * SMP rebalancing from interrupt is the only thing that cares
  701. * here.
  702. */
  703. next->on_cpu = 1;
  704. #endif
  705. }
  706. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  707. {
  708. #ifdef CONFIG_SMP
  709. /*
  710. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  711. * We must ensure this doesn't happen until the switch is completely
  712. * finished.
  713. */
  714. smp_wmb();
  715. prev->on_cpu = 0;
  716. #endif
  717. #ifdef CONFIG_DEBUG_SPINLOCK
  718. /* this is a valid case when another task releases the spinlock */
  719. rq->lock.owner = current;
  720. #endif
  721. /*
  722. * If we are tracking spinlock dependencies then we have to
  723. * fix up the runqueue lock - which gets 'carried over' from
  724. * prev into current:
  725. */
  726. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  727. raw_spin_unlock_irq(&rq->lock);
  728. }
  729. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  730. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  731. {
  732. #ifdef CONFIG_SMP
  733. /*
  734. * We can optimise this out completely for !SMP, because the
  735. * SMP rebalancing from interrupt is the only thing that cares
  736. * here.
  737. */
  738. next->on_cpu = 1;
  739. #endif
  740. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  741. raw_spin_unlock_irq(&rq->lock);
  742. #else
  743. raw_spin_unlock(&rq->lock);
  744. #endif
  745. }
  746. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  747. {
  748. #ifdef CONFIG_SMP
  749. /*
  750. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  751. * We must ensure this doesn't happen until the switch is completely
  752. * finished.
  753. */
  754. smp_wmb();
  755. prev->on_cpu = 0;
  756. #endif
  757. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  758. local_irq_enable();
  759. #endif
  760. }
  761. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  762. /*
  763. * Check whether the task is waking, we use this to synchronize ->cpus_allowed
  764. * against ttwu().
  765. */
  766. static inline int task_is_waking(struct task_struct *p)
  767. {
  768. return unlikely(p->state == TASK_WAKING);
  769. }
  770. /*
  771. * __task_rq_lock - lock the runqueue a given task resides on.
  772. * Must be called interrupts disabled.
  773. */
  774. static inline struct rq *__task_rq_lock(struct task_struct *p)
  775. __acquires(rq->lock)
  776. {
  777. struct rq *rq;
  778. for (;;) {
  779. rq = task_rq(p);
  780. raw_spin_lock(&rq->lock);
  781. if (likely(rq == task_rq(p)))
  782. return rq;
  783. raw_spin_unlock(&rq->lock);
  784. }
  785. }
  786. /*
  787. * task_rq_lock - lock the runqueue a given task resides on and disable
  788. * interrupts. Note the ordering: we can safely lookup the task_rq without
  789. * explicitly disabling preemption.
  790. */
  791. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  792. __acquires(rq->lock)
  793. {
  794. struct rq *rq;
  795. for (;;) {
  796. local_irq_save(*flags);
  797. rq = task_rq(p);
  798. raw_spin_lock(&rq->lock);
  799. if (likely(rq == task_rq(p)))
  800. return rq;
  801. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  802. }
  803. }
  804. static void __task_rq_unlock(struct rq *rq)
  805. __releases(rq->lock)
  806. {
  807. raw_spin_unlock(&rq->lock);
  808. }
  809. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  810. __releases(rq->lock)
  811. {
  812. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  813. }
  814. /*
  815. * this_rq_lock - lock this runqueue and disable interrupts.
  816. */
  817. static struct rq *this_rq_lock(void)
  818. __acquires(rq->lock)
  819. {
  820. struct rq *rq;
  821. local_irq_disable();
  822. rq = this_rq();
  823. raw_spin_lock(&rq->lock);
  824. return rq;
  825. }
  826. #ifdef CONFIG_SCHED_HRTICK
  827. /*
  828. * Use HR-timers to deliver accurate preemption points.
  829. *
  830. * Its all a bit involved since we cannot program an hrt while holding the
  831. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  832. * reschedule event.
  833. *
  834. * When we get rescheduled we reprogram the hrtick_timer outside of the
  835. * rq->lock.
  836. */
  837. /*
  838. * Use hrtick when:
  839. * - enabled by features
  840. * - hrtimer is actually high res
  841. */
  842. static inline int hrtick_enabled(struct rq *rq)
  843. {
  844. if (!sched_feat(HRTICK))
  845. return 0;
  846. if (!cpu_active(cpu_of(rq)))
  847. return 0;
  848. return hrtimer_is_hres_active(&rq->hrtick_timer);
  849. }
  850. static void hrtick_clear(struct rq *rq)
  851. {
  852. if (hrtimer_active(&rq->hrtick_timer))
  853. hrtimer_cancel(&rq->hrtick_timer);
  854. }
  855. /*
  856. * High-resolution timer tick.
  857. * Runs from hardirq context with interrupts disabled.
  858. */
  859. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  860. {
  861. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  862. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  863. raw_spin_lock(&rq->lock);
  864. update_rq_clock(rq);
  865. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  866. raw_spin_unlock(&rq->lock);
  867. return HRTIMER_NORESTART;
  868. }
  869. #ifdef CONFIG_SMP
  870. /*
  871. * called from hardirq (IPI) context
  872. */
  873. static void __hrtick_start(void *arg)
  874. {
  875. struct rq *rq = arg;
  876. raw_spin_lock(&rq->lock);
  877. hrtimer_restart(&rq->hrtick_timer);
  878. rq->hrtick_csd_pending = 0;
  879. raw_spin_unlock(&rq->lock);
  880. }
  881. /*
  882. * Called to set the hrtick timer state.
  883. *
  884. * called with rq->lock held and irqs disabled
  885. */
  886. static void hrtick_start(struct rq *rq, u64 delay)
  887. {
  888. struct hrtimer *timer = &rq->hrtick_timer;
  889. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  890. hrtimer_set_expires(timer, time);
  891. if (rq == this_rq()) {
  892. hrtimer_restart(timer);
  893. } else if (!rq->hrtick_csd_pending) {
  894. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  895. rq->hrtick_csd_pending = 1;
  896. }
  897. }
  898. static int
  899. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  900. {
  901. int cpu = (int)(long)hcpu;
  902. switch (action) {
  903. case CPU_UP_CANCELED:
  904. case CPU_UP_CANCELED_FROZEN:
  905. case CPU_DOWN_PREPARE:
  906. case CPU_DOWN_PREPARE_FROZEN:
  907. case CPU_DEAD:
  908. case CPU_DEAD_FROZEN:
  909. hrtick_clear(cpu_rq(cpu));
  910. return NOTIFY_OK;
  911. }
  912. return NOTIFY_DONE;
  913. }
  914. static __init void init_hrtick(void)
  915. {
  916. hotcpu_notifier(hotplug_hrtick, 0);
  917. }
  918. #else
  919. /*
  920. * Called to set the hrtick timer state.
  921. *
  922. * called with rq->lock held and irqs disabled
  923. */
  924. static void hrtick_start(struct rq *rq, u64 delay)
  925. {
  926. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  927. HRTIMER_MODE_REL_PINNED, 0);
  928. }
  929. static inline void init_hrtick(void)
  930. {
  931. }
  932. #endif /* CONFIG_SMP */
  933. static void init_rq_hrtick(struct rq *rq)
  934. {
  935. #ifdef CONFIG_SMP
  936. rq->hrtick_csd_pending = 0;
  937. rq->hrtick_csd.flags = 0;
  938. rq->hrtick_csd.func = __hrtick_start;
  939. rq->hrtick_csd.info = rq;
  940. #endif
  941. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  942. rq->hrtick_timer.function = hrtick;
  943. }
  944. #else /* CONFIG_SCHED_HRTICK */
  945. static inline void hrtick_clear(struct rq *rq)
  946. {
  947. }
  948. static inline void init_rq_hrtick(struct rq *rq)
  949. {
  950. }
  951. static inline void init_hrtick(void)
  952. {
  953. }
  954. #endif /* CONFIG_SCHED_HRTICK */
  955. /*
  956. * resched_task - mark a task 'to be rescheduled now'.
  957. *
  958. * On UP this means the setting of the need_resched flag, on SMP it
  959. * might also involve a cross-CPU call to trigger the scheduler on
  960. * the target CPU.
  961. */
  962. #ifdef CONFIG_SMP
  963. #ifndef tsk_is_polling
  964. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  965. #endif
  966. static void resched_task(struct task_struct *p)
  967. {
  968. int cpu;
  969. assert_raw_spin_locked(&task_rq(p)->lock);
  970. if (test_tsk_need_resched(p))
  971. return;
  972. set_tsk_need_resched(p);
  973. cpu = task_cpu(p);
  974. if (cpu == smp_processor_id())
  975. return;
  976. /* NEED_RESCHED must be visible before we test polling */
  977. smp_mb();
  978. if (!tsk_is_polling(p))
  979. smp_send_reschedule(cpu);
  980. }
  981. static void resched_cpu(int cpu)
  982. {
  983. struct rq *rq = cpu_rq(cpu);
  984. unsigned long flags;
  985. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  986. return;
  987. resched_task(cpu_curr(cpu));
  988. raw_spin_unlock_irqrestore(&rq->lock, flags);
  989. }
  990. #ifdef CONFIG_NO_HZ
  991. /*
  992. * In the semi idle case, use the nearest busy cpu for migrating timers
  993. * from an idle cpu. This is good for power-savings.
  994. *
  995. * We don't do similar optimization for completely idle system, as
  996. * selecting an idle cpu will add more delays to the timers than intended
  997. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  998. */
  999. int get_nohz_timer_target(void)
  1000. {
  1001. int cpu = smp_processor_id();
  1002. int i;
  1003. struct sched_domain *sd;
  1004. for_each_domain(cpu, sd) {
  1005. for_each_cpu(i, sched_domain_span(sd))
  1006. if (!idle_cpu(i))
  1007. return i;
  1008. }
  1009. return cpu;
  1010. }
  1011. /*
  1012. * When add_timer_on() enqueues a timer into the timer wheel of an
  1013. * idle CPU then this timer might expire before the next timer event
  1014. * which is scheduled to wake up that CPU. In case of a completely
  1015. * idle system the next event might even be infinite time into the
  1016. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1017. * leaves the inner idle loop so the newly added timer is taken into
  1018. * account when the CPU goes back to idle and evaluates the timer
  1019. * wheel for the next timer event.
  1020. */
  1021. void wake_up_idle_cpu(int cpu)
  1022. {
  1023. struct rq *rq = cpu_rq(cpu);
  1024. if (cpu == smp_processor_id())
  1025. return;
  1026. /*
  1027. * This is safe, as this function is called with the timer
  1028. * wheel base lock of (cpu) held. When the CPU is on the way
  1029. * to idle and has not yet set rq->curr to idle then it will
  1030. * be serialized on the timer wheel base lock and take the new
  1031. * timer into account automatically.
  1032. */
  1033. if (rq->curr != rq->idle)
  1034. return;
  1035. /*
  1036. * We can set TIF_RESCHED on the idle task of the other CPU
  1037. * lockless. The worst case is that the other CPU runs the
  1038. * idle task through an additional NOOP schedule()
  1039. */
  1040. set_tsk_need_resched(rq->idle);
  1041. /* NEED_RESCHED must be visible before we test polling */
  1042. smp_mb();
  1043. if (!tsk_is_polling(rq->idle))
  1044. smp_send_reschedule(cpu);
  1045. }
  1046. #endif /* CONFIG_NO_HZ */
  1047. static u64 sched_avg_period(void)
  1048. {
  1049. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1050. }
  1051. static void sched_avg_update(struct rq *rq)
  1052. {
  1053. s64 period = sched_avg_period();
  1054. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1055. /*
  1056. * Inline assembly required to prevent the compiler
  1057. * optimising this loop into a divmod call.
  1058. * See __iter_div_u64_rem() for another example of this.
  1059. */
  1060. asm("" : "+rm" (rq->age_stamp));
  1061. rq->age_stamp += period;
  1062. rq->rt_avg /= 2;
  1063. }
  1064. }
  1065. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1066. {
  1067. rq->rt_avg += rt_delta;
  1068. sched_avg_update(rq);
  1069. }
  1070. #else /* !CONFIG_SMP */
  1071. static void resched_task(struct task_struct *p)
  1072. {
  1073. assert_raw_spin_locked(&task_rq(p)->lock);
  1074. set_tsk_need_resched(p);
  1075. }
  1076. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1077. {
  1078. }
  1079. static void sched_avg_update(struct rq *rq)
  1080. {
  1081. }
  1082. #endif /* CONFIG_SMP */
  1083. #if BITS_PER_LONG == 32
  1084. # define WMULT_CONST (~0UL)
  1085. #else
  1086. # define WMULT_CONST (1UL << 32)
  1087. #endif
  1088. #define WMULT_SHIFT 32
  1089. /*
  1090. * Shift right and round:
  1091. */
  1092. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1093. /*
  1094. * delta *= weight / lw
  1095. */
  1096. static unsigned long
  1097. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1098. struct load_weight *lw)
  1099. {
  1100. u64 tmp;
  1101. if (!lw->inv_weight) {
  1102. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1103. lw->inv_weight = 1;
  1104. else
  1105. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1106. / (lw->weight+1);
  1107. }
  1108. tmp = (u64)delta_exec * weight;
  1109. /*
  1110. * Check whether we'd overflow the 64-bit multiplication:
  1111. */
  1112. if (unlikely(tmp > WMULT_CONST))
  1113. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1114. WMULT_SHIFT/2);
  1115. else
  1116. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1117. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1118. }
  1119. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1120. {
  1121. lw->weight += inc;
  1122. lw->inv_weight = 0;
  1123. }
  1124. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1125. {
  1126. lw->weight -= dec;
  1127. lw->inv_weight = 0;
  1128. }
  1129. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  1130. {
  1131. lw->weight = w;
  1132. lw->inv_weight = 0;
  1133. }
  1134. /*
  1135. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1136. * of tasks with abnormal "nice" values across CPUs the contribution that
  1137. * each task makes to its run queue's load is weighted according to its
  1138. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1139. * scaled version of the new time slice allocation that they receive on time
  1140. * slice expiry etc.
  1141. */
  1142. #define WEIGHT_IDLEPRIO 3
  1143. #define WMULT_IDLEPRIO 1431655765
  1144. /*
  1145. * Nice levels are multiplicative, with a gentle 10% change for every
  1146. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1147. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1148. * that remained on nice 0.
  1149. *
  1150. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1151. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1152. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1153. * If a task goes up by ~10% and another task goes down by ~10% then
  1154. * the relative distance between them is ~25%.)
  1155. */
  1156. static const int prio_to_weight[40] = {
  1157. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1158. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1159. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1160. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1161. /* 0 */ 1024, 820, 655, 526, 423,
  1162. /* 5 */ 335, 272, 215, 172, 137,
  1163. /* 10 */ 110, 87, 70, 56, 45,
  1164. /* 15 */ 36, 29, 23, 18, 15,
  1165. };
  1166. /*
  1167. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1168. *
  1169. * In cases where the weight does not change often, we can use the
  1170. * precalculated inverse to speed up arithmetics by turning divisions
  1171. * into multiplications:
  1172. */
  1173. static const u32 prio_to_wmult[40] = {
  1174. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1175. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1176. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1177. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1178. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1179. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1180. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1181. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1182. };
  1183. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1184. enum cpuacct_stat_index {
  1185. CPUACCT_STAT_USER, /* ... user mode */
  1186. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1187. CPUACCT_STAT_NSTATS,
  1188. };
  1189. #ifdef CONFIG_CGROUP_CPUACCT
  1190. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1191. static void cpuacct_update_stats(struct task_struct *tsk,
  1192. enum cpuacct_stat_index idx, cputime_t val);
  1193. #else
  1194. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1195. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1196. enum cpuacct_stat_index idx, cputime_t val) {}
  1197. #endif
  1198. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1199. {
  1200. update_load_add(&rq->load, load);
  1201. }
  1202. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1203. {
  1204. update_load_sub(&rq->load, load);
  1205. }
  1206. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1207. typedef int (*tg_visitor)(struct task_group *, void *);
  1208. /*
  1209. * Iterate the full tree, calling @down when first entering a node and @up when
  1210. * leaving it for the final time.
  1211. */
  1212. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1213. {
  1214. struct task_group *parent, *child;
  1215. int ret;
  1216. rcu_read_lock();
  1217. parent = &root_task_group;
  1218. down:
  1219. ret = (*down)(parent, data);
  1220. if (ret)
  1221. goto out_unlock;
  1222. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1223. parent = child;
  1224. goto down;
  1225. up:
  1226. continue;
  1227. }
  1228. ret = (*up)(parent, data);
  1229. if (ret)
  1230. goto out_unlock;
  1231. child = parent;
  1232. parent = parent->parent;
  1233. if (parent)
  1234. goto up;
  1235. out_unlock:
  1236. rcu_read_unlock();
  1237. return ret;
  1238. }
  1239. static int tg_nop(struct task_group *tg, void *data)
  1240. {
  1241. return 0;
  1242. }
  1243. #endif
  1244. #ifdef CONFIG_SMP
  1245. /* Used instead of source_load when we know the type == 0 */
  1246. static unsigned long weighted_cpuload(const int cpu)
  1247. {
  1248. return cpu_rq(cpu)->load.weight;
  1249. }
  1250. /*
  1251. * Return a low guess at the load of a migration-source cpu weighted
  1252. * according to the scheduling class and "nice" value.
  1253. *
  1254. * We want to under-estimate the load of migration sources, to
  1255. * balance conservatively.
  1256. */
  1257. static unsigned long source_load(int cpu, int type)
  1258. {
  1259. struct rq *rq = cpu_rq(cpu);
  1260. unsigned long total = weighted_cpuload(cpu);
  1261. if (type == 0 || !sched_feat(LB_BIAS))
  1262. return total;
  1263. return min(rq->cpu_load[type-1], total);
  1264. }
  1265. /*
  1266. * Return a high guess at the load of a migration-target cpu weighted
  1267. * according to the scheduling class and "nice" value.
  1268. */
  1269. static unsigned long target_load(int cpu, int type)
  1270. {
  1271. struct rq *rq = cpu_rq(cpu);
  1272. unsigned long total = weighted_cpuload(cpu);
  1273. if (type == 0 || !sched_feat(LB_BIAS))
  1274. return total;
  1275. return max(rq->cpu_load[type-1], total);
  1276. }
  1277. static unsigned long power_of(int cpu)
  1278. {
  1279. return cpu_rq(cpu)->cpu_power;
  1280. }
  1281. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1282. static unsigned long cpu_avg_load_per_task(int cpu)
  1283. {
  1284. struct rq *rq = cpu_rq(cpu);
  1285. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1286. if (nr_running)
  1287. rq->avg_load_per_task = rq->load.weight / nr_running;
  1288. else
  1289. rq->avg_load_per_task = 0;
  1290. return rq->avg_load_per_task;
  1291. }
  1292. #ifdef CONFIG_FAIR_GROUP_SCHED
  1293. /*
  1294. * Compute the cpu's hierarchical load factor for each task group.
  1295. * This needs to be done in a top-down fashion because the load of a child
  1296. * group is a fraction of its parents load.
  1297. */
  1298. static int tg_load_down(struct task_group *tg, void *data)
  1299. {
  1300. unsigned long load;
  1301. long cpu = (long)data;
  1302. if (!tg->parent) {
  1303. load = cpu_rq(cpu)->load.weight;
  1304. } else {
  1305. load = tg->parent->cfs_rq[cpu]->h_load;
  1306. load *= tg->se[cpu]->load.weight;
  1307. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1308. }
  1309. tg->cfs_rq[cpu]->h_load = load;
  1310. return 0;
  1311. }
  1312. static void update_h_load(long cpu)
  1313. {
  1314. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1315. }
  1316. #endif
  1317. #ifdef CONFIG_PREEMPT
  1318. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1319. /*
  1320. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1321. * way at the expense of forcing extra atomic operations in all
  1322. * invocations. This assures that the double_lock is acquired using the
  1323. * same underlying policy as the spinlock_t on this architecture, which
  1324. * reduces latency compared to the unfair variant below. However, it
  1325. * also adds more overhead and therefore may reduce throughput.
  1326. */
  1327. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1328. __releases(this_rq->lock)
  1329. __acquires(busiest->lock)
  1330. __acquires(this_rq->lock)
  1331. {
  1332. raw_spin_unlock(&this_rq->lock);
  1333. double_rq_lock(this_rq, busiest);
  1334. return 1;
  1335. }
  1336. #else
  1337. /*
  1338. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1339. * latency by eliminating extra atomic operations when the locks are
  1340. * already in proper order on entry. This favors lower cpu-ids and will
  1341. * grant the double lock to lower cpus over higher ids under contention,
  1342. * regardless of entry order into the function.
  1343. */
  1344. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1345. __releases(this_rq->lock)
  1346. __acquires(busiest->lock)
  1347. __acquires(this_rq->lock)
  1348. {
  1349. int ret = 0;
  1350. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1351. if (busiest < this_rq) {
  1352. raw_spin_unlock(&this_rq->lock);
  1353. raw_spin_lock(&busiest->lock);
  1354. raw_spin_lock_nested(&this_rq->lock,
  1355. SINGLE_DEPTH_NESTING);
  1356. ret = 1;
  1357. } else
  1358. raw_spin_lock_nested(&busiest->lock,
  1359. SINGLE_DEPTH_NESTING);
  1360. }
  1361. return ret;
  1362. }
  1363. #endif /* CONFIG_PREEMPT */
  1364. /*
  1365. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1366. */
  1367. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1368. {
  1369. if (unlikely(!irqs_disabled())) {
  1370. /* printk() doesn't work good under rq->lock */
  1371. raw_spin_unlock(&this_rq->lock);
  1372. BUG_ON(1);
  1373. }
  1374. return _double_lock_balance(this_rq, busiest);
  1375. }
  1376. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1377. __releases(busiest->lock)
  1378. {
  1379. raw_spin_unlock(&busiest->lock);
  1380. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1381. }
  1382. /*
  1383. * double_rq_lock - safely lock two runqueues
  1384. *
  1385. * Note this does not disable interrupts like task_rq_lock,
  1386. * you need to do so manually before calling.
  1387. */
  1388. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1389. __acquires(rq1->lock)
  1390. __acquires(rq2->lock)
  1391. {
  1392. BUG_ON(!irqs_disabled());
  1393. if (rq1 == rq2) {
  1394. raw_spin_lock(&rq1->lock);
  1395. __acquire(rq2->lock); /* Fake it out ;) */
  1396. } else {
  1397. if (rq1 < rq2) {
  1398. raw_spin_lock(&rq1->lock);
  1399. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1400. } else {
  1401. raw_spin_lock(&rq2->lock);
  1402. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1403. }
  1404. }
  1405. }
  1406. /*
  1407. * double_rq_unlock - safely unlock two runqueues
  1408. *
  1409. * Note this does not restore interrupts like task_rq_unlock,
  1410. * you need to do so manually after calling.
  1411. */
  1412. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1413. __releases(rq1->lock)
  1414. __releases(rq2->lock)
  1415. {
  1416. raw_spin_unlock(&rq1->lock);
  1417. if (rq1 != rq2)
  1418. raw_spin_unlock(&rq2->lock);
  1419. else
  1420. __release(rq2->lock);
  1421. }
  1422. #else /* CONFIG_SMP */
  1423. /*
  1424. * double_rq_lock - safely lock two runqueues
  1425. *
  1426. * Note this does not disable interrupts like task_rq_lock,
  1427. * you need to do so manually before calling.
  1428. */
  1429. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1430. __acquires(rq1->lock)
  1431. __acquires(rq2->lock)
  1432. {
  1433. BUG_ON(!irqs_disabled());
  1434. BUG_ON(rq1 != rq2);
  1435. raw_spin_lock(&rq1->lock);
  1436. __acquire(rq2->lock); /* Fake it out ;) */
  1437. }
  1438. /*
  1439. * double_rq_unlock - safely unlock two runqueues
  1440. *
  1441. * Note this does not restore interrupts like task_rq_unlock,
  1442. * you need to do so manually after calling.
  1443. */
  1444. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1445. __releases(rq1->lock)
  1446. __releases(rq2->lock)
  1447. {
  1448. BUG_ON(rq1 != rq2);
  1449. raw_spin_unlock(&rq1->lock);
  1450. __release(rq2->lock);
  1451. }
  1452. #endif
  1453. static void calc_load_account_idle(struct rq *this_rq);
  1454. static void update_sysctl(void);
  1455. static int get_update_sysctl_factor(void);
  1456. static void update_cpu_load(struct rq *this_rq);
  1457. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1458. {
  1459. set_task_rq(p, cpu);
  1460. #ifdef CONFIG_SMP
  1461. /*
  1462. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1463. * successfuly executed on another CPU. We must ensure that updates of
  1464. * per-task data have been completed by this moment.
  1465. */
  1466. smp_wmb();
  1467. task_thread_info(p)->cpu = cpu;
  1468. #endif
  1469. }
  1470. static const struct sched_class rt_sched_class;
  1471. #define sched_class_highest (&stop_sched_class)
  1472. #define for_each_class(class) \
  1473. for (class = sched_class_highest; class; class = class->next)
  1474. #include "sched_stats.h"
  1475. static void inc_nr_running(struct rq *rq)
  1476. {
  1477. rq->nr_running++;
  1478. }
  1479. static void dec_nr_running(struct rq *rq)
  1480. {
  1481. rq->nr_running--;
  1482. }
  1483. static void set_load_weight(struct task_struct *p)
  1484. {
  1485. /*
  1486. * SCHED_IDLE tasks get minimal weight:
  1487. */
  1488. if (p->policy == SCHED_IDLE) {
  1489. p->se.load.weight = WEIGHT_IDLEPRIO;
  1490. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1491. return;
  1492. }
  1493. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1494. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1495. }
  1496. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1497. {
  1498. update_rq_clock(rq);
  1499. sched_info_queued(p);
  1500. p->sched_class->enqueue_task(rq, p, flags);
  1501. p->se.on_rq = 1;
  1502. }
  1503. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1504. {
  1505. update_rq_clock(rq);
  1506. sched_info_dequeued(p);
  1507. p->sched_class->dequeue_task(rq, p, flags);
  1508. p->se.on_rq = 0;
  1509. }
  1510. /*
  1511. * activate_task - move a task to the runqueue.
  1512. */
  1513. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1514. {
  1515. if (task_contributes_to_load(p))
  1516. rq->nr_uninterruptible--;
  1517. enqueue_task(rq, p, flags);
  1518. inc_nr_running(rq);
  1519. }
  1520. /*
  1521. * deactivate_task - remove a task from the runqueue.
  1522. */
  1523. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1524. {
  1525. if (task_contributes_to_load(p))
  1526. rq->nr_uninterruptible++;
  1527. dequeue_task(rq, p, flags);
  1528. dec_nr_running(rq);
  1529. }
  1530. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1531. /*
  1532. * There are no locks covering percpu hardirq/softirq time.
  1533. * They are only modified in account_system_vtime, on corresponding CPU
  1534. * with interrupts disabled. So, writes are safe.
  1535. * They are read and saved off onto struct rq in update_rq_clock().
  1536. * This may result in other CPU reading this CPU's irq time and can
  1537. * race with irq/account_system_vtime on this CPU. We would either get old
  1538. * or new value with a side effect of accounting a slice of irq time to wrong
  1539. * task when irq is in progress while we read rq->clock. That is a worthy
  1540. * compromise in place of having locks on each irq in account_system_time.
  1541. */
  1542. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  1543. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  1544. static DEFINE_PER_CPU(u64, irq_start_time);
  1545. static int sched_clock_irqtime;
  1546. void enable_sched_clock_irqtime(void)
  1547. {
  1548. sched_clock_irqtime = 1;
  1549. }
  1550. void disable_sched_clock_irqtime(void)
  1551. {
  1552. sched_clock_irqtime = 0;
  1553. }
  1554. #ifndef CONFIG_64BIT
  1555. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  1556. static inline void irq_time_write_begin(void)
  1557. {
  1558. __this_cpu_inc(irq_time_seq.sequence);
  1559. smp_wmb();
  1560. }
  1561. static inline void irq_time_write_end(void)
  1562. {
  1563. smp_wmb();
  1564. __this_cpu_inc(irq_time_seq.sequence);
  1565. }
  1566. static inline u64 irq_time_read(int cpu)
  1567. {
  1568. u64 irq_time;
  1569. unsigned seq;
  1570. do {
  1571. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1572. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1573. per_cpu(cpu_hardirq_time, cpu);
  1574. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1575. return irq_time;
  1576. }
  1577. #else /* CONFIG_64BIT */
  1578. static inline void irq_time_write_begin(void)
  1579. {
  1580. }
  1581. static inline void irq_time_write_end(void)
  1582. {
  1583. }
  1584. static inline u64 irq_time_read(int cpu)
  1585. {
  1586. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1587. }
  1588. #endif /* CONFIG_64BIT */
  1589. /*
  1590. * Called before incrementing preempt_count on {soft,}irq_enter
  1591. * and before decrementing preempt_count on {soft,}irq_exit.
  1592. */
  1593. void account_system_vtime(struct task_struct *curr)
  1594. {
  1595. unsigned long flags;
  1596. s64 delta;
  1597. int cpu;
  1598. if (!sched_clock_irqtime)
  1599. return;
  1600. local_irq_save(flags);
  1601. cpu = smp_processor_id();
  1602. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  1603. __this_cpu_add(irq_start_time, delta);
  1604. irq_time_write_begin();
  1605. /*
  1606. * We do not account for softirq time from ksoftirqd here.
  1607. * We want to continue accounting softirq time to ksoftirqd thread
  1608. * in that case, so as not to confuse scheduler with a special task
  1609. * that do not consume any time, but still wants to run.
  1610. */
  1611. if (hardirq_count())
  1612. __this_cpu_add(cpu_hardirq_time, delta);
  1613. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  1614. __this_cpu_add(cpu_softirq_time, delta);
  1615. irq_time_write_end();
  1616. local_irq_restore(flags);
  1617. }
  1618. EXPORT_SYMBOL_GPL(account_system_vtime);
  1619. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1620. {
  1621. s64 irq_delta;
  1622. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  1623. /*
  1624. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  1625. * this case when a previous update_rq_clock() happened inside a
  1626. * {soft,}irq region.
  1627. *
  1628. * When this happens, we stop ->clock_task and only update the
  1629. * prev_irq_time stamp to account for the part that fit, so that a next
  1630. * update will consume the rest. This ensures ->clock_task is
  1631. * monotonic.
  1632. *
  1633. * It does however cause some slight miss-attribution of {soft,}irq
  1634. * time, a more accurate solution would be to update the irq_time using
  1635. * the current rq->clock timestamp, except that would require using
  1636. * atomic ops.
  1637. */
  1638. if (irq_delta > delta)
  1639. irq_delta = delta;
  1640. rq->prev_irq_time += irq_delta;
  1641. delta -= irq_delta;
  1642. rq->clock_task += delta;
  1643. if (irq_delta && sched_feat(NONIRQ_POWER))
  1644. sched_rt_avg_update(rq, irq_delta);
  1645. }
  1646. static int irqtime_account_hi_update(void)
  1647. {
  1648. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1649. unsigned long flags;
  1650. u64 latest_ns;
  1651. int ret = 0;
  1652. local_irq_save(flags);
  1653. latest_ns = this_cpu_read(cpu_hardirq_time);
  1654. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
  1655. ret = 1;
  1656. local_irq_restore(flags);
  1657. return ret;
  1658. }
  1659. static int irqtime_account_si_update(void)
  1660. {
  1661. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1662. unsigned long flags;
  1663. u64 latest_ns;
  1664. int ret = 0;
  1665. local_irq_save(flags);
  1666. latest_ns = this_cpu_read(cpu_softirq_time);
  1667. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
  1668. ret = 1;
  1669. local_irq_restore(flags);
  1670. return ret;
  1671. }
  1672. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  1673. #define sched_clock_irqtime (0)
  1674. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1675. {
  1676. rq->clock_task += delta;
  1677. }
  1678. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  1679. #include "sched_idletask.c"
  1680. #include "sched_fair.c"
  1681. #include "sched_rt.c"
  1682. #include "sched_autogroup.c"
  1683. #include "sched_stoptask.c"
  1684. #ifdef CONFIG_SCHED_DEBUG
  1685. # include "sched_debug.c"
  1686. #endif
  1687. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1688. {
  1689. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1690. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1691. if (stop) {
  1692. /*
  1693. * Make it appear like a SCHED_FIFO task, its something
  1694. * userspace knows about and won't get confused about.
  1695. *
  1696. * Also, it will make PI more or less work without too
  1697. * much confusion -- but then, stop work should not
  1698. * rely on PI working anyway.
  1699. */
  1700. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1701. stop->sched_class = &stop_sched_class;
  1702. }
  1703. cpu_rq(cpu)->stop = stop;
  1704. if (old_stop) {
  1705. /*
  1706. * Reset it back to a normal scheduling class so that
  1707. * it can die in pieces.
  1708. */
  1709. old_stop->sched_class = &rt_sched_class;
  1710. }
  1711. }
  1712. /*
  1713. * __normal_prio - return the priority that is based on the static prio
  1714. */
  1715. static inline int __normal_prio(struct task_struct *p)
  1716. {
  1717. return p->static_prio;
  1718. }
  1719. /*
  1720. * Calculate the expected normal priority: i.e. priority
  1721. * without taking RT-inheritance into account. Might be
  1722. * boosted by interactivity modifiers. Changes upon fork,
  1723. * setprio syscalls, and whenever the interactivity
  1724. * estimator recalculates.
  1725. */
  1726. static inline int normal_prio(struct task_struct *p)
  1727. {
  1728. int prio;
  1729. if (task_has_rt_policy(p))
  1730. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1731. else
  1732. prio = __normal_prio(p);
  1733. return prio;
  1734. }
  1735. /*
  1736. * Calculate the current priority, i.e. the priority
  1737. * taken into account by the scheduler. This value might
  1738. * be boosted by RT tasks, or might be boosted by
  1739. * interactivity modifiers. Will be RT if the task got
  1740. * RT-boosted. If not then it returns p->normal_prio.
  1741. */
  1742. static int effective_prio(struct task_struct *p)
  1743. {
  1744. p->normal_prio = normal_prio(p);
  1745. /*
  1746. * If we are RT tasks or we were boosted to RT priority,
  1747. * keep the priority unchanged. Otherwise, update priority
  1748. * to the normal priority:
  1749. */
  1750. if (!rt_prio(p->prio))
  1751. return p->normal_prio;
  1752. return p->prio;
  1753. }
  1754. /**
  1755. * task_curr - is this task currently executing on a CPU?
  1756. * @p: the task in question.
  1757. */
  1758. inline int task_curr(const struct task_struct *p)
  1759. {
  1760. return cpu_curr(task_cpu(p)) == p;
  1761. }
  1762. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1763. const struct sched_class *prev_class,
  1764. int oldprio)
  1765. {
  1766. if (prev_class != p->sched_class) {
  1767. if (prev_class->switched_from)
  1768. prev_class->switched_from(rq, p);
  1769. p->sched_class->switched_to(rq, p);
  1770. } else if (oldprio != p->prio)
  1771. p->sched_class->prio_changed(rq, p, oldprio);
  1772. }
  1773. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  1774. {
  1775. const struct sched_class *class;
  1776. if (p->sched_class == rq->curr->sched_class) {
  1777. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  1778. } else {
  1779. for_each_class(class) {
  1780. if (class == rq->curr->sched_class)
  1781. break;
  1782. if (class == p->sched_class) {
  1783. resched_task(rq->curr);
  1784. break;
  1785. }
  1786. }
  1787. }
  1788. /*
  1789. * A queue event has occurred, and we're going to schedule. In
  1790. * this case, we can save a useless back to back clock update.
  1791. */
  1792. if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
  1793. rq->skip_clock_update = 1;
  1794. }
  1795. #ifdef CONFIG_SMP
  1796. /*
  1797. * Is this task likely cache-hot:
  1798. */
  1799. static int
  1800. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1801. {
  1802. s64 delta;
  1803. if (p->sched_class != &fair_sched_class)
  1804. return 0;
  1805. if (unlikely(p->policy == SCHED_IDLE))
  1806. return 0;
  1807. /*
  1808. * Buddy candidates are cache hot:
  1809. */
  1810. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1811. (&p->se == cfs_rq_of(&p->se)->next ||
  1812. &p->se == cfs_rq_of(&p->se)->last))
  1813. return 1;
  1814. if (sysctl_sched_migration_cost == -1)
  1815. return 1;
  1816. if (sysctl_sched_migration_cost == 0)
  1817. return 0;
  1818. delta = now - p->se.exec_start;
  1819. return delta < (s64)sysctl_sched_migration_cost;
  1820. }
  1821. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1822. {
  1823. #ifdef CONFIG_SCHED_DEBUG
  1824. /*
  1825. * We should never call set_task_cpu() on a blocked task,
  1826. * ttwu() will sort out the placement.
  1827. */
  1828. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1829. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1830. #endif
  1831. trace_sched_migrate_task(p, new_cpu);
  1832. if (task_cpu(p) != new_cpu) {
  1833. p->se.nr_migrations++;
  1834. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1835. }
  1836. __set_task_cpu(p, new_cpu);
  1837. }
  1838. struct migration_arg {
  1839. struct task_struct *task;
  1840. int dest_cpu;
  1841. };
  1842. static int migration_cpu_stop(void *data);
  1843. /*
  1844. * The task's runqueue lock must be held.
  1845. * Returns true if you have to wait for migration thread.
  1846. */
  1847. static bool migrate_task(struct task_struct *p, struct rq *rq)
  1848. {
  1849. /*
  1850. * If the task is not on a runqueue (and not running), then
  1851. * the next wake-up will properly place the task.
  1852. */
  1853. return p->se.on_rq || task_running(rq, p);
  1854. }
  1855. /*
  1856. * wait_task_inactive - wait for a thread to unschedule.
  1857. *
  1858. * If @match_state is nonzero, it's the @p->state value just checked and
  1859. * not expected to change. If it changes, i.e. @p might have woken up,
  1860. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1861. * we return a positive number (its total switch count). If a second call
  1862. * a short while later returns the same number, the caller can be sure that
  1863. * @p has remained unscheduled the whole time.
  1864. *
  1865. * The caller must ensure that the task *will* unschedule sometime soon,
  1866. * else this function might spin for a *long* time. This function can't
  1867. * be called with interrupts off, or it may introduce deadlock with
  1868. * smp_call_function() if an IPI is sent by the same process we are
  1869. * waiting to become inactive.
  1870. */
  1871. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1872. {
  1873. unsigned long flags;
  1874. int running, on_rq;
  1875. unsigned long ncsw;
  1876. struct rq *rq;
  1877. for (;;) {
  1878. /*
  1879. * We do the initial early heuristics without holding
  1880. * any task-queue locks at all. We'll only try to get
  1881. * the runqueue lock when things look like they will
  1882. * work out!
  1883. */
  1884. rq = task_rq(p);
  1885. /*
  1886. * If the task is actively running on another CPU
  1887. * still, just relax and busy-wait without holding
  1888. * any locks.
  1889. *
  1890. * NOTE! Since we don't hold any locks, it's not
  1891. * even sure that "rq" stays as the right runqueue!
  1892. * But we don't care, since "task_running()" will
  1893. * return false if the runqueue has changed and p
  1894. * is actually now running somewhere else!
  1895. */
  1896. while (task_running(rq, p)) {
  1897. if (match_state && unlikely(p->state != match_state))
  1898. return 0;
  1899. cpu_relax();
  1900. }
  1901. /*
  1902. * Ok, time to look more closely! We need the rq
  1903. * lock now, to be *sure*. If we're wrong, we'll
  1904. * just go back and repeat.
  1905. */
  1906. rq = task_rq_lock(p, &flags);
  1907. trace_sched_wait_task(p);
  1908. running = task_running(rq, p);
  1909. on_rq = p->se.on_rq;
  1910. ncsw = 0;
  1911. if (!match_state || p->state == match_state)
  1912. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1913. task_rq_unlock(rq, &flags);
  1914. /*
  1915. * If it changed from the expected state, bail out now.
  1916. */
  1917. if (unlikely(!ncsw))
  1918. break;
  1919. /*
  1920. * Was it really running after all now that we
  1921. * checked with the proper locks actually held?
  1922. *
  1923. * Oops. Go back and try again..
  1924. */
  1925. if (unlikely(running)) {
  1926. cpu_relax();
  1927. continue;
  1928. }
  1929. /*
  1930. * It's not enough that it's not actively running,
  1931. * it must be off the runqueue _entirely_, and not
  1932. * preempted!
  1933. *
  1934. * So if it was still runnable (but just not actively
  1935. * running right now), it's preempted, and we should
  1936. * yield - it could be a while.
  1937. */
  1938. if (unlikely(on_rq)) {
  1939. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1940. set_current_state(TASK_UNINTERRUPTIBLE);
  1941. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1942. continue;
  1943. }
  1944. /*
  1945. * Ahh, all good. It wasn't running, and it wasn't
  1946. * runnable, which means that it will never become
  1947. * running in the future either. We're all done!
  1948. */
  1949. break;
  1950. }
  1951. return ncsw;
  1952. }
  1953. /***
  1954. * kick_process - kick a running thread to enter/exit the kernel
  1955. * @p: the to-be-kicked thread
  1956. *
  1957. * Cause a process which is running on another CPU to enter
  1958. * kernel-mode, without any delay. (to get signals handled.)
  1959. *
  1960. * NOTE: this function doesn't have to take the runqueue lock,
  1961. * because all it wants to ensure is that the remote task enters
  1962. * the kernel. If the IPI races and the task has been migrated
  1963. * to another CPU then no harm is done and the purpose has been
  1964. * achieved as well.
  1965. */
  1966. void kick_process(struct task_struct *p)
  1967. {
  1968. int cpu;
  1969. preempt_disable();
  1970. cpu = task_cpu(p);
  1971. if ((cpu != smp_processor_id()) && task_curr(p))
  1972. smp_send_reschedule(cpu);
  1973. preempt_enable();
  1974. }
  1975. EXPORT_SYMBOL_GPL(kick_process);
  1976. #endif /* CONFIG_SMP */
  1977. #ifdef CONFIG_SMP
  1978. /*
  1979. * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
  1980. */
  1981. static int select_fallback_rq(int cpu, struct task_struct *p)
  1982. {
  1983. int dest_cpu;
  1984. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1985. /* Look for allowed, online CPU in same node. */
  1986. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1987. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1988. return dest_cpu;
  1989. /* Any allowed, online CPU? */
  1990. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1991. if (dest_cpu < nr_cpu_ids)
  1992. return dest_cpu;
  1993. /* No more Mr. Nice Guy. */
  1994. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1995. /*
  1996. * Don't tell them about moving exiting tasks or
  1997. * kernel threads (both mm NULL), since they never
  1998. * leave kernel.
  1999. */
  2000. if (p->mm && printk_ratelimit()) {
  2001. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  2002. task_pid_nr(p), p->comm, cpu);
  2003. }
  2004. return dest_cpu;
  2005. }
  2006. /*
  2007. * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
  2008. */
  2009. static inline
  2010. int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
  2011. {
  2012. int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
  2013. /*
  2014. * In order not to call set_task_cpu() on a blocking task we need
  2015. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  2016. * cpu.
  2017. *
  2018. * Since this is common to all placement strategies, this lives here.
  2019. *
  2020. * [ this allows ->select_task() to simply return task_cpu(p) and
  2021. * not worry about this generic constraint ]
  2022. */
  2023. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  2024. !cpu_online(cpu)))
  2025. cpu = select_fallback_rq(task_cpu(p), p);
  2026. return cpu;
  2027. }
  2028. static void update_avg(u64 *avg, u64 sample)
  2029. {
  2030. s64 diff = sample - *avg;
  2031. *avg += diff >> 3;
  2032. }
  2033. #endif
  2034. static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
  2035. bool is_sync, bool is_migrate, bool is_local,
  2036. unsigned long en_flags)
  2037. {
  2038. schedstat_inc(p, se.statistics.nr_wakeups);
  2039. if (is_sync)
  2040. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  2041. if (is_migrate)
  2042. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  2043. if (is_local)
  2044. schedstat_inc(p, se.statistics.nr_wakeups_local);
  2045. else
  2046. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  2047. activate_task(rq, p, en_flags);
  2048. }
  2049. static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
  2050. int wake_flags, bool success)
  2051. {
  2052. trace_sched_wakeup(p, success);
  2053. check_preempt_curr(rq, p, wake_flags);
  2054. p->state = TASK_RUNNING;
  2055. #ifdef CONFIG_SMP
  2056. if (p->sched_class->task_woken)
  2057. p->sched_class->task_woken(rq, p);
  2058. if (unlikely(rq->idle_stamp)) {
  2059. u64 delta = rq->clock - rq->idle_stamp;
  2060. u64 max = 2*sysctl_sched_migration_cost;
  2061. if (delta > max)
  2062. rq->avg_idle = max;
  2063. else
  2064. update_avg(&rq->avg_idle, delta);
  2065. rq->idle_stamp = 0;
  2066. }
  2067. #endif
  2068. /* if a worker is waking up, notify workqueue */
  2069. if ((p->flags & PF_WQ_WORKER) && success)
  2070. wq_worker_waking_up(p, cpu_of(rq));
  2071. }
  2072. /**
  2073. * try_to_wake_up - wake up a thread
  2074. * @p: the thread to be awakened
  2075. * @state: the mask of task states that can be woken
  2076. * @wake_flags: wake modifier flags (WF_*)
  2077. *
  2078. * Put it on the run-queue if it's not already there. The "current"
  2079. * thread is always on the run-queue (except when the actual
  2080. * re-schedule is in progress), and as such you're allowed to do
  2081. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2082. * runnable without the overhead of this.
  2083. *
  2084. * Returns %true if @p was woken up, %false if it was already running
  2085. * or @state didn't match @p's state.
  2086. */
  2087. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  2088. int wake_flags)
  2089. {
  2090. int cpu, orig_cpu, this_cpu, success = 0;
  2091. unsigned long flags;
  2092. unsigned long en_flags = ENQUEUE_WAKEUP;
  2093. struct rq *rq;
  2094. this_cpu = get_cpu();
  2095. smp_wmb();
  2096. rq = task_rq_lock(p, &flags);
  2097. if (!(p->state & state))
  2098. goto out;
  2099. if (p->se.on_rq)
  2100. goto out_running;
  2101. cpu = task_cpu(p);
  2102. orig_cpu = cpu;
  2103. #ifdef CONFIG_SMP
  2104. if (unlikely(task_running(rq, p)))
  2105. goto out_activate;
  2106. /*
  2107. * In order to handle concurrent wakeups and release the rq->lock
  2108. * we put the task in TASK_WAKING state.
  2109. *
  2110. * First fix up the nr_uninterruptible count:
  2111. */
  2112. if (task_contributes_to_load(p)) {
  2113. if (likely(cpu_online(orig_cpu)))
  2114. rq->nr_uninterruptible--;
  2115. else
  2116. this_rq()->nr_uninterruptible--;
  2117. }
  2118. p->state = TASK_WAKING;
  2119. if (p->sched_class->task_waking) {
  2120. p->sched_class->task_waking(rq, p);
  2121. en_flags |= ENQUEUE_WAKING;
  2122. }
  2123. cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
  2124. if (cpu != orig_cpu)
  2125. set_task_cpu(p, cpu);
  2126. __task_rq_unlock(rq);
  2127. rq = cpu_rq(cpu);
  2128. raw_spin_lock(&rq->lock);
  2129. /*
  2130. * We migrated the task without holding either rq->lock, however
  2131. * since the task is not on the task list itself, nobody else
  2132. * will try and migrate the task, hence the rq should match the
  2133. * cpu we just moved it to.
  2134. */
  2135. WARN_ON(task_cpu(p) != cpu);
  2136. WARN_ON(p->state != TASK_WAKING);
  2137. #ifdef CONFIG_SCHEDSTATS
  2138. schedstat_inc(rq, ttwu_count);
  2139. if (cpu == this_cpu)
  2140. schedstat_inc(rq, ttwu_local);
  2141. else {
  2142. struct sched_domain *sd;
  2143. for_each_domain(this_cpu, sd) {
  2144. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2145. schedstat_inc(sd, ttwu_wake_remote);
  2146. break;
  2147. }
  2148. }
  2149. }
  2150. #endif /* CONFIG_SCHEDSTATS */
  2151. out_activate:
  2152. #endif /* CONFIG_SMP */
  2153. ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
  2154. cpu == this_cpu, en_flags);
  2155. success = 1;
  2156. out_running:
  2157. ttwu_post_activation(p, rq, wake_flags, success);
  2158. out:
  2159. task_rq_unlock(rq, &flags);
  2160. put_cpu();
  2161. return success;
  2162. }
  2163. /**
  2164. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2165. * @p: the thread to be awakened
  2166. *
  2167. * Put @p on the run-queue if it's not already there. The caller must
  2168. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2169. * the current task. this_rq() stays locked over invocation.
  2170. */
  2171. static void try_to_wake_up_local(struct task_struct *p)
  2172. {
  2173. struct rq *rq = task_rq(p);
  2174. bool success = false;
  2175. BUG_ON(rq != this_rq());
  2176. BUG_ON(p == current);
  2177. lockdep_assert_held(&rq->lock);
  2178. if (!(p->state & TASK_NORMAL))
  2179. return;
  2180. if (!p->se.on_rq) {
  2181. if (likely(!task_running(rq, p))) {
  2182. schedstat_inc(rq, ttwu_count);
  2183. schedstat_inc(rq, ttwu_local);
  2184. }
  2185. ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
  2186. success = true;
  2187. }
  2188. ttwu_post_activation(p, rq, 0, success);
  2189. }
  2190. /**
  2191. * wake_up_process - Wake up a specific process
  2192. * @p: The process to be woken up.
  2193. *
  2194. * Attempt to wake up the nominated process and move it to the set of runnable
  2195. * processes. Returns 1 if the process was woken up, 0 if it was already
  2196. * running.
  2197. *
  2198. * It may be assumed that this function implies a write memory barrier before
  2199. * changing the task state if and only if any tasks are woken up.
  2200. */
  2201. int wake_up_process(struct task_struct *p)
  2202. {
  2203. return try_to_wake_up(p, TASK_ALL, 0);
  2204. }
  2205. EXPORT_SYMBOL(wake_up_process);
  2206. int wake_up_state(struct task_struct *p, unsigned int state)
  2207. {
  2208. return try_to_wake_up(p, state, 0);
  2209. }
  2210. /*
  2211. * Perform scheduler related setup for a newly forked process p.
  2212. * p is forked by current.
  2213. *
  2214. * __sched_fork() is basic setup used by init_idle() too:
  2215. */
  2216. static void __sched_fork(struct task_struct *p)
  2217. {
  2218. p->se.exec_start = 0;
  2219. p->se.sum_exec_runtime = 0;
  2220. p->se.prev_sum_exec_runtime = 0;
  2221. p->se.nr_migrations = 0;
  2222. p->se.vruntime = 0;
  2223. #ifdef CONFIG_SCHEDSTATS
  2224. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2225. #endif
  2226. INIT_LIST_HEAD(&p->rt.run_list);
  2227. p->se.on_rq = 0;
  2228. INIT_LIST_HEAD(&p->se.group_node);
  2229. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2230. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2231. #endif
  2232. }
  2233. /*
  2234. * fork()/clone()-time setup:
  2235. */
  2236. void sched_fork(struct task_struct *p, int clone_flags)
  2237. {
  2238. int cpu = get_cpu();
  2239. __sched_fork(p);
  2240. /*
  2241. * We mark the process as running here. This guarantees that
  2242. * nobody will actually run it, and a signal or other external
  2243. * event cannot wake it up and insert it on the runqueue either.
  2244. */
  2245. p->state = TASK_RUNNING;
  2246. /*
  2247. * Revert to default priority/policy on fork if requested.
  2248. */
  2249. if (unlikely(p->sched_reset_on_fork)) {
  2250. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2251. p->policy = SCHED_NORMAL;
  2252. p->normal_prio = p->static_prio;
  2253. }
  2254. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2255. p->static_prio = NICE_TO_PRIO(0);
  2256. p->normal_prio = p->static_prio;
  2257. set_load_weight(p);
  2258. }
  2259. /*
  2260. * We don't need the reset flag anymore after the fork. It has
  2261. * fulfilled its duty:
  2262. */
  2263. p->sched_reset_on_fork = 0;
  2264. }
  2265. /*
  2266. * Make sure we do not leak PI boosting priority to the child.
  2267. */
  2268. p->prio = current->normal_prio;
  2269. if (!rt_prio(p->prio))
  2270. p->sched_class = &fair_sched_class;
  2271. if (p->sched_class->task_fork)
  2272. p->sched_class->task_fork(p);
  2273. /*
  2274. * The child is not yet in the pid-hash so no cgroup attach races,
  2275. * and the cgroup is pinned to this child due to cgroup_fork()
  2276. * is ran before sched_fork().
  2277. *
  2278. * Silence PROVE_RCU.
  2279. */
  2280. rcu_read_lock();
  2281. set_task_cpu(p, cpu);
  2282. rcu_read_unlock();
  2283. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2284. if (likely(sched_info_on()))
  2285. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2286. #endif
  2287. #if defined(CONFIG_SMP)
  2288. p->on_cpu = 0;
  2289. #endif
  2290. #ifdef CONFIG_PREEMPT
  2291. /* Want to start with kernel preemption disabled. */
  2292. task_thread_info(p)->preempt_count = 1;
  2293. #endif
  2294. #ifdef CONFIG_SMP
  2295. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2296. #endif
  2297. put_cpu();
  2298. }
  2299. /*
  2300. * wake_up_new_task - wake up a newly created task for the first time.
  2301. *
  2302. * This function will do some initial scheduler statistics housekeeping
  2303. * that must be done for every newly created context, then puts the task
  2304. * on the runqueue and wakes it.
  2305. */
  2306. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2307. {
  2308. unsigned long flags;
  2309. struct rq *rq;
  2310. int cpu __maybe_unused = get_cpu();
  2311. #ifdef CONFIG_SMP
  2312. rq = task_rq_lock(p, &flags);
  2313. p->state = TASK_WAKING;
  2314. /*
  2315. * Fork balancing, do it here and not earlier because:
  2316. * - cpus_allowed can change in the fork path
  2317. * - any previously selected cpu might disappear through hotplug
  2318. *
  2319. * We set TASK_WAKING so that select_task_rq() can drop rq->lock
  2320. * without people poking at ->cpus_allowed.
  2321. */
  2322. cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
  2323. set_task_cpu(p, cpu);
  2324. p->state = TASK_RUNNING;
  2325. task_rq_unlock(rq, &flags);
  2326. #endif
  2327. rq = task_rq_lock(p, &flags);
  2328. activate_task(rq, p, 0);
  2329. trace_sched_wakeup_new(p, 1);
  2330. check_preempt_curr(rq, p, WF_FORK);
  2331. #ifdef CONFIG_SMP
  2332. if (p->sched_class->task_woken)
  2333. p->sched_class->task_woken(rq, p);
  2334. #endif
  2335. task_rq_unlock(rq, &flags);
  2336. put_cpu();
  2337. }
  2338. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2339. /**
  2340. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2341. * @notifier: notifier struct to register
  2342. */
  2343. void preempt_notifier_register(struct preempt_notifier *notifier)
  2344. {
  2345. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2346. }
  2347. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2348. /**
  2349. * preempt_notifier_unregister - no longer interested in preemption notifications
  2350. * @notifier: notifier struct to unregister
  2351. *
  2352. * This is safe to call from within a preemption notifier.
  2353. */
  2354. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2355. {
  2356. hlist_del(&notifier->link);
  2357. }
  2358. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2359. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2360. {
  2361. struct preempt_notifier *notifier;
  2362. struct hlist_node *node;
  2363. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2364. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2365. }
  2366. static void
  2367. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2368. struct task_struct *next)
  2369. {
  2370. struct preempt_notifier *notifier;
  2371. struct hlist_node *node;
  2372. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2373. notifier->ops->sched_out(notifier, next);
  2374. }
  2375. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2376. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2377. {
  2378. }
  2379. static void
  2380. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2381. struct task_struct *next)
  2382. {
  2383. }
  2384. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2385. /**
  2386. * prepare_task_switch - prepare to switch tasks
  2387. * @rq: the runqueue preparing to switch
  2388. * @prev: the current task that is being switched out
  2389. * @next: the task we are going to switch to.
  2390. *
  2391. * This is called with the rq lock held and interrupts off. It must
  2392. * be paired with a subsequent finish_task_switch after the context
  2393. * switch.
  2394. *
  2395. * prepare_task_switch sets up locking and calls architecture specific
  2396. * hooks.
  2397. */
  2398. static inline void
  2399. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2400. struct task_struct *next)
  2401. {
  2402. sched_info_switch(prev, next);
  2403. perf_event_task_sched_out(prev, next);
  2404. fire_sched_out_preempt_notifiers(prev, next);
  2405. prepare_lock_switch(rq, next);
  2406. prepare_arch_switch(next);
  2407. trace_sched_switch(prev, next);
  2408. }
  2409. /**
  2410. * finish_task_switch - clean up after a task-switch
  2411. * @rq: runqueue associated with task-switch
  2412. * @prev: the thread we just switched away from.
  2413. *
  2414. * finish_task_switch must be called after the context switch, paired
  2415. * with a prepare_task_switch call before the context switch.
  2416. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2417. * and do any other architecture-specific cleanup actions.
  2418. *
  2419. * Note that we may have delayed dropping an mm in context_switch(). If
  2420. * so, we finish that here outside of the runqueue lock. (Doing it
  2421. * with the lock held can cause deadlocks; see schedule() for
  2422. * details.)
  2423. */
  2424. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2425. __releases(rq->lock)
  2426. {
  2427. struct mm_struct *mm = rq->prev_mm;
  2428. long prev_state;
  2429. rq->prev_mm = NULL;
  2430. /*
  2431. * A task struct has one reference for the use as "current".
  2432. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2433. * schedule one last time. The schedule call will never return, and
  2434. * the scheduled task must drop that reference.
  2435. * The test for TASK_DEAD must occur while the runqueue locks are
  2436. * still held, otherwise prev could be scheduled on another cpu, die
  2437. * there before we look at prev->state, and then the reference would
  2438. * be dropped twice.
  2439. * Manfred Spraul <manfred@colorfullife.com>
  2440. */
  2441. prev_state = prev->state;
  2442. finish_arch_switch(prev);
  2443. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2444. local_irq_disable();
  2445. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2446. perf_event_task_sched_in(current);
  2447. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2448. local_irq_enable();
  2449. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2450. finish_lock_switch(rq, prev);
  2451. fire_sched_in_preempt_notifiers(current);
  2452. if (mm)
  2453. mmdrop(mm);
  2454. if (unlikely(prev_state == TASK_DEAD)) {
  2455. /*
  2456. * Remove function-return probe instances associated with this
  2457. * task and put them back on the free list.
  2458. */
  2459. kprobe_flush_task(prev);
  2460. put_task_struct(prev);
  2461. }
  2462. }
  2463. #ifdef CONFIG_SMP
  2464. /* assumes rq->lock is held */
  2465. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2466. {
  2467. if (prev->sched_class->pre_schedule)
  2468. prev->sched_class->pre_schedule(rq, prev);
  2469. }
  2470. /* rq->lock is NOT held, but preemption is disabled */
  2471. static inline void post_schedule(struct rq *rq)
  2472. {
  2473. if (rq->post_schedule) {
  2474. unsigned long flags;
  2475. raw_spin_lock_irqsave(&rq->lock, flags);
  2476. if (rq->curr->sched_class->post_schedule)
  2477. rq->curr->sched_class->post_schedule(rq);
  2478. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2479. rq->post_schedule = 0;
  2480. }
  2481. }
  2482. #else
  2483. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2484. {
  2485. }
  2486. static inline void post_schedule(struct rq *rq)
  2487. {
  2488. }
  2489. #endif
  2490. /**
  2491. * schedule_tail - first thing a freshly forked thread must call.
  2492. * @prev: the thread we just switched away from.
  2493. */
  2494. asmlinkage void schedule_tail(struct task_struct *prev)
  2495. __releases(rq->lock)
  2496. {
  2497. struct rq *rq = this_rq();
  2498. finish_task_switch(rq, prev);
  2499. /*
  2500. * FIXME: do we need to worry about rq being invalidated by the
  2501. * task_switch?
  2502. */
  2503. post_schedule(rq);
  2504. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2505. /* In this case, finish_task_switch does not reenable preemption */
  2506. preempt_enable();
  2507. #endif
  2508. if (current->set_child_tid)
  2509. put_user(task_pid_vnr(current), current->set_child_tid);
  2510. }
  2511. /*
  2512. * context_switch - switch to the new MM and the new
  2513. * thread's register state.
  2514. */
  2515. static inline void
  2516. context_switch(struct rq *rq, struct task_struct *prev,
  2517. struct task_struct *next)
  2518. {
  2519. struct mm_struct *mm, *oldmm;
  2520. prepare_task_switch(rq, prev, next);
  2521. mm = next->mm;
  2522. oldmm = prev->active_mm;
  2523. /*
  2524. * For paravirt, this is coupled with an exit in switch_to to
  2525. * combine the page table reload and the switch backend into
  2526. * one hypercall.
  2527. */
  2528. arch_start_context_switch(prev);
  2529. if (!mm) {
  2530. next->active_mm = oldmm;
  2531. atomic_inc(&oldmm->mm_count);
  2532. enter_lazy_tlb(oldmm, next);
  2533. } else
  2534. switch_mm(oldmm, mm, next);
  2535. if (!prev->mm) {
  2536. prev->active_mm = NULL;
  2537. rq->prev_mm = oldmm;
  2538. }
  2539. /*
  2540. * Since the runqueue lock will be released by the next
  2541. * task (which is an invalid locking op but in the case
  2542. * of the scheduler it's an obvious special-case), so we
  2543. * do an early lockdep release here:
  2544. */
  2545. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2546. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2547. #endif
  2548. /* Here we just switch the register state and the stack. */
  2549. switch_to(prev, next, prev);
  2550. barrier();
  2551. /*
  2552. * this_rq must be evaluated again because prev may have moved
  2553. * CPUs since it called schedule(), thus the 'rq' on its stack
  2554. * frame will be invalid.
  2555. */
  2556. finish_task_switch(this_rq(), prev);
  2557. }
  2558. /*
  2559. * nr_running, nr_uninterruptible and nr_context_switches:
  2560. *
  2561. * externally visible scheduler statistics: current number of runnable
  2562. * threads, current number of uninterruptible-sleeping threads, total
  2563. * number of context switches performed since bootup.
  2564. */
  2565. unsigned long nr_running(void)
  2566. {
  2567. unsigned long i, sum = 0;
  2568. for_each_online_cpu(i)
  2569. sum += cpu_rq(i)->nr_running;
  2570. return sum;
  2571. }
  2572. unsigned long nr_uninterruptible(void)
  2573. {
  2574. unsigned long i, sum = 0;
  2575. for_each_possible_cpu(i)
  2576. sum += cpu_rq(i)->nr_uninterruptible;
  2577. /*
  2578. * Since we read the counters lockless, it might be slightly
  2579. * inaccurate. Do not allow it to go below zero though:
  2580. */
  2581. if (unlikely((long)sum < 0))
  2582. sum = 0;
  2583. return sum;
  2584. }
  2585. unsigned long long nr_context_switches(void)
  2586. {
  2587. int i;
  2588. unsigned long long sum = 0;
  2589. for_each_possible_cpu(i)
  2590. sum += cpu_rq(i)->nr_switches;
  2591. return sum;
  2592. }
  2593. unsigned long nr_iowait(void)
  2594. {
  2595. unsigned long i, sum = 0;
  2596. for_each_possible_cpu(i)
  2597. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2598. return sum;
  2599. }
  2600. unsigned long nr_iowait_cpu(int cpu)
  2601. {
  2602. struct rq *this = cpu_rq(cpu);
  2603. return atomic_read(&this->nr_iowait);
  2604. }
  2605. unsigned long this_cpu_load(void)
  2606. {
  2607. struct rq *this = this_rq();
  2608. return this->cpu_load[0];
  2609. }
  2610. /* Variables and functions for calc_load */
  2611. static atomic_long_t calc_load_tasks;
  2612. static unsigned long calc_load_update;
  2613. unsigned long avenrun[3];
  2614. EXPORT_SYMBOL(avenrun);
  2615. static long calc_load_fold_active(struct rq *this_rq)
  2616. {
  2617. long nr_active, delta = 0;
  2618. nr_active = this_rq->nr_running;
  2619. nr_active += (long) this_rq->nr_uninterruptible;
  2620. if (nr_active != this_rq->calc_load_active) {
  2621. delta = nr_active - this_rq->calc_load_active;
  2622. this_rq->calc_load_active = nr_active;
  2623. }
  2624. return delta;
  2625. }
  2626. static unsigned long
  2627. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2628. {
  2629. load *= exp;
  2630. load += active * (FIXED_1 - exp);
  2631. load += 1UL << (FSHIFT - 1);
  2632. return load >> FSHIFT;
  2633. }
  2634. #ifdef CONFIG_NO_HZ
  2635. /*
  2636. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2637. *
  2638. * When making the ILB scale, we should try to pull this in as well.
  2639. */
  2640. static atomic_long_t calc_load_tasks_idle;
  2641. static void calc_load_account_idle(struct rq *this_rq)
  2642. {
  2643. long delta;
  2644. delta = calc_load_fold_active(this_rq);
  2645. if (delta)
  2646. atomic_long_add(delta, &calc_load_tasks_idle);
  2647. }
  2648. static long calc_load_fold_idle(void)
  2649. {
  2650. long delta = 0;
  2651. /*
  2652. * Its got a race, we don't care...
  2653. */
  2654. if (atomic_long_read(&calc_load_tasks_idle))
  2655. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2656. return delta;
  2657. }
  2658. /**
  2659. * fixed_power_int - compute: x^n, in O(log n) time
  2660. *
  2661. * @x: base of the power
  2662. * @frac_bits: fractional bits of @x
  2663. * @n: power to raise @x to.
  2664. *
  2665. * By exploiting the relation between the definition of the natural power
  2666. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  2667. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  2668. * (where: n_i \elem {0, 1}, the binary vector representing n),
  2669. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  2670. * of course trivially computable in O(log_2 n), the length of our binary
  2671. * vector.
  2672. */
  2673. static unsigned long
  2674. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  2675. {
  2676. unsigned long result = 1UL << frac_bits;
  2677. if (n) for (;;) {
  2678. if (n & 1) {
  2679. result *= x;
  2680. result += 1UL << (frac_bits - 1);
  2681. result >>= frac_bits;
  2682. }
  2683. n >>= 1;
  2684. if (!n)
  2685. break;
  2686. x *= x;
  2687. x += 1UL << (frac_bits - 1);
  2688. x >>= frac_bits;
  2689. }
  2690. return result;
  2691. }
  2692. /*
  2693. * a1 = a0 * e + a * (1 - e)
  2694. *
  2695. * a2 = a1 * e + a * (1 - e)
  2696. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  2697. * = a0 * e^2 + a * (1 - e) * (1 + e)
  2698. *
  2699. * a3 = a2 * e + a * (1 - e)
  2700. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  2701. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  2702. *
  2703. * ...
  2704. *
  2705. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  2706. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  2707. * = a0 * e^n + a * (1 - e^n)
  2708. *
  2709. * [1] application of the geometric series:
  2710. *
  2711. * n 1 - x^(n+1)
  2712. * S_n := \Sum x^i = -------------
  2713. * i=0 1 - x
  2714. */
  2715. static unsigned long
  2716. calc_load_n(unsigned long load, unsigned long exp,
  2717. unsigned long active, unsigned int n)
  2718. {
  2719. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  2720. }
  2721. /*
  2722. * NO_HZ can leave us missing all per-cpu ticks calling
  2723. * calc_load_account_active(), but since an idle CPU folds its delta into
  2724. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  2725. * in the pending idle delta if our idle period crossed a load cycle boundary.
  2726. *
  2727. * Once we've updated the global active value, we need to apply the exponential
  2728. * weights adjusted to the number of cycles missed.
  2729. */
  2730. static void calc_global_nohz(unsigned long ticks)
  2731. {
  2732. long delta, active, n;
  2733. if (time_before(jiffies, calc_load_update))
  2734. return;
  2735. /*
  2736. * If we crossed a calc_load_update boundary, make sure to fold
  2737. * any pending idle changes, the respective CPUs might have
  2738. * missed the tick driven calc_load_account_active() update
  2739. * due to NO_HZ.
  2740. */
  2741. delta = calc_load_fold_idle();
  2742. if (delta)
  2743. atomic_long_add(delta, &calc_load_tasks);
  2744. /*
  2745. * If we were idle for multiple load cycles, apply them.
  2746. */
  2747. if (ticks >= LOAD_FREQ) {
  2748. n = ticks / LOAD_FREQ;
  2749. active = atomic_long_read(&calc_load_tasks);
  2750. active = active > 0 ? active * FIXED_1 : 0;
  2751. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2752. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2753. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2754. calc_load_update += n * LOAD_FREQ;
  2755. }
  2756. /*
  2757. * Its possible the remainder of the above division also crosses
  2758. * a LOAD_FREQ period, the regular check in calc_global_load()
  2759. * which comes after this will take care of that.
  2760. *
  2761. * Consider us being 11 ticks before a cycle completion, and us
  2762. * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
  2763. * age us 4 cycles, and the test in calc_global_load() will
  2764. * pick up the final one.
  2765. */
  2766. }
  2767. #else
  2768. static void calc_load_account_idle(struct rq *this_rq)
  2769. {
  2770. }
  2771. static inline long calc_load_fold_idle(void)
  2772. {
  2773. return 0;
  2774. }
  2775. static void calc_global_nohz(unsigned long ticks)
  2776. {
  2777. }
  2778. #endif
  2779. /**
  2780. * get_avenrun - get the load average array
  2781. * @loads: pointer to dest load array
  2782. * @offset: offset to add
  2783. * @shift: shift count to shift the result left
  2784. *
  2785. * These values are estimates at best, so no need for locking.
  2786. */
  2787. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2788. {
  2789. loads[0] = (avenrun[0] + offset) << shift;
  2790. loads[1] = (avenrun[1] + offset) << shift;
  2791. loads[2] = (avenrun[2] + offset) << shift;
  2792. }
  2793. /*
  2794. * calc_load - update the avenrun load estimates 10 ticks after the
  2795. * CPUs have updated calc_load_tasks.
  2796. */
  2797. void calc_global_load(unsigned long ticks)
  2798. {
  2799. long active;
  2800. calc_global_nohz(ticks);
  2801. if (time_before(jiffies, calc_load_update + 10))
  2802. return;
  2803. active = atomic_long_read(&calc_load_tasks);
  2804. active = active > 0 ? active * FIXED_1 : 0;
  2805. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2806. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2807. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2808. calc_load_update += LOAD_FREQ;
  2809. }
  2810. /*
  2811. * Called from update_cpu_load() to periodically update this CPU's
  2812. * active count.
  2813. */
  2814. static void calc_load_account_active(struct rq *this_rq)
  2815. {
  2816. long delta;
  2817. if (time_before(jiffies, this_rq->calc_load_update))
  2818. return;
  2819. delta = calc_load_fold_active(this_rq);
  2820. delta += calc_load_fold_idle();
  2821. if (delta)
  2822. atomic_long_add(delta, &calc_load_tasks);
  2823. this_rq->calc_load_update += LOAD_FREQ;
  2824. }
  2825. /*
  2826. * The exact cpuload at various idx values, calculated at every tick would be
  2827. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2828. *
  2829. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2830. * on nth tick when cpu may be busy, then we have:
  2831. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2832. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2833. *
  2834. * decay_load_missed() below does efficient calculation of
  2835. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2836. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2837. *
  2838. * The calculation is approximated on a 128 point scale.
  2839. * degrade_zero_ticks is the number of ticks after which load at any
  2840. * particular idx is approximated to be zero.
  2841. * degrade_factor is a precomputed table, a row for each load idx.
  2842. * Each column corresponds to degradation factor for a power of two ticks,
  2843. * based on 128 point scale.
  2844. * Example:
  2845. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2846. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2847. *
  2848. * With this power of 2 load factors, we can degrade the load n times
  2849. * by looking at 1 bits in n and doing as many mult/shift instead of
  2850. * n mult/shifts needed by the exact degradation.
  2851. */
  2852. #define DEGRADE_SHIFT 7
  2853. static const unsigned char
  2854. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2855. static const unsigned char
  2856. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2857. {0, 0, 0, 0, 0, 0, 0, 0},
  2858. {64, 32, 8, 0, 0, 0, 0, 0},
  2859. {96, 72, 40, 12, 1, 0, 0},
  2860. {112, 98, 75, 43, 15, 1, 0},
  2861. {120, 112, 98, 76, 45, 16, 2} };
  2862. /*
  2863. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2864. * would be when CPU is idle and so we just decay the old load without
  2865. * adding any new load.
  2866. */
  2867. static unsigned long
  2868. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2869. {
  2870. int j = 0;
  2871. if (!missed_updates)
  2872. return load;
  2873. if (missed_updates >= degrade_zero_ticks[idx])
  2874. return 0;
  2875. if (idx == 1)
  2876. return load >> missed_updates;
  2877. while (missed_updates) {
  2878. if (missed_updates % 2)
  2879. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2880. missed_updates >>= 1;
  2881. j++;
  2882. }
  2883. return load;
  2884. }
  2885. /*
  2886. * Update rq->cpu_load[] statistics. This function is usually called every
  2887. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2888. * every tick. We fix it up based on jiffies.
  2889. */
  2890. static void update_cpu_load(struct rq *this_rq)
  2891. {
  2892. unsigned long this_load = this_rq->load.weight;
  2893. unsigned long curr_jiffies = jiffies;
  2894. unsigned long pending_updates;
  2895. int i, scale;
  2896. this_rq->nr_load_updates++;
  2897. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2898. if (curr_jiffies == this_rq->last_load_update_tick)
  2899. return;
  2900. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2901. this_rq->last_load_update_tick = curr_jiffies;
  2902. /* Update our load: */
  2903. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2904. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2905. unsigned long old_load, new_load;
  2906. /* scale is effectively 1 << i now, and >> i divides by scale */
  2907. old_load = this_rq->cpu_load[i];
  2908. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2909. new_load = this_load;
  2910. /*
  2911. * Round up the averaging division if load is increasing. This
  2912. * prevents us from getting stuck on 9 if the load is 10, for
  2913. * example.
  2914. */
  2915. if (new_load > old_load)
  2916. new_load += scale - 1;
  2917. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2918. }
  2919. sched_avg_update(this_rq);
  2920. }
  2921. static void update_cpu_load_active(struct rq *this_rq)
  2922. {
  2923. update_cpu_load(this_rq);
  2924. calc_load_account_active(this_rq);
  2925. }
  2926. #ifdef CONFIG_SMP
  2927. /*
  2928. * sched_exec - execve() is a valuable balancing opportunity, because at
  2929. * this point the task has the smallest effective memory and cache footprint.
  2930. */
  2931. void sched_exec(void)
  2932. {
  2933. struct task_struct *p = current;
  2934. unsigned long flags;
  2935. struct rq *rq;
  2936. int dest_cpu;
  2937. rq = task_rq_lock(p, &flags);
  2938. dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
  2939. if (dest_cpu == smp_processor_id())
  2940. goto unlock;
  2941. /*
  2942. * select_task_rq() can race against ->cpus_allowed
  2943. */
  2944. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
  2945. likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
  2946. struct migration_arg arg = { p, dest_cpu };
  2947. task_rq_unlock(rq, &flags);
  2948. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  2949. return;
  2950. }
  2951. unlock:
  2952. task_rq_unlock(rq, &flags);
  2953. }
  2954. #endif
  2955. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2956. EXPORT_PER_CPU_SYMBOL(kstat);
  2957. /*
  2958. * Return any ns on the sched_clock that have not yet been accounted in
  2959. * @p in case that task is currently running.
  2960. *
  2961. * Called with task_rq_lock() held on @rq.
  2962. */
  2963. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2964. {
  2965. u64 ns = 0;
  2966. if (task_current(rq, p)) {
  2967. update_rq_clock(rq);
  2968. ns = rq->clock_task - p->se.exec_start;
  2969. if ((s64)ns < 0)
  2970. ns = 0;
  2971. }
  2972. return ns;
  2973. }
  2974. unsigned long long task_delta_exec(struct task_struct *p)
  2975. {
  2976. unsigned long flags;
  2977. struct rq *rq;
  2978. u64 ns = 0;
  2979. rq = task_rq_lock(p, &flags);
  2980. ns = do_task_delta_exec(p, rq);
  2981. task_rq_unlock(rq, &flags);
  2982. return ns;
  2983. }
  2984. /*
  2985. * Return accounted runtime for the task.
  2986. * In case the task is currently running, return the runtime plus current's
  2987. * pending runtime that have not been accounted yet.
  2988. */
  2989. unsigned long long task_sched_runtime(struct task_struct *p)
  2990. {
  2991. unsigned long flags;
  2992. struct rq *rq;
  2993. u64 ns = 0;
  2994. rq = task_rq_lock(p, &flags);
  2995. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2996. task_rq_unlock(rq, &flags);
  2997. return ns;
  2998. }
  2999. /*
  3000. * Return sum_exec_runtime for the thread group.
  3001. * In case the task is currently running, return the sum plus current's
  3002. * pending runtime that have not been accounted yet.
  3003. *
  3004. * Note that the thread group might have other running tasks as well,
  3005. * so the return value not includes other pending runtime that other
  3006. * running tasks might have.
  3007. */
  3008. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  3009. {
  3010. struct task_cputime totals;
  3011. unsigned long flags;
  3012. struct rq *rq;
  3013. u64 ns;
  3014. rq = task_rq_lock(p, &flags);
  3015. thread_group_cputime(p, &totals);
  3016. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  3017. task_rq_unlock(rq, &flags);
  3018. return ns;
  3019. }
  3020. /*
  3021. * Account user cpu time to a process.
  3022. * @p: the process that the cpu time gets accounted to
  3023. * @cputime: the cpu time spent in user space since the last update
  3024. * @cputime_scaled: cputime scaled by cpu frequency
  3025. */
  3026. void account_user_time(struct task_struct *p, cputime_t cputime,
  3027. cputime_t cputime_scaled)
  3028. {
  3029. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3030. cputime64_t tmp;
  3031. /* Add user time to process. */
  3032. p->utime = cputime_add(p->utime, cputime);
  3033. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3034. account_group_user_time(p, cputime);
  3035. /* Add user time to cpustat. */
  3036. tmp = cputime_to_cputime64(cputime);
  3037. if (TASK_NICE(p) > 0)
  3038. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3039. else
  3040. cpustat->user = cputime64_add(cpustat->user, tmp);
  3041. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  3042. /* Account for user time used */
  3043. acct_update_integrals(p);
  3044. }
  3045. /*
  3046. * Account guest cpu time to a process.
  3047. * @p: the process that the cpu time gets accounted to
  3048. * @cputime: the cpu time spent in virtual machine since the last update
  3049. * @cputime_scaled: cputime scaled by cpu frequency
  3050. */
  3051. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3052. cputime_t cputime_scaled)
  3053. {
  3054. cputime64_t tmp;
  3055. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3056. tmp = cputime_to_cputime64(cputime);
  3057. /* Add guest time to process. */
  3058. p->utime = cputime_add(p->utime, cputime);
  3059. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3060. account_group_user_time(p, cputime);
  3061. p->gtime = cputime_add(p->gtime, cputime);
  3062. /* Add guest time to cpustat. */
  3063. if (TASK_NICE(p) > 0) {
  3064. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3065. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  3066. } else {
  3067. cpustat->user = cputime64_add(cpustat->user, tmp);
  3068. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3069. }
  3070. }
  3071. /*
  3072. * Account system cpu time to a process and desired cpustat field
  3073. * @p: the process that the cpu time gets accounted to
  3074. * @cputime: the cpu time spent in kernel space since the last update
  3075. * @cputime_scaled: cputime scaled by cpu frequency
  3076. * @target_cputime64: pointer to cpustat field that has to be updated
  3077. */
  3078. static inline
  3079. void __account_system_time(struct task_struct *p, cputime_t cputime,
  3080. cputime_t cputime_scaled, cputime64_t *target_cputime64)
  3081. {
  3082. cputime64_t tmp = cputime_to_cputime64(cputime);
  3083. /* Add system time to process. */
  3084. p->stime = cputime_add(p->stime, cputime);
  3085. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3086. account_group_system_time(p, cputime);
  3087. /* Add system time to cpustat. */
  3088. *target_cputime64 = cputime64_add(*target_cputime64, tmp);
  3089. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  3090. /* Account for system time used */
  3091. acct_update_integrals(p);
  3092. }
  3093. /*
  3094. * Account system cpu time to a process.
  3095. * @p: the process that the cpu time gets accounted to
  3096. * @hardirq_offset: the offset to subtract from hardirq_count()
  3097. * @cputime: the cpu time spent in kernel space since the last update
  3098. * @cputime_scaled: cputime scaled by cpu frequency
  3099. */
  3100. void account_system_time(struct task_struct *p, int hardirq_offset,
  3101. cputime_t cputime, cputime_t cputime_scaled)
  3102. {
  3103. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3104. cputime64_t *target_cputime64;
  3105. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3106. account_guest_time(p, cputime, cputime_scaled);
  3107. return;
  3108. }
  3109. if (hardirq_count() - hardirq_offset)
  3110. target_cputime64 = &cpustat->irq;
  3111. else if (in_serving_softirq())
  3112. target_cputime64 = &cpustat->softirq;
  3113. else
  3114. target_cputime64 = &cpustat->system;
  3115. __account_system_time(p, cputime, cputime_scaled, target_cputime64);
  3116. }
  3117. /*
  3118. * Account for involuntary wait time.
  3119. * @cputime: the cpu time spent in involuntary wait
  3120. */
  3121. void account_steal_time(cputime_t cputime)
  3122. {
  3123. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3124. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3125. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3126. }
  3127. /*
  3128. * Account for idle time.
  3129. * @cputime: the cpu time spent in idle wait
  3130. */
  3131. void account_idle_time(cputime_t cputime)
  3132. {
  3133. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3134. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3135. struct rq *rq = this_rq();
  3136. if (atomic_read(&rq->nr_iowait) > 0)
  3137. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3138. else
  3139. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3140. }
  3141. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3142. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  3143. /*
  3144. * Account a tick to a process and cpustat
  3145. * @p: the process that the cpu time gets accounted to
  3146. * @user_tick: is the tick from userspace
  3147. * @rq: the pointer to rq
  3148. *
  3149. * Tick demultiplexing follows the order
  3150. * - pending hardirq update
  3151. * - pending softirq update
  3152. * - user_time
  3153. * - idle_time
  3154. * - system time
  3155. * - check for guest_time
  3156. * - else account as system_time
  3157. *
  3158. * Check for hardirq is done both for system and user time as there is
  3159. * no timer going off while we are on hardirq and hence we may never get an
  3160. * opportunity to update it solely in system time.
  3161. * p->stime and friends are only updated on system time and not on irq
  3162. * softirq as those do not count in task exec_runtime any more.
  3163. */
  3164. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3165. struct rq *rq)
  3166. {
  3167. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3168. cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
  3169. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3170. if (irqtime_account_hi_update()) {
  3171. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3172. } else if (irqtime_account_si_update()) {
  3173. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3174. } else if (this_cpu_ksoftirqd() == p) {
  3175. /*
  3176. * ksoftirqd time do not get accounted in cpu_softirq_time.
  3177. * So, we have to handle it separately here.
  3178. * Also, p->stime needs to be updated for ksoftirqd.
  3179. */
  3180. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3181. &cpustat->softirq);
  3182. } else if (user_tick) {
  3183. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3184. } else if (p == rq->idle) {
  3185. account_idle_time(cputime_one_jiffy);
  3186. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  3187. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3188. } else {
  3189. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3190. &cpustat->system);
  3191. }
  3192. }
  3193. static void irqtime_account_idle_ticks(int ticks)
  3194. {
  3195. int i;
  3196. struct rq *rq = this_rq();
  3197. for (i = 0; i < ticks; i++)
  3198. irqtime_account_process_tick(current, 0, rq);
  3199. }
  3200. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  3201. static void irqtime_account_idle_ticks(int ticks) {}
  3202. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3203. struct rq *rq) {}
  3204. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  3205. /*
  3206. * Account a single tick of cpu time.
  3207. * @p: the process that the cpu time gets accounted to
  3208. * @user_tick: indicates if the tick is a user or a system tick
  3209. */
  3210. void account_process_tick(struct task_struct *p, int user_tick)
  3211. {
  3212. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3213. struct rq *rq = this_rq();
  3214. if (sched_clock_irqtime) {
  3215. irqtime_account_process_tick(p, user_tick, rq);
  3216. return;
  3217. }
  3218. if (user_tick)
  3219. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3220. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  3221. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  3222. one_jiffy_scaled);
  3223. else
  3224. account_idle_time(cputime_one_jiffy);
  3225. }
  3226. /*
  3227. * Account multiple ticks of steal time.
  3228. * @p: the process from which the cpu time has been stolen
  3229. * @ticks: number of stolen ticks
  3230. */
  3231. void account_steal_ticks(unsigned long ticks)
  3232. {
  3233. account_steal_time(jiffies_to_cputime(ticks));
  3234. }
  3235. /*
  3236. * Account multiple ticks of idle time.
  3237. * @ticks: number of stolen ticks
  3238. */
  3239. void account_idle_ticks(unsigned long ticks)
  3240. {
  3241. if (sched_clock_irqtime) {
  3242. irqtime_account_idle_ticks(ticks);
  3243. return;
  3244. }
  3245. account_idle_time(jiffies_to_cputime(ticks));
  3246. }
  3247. #endif
  3248. /*
  3249. * Use precise platform statistics if available:
  3250. */
  3251. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3252. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3253. {
  3254. *ut = p->utime;
  3255. *st = p->stime;
  3256. }
  3257. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3258. {
  3259. struct task_cputime cputime;
  3260. thread_group_cputime(p, &cputime);
  3261. *ut = cputime.utime;
  3262. *st = cputime.stime;
  3263. }
  3264. #else
  3265. #ifndef nsecs_to_cputime
  3266. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  3267. #endif
  3268. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3269. {
  3270. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  3271. /*
  3272. * Use CFS's precise accounting:
  3273. */
  3274. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  3275. if (total) {
  3276. u64 temp = rtime;
  3277. temp *= utime;
  3278. do_div(temp, total);
  3279. utime = (cputime_t)temp;
  3280. } else
  3281. utime = rtime;
  3282. /*
  3283. * Compare with previous values, to keep monotonicity:
  3284. */
  3285. p->prev_utime = max(p->prev_utime, utime);
  3286. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  3287. *ut = p->prev_utime;
  3288. *st = p->prev_stime;
  3289. }
  3290. /*
  3291. * Must be called with siglock held.
  3292. */
  3293. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3294. {
  3295. struct signal_struct *sig = p->signal;
  3296. struct task_cputime cputime;
  3297. cputime_t rtime, utime, total;
  3298. thread_group_cputime(p, &cputime);
  3299. total = cputime_add(cputime.utime, cputime.stime);
  3300. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  3301. if (total) {
  3302. u64 temp = rtime;
  3303. temp *= cputime.utime;
  3304. do_div(temp, total);
  3305. utime = (cputime_t)temp;
  3306. } else
  3307. utime = rtime;
  3308. sig->prev_utime = max(sig->prev_utime, utime);
  3309. sig->prev_stime = max(sig->prev_stime,
  3310. cputime_sub(rtime, sig->prev_utime));
  3311. *ut = sig->prev_utime;
  3312. *st = sig->prev_stime;
  3313. }
  3314. #endif
  3315. /*
  3316. * This function gets called by the timer code, with HZ frequency.
  3317. * We call it with interrupts disabled.
  3318. *
  3319. * It also gets called by the fork code, when changing the parent's
  3320. * timeslices.
  3321. */
  3322. void scheduler_tick(void)
  3323. {
  3324. int cpu = smp_processor_id();
  3325. struct rq *rq = cpu_rq(cpu);
  3326. struct task_struct *curr = rq->curr;
  3327. sched_clock_tick();
  3328. raw_spin_lock(&rq->lock);
  3329. update_rq_clock(rq);
  3330. update_cpu_load_active(rq);
  3331. curr->sched_class->task_tick(rq, curr, 0);
  3332. raw_spin_unlock(&rq->lock);
  3333. perf_event_task_tick();
  3334. #ifdef CONFIG_SMP
  3335. rq->idle_at_tick = idle_cpu(cpu);
  3336. trigger_load_balance(rq, cpu);
  3337. #endif
  3338. }
  3339. notrace unsigned long get_parent_ip(unsigned long addr)
  3340. {
  3341. if (in_lock_functions(addr)) {
  3342. addr = CALLER_ADDR2;
  3343. if (in_lock_functions(addr))
  3344. addr = CALLER_ADDR3;
  3345. }
  3346. return addr;
  3347. }
  3348. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3349. defined(CONFIG_PREEMPT_TRACER))
  3350. void __kprobes add_preempt_count(int val)
  3351. {
  3352. #ifdef CONFIG_DEBUG_PREEMPT
  3353. /*
  3354. * Underflow?
  3355. */
  3356. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3357. return;
  3358. #endif
  3359. preempt_count() += val;
  3360. #ifdef CONFIG_DEBUG_PREEMPT
  3361. /*
  3362. * Spinlock count overflowing soon?
  3363. */
  3364. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3365. PREEMPT_MASK - 10);
  3366. #endif
  3367. if (preempt_count() == val)
  3368. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3369. }
  3370. EXPORT_SYMBOL(add_preempt_count);
  3371. void __kprobes sub_preempt_count(int val)
  3372. {
  3373. #ifdef CONFIG_DEBUG_PREEMPT
  3374. /*
  3375. * Underflow?
  3376. */
  3377. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3378. return;
  3379. /*
  3380. * Is the spinlock portion underflowing?
  3381. */
  3382. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3383. !(preempt_count() & PREEMPT_MASK)))
  3384. return;
  3385. #endif
  3386. if (preempt_count() == val)
  3387. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3388. preempt_count() -= val;
  3389. }
  3390. EXPORT_SYMBOL(sub_preempt_count);
  3391. #endif
  3392. /*
  3393. * Print scheduling while atomic bug:
  3394. */
  3395. static noinline void __schedule_bug(struct task_struct *prev)
  3396. {
  3397. struct pt_regs *regs = get_irq_regs();
  3398. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3399. prev->comm, prev->pid, preempt_count());
  3400. debug_show_held_locks(prev);
  3401. print_modules();
  3402. if (irqs_disabled())
  3403. print_irqtrace_events(prev);
  3404. if (regs)
  3405. show_regs(regs);
  3406. else
  3407. dump_stack();
  3408. }
  3409. /*
  3410. * Various schedule()-time debugging checks and statistics:
  3411. */
  3412. static inline void schedule_debug(struct task_struct *prev)
  3413. {
  3414. /*
  3415. * Test if we are atomic. Since do_exit() needs to call into
  3416. * schedule() atomically, we ignore that path for now.
  3417. * Otherwise, whine if we are scheduling when we should not be.
  3418. */
  3419. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3420. __schedule_bug(prev);
  3421. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3422. schedstat_inc(this_rq(), sched_count);
  3423. #ifdef CONFIG_SCHEDSTATS
  3424. if (unlikely(prev->lock_depth >= 0)) {
  3425. schedstat_inc(this_rq(), rq_sched_info.bkl_count);
  3426. schedstat_inc(prev, sched_info.bkl_count);
  3427. }
  3428. #endif
  3429. }
  3430. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3431. {
  3432. if (prev->se.on_rq)
  3433. update_rq_clock(rq);
  3434. prev->sched_class->put_prev_task(rq, prev);
  3435. }
  3436. /*
  3437. * Pick up the highest-prio task:
  3438. */
  3439. static inline struct task_struct *
  3440. pick_next_task(struct rq *rq)
  3441. {
  3442. const struct sched_class *class;
  3443. struct task_struct *p;
  3444. /*
  3445. * Optimization: we know that if all tasks are in
  3446. * the fair class we can call that function directly:
  3447. */
  3448. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3449. p = fair_sched_class.pick_next_task(rq);
  3450. if (likely(p))
  3451. return p;
  3452. }
  3453. for_each_class(class) {
  3454. p = class->pick_next_task(rq);
  3455. if (p)
  3456. return p;
  3457. }
  3458. BUG(); /* the idle class will always have a runnable task */
  3459. }
  3460. /*
  3461. * schedule() is the main scheduler function.
  3462. */
  3463. asmlinkage void __sched schedule(void)
  3464. {
  3465. struct task_struct *prev, *next;
  3466. unsigned long *switch_count;
  3467. struct rq *rq;
  3468. int cpu;
  3469. need_resched:
  3470. preempt_disable();
  3471. cpu = smp_processor_id();
  3472. rq = cpu_rq(cpu);
  3473. rcu_note_context_switch(cpu);
  3474. prev = rq->curr;
  3475. schedule_debug(prev);
  3476. if (sched_feat(HRTICK))
  3477. hrtick_clear(rq);
  3478. raw_spin_lock_irq(&rq->lock);
  3479. switch_count = &prev->nivcsw;
  3480. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3481. if (unlikely(signal_pending_state(prev->state, prev))) {
  3482. prev->state = TASK_RUNNING;
  3483. } else {
  3484. /*
  3485. * If a worker is going to sleep, notify and
  3486. * ask workqueue whether it wants to wake up a
  3487. * task to maintain concurrency. If so, wake
  3488. * up the task.
  3489. */
  3490. if (prev->flags & PF_WQ_WORKER) {
  3491. struct task_struct *to_wakeup;
  3492. to_wakeup = wq_worker_sleeping(prev, cpu);
  3493. if (to_wakeup)
  3494. try_to_wake_up_local(to_wakeup);
  3495. }
  3496. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3497. /*
  3498. * If we are going to sleep and we have plugged IO queued, make
  3499. * sure to submit it to avoid deadlocks.
  3500. */
  3501. if (blk_needs_flush_plug(prev)) {
  3502. raw_spin_unlock(&rq->lock);
  3503. blk_flush_plug(prev);
  3504. raw_spin_lock(&rq->lock);
  3505. }
  3506. }
  3507. switch_count = &prev->nvcsw;
  3508. }
  3509. pre_schedule(rq, prev);
  3510. if (unlikely(!rq->nr_running))
  3511. idle_balance(cpu, rq);
  3512. put_prev_task(rq, prev);
  3513. next = pick_next_task(rq);
  3514. clear_tsk_need_resched(prev);
  3515. rq->skip_clock_update = 0;
  3516. if (likely(prev != next)) {
  3517. rq->nr_switches++;
  3518. rq->curr = next;
  3519. ++*switch_count;
  3520. context_switch(rq, prev, next); /* unlocks the rq */
  3521. /*
  3522. * The context switch have flipped the stack from under us
  3523. * and restored the local variables which were saved when
  3524. * this task called schedule() in the past. prev == current
  3525. * is still correct, but it can be moved to another cpu/rq.
  3526. */
  3527. cpu = smp_processor_id();
  3528. rq = cpu_rq(cpu);
  3529. } else
  3530. raw_spin_unlock_irq(&rq->lock);
  3531. post_schedule(rq);
  3532. preempt_enable_no_resched();
  3533. if (need_resched())
  3534. goto need_resched;
  3535. }
  3536. EXPORT_SYMBOL(schedule);
  3537. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3538. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  3539. {
  3540. bool ret = false;
  3541. rcu_read_lock();
  3542. if (lock->owner != owner)
  3543. goto fail;
  3544. /*
  3545. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  3546. * lock->owner still matches owner, if that fails, owner might
  3547. * point to free()d memory, if it still matches, the rcu_read_lock()
  3548. * ensures the memory stays valid.
  3549. */
  3550. barrier();
  3551. ret = owner->on_cpu;
  3552. fail:
  3553. rcu_read_unlock();
  3554. return ret;
  3555. }
  3556. /*
  3557. * Look out! "owner" is an entirely speculative pointer
  3558. * access and not reliable.
  3559. */
  3560. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  3561. {
  3562. if (!sched_feat(OWNER_SPIN))
  3563. return 0;
  3564. while (owner_running(lock, owner)) {
  3565. if (need_resched())
  3566. return 0;
  3567. arch_mutex_cpu_relax();
  3568. }
  3569. /*
  3570. * If the owner changed to another task there is likely
  3571. * heavy contention, stop spinning.
  3572. */
  3573. if (lock->owner)
  3574. return 0;
  3575. return 1;
  3576. }
  3577. #endif
  3578. #ifdef CONFIG_PREEMPT
  3579. /*
  3580. * this is the entry point to schedule() from in-kernel preemption
  3581. * off of preempt_enable. Kernel preemptions off return from interrupt
  3582. * occur there and call schedule directly.
  3583. */
  3584. asmlinkage void __sched notrace preempt_schedule(void)
  3585. {
  3586. struct thread_info *ti = current_thread_info();
  3587. /*
  3588. * If there is a non-zero preempt_count or interrupts are disabled,
  3589. * we do not want to preempt the current task. Just return..
  3590. */
  3591. if (likely(ti->preempt_count || irqs_disabled()))
  3592. return;
  3593. do {
  3594. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3595. schedule();
  3596. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3597. /*
  3598. * Check again in case we missed a preemption opportunity
  3599. * between schedule and now.
  3600. */
  3601. barrier();
  3602. } while (need_resched());
  3603. }
  3604. EXPORT_SYMBOL(preempt_schedule);
  3605. /*
  3606. * this is the entry point to schedule() from kernel preemption
  3607. * off of irq context.
  3608. * Note, that this is called and return with irqs disabled. This will
  3609. * protect us against recursive calling from irq.
  3610. */
  3611. asmlinkage void __sched preempt_schedule_irq(void)
  3612. {
  3613. struct thread_info *ti = current_thread_info();
  3614. /* Catch callers which need to be fixed */
  3615. BUG_ON(ti->preempt_count || !irqs_disabled());
  3616. do {
  3617. add_preempt_count(PREEMPT_ACTIVE);
  3618. local_irq_enable();
  3619. schedule();
  3620. local_irq_disable();
  3621. sub_preempt_count(PREEMPT_ACTIVE);
  3622. /*
  3623. * Check again in case we missed a preemption opportunity
  3624. * between schedule and now.
  3625. */
  3626. barrier();
  3627. } while (need_resched());
  3628. }
  3629. #endif /* CONFIG_PREEMPT */
  3630. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3631. void *key)
  3632. {
  3633. return try_to_wake_up(curr->private, mode, wake_flags);
  3634. }
  3635. EXPORT_SYMBOL(default_wake_function);
  3636. /*
  3637. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3638. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3639. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3640. *
  3641. * There are circumstances in which we can try to wake a task which has already
  3642. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3643. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3644. */
  3645. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3646. int nr_exclusive, int wake_flags, void *key)
  3647. {
  3648. wait_queue_t *curr, *next;
  3649. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3650. unsigned flags = curr->flags;
  3651. if (curr->func(curr, mode, wake_flags, key) &&
  3652. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3653. break;
  3654. }
  3655. }
  3656. /**
  3657. * __wake_up - wake up threads blocked on a waitqueue.
  3658. * @q: the waitqueue
  3659. * @mode: which threads
  3660. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3661. * @key: is directly passed to the wakeup function
  3662. *
  3663. * It may be assumed that this function implies a write memory barrier before
  3664. * changing the task state if and only if any tasks are woken up.
  3665. */
  3666. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3667. int nr_exclusive, void *key)
  3668. {
  3669. unsigned long flags;
  3670. spin_lock_irqsave(&q->lock, flags);
  3671. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3672. spin_unlock_irqrestore(&q->lock, flags);
  3673. }
  3674. EXPORT_SYMBOL(__wake_up);
  3675. /*
  3676. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3677. */
  3678. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3679. {
  3680. __wake_up_common(q, mode, 1, 0, NULL);
  3681. }
  3682. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3683. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3684. {
  3685. __wake_up_common(q, mode, 1, 0, key);
  3686. }
  3687. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  3688. /**
  3689. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3690. * @q: the waitqueue
  3691. * @mode: which threads
  3692. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3693. * @key: opaque value to be passed to wakeup targets
  3694. *
  3695. * The sync wakeup differs that the waker knows that it will schedule
  3696. * away soon, so while the target thread will be woken up, it will not
  3697. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3698. * with each other. This can prevent needless bouncing between CPUs.
  3699. *
  3700. * On UP it can prevent extra preemption.
  3701. *
  3702. * It may be assumed that this function implies a write memory barrier before
  3703. * changing the task state if and only if any tasks are woken up.
  3704. */
  3705. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3706. int nr_exclusive, void *key)
  3707. {
  3708. unsigned long flags;
  3709. int wake_flags = WF_SYNC;
  3710. if (unlikely(!q))
  3711. return;
  3712. if (unlikely(!nr_exclusive))
  3713. wake_flags = 0;
  3714. spin_lock_irqsave(&q->lock, flags);
  3715. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3716. spin_unlock_irqrestore(&q->lock, flags);
  3717. }
  3718. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3719. /*
  3720. * __wake_up_sync - see __wake_up_sync_key()
  3721. */
  3722. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3723. {
  3724. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3725. }
  3726. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3727. /**
  3728. * complete: - signals a single thread waiting on this completion
  3729. * @x: holds the state of this particular completion
  3730. *
  3731. * This will wake up a single thread waiting on this completion. Threads will be
  3732. * awakened in the same order in which they were queued.
  3733. *
  3734. * See also complete_all(), wait_for_completion() and related routines.
  3735. *
  3736. * It may be assumed that this function implies a write memory barrier before
  3737. * changing the task state if and only if any tasks are woken up.
  3738. */
  3739. void complete(struct completion *x)
  3740. {
  3741. unsigned long flags;
  3742. spin_lock_irqsave(&x->wait.lock, flags);
  3743. x->done++;
  3744. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3745. spin_unlock_irqrestore(&x->wait.lock, flags);
  3746. }
  3747. EXPORT_SYMBOL(complete);
  3748. /**
  3749. * complete_all: - signals all threads waiting on this completion
  3750. * @x: holds the state of this particular completion
  3751. *
  3752. * This will wake up all threads waiting on this particular completion event.
  3753. *
  3754. * It may be assumed that this function implies a write memory barrier before
  3755. * changing the task state if and only if any tasks are woken up.
  3756. */
  3757. void complete_all(struct completion *x)
  3758. {
  3759. unsigned long flags;
  3760. spin_lock_irqsave(&x->wait.lock, flags);
  3761. x->done += UINT_MAX/2;
  3762. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3763. spin_unlock_irqrestore(&x->wait.lock, flags);
  3764. }
  3765. EXPORT_SYMBOL(complete_all);
  3766. static inline long __sched
  3767. do_wait_for_common(struct completion *x, long timeout, int state)
  3768. {
  3769. if (!x->done) {
  3770. DECLARE_WAITQUEUE(wait, current);
  3771. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3772. do {
  3773. if (signal_pending_state(state, current)) {
  3774. timeout = -ERESTARTSYS;
  3775. break;
  3776. }
  3777. __set_current_state(state);
  3778. spin_unlock_irq(&x->wait.lock);
  3779. timeout = schedule_timeout(timeout);
  3780. spin_lock_irq(&x->wait.lock);
  3781. } while (!x->done && timeout);
  3782. __remove_wait_queue(&x->wait, &wait);
  3783. if (!x->done)
  3784. return timeout;
  3785. }
  3786. x->done--;
  3787. return timeout ?: 1;
  3788. }
  3789. static long __sched
  3790. wait_for_common(struct completion *x, long timeout, int state)
  3791. {
  3792. might_sleep();
  3793. spin_lock_irq(&x->wait.lock);
  3794. timeout = do_wait_for_common(x, timeout, state);
  3795. spin_unlock_irq(&x->wait.lock);
  3796. return timeout;
  3797. }
  3798. /**
  3799. * wait_for_completion: - waits for completion of a task
  3800. * @x: holds the state of this particular completion
  3801. *
  3802. * This waits to be signaled for completion of a specific task. It is NOT
  3803. * interruptible and there is no timeout.
  3804. *
  3805. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3806. * and interrupt capability. Also see complete().
  3807. */
  3808. void __sched wait_for_completion(struct completion *x)
  3809. {
  3810. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3811. }
  3812. EXPORT_SYMBOL(wait_for_completion);
  3813. /**
  3814. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3815. * @x: holds the state of this particular completion
  3816. * @timeout: timeout value in jiffies
  3817. *
  3818. * This waits for either a completion of a specific task to be signaled or for a
  3819. * specified timeout to expire. The timeout is in jiffies. It is not
  3820. * interruptible.
  3821. */
  3822. unsigned long __sched
  3823. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3824. {
  3825. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3826. }
  3827. EXPORT_SYMBOL(wait_for_completion_timeout);
  3828. /**
  3829. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3830. * @x: holds the state of this particular completion
  3831. *
  3832. * This waits for completion of a specific task to be signaled. It is
  3833. * interruptible.
  3834. */
  3835. int __sched wait_for_completion_interruptible(struct completion *x)
  3836. {
  3837. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3838. if (t == -ERESTARTSYS)
  3839. return t;
  3840. return 0;
  3841. }
  3842. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3843. /**
  3844. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3845. * @x: holds the state of this particular completion
  3846. * @timeout: timeout value in jiffies
  3847. *
  3848. * This waits for either a completion of a specific task to be signaled or for a
  3849. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3850. */
  3851. long __sched
  3852. wait_for_completion_interruptible_timeout(struct completion *x,
  3853. unsigned long timeout)
  3854. {
  3855. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3856. }
  3857. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3858. /**
  3859. * wait_for_completion_killable: - waits for completion of a task (killable)
  3860. * @x: holds the state of this particular completion
  3861. *
  3862. * This waits to be signaled for completion of a specific task. It can be
  3863. * interrupted by a kill signal.
  3864. */
  3865. int __sched wait_for_completion_killable(struct completion *x)
  3866. {
  3867. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3868. if (t == -ERESTARTSYS)
  3869. return t;
  3870. return 0;
  3871. }
  3872. EXPORT_SYMBOL(wait_for_completion_killable);
  3873. /**
  3874. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3875. * @x: holds the state of this particular completion
  3876. * @timeout: timeout value in jiffies
  3877. *
  3878. * This waits for either a completion of a specific task to be
  3879. * signaled or for a specified timeout to expire. It can be
  3880. * interrupted by a kill signal. The timeout is in jiffies.
  3881. */
  3882. long __sched
  3883. wait_for_completion_killable_timeout(struct completion *x,
  3884. unsigned long timeout)
  3885. {
  3886. return wait_for_common(x, timeout, TASK_KILLABLE);
  3887. }
  3888. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3889. /**
  3890. * try_wait_for_completion - try to decrement a completion without blocking
  3891. * @x: completion structure
  3892. *
  3893. * Returns: 0 if a decrement cannot be done without blocking
  3894. * 1 if a decrement succeeded.
  3895. *
  3896. * If a completion is being used as a counting completion,
  3897. * attempt to decrement the counter without blocking. This
  3898. * enables us to avoid waiting if the resource the completion
  3899. * is protecting is not available.
  3900. */
  3901. bool try_wait_for_completion(struct completion *x)
  3902. {
  3903. unsigned long flags;
  3904. int ret = 1;
  3905. spin_lock_irqsave(&x->wait.lock, flags);
  3906. if (!x->done)
  3907. ret = 0;
  3908. else
  3909. x->done--;
  3910. spin_unlock_irqrestore(&x->wait.lock, flags);
  3911. return ret;
  3912. }
  3913. EXPORT_SYMBOL(try_wait_for_completion);
  3914. /**
  3915. * completion_done - Test to see if a completion has any waiters
  3916. * @x: completion structure
  3917. *
  3918. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3919. * 1 if there are no waiters.
  3920. *
  3921. */
  3922. bool completion_done(struct completion *x)
  3923. {
  3924. unsigned long flags;
  3925. int ret = 1;
  3926. spin_lock_irqsave(&x->wait.lock, flags);
  3927. if (!x->done)
  3928. ret = 0;
  3929. spin_unlock_irqrestore(&x->wait.lock, flags);
  3930. return ret;
  3931. }
  3932. EXPORT_SYMBOL(completion_done);
  3933. static long __sched
  3934. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3935. {
  3936. unsigned long flags;
  3937. wait_queue_t wait;
  3938. init_waitqueue_entry(&wait, current);
  3939. __set_current_state(state);
  3940. spin_lock_irqsave(&q->lock, flags);
  3941. __add_wait_queue(q, &wait);
  3942. spin_unlock(&q->lock);
  3943. timeout = schedule_timeout(timeout);
  3944. spin_lock_irq(&q->lock);
  3945. __remove_wait_queue(q, &wait);
  3946. spin_unlock_irqrestore(&q->lock, flags);
  3947. return timeout;
  3948. }
  3949. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3950. {
  3951. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3952. }
  3953. EXPORT_SYMBOL(interruptible_sleep_on);
  3954. long __sched
  3955. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3956. {
  3957. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3958. }
  3959. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3960. void __sched sleep_on(wait_queue_head_t *q)
  3961. {
  3962. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3963. }
  3964. EXPORT_SYMBOL(sleep_on);
  3965. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3966. {
  3967. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3968. }
  3969. EXPORT_SYMBOL(sleep_on_timeout);
  3970. #ifdef CONFIG_RT_MUTEXES
  3971. /*
  3972. * rt_mutex_setprio - set the current priority of a task
  3973. * @p: task
  3974. * @prio: prio value (kernel-internal form)
  3975. *
  3976. * This function changes the 'effective' priority of a task. It does
  3977. * not touch ->normal_prio like __setscheduler().
  3978. *
  3979. * Used by the rt_mutex code to implement priority inheritance logic.
  3980. */
  3981. void rt_mutex_setprio(struct task_struct *p, int prio)
  3982. {
  3983. unsigned long flags;
  3984. int oldprio, on_rq, running;
  3985. struct rq *rq;
  3986. const struct sched_class *prev_class;
  3987. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3988. rq = task_rq_lock(p, &flags);
  3989. trace_sched_pi_setprio(p, prio);
  3990. oldprio = p->prio;
  3991. prev_class = p->sched_class;
  3992. on_rq = p->se.on_rq;
  3993. running = task_current(rq, p);
  3994. if (on_rq)
  3995. dequeue_task(rq, p, 0);
  3996. if (running)
  3997. p->sched_class->put_prev_task(rq, p);
  3998. if (rt_prio(prio))
  3999. p->sched_class = &rt_sched_class;
  4000. else
  4001. p->sched_class = &fair_sched_class;
  4002. p->prio = prio;
  4003. if (running)
  4004. p->sched_class->set_curr_task(rq);
  4005. if (on_rq)
  4006. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  4007. check_class_changed(rq, p, prev_class, oldprio);
  4008. task_rq_unlock(rq, &flags);
  4009. }
  4010. #endif
  4011. void set_user_nice(struct task_struct *p, long nice)
  4012. {
  4013. int old_prio, delta, on_rq;
  4014. unsigned long flags;
  4015. struct rq *rq;
  4016. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4017. return;
  4018. /*
  4019. * We have to be careful, if called from sys_setpriority(),
  4020. * the task might be in the middle of scheduling on another CPU.
  4021. */
  4022. rq = task_rq_lock(p, &flags);
  4023. /*
  4024. * The RT priorities are set via sched_setscheduler(), but we still
  4025. * allow the 'normal' nice value to be set - but as expected
  4026. * it wont have any effect on scheduling until the task is
  4027. * SCHED_FIFO/SCHED_RR:
  4028. */
  4029. if (task_has_rt_policy(p)) {
  4030. p->static_prio = NICE_TO_PRIO(nice);
  4031. goto out_unlock;
  4032. }
  4033. on_rq = p->se.on_rq;
  4034. if (on_rq)
  4035. dequeue_task(rq, p, 0);
  4036. p->static_prio = NICE_TO_PRIO(nice);
  4037. set_load_weight(p);
  4038. old_prio = p->prio;
  4039. p->prio = effective_prio(p);
  4040. delta = p->prio - old_prio;
  4041. if (on_rq) {
  4042. enqueue_task(rq, p, 0);
  4043. /*
  4044. * If the task increased its priority or is running and
  4045. * lowered its priority, then reschedule its CPU:
  4046. */
  4047. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4048. resched_task(rq->curr);
  4049. }
  4050. out_unlock:
  4051. task_rq_unlock(rq, &flags);
  4052. }
  4053. EXPORT_SYMBOL(set_user_nice);
  4054. /*
  4055. * can_nice - check if a task can reduce its nice value
  4056. * @p: task
  4057. * @nice: nice value
  4058. */
  4059. int can_nice(const struct task_struct *p, const int nice)
  4060. {
  4061. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4062. int nice_rlim = 20 - nice;
  4063. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  4064. capable(CAP_SYS_NICE));
  4065. }
  4066. #ifdef __ARCH_WANT_SYS_NICE
  4067. /*
  4068. * sys_nice - change the priority of the current process.
  4069. * @increment: priority increment
  4070. *
  4071. * sys_setpriority is a more generic, but much slower function that
  4072. * does similar things.
  4073. */
  4074. SYSCALL_DEFINE1(nice, int, increment)
  4075. {
  4076. long nice, retval;
  4077. /*
  4078. * Setpriority might change our priority at the same moment.
  4079. * We don't have to worry. Conceptually one call occurs first
  4080. * and we have a single winner.
  4081. */
  4082. if (increment < -40)
  4083. increment = -40;
  4084. if (increment > 40)
  4085. increment = 40;
  4086. nice = TASK_NICE(current) + increment;
  4087. if (nice < -20)
  4088. nice = -20;
  4089. if (nice > 19)
  4090. nice = 19;
  4091. if (increment < 0 && !can_nice(current, nice))
  4092. return -EPERM;
  4093. retval = security_task_setnice(current, nice);
  4094. if (retval)
  4095. return retval;
  4096. set_user_nice(current, nice);
  4097. return 0;
  4098. }
  4099. #endif
  4100. /**
  4101. * task_prio - return the priority value of a given task.
  4102. * @p: the task in question.
  4103. *
  4104. * This is the priority value as seen by users in /proc.
  4105. * RT tasks are offset by -200. Normal tasks are centered
  4106. * around 0, value goes from -16 to +15.
  4107. */
  4108. int task_prio(const struct task_struct *p)
  4109. {
  4110. return p->prio - MAX_RT_PRIO;
  4111. }
  4112. /**
  4113. * task_nice - return the nice value of a given task.
  4114. * @p: the task in question.
  4115. */
  4116. int task_nice(const struct task_struct *p)
  4117. {
  4118. return TASK_NICE(p);
  4119. }
  4120. EXPORT_SYMBOL(task_nice);
  4121. /**
  4122. * idle_cpu - is a given cpu idle currently?
  4123. * @cpu: the processor in question.
  4124. */
  4125. int idle_cpu(int cpu)
  4126. {
  4127. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4128. }
  4129. /**
  4130. * idle_task - return the idle task for a given cpu.
  4131. * @cpu: the processor in question.
  4132. */
  4133. struct task_struct *idle_task(int cpu)
  4134. {
  4135. return cpu_rq(cpu)->idle;
  4136. }
  4137. /**
  4138. * find_process_by_pid - find a process with a matching PID value.
  4139. * @pid: the pid in question.
  4140. */
  4141. static struct task_struct *find_process_by_pid(pid_t pid)
  4142. {
  4143. return pid ? find_task_by_vpid(pid) : current;
  4144. }
  4145. /* Actually do priority change: must hold rq lock. */
  4146. static void
  4147. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4148. {
  4149. BUG_ON(p->se.on_rq);
  4150. p->policy = policy;
  4151. p->rt_priority = prio;
  4152. p->normal_prio = normal_prio(p);
  4153. /* we are holding p->pi_lock already */
  4154. p->prio = rt_mutex_getprio(p);
  4155. if (rt_prio(p->prio))
  4156. p->sched_class = &rt_sched_class;
  4157. else
  4158. p->sched_class = &fair_sched_class;
  4159. set_load_weight(p);
  4160. }
  4161. /*
  4162. * check the target process has a UID that matches the current process's
  4163. */
  4164. static bool check_same_owner(struct task_struct *p)
  4165. {
  4166. const struct cred *cred = current_cred(), *pcred;
  4167. bool match;
  4168. rcu_read_lock();
  4169. pcred = __task_cred(p);
  4170. if (cred->user->user_ns == pcred->user->user_ns)
  4171. match = (cred->euid == pcred->euid ||
  4172. cred->euid == pcred->uid);
  4173. else
  4174. match = false;
  4175. rcu_read_unlock();
  4176. return match;
  4177. }
  4178. static int __sched_setscheduler(struct task_struct *p, int policy,
  4179. const struct sched_param *param, bool user)
  4180. {
  4181. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4182. unsigned long flags;
  4183. const struct sched_class *prev_class;
  4184. struct rq *rq;
  4185. int reset_on_fork;
  4186. /* may grab non-irq protected spin_locks */
  4187. BUG_ON(in_interrupt());
  4188. recheck:
  4189. /* double check policy once rq lock held */
  4190. if (policy < 0) {
  4191. reset_on_fork = p->sched_reset_on_fork;
  4192. policy = oldpolicy = p->policy;
  4193. } else {
  4194. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  4195. policy &= ~SCHED_RESET_ON_FORK;
  4196. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4197. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4198. policy != SCHED_IDLE)
  4199. return -EINVAL;
  4200. }
  4201. /*
  4202. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4203. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4204. * SCHED_BATCH and SCHED_IDLE is 0.
  4205. */
  4206. if (param->sched_priority < 0 ||
  4207. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4208. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4209. return -EINVAL;
  4210. if (rt_policy(policy) != (param->sched_priority != 0))
  4211. return -EINVAL;
  4212. /*
  4213. * Allow unprivileged RT tasks to decrease priority:
  4214. */
  4215. if (user && !capable(CAP_SYS_NICE)) {
  4216. if (rt_policy(policy)) {
  4217. unsigned long rlim_rtprio =
  4218. task_rlimit(p, RLIMIT_RTPRIO);
  4219. /* can't set/change the rt policy */
  4220. if (policy != p->policy && !rlim_rtprio)
  4221. return -EPERM;
  4222. /* can't increase priority */
  4223. if (param->sched_priority > p->rt_priority &&
  4224. param->sched_priority > rlim_rtprio)
  4225. return -EPERM;
  4226. }
  4227. /*
  4228. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  4229. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  4230. */
  4231. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  4232. if (!can_nice(p, TASK_NICE(p)))
  4233. return -EPERM;
  4234. }
  4235. /* can't change other user's priorities */
  4236. if (!check_same_owner(p))
  4237. return -EPERM;
  4238. /* Normal users shall not reset the sched_reset_on_fork flag */
  4239. if (p->sched_reset_on_fork && !reset_on_fork)
  4240. return -EPERM;
  4241. }
  4242. if (user) {
  4243. retval = security_task_setscheduler(p);
  4244. if (retval)
  4245. return retval;
  4246. }
  4247. /*
  4248. * make sure no PI-waiters arrive (or leave) while we are
  4249. * changing the priority of the task:
  4250. */
  4251. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4252. /*
  4253. * To be able to change p->policy safely, the appropriate
  4254. * runqueue lock must be held.
  4255. */
  4256. rq = __task_rq_lock(p);
  4257. /*
  4258. * Changing the policy of the stop threads its a very bad idea
  4259. */
  4260. if (p == rq->stop) {
  4261. __task_rq_unlock(rq);
  4262. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4263. return -EINVAL;
  4264. }
  4265. /*
  4266. * If not changing anything there's no need to proceed further:
  4267. */
  4268. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  4269. param->sched_priority == p->rt_priority))) {
  4270. __task_rq_unlock(rq);
  4271. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4272. return 0;
  4273. }
  4274. #ifdef CONFIG_RT_GROUP_SCHED
  4275. if (user) {
  4276. /*
  4277. * Do not allow realtime tasks into groups that have no runtime
  4278. * assigned.
  4279. */
  4280. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4281. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  4282. !task_group_is_autogroup(task_group(p))) {
  4283. __task_rq_unlock(rq);
  4284. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4285. return -EPERM;
  4286. }
  4287. }
  4288. #endif
  4289. /* recheck policy now with rq lock held */
  4290. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4291. policy = oldpolicy = -1;
  4292. __task_rq_unlock(rq);
  4293. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4294. goto recheck;
  4295. }
  4296. on_rq = p->se.on_rq;
  4297. running = task_current(rq, p);
  4298. if (on_rq)
  4299. deactivate_task(rq, p, 0);
  4300. if (running)
  4301. p->sched_class->put_prev_task(rq, p);
  4302. p->sched_reset_on_fork = reset_on_fork;
  4303. oldprio = p->prio;
  4304. prev_class = p->sched_class;
  4305. __setscheduler(rq, p, policy, param->sched_priority);
  4306. if (running)
  4307. p->sched_class->set_curr_task(rq);
  4308. if (on_rq)
  4309. activate_task(rq, p, 0);
  4310. check_class_changed(rq, p, prev_class, oldprio);
  4311. __task_rq_unlock(rq);
  4312. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4313. rt_mutex_adjust_pi(p);
  4314. return 0;
  4315. }
  4316. /**
  4317. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4318. * @p: the task in question.
  4319. * @policy: new policy.
  4320. * @param: structure containing the new RT priority.
  4321. *
  4322. * NOTE that the task may be already dead.
  4323. */
  4324. int sched_setscheduler(struct task_struct *p, int policy,
  4325. const struct sched_param *param)
  4326. {
  4327. return __sched_setscheduler(p, policy, param, true);
  4328. }
  4329. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4330. /**
  4331. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4332. * @p: the task in question.
  4333. * @policy: new policy.
  4334. * @param: structure containing the new RT priority.
  4335. *
  4336. * Just like sched_setscheduler, only don't bother checking if the
  4337. * current context has permission. For example, this is needed in
  4338. * stop_machine(): we create temporary high priority worker threads,
  4339. * but our caller might not have that capability.
  4340. */
  4341. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4342. const struct sched_param *param)
  4343. {
  4344. return __sched_setscheduler(p, policy, param, false);
  4345. }
  4346. static int
  4347. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4348. {
  4349. struct sched_param lparam;
  4350. struct task_struct *p;
  4351. int retval;
  4352. if (!param || pid < 0)
  4353. return -EINVAL;
  4354. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4355. return -EFAULT;
  4356. rcu_read_lock();
  4357. retval = -ESRCH;
  4358. p = find_process_by_pid(pid);
  4359. if (p != NULL)
  4360. retval = sched_setscheduler(p, policy, &lparam);
  4361. rcu_read_unlock();
  4362. return retval;
  4363. }
  4364. /**
  4365. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4366. * @pid: the pid in question.
  4367. * @policy: new policy.
  4368. * @param: structure containing the new RT priority.
  4369. */
  4370. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4371. struct sched_param __user *, param)
  4372. {
  4373. /* negative values for policy are not valid */
  4374. if (policy < 0)
  4375. return -EINVAL;
  4376. return do_sched_setscheduler(pid, policy, param);
  4377. }
  4378. /**
  4379. * sys_sched_setparam - set/change the RT priority of a thread
  4380. * @pid: the pid in question.
  4381. * @param: structure containing the new RT priority.
  4382. */
  4383. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4384. {
  4385. return do_sched_setscheduler(pid, -1, param);
  4386. }
  4387. /**
  4388. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4389. * @pid: the pid in question.
  4390. */
  4391. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4392. {
  4393. struct task_struct *p;
  4394. int retval;
  4395. if (pid < 0)
  4396. return -EINVAL;
  4397. retval = -ESRCH;
  4398. rcu_read_lock();
  4399. p = find_process_by_pid(pid);
  4400. if (p) {
  4401. retval = security_task_getscheduler(p);
  4402. if (!retval)
  4403. retval = p->policy
  4404. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4405. }
  4406. rcu_read_unlock();
  4407. return retval;
  4408. }
  4409. /**
  4410. * sys_sched_getparam - get the RT priority of a thread
  4411. * @pid: the pid in question.
  4412. * @param: structure containing the RT priority.
  4413. */
  4414. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4415. {
  4416. struct sched_param lp;
  4417. struct task_struct *p;
  4418. int retval;
  4419. if (!param || pid < 0)
  4420. return -EINVAL;
  4421. rcu_read_lock();
  4422. p = find_process_by_pid(pid);
  4423. retval = -ESRCH;
  4424. if (!p)
  4425. goto out_unlock;
  4426. retval = security_task_getscheduler(p);
  4427. if (retval)
  4428. goto out_unlock;
  4429. lp.sched_priority = p->rt_priority;
  4430. rcu_read_unlock();
  4431. /*
  4432. * This one might sleep, we cannot do it with a spinlock held ...
  4433. */
  4434. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4435. return retval;
  4436. out_unlock:
  4437. rcu_read_unlock();
  4438. return retval;
  4439. }
  4440. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4441. {
  4442. cpumask_var_t cpus_allowed, new_mask;
  4443. struct task_struct *p;
  4444. int retval;
  4445. get_online_cpus();
  4446. rcu_read_lock();
  4447. p = find_process_by_pid(pid);
  4448. if (!p) {
  4449. rcu_read_unlock();
  4450. put_online_cpus();
  4451. return -ESRCH;
  4452. }
  4453. /* Prevent p going away */
  4454. get_task_struct(p);
  4455. rcu_read_unlock();
  4456. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4457. retval = -ENOMEM;
  4458. goto out_put_task;
  4459. }
  4460. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4461. retval = -ENOMEM;
  4462. goto out_free_cpus_allowed;
  4463. }
  4464. retval = -EPERM;
  4465. if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
  4466. goto out_unlock;
  4467. retval = security_task_setscheduler(p);
  4468. if (retval)
  4469. goto out_unlock;
  4470. cpuset_cpus_allowed(p, cpus_allowed);
  4471. cpumask_and(new_mask, in_mask, cpus_allowed);
  4472. again:
  4473. retval = set_cpus_allowed_ptr(p, new_mask);
  4474. if (!retval) {
  4475. cpuset_cpus_allowed(p, cpus_allowed);
  4476. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4477. /*
  4478. * We must have raced with a concurrent cpuset
  4479. * update. Just reset the cpus_allowed to the
  4480. * cpuset's cpus_allowed
  4481. */
  4482. cpumask_copy(new_mask, cpus_allowed);
  4483. goto again;
  4484. }
  4485. }
  4486. out_unlock:
  4487. free_cpumask_var(new_mask);
  4488. out_free_cpus_allowed:
  4489. free_cpumask_var(cpus_allowed);
  4490. out_put_task:
  4491. put_task_struct(p);
  4492. put_online_cpus();
  4493. return retval;
  4494. }
  4495. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4496. struct cpumask *new_mask)
  4497. {
  4498. if (len < cpumask_size())
  4499. cpumask_clear(new_mask);
  4500. else if (len > cpumask_size())
  4501. len = cpumask_size();
  4502. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4503. }
  4504. /**
  4505. * sys_sched_setaffinity - set the cpu affinity of a process
  4506. * @pid: pid of the process
  4507. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4508. * @user_mask_ptr: user-space pointer to the new cpu mask
  4509. */
  4510. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4511. unsigned long __user *, user_mask_ptr)
  4512. {
  4513. cpumask_var_t new_mask;
  4514. int retval;
  4515. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4516. return -ENOMEM;
  4517. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4518. if (retval == 0)
  4519. retval = sched_setaffinity(pid, new_mask);
  4520. free_cpumask_var(new_mask);
  4521. return retval;
  4522. }
  4523. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4524. {
  4525. struct task_struct *p;
  4526. unsigned long flags;
  4527. struct rq *rq;
  4528. int retval;
  4529. get_online_cpus();
  4530. rcu_read_lock();
  4531. retval = -ESRCH;
  4532. p = find_process_by_pid(pid);
  4533. if (!p)
  4534. goto out_unlock;
  4535. retval = security_task_getscheduler(p);
  4536. if (retval)
  4537. goto out_unlock;
  4538. rq = task_rq_lock(p, &flags);
  4539. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4540. task_rq_unlock(rq, &flags);
  4541. out_unlock:
  4542. rcu_read_unlock();
  4543. put_online_cpus();
  4544. return retval;
  4545. }
  4546. /**
  4547. * sys_sched_getaffinity - get the cpu affinity of a process
  4548. * @pid: pid of the process
  4549. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4550. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4551. */
  4552. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4553. unsigned long __user *, user_mask_ptr)
  4554. {
  4555. int ret;
  4556. cpumask_var_t mask;
  4557. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4558. return -EINVAL;
  4559. if (len & (sizeof(unsigned long)-1))
  4560. return -EINVAL;
  4561. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4562. return -ENOMEM;
  4563. ret = sched_getaffinity(pid, mask);
  4564. if (ret == 0) {
  4565. size_t retlen = min_t(size_t, len, cpumask_size());
  4566. if (copy_to_user(user_mask_ptr, mask, retlen))
  4567. ret = -EFAULT;
  4568. else
  4569. ret = retlen;
  4570. }
  4571. free_cpumask_var(mask);
  4572. return ret;
  4573. }
  4574. /**
  4575. * sys_sched_yield - yield the current processor to other threads.
  4576. *
  4577. * This function yields the current CPU to other tasks. If there are no
  4578. * other threads running on this CPU then this function will return.
  4579. */
  4580. SYSCALL_DEFINE0(sched_yield)
  4581. {
  4582. struct rq *rq = this_rq_lock();
  4583. schedstat_inc(rq, yld_count);
  4584. current->sched_class->yield_task(rq);
  4585. /*
  4586. * Since we are going to call schedule() anyway, there's
  4587. * no need to preempt or enable interrupts:
  4588. */
  4589. __release(rq->lock);
  4590. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4591. do_raw_spin_unlock(&rq->lock);
  4592. preempt_enable_no_resched();
  4593. schedule();
  4594. return 0;
  4595. }
  4596. static inline int should_resched(void)
  4597. {
  4598. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4599. }
  4600. static void __cond_resched(void)
  4601. {
  4602. add_preempt_count(PREEMPT_ACTIVE);
  4603. schedule();
  4604. sub_preempt_count(PREEMPT_ACTIVE);
  4605. }
  4606. int __sched _cond_resched(void)
  4607. {
  4608. if (should_resched()) {
  4609. __cond_resched();
  4610. return 1;
  4611. }
  4612. return 0;
  4613. }
  4614. EXPORT_SYMBOL(_cond_resched);
  4615. /*
  4616. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4617. * call schedule, and on return reacquire the lock.
  4618. *
  4619. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4620. * operations here to prevent schedule() from being called twice (once via
  4621. * spin_unlock(), once by hand).
  4622. */
  4623. int __cond_resched_lock(spinlock_t *lock)
  4624. {
  4625. int resched = should_resched();
  4626. int ret = 0;
  4627. lockdep_assert_held(lock);
  4628. if (spin_needbreak(lock) || resched) {
  4629. spin_unlock(lock);
  4630. if (resched)
  4631. __cond_resched();
  4632. else
  4633. cpu_relax();
  4634. ret = 1;
  4635. spin_lock(lock);
  4636. }
  4637. return ret;
  4638. }
  4639. EXPORT_SYMBOL(__cond_resched_lock);
  4640. int __sched __cond_resched_softirq(void)
  4641. {
  4642. BUG_ON(!in_softirq());
  4643. if (should_resched()) {
  4644. local_bh_enable();
  4645. __cond_resched();
  4646. local_bh_disable();
  4647. return 1;
  4648. }
  4649. return 0;
  4650. }
  4651. EXPORT_SYMBOL(__cond_resched_softirq);
  4652. /**
  4653. * yield - yield the current processor to other threads.
  4654. *
  4655. * This is a shortcut for kernel-space yielding - it marks the
  4656. * thread runnable and calls sys_sched_yield().
  4657. */
  4658. void __sched yield(void)
  4659. {
  4660. set_current_state(TASK_RUNNING);
  4661. sys_sched_yield();
  4662. }
  4663. EXPORT_SYMBOL(yield);
  4664. /**
  4665. * yield_to - yield the current processor to another thread in
  4666. * your thread group, or accelerate that thread toward the
  4667. * processor it's on.
  4668. * @p: target task
  4669. * @preempt: whether task preemption is allowed or not
  4670. *
  4671. * It's the caller's job to ensure that the target task struct
  4672. * can't go away on us before we can do any checks.
  4673. *
  4674. * Returns true if we indeed boosted the target task.
  4675. */
  4676. bool __sched yield_to(struct task_struct *p, bool preempt)
  4677. {
  4678. struct task_struct *curr = current;
  4679. struct rq *rq, *p_rq;
  4680. unsigned long flags;
  4681. bool yielded = 0;
  4682. local_irq_save(flags);
  4683. rq = this_rq();
  4684. again:
  4685. p_rq = task_rq(p);
  4686. double_rq_lock(rq, p_rq);
  4687. while (task_rq(p) != p_rq) {
  4688. double_rq_unlock(rq, p_rq);
  4689. goto again;
  4690. }
  4691. if (!curr->sched_class->yield_to_task)
  4692. goto out;
  4693. if (curr->sched_class != p->sched_class)
  4694. goto out;
  4695. if (task_running(p_rq, p) || p->state)
  4696. goto out;
  4697. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4698. if (yielded) {
  4699. schedstat_inc(rq, yld_count);
  4700. /*
  4701. * Make p's CPU reschedule; pick_next_entity takes care of
  4702. * fairness.
  4703. */
  4704. if (preempt && rq != p_rq)
  4705. resched_task(p_rq->curr);
  4706. }
  4707. out:
  4708. double_rq_unlock(rq, p_rq);
  4709. local_irq_restore(flags);
  4710. if (yielded)
  4711. schedule();
  4712. return yielded;
  4713. }
  4714. EXPORT_SYMBOL_GPL(yield_to);
  4715. /*
  4716. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4717. * that process accounting knows that this is a task in IO wait state.
  4718. */
  4719. void __sched io_schedule(void)
  4720. {
  4721. struct rq *rq = raw_rq();
  4722. delayacct_blkio_start();
  4723. atomic_inc(&rq->nr_iowait);
  4724. blk_flush_plug(current);
  4725. current->in_iowait = 1;
  4726. schedule();
  4727. current->in_iowait = 0;
  4728. atomic_dec(&rq->nr_iowait);
  4729. delayacct_blkio_end();
  4730. }
  4731. EXPORT_SYMBOL(io_schedule);
  4732. long __sched io_schedule_timeout(long timeout)
  4733. {
  4734. struct rq *rq = raw_rq();
  4735. long ret;
  4736. delayacct_blkio_start();
  4737. atomic_inc(&rq->nr_iowait);
  4738. blk_flush_plug(current);
  4739. current->in_iowait = 1;
  4740. ret = schedule_timeout(timeout);
  4741. current->in_iowait = 0;
  4742. atomic_dec(&rq->nr_iowait);
  4743. delayacct_blkio_end();
  4744. return ret;
  4745. }
  4746. /**
  4747. * sys_sched_get_priority_max - return maximum RT priority.
  4748. * @policy: scheduling class.
  4749. *
  4750. * this syscall returns the maximum rt_priority that can be used
  4751. * by a given scheduling class.
  4752. */
  4753. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4754. {
  4755. int ret = -EINVAL;
  4756. switch (policy) {
  4757. case SCHED_FIFO:
  4758. case SCHED_RR:
  4759. ret = MAX_USER_RT_PRIO-1;
  4760. break;
  4761. case SCHED_NORMAL:
  4762. case SCHED_BATCH:
  4763. case SCHED_IDLE:
  4764. ret = 0;
  4765. break;
  4766. }
  4767. return ret;
  4768. }
  4769. /**
  4770. * sys_sched_get_priority_min - return minimum RT priority.
  4771. * @policy: scheduling class.
  4772. *
  4773. * this syscall returns the minimum rt_priority that can be used
  4774. * by a given scheduling class.
  4775. */
  4776. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4777. {
  4778. int ret = -EINVAL;
  4779. switch (policy) {
  4780. case SCHED_FIFO:
  4781. case SCHED_RR:
  4782. ret = 1;
  4783. break;
  4784. case SCHED_NORMAL:
  4785. case SCHED_BATCH:
  4786. case SCHED_IDLE:
  4787. ret = 0;
  4788. }
  4789. return ret;
  4790. }
  4791. /**
  4792. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4793. * @pid: pid of the process.
  4794. * @interval: userspace pointer to the timeslice value.
  4795. *
  4796. * this syscall writes the default timeslice value of a given process
  4797. * into the user-space timespec buffer. A value of '0' means infinity.
  4798. */
  4799. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4800. struct timespec __user *, interval)
  4801. {
  4802. struct task_struct *p;
  4803. unsigned int time_slice;
  4804. unsigned long flags;
  4805. struct rq *rq;
  4806. int retval;
  4807. struct timespec t;
  4808. if (pid < 0)
  4809. return -EINVAL;
  4810. retval = -ESRCH;
  4811. rcu_read_lock();
  4812. p = find_process_by_pid(pid);
  4813. if (!p)
  4814. goto out_unlock;
  4815. retval = security_task_getscheduler(p);
  4816. if (retval)
  4817. goto out_unlock;
  4818. rq = task_rq_lock(p, &flags);
  4819. time_slice = p->sched_class->get_rr_interval(rq, p);
  4820. task_rq_unlock(rq, &flags);
  4821. rcu_read_unlock();
  4822. jiffies_to_timespec(time_slice, &t);
  4823. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4824. return retval;
  4825. out_unlock:
  4826. rcu_read_unlock();
  4827. return retval;
  4828. }
  4829. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4830. void sched_show_task(struct task_struct *p)
  4831. {
  4832. unsigned long free = 0;
  4833. unsigned state;
  4834. state = p->state ? __ffs(p->state) + 1 : 0;
  4835. printk(KERN_INFO "%-15.15s %c", p->comm,
  4836. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4837. #if BITS_PER_LONG == 32
  4838. if (state == TASK_RUNNING)
  4839. printk(KERN_CONT " running ");
  4840. else
  4841. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4842. #else
  4843. if (state == TASK_RUNNING)
  4844. printk(KERN_CONT " running task ");
  4845. else
  4846. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4847. #endif
  4848. #ifdef CONFIG_DEBUG_STACK_USAGE
  4849. free = stack_not_used(p);
  4850. #endif
  4851. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4852. task_pid_nr(p), task_pid_nr(p->real_parent),
  4853. (unsigned long)task_thread_info(p)->flags);
  4854. show_stack(p, NULL);
  4855. }
  4856. void show_state_filter(unsigned long state_filter)
  4857. {
  4858. struct task_struct *g, *p;
  4859. #if BITS_PER_LONG == 32
  4860. printk(KERN_INFO
  4861. " task PC stack pid father\n");
  4862. #else
  4863. printk(KERN_INFO
  4864. " task PC stack pid father\n");
  4865. #endif
  4866. read_lock(&tasklist_lock);
  4867. do_each_thread(g, p) {
  4868. /*
  4869. * reset the NMI-timeout, listing all files on a slow
  4870. * console might take a lot of time:
  4871. */
  4872. touch_nmi_watchdog();
  4873. if (!state_filter || (p->state & state_filter))
  4874. sched_show_task(p);
  4875. } while_each_thread(g, p);
  4876. touch_all_softlockup_watchdogs();
  4877. #ifdef CONFIG_SCHED_DEBUG
  4878. sysrq_sched_debug_show();
  4879. #endif
  4880. read_unlock(&tasklist_lock);
  4881. /*
  4882. * Only show locks if all tasks are dumped:
  4883. */
  4884. if (!state_filter)
  4885. debug_show_all_locks();
  4886. }
  4887. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4888. {
  4889. idle->sched_class = &idle_sched_class;
  4890. }
  4891. /**
  4892. * init_idle - set up an idle thread for a given CPU
  4893. * @idle: task in question
  4894. * @cpu: cpu the idle task belongs to
  4895. *
  4896. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4897. * flag, to make booting more robust.
  4898. */
  4899. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4900. {
  4901. struct rq *rq = cpu_rq(cpu);
  4902. unsigned long flags;
  4903. raw_spin_lock_irqsave(&rq->lock, flags);
  4904. __sched_fork(idle);
  4905. idle->state = TASK_RUNNING;
  4906. idle->se.exec_start = sched_clock();
  4907. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4908. /*
  4909. * We're having a chicken and egg problem, even though we are
  4910. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4911. * lockdep check in task_group() will fail.
  4912. *
  4913. * Similar case to sched_fork(). / Alternatively we could
  4914. * use task_rq_lock() here and obtain the other rq->lock.
  4915. *
  4916. * Silence PROVE_RCU
  4917. */
  4918. rcu_read_lock();
  4919. __set_task_cpu(idle, cpu);
  4920. rcu_read_unlock();
  4921. rq->curr = rq->idle = idle;
  4922. #if defined(CONFIG_SMP)
  4923. idle->on_cpu = 1;
  4924. #endif
  4925. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4926. /* Set the preempt count _outside_ the spinlocks! */
  4927. #if defined(CONFIG_PREEMPT)
  4928. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4929. #else
  4930. task_thread_info(idle)->preempt_count = 0;
  4931. #endif
  4932. /*
  4933. * The idle tasks have their own, simple scheduling class:
  4934. */
  4935. idle->sched_class = &idle_sched_class;
  4936. ftrace_graph_init_idle_task(idle, cpu);
  4937. }
  4938. /*
  4939. * In a system that switches off the HZ timer nohz_cpu_mask
  4940. * indicates which cpus entered this state. This is used
  4941. * in the rcu update to wait only for active cpus. For system
  4942. * which do not switch off the HZ timer nohz_cpu_mask should
  4943. * always be CPU_BITS_NONE.
  4944. */
  4945. cpumask_var_t nohz_cpu_mask;
  4946. /*
  4947. * Increase the granularity value when there are more CPUs,
  4948. * because with more CPUs the 'effective latency' as visible
  4949. * to users decreases. But the relationship is not linear,
  4950. * so pick a second-best guess by going with the log2 of the
  4951. * number of CPUs.
  4952. *
  4953. * This idea comes from the SD scheduler of Con Kolivas:
  4954. */
  4955. static int get_update_sysctl_factor(void)
  4956. {
  4957. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4958. unsigned int factor;
  4959. switch (sysctl_sched_tunable_scaling) {
  4960. case SCHED_TUNABLESCALING_NONE:
  4961. factor = 1;
  4962. break;
  4963. case SCHED_TUNABLESCALING_LINEAR:
  4964. factor = cpus;
  4965. break;
  4966. case SCHED_TUNABLESCALING_LOG:
  4967. default:
  4968. factor = 1 + ilog2(cpus);
  4969. break;
  4970. }
  4971. return factor;
  4972. }
  4973. static void update_sysctl(void)
  4974. {
  4975. unsigned int factor = get_update_sysctl_factor();
  4976. #define SET_SYSCTL(name) \
  4977. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4978. SET_SYSCTL(sched_min_granularity);
  4979. SET_SYSCTL(sched_latency);
  4980. SET_SYSCTL(sched_wakeup_granularity);
  4981. #undef SET_SYSCTL
  4982. }
  4983. static inline void sched_init_granularity(void)
  4984. {
  4985. update_sysctl();
  4986. }
  4987. #ifdef CONFIG_SMP
  4988. /*
  4989. * This is how migration works:
  4990. *
  4991. * 1) we invoke migration_cpu_stop() on the target CPU using
  4992. * stop_one_cpu().
  4993. * 2) stopper starts to run (implicitly forcing the migrated thread
  4994. * off the CPU)
  4995. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4996. * 4) if it's in the wrong runqueue then the migration thread removes
  4997. * it and puts it into the right queue.
  4998. * 5) stopper completes and stop_one_cpu() returns and the migration
  4999. * is done.
  5000. */
  5001. /*
  5002. * Change a given task's CPU affinity. Migrate the thread to a
  5003. * proper CPU and schedule it away if the CPU it's executing on
  5004. * is removed from the allowed bitmask.
  5005. *
  5006. * NOTE: the caller must have a valid reference to the task, the
  5007. * task must not exit() & deallocate itself prematurely. The
  5008. * call is not atomic; no spinlocks may be held.
  5009. */
  5010. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5011. {
  5012. unsigned long flags;
  5013. struct rq *rq;
  5014. unsigned int dest_cpu;
  5015. int ret = 0;
  5016. /*
  5017. * Serialize against TASK_WAKING so that ttwu() and wunt() can
  5018. * drop the rq->lock and still rely on ->cpus_allowed.
  5019. */
  5020. again:
  5021. while (task_is_waking(p))
  5022. cpu_relax();
  5023. rq = task_rq_lock(p, &flags);
  5024. if (task_is_waking(p)) {
  5025. task_rq_unlock(rq, &flags);
  5026. goto again;
  5027. }
  5028. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  5029. ret = -EINVAL;
  5030. goto out;
  5031. }
  5032. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5033. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5034. ret = -EINVAL;
  5035. goto out;
  5036. }
  5037. if (p->sched_class->set_cpus_allowed)
  5038. p->sched_class->set_cpus_allowed(p, new_mask);
  5039. else {
  5040. cpumask_copy(&p->cpus_allowed, new_mask);
  5041. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5042. }
  5043. /* Can the task run on the task's current CPU? If so, we're done */
  5044. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5045. goto out;
  5046. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  5047. if (migrate_task(p, rq)) {
  5048. struct migration_arg arg = { p, dest_cpu };
  5049. /* Need help from migration thread: drop lock and wait. */
  5050. task_rq_unlock(rq, &flags);
  5051. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  5052. tlb_migrate_finish(p->mm);
  5053. return 0;
  5054. }
  5055. out:
  5056. task_rq_unlock(rq, &flags);
  5057. return ret;
  5058. }
  5059. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5060. /*
  5061. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5062. * this because either it can't run here any more (set_cpus_allowed()
  5063. * away from this CPU, or CPU going down), or because we're
  5064. * attempting to rebalance this task on exec (sched_exec).
  5065. *
  5066. * So we race with normal scheduler movements, but that's OK, as long
  5067. * as the task is no longer on this CPU.
  5068. *
  5069. * Returns non-zero if task was successfully migrated.
  5070. */
  5071. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5072. {
  5073. struct rq *rq_dest, *rq_src;
  5074. int ret = 0;
  5075. if (unlikely(!cpu_active(dest_cpu)))
  5076. return ret;
  5077. rq_src = cpu_rq(src_cpu);
  5078. rq_dest = cpu_rq(dest_cpu);
  5079. double_rq_lock(rq_src, rq_dest);
  5080. /* Already moved. */
  5081. if (task_cpu(p) != src_cpu)
  5082. goto done;
  5083. /* Affinity changed (again). */
  5084. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5085. goto fail;
  5086. /*
  5087. * If we're not on a rq, the next wake-up will ensure we're
  5088. * placed properly.
  5089. */
  5090. if (p->se.on_rq) {
  5091. deactivate_task(rq_src, p, 0);
  5092. set_task_cpu(p, dest_cpu);
  5093. activate_task(rq_dest, p, 0);
  5094. check_preempt_curr(rq_dest, p, 0);
  5095. }
  5096. done:
  5097. ret = 1;
  5098. fail:
  5099. double_rq_unlock(rq_src, rq_dest);
  5100. return ret;
  5101. }
  5102. /*
  5103. * migration_cpu_stop - this will be executed by a highprio stopper thread
  5104. * and performs thread migration by bumping thread off CPU then
  5105. * 'pushing' onto another runqueue.
  5106. */
  5107. static int migration_cpu_stop(void *data)
  5108. {
  5109. struct migration_arg *arg = data;
  5110. /*
  5111. * The original target cpu might have gone down and we might
  5112. * be on another cpu but it doesn't matter.
  5113. */
  5114. local_irq_disable();
  5115. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  5116. local_irq_enable();
  5117. return 0;
  5118. }
  5119. #ifdef CONFIG_HOTPLUG_CPU
  5120. /*
  5121. * Ensures that the idle task is using init_mm right before its cpu goes
  5122. * offline.
  5123. */
  5124. void idle_task_exit(void)
  5125. {
  5126. struct mm_struct *mm = current->active_mm;
  5127. BUG_ON(cpu_online(smp_processor_id()));
  5128. if (mm != &init_mm)
  5129. switch_mm(mm, &init_mm, current);
  5130. mmdrop(mm);
  5131. }
  5132. /*
  5133. * While a dead CPU has no uninterruptible tasks queued at this point,
  5134. * it might still have a nonzero ->nr_uninterruptible counter, because
  5135. * for performance reasons the counter is not stricly tracking tasks to
  5136. * their home CPUs. So we just add the counter to another CPU's counter,
  5137. * to keep the global sum constant after CPU-down:
  5138. */
  5139. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5140. {
  5141. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  5142. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5143. rq_src->nr_uninterruptible = 0;
  5144. }
  5145. /*
  5146. * remove the tasks which were accounted by rq from calc_load_tasks.
  5147. */
  5148. static void calc_global_load_remove(struct rq *rq)
  5149. {
  5150. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  5151. rq->calc_load_active = 0;
  5152. }
  5153. /*
  5154. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  5155. * try_to_wake_up()->select_task_rq().
  5156. *
  5157. * Called with rq->lock held even though we'er in stop_machine() and
  5158. * there's no concurrency possible, we hold the required locks anyway
  5159. * because of lock validation efforts.
  5160. */
  5161. static void migrate_tasks(unsigned int dead_cpu)
  5162. {
  5163. struct rq *rq = cpu_rq(dead_cpu);
  5164. struct task_struct *next, *stop = rq->stop;
  5165. int dest_cpu;
  5166. /*
  5167. * Fudge the rq selection such that the below task selection loop
  5168. * doesn't get stuck on the currently eligible stop task.
  5169. *
  5170. * We're currently inside stop_machine() and the rq is either stuck
  5171. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  5172. * either way we should never end up calling schedule() until we're
  5173. * done here.
  5174. */
  5175. rq->stop = NULL;
  5176. for ( ; ; ) {
  5177. /*
  5178. * There's this thread running, bail when that's the only
  5179. * remaining thread.
  5180. */
  5181. if (rq->nr_running == 1)
  5182. break;
  5183. next = pick_next_task(rq);
  5184. BUG_ON(!next);
  5185. next->sched_class->put_prev_task(rq, next);
  5186. /* Find suitable destination for @next, with force if needed. */
  5187. dest_cpu = select_fallback_rq(dead_cpu, next);
  5188. raw_spin_unlock(&rq->lock);
  5189. __migrate_task(next, dead_cpu, dest_cpu);
  5190. raw_spin_lock(&rq->lock);
  5191. }
  5192. rq->stop = stop;
  5193. }
  5194. #endif /* CONFIG_HOTPLUG_CPU */
  5195. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5196. static struct ctl_table sd_ctl_dir[] = {
  5197. {
  5198. .procname = "sched_domain",
  5199. .mode = 0555,
  5200. },
  5201. {}
  5202. };
  5203. static struct ctl_table sd_ctl_root[] = {
  5204. {
  5205. .procname = "kernel",
  5206. .mode = 0555,
  5207. .child = sd_ctl_dir,
  5208. },
  5209. {}
  5210. };
  5211. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5212. {
  5213. struct ctl_table *entry =
  5214. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5215. return entry;
  5216. }
  5217. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5218. {
  5219. struct ctl_table *entry;
  5220. /*
  5221. * In the intermediate directories, both the child directory and
  5222. * procname are dynamically allocated and could fail but the mode
  5223. * will always be set. In the lowest directory the names are
  5224. * static strings and all have proc handlers.
  5225. */
  5226. for (entry = *tablep; entry->mode; entry++) {
  5227. if (entry->child)
  5228. sd_free_ctl_entry(&entry->child);
  5229. if (entry->proc_handler == NULL)
  5230. kfree(entry->procname);
  5231. }
  5232. kfree(*tablep);
  5233. *tablep = NULL;
  5234. }
  5235. static void
  5236. set_table_entry(struct ctl_table *entry,
  5237. const char *procname, void *data, int maxlen,
  5238. mode_t mode, proc_handler *proc_handler)
  5239. {
  5240. entry->procname = procname;
  5241. entry->data = data;
  5242. entry->maxlen = maxlen;
  5243. entry->mode = mode;
  5244. entry->proc_handler = proc_handler;
  5245. }
  5246. static struct ctl_table *
  5247. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5248. {
  5249. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5250. if (table == NULL)
  5251. return NULL;
  5252. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5253. sizeof(long), 0644, proc_doulongvec_minmax);
  5254. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5255. sizeof(long), 0644, proc_doulongvec_minmax);
  5256. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5257. sizeof(int), 0644, proc_dointvec_minmax);
  5258. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5259. sizeof(int), 0644, proc_dointvec_minmax);
  5260. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5261. sizeof(int), 0644, proc_dointvec_minmax);
  5262. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5263. sizeof(int), 0644, proc_dointvec_minmax);
  5264. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5265. sizeof(int), 0644, proc_dointvec_minmax);
  5266. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5267. sizeof(int), 0644, proc_dointvec_minmax);
  5268. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5269. sizeof(int), 0644, proc_dointvec_minmax);
  5270. set_table_entry(&table[9], "cache_nice_tries",
  5271. &sd->cache_nice_tries,
  5272. sizeof(int), 0644, proc_dointvec_minmax);
  5273. set_table_entry(&table[10], "flags", &sd->flags,
  5274. sizeof(int), 0644, proc_dointvec_minmax);
  5275. set_table_entry(&table[11], "name", sd->name,
  5276. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5277. /* &table[12] is terminator */
  5278. return table;
  5279. }
  5280. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5281. {
  5282. struct ctl_table *entry, *table;
  5283. struct sched_domain *sd;
  5284. int domain_num = 0, i;
  5285. char buf[32];
  5286. for_each_domain(cpu, sd)
  5287. domain_num++;
  5288. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5289. if (table == NULL)
  5290. return NULL;
  5291. i = 0;
  5292. for_each_domain(cpu, sd) {
  5293. snprintf(buf, 32, "domain%d", i);
  5294. entry->procname = kstrdup(buf, GFP_KERNEL);
  5295. entry->mode = 0555;
  5296. entry->child = sd_alloc_ctl_domain_table(sd);
  5297. entry++;
  5298. i++;
  5299. }
  5300. return table;
  5301. }
  5302. static struct ctl_table_header *sd_sysctl_header;
  5303. static void register_sched_domain_sysctl(void)
  5304. {
  5305. int i, cpu_num = num_possible_cpus();
  5306. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5307. char buf[32];
  5308. WARN_ON(sd_ctl_dir[0].child);
  5309. sd_ctl_dir[0].child = entry;
  5310. if (entry == NULL)
  5311. return;
  5312. for_each_possible_cpu(i) {
  5313. snprintf(buf, 32, "cpu%d", i);
  5314. entry->procname = kstrdup(buf, GFP_KERNEL);
  5315. entry->mode = 0555;
  5316. entry->child = sd_alloc_ctl_cpu_table(i);
  5317. entry++;
  5318. }
  5319. WARN_ON(sd_sysctl_header);
  5320. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5321. }
  5322. /* may be called multiple times per register */
  5323. static void unregister_sched_domain_sysctl(void)
  5324. {
  5325. if (sd_sysctl_header)
  5326. unregister_sysctl_table(sd_sysctl_header);
  5327. sd_sysctl_header = NULL;
  5328. if (sd_ctl_dir[0].child)
  5329. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5330. }
  5331. #else
  5332. static void register_sched_domain_sysctl(void)
  5333. {
  5334. }
  5335. static void unregister_sched_domain_sysctl(void)
  5336. {
  5337. }
  5338. #endif
  5339. static void set_rq_online(struct rq *rq)
  5340. {
  5341. if (!rq->online) {
  5342. const struct sched_class *class;
  5343. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5344. rq->online = 1;
  5345. for_each_class(class) {
  5346. if (class->rq_online)
  5347. class->rq_online(rq);
  5348. }
  5349. }
  5350. }
  5351. static void set_rq_offline(struct rq *rq)
  5352. {
  5353. if (rq->online) {
  5354. const struct sched_class *class;
  5355. for_each_class(class) {
  5356. if (class->rq_offline)
  5357. class->rq_offline(rq);
  5358. }
  5359. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5360. rq->online = 0;
  5361. }
  5362. }
  5363. /*
  5364. * migration_call - callback that gets triggered when a CPU is added.
  5365. * Here we can start up the necessary migration thread for the new CPU.
  5366. */
  5367. static int __cpuinit
  5368. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5369. {
  5370. int cpu = (long)hcpu;
  5371. unsigned long flags;
  5372. struct rq *rq = cpu_rq(cpu);
  5373. switch (action & ~CPU_TASKS_FROZEN) {
  5374. case CPU_UP_PREPARE:
  5375. rq->calc_load_update = calc_load_update;
  5376. break;
  5377. case CPU_ONLINE:
  5378. /* Update our root-domain */
  5379. raw_spin_lock_irqsave(&rq->lock, flags);
  5380. if (rq->rd) {
  5381. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5382. set_rq_online(rq);
  5383. }
  5384. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5385. break;
  5386. #ifdef CONFIG_HOTPLUG_CPU
  5387. case CPU_DYING:
  5388. /* Update our root-domain */
  5389. raw_spin_lock_irqsave(&rq->lock, flags);
  5390. if (rq->rd) {
  5391. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5392. set_rq_offline(rq);
  5393. }
  5394. migrate_tasks(cpu);
  5395. BUG_ON(rq->nr_running != 1); /* the migration thread */
  5396. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5397. migrate_nr_uninterruptible(rq);
  5398. calc_global_load_remove(rq);
  5399. break;
  5400. #endif
  5401. }
  5402. update_max_interval();
  5403. return NOTIFY_OK;
  5404. }
  5405. /*
  5406. * Register at high priority so that task migration (migrate_all_tasks)
  5407. * happens before everything else. This has to be lower priority than
  5408. * the notifier in the perf_event subsystem, though.
  5409. */
  5410. static struct notifier_block __cpuinitdata migration_notifier = {
  5411. .notifier_call = migration_call,
  5412. .priority = CPU_PRI_MIGRATION,
  5413. };
  5414. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5415. unsigned long action, void *hcpu)
  5416. {
  5417. switch (action & ~CPU_TASKS_FROZEN) {
  5418. case CPU_ONLINE:
  5419. case CPU_DOWN_FAILED:
  5420. set_cpu_active((long)hcpu, true);
  5421. return NOTIFY_OK;
  5422. default:
  5423. return NOTIFY_DONE;
  5424. }
  5425. }
  5426. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5427. unsigned long action, void *hcpu)
  5428. {
  5429. switch (action & ~CPU_TASKS_FROZEN) {
  5430. case CPU_DOWN_PREPARE:
  5431. set_cpu_active((long)hcpu, false);
  5432. return NOTIFY_OK;
  5433. default:
  5434. return NOTIFY_DONE;
  5435. }
  5436. }
  5437. static int __init migration_init(void)
  5438. {
  5439. void *cpu = (void *)(long)smp_processor_id();
  5440. int err;
  5441. /* Initialize migration for the boot CPU */
  5442. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5443. BUG_ON(err == NOTIFY_BAD);
  5444. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5445. register_cpu_notifier(&migration_notifier);
  5446. /* Register cpu active notifiers */
  5447. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5448. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5449. return 0;
  5450. }
  5451. early_initcall(migration_init);
  5452. #endif
  5453. #ifdef CONFIG_SMP
  5454. #ifdef CONFIG_SCHED_DEBUG
  5455. static __read_mostly int sched_domain_debug_enabled;
  5456. static int __init sched_domain_debug_setup(char *str)
  5457. {
  5458. sched_domain_debug_enabled = 1;
  5459. return 0;
  5460. }
  5461. early_param("sched_debug", sched_domain_debug_setup);
  5462. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5463. struct cpumask *groupmask)
  5464. {
  5465. struct sched_group *group = sd->groups;
  5466. char str[256];
  5467. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5468. cpumask_clear(groupmask);
  5469. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5470. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5471. printk("does not load-balance\n");
  5472. if (sd->parent)
  5473. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5474. " has parent");
  5475. return -1;
  5476. }
  5477. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5478. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5479. printk(KERN_ERR "ERROR: domain->span does not contain "
  5480. "CPU%d\n", cpu);
  5481. }
  5482. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5483. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5484. " CPU%d\n", cpu);
  5485. }
  5486. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5487. do {
  5488. if (!group) {
  5489. printk("\n");
  5490. printk(KERN_ERR "ERROR: group is NULL\n");
  5491. break;
  5492. }
  5493. if (!group->cpu_power) {
  5494. printk(KERN_CONT "\n");
  5495. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5496. "set\n");
  5497. break;
  5498. }
  5499. if (!cpumask_weight(sched_group_cpus(group))) {
  5500. printk(KERN_CONT "\n");
  5501. printk(KERN_ERR "ERROR: empty group\n");
  5502. break;
  5503. }
  5504. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5505. printk(KERN_CONT "\n");
  5506. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5507. break;
  5508. }
  5509. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5510. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5511. printk(KERN_CONT " %s", str);
  5512. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5513. printk(KERN_CONT " (cpu_power = %d)",
  5514. group->cpu_power);
  5515. }
  5516. group = group->next;
  5517. } while (group != sd->groups);
  5518. printk(KERN_CONT "\n");
  5519. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5520. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5521. if (sd->parent &&
  5522. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5523. printk(KERN_ERR "ERROR: parent span is not a superset "
  5524. "of domain->span\n");
  5525. return 0;
  5526. }
  5527. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5528. {
  5529. cpumask_var_t groupmask;
  5530. int level = 0;
  5531. if (!sched_domain_debug_enabled)
  5532. return;
  5533. if (!sd) {
  5534. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5535. return;
  5536. }
  5537. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5538. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5539. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5540. return;
  5541. }
  5542. for (;;) {
  5543. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5544. break;
  5545. level++;
  5546. sd = sd->parent;
  5547. if (!sd)
  5548. break;
  5549. }
  5550. free_cpumask_var(groupmask);
  5551. }
  5552. #else /* !CONFIG_SCHED_DEBUG */
  5553. # define sched_domain_debug(sd, cpu) do { } while (0)
  5554. #endif /* CONFIG_SCHED_DEBUG */
  5555. static int sd_degenerate(struct sched_domain *sd)
  5556. {
  5557. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5558. return 1;
  5559. /* Following flags need at least 2 groups */
  5560. if (sd->flags & (SD_LOAD_BALANCE |
  5561. SD_BALANCE_NEWIDLE |
  5562. SD_BALANCE_FORK |
  5563. SD_BALANCE_EXEC |
  5564. SD_SHARE_CPUPOWER |
  5565. SD_SHARE_PKG_RESOURCES)) {
  5566. if (sd->groups != sd->groups->next)
  5567. return 0;
  5568. }
  5569. /* Following flags don't use groups */
  5570. if (sd->flags & (SD_WAKE_AFFINE))
  5571. return 0;
  5572. return 1;
  5573. }
  5574. static int
  5575. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5576. {
  5577. unsigned long cflags = sd->flags, pflags = parent->flags;
  5578. if (sd_degenerate(parent))
  5579. return 1;
  5580. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5581. return 0;
  5582. /* Flags needing groups don't count if only 1 group in parent */
  5583. if (parent->groups == parent->groups->next) {
  5584. pflags &= ~(SD_LOAD_BALANCE |
  5585. SD_BALANCE_NEWIDLE |
  5586. SD_BALANCE_FORK |
  5587. SD_BALANCE_EXEC |
  5588. SD_SHARE_CPUPOWER |
  5589. SD_SHARE_PKG_RESOURCES);
  5590. if (nr_node_ids == 1)
  5591. pflags &= ~SD_SERIALIZE;
  5592. }
  5593. if (~cflags & pflags)
  5594. return 0;
  5595. return 1;
  5596. }
  5597. static void free_rootdomain(struct root_domain *rd)
  5598. {
  5599. synchronize_sched();
  5600. cpupri_cleanup(&rd->cpupri);
  5601. free_cpumask_var(rd->rto_mask);
  5602. free_cpumask_var(rd->online);
  5603. free_cpumask_var(rd->span);
  5604. kfree(rd);
  5605. }
  5606. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5607. {
  5608. struct root_domain *old_rd = NULL;
  5609. unsigned long flags;
  5610. raw_spin_lock_irqsave(&rq->lock, flags);
  5611. if (rq->rd) {
  5612. old_rd = rq->rd;
  5613. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5614. set_rq_offline(rq);
  5615. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5616. /*
  5617. * If we dont want to free the old_rt yet then
  5618. * set old_rd to NULL to skip the freeing later
  5619. * in this function:
  5620. */
  5621. if (!atomic_dec_and_test(&old_rd->refcount))
  5622. old_rd = NULL;
  5623. }
  5624. atomic_inc(&rd->refcount);
  5625. rq->rd = rd;
  5626. cpumask_set_cpu(rq->cpu, rd->span);
  5627. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5628. set_rq_online(rq);
  5629. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5630. if (old_rd)
  5631. free_rootdomain(old_rd);
  5632. }
  5633. static int init_rootdomain(struct root_domain *rd)
  5634. {
  5635. memset(rd, 0, sizeof(*rd));
  5636. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5637. goto out;
  5638. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5639. goto free_span;
  5640. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5641. goto free_online;
  5642. if (cpupri_init(&rd->cpupri) != 0)
  5643. goto free_rto_mask;
  5644. return 0;
  5645. free_rto_mask:
  5646. free_cpumask_var(rd->rto_mask);
  5647. free_online:
  5648. free_cpumask_var(rd->online);
  5649. free_span:
  5650. free_cpumask_var(rd->span);
  5651. out:
  5652. return -ENOMEM;
  5653. }
  5654. static void init_defrootdomain(void)
  5655. {
  5656. init_rootdomain(&def_root_domain);
  5657. atomic_set(&def_root_domain.refcount, 1);
  5658. }
  5659. static struct root_domain *alloc_rootdomain(void)
  5660. {
  5661. struct root_domain *rd;
  5662. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5663. if (!rd)
  5664. return NULL;
  5665. if (init_rootdomain(rd) != 0) {
  5666. kfree(rd);
  5667. return NULL;
  5668. }
  5669. return rd;
  5670. }
  5671. /*
  5672. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5673. * hold the hotplug lock.
  5674. */
  5675. static void
  5676. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5677. {
  5678. struct rq *rq = cpu_rq(cpu);
  5679. struct sched_domain *tmp;
  5680. for (tmp = sd; tmp; tmp = tmp->parent)
  5681. tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
  5682. /* Remove the sched domains which do not contribute to scheduling. */
  5683. for (tmp = sd; tmp; ) {
  5684. struct sched_domain *parent = tmp->parent;
  5685. if (!parent)
  5686. break;
  5687. if (sd_parent_degenerate(tmp, parent)) {
  5688. tmp->parent = parent->parent;
  5689. if (parent->parent)
  5690. parent->parent->child = tmp;
  5691. } else
  5692. tmp = tmp->parent;
  5693. }
  5694. if (sd && sd_degenerate(sd)) {
  5695. sd = sd->parent;
  5696. if (sd)
  5697. sd->child = NULL;
  5698. }
  5699. sched_domain_debug(sd, cpu);
  5700. rq_attach_root(rq, rd);
  5701. rcu_assign_pointer(rq->sd, sd);
  5702. }
  5703. /* cpus with isolated domains */
  5704. static cpumask_var_t cpu_isolated_map;
  5705. /* Setup the mask of cpus configured for isolated domains */
  5706. static int __init isolated_cpu_setup(char *str)
  5707. {
  5708. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5709. cpulist_parse(str, cpu_isolated_map);
  5710. return 1;
  5711. }
  5712. __setup("isolcpus=", isolated_cpu_setup);
  5713. /*
  5714. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5715. * to a function which identifies what group(along with sched group) a CPU
  5716. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5717. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5718. *
  5719. * init_sched_build_groups will build a circular linked list of the groups
  5720. * covered by the given span, and will set each group's ->cpumask correctly,
  5721. * and ->cpu_power to 0.
  5722. */
  5723. static void
  5724. init_sched_build_groups(const struct cpumask *span,
  5725. const struct cpumask *cpu_map,
  5726. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5727. struct sched_group **sg,
  5728. struct cpumask *tmpmask),
  5729. struct cpumask *covered, struct cpumask *tmpmask)
  5730. {
  5731. struct sched_group *first = NULL, *last = NULL;
  5732. int i;
  5733. cpumask_clear(covered);
  5734. for_each_cpu(i, span) {
  5735. struct sched_group *sg;
  5736. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5737. int j;
  5738. if (cpumask_test_cpu(i, covered))
  5739. continue;
  5740. cpumask_clear(sched_group_cpus(sg));
  5741. sg->cpu_power = 0;
  5742. for_each_cpu(j, span) {
  5743. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5744. continue;
  5745. cpumask_set_cpu(j, covered);
  5746. cpumask_set_cpu(j, sched_group_cpus(sg));
  5747. }
  5748. if (!first)
  5749. first = sg;
  5750. if (last)
  5751. last->next = sg;
  5752. last = sg;
  5753. }
  5754. last->next = first;
  5755. }
  5756. #define SD_NODES_PER_DOMAIN 16
  5757. #ifdef CONFIG_NUMA
  5758. /**
  5759. * find_next_best_node - find the next node to include in a sched_domain
  5760. * @node: node whose sched_domain we're building
  5761. * @used_nodes: nodes already in the sched_domain
  5762. *
  5763. * Find the next node to include in a given scheduling domain. Simply
  5764. * finds the closest node not already in the @used_nodes map.
  5765. *
  5766. * Should use nodemask_t.
  5767. */
  5768. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5769. {
  5770. int i, n, val, min_val, best_node = 0;
  5771. min_val = INT_MAX;
  5772. for (i = 0; i < nr_node_ids; i++) {
  5773. /* Start at @node */
  5774. n = (node + i) % nr_node_ids;
  5775. if (!nr_cpus_node(n))
  5776. continue;
  5777. /* Skip already used nodes */
  5778. if (node_isset(n, *used_nodes))
  5779. continue;
  5780. /* Simple min distance search */
  5781. val = node_distance(node, n);
  5782. if (val < min_val) {
  5783. min_val = val;
  5784. best_node = n;
  5785. }
  5786. }
  5787. node_set(best_node, *used_nodes);
  5788. return best_node;
  5789. }
  5790. /**
  5791. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5792. * @node: node whose cpumask we're constructing
  5793. * @span: resulting cpumask
  5794. *
  5795. * Given a node, construct a good cpumask for its sched_domain to span. It
  5796. * should be one that prevents unnecessary balancing, but also spreads tasks
  5797. * out optimally.
  5798. */
  5799. static void sched_domain_node_span(int node, struct cpumask *span)
  5800. {
  5801. nodemask_t used_nodes;
  5802. int i;
  5803. cpumask_clear(span);
  5804. nodes_clear(used_nodes);
  5805. cpumask_or(span, span, cpumask_of_node(node));
  5806. node_set(node, used_nodes);
  5807. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5808. int next_node = find_next_best_node(node, &used_nodes);
  5809. cpumask_or(span, span, cpumask_of_node(next_node));
  5810. }
  5811. }
  5812. #endif /* CONFIG_NUMA */
  5813. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5814. /*
  5815. * The cpus mask in sched_group and sched_domain hangs off the end.
  5816. *
  5817. * ( See the the comments in include/linux/sched.h:struct sched_group
  5818. * and struct sched_domain. )
  5819. */
  5820. struct static_sched_group {
  5821. struct sched_group sg;
  5822. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5823. };
  5824. struct static_sched_domain {
  5825. struct sched_domain sd;
  5826. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5827. };
  5828. struct s_data {
  5829. #ifdef CONFIG_NUMA
  5830. int sd_allnodes;
  5831. cpumask_var_t domainspan;
  5832. cpumask_var_t covered;
  5833. cpumask_var_t notcovered;
  5834. #endif
  5835. cpumask_var_t nodemask;
  5836. cpumask_var_t this_sibling_map;
  5837. cpumask_var_t this_core_map;
  5838. cpumask_var_t this_book_map;
  5839. cpumask_var_t send_covered;
  5840. cpumask_var_t tmpmask;
  5841. struct sched_group **sched_group_nodes;
  5842. struct root_domain *rd;
  5843. };
  5844. enum s_alloc {
  5845. sa_sched_groups = 0,
  5846. sa_rootdomain,
  5847. sa_tmpmask,
  5848. sa_send_covered,
  5849. sa_this_book_map,
  5850. sa_this_core_map,
  5851. sa_this_sibling_map,
  5852. sa_nodemask,
  5853. sa_sched_group_nodes,
  5854. #ifdef CONFIG_NUMA
  5855. sa_notcovered,
  5856. sa_covered,
  5857. sa_domainspan,
  5858. #endif
  5859. sa_none,
  5860. };
  5861. /*
  5862. * SMT sched-domains:
  5863. */
  5864. #ifdef CONFIG_SCHED_SMT
  5865. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5866. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5867. static int
  5868. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5869. struct sched_group **sg, struct cpumask *unused)
  5870. {
  5871. if (sg)
  5872. *sg = &per_cpu(sched_groups, cpu).sg;
  5873. return cpu;
  5874. }
  5875. #endif /* CONFIG_SCHED_SMT */
  5876. /*
  5877. * multi-core sched-domains:
  5878. */
  5879. #ifdef CONFIG_SCHED_MC
  5880. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5881. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5882. static int
  5883. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5884. struct sched_group **sg, struct cpumask *mask)
  5885. {
  5886. int group;
  5887. #ifdef CONFIG_SCHED_SMT
  5888. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5889. group = cpumask_first(mask);
  5890. #else
  5891. group = cpu;
  5892. #endif
  5893. if (sg)
  5894. *sg = &per_cpu(sched_group_core, group).sg;
  5895. return group;
  5896. }
  5897. #endif /* CONFIG_SCHED_MC */
  5898. /*
  5899. * book sched-domains:
  5900. */
  5901. #ifdef CONFIG_SCHED_BOOK
  5902. static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
  5903. static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
  5904. static int
  5905. cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
  5906. struct sched_group **sg, struct cpumask *mask)
  5907. {
  5908. int group = cpu;
  5909. #ifdef CONFIG_SCHED_MC
  5910. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5911. group = cpumask_first(mask);
  5912. #elif defined(CONFIG_SCHED_SMT)
  5913. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5914. group = cpumask_first(mask);
  5915. #endif
  5916. if (sg)
  5917. *sg = &per_cpu(sched_group_book, group).sg;
  5918. return group;
  5919. }
  5920. #endif /* CONFIG_SCHED_BOOK */
  5921. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5922. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5923. static int
  5924. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5925. struct sched_group **sg, struct cpumask *mask)
  5926. {
  5927. int group;
  5928. #ifdef CONFIG_SCHED_BOOK
  5929. cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
  5930. group = cpumask_first(mask);
  5931. #elif defined(CONFIG_SCHED_MC)
  5932. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5933. group = cpumask_first(mask);
  5934. #elif defined(CONFIG_SCHED_SMT)
  5935. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5936. group = cpumask_first(mask);
  5937. #else
  5938. group = cpu;
  5939. #endif
  5940. if (sg)
  5941. *sg = &per_cpu(sched_group_phys, group).sg;
  5942. return group;
  5943. }
  5944. #ifdef CONFIG_NUMA
  5945. /*
  5946. * The init_sched_build_groups can't handle what we want to do with node
  5947. * groups, so roll our own. Now each node has its own list of groups which
  5948. * gets dynamically allocated.
  5949. */
  5950. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5951. static struct sched_group ***sched_group_nodes_bycpu;
  5952. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5953. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5954. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5955. struct sched_group **sg,
  5956. struct cpumask *nodemask)
  5957. {
  5958. int group;
  5959. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5960. group = cpumask_first(nodemask);
  5961. if (sg)
  5962. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5963. return group;
  5964. }
  5965. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5966. {
  5967. struct sched_group *sg = group_head;
  5968. int j;
  5969. if (!sg)
  5970. return;
  5971. do {
  5972. for_each_cpu(j, sched_group_cpus(sg)) {
  5973. struct sched_domain *sd;
  5974. sd = &per_cpu(phys_domains, j).sd;
  5975. if (j != group_first_cpu(sd->groups)) {
  5976. /*
  5977. * Only add "power" once for each
  5978. * physical package.
  5979. */
  5980. continue;
  5981. }
  5982. sg->cpu_power += sd->groups->cpu_power;
  5983. }
  5984. sg = sg->next;
  5985. } while (sg != group_head);
  5986. }
  5987. static int build_numa_sched_groups(struct s_data *d,
  5988. const struct cpumask *cpu_map, int num)
  5989. {
  5990. struct sched_domain *sd;
  5991. struct sched_group *sg, *prev;
  5992. int n, j;
  5993. cpumask_clear(d->covered);
  5994. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5995. if (cpumask_empty(d->nodemask)) {
  5996. d->sched_group_nodes[num] = NULL;
  5997. goto out;
  5998. }
  5999. sched_domain_node_span(num, d->domainspan);
  6000. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  6001. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6002. GFP_KERNEL, num);
  6003. if (!sg) {
  6004. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  6005. num);
  6006. return -ENOMEM;
  6007. }
  6008. d->sched_group_nodes[num] = sg;
  6009. for_each_cpu(j, d->nodemask) {
  6010. sd = &per_cpu(node_domains, j).sd;
  6011. sd->groups = sg;
  6012. }
  6013. sg->cpu_power = 0;
  6014. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  6015. sg->next = sg;
  6016. cpumask_or(d->covered, d->covered, d->nodemask);
  6017. prev = sg;
  6018. for (j = 0; j < nr_node_ids; j++) {
  6019. n = (num + j) % nr_node_ids;
  6020. cpumask_complement(d->notcovered, d->covered);
  6021. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  6022. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  6023. if (cpumask_empty(d->tmpmask))
  6024. break;
  6025. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  6026. if (cpumask_empty(d->tmpmask))
  6027. continue;
  6028. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6029. GFP_KERNEL, num);
  6030. if (!sg) {
  6031. printk(KERN_WARNING
  6032. "Can not alloc domain group for node %d\n", j);
  6033. return -ENOMEM;
  6034. }
  6035. sg->cpu_power = 0;
  6036. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  6037. sg->next = prev->next;
  6038. cpumask_or(d->covered, d->covered, d->tmpmask);
  6039. prev->next = sg;
  6040. prev = sg;
  6041. }
  6042. out:
  6043. return 0;
  6044. }
  6045. #endif /* CONFIG_NUMA */
  6046. #ifdef CONFIG_NUMA
  6047. /* Free memory allocated for various sched_group structures */
  6048. static void free_sched_groups(const struct cpumask *cpu_map,
  6049. struct cpumask *nodemask)
  6050. {
  6051. int cpu, i;
  6052. for_each_cpu(cpu, cpu_map) {
  6053. struct sched_group **sched_group_nodes
  6054. = sched_group_nodes_bycpu[cpu];
  6055. if (!sched_group_nodes)
  6056. continue;
  6057. for (i = 0; i < nr_node_ids; i++) {
  6058. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6059. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6060. if (cpumask_empty(nodemask))
  6061. continue;
  6062. if (sg == NULL)
  6063. continue;
  6064. sg = sg->next;
  6065. next_sg:
  6066. oldsg = sg;
  6067. sg = sg->next;
  6068. kfree(oldsg);
  6069. if (oldsg != sched_group_nodes[i])
  6070. goto next_sg;
  6071. }
  6072. kfree(sched_group_nodes);
  6073. sched_group_nodes_bycpu[cpu] = NULL;
  6074. }
  6075. }
  6076. #else /* !CONFIG_NUMA */
  6077. static void free_sched_groups(const struct cpumask *cpu_map,
  6078. struct cpumask *nodemask)
  6079. {
  6080. }
  6081. #endif /* CONFIG_NUMA */
  6082. /*
  6083. * Initialize sched groups cpu_power.
  6084. *
  6085. * cpu_power indicates the capacity of sched group, which is used while
  6086. * distributing the load between different sched groups in a sched domain.
  6087. * Typically cpu_power for all the groups in a sched domain will be same unless
  6088. * there are asymmetries in the topology. If there are asymmetries, group
  6089. * having more cpu_power will pickup more load compared to the group having
  6090. * less cpu_power.
  6091. */
  6092. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6093. {
  6094. struct sched_domain *child;
  6095. struct sched_group *group;
  6096. long power;
  6097. int weight;
  6098. WARN_ON(!sd || !sd->groups);
  6099. if (cpu != group_first_cpu(sd->groups))
  6100. return;
  6101. sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
  6102. child = sd->child;
  6103. sd->groups->cpu_power = 0;
  6104. if (!child) {
  6105. power = SCHED_LOAD_SCALE;
  6106. weight = cpumask_weight(sched_domain_span(sd));
  6107. /*
  6108. * SMT siblings share the power of a single core.
  6109. * Usually multiple threads get a better yield out of
  6110. * that one core than a single thread would have,
  6111. * reflect that in sd->smt_gain.
  6112. */
  6113. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  6114. power *= sd->smt_gain;
  6115. power /= weight;
  6116. power >>= SCHED_LOAD_SHIFT;
  6117. }
  6118. sd->groups->cpu_power += power;
  6119. return;
  6120. }
  6121. /*
  6122. * Add cpu_power of each child group to this groups cpu_power.
  6123. */
  6124. group = child->groups;
  6125. do {
  6126. sd->groups->cpu_power += group->cpu_power;
  6127. group = group->next;
  6128. } while (group != child->groups);
  6129. }
  6130. /*
  6131. * Initializers for schedule domains
  6132. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6133. */
  6134. #ifdef CONFIG_SCHED_DEBUG
  6135. # define SD_INIT_NAME(sd, type) sd->name = #type
  6136. #else
  6137. # define SD_INIT_NAME(sd, type) do { } while (0)
  6138. #endif
  6139. #define SD_INIT(sd, type) sd_init_##type(sd)
  6140. #define SD_INIT_FUNC(type) \
  6141. static noinline void sd_init_##type(struct sched_domain *sd) \
  6142. { \
  6143. memset(sd, 0, sizeof(*sd)); \
  6144. *sd = SD_##type##_INIT; \
  6145. sd->level = SD_LV_##type; \
  6146. SD_INIT_NAME(sd, type); \
  6147. }
  6148. SD_INIT_FUNC(CPU)
  6149. #ifdef CONFIG_NUMA
  6150. SD_INIT_FUNC(ALLNODES)
  6151. SD_INIT_FUNC(NODE)
  6152. #endif
  6153. #ifdef CONFIG_SCHED_SMT
  6154. SD_INIT_FUNC(SIBLING)
  6155. #endif
  6156. #ifdef CONFIG_SCHED_MC
  6157. SD_INIT_FUNC(MC)
  6158. #endif
  6159. #ifdef CONFIG_SCHED_BOOK
  6160. SD_INIT_FUNC(BOOK)
  6161. #endif
  6162. static int default_relax_domain_level = -1;
  6163. static int __init setup_relax_domain_level(char *str)
  6164. {
  6165. unsigned long val;
  6166. val = simple_strtoul(str, NULL, 0);
  6167. if (val < SD_LV_MAX)
  6168. default_relax_domain_level = val;
  6169. return 1;
  6170. }
  6171. __setup("relax_domain_level=", setup_relax_domain_level);
  6172. static void set_domain_attribute(struct sched_domain *sd,
  6173. struct sched_domain_attr *attr)
  6174. {
  6175. int request;
  6176. if (!attr || attr->relax_domain_level < 0) {
  6177. if (default_relax_domain_level < 0)
  6178. return;
  6179. else
  6180. request = default_relax_domain_level;
  6181. } else
  6182. request = attr->relax_domain_level;
  6183. if (request < sd->level) {
  6184. /* turn off idle balance on this domain */
  6185. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6186. } else {
  6187. /* turn on idle balance on this domain */
  6188. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6189. }
  6190. }
  6191. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  6192. const struct cpumask *cpu_map)
  6193. {
  6194. switch (what) {
  6195. case sa_sched_groups:
  6196. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  6197. d->sched_group_nodes = NULL;
  6198. case sa_rootdomain:
  6199. free_rootdomain(d->rd); /* fall through */
  6200. case sa_tmpmask:
  6201. free_cpumask_var(d->tmpmask); /* fall through */
  6202. case sa_send_covered:
  6203. free_cpumask_var(d->send_covered); /* fall through */
  6204. case sa_this_book_map:
  6205. free_cpumask_var(d->this_book_map); /* fall through */
  6206. case sa_this_core_map:
  6207. free_cpumask_var(d->this_core_map); /* fall through */
  6208. case sa_this_sibling_map:
  6209. free_cpumask_var(d->this_sibling_map); /* fall through */
  6210. case sa_nodemask:
  6211. free_cpumask_var(d->nodemask); /* fall through */
  6212. case sa_sched_group_nodes:
  6213. #ifdef CONFIG_NUMA
  6214. kfree(d->sched_group_nodes); /* fall through */
  6215. case sa_notcovered:
  6216. free_cpumask_var(d->notcovered); /* fall through */
  6217. case sa_covered:
  6218. free_cpumask_var(d->covered); /* fall through */
  6219. case sa_domainspan:
  6220. free_cpumask_var(d->domainspan); /* fall through */
  6221. #endif
  6222. case sa_none:
  6223. break;
  6224. }
  6225. }
  6226. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  6227. const struct cpumask *cpu_map)
  6228. {
  6229. #ifdef CONFIG_NUMA
  6230. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  6231. return sa_none;
  6232. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  6233. return sa_domainspan;
  6234. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  6235. return sa_covered;
  6236. /* Allocate the per-node list of sched groups */
  6237. d->sched_group_nodes = kcalloc(nr_node_ids,
  6238. sizeof(struct sched_group *), GFP_KERNEL);
  6239. if (!d->sched_group_nodes) {
  6240. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6241. return sa_notcovered;
  6242. }
  6243. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  6244. #endif
  6245. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  6246. return sa_sched_group_nodes;
  6247. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  6248. return sa_nodemask;
  6249. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  6250. return sa_this_sibling_map;
  6251. if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
  6252. return sa_this_core_map;
  6253. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  6254. return sa_this_book_map;
  6255. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  6256. return sa_send_covered;
  6257. d->rd = alloc_rootdomain();
  6258. if (!d->rd) {
  6259. printk(KERN_WARNING "Cannot alloc root domain\n");
  6260. return sa_tmpmask;
  6261. }
  6262. return sa_rootdomain;
  6263. }
  6264. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  6265. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  6266. {
  6267. struct sched_domain *sd = NULL;
  6268. #ifdef CONFIG_NUMA
  6269. struct sched_domain *parent;
  6270. d->sd_allnodes = 0;
  6271. if (cpumask_weight(cpu_map) >
  6272. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  6273. sd = &per_cpu(allnodes_domains, i).sd;
  6274. SD_INIT(sd, ALLNODES);
  6275. set_domain_attribute(sd, attr);
  6276. cpumask_copy(sched_domain_span(sd), cpu_map);
  6277. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  6278. d->sd_allnodes = 1;
  6279. }
  6280. parent = sd;
  6281. sd = &per_cpu(node_domains, i).sd;
  6282. SD_INIT(sd, NODE);
  6283. set_domain_attribute(sd, attr);
  6284. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6285. sd->parent = parent;
  6286. if (parent)
  6287. parent->child = sd;
  6288. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  6289. #endif
  6290. return sd;
  6291. }
  6292. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  6293. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6294. struct sched_domain *parent, int i)
  6295. {
  6296. struct sched_domain *sd;
  6297. sd = &per_cpu(phys_domains, i).sd;
  6298. SD_INIT(sd, CPU);
  6299. set_domain_attribute(sd, attr);
  6300. cpumask_copy(sched_domain_span(sd), d->nodemask);
  6301. sd->parent = parent;
  6302. if (parent)
  6303. parent->child = sd;
  6304. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  6305. return sd;
  6306. }
  6307. static struct sched_domain *__build_book_sched_domain(struct s_data *d,
  6308. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6309. struct sched_domain *parent, int i)
  6310. {
  6311. struct sched_domain *sd = parent;
  6312. #ifdef CONFIG_SCHED_BOOK
  6313. sd = &per_cpu(book_domains, i).sd;
  6314. SD_INIT(sd, BOOK);
  6315. set_domain_attribute(sd, attr);
  6316. cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
  6317. sd->parent = parent;
  6318. parent->child = sd;
  6319. cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
  6320. #endif
  6321. return sd;
  6322. }
  6323. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  6324. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6325. struct sched_domain *parent, int i)
  6326. {
  6327. struct sched_domain *sd = parent;
  6328. #ifdef CONFIG_SCHED_MC
  6329. sd = &per_cpu(core_domains, i).sd;
  6330. SD_INIT(sd, MC);
  6331. set_domain_attribute(sd, attr);
  6332. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  6333. sd->parent = parent;
  6334. parent->child = sd;
  6335. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  6336. #endif
  6337. return sd;
  6338. }
  6339. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  6340. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6341. struct sched_domain *parent, int i)
  6342. {
  6343. struct sched_domain *sd = parent;
  6344. #ifdef CONFIG_SCHED_SMT
  6345. sd = &per_cpu(cpu_domains, i).sd;
  6346. SD_INIT(sd, SIBLING);
  6347. set_domain_attribute(sd, attr);
  6348. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  6349. sd->parent = parent;
  6350. parent->child = sd;
  6351. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  6352. #endif
  6353. return sd;
  6354. }
  6355. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  6356. const struct cpumask *cpu_map, int cpu)
  6357. {
  6358. switch (l) {
  6359. #ifdef CONFIG_SCHED_SMT
  6360. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  6361. cpumask_and(d->this_sibling_map, cpu_map,
  6362. topology_thread_cpumask(cpu));
  6363. if (cpu == cpumask_first(d->this_sibling_map))
  6364. init_sched_build_groups(d->this_sibling_map, cpu_map,
  6365. &cpu_to_cpu_group,
  6366. d->send_covered, d->tmpmask);
  6367. break;
  6368. #endif
  6369. #ifdef CONFIG_SCHED_MC
  6370. case SD_LV_MC: /* set up multi-core groups */
  6371. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  6372. if (cpu == cpumask_first(d->this_core_map))
  6373. init_sched_build_groups(d->this_core_map, cpu_map,
  6374. &cpu_to_core_group,
  6375. d->send_covered, d->tmpmask);
  6376. break;
  6377. #endif
  6378. #ifdef CONFIG_SCHED_BOOK
  6379. case SD_LV_BOOK: /* set up book groups */
  6380. cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
  6381. if (cpu == cpumask_first(d->this_book_map))
  6382. init_sched_build_groups(d->this_book_map, cpu_map,
  6383. &cpu_to_book_group,
  6384. d->send_covered, d->tmpmask);
  6385. break;
  6386. #endif
  6387. case SD_LV_CPU: /* set up physical groups */
  6388. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  6389. if (!cpumask_empty(d->nodemask))
  6390. init_sched_build_groups(d->nodemask, cpu_map,
  6391. &cpu_to_phys_group,
  6392. d->send_covered, d->tmpmask);
  6393. break;
  6394. #ifdef CONFIG_NUMA
  6395. case SD_LV_ALLNODES:
  6396. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  6397. d->send_covered, d->tmpmask);
  6398. break;
  6399. #endif
  6400. default:
  6401. break;
  6402. }
  6403. }
  6404. /*
  6405. * Build sched domains for a given set of cpus and attach the sched domains
  6406. * to the individual cpus
  6407. */
  6408. static int __build_sched_domains(const struct cpumask *cpu_map,
  6409. struct sched_domain_attr *attr)
  6410. {
  6411. enum s_alloc alloc_state = sa_none;
  6412. struct s_data d;
  6413. struct sched_domain *sd;
  6414. int i;
  6415. #ifdef CONFIG_NUMA
  6416. d.sd_allnodes = 0;
  6417. #endif
  6418. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6419. if (alloc_state != sa_rootdomain)
  6420. goto error;
  6421. alloc_state = sa_sched_groups;
  6422. /*
  6423. * Set up domains for cpus specified by the cpu_map.
  6424. */
  6425. for_each_cpu(i, cpu_map) {
  6426. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  6427. cpu_map);
  6428. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  6429. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  6430. sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
  6431. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  6432. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  6433. }
  6434. for_each_cpu(i, cpu_map) {
  6435. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  6436. build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
  6437. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  6438. }
  6439. /* Set up physical groups */
  6440. for (i = 0; i < nr_node_ids; i++)
  6441. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  6442. #ifdef CONFIG_NUMA
  6443. /* Set up node groups */
  6444. if (d.sd_allnodes)
  6445. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  6446. for (i = 0; i < nr_node_ids; i++)
  6447. if (build_numa_sched_groups(&d, cpu_map, i))
  6448. goto error;
  6449. #endif
  6450. /* Calculate CPU power for physical packages and nodes */
  6451. #ifdef CONFIG_SCHED_SMT
  6452. for_each_cpu(i, cpu_map) {
  6453. sd = &per_cpu(cpu_domains, i).sd;
  6454. init_sched_groups_power(i, sd);
  6455. }
  6456. #endif
  6457. #ifdef CONFIG_SCHED_MC
  6458. for_each_cpu(i, cpu_map) {
  6459. sd = &per_cpu(core_domains, i).sd;
  6460. init_sched_groups_power(i, sd);
  6461. }
  6462. #endif
  6463. #ifdef CONFIG_SCHED_BOOK
  6464. for_each_cpu(i, cpu_map) {
  6465. sd = &per_cpu(book_domains, i).sd;
  6466. init_sched_groups_power(i, sd);
  6467. }
  6468. #endif
  6469. for_each_cpu(i, cpu_map) {
  6470. sd = &per_cpu(phys_domains, i).sd;
  6471. init_sched_groups_power(i, sd);
  6472. }
  6473. #ifdef CONFIG_NUMA
  6474. for (i = 0; i < nr_node_ids; i++)
  6475. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  6476. if (d.sd_allnodes) {
  6477. struct sched_group *sg;
  6478. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6479. d.tmpmask);
  6480. init_numa_sched_groups_power(sg);
  6481. }
  6482. #endif
  6483. /* Attach the domains */
  6484. for_each_cpu(i, cpu_map) {
  6485. #ifdef CONFIG_SCHED_SMT
  6486. sd = &per_cpu(cpu_domains, i).sd;
  6487. #elif defined(CONFIG_SCHED_MC)
  6488. sd = &per_cpu(core_domains, i).sd;
  6489. #elif defined(CONFIG_SCHED_BOOK)
  6490. sd = &per_cpu(book_domains, i).sd;
  6491. #else
  6492. sd = &per_cpu(phys_domains, i).sd;
  6493. #endif
  6494. cpu_attach_domain(sd, d.rd, i);
  6495. }
  6496. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6497. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6498. return 0;
  6499. error:
  6500. __free_domain_allocs(&d, alloc_state, cpu_map);
  6501. return -ENOMEM;
  6502. }
  6503. static int build_sched_domains(const struct cpumask *cpu_map)
  6504. {
  6505. return __build_sched_domains(cpu_map, NULL);
  6506. }
  6507. static cpumask_var_t *doms_cur; /* current sched domains */
  6508. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6509. static struct sched_domain_attr *dattr_cur;
  6510. /* attribues of custom domains in 'doms_cur' */
  6511. /*
  6512. * Special case: If a kmalloc of a doms_cur partition (array of
  6513. * cpumask) fails, then fallback to a single sched domain,
  6514. * as determined by the single cpumask fallback_doms.
  6515. */
  6516. static cpumask_var_t fallback_doms;
  6517. /*
  6518. * arch_update_cpu_topology lets virtualized architectures update the
  6519. * cpu core maps. It is supposed to return 1 if the topology changed
  6520. * or 0 if it stayed the same.
  6521. */
  6522. int __attribute__((weak)) arch_update_cpu_topology(void)
  6523. {
  6524. return 0;
  6525. }
  6526. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6527. {
  6528. int i;
  6529. cpumask_var_t *doms;
  6530. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6531. if (!doms)
  6532. return NULL;
  6533. for (i = 0; i < ndoms; i++) {
  6534. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6535. free_sched_domains(doms, i);
  6536. return NULL;
  6537. }
  6538. }
  6539. return doms;
  6540. }
  6541. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6542. {
  6543. unsigned int i;
  6544. for (i = 0; i < ndoms; i++)
  6545. free_cpumask_var(doms[i]);
  6546. kfree(doms);
  6547. }
  6548. /*
  6549. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6550. * For now this just excludes isolated cpus, but could be used to
  6551. * exclude other special cases in the future.
  6552. */
  6553. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6554. {
  6555. int err;
  6556. arch_update_cpu_topology();
  6557. ndoms_cur = 1;
  6558. doms_cur = alloc_sched_domains(ndoms_cur);
  6559. if (!doms_cur)
  6560. doms_cur = &fallback_doms;
  6561. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6562. dattr_cur = NULL;
  6563. err = build_sched_domains(doms_cur[0]);
  6564. register_sched_domain_sysctl();
  6565. return err;
  6566. }
  6567. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6568. struct cpumask *tmpmask)
  6569. {
  6570. free_sched_groups(cpu_map, tmpmask);
  6571. }
  6572. /*
  6573. * Detach sched domains from a group of cpus specified in cpu_map
  6574. * These cpus will now be attached to the NULL domain
  6575. */
  6576. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6577. {
  6578. /* Save because hotplug lock held. */
  6579. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6580. int i;
  6581. for_each_cpu(i, cpu_map)
  6582. cpu_attach_domain(NULL, &def_root_domain, i);
  6583. synchronize_sched();
  6584. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6585. }
  6586. /* handle null as "default" */
  6587. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6588. struct sched_domain_attr *new, int idx_new)
  6589. {
  6590. struct sched_domain_attr tmp;
  6591. /* fast path */
  6592. if (!new && !cur)
  6593. return 1;
  6594. tmp = SD_ATTR_INIT;
  6595. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6596. new ? (new + idx_new) : &tmp,
  6597. sizeof(struct sched_domain_attr));
  6598. }
  6599. /*
  6600. * Partition sched domains as specified by the 'ndoms_new'
  6601. * cpumasks in the array doms_new[] of cpumasks. This compares
  6602. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6603. * It destroys each deleted domain and builds each new domain.
  6604. *
  6605. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6606. * The masks don't intersect (don't overlap.) We should setup one
  6607. * sched domain for each mask. CPUs not in any of the cpumasks will
  6608. * not be load balanced. If the same cpumask appears both in the
  6609. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6610. * it as it is.
  6611. *
  6612. * The passed in 'doms_new' should be allocated using
  6613. * alloc_sched_domains. This routine takes ownership of it and will
  6614. * free_sched_domains it when done with it. If the caller failed the
  6615. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6616. * and partition_sched_domains() will fallback to the single partition
  6617. * 'fallback_doms', it also forces the domains to be rebuilt.
  6618. *
  6619. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6620. * ndoms_new == 0 is a special case for destroying existing domains,
  6621. * and it will not create the default domain.
  6622. *
  6623. * Call with hotplug lock held
  6624. */
  6625. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6626. struct sched_domain_attr *dattr_new)
  6627. {
  6628. int i, j, n;
  6629. int new_topology;
  6630. mutex_lock(&sched_domains_mutex);
  6631. /* always unregister in case we don't destroy any domains */
  6632. unregister_sched_domain_sysctl();
  6633. /* Let architecture update cpu core mappings. */
  6634. new_topology = arch_update_cpu_topology();
  6635. n = doms_new ? ndoms_new : 0;
  6636. /* Destroy deleted domains */
  6637. for (i = 0; i < ndoms_cur; i++) {
  6638. for (j = 0; j < n && !new_topology; j++) {
  6639. if (cpumask_equal(doms_cur[i], doms_new[j])
  6640. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6641. goto match1;
  6642. }
  6643. /* no match - a current sched domain not in new doms_new[] */
  6644. detach_destroy_domains(doms_cur[i]);
  6645. match1:
  6646. ;
  6647. }
  6648. if (doms_new == NULL) {
  6649. ndoms_cur = 0;
  6650. doms_new = &fallback_doms;
  6651. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6652. WARN_ON_ONCE(dattr_new);
  6653. }
  6654. /* Build new domains */
  6655. for (i = 0; i < ndoms_new; i++) {
  6656. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6657. if (cpumask_equal(doms_new[i], doms_cur[j])
  6658. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6659. goto match2;
  6660. }
  6661. /* no match - add a new doms_new */
  6662. __build_sched_domains(doms_new[i],
  6663. dattr_new ? dattr_new + i : NULL);
  6664. match2:
  6665. ;
  6666. }
  6667. /* Remember the new sched domains */
  6668. if (doms_cur != &fallback_doms)
  6669. free_sched_domains(doms_cur, ndoms_cur);
  6670. kfree(dattr_cur); /* kfree(NULL) is safe */
  6671. doms_cur = doms_new;
  6672. dattr_cur = dattr_new;
  6673. ndoms_cur = ndoms_new;
  6674. register_sched_domain_sysctl();
  6675. mutex_unlock(&sched_domains_mutex);
  6676. }
  6677. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6678. static void arch_reinit_sched_domains(void)
  6679. {
  6680. get_online_cpus();
  6681. /* Destroy domains first to force the rebuild */
  6682. partition_sched_domains(0, NULL, NULL);
  6683. rebuild_sched_domains();
  6684. put_online_cpus();
  6685. }
  6686. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6687. {
  6688. unsigned int level = 0;
  6689. if (sscanf(buf, "%u", &level) != 1)
  6690. return -EINVAL;
  6691. /*
  6692. * level is always be positive so don't check for
  6693. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6694. * What happens on 0 or 1 byte write,
  6695. * need to check for count as well?
  6696. */
  6697. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6698. return -EINVAL;
  6699. if (smt)
  6700. sched_smt_power_savings = level;
  6701. else
  6702. sched_mc_power_savings = level;
  6703. arch_reinit_sched_domains();
  6704. return count;
  6705. }
  6706. #ifdef CONFIG_SCHED_MC
  6707. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6708. struct sysdev_class_attribute *attr,
  6709. char *page)
  6710. {
  6711. return sprintf(page, "%u\n", sched_mc_power_savings);
  6712. }
  6713. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6714. struct sysdev_class_attribute *attr,
  6715. const char *buf, size_t count)
  6716. {
  6717. return sched_power_savings_store(buf, count, 0);
  6718. }
  6719. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6720. sched_mc_power_savings_show,
  6721. sched_mc_power_savings_store);
  6722. #endif
  6723. #ifdef CONFIG_SCHED_SMT
  6724. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6725. struct sysdev_class_attribute *attr,
  6726. char *page)
  6727. {
  6728. return sprintf(page, "%u\n", sched_smt_power_savings);
  6729. }
  6730. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6731. struct sysdev_class_attribute *attr,
  6732. const char *buf, size_t count)
  6733. {
  6734. return sched_power_savings_store(buf, count, 1);
  6735. }
  6736. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6737. sched_smt_power_savings_show,
  6738. sched_smt_power_savings_store);
  6739. #endif
  6740. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6741. {
  6742. int err = 0;
  6743. #ifdef CONFIG_SCHED_SMT
  6744. if (smt_capable())
  6745. err = sysfs_create_file(&cls->kset.kobj,
  6746. &attr_sched_smt_power_savings.attr);
  6747. #endif
  6748. #ifdef CONFIG_SCHED_MC
  6749. if (!err && mc_capable())
  6750. err = sysfs_create_file(&cls->kset.kobj,
  6751. &attr_sched_mc_power_savings.attr);
  6752. #endif
  6753. return err;
  6754. }
  6755. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6756. /*
  6757. * Update cpusets according to cpu_active mask. If cpusets are
  6758. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6759. * around partition_sched_domains().
  6760. */
  6761. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6762. void *hcpu)
  6763. {
  6764. switch (action & ~CPU_TASKS_FROZEN) {
  6765. case CPU_ONLINE:
  6766. case CPU_DOWN_FAILED:
  6767. cpuset_update_active_cpus();
  6768. return NOTIFY_OK;
  6769. default:
  6770. return NOTIFY_DONE;
  6771. }
  6772. }
  6773. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6774. void *hcpu)
  6775. {
  6776. switch (action & ~CPU_TASKS_FROZEN) {
  6777. case CPU_DOWN_PREPARE:
  6778. cpuset_update_active_cpus();
  6779. return NOTIFY_OK;
  6780. default:
  6781. return NOTIFY_DONE;
  6782. }
  6783. }
  6784. static int update_runtime(struct notifier_block *nfb,
  6785. unsigned long action, void *hcpu)
  6786. {
  6787. int cpu = (int)(long)hcpu;
  6788. switch (action) {
  6789. case CPU_DOWN_PREPARE:
  6790. case CPU_DOWN_PREPARE_FROZEN:
  6791. disable_runtime(cpu_rq(cpu));
  6792. return NOTIFY_OK;
  6793. case CPU_DOWN_FAILED:
  6794. case CPU_DOWN_FAILED_FROZEN:
  6795. case CPU_ONLINE:
  6796. case CPU_ONLINE_FROZEN:
  6797. enable_runtime(cpu_rq(cpu));
  6798. return NOTIFY_OK;
  6799. default:
  6800. return NOTIFY_DONE;
  6801. }
  6802. }
  6803. void __init sched_init_smp(void)
  6804. {
  6805. cpumask_var_t non_isolated_cpus;
  6806. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6807. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6808. #if defined(CONFIG_NUMA)
  6809. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6810. GFP_KERNEL);
  6811. BUG_ON(sched_group_nodes_bycpu == NULL);
  6812. #endif
  6813. get_online_cpus();
  6814. mutex_lock(&sched_domains_mutex);
  6815. arch_init_sched_domains(cpu_active_mask);
  6816. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6817. if (cpumask_empty(non_isolated_cpus))
  6818. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6819. mutex_unlock(&sched_domains_mutex);
  6820. put_online_cpus();
  6821. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6822. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6823. /* RT runtime code needs to handle some hotplug events */
  6824. hotcpu_notifier(update_runtime, 0);
  6825. init_hrtick();
  6826. /* Move init over to a non-isolated CPU */
  6827. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6828. BUG();
  6829. sched_init_granularity();
  6830. free_cpumask_var(non_isolated_cpus);
  6831. init_sched_rt_class();
  6832. }
  6833. #else
  6834. void __init sched_init_smp(void)
  6835. {
  6836. sched_init_granularity();
  6837. }
  6838. #endif /* CONFIG_SMP */
  6839. const_debug unsigned int sysctl_timer_migration = 1;
  6840. int in_sched_functions(unsigned long addr)
  6841. {
  6842. return in_lock_functions(addr) ||
  6843. (addr >= (unsigned long)__sched_text_start
  6844. && addr < (unsigned long)__sched_text_end);
  6845. }
  6846. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6847. {
  6848. cfs_rq->tasks_timeline = RB_ROOT;
  6849. INIT_LIST_HEAD(&cfs_rq->tasks);
  6850. #ifdef CONFIG_FAIR_GROUP_SCHED
  6851. cfs_rq->rq = rq;
  6852. /* allow initial update_cfs_load() to truncate */
  6853. #ifdef CONFIG_SMP
  6854. cfs_rq->load_stamp = 1;
  6855. #endif
  6856. #endif
  6857. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6858. }
  6859. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6860. {
  6861. struct rt_prio_array *array;
  6862. int i;
  6863. array = &rt_rq->active;
  6864. for (i = 0; i < MAX_RT_PRIO; i++) {
  6865. INIT_LIST_HEAD(array->queue + i);
  6866. __clear_bit(i, array->bitmap);
  6867. }
  6868. /* delimiter for bitsearch: */
  6869. __set_bit(MAX_RT_PRIO, array->bitmap);
  6870. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6871. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6872. #ifdef CONFIG_SMP
  6873. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6874. #endif
  6875. #endif
  6876. #ifdef CONFIG_SMP
  6877. rt_rq->rt_nr_migratory = 0;
  6878. rt_rq->overloaded = 0;
  6879. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6880. #endif
  6881. rt_rq->rt_time = 0;
  6882. rt_rq->rt_throttled = 0;
  6883. rt_rq->rt_runtime = 0;
  6884. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6885. #ifdef CONFIG_RT_GROUP_SCHED
  6886. rt_rq->rt_nr_boosted = 0;
  6887. rt_rq->rq = rq;
  6888. #endif
  6889. }
  6890. #ifdef CONFIG_FAIR_GROUP_SCHED
  6891. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6892. struct sched_entity *se, int cpu,
  6893. struct sched_entity *parent)
  6894. {
  6895. struct rq *rq = cpu_rq(cpu);
  6896. tg->cfs_rq[cpu] = cfs_rq;
  6897. init_cfs_rq(cfs_rq, rq);
  6898. cfs_rq->tg = tg;
  6899. tg->se[cpu] = se;
  6900. /* se could be NULL for root_task_group */
  6901. if (!se)
  6902. return;
  6903. if (!parent)
  6904. se->cfs_rq = &rq->cfs;
  6905. else
  6906. se->cfs_rq = parent->my_q;
  6907. se->my_q = cfs_rq;
  6908. update_load_set(&se->load, 0);
  6909. se->parent = parent;
  6910. }
  6911. #endif
  6912. #ifdef CONFIG_RT_GROUP_SCHED
  6913. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6914. struct sched_rt_entity *rt_se, int cpu,
  6915. struct sched_rt_entity *parent)
  6916. {
  6917. struct rq *rq = cpu_rq(cpu);
  6918. tg->rt_rq[cpu] = rt_rq;
  6919. init_rt_rq(rt_rq, rq);
  6920. rt_rq->tg = tg;
  6921. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6922. tg->rt_se[cpu] = rt_se;
  6923. if (!rt_se)
  6924. return;
  6925. if (!parent)
  6926. rt_se->rt_rq = &rq->rt;
  6927. else
  6928. rt_se->rt_rq = parent->my_q;
  6929. rt_se->my_q = rt_rq;
  6930. rt_se->parent = parent;
  6931. INIT_LIST_HEAD(&rt_se->run_list);
  6932. }
  6933. #endif
  6934. void __init sched_init(void)
  6935. {
  6936. int i, j;
  6937. unsigned long alloc_size = 0, ptr;
  6938. #ifdef CONFIG_FAIR_GROUP_SCHED
  6939. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6940. #endif
  6941. #ifdef CONFIG_RT_GROUP_SCHED
  6942. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6943. #endif
  6944. #ifdef CONFIG_CPUMASK_OFFSTACK
  6945. alloc_size += num_possible_cpus() * cpumask_size();
  6946. #endif
  6947. if (alloc_size) {
  6948. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6949. #ifdef CONFIG_FAIR_GROUP_SCHED
  6950. root_task_group.se = (struct sched_entity **)ptr;
  6951. ptr += nr_cpu_ids * sizeof(void **);
  6952. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6953. ptr += nr_cpu_ids * sizeof(void **);
  6954. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6955. #ifdef CONFIG_RT_GROUP_SCHED
  6956. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6957. ptr += nr_cpu_ids * sizeof(void **);
  6958. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6959. ptr += nr_cpu_ids * sizeof(void **);
  6960. #endif /* CONFIG_RT_GROUP_SCHED */
  6961. #ifdef CONFIG_CPUMASK_OFFSTACK
  6962. for_each_possible_cpu(i) {
  6963. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6964. ptr += cpumask_size();
  6965. }
  6966. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6967. }
  6968. #ifdef CONFIG_SMP
  6969. init_defrootdomain();
  6970. #endif
  6971. init_rt_bandwidth(&def_rt_bandwidth,
  6972. global_rt_period(), global_rt_runtime());
  6973. #ifdef CONFIG_RT_GROUP_SCHED
  6974. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6975. global_rt_period(), global_rt_runtime());
  6976. #endif /* CONFIG_RT_GROUP_SCHED */
  6977. #ifdef CONFIG_CGROUP_SCHED
  6978. list_add(&root_task_group.list, &task_groups);
  6979. INIT_LIST_HEAD(&root_task_group.children);
  6980. autogroup_init(&init_task);
  6981. #endif /* CONFIG_CGROUP_SCHED */
  6982. for_each_possible_cpu(i) {
  6983. struct rq *rq;
  6984. rq = cpu_rq(i);
  6985. raw_spin_lock_init(&rq->lock);
  6986. rq->nr_running = 0;
  6987. rq->calc_load_active = 0;
  6988. rq->calc_load_update = jiffies + LOAD_FREQ;
  6989. init_cfs_rq(&rq->cfs, rq);
  6990. init_rt_rq(&rq->rt, rq);
  6991. #ifdef CONFIG_FAIR_GROUP_SCHED
  6992. root_task_group.shares = root_task_group_load;
  6993. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6994. /*
  6995. * How much cpu bandwidth does root_task_group get?
  6996. *
  6997. * In case of task-groups formed thr' the cgroup filesystem, it
  6998. * gets 100% of the cpu resources in the system. This overall
  6999. * system cpu resource is divided among the tasks of
  7000. * root_task_group and its child task-groups in a fair manner,
  7001. * based on each entity's (task or task-group's) weight
  7002. * (se->load.weight).
  7003. *
  7004. * In other words, if root_task_group has 10 tasks of weight
  7005. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7006. * then A0's share of the cpu resource is:
  7007. *
  7008. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7009. *
  7010. * We achieve this by letting root_task_group's tasks sit
  7011. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  7012. */
  7013. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  7014. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7015. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7016. #ifdef CONFIG_RT_GROUP_SCHED
  7017. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7018. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  7019. #endif
  7020. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7021. rq->cpu_load[j] = 0;
  7022. rq->last_load_update_tick = jiffies;
  7023. #ifdef CONFIG_SMP
  7024. rq->sd = NULL;
  7025. rq->rd = NULL;
  7026. rq->cpu_power = SCHED_LOAD_SCALE;
  7027. rq->post_schedule = 0;
  7028. rq->active_balance = 0;
  7029. rq->next_balance = jiffies;
  7030. rq->push_cpu = 0;
  7031. rq->cpu = i;
  7032. rq->online = 0;
  7033. rq->idle_stamp = 0;
  7034. rq->avg_idle = 2*sysctl_sched_migration_cost;
  7035. rq_attach_root(rq, &def_root_domain);
  7036. #ifdef CONFIG_NO_HZ
  7037. rq->nohz_balance_kick = 0;
  7038. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  7039. #endif
  7040. #endif
  7041. init_rq_hrtick(rq);
  7042. atomic_set(&rq->nr_iowait, 0);
  7043. }
  7044. set_load_weight(&init_task);
  7045. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7046. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7047. #endif
  7048. #ifdef CONFIG_SMP
  7049. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7050. #endif
  7051. #ifdef CONFIG_RT_MUTEXES
  7052. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  7053. #endif
  7054. /*
  7055. * The boot idle thread does lazy MMU switching as well:
  7056. */
  7057. atomic_inc(&init_mm.mm_count);
  7058. enter_lazy_tlb(&init_mm, current);
  7059. /*
  7060. * Make us the idle thread. Technically, schedule() should not be
  7061. * called from this thread, however somewhere below it might be,
  7062. * but because we are the idle thread, we just pick up running again
  7063. * when this runqueue becomes "idle".
  7064. */
  7065. init_idle(current, smp_processor_id());
  7066. calc_load_update = jiffies + LOAD_FREQ;
  7067. /*
  7068. * During early bootup we pretend to be a normal task:
  7069. */
  7070. current->sched_class = &fair_sched_class;
  7071. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7072. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  7073. #ifdef CONFIG_SMP
  7074. #ifdef CONFIG_NO_HZ
  7075. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  7076. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  7077. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  7078. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  7079. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  7080. #endif
  7081. /* May be allocated at isolcpus cmdline parse time */
  7082. if (cpu_isolated_map == NULL)
  7083. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  7084. #endif /* SMP */
  7085. scheduler_running = 1;
  7086. }
  7087. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7088. static inline int preempt_count_equals(int preempt_offset)
  7089. {
  7090. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  7091. return (nested == preempt_offset);
  7092. }
  7093. void __might_sleep(const char *file, int line, int preempt_offset)
  7094. {
  7095. #ifdef in_atomic
  7096. static unsigned long prev_jiffy; /* ratelimiting */
  7097. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  7098. system_state != SYSTEM_RUNNING || oops_in_progress)
  7099. return;
  7100. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7101. return;
  7102. prev_jiffy = jiffies;
  7103. printk(KERN_ERR
  7104. "BUG: sleeping function called from invalid context at %s:%d\n",
  7105. file, line);
  7106. printk(KERN_ERR
  7107. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7108. in_atomic(), irqs_disabled(),
  7109. current->pid, current->comm);
  7110. debug_show_held_locks(current);
  7111. if (irqs_disabled())
  7112. print_irqtrace_events(current);
  7113. dump_stack();
  7114. #endif
  7115. }
  7116. EXPORT_SYMBOL(__might_sleep);
  7117. #endif
  7118. #ifdef CONFIG_MAGIC_SYSRQ
  7119. static void normalize_task(struct rq *rq, struct task_struct *p)
  7120. {
  7121. const struct sched_class *prev_class = p->sched_class;
  7122. int old_prio = p->prio;
  7123. int on_rq;
  7124. on_rq = p->se.on_rq;
  7125. if (on_rq)
  7126. deactivate_task(rq, p, 0);
  7127. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7128. if (on_rq) {
  7129. activate_task(rq, p, 0);
  7130. resched_task(rq->curr);
  7131. }
  7132. check_class_changed(rq, p, prev_class, old_prio);
  7133. }
  7134. void normalize_rt_tasks(void)
  7135. {
  7136. struct task_struct *g, *p;
  7137. unsigned long flags;
  7138. struct rq *rq;
  7139. read_lock_irqsave(&tasklist_lock, flags);
  7140. do_each_thread(g, p) {
  7141. /*
  7142. * Only normalize user tasks:
  7143. */
  7144. if (!p->mm)
  7145. continue;
  7146. p->se.exec_start = 0;
  7147. #ifdef CONFIG_SCHEDSTATS
  7148. p->se.statistics.wait_start = 0;
  7149. p->se.statistics.sleep_start = 0;
  7150. p->se.statistics.block_start = 0;
  7151. #endif
  7152. if (!rt_task(p)) {
  7153. /*
  7154. * Renice negative nice level userspace
  7155. * tasks back to 0:
  7156. */
  7157. if (TASK_NICE(p) < 0 && p->mm)
  7158. set_user_nice(p, 0);
  7159. continue;
  7160. }
  7161. raw_spin_lock(&p->pi_lock);
  7162. rq = __task_rq_lock(p);
  7163. normalize_task(rq, p);
  7164. __task_rq_unlock(rq);
  7165. raw_spin_unlock(&p->pi_lock);
  7166. } while_each_thread(g, p);
  7167. read_unlock_irqrestore(&tasklist_lock, flags);
  7168. }
  7169. #endif /* CONFIG_MAGIC_SYSRQ */
  7170. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  7171. /*
  7172. * These functions are only useful for the IA64 MCA handling, or kdb.
  7173. *
  7174. * They can only be called when the whole system has been
  7175. * stopped - every CPU needs to be quiescent, and no scheduling
  7176. * activity can take place. Using them for anything else would
  7177. * be a serious bug, and as a result, they aren't even visible
  7178. * under any other configuration.
  7179. */
  7180. /**
  7181. * curr_task - return the current task for a given cpu.
  7182. * @cpu: the processor in question.
  7183. *
  7184. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7185. */
  7186. struct task_struct *curr_task(int cpu)
  7187. {
  7188. return cpu_curr(cpu);
  7189. }
  7190. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  7191. #ifdef CONFIG_IA64
  7192. /**
  7193. * set_curr_task - set the current task for a given cpu.
  7194. * @cpu: the processor in question.
  7195. * @p: the task pointer to set.
  7196. *
  7197. * Description: This function must only be used when non-maskable interrupts
  7198. * are serviced on a separate stack. It allows the architecture to switch the
  7199. * notion of the current task on a cpu in a non-blocking manner. This function
  7200. * must be called with all CPU's synchronized, and interrupts disabled, the
  7201. * and caller must save the original value of the current task (see
  7202. * curr_task() above) and restore that value before reenabling interrupts and
  7203. * re-starting the system.
  7204. *
  7205. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7206. */
  7207. void set_curr_task(int cpu, struct task_struct *p)
  7208. {
  7209. cpu_curr(cpu) = p;
  7210. }
  7211. #endif
  7212. #ifdef CONFIG_FAIR_GROUP_SCHED
  7213. static void free_fair_sched_group(struct task_group *tg)
  7214. {
  7215. int i;
  7216. for_each_possible_cpu(i) {
  7217. if (tg->cfs_rq)
  7218. kfree(tg->cfs_rq[i]);
  7219. if (tg->se)
  7220. kfree(tg->se[i]);
  7221. }
  7222. kfree(tg->cfs_rq);
  7223. kfree(tg->se);
  7224. }
  7225. static
  7226. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7227. {
  7228. struct cfs_rq *cfs_rq;
  7229. struct sched_entity *se;
  7230. int i;
  7231. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7232. if (!tg->cfs_rq)
  7233. goto err;
  7234. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7235. if (!tg->se)
  7236. goto err;
  7237. tg->shares = NICE_0_LOAD;
  7238. for_each_possible_cpu(i) {
  7239. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7240. GFP_KERNEL, cpu_to_node(i));
  7241. if (!cfs_rq)
  7242. goto err;
  7243. se = kzalloc_node(sizeof(struct sched_entity),
  7244. GFP_KERNEL, cpu_to_node(i));
  7245. if (!se)
  7246. goto err_free_rq;
  7247. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  7248. }
  7249. return 1;
  7250. err_free_rq:
  7251. kfree(cfs_rq);
  7252. err:
  7253. return 0;
  7254. }
  7255. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7256. {
  7257. struct rq *rq = cpu_rq(cpu);
  7258. unsigned long flags;
  7259. /*
  7260. * Only empty task groups can be destroyed; so we can speculatively
  7261. * check on_list without danger of it being re-added.
  7262. */
  7263. if (!tg->cfs_rq[cpu]->on_list)
  7264. return;
  7265. raw_spin_lock_irqsave(&rq->lock, flags);
  7266. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  7267. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7268. }
  7269. #else /* !CONFG_FAIR_GROUP_SCHED */
  7270. static inline void free_fair_sched_group(struct task_group *tg)
  7271. {
  7272. }
  7273. static inline
  7274. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7275. {
  7276. return 1;
  7277. }
  7278. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7279. {
  7280. }
  7281. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7282. #ifdef CONFIG_RT_GROUP_SCHED
  7283. static void free_rt_sched_group(struct task_group *tg)
  7284. {
  7285. int i;
  7286. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7287. for_each_possible_cpu(i) {
  7288. if (tg->rt_rq)
  7289. kfree(tg->rt_rq[i]);
  7290. if (tg->rt_se)
  7291. kfree(tg->rt_se[i]);
  7292. }
  7293. kfree(tg->rt_rq);
  7294. kfree(tg->rt_se);
  7295. }
  7296. static
  7297. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7298. {
  7299. struct rt_rq *rt_rq;
  7300. struct sched_rt_entity *rt_se;
  7301. struct rq *rq;
  7302. int i;
  7303. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7304. if (!tg->rt_rq)
  7305. goto err;
  7306. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7307. if (!tg->rt_se)
  7308. goto err;
  7309. init_rt_bandwidth(&tg->rt_bandwidth,
  7310. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7311. for_each_possible_cpu(i) {
  7312. rq = cpu_rq(i);
  7313. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7314. GFP_KERNEL, cpu_to_node(i));
  7315. if (!rt_rq)
  7316. goto err;
  7317. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7318. GFP_KERNEL, cpu_to_node(i));
  7319. if (!rt_se)
  7320. goto err_free_rq;
  7321. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  7322. }
  7323. return 1;
  7324. err_free_rq:
  7325. kfree(rt_rq);
  7326. err:
  7327. return 0;
  7328. }
  7329. #else /* !CONFIG_RT_GROUP_SCHED */
  7330. static inline void free_rt_sched_group(struct task_group *tg)
  7331. {
  7332. }
  7333. static inline
  7334. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7335. {
  7336. return 1;
  7337. }
  7338. #endif /* CONFIG_RT_GROUP_SCHED */
  7339. #ifdef CONFIG_CGROUP_SCHED
  7340. static void free_sched_group(struct task_group *tg)
  7341. {
  7342. free_fair_sched_group(tg);
  7343. free_rt_sched_group(tg);
  7344. autogroup_free(tg);
  7345. kfree(tg);
  7346. }
  7347. /* allocate runqueue etc for a new task group */
  7348. struct task_group *sched_create_group(struct task_group *parent)
  7349. {
  7350. struct task_group *tg;
  7351. unsigned long flags;
  7352. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7353. if (!tg)
  7354. return ERR_PTR(-ENOMEM);
  7355. if (!alloc_fair_sched_group(tg, parent))
  7356. goto err;
  7357. if (!alloc_rt_sched_group(tg, parent))
  7358. goto err;
  7359. spin_lock_irqsave(&task_group_lock, flags);
  7360. list_add_rcu(&tg->list, &task_groups);
  7361. WARN_ON(!parent); /* root should already exist */
  7362. tg->parent = parent;
  7363. INIT_LIST_HEAD(&tg->children);
  7364. list_add_rcu(&tg->siblings, &parent->children);
  7365. spin_unlock_irqrestore(&task_group_lock, flags);
  7366. return tg;
  7367. err:
  7368. free_sched_group(tg);
  7369. return ERR_PTR(-ENOMEM);
  7370. }
  7371. /* rcu callback to free various structures associated with a task group */
  7372. static void free_sched_group_rcu(struct rcu_head *rhp)
  7373. {
  7374. /* now it should be safe to free those cfs_rqs */
  7375. free_sched_group(container_of(rhp, struct task_group, rcu));
  7376. }
  7377. /* Destroy runqueue etc associated with a task group */
  7378. void sched_destroy_group(struct task_group *tg)
  7379. {
  7380. unsigned long flags;
  7381. int i;
  7382. /* end participation in shares distribution */
  7383. for_each_possible_cpu(i)
  7384. unregister_fair_sched_group(tg, i);
  7385. spin_lock_irqsave(&task_group_lock, flags);
  7386. list_del_rcu(&tg->list);
  7387. list_del_rcu(&tg->siblings);
  7388. spin_unlock_irqrestore(&task_group_lock, flags);
  7389. /* wait for possible concurrent references to cfs_rqs complete */
  7390. call_rcu(&tg->rcu, free_sched_group_rcu);
  7391. }
  7392. /* change task's runqueue when it moves between groups.
  7393. * The caller of this function should have put the task in its new group
  7394. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7395. * reflect its new group.
  7396. */
  7397. void sched_move_task(struct task_struct *tsk)
  7398. {
  7399. int on_rq, running;
  7400. unsigned long flags;
  7401. struct rq *rq;
  7402. rq = task_rq_lock(tsk, &flags);
  7403. running = task_current(rq, tsk);
  7404. on_rq = tsk->se.on_rq;
  7405. if (on_rq)
  7406. dequeue_task(rq, tsk, 0);
  7407. if (unlikely(running))
  7408. tsk->sched_class->put_prev_task(rq, tsk);
  7409. #ifdef CONFIG_FAIR_GROUP_SCHED
  7410. if (tsk->sched_class->task_move_group)
  7411. tsk->sched_class->task_move_group(tsk, on_rq);
  7412. else
  7413. #endif
  7414. set_task_rq(tsk, task_cpu(tsk));
  7415. if (unlikely(running))
  7416. tsk->sched_class->set_curr_task(rq);
  7417. if (on_rq)
  7418. enqueue_task(rq, tsk, 0);
  7419. task_rq_unlock(rq, &flags);
  7420. }
  7421. #endif /* CONFIG_CGROUP_SCHED */
  7422. #ifdef CONFIG_FAIR_GROUP_SCHED
  7423. static DEFINE_MUTEX(shares_mutex);
  7424. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7425. {
  7426. int i;
  7427. unsigned long flags;
  7428. /*
  7429. * We can't change the weight of the root cgroup.
  7430. */
  7431. if (!tg->se[0])
  7432. return -EINVAL;
  7433. if (shares < MIN_SHARES)
  7434. shares = MIN_SHARES;
  7435. else if (shares > MAX_SHARES)
  7436. shares = MAX_SHARES;
  7437. mutex_lock(&shares_mutex);
  7438. if (tg->shares == shares)
  7439. goto done;
  7440. tg->shares = shares;
  7441. for_each_possible_cpu(i) {
  7442. struct rq *rq = cpu_rq(i);
  7443. struct sched_entity *se;
  7444. se = tg->se[i];
  7445. /* Propagate contribution to hierarchy */
  7446. raw_spin_lock_irqsave(&rq->lock, flags);
  7447. for_each_sched_entity(se)
  7448. update_cfs_shares(group_cfs_rq(se));
  7449. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7450. }
  7451. done:
  7452. mutex_unlock(&shares_mutex);
  7453. return 0;
  7454. }
  7455. unsigned long sched_group_shares(struct task_group *tg)
  7456. {
  7457. return tg->shares;
  7458. }
  7459. #endif
  7460. #ifdef CONFIG_RT_GROUP_SCHED
  7461. /*
  7462. * Ensure that the real time constraints are schedulable.
  7463. */
  7464. static DEFINE_MUTEX(rt_constraints_mutex);
  7465. static unsigned long to_ratio(u64 period, u64 runtime)
  7466. {
  7467. if (runtime == RUNTIME_INF)
  7468. return 1ULL << 20;
  7469. return div64_u64(runtime << 20, period);
  7470. }
  7471. /* Must be called with tasklist_lock held */
  7472. static inline int tg_has_rt_tasks(struct task_group *tg)
  7473. {
  7474. struct task_struct *g, *p;
  7475. do_each_thread(g, p) {
  7476. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7477. return 1;
  7478. } while_each_thread(g, p);
  7479. return 0;
  7480. }
  7481. struct rt_schedulable_data {
  7482. struct task_group *tg;
  7483. u64 rt_period;
  7484. u64 rt_runtime;
  7485. };
  7486. static int tg_schedulable(struct task_group *tg, void *data)
  7487. {
  7488. struct rt_schedulable_data *d = data;
  7489. struct task_group *child;
  7490. unsigned long total, sum = 0;
  7491. u64 period, runtime;
  7492. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7493. runtime = tg->rt_bandwidth.rt_runtime;
  7494. if (tg == d->tg) {
  7495. period = d->rt_period;
  7496. runtime = d->rt_runtime;
  7497. }
  7498. /*
  7499. * Cannot have more runtime than the period.
  7500. */
  7501. if (runtime > period && runtime != RUNTIME_INF)
  7502. return -EINVAL;
  7503. /*
  7504. * Ensure we don't starve existing RT tasks.
  7505. */
  7506. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7507. return -EBUSY;
  7508. total = to_ratio(period, runtime);
  7509. /*
  7510. * Nobody can have more than the global setting allows.
  7511. */
  7512. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7513. return -EINVAL;
  7514. /*
  7515. * The sum of our children's runtime should not exceed our own.
  7516. */
  7517. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7518. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7519. runtime = child->rt_bandwidth.rt_runtime;
  7520. if (child == d->tg) {
  7521. period = d->rt_period;
  7522. runtime = d->rt_runtime;
  7523. }
  7524. sum += to_ratio(period, runtime);
  7525. }
  7526. if (sum > total)
  7527. return -EINVAL;
  7528. return 0;
  7529. }
  7530. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7531. {
  7532. struct rt_schedulable_data data = {
  7533. .tg = tg,
  7534. .rt_period = period,
  7535. .rt_runtime = runtime,
  7536. };
  7537. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7538. }
  7539. static int tg_set_bandwidth(struct task_group *tg,
  7540. u64 rt_period, u64 rt_runtime)
  7541. {
  7542. int i, err = 0;
  7543. mutex_lock(&rt_constraints_mutex);
  7544. read_lock(&tasklist_lock);
  7545. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7546. if (err)
  7547. goto unlock;
  7548. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7549. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7550. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7551. for_each_possible_cpu(i) {
  7552. struct rt_rq *rt_rq = tg->rt_rq[i];
  7553. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7554. rt_rq->rt_runtime = rt_runtime;
  7555. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7556. }
  7557. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7558. unlock:
  7559. read_unlock(&tasklist_lock);
  7560. mutex_unlock(&rt_constraints_mutex);
  7561. return err;
  7562. }
  7563. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7564. {
  7565. u64 rt_runtime, rt_period;
  7566. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7567. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7568. if (rt_runtime_us < 0)
  7569. rt_runtime = RUNTIME_INF;
  7570. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7571. }
  7572. long sched_group_rt_runtime(struct task_group *tg)
  7573. {
  7574. u64 rt_runtime_us;
  7575. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7576. return -1;
  7577. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7578. do_div(rt_runtime_us, NSEC_PER_USEC);
  7579. return rt_runtime_us;
  7580. }
  7581. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7582. {
  7583. u64 rt_runtime, rt_period;
  7584. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7585. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7586. if (rt_period == 0)
  7587. return -EINVAL;
  7588. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7589. }
  7590. long sched_group_rt_period(struct task_group *tg)
  7591. {
  7592. u64 rt_period_us;
  7593. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7594. do_div(rt_period_us, NSEC_PER_USEC);
  7595. return rt_period_us;
  7596. }
  7597. static int sched_rt_global_constraints(void)
  7598. {
  7599. u64 runtime, period;
  7600. int ret = 0;
  7601. if (sysctl_sched_rt_period <= 0)
  7602. return -EINVAL;
  7603. runtime = global_rt_runtime();
  7604. period = global_rt_period();
  7605. /*
  7606. * Sanity check on the sysctl variables.
  7607. */
  7608. if (runtime > period && runtime != RUNTIME_INF)
  7609. return -EINVAL;
  7610. mutex_lock(&rt_constraints_mutex);
  7611. read_lock(&tasklist_lock);
  7612. ret = __rt_schedulable(NULL, 0, 0);
  7613. read_unlock(&tasklist_lock);
  7614. mutex_unlock(&rt_constraints_mutex);
  7615. return ret;
  7616. }
  7617. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7618. {
  7619. /* Don't accept realtime tasks when there is no way for them to run */
  7620. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7621. return 0;
  7622. return 1;
  7623. }
  7624. #else /* !CONFIG_RT_GROUP_SCHED */
  7625. static int sched_rt_global_constraints(void)
  7626. {
  7627. unsigned long flags;
  7628. int i;
  7629. if (sysctl_sched_rt_period <= 0)
  7630. return -EINVAL;
  7631. /*
  7632. * There's always some RT tasks in the root group
  7633. * -- migration, kstopmachine etc..
  7634. */
  7635. if (sysctl_sched_rt_runtime == 0)
  7636. return -EBUSY;
  7637. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7638. for_each_possible_cpu(i) {
  7639. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7640. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7641. rt_rq->rt_runtime = global_rt_runtime();
  7642. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7643. }
  7644. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7645. return 0;
  7646. }
  7647. #endif /* CONFIG_RT_GROUP_SCHED */
  7648. int sched_rt_handler(struct ctl_table *table, int write,
  7649. void __user *buffer, size_t *lenp,
  7650. loff_t *ppos)
  7651. {
  7652. int ret;
  7653. int old_period, old_runtime;
  7654. static DEFINE_MUTEX(mutex);
  7655. mutex_lock(&mutex);
  7656. old_period = sysctl_sched_rt_period;
  7657. old_runtime = sysctl_sched_rt_runtime;
  7658. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7659. if (!ret && write) {
  7660. ret = sched_rt_global_constraints();
  7661. if (ret) {
  7662. sysctl_sched_rt_period = old_period;
  7663. sysctl_sched_rt_runtime = old_runtime;
  7664. } else {
  7665. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7666. def_rt_bandwidth.rt_period =
  7667. ns_to_ktime(global_rt_period());
  7668. }
  7669. }
  7670. mutex_unlock(&mutex);
  7671. return ret;
  7672. }
  7673. #ifdef CONFIG_CGROUP_SCHED
  7674. /* return corresponding task_group object of a cgroup */
  7675. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7676. {
  7677. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7678. struct task_group, css);
  7679. }
  7680. static struct cgroup_subsys_state *
  7681. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7682. {
  7683. struct task_group *tg, *parent;
  7684. if (!cgrp->parent) {
  7685. /* This is early initialization for the top cgroup */
  7686. return &root_task_group.css;
  7687. }
  7688. parent = cgroup_tg(cgrp->parent);
  7689. tg = sched_create_group(parent);
  7690. if (IS_ERR(tg))
  7691. return ERR_PTR(-ENOMEM);
  7692. return &tg->css;
  7693. }
  7694. static void
  7695. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7696. {
  7697. struct task_group *tg = cgroup_tg(cgrp);
  7698. sched_destroy_group(tg);
  7699. }
  7700. static int
  7701. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7702. {
  7703. #ifdef CONFIG_RT_GROUP_SCHED
  7704. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7705. return -EINVAL;
  7706. #else
  7707. /* We don't support RT-tasks being in separate groups */
  7708. if (tsk->sched_class != &fair_sched_class)
  7709. return -EINVAL;
  7710. #endif
  7711. return 0;
  7712. }
  7713. static int
  7714. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7715. struct task_struct *tsk, bool threadgroup)
  7716. {
  7717. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7718. if (retval)
  7719. return retval;
  7720. if (threadgroup) {
  7721. struct task_struct *c;
  7722. rcu_read_lock();
  7723. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7724. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7725. if (retval) {
  7726. rcu_read_unlock();
  7727. return retval;
  7728. }
  7729. }
  7730. rcu_read_unlock();
  7731. }
  7732. return 0;
  7733. }
  7734. static void
  7735. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7736. struct cgroup *old_cont, struct task_struct *tsk,
  7737. bool threadgroup)
  7738. {
  7739. sched_move_task(tsk);
  7740. if (threadgroup) {
  7741. struct task_struct *c;
  7742. rcu_read_lock();
  7743. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7744. sched_move_task(c);
  7745. }
  7746. rcu_read_unlock();
  7747. }
  7748. }
  7749. static void
  7750. cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7751. struct cgroup *old_cgrp, struct task_struct *task)
  7752. {
  7753. /*
  7754. * cgroup_exit() is called in the copy_process() failure path.
  7755. * Ignore this case since the task hasn't ran yet, this avoids
  7756. * trying to poke a half freed task state from generic code.
  7757. */
  7758. if (!(task->flags & PF_EXITING))
  7759. return;
  7760. sched_move_task(task);
  7761. }
  7762. #ifdef CONFIG_FAIR_GROUP_SCHED
  7763. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7764. u64 shareval)
  7765. {
  7766. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7767. }
  7768. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7769. {
  7770. struct task_group *tg = cgroup_tg(cgrp);
  7771. return (u64) tg->shares;
  7772. }
  7773. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7774. #ifdef CONFIG_RT_GROUP_SCHED
  7775. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7776. s64 val)
  7777. {
  7778. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7779. }
  7780. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7781. {
  7782. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7783. }
  7784. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7785. u64 rt_period_us)
  7786. {
  7787. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7788. }
  7789. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7790. {
  7791. return sched_group_rt_period(cgroup_tg(cgrp));
  7792. }
  7793. #endif /* CONFIG_RT_GROUP_SCHED */
  7794. static struct cftype cpu_files[] = {
  7795. #ifdef CONFIG_FAIR_GROUP_SCHED
  7796. {
  7797. .name = "shares",
  7798. .read_u64 = cpu_shares_read_u64,
  7799. .write_u64 = cpu_shares_write_u64,
  7800. },
  7801. #endif
  7802. #ifdef CONFIG_RT_GROUP_SCHED
  7803. {
  7804. .name = "rt_runtime_us",
  7805. .read_s64 = cpu_rt_runtime_read,
  7806. .write_s64 = cpu_rt_runtime_write,
  7807. },
  7808. {
  7809. .name = "rt_period_us",
  7810. .read_u64 = cpu_rt_period_read_uint,
  7811. .write_u64 = cpu_rt_period_write_uint,
  7812. },
  7813. #endif
  7814. };
  7815. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7816. {
  7817. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7818. }
  7819. struct cgroup_subsys cpu_cgroup_subsys = {
  7820. .name = "cpu",
  7821. .create = cpu_cgroup_create,
  7822. .destroy = cpu_cgroup_destroy,
  7823. .can_attach = cpu_cgroup_can_attach,
  7824. .attach = cpu_cgroup_attach,
  7825. .exit = cpu_cgroup_exit,
  7826. .populate = cpu_cgroup_populate,
  7827. .subsys_id = cpu_cgroup_subsys_id,
  7828. .early_init = 1,
  7829. };
  7830. #endif /* CONFIG_CGROUP_SCHED */
  7831. #ifdef CONFIG_CGROUP_CPUACCT
  7832. /*
  7833. * CPU accounting code for task groups.
  7834. *
  7835. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7836. * (balbir@in.ibm.com).
  7837. */
  7838. /* track cpu usage of a group of tasks and its child groups */
  7839. struct cpuacct {
  7840. struct cgroup_subsys_state css;
  7841. /* cpuusage holds pointer to a u64-type object on every cpu */
  7842. u64 __percpu *cpuusage;
  7843. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7844. struct cpuacct *parent;
  7845. };
  7846. struct cgroup_subsys cpuacct_subsys;
  7847. /* return cpu accounting group corresponding to this container */
  7848. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7849. {
  7850. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7851. struct cpuacct, css);
  7852. }
  7853. /* return cpu accounting group to which this task belongs */
  7854. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7855. {
  7856. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7857. struct cpuacct, css);
  7858. }
  7859. /* create a new cpu accounting group */
  7860. static struct cgroup_subsys_state *cpuacct_create(
  7861. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7862. {
  7863. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7864. int i;
  7865. if (!ca)
  7866. goto out;
  7867. ca->cpuusage = alloc_percpu(u64);
  7868. if (!ca->cpuusage)
  7869. goto out_free_ca;
  7870. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7871. if (percpu_counter_init(&ca->cpustat[i], 0))
  7872. goto out_free_counters;
  7873. if (cgrp->parent)
  7874. ca->parent = cgroup_ca(cgrp->parent);
  7875. return &ca->css;
  7876. out_free_counters:
  7877. while (--i >= 0)
  7878. percpu_counter_destroy(&ca->cpustat[i]);
  7879. free_percpu(ca->cpuusage);
  7880. out_free_ca:
  7881. kfree(ca);
  7882. out:
  7883. return ERR_PTR(-ENOMEM);
  7884. }
  7885. /* destroy an existing cpu accounting group */
  7886. static void
  7887. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7888. {
  7889. struct cpuacct *ca = cgroup_ca(cgrp);
  7890. int i;
  7891. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7892. percpu_counter_destroy(&ca->cpustat[i]);
  7893. free_percpu(ca->cpuusage);
  7894. kfree(ca);
  7895. }
  7896. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7897. {
  7898. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7899. u64 data;
  7900. #ifndef CONFIG_64BIT
  7901. /*
  7902. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7903. */
  7904. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7905. data = *cpuusage;
  7906. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7907. #else
  7908. data = *cpuusage;
  7909. #endif
  7910. return data;
  7911. }
  7912. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7913. {
  7914. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7915. #ifndef CONFIG_64BIT
  7916. /*
  7917. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7918. */
  7919. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7920. *cpuusage = val;
  7921. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7922. #else
  7923. *cpuusage = val;
  7924. #endif
  7925. }
  7926. /* return total cpu usage (in nanoseconds) of a group */
  7927. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7928. {
  7929. struct cpuacct *ca = cgroup_ca(cgrp);
  7930. u64 totalcpuusage = 0;
  7931. int i;
  7932. for_each_present_cpu(i)
  7933. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7934. return totalcpuusage;
  7935. }
  7936. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7937. u64 reset)
  7938. {
  7939. struct cpuacct *ca = cgroup_ca(cgrp);
  7940. int err = 0;
  7941. int i;
  7942. if (reset) {
  7943. err = -EINVAL;
  7944. goto out;
  7945. }
  7946. for_each_present_cpu(i)
  7947. cpuacct_cpuusage_write(ca, i, 0);
  7948. out:
  7949. return err;
  7950. }
  7951. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7952. struct seq_file *m)
  7953. {
  7954. struct cpuacct *ca = cgroup_ca(cgroup);
  7955. u64 percpu;
  7956. int i;
  7957. for_each_present_cpu(i) {
  7958. percpu = cpuacct_cpuusage_read(ca, i);
  7959. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7960. }
  7961. seq_printf(m, "\n");
  7962. return 0;
  7963. }
  7964. static const char *cpuacct_stat_desc[] = {
  7965. [CPUACCT_STAT_USER] = "user",
  7966. [CPUACCT_STAT_SYSTEM] = "system",
  7967. };
  7968. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7969. struct cgroup_map_cb *cb)
  7970. {
  7971. struct cpuacct *ca = cgroup_ca(cgrp);
  7972. int i;
  7973. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7974. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7975. val = cputime64_to_clock_t(val);
  7976. cb->fill(cb, cpuacct_stat_desc[i], val);
  7977. }
  7978. return 0;
  7979. }
  7980. static struct cftype files[] = {
  7981. {
  7982. .name = "usage",
  7983. .read_u64 = cpuusage_read,
  7984. .write_u64 = cpuusage_write,
  7985. },
  7986. {
  7987. .name = "usage_percpu",
  7988. .read_seq_string = cpuacct_percpu_seq_read,
  7989. },
  7990. {
  7991. .name = "stat",
  7992. .read_map = cpuacct_stats_show,
  7993. },
  7994. };
  7995. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7996. {
  7997. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7998. }
  7999. /*
  8000. * charge this task's execution time to its accounting group.
  8001. *
  8002. * called with rq->lock held.
  8003. */
  8004. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8005. {
  8006. struct cpuacct *ca;
  8007. int cpu;
  8008. if (unlikely(!cpuacct_subsys.active))
  8009. return;
  8010. cpu = task_cpu(tsk);
  8011. rcu_read_lock();
  8012. ca = task_ca(tsk);
  8013. for (; ca; ca = ca->parent) {
  8014. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8015. *cpuusage += cputime;
  8016. }
  8017. rcu_read_unlock();
  8018. }
  8019. /*
  8020. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  8021. * in cputime_t units. As a result, cpuacct_update_stats calls
  8022. * percpu_counter_add with values large enough to always overflow the
  8023. * per cpu batch limit causing bad SMP scalability.
  8024. *
  8025. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  8026. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  8027. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  8028. */
  8029. #ifdef CONFIG_SMP
  8030. #define CPUACCT_BATCH \
  8031. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  8032. #else
  8033. #define CPUACCT_BATCH 0
  8034. #endif
  8035. /*
  8036. * Charge the system/user time to the task's accounting group.
  8037. */
  8038. static void cpuacct_update_stats(struct task_struct *tsk,
  8039. enum cpuacct_stat_index idx, cputime_t val)
  8040. {
  8041. struct cpuacct *ca;
  8042. int batch = CPUACCT_BATCH;
  8043. if (unlikely(!cpuacct_subsys.active))
  8044. return;
  8045. rcu_read_lock();
  8046. ca = task_ca(tsk);
  8047. do {
  8048. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  8049. ca = ca->parent;
  8050. } while (ca);
  8051. rcu_read_unlock();
  8052. }
  8053. struct cgroup_subsys cpuacct_subsys = {
  8054. .name = "cpuacct",
  8055. .create = cpuacct_create,
  8056. .destroy = cpuacct_destroy,
  8057. .populate = cpuacct_populate,
  8058. .subsys_id = cpuacct_subsys_id,
  8059. };
  8060. #endif /* CONFIG_CGROUP_CPUACCT */