sge.c 72 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460
  1. /*
  2. * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
  3. * driver for Linux.
  4. *
  5. * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
  6. *
  7. * This software is available to you under a choice of one of two
  8. * licenses. You may choose to be licensed under the terms of the GNU
  9. * General Public License (GPL) Version 2, available from the file
  10. * COPYING in the main directory of this source tree, or the
  11. * OpenIB.org BSD license below:
  12. *
  13. * Redistribution and use in source and binary forms, with or
  14. * without modification, are permitted provided that the following
  15. * conditions are met:
  16. *
  17. * - Redistributions of source code must retain the above
  18. * copyright notice, this list of conditions and the following
  19. * disclaimer.
  20. *
  21. * - Redistributions in binary form must reproduce the above
  22. * copyright notice, this list of conditions and the following
  23. * disclaimer in the documentation and/or other materials
  24. * provided with the distribution.
  25. *
  26. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  27. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  28. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  29. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  30. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  31. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  32. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  33. * SOFTWARE.
  34. */
  35. #include <linux/skbuff.h>
  36. #include <linux/netdevice.h>
  37. #include <linux/etherdevice.h>
  38. #include <linux/if_vlan.h>
  39. #include <linux/ip.h>
  40. #include <net/ipv6.h>
  41. #include <net/tcp.h>
  42. #include <linux/dma-mapping.h>
  43. #include "t4vf_common.h"
  44. #include "t4vf_defs.h"
  45. #include "../cxgb4/t4_regs.h"
  46. #include "../cxgb4/t4fw_api.h"
  47. #include "../cxgb4/t4_msg.h"
  48. /*
  49. * Decoded Adapter Parameters.
  50. */
  51. static u32 FL_PG_ORDER; /* large page allocation size */
  52. static u32 STAT_LEN; /* length of status page at ring end */
  53. static u32 PKTSHIFT; /* padding between CPL and packet data */
  54. static u32 FL_ALIGN; /* response queue message alignment */
  55. /*
  56. * Constants ...
  57. */
  58. enum {
  59. /*
  60. * Egress Queue sizes, producer and consumer indices are all in units
  61. * of Egress Context Units bytes. Note that as far as the hardware is
  62. * concerned, the free list is an Egress Queue (the host produces free
  63. * buffers which the hardware consumes) and free list entries are
  64. * 64-bit PCI DMA addresses.
  65. */
  66. EQ_UNIT = SGE_EQ_IDXSIZE,
  67. FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
  68. TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
  69. /*
  70. * Max number of TX descriptors we clean up at a time. Should be
  71. * modest as freeing skbs isn't cheap and it happens while holding
  72. * locks. We just need to free packets faster than they arrive, we
  73. * eventually catch up and keep the amortized cost reasonable.
  74. */
  75. MAX_TX_RECLAIM = 16,
  76. /*
  77. * Max number of Rx buffers we replenish at a time. Again keep this
  78. * modest, allocating buffers isn't cheap either.
  79. */
  80. MAX_RX_REFILL = 16,
  81. /*
  82. * Period of the Rx queue check timer. This timer is infrequent as it
  83. * has something to do only when the system experiences severe memory
  84. * shortage.
  85. */
  86. RX_QCHECK_PERIOD = (HZ / 2),
  87. /*
  88. * Period of the TX queue check timer and the maximum number of TX
  89. * descriptors to be reclaimed by the TX timer.
  90. */
  91. TX_QCHECK_PERIOD = (HZ / 2),
  92. MAX_TIMER_TX_RECLAIM = 100,
  93. /*
  94. * An FL with <= FL_STARVE_THRES buffers is starving and a periodic
  95. * timer will attempt to refill it.
  96. */
  97. FL_STARVE_THRES = 4,
  98. /*
  99. * Suspend an Ethernet TX queue with fewer available descriptors than
  100. * this. We always want to have room for a maximum sized packet:
  101. * inline immediate data + MAX_SKB_FRAGS. This is the same as
  102. * calc_tx_flits() for a TSO packet with nr_frags == MAX_SKB_FRAGS
  103. * (see that function and its helpers for a description of the
  104. * calculation).
  105. */
  106. ETHTXQ_MAX_FRAGS = MAX_SKB_FRAGS + 1,
  107. ETHTXQ_MAX_SGL_LEN = ((3 * (ETHTXQ_MAX_FRAGS-1))/2 +
  108. ((ETHTXQ_MAX_FRAGS-1) & 1) +
  109. 2),
  110. ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
  111. sizeof(struct cpl_tx_pkt_lso_core) +
  112. sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
  113. ETHTXQ_MAX_FLITS = ETHTXQ_MAX_SGL_LEN + ETHTXQ_MAX_HDR,
  114. ETHTXQ_STOP_THRES = 1 + DIV_ROUND_UP(ETHTXQ_MAX_FLITS, TXD_PER_EQ_UNIT),
  115. /*
  116. * Max TX descriptor space we allow for an Ethernet packet to be
  117. * inlined into a WR. This is limited by the maximum value which
  118. * we can specify for immediate data in the firmware Ethernet TX
  119. * Work Request.
  120. */
  121. MAX_IMM_TX_PKT_LEN = FW_WR_IMMDLEN_MASK,
  122. /*
  123. * Max size of a WR sent through a control TX queue.
  124. */
  125. MAX_CTRL_WR_LEN = 256,
  126. /*
  127. * Maximum amount of data which we'll ever need to inline into a
  128. * TX ring: max(MAX_IMM_TX_PKT_LEN, MAX_CTRL_WR_LEN).
  129. */
  130. MAX_IMM_TX_LEN = (MAX_IMM_TX_PKT_LEN > MAX_CTRL_WR_LEN
  131. ? MAX_IMM_TX_PKT_LEN
  132. : MAX_CTRL_WR_LEN),
  133. /*
  134. * For incoming packets less than RX_COPY_THRES, we copy the data into
  135. * an skb rather than referencing the data. We allocate enough
  136. * in-line room in skb's to accommodate pulling in RX_PULL_LEN bytes
  137. * of the data (header).
  138. */
  139. RX_COPY_THRES = 256,
  140. RX_PULL_LEN = 128,
  141. };
  142. /*
  143. * Can't define this in the above enum because PKTSHIFT isn't a constant in
  144. * the VF Driver ...
  145. */
  146. #define RX_PKT_PULL_LEN (RX_PULL_LEN + PKTSHIFT)
  147. /*
  148. * Software state per TX descriptor.
  149. */
  150. struct tx_sw_desc {
  151. struct sk_buff *skb; /* socket buffer of TX data source */
  152. struct ulptx_sgl *sgl; /* scatter/gather list in TX Queue */
  153. };
  154. /*
  155. * Software state per RX Free List descriptor. We keep track of the allocated
  156. * FL page, its size, and its PCI DMA address (if the page is mapped). The FL
  157. * page size and its PCI DMA mapped state are stored in the low bits of the
  158. * PCI DMA address as per below.
  159. */
  160. struct rx_sw_desc {
  161. struct page *page; /* Free List page buffer */
  162. dma_addr_t dma_addr; /* PCI DMA address (if mapped) */
  163. /* and flags (see below) */
  164. };
  165. /*
  166. * The low bits of rx_sw_desc.dma_addr have special meaning. Note that the
  167. * SGE also uses the low 4 bits to determine the size of the buffer. It uses
  168. * those bits to index into the SGE_FL_BUFFER_SIZE[index] register array.
  169. * Since we only use SGE_FL_BUFFER_SIZE0 and SGE_FL_BUFFER_SIZE1, these low 4
  170. * bits can only contain a 0 or a 1 to indicate which size buffer we're giving
  171. * to the SGE. Thus, our software state of "is the buffer mapped for DMA" is
  172. * maintained in an inverse sense so the hardware never sees that bit high.
  173. */
  174. enum {
  175. RX_LARGE_BUF = 1 << 0, /* buffer is SGE_FL_BUFFER_SIZE[1] */
  176. RX_UNMAPPED_BUF = 1 << 1, /* buffer is not mapped */
  177. };
  178. /**
  179. * get_buf_addr - return DMA buffer address of software descriptor
  180. * @sdesc: pointer to the software buffer descriptor
  181. *
  182. * Return the DMA buffer address of a software descriptor (stripping out
  183. * our low-order flag bits).
  184. */
  185. static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *sdesc)
  186. {
  187. return sdesc->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF);
  188. }
  189. /**
  190. * is_buf_mapped - is buffer mapped for DMA?
  191. * @sdesc: pointer to the software buffer descriptor
  192. *
  193. * Determine whether the buffer associated with a software descriptor in
  194. * mapped for DMA or not.
  195. */
  196. static inline bool is_buf_mapped(const struct rx_sw_desc *sdesc)
  197. {
  198. return !(sdesc->dma_addr & RX_UNMAPPED_BUF);
  199. }
  200. /**
  201. * need_skb_unmap - does the platform need unmapping of sk_buffs?
  202. *
  203. * Returns true if the platfrom needs sk_buff unmapping. The compiler
  204. * optimizes away unecessary code if this returns true.
  205. */
  206. static inline int need_skb_unmap(void)
  207. {
  208. /*
  209. * This structure is used to tell if the platfrom needs buffer
  210. * unmapping by checking if DECLARE_PCI_UNMAP_ADDR defines anything.
  211. */
  212. struct dummy {
  213. DECLARE_PCI_UNMAP_ADDR(addr);
  214. };
  215. return sizeof(struct dummy) != 0;
  216. }
  217. /**
  218. * txq_avail - return the number of available slots in a TX queue
  219. * @tq: the TX queue
  220. *
  221. * Returns the number of available descriptors in a TX queue.
  222. */
  223. static inline unsigned int txq_avail(const struct sge_txq *tq)
  224. {
  225. return tq->size - 1 - tq->in_use;
  226. }
  227. /**
  228. * fl_cap - return the capacity of a Free List
  229. * @fl: the Free List
  230. *
  231. * Returns the capacity of a Free List. The capacity is less than the
  232. * size because an Egress Queue Index Unit worth of descriptors needs to
  233. * be left unpopulated, otherwise the Producer and Consumer indices PIDX
  234. * and CIDX will match and the hardware will think the FL is empty.
  235. */
  236. static inline unsigned int fl_cap(const struct sge_fl *fl)
  237. {
  238. return fl->size - FL_PER_EQ_UNIT;
  239. }
  240. /**
  241. * fl_starving - return whether a Free List is starving.
  242. * @fl: the Free List
  243. *
  244. * Tests specified Free List to see whether the number of buffers
  245. * available to the hardware has falled below our "starvation"
  246. * threshhold.
  247. */
  248. static inline bool fl_starving(const struct sge_fl *fl)
  249. {
  250. return fl->avail - fl->pend_cred <= FL_STARVE_THRES;
  251. }
  252. /**
  253. * map_skb - map an skb for DMA to the device
  254. * @dev: the egress net device
  255. * @skb: the packet to map
  256. * @addr: a pointer to the base of the DMA mapping array
  257. *
  258. * Map an skb for DMA to the device and return an array of DMA addresses.
  259. */
  260. static int map_skb(struct device *dev, const struct sk_buff *skb,
  261. dma_addr_t *addr)
  262. {
  263. const skb_frag_t *fp, *end;
  264. const struct skb_shared_info *si;
  265. *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
  266. if (dma_mapping_error(dev, *addr))
  267. goto out_err;
  268. si = skb_shinfo(skb);
  269. end = &si->frags[si->nr_frags];
  270. for (fp = si->frags; fp < end; fp++) {
  271. *++addr = dma_map_page(dev, fp->page, fp->page_offset, fp->size,
  272. DMA_TO_DEVICE);
  273. if (dma_mapping_error(dev, *addr))
  274. goto unwind;
  275. }
  276. return 0;
  277. unwind:
  278. while (fp-- > si->frags)
  279. dma_unmap_page(dev, *--addr, fp->size, DMA_TO_DEVICE);
  280. dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
  281. out_err:
  282. return -ENOMEM;
  283. }
  284. static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
  285. const struct ulptx_sgl *sgl, const struct sge_txq *tq)
  286. {
  287. const struct ulptx_sge_pair *p;
  288. unsigned int nfrags = skb_shinfo(skb)->nr_frags;
  289. if (likely(skb_headlen(skb)))
  290. dma_unmap_single(dev, be64_to_cpu(sgl->addr0),
  291. be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
  292. else {
  293. dma_unmap_page(dev, be64_to_cpu(sgl->addr0),
  294. be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
  295. nfrags--;
  296. }
  297. /*
  298. * the complexity below is because of the possibility of a wrap-around
  299. * in the middle of an SGL
  300. */
  301. for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
  302. if (likely((u8 *)(p + 1) <= (u8 *)tq->stat)) {
  303. unmap:
  304. dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
  305. be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
  306. dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
  307. be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
  308. p++;
  309. } else if ((u8 *)p == (u8 *)tq->stat) {
  310. p = (const struct ulptx_sge_pair *)tq->desc;
  311. goto unmap;
  312. } else if ((u8 *)p + 8 == (u8 *)tq->stat) {
  313. const __be64 *addr = (const __be64 *)tq->desc;
  314. dma_unmap_page(dev, be64_to_cpu(addr[0]),
  315. be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
  316. dma_unmap_page(dev, be64_to_cpu(addr[1]),
  317. be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
  318. p = (const struct ulptx_sge_pair *)&addr[2];
  319. } else {
  320. const __be64 *addr = (const __be64 *)tq->desc;
  321. dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
  322. be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
  323. dma_unmap_page(dev, be64_to_cpu(addr[0]),
  324. be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
  325. p = (const struct ulptx_sge_pair *)&addr[1];
  326. }
  327. }
  328. if (nfrags) {
  329. __be64 addr;
  330. if ((u8 *)p == (u8 *)tq->stat)
  331. p = (const struct ulptx_sge_pair *)tq->desc;
  332. addr = ((u8 *)p + 16 <= (u8 *)tq->stat
  333. ? p->addr[0]
  334. : *(const __be64 *)tq->desc);
  335. dma_unmap_page(dev, be64_to_cpu(addr), be32_to_cpu(p->len[0]),
  336. DMA_TO_DEVICE);
  337. }
  338. }
  339. /**
  340. * free_tx_desc - reclaims TX descriptors and their buffers
  341. * @adapter: the adapter
  342. * @tq: the TX queue to reclaim descriptors from
  343. * @n: the number of descriptors to reclaim
  344. * @unmap: whether the buffers should be unmapped for DMA
  345. *
  346. * Reclaims TX descriptors from an SGE TX queue and frees the associated
  347. * TX buffers. Called with the TX queue lock held.
  348. */
  349. static void free_tx_desc(struct adapter *adapter, struct sge_txq *tq,
  350. unsigned int n, bool unmap)
  351. {
  352. struct tx_sw_desc *sdesc;
  353. unsigned int cidx = tq->cidx;
  354. struct device *dev = adapter->pdev_dev;
  355. const int need_unmap = need_skb_unmap() && unmap;
  356. sdesc = &tq->sdesc[cidx];
  357. while (n--) {
  358. /*
  359. * If we kept a reference to the original TX skb, we need to
  360. * unmap it from PCI DMA space (if required) and free it.
  361. */
  362. if (sdesc->skb) {
  363. if (need_unmap)
  364. unmap_sgl(dev, sdesc->skb, sdesc->sgl, tq);
  365. kfree_skb(sdesc->skb);
  366. sdesc->skb = NULL;
  367. }
  368. sdesc++;
  369. if (++cidx == tq->size) {
  370. cidx = 0;
  371. sdesc = tq->sdesc;
  372. }
  373. }
  374. tq->cidx = cidx;
  375. }
  376. /*
  377. * Return the number of reclaimable descriptors in a TX queue.
  378. */
  379. static inline int reclaimable(const struct sge_txq *tq)
  380. {
  381. int hw_cidx = be16_to_cpu(tq->stat->cidx);
  382. int reclaimable = hw_cidx - tq->cidx;
  383. if (reclaimable < 0)
  384. reclaimable += tq->size;
  385. return reclaimable;
  386. }
  387. /**
  388. * reclaim_completed_tx - reclaims completed TX descriptors
  389. * @adapter: the adapter
  390. * @tq: the TX queue to reclaim completed descriptors from
  391. * @unmap: whether the buffers should be unmapped for DMA
  392. *
  393. * Reclaims TX descriptors that the SGE has indicated it has processed,
  394. * and frees the associated buffers if possible. Called with the TX
  395. * queue locked.
  396. */
  397. static inline void reclaim_completed_tx(struct adapter *adapter,
  398. struct sge_txq *tq,
  399. bool unmap)
  400. {
  401. int avail = reclaimable(tq);
  402. if (avail) {
  403. /*
  404. * Limit the amount of clean up work we do at a time to keep
  405. * the TX lock hold time O(1).
  406. */
  407. if (avail > MAX_TX_RECLAIM)
  408. avail = MAX_TX_RECLAIM;
  409. free_tx_desc(adapter, tq, avail, unmap);
  410. tq->in_use -= avail;
  411. }
  412. }
  413. /**
  414. * get_buf_size - return the size of an RX Free List buffer.
  415. * @sdesc: pointer to the software buffer descriptor
  416. */
  417. static inline int get_buf_size(const struct rx_sw_desc *sdesc)
  418. {
  419. return FL_PG_ORDER > 0 && (sdesc->dma_addr & RX_LARGE_BUF)
  420. ? (PAGE_SIZE << FL_PG_ORDER)
  421. : PAGE_SIZE;
  422. }
  423. /**
  424. * free_rx_bufs - free RX buffers on an SGE Free List
  425. * @adapter: the adapter
  426. * @fl: the SGE Free List to free buffers from
  427. * @n: how many buffers to free
  428. *
  429. * Release the next @n buffers on an SGE Free List RX queue. The
  430. * buffers must be made inaccessible to hardware before calling this
  431. * function.
  432. */
  433. static void free_rx_bufs(struct adapter *adapter, struct sge_fl *fl, int n)
  434. {
  435. while (n--) {
  436. struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
  437. if (is_buf_mapped(sdesc))
  438. dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
  439. get_buf_size(sdesc), PCI_DMA_FROMDEVICE);
  440. put_page(sdesc->page);
  441. sdesc->page = NULL;
  442. if (++fl->cidx == fl->size)
  443. fl->cidx = 0;
  444. fl->avail--;
  445. }
  446. }
  447. /**
  448. * unmap_rx_buf - unmap the current RX buffer on an SGE Free List
  449. * @adapter: the adapter
  450. * @fl: the SGE Free List
  451. *
  452. * Unmap the current buffer on an SGE Free List RX queue. The
  453. * buffer must be made inaccessible to HW before calling this function.
  454. *
  455. * This is similar to @free_rx_bufs above but does not free the buffer.
  456. * Do note that the FL still loses any further access to the buffer.
  457. * This is used predominantly to "transfer ownership" of an FL buffer
  458. * to another entity (typically an skb's fragment list).
  459. */
  460. static void unmap_rx_buf(struct adapter *adapter, struct sge_fl *fl)
  461. {
  462. struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
  463. if (is_buf_mapped(sdesc))
  464. dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
  465. get_buf_size(sdesc), PCI_DMA_FROMDEVICE);
  466. sdesc->page = NULL;
  467. if (++fl->cidx == fl->size)
  468. fl->cidx = 0;
  469. fl->avail--;
  470. }
  471. /**
  472. * ring_fl_db - righ doorbell on free list
  473. * @adapter: the adapter
  474. * @fl: the Free List whose doorbell should be rung ...
  475. *
  476. * Tell the Scatter Gather Engine that there are new free list entries
  477. * available.
  478. */
  479. static inline void ring_fl_db(struct adapter *adapter, struct sge_fl *fl)
  480. {
  481. /*
  482. * The SGE keeps track of its Producer and Consumer Indices in terms
  483. * of Egress Queue Units so we can only tell it about integral numbers
  484. * of multiples of Free List Entries per Egress Queue Units ...
  485. */
  486. if (fl->pend_cred >= FL_PER_EQ_UNIT) {
  487. wmb();
  488. t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
  489. DBPRIO |
  490. QID(fl->cntxt_id) |
  491. PIDX(fl->pend_cred / FL_PER_EQ_UNIT));
  492. fl->pend_cred %= FL_PER_EQ_UNIT;
  493. }
  494. }
  495. /**
  496. * set_rx_sw_desc - initialize software RX buffer descriptor
  497. * @sdesc: pointer to the softwore RX buffer descriptor
  498. * @page: pointer to the page data structure backing the RX buffer
  499. * @dma_addr: PCI DMA address (possibly with low-bit flags)
  500. */
  501. static inline void set_rx_sw_desc(struct rx_sw_desc *sdesc, struct page *page,
  502. dma_addr_t dma_addr)
  503. {
  504. sdesc->page = page;
  505. sdesc->dma_addr = dma_addr;
  506. }
  507. /*
  508. * Support for poisoning RX buffers ...
  509. */
  510. #define POISON_BUF_VAL -1
  511. static inline void poison_buf(struct page *page, size_t sz)
  512. {
  513. #if POISON_BUF_VAL >= 0
  514. memset(page_address(page), POISON_BUF_VAL, sz);
  515. #endif
  516. }
  517. /**
  518. * refill_fl - refill an SGE RX buffer ring
  519. * @adapter: the adapter
  520. * @fl: the Free List ring to refill
  521. * @n: the number of new buffers to allocate
  522. * @gfp: the gfp flags for the allocations
  523. *
  524. * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
  525. * allocated with the supplied gfp flags. The caller must assure that
  526. * @n does not exceed the queue's capacity -- i.e. (cidx == pidx) _IN
  527. * EGRESS QUEUE UNITS_ indicates an empty Free List! Returns the number
  528. * of buffers allocated. If afterwards the queue is found critically low,
  529. * mark it as starving in the bitmap of starving FLs.
  530. */
  531. static unsigned int refill_fl(struct adapter *adapter, struct sge_fl *fl,
  532. int n, gfp_t gfp)
  533. {
  534. struct page *page;
  535. dma_addr_t dma_addr;
  536. unsigned int cred = fl->avail;
  537. __be64 *d = &fl->desc[fl->pidx];
  538. struct rx_sw_desc *sdesc = &fl->sdesc[fl->pidx];
  539. /*
  540. * Sanity: ensure that the result of adding n Free List buffers
  541. * won't result in wrapping the SGE's Producer Index around to
  542. * it's Consumer Index thereby indicating an empty Free List ...
  543. */
  544. BUG_ON(fl->avail + n > fl->size - FL_PER_EQ_UNIT);
  545. /*
  546. * If we support large pages, prefer large buffers and fail over to
  547. * small pages if we can't allocate large pages to satisfy the refill.
  548. * If we don't support large pages, drop directly into the small page
  549. * allocation code.
  550. */
  551. if (FL_PG_ORDER == 0)
  552. goto alloc_small_pages;
  553. while (n) {
  554. page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN,
  555. FL_PG_ORDER);
  556. if (unlikely(!page)) {
  557. /*
  558. * We've failed inour attempt to allocate a "large
  559. * page". Fail over to the "small page" allocation
  560. * below.
  561. */
  562. fl->large_alloc_failed++;
  563. break;
  564. }
  565. poison_buf(page, PAGE_SIZE << FL_PG_ORDER);
  566. dma_addr = dma_map_page(adapter->pdev_dev, page, 0,
  567. PAGE_SIZE << FL_PG_ORDER,
  568. PCI_DMA_FROMDEVICE);
  569. if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
  570. /*
  571. * We've run out of DMA mapping space. Free up the
  572. * buffer and return with what we've managed to put
  573. * into the free list. We don't want to fail over to
  574. * the small page allocation below in this case
  575. * because DMA mapping resources are typically
  576. * critical resources once they become scarse.
  577. */
  578. __free_pages(page, FL_PG_ORDER);
  579. goto out;
  580. }
  581. dma_addr |= RX_LARGE_BUF;
  582. *d++ = cpu_to_be64(dma_addr);
  583. set_rx_sw_desc(sdesc, page, dma_addr);
  584. sdesc++;
  585. fl->avail++;
  586. if (++fl->pidx == fl->size) {
  587. fl->pidx = 0;
  588. sdesc = fl->sdesc;
  589. d = fl->desc;
  590. }
  591. n--;
  592. }
  593. alloc_small_pages:
  594. while (n--) {
  595. page = __netdev_alloc_page(adapter->port[0],
  596. gfp | __GFP_NOWARN);
  597. if (unlikely(!page)) {
  598. fl->alloc_failed++;
  599. break;
  600. }
  601. poison_buf(page, PAGE_SIZE);
  602. dma_addr = dma_map_page(adapter->pdev_dev, page, 0, PAGE_SIZE,
  603. PCI_DMA_FROMDEVICE);
  604. if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
  605. netdev_free_page(adapter->port[0], page);
  606. break;
  607. }
  608. *d++ = cpu_to_be64(dma_addr);
  609. set_rx_sw_desc(sdesc, page, dma_addr);
  610. sdesc++;
  611. fl->avail++;
  612. if (++fl->pidx == fl->size) {
  613. fl->pidx = 0;
  614. sdesc = fl->sdesc;
  615. d = fl->desc;
  616. }
  617. }
  618. out:
  619. /*
  620. * Update our accounting state to incorporate the new Free List
  621. * buffers, tell the hardware about them and return the number of
  622. * bufers which we were able to allocate.
  623. */
  624. cred = fl->avail - cred;
  625. fl->pend_cred += cred;
  626. ring_fl_db(adapter, fl);
  627. if (unlikely(fl_starving(fl))) {
  628. smp_wmb();
  629. set_bit(fl->cntxt_id, adapter->sge.starving_fl);
  630. }
  631. return cred;
  632. }
  633. /*
  634. * Refill a Free List to its capacity or the Maximum Refill Increment,
  635. * whichever is smaller ...
  636. */
  637. static inline void __refill_fl(struct adapter *adapter, struct sge_fl *fl)
  638. {
  639. refill_fl(adapter, fl,
  640. min((unsigned int)MAX_RX_REFILL, fl_cap(fl) - fl->avail),
  641. GFP_ATOMIC);
  642. }
  643. /**
  644. * alloc_ring - allocate resources for an SGE descriptor ring
  645. * @dev: the PCI device's core device
  646. * @nelem: the number of descriptors
  647. * @hwsize: the size of each hardware descriptor
  648. * @swsize: the size of each software descriptor
  649. * @busaddrp: the physical PCI bus address of the allocated ring
  650. * @swringp: return address pointer for software ring
  651. * @stat_size: extra space in hardware ring for status information
  652. *
  653. * Allocates resources for an SGE descriptor ring, such as TX queues,
  654. * free buffer lists, response queues, etc. Each SGE ring requires
  655. * space for its hardware descriptors plus, optionally, space for software
  656. * state associated with each hardware entry (the metadata). The function
  657. * returns three values: the virtual address for the hardware ring (the
  658. * return value of the function), the PCI bus address of the hardware
  659. * ring (in *busaddrp), and the address of the software ring (in swringp).
  660. * Both the hardware and software rings are returned zeroed out.
  661. */
  662. static void *alloc_ring(struct device *dev, size_t nelem, size_t hwsize,
  663. size_t swsize, dma_addr_t *busaddrp, void *swringp,
  664. size_t stat_size)
  665. {
  666. /*
  667. * Allocate the hardware ring and PCI DMA bus address space for said.
  668. */
  669. size_t hwlen = nelem * hwsize + stat_size;
  670. void *hwring = dma_alloc_coherent(dev, hwlen, busaddrp, GFP_KERNEL);
  671. if (!hwring)
  672. return NULL;
  673. /*
  674. * If the caller wants a software ring, allocate it and return a
  675. * pointer to it in *swringp.
  676. */
  677. BUG_ON((swsize != 0) != (swringp != NULL));
  678. if (swsize) {
  679. void *swring = kcalloc(nelem, swsize, GFP_KERNEL);
  680. if (!swring) {
  681. dma_free_coherent(dev, hwlen, hwring, *busaddrp);
  682. return NULL;
  683. }
  684. *(void **)swringp = swring;
  685. }
  686. /*
  687. * Zero out the hardware ring and return its address as our function
  688. * value.
  689. */
  690. memset(hwring, 0, hwlen);
  691. return hwring;
  692. }
  693. /**
  694. * sgl_len - calculates the size of an SGL of the given capacity
  695. * @n: the number of SGL entries
  696. *
  697. * Calculates the number of flits (8-byte units) needed for a Direct
  698. * Scatter/Gather List that can hold the given number of entries.
  699. */
  700. static inline unsigned int sgl_len(unsigned int n)
  701. {
  702. /*
  703. * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
  704. * addresses. The DSGL Work Request starts off with a 32-bit DSGL
  705. * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
  706. * repeated sequences of { Length[i], Length[i+1], Address[i],
  707. * Address[i+1] } (this ensures that all addresses are on 64-bit
  708. * boundaries). If N is even, then Length[N+1] should be set to 0 and
  709. * Address[N+1] is omitted.
  710. *
  711. * The following calculation incorporates all of the above. It's
  712. * somewhat hard to follow but, briefly: the "+2" accounts for the
  713. * first two flits which include the DSGL header, Length0 and
  714. * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
  715. * flits for every pair of the remaining N) +1 if (n-1) is odd; and
  716. * finally the "+((n-1)&1)" adds the one remaining flit needed if
  717. * (n-1) is odd ...
  718. */
  719. n--;
  720. return (3 * n) / 2 + (n & 1) + 2;
  721. }
  722. /**
  723. * flits_to_desc - returns the num of TX descriptors for the given flits
  724. * @flits: the number of flits
  725. *
  726. * Returns the number of TX descriptors needed for the supplied number
  727. * of flits.
  728. */
  729. static inline unsigned int flits_to_desc(unsigned int flits)
  730. {
  731. BUG_ON(flits > SGE_MAX_WR_LEN / sizeof(__be64));
  732. return DIV_ROUND_UP(flits, TXD_PER_EQ_UNIT);
  733. }
  734. /**
  735. * is_eth_imm - can an Ethernet packet be sent as immediate data?
  736. * @skb: the packet
  737. *
  738. * Returns whether an Ethernet packet is small enough to fit completely as
  739. * immediate data.
  740. */
  741. static inline int is_eth_imm(const struct sk_buff *skb)
  742. {
  743. /*
  744. * The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
  745. * which does not accommodate immediate data. We could dike out all
  746. * of the support code for immediate data but that would tie our hands
  747. * too much if we ever want to enhace the firmware. It would also
  748. * create more differences between the PF and VF Drivers.
  749. */
  750. return false;
  751. }
  752. /**
  753. * calc_tx_flits - calculate the number of flits for a packet TX WR
  754. * @skb: the packet
  755. *
  756. * Returns the number of flits needed for a TX Work Request for the
  757. * given Ethernet packet, including the needed WR and CPL headers.
  758. */
  759. static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
  760. {
  761. unsigned int flits;
  762. /*
  763. * If the skb is small enough, we can pump it out as a work request
  764. * with only immediate data. In that case we just have to have the
  765. * TX Packet header plus the skb data in the Work Request.
  766. */
  767. if (is_eth_imm(skb))
  768. return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
  769. sizeof(__be64));
  770. /*
  771. * Otherwise, we're going to have to construct a Scatter gather list
  772. * of the skb body and fragments. We also include the flits necessary
  773. * for the TX Packet Work Request and CPL. We always have a firmware
  774. * Write Header (incorporated as part of the cpl_tx_pkt_lso and
  775. * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
  776. * message or, if we're doing a Large Send Offload, an LSO CPL message
  777. * with an embeded TX Packet Write CPL message.
  778. */
  779. flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
  780. if (skb_shinfo(skb)->gso_size)
  781. flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
  782. sizeof(struct cpl_tx_pkt_lso_core) +
  783. sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
  784. else
  785. flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
  786. sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
  787. return flits;
  788. }
  789. /**
  790. * write_sgl - populate a Scatter/Gather List for a packet
  791. * @skb: the packet
  792. * @tq: the TX queue we are writing into
  793. * @sgl: starting location for writing the SGL
  794. * @end: points right after the end of the SGL
  795. * @start: start offset into skb main-body data to include in the SGL
  796. * @addr: the list of DMA bus addresses for the SGL elements
  797. *
  798. * Generates a Scatter/Gather List for the buffers that make up a packet.
  799. * The caller must provide adequate space for the SGL that will be written.
  800. * The SGL includes all of the packet's page fragments and the data in its
  801. * main body except for the first @start bytes. @pos must be 16-byte
  802. * aligned and within a TX descriptor with available space. @end points
  803. * write after the end of the SGL but does not account for any potential
  804. * wrap around, i.e., @end > @tq->stat.
  805. */
  806. static void write_sgl(const struct sk_buff *skb, struct sge_txq *tq,
  807. struct ulptx_sgl *sgl, u64 *end, unsigned int start,
  808. const dma_addr_t *addr)
  809. {
  810. unsigned int i, len;
  811. struct ulptx_sge_pair *to;
  812. const struct skb_shared_info *si = skb_shinfo(skb);
  813. unsigned int nfrags = si->nr_frags;
  814. struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
  815. len = skb_headlen(skb) - start;
  816. if (likely(len)) {
  817. sgl->len0 = htonl(len);
  818. sgl->addr0 = cpu_to_be64(addr[0] + start);
  819. nfrags++;
  820. } else {
  821. sgl->len0 = htonl(si->frags[0].size);
  822. sgl->addr0 = cpu_to_be64(addr[1]);
  823. }
  824. sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) |
  825. ULPTX_NSGE(nfrags));
  826. if (likely(--nfrags == 0))
  827. return;
  828. /*
  829. * Most of the complexity below deals with the possibility we hit the
  830. * end of the queue in the middle of writing the SGL. For this case
  831. * only we create the SGL in a temporary buffer and then copy it.
  832. */
  833. to = (u8 *)end > (u8 *)tq->stat ? buf : sgl->sge;
  834. for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
  835. to->len[0] = cpu_to_be32(si->frags[i].size);
  836. to->len[1] = cpu_to_be32(si->frags[++i].size);
  837. to->addr[0] = cpu_to_be64(addr[i]);
  838. to->addr[1] = cpu_to_be64(addr[++i]);
  839. }
  840. if (nfrags) {
  841. to->len[0] = cpu_to_be32(si->frags[i].size);
  842. to->len[1] = cpu_to_be32(0);
  843. to->addr[0] = cpu_to_be64(addr[i + 1]);
  844. }
  845. if (unlikely((u8 *)end > (u8 *)tq->stat)) {
  846. unsigned int part0 = (u8 *)tq->stat - (u8 *)sgl->sge, part1;
  847. if (likely(part0))
  848. memcpy(sgl->sge, buf, part0);
  849. part1 = (u8 *)end - (u8 *)tq->stat;
  850. memcpy(tq->desc, (u8 *)buf + part0, part1);
  851. end = (void *)tq->desc + part1;
  852. }
  853. if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
  854. *(u64 *)end = 0;
  855. }
  856. /**
  857. * check_ring_tx_db - check and potentially ring a TX queue's doorbell
  858. * @adapter: the adapter
  859. * @tq: the TX queue
  860. * @n: number of new descriptors to give to HW
  861. *
  862. * Ring the doorbel for a TX queue.
  863. */
  864. static inline void ring_tx_db(struct adapter *adapter, struct sge_txq *tq,
  865. int n)
  866. {
  867. /*
  868. * Warn if we write doorbells with the wrong priority and write
  869. * descriptors before telling HW.
  870. */
  871. WARN_ON((QID(tq->cntxt_id) | PIDX(n)) & DBPRIO);
  872. wmb();
  873. t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
  874. QID(tq->cntxt_id) | PIDX(n));
  875. }
  876. /**
  877. * inline_tx_skb - inline a packet's data into TX descriptors
  878. * @skb: the packet
  879. * @tq: the TX queue where the packet will be inlined
  880. * @pos: starting position in the TX queue to inline the packet
  881. *
  882. * Inline a packet's contents directly into TX descriptors, starting at
  883. * the given position within the TX DMA ring.
  884. * Most of the complexity of this operation is dealing with wrap arounds
  885. * in the middle of the packet we want to inline.
  886. */
  887. static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *tq,
  888. void *pos)
  889. {
  890. u64 *p;
  891. int left = (void *)tq->stat - pos;
  892. if (likely(skb->len <= left)) {
  893. if (likely(!skb->data_len))
  894. skb_copy_from_linear_data(skb, pos, skb->len);
  895. else
  896. skb_copy_bits(skb, 0, pos, skb->len);
  897. pos += skb->len;
  898. } else {
  899. skb_copy_bits(skb, 0, pos, left);
  900. skb_copy_bits(skb, left, tq->desc, skb->len - left);
  901. pos = (void *)tq->desc + (skb->len - left);
  902. }
  903. /* 0-pad to multiple of 16 */
  904. p = PTR_ALIGN(pos, 8);
  905. if ((uintptr_t)p & 8)
  906. *p = 0;
  907. }
  908. /*
  909. * Figure out what HW csum a packet wants and return the appropriate control
  910. * bits.
  911. */
  912. static u64 hwcsum(const struct sk_buff *skb)
  913. {
  914. int csum_type;
  915. const struct iphdr *iph = ip_hdr(skb);
  916. if (iph->version == 4) {
  917. if (iph->protocol == IPPROTO_TCP)
  918. csum_type = TX_CSUM_TCPIP;
  919. else if (iph->protocol == IPPROTO_UDP)
  920. csum_type = TX_CSUM_UDPIP;
  921. else {
  922. nocsum:
  923. /*
  924. * unknown protocol, disable HW csum
  925. * and hope a bad packet is detected
  926. */
  927. return TXPKT_L4CSUM_DIS;
  928. }
  929. } else {
  930. /*
  931. * this doesn't work with extension headers
  932. */
  933. const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
  934. if (ip6h->nexthdr == IPPROTO_TCP)
  935. csum_type = TX_CSUM_TCPIP6;
  936. else if (ip6h->nexthdr == IPPROTO_UDP)
  937. csum_type = TX_CSUM_UDPIP6;
  938. else
  939. goto nocsum;
  940. }
  941. if (likely(csum_type >= TX_CSUM_TCPIP))
  942. return TXPKT_CSUM_TYPE(csum_type) |
  943. TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
  944. TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
  945. else {
  946. int start = skb_transport_offset(skb);
  947. return TXPKT_CSUM_TYPE(csum_type) |
  948. TXPKT_CSUM_START(start) |
  949. TXPKT_CSUM_LOC(start + skb->csum_offset);
  950. }
  951. }
  952. /*
  953. * Stop an Ethernet TX queue and record that state change.
  954. */
  955. static void txq_stop(struct sge_eth_txq *txq)
  956. {
  957. netif_tx_stop_queue(txq->txq);
  958. txq->q.stops++;
  959. }
  960. /*
  961. * Advance our software state for a TX queue by adding n in use descriptors.
  962. */
  963. static inline void txq_advance(struct sge_txq *tq, unsigned int n)
  964. {
  965. tq->in_use += n;
  966. tq->pidx += n;
  967. if (tq->pidx >= tq->size)
  968. tq->pidx -= tq->size;
  969. }
  970. /**
  971. * t4vf_eth_xmit - add a packet to an Ethernet TX queue
  972. * @skb: the packet
  973. * @dev: the egress net device
  974. *
  975. * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled.
  976. */
  977. int t4vf_eth_xmit(struct sk_buff *skb, struct net_device *dev)
  978. {
  979. u64 cntrl, *end;
  980. int qidx, credits;
  981. unsigned int flits, ndesc;
  982. struct adapter *adapter;
  983. struct sge_eth_txq *txq;
  984. const struct port_info *pi;
  985. struct fw_eth_tx_pkt_vm_wr *wr;
  986. struct cpl_tx_pkt_core *cpl;
  987. const struct skb_shared_info *ssi;
  988. dma_addr_t addr[MAX_SKB_FRAGS + 1];
  989. const size_t fw_hdr_copy_len = (sizeof(wr->ethmacdst) +
  990. sizeof(wr->ethmacsrc) +
  991. sizeof(wr->ethtype) +
  992. sizeof(wr->vlantci));
  993. /*
  994. * The chip minimum packet length is 10 octets but the firmware
  995. * command that we are using requires that we copy the Ethernet header
  996. * (including the VLAN tag) into the header so we reject anything
  997. * smaller than that ...
  998. */
  999. if (unlikely(skb->len < fw_hdr_copy_len))
  1000. goto out_free;
  1001. /*
  1002. * Figure out which TX Queue we're going to use.
  1003. */
  1004. pi = netdev_priv(dev);
  1005. adapter = pi->adapter;
  1006. qidx = skb_get_queue_mapping(skb);
  1007. BUG_ON(qidx >= pi->nqsets);
  1008. txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
  1009. /*
  1010. * Take this opportunity to reclaim any TX Descriptors whose DMA
  1011. * transfers have completed.
  1012. */
  1013. reclaim_completed_tx(adapter, &txq->q, true);
  1014. /*
  1015. * Calculate the number of flits and TX Descriptors we're going to
  1016. * need along with how many TX Descriptors will be left over after
  1017. * we inject our Work Request.
  1018. */
  1019. flits = calc_tx_flits(skb);
  1020. ndesc = flits_to_desc(flits);
  1021. credits = txq_avail(&txq->q) - ndesc;
  1022. if (unlikely(credits < 0)) {
  1023. /*
  1024. * Not enough room for this packet's Work Request. Stop the
  1025. * TX Queue and return a "busy" condition. The queue will get
  1026. * started later on when the firmware informs us that space
  1027. * has opened up.
  1028. */
  1029. txq_stop(txq);
  1030. dev_err(adapter->pdev_dev,
  1031. "%s: TX ring %u full while queue awake!\n",
  1032. dev->name, qidx);
  1033. return NETDEV_TX_BUSY;
  1034. }
  1035. if (!is_eth_imm(skb) &&
  1036. unlikely(map_skb(adapter->pdev_dev, skb, addr) < 0)) {
  1037. /*
  1038. * We need to map the skb into PCI DMA space (because it can't
  1039. * be in-lined directly into the Work Request) and the mapping
  1040. * operation failed. Record the error and drop the packet.
  1041. */
  1042. txq->mapping_err++;
  1043. goto out_free;
  1044. }
  1045. if (unlikely(credits < ETHTXQ_STOP_THRES)) {
  1046. /*
  1047. * After we're done injecting the Work Request for this
  1048. * packet, we'll be below our "stop threshhold" so stop the TX
  1049. * Queue now. The queue will get started later on when the
  1050. * firmware informs us that space has opened up.
  1051. */
  1052. txq_stop(txq);
  1053. }
  1054. /*
  1055. * Start filling in our Work Request. Note that we do _not_ handle
  1056. * the WR Header wrapping around the TX Descriptor Ring. If our
  1057. * maximum header size ever exceeds one TX Descriptor, we'll need to
  1058. * do something else here.
  1059. */
  1060. BUG_ON(DIV_ROUND_UP(ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
  1061. wr = (void *)&txq->q.desc[txq->q.pidx];
  1062. wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16(DIV_ROUND_UP(flits, 2)));
  1063. wr->r3[0] = cpu_to_be64(0);
  1064. wr->r3[1] = cpu_to_be64(0);
  1065. skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
  1066. end = (u64 *)wr + flits;
  1067. /*
  1068. * If this is a Large Send Offload packet we'll put in an LSO CPL
  1069. * message with an encapsulated TX Packet CPL message. Otherwise we
  1070. * just use a TX Packet CPL message.
  1071. */
  1072. ssi = skb_shinfo(skb);
  1073. if (ssi->gso_size) {
  1074. struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
  1075. bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
  1076. int l3hdr_len = skb_network_header_len(skb);
  1077. int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
  1078. wr->op_immdlen =
  1079. cpu_to_be32(FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
  1080. FW_WR_IMMDLEN(sizeof(*lso) +
  1081. sizeof(*cpl)));
  1082. /*
  1083. * Fill in the LSO CPL message.
  1084. */
  1085. lso->lso_ctrl =
  1086. cpu_to_be32(LSO_OPCODE(CPL_TX_PKT_LSO) |
  1087. LSO_FIRST_SLICE |
  1088. LSO_LAST_SLICE |
  1089. LSO_IPV6(v6) |
  1090. LSO_ETHHDR_LEN(eth_xtra_len/4) |
  1091. LSO_IPHDR_LEN(l3hdr_len/4) |
  1092. LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
  1093. lso->ipid_ofst = cpu_to_be16(0);
  1094. lso->mss = cpu_to_be16(ssi->gso_size);
  1095. lso->seqno_offset = cpu_to_be32(0);
  1096. lso->len = cpu_to_be32(skb->len);
  1097. /*
  1098. * Set up TX Packet CPL pointer, control word and perform
  1099. * accounting.
  1100. */
  1101. cpl = (void *)(lso + 1);
  1102. cntrl = (TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
  1103. TXPKT_IPHDR_LEN(l3hdr_len) |
  1104. TXPKT_ETHHDR_LEN(eth_xtra_len));
  1105. txq->tso++;
  1106. txq->tx_cso += ssi->gso_segs;
  1107. } else {
  1108. int len;
  1109. len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
  1110. wr->op_immdlen =
  1111. cpu_to_be32(FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
  1112. FW_WR_IMMDLEN(len));
  1113. /*
  1114. * Set up TX Packet CPL pointer, control word and perform
  1115. * accounting.
  1116. */
  1117. cpl = (void *)(wr + 1);
  1118. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  1119. cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
  1120. txq->tx_cso++;
  1121. } else
  1122. cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
  1123. }
  1124. /*
  1125. * If there's a VLAN tag present, add that to the list of things to
  1126. * do in this Work Request.
  1127. */
  1128. if (vlan_tx_tag_present(skb)) {
  1129. txq->vlan_ins++;
  1130. cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb));
  1131. }
  1132. /*
  1133. * Fill in the TX Packet CPL message header.
  1134. */
  1135. cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE(CPL_TX_PKT_XT) |
  1136. TXPKT_INTF(pi->port_id) |
  1137. TXPKT_PF(0));
  1138. cpl->pack = cpu_to_be16(0);
  1139. cpl->len = cpu_to_be16(skb->len);
  1140. cpl->ctrl1 = cpu_to_be64(cntrl);
  1141. #ifdef T4_TRACE
  1142. T4_TRACE5(adapter->tb[txq->q.cntxt_id & 7],
  1143. "eth_xmit: ndesc %u, credits %u, pidx %u, len %u, frags %u",
  1144. ndesc, credits, txq->q.pidx, skb->len, ssi->nr_frags);
  1145. #endif
  1146. /*
  1147. * Fill in the body of the TX Packet CPL message with either in-lined
  1148. * data or a Scatter/Gather List.
  1149. */
  1150. if (is_eth_imm(skb)) {
  1151. /*
  1152. * In-line the packet's data and free the skb since we don't
  1153. * need it any longer.
  1154. */
  1155. inline_tx_skb(skb, &txq->q, cpl + 1);
  1156. dev_kfree_skb(skb);
  1157. } else {
  1158. /*
  1159. * Write the skb's Scatter/Gather list into the TX Packet CPL
  1160. * message and retain a pointer to the skb so we can free it
  1161. * later when its DMA completes. (We store the skb pointer
  1162. * in the Software Descriptor corresponding to the last TX
  1163. * Descriptor used by the Work Request.)
  1164. *
  1165. * The retained skb will be freed when the corresponding TX
  1166. * Descriptors are reclaimed after their DMAs complete.
  1167. * However, this could take quite a while since, in general,
  1168. * the hardware is set up to be lazy about sending DMA
  1169. * completion notifications to us and we mostly perform TX
  1170. * reclaims in the transmit routine.
  1171. *
  1172. * This is good for performamce but means that we rely on new
  1173. * TX packets arriving to run the destructors of completed
  1174. * packets, which open up space in their sockets' send queues.
  1175. * Sometimes we do not get such new packets causing TX to
  1176. * stall. A single UDP transmitter is a good example of this
  1177. * situation. We have a clean up timer that periodically
  1178. * reclaims completed packets but it doesn't run often enough
  1179. * (nor do we want it to) to prevent lengthy stalls. A
  1180. * solution to this problem is to run the destructor early,
  1181. * after the packet is queued but before it's DMAd. A con is
  1182. * that we lie to socket memory accounting, but the amount of
  1183. * extra memory is reasonable (limited by the number of TX
  1184. * descriptors), the packets do actually get freed quickly by
  1185. * new packets almost always, and for protocols like TCP that
  1186. * wait for acks to really free up the data the extra memory
  1187. * is even less. On the positive side we run the destructors
  1188. * on the sending CPU rather than on a potentially different
  1189. * completing CPU, usually a good thing. We also run them
  1190. * without holding our TX queue lock, unlike what
  1191. * reclaim_completed_tx() would otherwise do.
  1192. *
  1193. * XXX Actually the above is somewhat incorrect since we don't
  1194. * XXX yet have a periodic timer which reclaims TX Descriptors.
  1195. * XXX What's our plan for this?
  1196. * XXX
  1197. * XXX Also, we don't currently have a TX Queue lock but
  1198. * XXX that may be the result of not having any current
  1199. * XXX asynchronous path for reclaiming completed TX
  1200. * XXX Descriptors ...
  1201. *
  1202. * Run the destructor before telling the DMA engine about the
  1203. * packet to make sure it doesn't complete and get freed
  1204. * prematurely.
  1205. */
  1206. struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
  1207. struct sge_txq *tq = &txq->q;
  1208. int last_desc;
  1209. /*
  1210. * If the Work Request header was an exact multiple of our TX
  1211. * Descriptor length, then it's possible that the starting SGL
  1212. * pointer lines up exactly with the end of our TX Descriptor
  1213. * ring. If that's the case, wrap around to the beginning
  1214. * here ...
  1215. */
  1216. if (unlikely((void *)sgl == (void *)tq->stat)) {
  1217. sgl = (void *)tq->desc;
  1218. end = (void *)((void *)tq->desc +
  1219. ((void *)end - (void *)tq->stat));
  1220. }
  1221. write_sgl(skb, tq, sgl, end, 0, addr);
  1222. skb_orphan(skb);
  1223. last_desc = tq->pidx + ndesc - 1;
  1224. if (last_desc >= tq->size)
  1225. last_desc -= tq->size;
  1226. tq->sdesc[last_desc].skb = skb;
  1227. tq->sdesc[last_desc].sgl = sgl;
  1228. }
  1229. /*
  1230. * Advance our internal TX Queue state, tell the hardware about
  1231. * the new TX descriptors and return success.
  1232. */
  1233. txq_advance(&txq->q, ndesc);
  1234. dev->trans_start = jiffies;
  1235. ring_tx_db(adapter, &txq->q, ndesc);
  1236. return NETDEV_TX_OK;
  1237. out_free:
  1238. /*
  1239. * An error of some sort happened. Free the TX skb and tell the
  1240. * OS that we've "dealt" with the packet ...
  1241. */
  1242. dev_kfree_skb(skb);
  1243. return NETDEV_TX_OK;
  1244. }
  1245. /**
  1246. * t4vf_pktgl_free - free a packet gather list
  1247. * @gl: the gather list
  1248. *
  1249. * Releases the pages of a packet gather list. We do not own the last
  1250. * page on the list and do not free it.
  1251. */
  1252. void t4vf_pktgl_free(const struct pkt_gl *gl)
  1253. {
  1254. int frag;
  1255. frag = gl->nfrags - 1;
  1256. while (frag--)
  1257. put_page(gl->frags[frag].page);
  1258. }
  1259. /**
  1260. * copy_frags - copy fragments from gather list into skb_shared_info
  1261. * @si: destination skb shared info structure
  1262. * @gl: source internal packet gather list
  1263. * @offset: packet start offset in first page
  1264. *
  1265. * Copy an internal packet gather list into a Linux skb_shared_info
  1266. * structure.
  1267. */
  1268. static inline void copy_frags(struct skb_shared_info *si,
  1269. const struct pkt_gl *gl,
  1270. unsigned int offset)
  1271. {
  1272. unsigned int n;
  1273. /* usually there's just one frag */
  1274. si->frags[0].page = gl->frags[0].page;
  1275. si->frags[0].page_offset = gl->frags[0].page_offset + offset;
  1276. si->frags[0].size = gl->frags[0].size - offset;
  1277. si->nr_frags = gl->nfrags;
  1278. n = gl->nfrags - 1;
  1279. if (n)
  1280. memcpy(&si->frags[1], &gl->frags[1], n * sizeof(skb_frag_t));
  1281. /* get a reference to the last page, we don't own it */
  1282. get_page(gl->frags[n].page);
  1283. }
  1284. /**
  1285. * do_gro - perform Generic Receive Offload ingress packet processing
  1286. * @rxq: ingress RX Ethernet Queue
  1287. * @gl: gather list for ingress packet
  1288. * @pkt: CPL header for last packet fragment
  1289. *
  1290. * Perform Generic Receive Offload (GRO) ingress packet processing.
  1291. * We use the standard Linux GRO interfaces for this.
  1292. */
  1293. static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
  1294. const struct cpl_rx_pkt *pkt)
  1295. {
  1296. int ret;
  1297. struct sk_buff *skb;
  1298. skb = napi_get_frags(&rxq->rspq.napi);
  1299. if (unlikely(!skb)) {
  1300. t4vf_pktgl_free(gl);
  1301. rxq->stats.rx_drops++;
  1302. return;
  1303. }
  1304. copy_frags(skb_shinfo(skb), gl, PKTSHIFT);
  1305. skb->len = gl->tot_len - PKTSHIFT;
  1306. skb->data_len = skb->len;
  1307. skb->truesize += skb->data_len;
  1308. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1309. skb_record_rx_queue(skb, rxq->rspq.idx);
  1310. if (unlikely(pkt->vlan_ex)) {
  1311. struct port_info *pi = netdev_priv(rxq->rspq.netdev);
  1312. struct vlan_group *grp = pi->vlan_grp;
  1313. rxq->stats.vlan_ex++;
  1314. if (likely(grp)) {
  1315. ret = vlan_gro_frags(&rxq->rspq.napi, grp,
  1316. be16_to_cpu(pkt->vlan));
  1317. goto stats;
  1318. }
  1319. }
  1320. ret = napi_gro_frags(&rxq->rspq.napi);
  1321. stats:
  1322. if (ret == GRO_HELD)
  1323. rxq->stats.lro_pkts++;
  1324. else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
  1325. rxq->stats.lro_merged++;
  1326. rxq->stats.pkts++;
  1327. rxq->stats.rx_cso++;
  1328. }
  1329. /**
  1330. * t4vf_ethrx_handler - process an ingress ethernet packet
  1331. * @rspq: the response queue that received the packet
  1332. * @rsp: the response queue descriptor holding the RX_PKT message
  1333. * @gl: the gather list of packet fragments
  1334. *
  1335. * Process an ingress ethernet packet and deliver it to the stack.
  1336. */
  1337. int t4vf_ethrx_handler(struct sge_rspq *rspq, const __be64 *rsp,
  1338. const struct pkt_gl *gl)
  1339. {
  1340. struct sk_buff *skb;
  1341. struct port_info *pi;
  1342. struct skb_shared_info *ssi;
  1343. const struct cpl_rx_pkt *pkt = (void *)&rsp[1];
  1344. bool csum_ok = pkt->csum_calc && !pkt->err_vec;
  1345. unsigned int len = be16_to_cpu(pkt->len);
  1346. struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
  1347. /*
  1348. * If this is a good TCP packet and we have Generic Receive Offload
  1349. * enabled, handle the packet in the GRO path.
  1350. */
  1351. if ((pkt->l2info & cpu_to_be32(RXF_TCP)) &&
  1352. (rspq->netdev->features & NETIF_F_GRO) && csum_ok &&
  1353. !pkt->ip_frag) {
  1354. do_gro(rxq, gl, pkt);
  1355. return 0;
  1356. }
  1357. /*
  1358. * If the ingress packet is small enough, allocate an skb large enough
  1359. * for all of the data and copy it inline. Otherwise, allocate an skb
  1360. * with enough room to pull in the header and reference the rest of
  1361. * the data via the skb fragment list.
  1362. */
  1363. if (len <= RX_COPY_THRES) {
  1364. /* small packets have only one fragment */
  1365. skb = alloc_skb(gl->frags[0].size, GFP_ATOMIC);
  1366. if (!skb)
  1367. goto nomem;
  1368. __skb_put(skb, gl->frags[0].size);
  1369. skb_copy_to_linear_data(skb, gl->va, gl->frags[0].size);
  1370. } else {
  1371. skb = alloc_skb(RX_PKT_PULL_LEN, GFP_ATOMIC);
  1372. if (!skb)
  1373. goto nomem;
  1374. __skb_put(skb, RX_PKT_PULL_LEN);
  1375. skb_copy_to_linear_data(skb, gl->va, RX_PKT_PULL_LEN);
  1376. ssi = skb_shinfo(skb);
  1377. ssi->frags[0].page = gl->frags[0].page;
  1378. ssi->frags[0].page_offset = (gl->frags[0].page_offset +
  1379. RX_PKT_PULL_LEN);
  1380. ssi->frags[0].size = gl->frags[0].size - RX_PKT_PULL_LEN;
  1381. if (gl->nfrags > 1)
  1382. memcpy(&ssi->frags[1], &gl->frags[1],
  1383. (gl->nfrags-1) * sizeof(skb_frag_t));
  1384. ssi->nr_frags = gl->nfrags;
  1385. skb->len = len + PKTSHIFT;
  1386. skb->data_len = skb->len - RX_PKT_PULL_LEN;
  1387. skb->truesize += skb->data_len;
  1388. /* Get a reference for the last page, we don't own it */
  1389. get_page(gl->frags[gl->nfrags - 1].page);
  1390. }
  1391. __skb_pull(skb, PKTSHIFT);
  1392. skb->protocol = eth_type_trans(skb, rspq->netdev);
  1393. skb_record_rx_queue(skb, rspq->idx);
  1394. skb->dev->last_rx = jiffies; /* XXX removed 2.6.29 */
  1395. pi = netdev_priv(skb->dev);
  1396. rxq->stats.pkts++;
  1397. if (csum_ok && (pi->rx_offload & RX_CSO) && !pkt->err_vec &&
  1398. (be32_to_cpu(pkt->l2info) & (RXF_UDP|RXF_TCP))) {
  1399. if (!pkt->ip_frag)
  1400. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1401. else {
  1402. __sum16 c = (__force __sum16)pkt->csum;
  1403. skb->csum = csum_unfold(c);
  1404. skb->ip_summed = CHECKSUM_COMPLETE;
  1405. }
  1406. rxq->stats.rx_cso++;
  1407. } else
  1408. skb->ip_summed = CHECKSUM_NONE;
  1409. if (unlikely(pkt->vlan_ex)) {
  1410. struct vlan_group *grp = pi->vlan_grp;
  1411. rxq->stats.vlan_ex++;
  1412. if (likely(grp))
  1413. vlan_hwaccel_receive_skb(skb, grp,
  1414. be16_to_cpu(pkt->vlan));
  1415. else
  1416. dev_kfree_skb_any(skb);
  1417. } else
  1418. netif_receive_skb(skb);
  1419. return 0;
  1420. nomem:
  1421. t4vf_pktgl_free(gl);
  1422. rxq->stats.rx_drops++;
  1423. return 0;
  1424. }
  1425. /**
  1426. * is_new_response - check if a response is newly written
  1427. * @rc: the response control descriptor
  1428. * @rspq: the response queue
  1429. *
  1430. * Returns true if a response descriptor contains a yet unprocessed
  1431. * response.
  1432. */
  1433. static inline bool is_new_response(const struct rsp_ctrl *rc,
  1434. const struct sge_rspq *rspq)
  1435. {
  1436. return RSPD_GEN(rc->type_gen) == rspq->gen;
  1437. }
  1438. /**
  1439. * restore_rx_bufs - put back a packet's RX buffers
  1440. * @gl: the packet gather list
  1441. * @fl: the SGE Free List
  1442. * @nfrags: how many fragments in @si
  1443. *
  1444. * Called when we find out that the current packet, @si, can't be
  1445. * processed right away for some reason. This is a very rare event and
  1446. * there's no effort to make this suspension/resumption process
  1447. * particularly efficient.
  1448. *
  1449. * We implement the suspension by putting all of the RX buffers associated
  1450. * with the current packet back on the original Free List. The buffers
  1451. * have already been unmapped and are left unmapped, we mark them as
  1452. * unmapped in order to prevent further unmapping attempts. (Effectively
  1453. * this function undoes the series of @unmap_rx_buf calls which were done
  1454. * to create the current packet's gather list.) This leaves us ready to
  1455. * restart processing of the packet the next time we start processing the
  1456. * RX Queue ...
  1457. */
  1458. static void restore_rx_bufs(const struct pkt_gl *gl, struct sge_fl *fl,
  1459. int frags)
  1460. {
  1461. struct rx_sw_desc *sdesc;
  1462. while (frags--) {
  1463. if (fl->cidx == 0)
  1464. fl->cidx = fl->size - 1;
  1465. else
  1466. fl->cidx--;
  1467. sdesc = &fl->sdesc[fl->cidx];
  1468. sdesc->page = gl->frags[frags].page;
  1469. sdesc->dma_addr |= RX_UNMAPPED_BUF;
  1470. fl->avail++;
  1471. }
  1472. }
  1473. /**
  1474. * rspq_next - advance to the next entry in a response queue
  1475. * @rspq: the queue
  1476. *
  1477. * Updates the state of a response queue to advance it to the next entry.
  1478. */
  1479. static inline void rspq_next(struct sge_rspq *rspq)
  1480. {
  1481. rspq->cur_desc = (void *)rspq->cur_desc + rspq->iqe_len;
  1482. if (unlikely(++rspq->cidx == rspq->size)) {
  1483. rspq->cidx = 0;
  1484. rspq->gen ^= 1;
  1485. rspq->cur_desc = rspq->desc;
  1486. }
  1487. }
  1488. /**
  1489. * process_responses - process responses from an SGE response queue
  1490. * @rspq: the ingress response queue to process
  1491. * @budget: how many responses can be processed in this round
  1492. *
  1493. * Process responses from a Scatter Gather Engine response queue up to
  1494. * the supplied budget. Responses include received packets as well as
  1495. * control messages from firmware or hardware.
  1496. *
  1497. * Additionally choose the interrupt holdoff time for the next interrupt
  1498. * on this queue. If the system is under memory shortage use a fairly
  1499. * long delay to help recovery.
  1500. */
  1501. int process_responses(struct sge_rspq *rspq, int budget)
  1502. {
  1503. struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
  1504. int budget_left = budget;
  1505. while (likely(budget_left)) {
  1506. int ret, rsp_type;
  1507. const struct rsp_ctrl *rc;
  1508. rc = (void *)rspq->cur_desc + (rspq->iqe_len - sizeof(*rc));
  1509. if (!is_new_response(rc, rspq))
  1510. break;
  1511. /*
  1512. * Figure out what kind of response we've received from the
  1513. * SGE.
  1514. */
  1515. rmb();
  1516. rsp_type = RSPD_TYPE(rc->type_gen);
  1517. if (likely(rsp_type == RSP_TYPE_FLBUF)) {
  1518. skb_frag_t *fp;
  1519. struct pkt_gl gl;
  1520. const struct rx_sw_desc *sdesc;
  1521. u32 bufsz, frag;
  1522. u32 len = be32_to_cpu(rc->pldbuflen_qid);
  1523. /*
  1524. * If we get a "new buffer" message from the SGE we
  1525. * need to move on to the next Free List buffer.
  1526. */
  1527. if (len & RSPD_NEWBUF) {
  1528. /*
  1529. * We get one "new buffer" message when we
  1530. * first start up a queue so we need to ignore
  1531. * it when our offset into the buffer is 0.
  1532. */
  1533. if (likely(rspq->offset > 0)) {
  1534. free_rx_bufs(rspq->adapter, &rxq->fl,
  1535. 1);
  1536. rspq->offset = 0;
  1537. }
  1538. len = RSPD_LEN(len);
  1539. }
  1540. /*
  1541. * Gather packet fragments.
  1542. */
  1543. for (frag = 0, fp = gl.frags; /**/; frag++, fp++) {
  1544. BUG_ON(frag >= MAX_SKB_FRAGS);
  1545. BUG_ON(rxq->fl.avail == 0);
  1546. sdesc = &rxq->fl.sdesc[rxq->fl.cidx];
  1547. bufsz = get_buf_size(sdesc);
  1548. fp->page = sdesc->page;
  1549. fp->page_offset = rspq->offset;
  1550. fp->size = min(bufsz, len);
  1551. len -= fp->size;
  1552. if (!len)
  1553. break;
  1554. unmap_rx_buf(rspq->adapter, &rxq->fl);
  1555. }
  1556. gl.nfrags = frag+1;
  1557. /*
  1558. * Last buffer remains mapped so explicitly make it
  1559. * coherent for CPU access and start preloading first
  1560. * cache line ...
  1561. */
  1562. dma_sync_single_for_cpu(rspq->adapter->pdev_dev,
  1563. get_buf_addr(sdesc),
  1564. fp->size, DMA_FROM_DEVICE);
  1565. gl.va = (page_address(gl.frags[0].page) +
  1566. gl.frags[0].page_offset);
  1567. prefetch(gl.va);
  1568. /*
  1569. * Hand the new ingress packet to the handler for
  1570. * this Response Queue.
  1571. */
  1572. ret = rspq->handler(rspq, rspq->cur_desc, &gl);
  1573. if (likely(ret == 0))
  1574. rspq->offset += ALIGN(fp->size, FL_ALIGN);
  1575. else
  1576. restore_rx_bufs(&gl, &rxq->fl, frag);
  1577. } else if (likely(rsp_type == RSP_TYPE_CPL)) {
  1578. ret = rspq->handler(rspq, rspq->cur_desc, NULL);
  1579. } else {
  1580. WARN_ON(rsp_type > RSP_TYPE_CPL);
  1581. ret = 0;
  1582. }
  1583. if (unlikely(ret)) {
  1584. /*
  1585. * Couldn't process descriptor, back off for recovery.
  1586. * We use the SGE's last timer which has the longest
  1587. * interrupt coalescing value ...
  1588. */
  1589. const int NOMEM_TIMER_IDX = SGE_NTIMERS-1;
  1590. rspq->next_intr_params =
  1591. QINTR_TIMER_IDX(NOMEM_TIMER_IDX);
  1592. break;
  1593. }
  1594. rspq_next(rspq);
  1595. budget_left--;
  1596. }
  1597. /*
  1598. * If this is a Response Queue with an associated Free List and
  1599. * at least two Egress Queue units available in the Free List
  1600. * for new buffer pointers, refill the Free List.
  1601. */
  1602. if (rspq->offset >= 0 &&
  1603. rxq->fl.size - rxq->fl.avail >= 2*FL_PER_EQ_UNIT)
  1604. __refill_fl(rspq->adapter, &rxq->fl);
  1605. return budget - budget_left;
  1606. }
  1607. /**
  1608. * napi_rx_handler - the NAPI handler for RX processing
  1609. * @napi: the napi instance
  1610. * @budget: how many packets we can process in this round
  1611. *
  1612. * Handler for new data events when using NAPI. This does not need any
  1613. * locking or protection from interrupts as data interrupts are off at
  1614. * this point and other adapter interrupts do not interfere (the latter
  1615. * in not a concern at all with MSI-X as non-data interrupts then have
  1616. * a separate handler).
  1617. */
  1618. static int napi_rx_handler(struct napi_struct *napi, int budget)
  1619. {
  1620. unsigned int intr_params;
  1621. struct sge_rspq *rspq = container_of(napi, struct sge_rspq, napi);
  1622. int work_done = process_responses(rspq, budget);
  1623. if (likely(work_done < budget)) {
  1624. napi_complete(napi);
  1625. intr_params = rspq->next_intr_params;
  1626. rspq->next_intr_params = rspq->intr_params;
  1627. } else
  1628. intr_params = QINTR_TIMER_IDX(SGE_TIMER_UPD_CIDX);
  1629. t4_write_reg(rspq->adapter,
  1630. T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
  1631. CIDXINC(work_done) |
  1632. INGRESSQID((u32)rspq->cntxt_id) |
  1633. SEINTARM(intr_params));
  1634. return work_done;
  1635. }
  1636. /*
  1637. * The MSI-X interrupt handler for an SGE response queue for the NAPI case
  1638. * (i.e., response queue serviced by NAPI polling).
  1639. */
  1640. irqreturn_t t4vf_sge_intr_msix(int irq, void *cookie)
  1641. {
  1642. struct sge_rspq *rspq = cookie;
  1643. napi_schedule(&rspq->napi);
  1644. return IRQ_HANDLED;
  1645. }
  1646. /*
  1647. * Process the indirect interrupt entries in the interrupt queue and kick off
  1648. * NAPI for each queue that has generated an entry.
  1649. */
  1650. static unsigned int process_intrq(struct adapter *adapter)
  1651. {
  1652. struct sge *s = &adapter->sge;
  1653. struct sge_rspq *intrq = &s->intrq;
  1654. unsigned int work_done;
  1655. spin_lock(&adapter->sge.intrq_lock);
  1656. for (work_done = 0; ; work_done++) {
  1657. const struct rsp_ctrl *rc;
  1658. unsigned int qid, iq_idx;
  1659. struct sge_rspq *rspq;
  1660. /*
  1661. * Grab the next response from the interrupt queue and bail
  1662. * out if it's not a new response.
  1663. */
  1664. rc = (void *)intrq->cur_desc + (intrq->iqe_len - sizeof(*rc));
  1665. if (!is_new_response(rc, intrq))
  1666. break;
  1667. /*
  1668. * If the response isn't a forwarded interrupt message issue a
  1669. * error and go on to the next response message. This should
  1670. * never happen ...
  1671. */
  1672. rmb();
  1673. if (unlikely(RSPD_TYPE(rc->type_gen) != RSP_TYPE_INTR)) {
  1674. dev_err(adapter->pdev_dev,
  1675. "Unexpected INTRQ response type %d\n",
  1676. RSPD_TYPE(rc->type_gen));
  1677. continue;
  1678. }
  1679. /*
  1680. * Extract the Queue ID from the interrupt message and perform
  1681. * sanity checking to make sure it really refers to one of our
  1682. * Ingress Queues which is active and matches the queue's ID.
  1683. * None of these error conditions should ever happen so we may
  1684. * want to either make them fatal and/or conditionalized under
  1685. * DEBUG.
  1686. */
  1687. qid = RSPD_QID(be32_to_cpu(rc->pldbuflen_qid));
  1688. iq_idx = IQ_IDX(s, qid);
  1689. if (unlikely(iq_idx >= MAX_INGQ)) {
  1690. dev_err(adapter->pdev_dev,
  1691. "Ingress QID %d out of range\n", qid);
  1692. continue;
  1693. }
  1694. rspq = s->ingr_map[iq_idx];
  1695. if (unlikely(rspq == NULL)) {
  1696. dev_err(adapter->pdev_dev,
  1697. "Ingress QID %d RSPQ=NULL\n", qid);
  1698. continue;
  1699. }
  1700. if (unlikely(rspq->abs_id != qid)) {
  1701. dev_err(adapter->pdev_dev,
  1702. "Ingress QID %d refers to RSPQ %d\n",
  1703. qid, rspq->abs_id);
  1704. continue;
  1705. }
  1706. /*
  1707. * Schedule NAPI processing on the indicated Response Queue
  1708. * and move on to the next entry in the Forwarded Interrupt
  1709. * Queue.
  1710. */
  1711. napi_schedule(&rspq->napi);
  1712. rspq_next(intrq);
  1713. }
  1714. t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
  1715. CIDXINC(work_done) |
  1716. INGRESSQID(intrq->cntxt_id) |
  1717. SEINTARM(intrq->intr_params));
  1718. spin_unlock(&adapter->sge.intrq_lock);
  1719. return work_done;
  1720. }
  1721. /*
  1722. * The MSI interrupt handler handles data events from SGE response queues as
  1723. * well as error and other async events as they all use the same MSI vector.
  1724. */
  1725. irqreturn_t t4vf_intr_msi(int irq, void *cookie)
  1726. {
  1727. struct adapter *adapter = cookie;
  1728. process_intrq(adapter);
  1729. return IRQ_HANDLED;
  1730. }
  1731. /**
  1732. * t4vf_intr_handler - select the top-level interrupt handler
  1733. * @adapter: the adapter
  1734. *
  1735. * Selects the top-level interrupt handler based on the type of interrupts
  1736. * (MSI-X or MSI).
  1737. */
  1738. irq_handler_t t4vf_intr_handler(struct adapter *adapter)
  1739. {
  1740. BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
  1741. if (adapter->flags & USING_MSIX)
  1742. return t4vf_sge_intr_msix;
  1743. else
  1744. return t4vf_intr_msi;
  1745. }
  1746. /**
  1747. * sge_rx_timer_cb - perform periodic maintenance of SGE RX queues
  1748. * @data: the adapter
  1749. *
  1750. * Runs periodically from a timer to perform maintenance of SGE RX queues.
  1751. *
  1752. * a) Replenishes RX queues that have run out due to memory shortage.
  1753. * Normally new RX buffers are added when existing ones are consumed but
  1754. * when out of memory a queue can become empty. We schedule NAPI to do
  1755. * the actual refill.
  1756. */
  1757. static void sge_rx_timer_cb(unsigned long data)
  1758. {
  1759. struct adapter *adapter = (struct adapter *)data;
  1760. struct sge *s = &adapter->sge;
  1761. unsigned int i;
  1762. /*
  1763. * Scan the "Starving Free Lists" flag array looking for any Free
  1764. * Lists in need of more free buffers. If we find one and it's not
  1765. * being actively polled, then bump its "starving" counter and attempt
  1766. * to refill it. If we're successful in adding enough buffers to push
  1767. * the Free List over the starving threshold, then we can clear its
  1768. * "starving" status.
  1769. */
  1770. for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) {
  1771. unsigned long m;
  1772. for (m = s->starving_fl[i]; m; m &= m - 1) {
  1773. unsigned int id = __ffs(m) + i * BITS_PER_LONG;
  1774. struct sge_fl *fl = s->egr_map[id];
  1775. clear_bit(id, s->starving_fl);
  1776. smp_mb__after_clear_bit();
  1777. /*
  1778. * Since we are accessing fl without a lock there's a
  1779. * small probability of a false positive where we
  1780. * schedule napi but the FL is no longer starving.
  1781. * No biggie.
  1782. */
  1783. if (fl_starving(fl)) {
  1784. struct sge_eth_rxq *rxq;
  1785. rxq = container_of(fl, struct sge_eth_rxq, fl);
  1786. if (napi_reschedule(&rxq->rspq.napi))
  1787. fl->starving++;
  1788. else
  1789. set_bit(id, s->starving_fl);
  1790. }
  1791. }
  1792. }
  1793. /*
  1794. * Reschedule the next scan for starving Free Lists ...
  1795. */
  1796. mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
  1797. }
  1798. /**
  1799. * sge_tx_timer_cb - perform periodic maintenance of SGE Tx queues
  1800. * @data: the adapter
  1801. *
  1802. * Runs periodically from a timer to perform maintenance of SGE TX queues.
  1803. *
  1804. * b) Reclaims completed Tx packets for the Ethernet queues. Normally
  1805. * packets are cleaned up by new Tx packets, this timer cleans up packets
  1806. * when no new packets are being submitted. This is essential for pktgen,
  1807. * at least.
  1808. */
  1809. static void sge_tx_timer_cb(unsigned long data)
  1810. {
  1811. struct adapter *adapter = (struct adapter *)data;
  1812. struct sge *s = &adapter->sge;
  1813. unsigned int i, budget;
  1814. budget = MAX_TIMER_TX_RECLAIM;
  1815. i = s->ethtxq_rover;
  1816. do {
  1817. struct sge_eth_txq *txq = &s->ethtxq[i];
  1818. if (reclaimable(&txq->q) && __netif_tx_trylock(txq->txq)) {
  1819. int avail = reclaimable(&txq->q);
  1820. if (avail > budget)
  1821. avail = budget;
  1822. free_tx_desc(adapter, &txq->q, avail, true);
  1823. txq->q.in_use -= avail;
  1824. __netif_tx_unlock(txq->txq);
  1825. budget -= avail;
  1826. if (!budget)
  1827. break;
  1828. }
  1829. i++;
  1830. if (i >= s->ethqsets)
  1831. i = 0;
  1832. } while (i != s->ethtxq_rover);
  1833. s->ethtxq_rover = i;
  1834. /*
  1835. * If we found too many reclaimable packets schedule a timer in the
  1836. * near future to continue where we left off. Otherwise the next timer
  1837. * will be at its normal interval.
  1838. */
  1839. mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
  1840. }
  1841. /**
  1842. * t4vf_sge_alloc_rxq - allocate an SGE RX Queue
  1843. * @adapter: the adapter
  1844. * @rspq: pointer to to the new rxq's Response Queue to be filled in
  1845. * @iqasynch: if 0, a normal rspq; if 1, an asynchronous event queue
  1846. * @dev: the network device associated with the new rspq
  1847. * @intr_dest: MSI-X vector index (overriden in MSI mode)
  1848. * @fl: pointer to the new rxq's Free List to be filled in
  1849. * @hnd: the interrupt handler to invoke for the rspq
  1850. */
  1851. int t4vf_sge_alloc_rxq(struct adapter *adapter, struct sge_rspq *rspq,
  1852. bool iqasynch, struct net_device *dev,
  1853. int intr_dest,
  1854. struct sge_fl *fl, rspq_handler_t hnd)
  1855. {
  1856. struct port_info *pi = netdev_priv(dev);
  1857. struct fw_iq_cmd cmd, rpl;
  1858. int ret, iqandst, flsz = 0;
  1859. /*
  1860. * If we're using MSI interrupts and we're not initializing the
  1861. * Forwarded Interrupt Queue itself, then set up this queue for
  1862. * indirect interrupts to the Forwarded Interrupt Queue. Obviously
  1863. * the Forwarded Interrupt Queue must be set up before any other
  1864. * ingress queue ...
  1865. */
  1866. if ((adapter->flags & USING_MSI) && rspq != &adapter->sge.intrq) {
  1867. iqandst = SGE_INTRDST_IQ;
  1868. intr_dest = adapter->sge.intrq.abs_id;
  1869. } else
  1870. iqandst = SGE_INTRDST_PCI;
  1871. /*
  1872. * Allocate the hardware ring for the Response Queue. The size needs
  1873. * to be a multiple of 16 which includes the mandatory status entry
  1874. * (regardless of whether the Status Page capabilities are enabled or
  1875. * not).
  1876. */
  1877. rspq->size = roundup(rspq->size, 16);
  1878. rspq->desc = alloc_ring(adapter->pdev_dev, rspq->size, rspq->iqe_len,
  1879. 0, &rspq->phys_addr, NULL, 0);
  1880. if (!rspq->desc)
  1881. return -ENOMEM;
  1882. /*
  1883. * Fill in the Ingress Queue Command. Note: Ideally this code would
  1884. * be in t4vf_hw.c but there are so many parameters and dependencies
  1885. * on our Linux SGE state that we would end up having to pass tons of
  1886. * parameters. We'll have to think about how this might be migrated
  1887. * into OS-independent common code ...
  1888. */
  1889. memset(&cmd, 0, sizeof(cmd));
  1890. cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_IQ_CMD) |
  1891. FW_CMD_REQUEST |
  1892. FW_CMD_WRITE |
  1893. FW_CMD_EXEC);
  1894. cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_ALLOC |
  1895. FW_IQ_CMD_IQSTART(1) |
  1896. FW_LEN16(cmd));
  1897. cmd.type_to_iqandstindex =
  1898. cpu_to_be32(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
  1899. FW_IQ_CMD_IQASYNCH(iqasynch) |
  1900. FW_IQ_CMD_VIID(pi->viid) |
  1901. FW_IQ_CMD_IQANDST(iqandst) |
  1902. FW_IQ_CMD_IQANUS(1) |
  1903. FW_IQ_CMD_IQANUD(SGE_UPDATEDEL_INTR) |
  1904. FW_IQ_CMD_IQANDSTINDEX(intr_dest));
  1905. cmd.iqdroprss_to_iqesize =
  1906. cpu_to_be16(FW_IQ_CMD_IQPCIECH(pi->port_id) |
  1907. FW_IQ_CMD_IQGTSMODE |
  1908. FW_IQ_CMD_IQINTCNTTHRESH(rspq->pktcnt_idx) |
  1909. FW_IQ_CMD_IQESIZE(ilog2(rspq->iqe_len) - 4));
  1910. cmd.iqsize = cpu_to_be16(rspq->size);
  1911. cmd.iqaddr = cpu_to_be64(rspq->phys_addr);
  1912. if (fl) {
  1913. /*
  1914. * Allocate the ring for the hardware free list (with space
  1915. * for its status page) along with the associated software
  1916. * descriptor ring. The free list size needs to be a multiple
  1917. * of the Egress Queue Unit.
  1918. */
  1919. fl->size = roundup(fl->size, FL_PER_EQ_UNIT);
  1920. fl->desc = alloc_ring(adapter->pdev_dev, fl->size,
  1921. sizeof(__be64), sizeof(struct rx_sw_desc),
  1922. &fl->addr, &fl->sdesc, STAT_LEN);
  1923. if (!fl->desc) {
  1924. ret = -ENOMEM;
  1925. goto err;
  1926. }
  1927. /*
  1928. * Calculate the size of the hardware free list ring plus
  1929. * status page (which the SGE will place at the end of the
  1930. * free list ring) in Egress Queue Units.
  1931. */
  1932. flsz = (fl->size / FL_PER_EQ_UNIT +
  1933. STAT_LEN / EQ_UNIT);
  1934. /*
  1935. * Fill in all the relevant firmware Ingress Queue Command
  1936. * fields for the free list.
  1937. */
  1938. cmd.iqns_to_fl0congen =
  1939. cpu_to_be32(
  1940. FW_IQ_CMD_FL0HOSTFCMODE(SGE_HOSTFCMODE_NONE) |
  1941. FW_IQ_CMD_FL0PACKEN |
  1942. FW_IQ_CMD_FL0PADEN);
  1943. cmd.fl0dcaen_to_fl0cidxfthresh =
  1944. cpu_to_be16(
  1945. FW_IQ_CMD_FL0FBMIN(SGE_FETCHBURSTMIN_64B) |
  1946. FW_IQ_CMD_FL0FBMAX(SGE_FETCHBURSTMAX_512B));
  1947. cmd.fl0size = cpu_to_be16(flsz);
  1948. cmd.fl0addr = cpu_to_be64(fl->addr);
  1949. }
  1950. /*
  1951. * Issue the firmware Ingress Queue Command and extract the results if
  1952. * it completes successfully.
  1953. */
  1954. ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
  1955. if (ret)
  1956. goto err;
  1957. netif_napi_add(dev, &rspq->napi, napi_rx_handler, 64);
  1958. rspq->cur_desc = rspq->desc;
  1959. rspq->cidx = 0;
  1960. rspq->gen = 1;
  1961. rspq->next_intr_params = rspq->intr_params;
  1962. rspq->cntxt_id = be16_to_cpu(rpl.iqid);
  1963. rspq->abs_id = be16_to_cpu(rpl.physiqid);
  1964. rspq->size--; /* subtract status entry */
  1965. rspq->adapter = adapter;
  1966. rspq->netdev = dev;
  1967. rspq->handler = hnd;
  1968. /* set offset to -1 to distinguish ingress queues without FL */
  1969. rspq->offset = fl ? 0 : -1;
  1970. if (fl) {
  1971. fl->cntxt_id = be16_to_cpu(rpl.fl0id);
  1972. fl->avail = 0;
  1973. fl->pend_cred = 0;
  1974. fl->pidx = 0;
  1975. fl->cidx = 0;
  1976. fl->alloc_failed = 0;
  1977. fl->large_alloc_failed = 0;
  1978. fl->starving = 0;
  1979. refill_fl(adapter, fl, fl_cap(fl), GFP_KERNEL);
  1980. }
  1981. return 0;
  1982. err:
  1983. /*
  1984. * An error occurred. Clean up our partial allocation state and
  1985. * return the error.
  1986. */
  1987. if (rspq->desc) {
  1988. dma_free_coherent(adapter->pdev_dev, rspq->size * rspq->iqe_len,
  1989. rspq->desc, rspq->phys_addr);
  1990. rspq->desc = NULL;
  1991. }
  1992. if (fl && fl->desc) {
  1993. kfree(fl->sdesc);
  1994. fl->sdesc = NULL;
  1995. dma_free_coherent(adapter->pdev_dev, flsz * EQ_UNIT,
  1996. fl->desc, fl->addr);
  1997. fl->desc = NULL;
  1998. }
  1999. return ret;
  2000. }
  2001. /**
  2002. * t4vf_sge_alloc_eth_txq - allocate an SGE Ethernet TX Queue
  2003. * @adapter: the adapter
  2004. * @txq: pointer to the new txq to be filled in
  2005. * @devq: the network TX queue associated with the new txq
  2006. * @iqid: the relative ingress queue ID to which events relating to
  2007. * the new txq should be directed
  2008. */
  2009. int t4vf_sge_alloc_eth_txq(struct adapter *adapter, struct sge_eth_txq *txq,
  2010. struct net_device *dev, struct netdev_queue *devq,
  2011. unsigned int iqid)
  2012. {
  2013. int ret, nentries;
  2014. struct fw_eq_eth_cmd cmd, rpl;
  2015. struct port_info *pi = netdev_priv(dev);
  2016. /*
  2017. * Calculate the size of the hardware TX Queue (including the
  2018. * status age on the end) in units of TX Descriptors.
  2019. */
  2020. nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc);
  2021. /*
  2022. * Allocate the hardware ring for the TX ring (with space for its
  2023. * status page) along with the associated software descriptor ring.
  2024. */
  2025. txq->q.desc = alloc_ring(adapter->pdev_dev, txq->q.size,
  2026. sizeof(struct tx_desc),
  2027. sizeof(struct tx_sw_desc),
  2028. &txq->q.phys_addr, &txq->q.sdesc, STAT_LEN);
  2029. if (!txq->q.desc)
  2030. return -ENOMEM;
  2031. /*
  2032. * Fill in the Egress Queue Command. Note: As with the direct use of
  2033. * the firmware Ingress Queue COmmand above in our RXQ allocation
  2034. * routine, ideally, this code would be in t4vf_hw.c. Again, we'll
  2035. * have to see if there's some reasonable way to parameterize it
  2036. * into the common code ...
  2037. */
  2038. memset(&cmd, 0, sizeof(cmd));
  2039. cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_EQ_ETH_CMD) |
  2040. FW_CMD_REQUEST |
  2041. FW_CMD_WRITE |
  2042. FW_CMD_EXEC);
  2043. cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_ALLOC |
  2044. FW_EQ_ETH_CMD_EQSTART |
  2045. FW_LEN16(cmd));
  2046. cmd.viid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_VIID(pi->viid));
  2047. cmd.fetchszm_to_iqid =
  2048. cpu_to_be32(FW_EQ_ETH_CMD_HOSTFCMODE(SGE_HOSTFCMODE_STPG) |
  2049. FW_EQ_ETH_CMD_PCIECHN(pi->port_id) |
  2050. FW_EQ_ETH_CMD_IQID(iqid));
  2051. cmd.dcaen_to_eqsize =
  2052. cpu_to_be32(FW_EQ_ETH_CMD_FBMIN(SGE_FETCHBURSTMIN_64B) |
  2053. FW_EQ_ETH_CMD_FBMAX(SGE_FETCHBURSTMAX_512B) |
  2054. FW_EQ_ETH_CMD_CIDXFTHRESH(SGE_CIDXFLUSHTHRESH_32) |
  2055. FW_EQ_ETH_CMD_EQSIZE(nentries));
  2056. cmd.eqaddr = cpu_to_be64(txq->q.phys_addr);
  2057. /*
  2058. * Issue the firmware Egress Queue Command and extract the results if
  2059. * it completes successfully.
  2060. */
  2061. ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
  2062. if (ret) {
  2063. /*
  2064. * The girmware Ingress Queue Command failed for some reason.
  2065. * Free up our partial allocation state and return the error.
  2066. */
  2067. kfree(txq->q.sdesc);
  2068. txq->q.sdesc = NULL;
  2069. dma_free_coherent(adapter->pdev_dev,
  2070. nentries * sizeof(struct tx_desc),
  2071. txq->q.desc, txq->q.phys_addr);
  2072. txq->q.desc = NULL;
  2073. return ret;
  2074. }
  2075. txq->q.in_use = 0;
  2076. txq->q.cidx = 0;
  2077. txq->q.pidx = 0;
  2078. txq->q.stat = (void *)&txq->q.desc[txq->q.size];
  2079. txq->q.cntxt_id = FW_EQ_ETH_CMD_EQID_GET(be32_to_cpu(rpl.eqid_pkd));
  2080. txq->q.abs_id =
  2081. FW_EQ_ETH_CMD_PHYSEQID_GET(be32_to_cpu(rpl.physeqid_pkd));
  2082. txq->txq = devq;
  2083. txq->tso = 0;
  2084. txq->tx_cso = 0;
  2085. txq->vlan_ins = 0;
  2086. txq->q.stops = 0;
  2087. txq->q.restarts = 0;
  2088. txq->mapping_err = 0;
  2089. return 0;
  2090. }
  2091. /*
  2092. * Free the DMA map resources associated with a TX queue.
  2093. */
  2094. static void free_txq(struct adapter *adapter, struct sge_txq *tq)
  2095. {
  2096. dma_free_coherent(adapter->pdev_dev,
  2097. tq->size * sizeof(*tq->desc) + STAT_LEN,
  2098. tq->desc, tq->phys_addr);
  2099. tq->cntxt_id = 0;
  2100. tq->sdesc = NULL;
  2101. tq->desc = NULL;
  2102. }
  2103. /*
  2104. * Free the resources associated with a response queue (possibly including a
  2105. * free list).
  2106. */
  2107. static void free_rspq_fl(struct adapter *adapter, struct sge_rspq *rspq,
  2108. struct sge_fl *fl)
  2109. {
  2110. unsigned int flid = fl ? fl->cntxt_id : 0xffff;
  2111. t4vf_iq_free(adapter, FW_IQ_TYPE_FL_INT_CAP,
  2112. rspq->cntxt_id, flid, 0xffff);
  2113. dma_free_coherent(adapter->pdev_dev, (rspq->size + 1) * rspq->iqe_len,
  2114. rspq->desc, rspq->phys_addr);
  2115. netif_napi_del(&rspq->napi);
  2116. rspq->netdev = NULL;
  2117. rspq->cntxt_id = 0;
  2118. rspq->abs_id = 0;
  2119. rspq->desc = NULL;
  2120. if (fl) {
  2121. free_rx_bufs(adapter, fl, fl->avail);
  2122. dma_free_coherent(adapter->pdev_dev,
  2123. fl->size * sizeof(*fl->desc) + STAT_LEN,
  2124. fl->desc, fl->addr);
  2125. kfree(fl->sdesc);
  2126. fl->sdesc = NULL;
  2127. fl->cntxt_id = 0;
  2128. fl->desc = NULL;
  2129. }
  2130. }
  2131. /**
  2132. * t4vf_free_sge_resources - free SGE resources
  2133. * @adapter: the adapter
  2134. *
  2135. * Frees resources used by the SGE queue sets.
  2136. */
  2137. void t4vf_free_sge_resources(struct adapter *adapter)
  2138. {
  2139. struct sge *s = &adapter->sge;
  2140. struct sge_eth_rxq *rxq = s->ethrxq;
  2141. struct sge_eth_txq *txq = s->ethtxq;
  2142. struct sge_rspq *evtq = &s->fw_evtq;
  2143. struct sge_rspq *intrq = &s->intrq;
  2144. int qs;
  2145. for (qs = 0; qs < adapter->sge.ethqsets; qs++) {
  2146. if (rxq->rspq.desc)
  2147. free_rspq_fl(adapter, &rxq->rspq, &rxq->fl);
  2148. if (txq->q.desc) {
  2149. t4vf_eth_eq_free(adapter, txq->q.cntxt_id);
  2150. free_tx_desc(adapter, &txq->q, txq->q.in_use, true);
  2151. kfree(txq->q.sdesc);
  2152. free_txq(adapter, &txq->q);
  2153. }
  2154. }
  2155. if (evtq->desc)
  2156. free_rspq_fl(adapter, evtq, NULL);
  2157. if (intrq->desc)
  2158. free_rspq_fl(adapter, intrq, NULL);
  2159. }
  2160. /**
  2161. * t4vf_sge_start - enable SGE operation
  2162. * @adapter: the adapter
  2163. *
  2164. * Start tasklets and timers associated with the DMA engine.
  2165. */
  2166. void t4vf_sge_start(struct adapter *adapter)
  2167. {
  2168. adapter->sge.ethtxq_rover = 0;
  2169. mod_timer(&adapter->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
  2170. mod_timer(&adapter->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
  2171. }
  2172. /**
  2173. * t4vf_sge_stop - disable SGE operation
  2174. * @adapter: the adapter
  2175. *
  2176. * Stop tasklets and timers associated with the DMA engine. Note that
  2177. * this is effective only if measures have been taken to disable any HW
  2178. * events that may restart them.
  2179. */
  2180. void t4vf_sge_stop(struct adapter *adapter)
  2181. {
  2182. struct sge *s = &adapter->sge;
  2183. if (s->rx_timer.function)
  2184. del_timer_sync(&s->rx_timer);
  2185. if (s->tx_timer.function)
  2186. del_timer_sync(&s->tx_timer);
  2187. }
  2188. /**
  2189. * t4vf_sge_init - initialize SGE
  2190. * @adapter: the adapter
  2191. *
  2192. * Performs SGE initialization needed every time after a chip reset.
  2193. * We do not initialize any of the queue sets here, instead the driver
  2194. * top-level must request those individually. We also do not enable DMA
  2195. * here, that should be done after the queues have been set up.
  2196. */
  2197. int t4vf_sge_init(struct adapter *adapter)
  2198. {
  2199. struct sge_params *sge_params = &adapter->params.sge;
  2200. u32 fl0 = sge_params->sge_fl_buffer_size[0];
  2201. u32 fl1 = sge_params->sge_fl_buffer_size[1];
  2202. struct sge *s = &adapter->sge;
  2203. /*
  2204. * Start by vetting the basic SGE parameters which have been set up by
  2205. * the Physical Function Driver. Ideally we should be able to deal
  2206. * with _any_ configuration. Practice is different ...
  2207. */
  2208. if (fl0 != PAGE_SIZE || (fl1 != 0 && fl1 <= fl0)) {
  2209. dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n",
  2210. fl0, fl1);
  2211. return -EINVAL;
  2212. }
  2213. if ((sge_params->sge_control & RXPKTCPLMODE) == 0) {
  2214. dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n");
  2215. return -EINVAL;
  2216. }
  2217. /*
  2218. * Now translate the adapter parameters into our internal forms.
  2219. */
  2220. if (fl1)
  2221. FL_PG_ORDER = ilog2(fl1) - PAGE_SHIFT;
  2222. STAT_LEN = ((sge_params->sge_control & EGRSTATUSPAGESIZE) ? 128 : 64);
  2223. PKTSHIFT = PKTSHIFT_GET(sge_params->sge_control);
  2224. FL_ALIGN = 1 << (INGPADBOUNDARY_GET(sge_params->sge_control) +
  2225. INGPADBOUNDARY_SHIFT);
  2226. /*
  2227. * Set up tasklet timers.
  2228. */
  2229. setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adapter);
  2230. setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adapter);
  2231. /*
  2232. * Initialize Forwarded Interrupt Queue lock.
  2233. */
  2234. spin_lock_init(&s->intrq_lock);
  2235. return 0;
  2236. }