e500_tlb.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290
  1. /*
  2. * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
  3. *
  4. * Author: Yu Liu, yu.liu@freescale.com
  5. * Scott Wood, scottwood@freescale.com
  6. * Ashish Kalra, ashish.kalra@freescale.com
  7. * Varun Sethi, varun.sethi@freescale.com
  8. *
  9. * Description:
  10. * This file is based on arch/powerpc/kvm/44x_tlb.c,
  11. * by Hollis Blanchard <hollisb@us.ibm.com>.
  12. *
  13. * This program is free software; you can redistribute it and/or modify
  14. * it under the terms of the GNU General Public License, version 2, as
  15. * published by the Free Software Foundation.
  16. */
  17. #include <linux/kernel.h>
  18. #include <linux/types.h>
  19. #include <linux/slab.h>
  20. #include <linux/string.h>
  21. #include <linux/kvm.h>
  22. #include <linux/kvm_host.h>
  23. #include <linux/highmem.h>
  24. #include <linux/log2.h>
  25. #include <linux/uaccess.h>
  26. #include <linux/sched.h>
  27. #include <linux/rwsem.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/hugetlb.h>
  30. #include <asm/kvm_ppc.h>
  31. #include "e500.h"
  32. #include "trace.h"
  33. #include "timing.h"
  34. #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
  35. static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM];
  36. static inline unsigned int gtlb0_get_next_victim(
  37. struct kvmppc_vcpu_e500 *vcpu_e500)
  38. {
  39. unsigned int victim;
  40. victim = vcpu_e500->gtlb_nv[0]++;
  41. if (unlikely(vcpu_e500->gtlb_nv[0] >= vcpu_e500->gtlb_params[0].ways))
  42. vcpu_e500->gtlb_nv[0] = 0;
  43. return victim;
  44. }
  45. static inline unsigned int tlb1_max_shadow_size(void)
  46. {
  47. /* reserve one entry for magic page */
  48. return host_tlb_params[1].entries - tlbcam_index - 1;
  49. }
  50. static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
  51. {
  52. return tlbe->mas7_3 & (MAS3_SW|MAS3_UW);
  53. }
  54. static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
  55. {
  56. /* Mask off reserved bits. */
  57. mas3 &= MAS3_ATTRIB_MASK;
  58. #ifndef CONFIG_KVM_BOOKE_HV
  59. if (!usermode) {
  60. /* Guest is in supervisor mode,
  61. * so we need to translate guest
  62. * supervisor permissions into user permissions. */
  63. mas3 &= ~E500_TLB_USER_PERM_MASK;
  64. mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
  65. }
  66. mas3 |= E500_TLB_SUPER_PERM_MASK;
  67. #endif
  68. return mas3;
  69. }
  70. static inline u32 e500_shadow_mas2_attrib(u32 mas2, int usermode)
  71. {
  72. #ifdef CONFIG_SMP
  73. return (mas2 & MAS2_ATTRIB_MASK) | MAS2_M;
  74. #else
  75. return mas2 & MAS2_ATTRIB_MASK;
  76. #endif
  77. }
  78. /*
  79. * writing shadow tlb entry to host TLB
  80. */
  81. static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe,
  82. uint32_t mas0)
  83. {
  84. unsigned long flags;
  85. local_irq_save(flags);
  86. mtspr(SPRN_MAS0, mas0);
  87. mtspr(SPRN_MAS1, stlbe->mas1);
  88. mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2);
  89. mtspr(SPRN_MAS3, (u32)stlbe->mas7_3);
  90. mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32));
  91. #ifdef CONFIG_KVM_BOOKE_HV
  92. mtspr(SPRN_MAS8, stlbe->mas8);
  93. #endif
  94. asm volatile("isync; tlbwe" : : : "memory");
  95. #ifdef CONFIG_KVM_BOOKE_HV
  96. /* Must clear mas8 for other host tlbwe's */
  97. mtspr(SPRN_MAS8, 0);
  98. isync();
  99. #endif
  100. local_irq_restore(flags);
  101. trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1,
  102. stlbe->mas2, stlbe->mas7_3);
  103. }
  104. /*
  105. * Acquire a mas0 with victim hint, as if we just took a TLB miss.
  106. *
  107. * We don't care about the address we're searching for, other than that it's
  108. * in the right set and is not present in the TLB. Using a zero PID and a
  109. * userspace address means we don't have to set and then restore MAS5, or
  110. * calculate a proper MAS6 value.
  111. */
  112. static u32 get_host_mas0(unsigned long eaddr)
  113. {
  114. unsigned long flags;
  115. u32 mas0;
  116. local_irq_save(flags);
  117. mtspr(SPRN_MAS6, 0);
  118. asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET));
  119. mas0 = mfspr(SPRN_MAS0);
  120. local_irq_restore(flags);
  121. return mas0;
  122. }
  123. /* sesel is for tlb1 only */
  124. static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
  125. int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe)
  126. {
  127. u32 mas0;
  128. if (tlbsel == 0) {
  129. mas0 = get_host_mas0(stlbe->mas2);
  130. __write_host_tlbe(stlbe, mas0);
  131. } else {
  132. __write_host_tlbe(stlbe,
  133. MAS0_TLBSEL(1) |
  134. MAS0_ESEL(to_htlb1_esel(sesel)));
  135. }
  136. }
  137. #ifdef CONFIG_KVM_E500V2
  138. void kvmppc_map_magic(struct kvm_vcpu *vcpu)
  139. {
  140. struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
  141. struct kvm_book3e_206_tlb_entry magic;
  142. ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
  143. unsigned int stid;
  144. pfn_t pfn;
  145. pfn = (pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
  146. get_page(pfn_to_page(pfn));
  147. preempt_disable();
  148. stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);
  149. magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
  150. MAS1_TSIZE(BOOK3E_PAGESZ_4K);
  151. magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
  152. magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) |
  153. MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
  154. magic.mas8 = 0;
  155. __write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index));
  156. preempt_enable();
  157. }
  158. #endif
  159. static void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500,
  160. int tlbsel, int esel)
  161. {
  162. struct kvm_book3e_206_tlb_entry *gtlbe =
  163. get_entry(vcpu_e500, tlbsel, esel);
  164. if (tlbsel == 1 &&
  165. vcpu_e500->gtlb_priv[1][esel].ref.flags & E500_TLB_BITMAP) {
  166. u64 tmp = vcpu_e500->g2h_tlb1_map[esel];
  167. int hw_tlb_indx;
  168. unsigned long flags;
  169. local_irq_save(flags);
  170. while (tmp) {
  171. hw_tlb_indx = __ilog2_u64(tmp & -tmp);
  172. mtspr(SPRN_MAS0,
  173. MAS0_TLBSEL(1) |
  174. MAS0_ESEL(to_htlb1_esel(hw_tlb_indx)));
  175. mtspr(SPRN_MAS1, 0);
  176. asm volatile("tlbwe");
  177. vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0;
  178. tmp &= tmp - 1;
  179. }
  180. mb();
  181. vcpu_e500->g2h_tlb1_map[esel] = 0;
  182. vcpu_e500->gtlb_priv[1][esel].ref.flags &= ~E500_TLB_BITMAP;
  183. local_irq_restore(flags);
  184. return;
  185. }
  186. /* Guest tlbe is backed by at most one host tlbe per shadow pid. */
  187. kvmppc_e500_tlbil_one(vcpu_e500, gtlbe);
  188. }
  189. static int tlb0_set_base(gva_t addr, int sets, int ways)
  190. {
  191. int set_base;
  192. set_base = (addr >> PAGE_SHIFT) & (sets - 1);
  193. set_base *= ways;
  194. return set_base;
  195. }
  196. static int gtlb0_set_base(struct kvmppc_vcpu_e500 *vcpu_e500, gva_t addr)
  197. {
  198. return tlb0_set_base(addr, vcpu_e500->gtlb_params[0].sets,
  199. vcpu_e500->gtlb_params[0].ways);
  200. }
  201. static unsigned int get_tlb_esel(struct kvm_vcpu *vcpu, int tlbsel)
  202. {
  203. struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
  204. int esel = get_tlb_esel_bit(vcpu);
  205. if (tlbsel == 0) {
  206. esel &= vcpu_e500->gtlb_params[0].ways - 1;
  207. esel += gtlb0_set_base(vcpu_e500, vcpu->arch.shared->mas2);
  208. } else {
  209. esel &= vcpu_e500->gtlb_params[tlbsel].entries - 1;
  210. }
  211. return esel;
  212. }
  213. /* Search the guest TLB for a matching entry. */
  214. static int kvmppc_e500_tlb_index(struct kvmppc_vcpu_e500 *vcpu_e500,
  215. gva_t eaddr, int tlbsel, unsigned int pid, int as)
  216. {
  217. int size = vcpu_e500->gtlb_params[tlbsel].entries;
  218. unsigned int set_base, offset;
  219. int i;
  220. if (tlbsel == 0) {
  221. set_base = gtlb0_set_base(vcpu_e500, eaddr);
  222. size = vcpu_e500->gtlb_params[0].ways;
  223. } else {
  224. set_base = 0;
  225. }
  226. offset = vcpu_e500->gtlb_offset[tlbsel];
  227. for (i = 0; i < size; i++) {
  228. struct kvm_book3e_206_tlb_entry *tlbe =
  229. &vcpu_e500->gtlb_arch[offset + set_base + i];
  230. unsigned int tid;
  231. if (eaddr < get_tlb_eaddr(tlbe))
  232. continue;
  233. if (eaddr > get_tlb_end(tlbe))
  234. continue;
  235. tid = get_tlb_tid(tlbe);
  236. if (tid && (tid != pid))
  237. continue;
  238. if (!get_tlb_v(tlbe))
  239. continue;
  240. if (get_tlb_ts(tlbe) != as && as != -1)
  241. continue;
  242. return set_base + i;
  243. }
  244. return -1;
  245. }
  246. static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref,
  247. struct kvm_book3e_206_tlb_entry *gtlbe,
  248. pfn_t pfn)
  249. {
  250. ref->pfn = pfn;
  251. ref->flags = E500_TLB_VALID;
  252. if (tlbe_is_writable(gtlbe))
  253. ref->flags |= E500_TLB_DIRTY;
  254. }
  255. static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref)
  256. {
  257. if (ref->flags & E500_TLB_VALID) {
  258. if (ref->flags & E500_TLB_DIRTY)
  259. kvm_release_pfn_dirty(ref->pfn);
  260. else
  261. kvm_release_pfn_clean(ref->pfn);
  262. ref->flags = 0;
  263. }
  264. }
  265. static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500)
  266. {
  267. if (vcpu_e500->g2h_tlb1_map)
  268. memset(vcpu_e500->g2h_tlb1_map,
  269. sizeof(u64) * vcpu_e500->gtlb_params[1].entries, 0);
  270. if (vcpu_e500->h2g_tlb1_rmap)
  271. memset(vcpu_e500->h2g_tlb1_rmap,
  272. sizeof(unsigned int) * host_tlb_params[1].entries, 0);
  273. }
  274. static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500)
  275. {
  276. int tlbsel = 0;
  277. int i;
  278. for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) {
  279. struct tlbe_ref *ref =
  280. &vcpu_e500->gtlb_priv[tlbsel][i].ref;
  281. kvmppc_e500_ref_release(ref);
  282. }
  283. }
  284. static void clear_tlb_refs(struct kvmppc_vcpu_e500 *vcpu_e500)
  285. {
  286. int stlbsel = 1;
  287. int i;
  288. kvmppc_e500_tlbil_all(vcpu_e500);
  289. for (i = 0; i < host_tlb_params[stlbsel].entries; i++) {
  290. struct tlbe_ref *ref =
  291. &vcpu_e500->tlb_refs[stlbsel][i];
  292. kvmppc_e500_ref_release(ref);
  293. }
  294. clear_tlb_privs(vcpu_e500);
  295. }
  296. static inline void kvmppc_e500_deliver_tlb_miss(struct kvm_vcpu *vcpu,
  297. unsigned int eaddr, int as)
  298. {
  299. struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
  300. unsigned int victim, tsized;
  301. int tlbsel;
  302. /* since we only have two TLBs, only lower bit is used. */
  303. tlbsel = (vcpu->arch.shared->mas4 >> 28) & 0x1;
  304. victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0;
  305. tsized = (vcpu->arch.shared->mas4 >> 7) & 0x1f;
  306. vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(victim)
  307. | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
  308. vcpu->arch.shared->mas1 = MAS1_VALID | (as ? MAS1_TS : 0)
  309. | MAS1_TID(get_tlbmiss_tid(vcpu))
  310. | MAS1_TSIZE(tsized);
  311. vcpu->arch.shared->mas2 = (eaddr & MAS2_EPN)
  312. | (vcpu->arch.shared->mas4 & MAS2_ATTRIB_MASK);
  313. vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3;
  314. vcpu->arch.shared->mas6 = (vcpu->arch.shared->mas6 & MAS6_SPID1)
  315. | (get_cur_pid(vcpu) << 16)
  316. | (as ? MAS6_SAS : 0);
  317. }
  318. /* TID must be supplied by the caller */
  319. static inline void kvmppc_e500_setup_stlbe(
  320. struct kvm_vcpu *vcpu,
  321. struct kvm_book3e_206_tlb_entry *gtlbe,
  322. int tsize, struct tlbe_ref *ref, u64 gvaddr,
  323. struct kvm_book3e_206_tlb_entry *stlbe)
  324. {
  325. pfn_t pfn = ref->pfn;
  326. u32 pr = vcpu->arch.shared->msr & MSR_PR;
  327. BUG_ON(!(ref->flags & E500_TLB_VALID));
  328. /* Force IPROT=0 for all guest mappings. */
  329. stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID;
  330. stlbe->mas2 = (gvaddr & MAS2_EPN) |
  331. e500_shadow_mas2_attrib(gtlbe->mas2, pr);
  332. stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) |
  333. e500_shadow_mas3_attrib(gtlbe->mas7_3, pr);
  334. #ifdef CONFIG_KVM_BOOKE_HV
  335. stlbe->mas8 = MAS8_TGS | vcpu->kvm->arch.lpid;
  336. #endif
  337. }
  338. static inline void kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
  339. u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
  340. int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe,
  341. struct tlbe_ref *ref)
  342. {
  343. struct kvm_memory_slot *slot;
  344. unsigned long pfn, hva;
  345. int pfnmap = 0;
  346. int tsize = BOOK3E_PAGESZ_4K;
  347. /*
  348. * Translate guest physical to true physical, acquiring
  349. * a page reference if it is normal, non-reserved memory.
  350. *
  351. * gfn_to_memslot() must succeed because otherwise we wouldn't
  352. * have gotten this far. Eventually we should just pass the slot
  353. * pointer through from the first lookup.
  354. */
  355. slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
  356. hva = gfn_to_hva_memslot(slot, gfn);
  357. if (tlbsel == 1) {
  358. struct vm_area_struct *vma;
  359. down_read(&current->mm->mmap_sem);
  360. vma = find_vma(current->mm, hva);
  361. if (vma && hva >= vma->vm_start &&
  362. (vma->vm_flags & VM_PFNMAP)) {
  363. /*
  364. * This VMA is a physically contiguous region (e.g.
  365. * /dev/mem) that bypasses normal Linux page
  366. * management. Find the overlap between the
  367. * vma and the memslot.
  368. */
  369. unsigned long start, end;
  370. unsigned long slot_start, slot_end;
  371. pfnmap = 1;
  372. start = vma->vm_pgoff;
  373. end = start +
  374. ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT);
  375. pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
  376. slot_start = pfn - (gfn - slot->base_gfn);
  377. slot_end = slot_start + slot->npages;
  378. if (start < slot_start)
  379. start = slot_start;
  380. if (end > slot_end)
  381. end = slot_end;
  382. tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
  383. MAS1_TSIZE_SHIFT;
  384. /*
  385. * e500 doesn't implement the lowest tsize bit,
  386. * or 1K pages.
  387. */
  388. tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
  389. /*
  390. * Now find the largest tsize (up to what the guest
  391. * requested) that will cover gfn, stay within the
  392. * range, and for which gfn and pfn are mutually
  393. * aligned.
  394. */
  395. for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
  396. unsigned long gfn_start, gfn_end, tsize_pages;
  397. tsize_pages = 1 << (tsize - 2);
  398. gfn_start = gfn & ~(tsize_pages - 1);
  399. gfn_end = gfn_start + tsize_pages;
  400. if (gfn_start + pfn - gfn < start)
  401. continue;
  402. if (gfn_end + pfn - gfn > end)
  403. continue;
  404. if ((gfn & (tsize_pages - 1)) !=
  405. (pfn & (tsize_pages - 1)))
  406. continue;
  407. gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
  408. pfn &= ~(tsize_pages - 1);
  409. break;
  410. }
  411. } else if (vma && hva >= vma->vm_start &&
  412. (vma->vm_flags & VM_HUGETLB)) {
  413. unsigned long psize = vma_kernel_pagesize(vma);
  414. tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
  415. MAS1_TSIZE_SHIFT;
  416. /*
  417. * Take the largest page size that satisfies both host
  418. * and guest mapping
  419. */
  420. tsize = min(__ilog2(psize) - 10, tsize);
  421. /*
  422. * e500 doesn't implement the lowest tsize bit,
  423. * or 1K pages.
  424. */
  425. tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
  426. }
  427. up_read(&current->mm->mmap_sem);
  428. }
  429. if (likely(!pfnmap)) {
  430. unsigned long tsize_pages = 1 << (tsize + 10 - PAGE_SHIFT);
  431. pfn = gfn_to_pfn_memslot(vcpu_e500->vcpu.kvm, slot, gfn);
  432. if (is_error_pfn(pfn)) {
  433. printk(KERN_ERR "Couldn't get real page for gfn %lx!\n",
  434. (long)gfn);
  435. kvm_release_pfn_clean(pfn);
  436. return;
  437. }
  438. /* Align guest and physical address to page map boundaries */
  439. pfn &= ~(tsize_pages - 1);
  440. gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
  441. }
  442. /* Drop old ref and setup new one. */
  443. kvmppc_e500_ref_release(ref);
  444. kvmppc_e500_ref_setup(ref, gtlbe, pfn);
  445. kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize,
  446. ref, gvaddr, stlbe);
  447. }
  448. /* XXX only map the one-one case, for now use TLB0 */
  449. static void kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500,
  450. int esel,
  451. struct kvm_book3e_206_tlb_entry *stlbe)
  452. {
  453. struct kvm_book3e_206_tlb_entry *gtlbe;
  454. struct tlbe_ref *ref;
  455. gtlbe = get_entry(vcpu_e500, 0, esel);
  456. ref = &vcpu_e500->gtlb_priv[0][esel].ref;
  457. kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
  458. get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
  459. gtlbe, 0, stlbe, ref);
  460. }
  461. /* Caller must ensure that the specified guest TLB entry is safe to insert into
  462. * the shadow TLB. */
  463. /* XXX for both one-one and one-to-many , for now use TLB1 */
  464. static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
  465. u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
  466. struct kvm_book3e_206_tlb_entry *stlbe, int esel)
  467. {
  468. struct tlbe_ref *ref;
  469. unsigned int victim;
  470. victim = vcpu_e500->host_tlb1_nv++;
  471. if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size()))
  472. vcpu_e500->host_tlb1_nv = 0;
  473. ref = &vcpu_e500->tlb_refs[1][victim];
  474. kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe, ref);
  475. vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << victim;
  476. vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP;
  477. if (vcpu_e500->h2g_tlb1_rmap[victim]) {
  478. unsigned int idx = vcpu_e500->h2g_tlb1_rmap[victim];
  479. vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << victim);
  480. }
  481. vcpu_e500->h2g_tlb1_rmap[victim] = esel;
  482. return victim;
  483. }
  484. static inline int kvmppc_e500_gtlbe_invalidate(
  485. struct kvmppc_vcpu_e500 *vcpu_e500,
  486. int tlbsel, int esel)
  487. {
  488. struct kvm_book3e_206_tlb_entry *gtlbe =
  489. get_entry(vcpu_e500, tlbsel, esel);
  490. if (unlikely(get_tlb_iprot(gtlbe)))
  491. return -1;
  492. gtlbe->mas1 = 0;
  493. return 0;
  494. }
  495. int kvmppc_e500_emul_mt_mmucsr0(struct kvmppc_vcpu_e500 *vcpu_e500, ulong value)
  496. {
  497. int esel;
  498. if (value & MMUCSR0_TLB0FI)
  499. for (esel = 0; esel < vcpu_e500->gtlb_params[0].entries; esel++)
  500. kvmppc_e500_gtlbe_invalidate(vcpu_e500, 0, esel);
  501. if (value & MMUCSR0_TLB1FI)
  502. for (esel = 0; esel < vcpu_e500->gtlb_params[1].entries; esel++)
  503. kvmppc_e500_gtlbe_invalidate(vcpu_e500, 1, esel);
  504. /* Invalidate all vcpu id mappings */
  505. kvmppc_e500_tlbil_all(vcpu_e500);
  506. return EMULATE_DONE;
  507. }
  508. int kvmppc_e500_emul_tlbivax(struct kvm_vcpu *vcpu, int ra, int rb)
  509. {
  510. struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
  511. unsigned int ia;
  512. int esel, tlbsel;
  513. gva_t ea;
  514. ea = ((ra) ? kvmppc_get_gpr(vcpu, ra) : 0) + kvmppc_get_gpr(vcpu, rb);
  515. ia = (ea >> 2) & 0x1;
  516. /* since we only have two TLBs, only lower bit is used. */
  517. tlbsel = (ea >> 3) & 0x1;
  518. if (ia) {
  519. /* invalidate all entries */
  520. for (esel = 0; esel < vcpu_e500->gtlb_params[tlbsel].entries;
  521. esel++)
  522. kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
  523. } else {
  524. ea &= 0xfffff000;
  525. esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel,
  526. get_cur_pid(vcpu), -1);
  527. if (esel >= 0)
  528. kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
  529. }
  530. /* Invalidate all vcpu id mappings */
  531. kvmppc_e500_tlbil_all(vcpu_e500);
  532. return EMULATE_DONE;
  533. }
  534. static void tlbilx_all(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
  535. int pid, int rt)
  536. {
  537. struct kvm_book3e_206_tlb_entry *tlbe;
  538. int tid, esel;
  539. /* invalidate all entries */
  540. for (esel = 0; esel < vcpu_e500->gtlb_params[tlbsel].entries; esel++) {
  541. tlbe = get_entry(vcpu_e500, tlbsel, esel);
  542. tid = get_tlb_tid(tlbe);
  543. if (rt == 0 || tid == pid) {
  544. inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
  545. kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
  546. }
  547. }
  548. }
  549. static void tlbilx_one(struct kvmppc_vcpu_e500 *vcpu_e500, int pid,
  550. int ra, int rb)
  551. {
  552. int tlbsel, esel;
  553. gva_t ea;
  554. ea = kvmppc_get_gpr(&vcpu_e500->vcpu, rb);
  555. if (ra)
  556. ea += kvmppc_get_gpr(&vcpu_e500->vcpu, ra);
  557. for (tlbsel = 0; tlbsel < 2; tlbsel++) {
  558. esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, -1);
  559. if (esel >= 0) {
  560. inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
  561. kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
  562. break;
  563. }
  564. }
  565. }
  566. int kvmppc_e500_emul_tlbilx(struct kvm_vcpu *vcpu, int rt, int ra, int rb)
  567. {
  568. struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
  569. int pid = get_cur_spid(vcpu);
  570. if (rt == 0 || rt == 1) {
  571. tlbilx_all(vcpu_e500, 0, pid, rt);
  572. tlbilx_all(vcpu_e500, 1, pid, rt);
  573. } else if (rt == 3) {
  574. tlbilx_one(vcpu_e500, pid, ra, rb);
  575. }
  576. return EMULATE_DONE;
  577. }
  578. int kvmppc_e500_emul_tlbre(struct kvm_vcpu *vcpu)
  579. {
  580. struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
  581. int tlbsel, esel;
  582. struct kvm_book3e_206_tlb_entry *gtlbe;
  583. tlbsel = get_tlb_tlbsel(vcpu);
  584. esel = get_tlb_esel(vcpu, tlbsel);
  585. gtlbe = get_entry(vcpu_e500, tlbsel, esel);
  586. vcpu->arch.shared->mas0 &= ~MAS0_NV(~0);
  587. vcpu->arch.shared->mas0 |= MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
  588. vcpu->arch.shared->mas1 = gtlbe->mas1;
  589. vcpu->arch.shared->mas2 = gtlbe->mas2;
  590. vcpu->arch.shared->mas7_3 = gtlbe->mas7_3;
  591. return EMULATE_DONE;
  592. }
  593. int kvmppc_e500_emul_tlbsx(struct kvm_vcpu *vcpu, int rb)
  594. {
  595. struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
  596. int as = !!get_cur_sas(vcpu);
  597. unsigned int pid = get_cur_spid(vcpu);
  598. int esel, tlbsel;
  599. struct kvm_book3e_206_tlb_entry *gtlbe = NULL;
  600. gva_t ea;
  601. ea = kvmppc_get_gpr(vcpu, rb);
  602. for (tlbsel = 0; tlbsel < 2; tlbsel++) {
  603. esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, as);
  604. if (esel >= 0) {
  605. gtlbe = get_entry(vcpu_e500, tlbsel, esel);
  606. break;
  607. }
  608. }
  609. if (gtlbe) {
  610. esel &= vcpu_e500->gtlb_params[tlbsel].ways - 1;
  611. vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(esel)
  612. | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
  613. vcpu->arch.shared->mas1 = gtlbe->mas1;
  614. vcpu->arch.shared->mas2 = gtlbe->mas2;
  615. vcpu->arch.shared->mas7_3 = gtlbe->mas7_3;
  616. } else {
  617. int victim;
  618. /* since we only have two TLBs, only lower bit is used. */
  619. tlbsel = vcpu->arch.shared->mas4 >> 28 & 0x1;
  620. victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0;
  621. vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel)
  622. | MAS0_ESEL(victim)
  623. | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
  624. vcpu->arch.shared->mas1 =
  625. (vcpu->arch.shared->mas6 & MAS6_SPID0)
  626. | (vcpu->arch.shared->mas6 & (MAS6_SAS ? MAS1_TS : 0))
  627. | (vcpu->arch.shared->mas4 & MAS4_TSIZED(~0));
  628. vcpu->arch.shared->mas2 &= MAS2_EPN;
  629. vcpu->arch.shared->mas2 |= vcpu->arch.shared->mas4 &
  630. MAS2_ATTRIB_MASK;
  631. vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 |
  632. MAS3_U2 | MAS3_U3;
  633. }
  634. kvmppc_set_exit_type(vcpu, EMULATED_TLBSX_EXITS);
  635. return EMULATE_DONE;
  636. }
  637. /* sesel is for tlb1 only */
  638. static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
  639. struct kvm_book3e_206_tlb_entry *gtlbe,
  640. struct kvm_book3e_206_tlb_entry *stlbe,
  641. int stlbsel, int sesel)
  642. {
  643. int stid;
  644. preempt_disable();
  645. stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe);
  646. stlbe->mas1 |= MAS1_TID(stid);
  647. write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe);
  648. preempt_enable();
  649. }
  650. int kvmppc_e500_emul_tlbwe(struct kvm_vcpu *vcpu)
  651. {
  652. struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
  653. struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
  654. int tlbsel, esel, stlbsel, sesel;
  655. tlbsel = get_tlb_tlbsel(vcpu);
  656. esel = get_tlb_esel(vcpu, tlbsel);
  657. gtlbe = get_entry(vcpu_e500, tlbsel, esel);
  658. if (get_tlb_v(gtlbe))
  659. inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
  660. gtlbe->mas1 = vcpu->arch.shared->mas1;
  661. gtlbe->mas2 = vcpu->arch.shared->mas2;
  662. gtlbe->mas7_3 = vcpu->arch.shared->mas7_3;
  663. trace_kvm_booke206_gtlb_write(vcpu->arch.shared->mas0, gtlbe->mas1,
  664. gtlbe->mas2, gtlbe->mas7_3);
  665. /* Invalidate shadow mappings for the about-to-be-clobbered TLBE. */
  666. if (tlbe_is_host_safe(vcpu, gtlbe)) {
  667. u64 eaddr;
  668. u64 raddr;
  669. switch (tlbsel) {
  670. case 0:
  671. /* TLB0 */
  672. gtlbe->mas1 &= ~MAS1_TSIZE(~0);
  673. gtlbe->mas1 |= MAS1_TSIZE(BOOK3E_PAGESZ_4K);
  674. stlbsel = 0;
  675. kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
  676. sesel = 0; /* unused */
  677. break;
  678. case 1:
  679. /* TLB1 */
  680. eaddr = get_tlb_eaddr(gtlbe);
  681. raddr = get_tlb_raddr(gtlbe);
  682. /* Create a 4KB mapping on the host.
  683. * If the guest wanted a large page,
  684. * only the first 4KB is mapped here and the rest
  685. * are mapped on the fly. */
  686. stlbsel = 1;
  687. sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr,
  688. raddr >> PAGE_SHIFT, gtlbe, &stlbe, esel);
  689. break;
  690. default:
  691. BUG();
  692. }
  693. write_stlbe(vcpu_e500, gtlbe, &stlbe, stlbsel, sesel);
  694. }
  695. kvmppc_set_exit_type(vcpu, EMULATED_TLBWE_EXITS);
  696. return EMULATE_DONE;
  697. }
  698. static int kvmppc_e500_tlb_search(struct kvm_vcpu *vcpu,
  699. gva_t eaddr, unsigned int pid, int as)
  700. {
  701. struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
  702. int esel, tlbsel;
  703. for (tlbsel = 0; tlbsel < 2; tlbsel++) {
  704. esel = kvmppc_e500_tlb_index(vcpu_e500, eaddr, tlbsel, pid, as);
  705. if (esel >= 0)
  706. return index_of(tlbsel, esel);
  707. }
  708. return -1;
  709. }
  710. /* 'linear_address' is actually an encoding of AS|PID|EADDR . */
  711. int kvmppc_core_vcpu_translate(struct kvm_vcpu *vcpu,
  712. struct kvm_translation *tr)
  713. {
  714. int index;
  715. gva_t eaddr;
  716. u8 pid;
  717. u8 as;
  718. eaddr = tr->linear_address;
  719. pid = (tr->linear_address >> 32) & 0xff;
  720. as = (tr->linear_address >> 40) & 0x1;
  721. index = kvmppc_e500_tlb_search(vcpu, eaddr, pid, as);
  722. if (index < 0) {
  723. tr->valid = 0;
  724. return 0;
  725. }
  726. tr->physical_address = kvmppc_mmu_xlate(vcpu, index, eaddr);
  727. /* XXX what does "writeable" and "usermode" even mean? */
  728. tr->valid = 1;
  729. return 0;
  730. }
  731. int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
  732. {
  733. unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
  734. return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
  735. }
  736. int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
  737. {
  738. unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
  739. return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
  740. }
  741. void kvmppc_mmu_itlb_miss(struct kvm_vcpu *vcpu)
  742. {
  743. unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
  744. kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.pc, as);
  745. }
  746. void kvmppc_mmu_dtlb_miss(struct kvm_vcpu *vcpu)
  747. {
  748. unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
  749. kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.fault_dear, as);
  750. }
  751. gpa_t kvmppc_mmu_xlate(struct kvm_vcpu *vcpu, unsigned int index,
  752. gva_t eaddr)
  753. {
  754. struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
  755. struct kvm_book3e_206_tlb_entry *gtlbe;
  756. u64 pgmask;
  757. gtlbe = get_entry(vcpu_e500, tlbsel_of(index), esel_of(index));
  758. pgmask = get_tlb_bytes(gtlbe) - 1;
  759. return get_tlb_raddr(gtlbe) | (eaddr & pgmask);
  760. }
  761. void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
  762. {
  763. }
  764. void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
  765. unsigned int index)
  766. {
  767. struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
  768. struct tlbe_priv *priv;
  769. struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
  770. int tlbsel = tlbsel_of(index);
  771. int esel = esel_of(index);
  772. int stlbsel, sesel;
  773. gtlbe = get_entry(vcpu_e500, tlbsel, esel);
  774. switch (tlbsel) {
  775. case 0:
  776. stlbsel = 0;
  777. sesel = 0; /* unused */
  778. priv = &vcpu_e500->gtlb_priv[tlbsel][esel];
  779. kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K,
  780. &priv->ref, eaddr, &stlbe);
  781. break;
  782. case 1: {
  783. gfn_t gfn = gpaddr >> PAGE_SHIFT;
  784. stlbsel = 1;
  785. sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn,
  786. gtlbe, &stlbe, esel);
  787. break;
  788. }
  789. default:
  790. BUG();
  791. break;
  792. }
  793. write_stlbe(vcpu_e500, gtlbe, &stlbe, stlbsel, sesel);
  794. }
  795. static void free_gtlb(struct kvmppc_vcpu_e500 *vcpu_e500)
  796. {
  797. int i;
  798. clear_tlb1_bitmap(vcpu_e500);
  799. kfree(vcpu_e500->g2h_tlb1_map);
  800. clear_tlb_refs(vcpu_e500);
  801. kfree(vcpu_e500->gtlb_priv[0]);
  802. kfree(vcpu_e500->gtlb_priv[1]);
  803. if (vcpu_e500->shared_tlb_pages) {
  804. vfree((void *)(round_down((uintptr_t)vcpu_e500->gtlb_arch,
  805. PAGE_SIZE)));
  806. for (i = 0; i < vcpu_e500->num_shared_tlb_pages; i++) {
  807. set_page_dirty_lock(vcpu_e500->shared_tlb_pages[i]);
  808. put_page(vcpu_e500->shared_tlb_pages[i]);
  809. }
  810. vcpu_e500->num_shared_tlb_pages = 0;
  811. vcpu_e500->shared_tlb_pages = NULL;
  812. } else {
  813. kfree(vcpu_e500->gtlb_arch);
  814. }
  815. vcpu_e500->gtlb_arch = NULL;
  816. }
  817. void kvmppc_get_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
  818. {
  819. sregs->u.e.mas0 = vcpu->arch.shared->mas0;
  820. sregs->u.e.mas1 = vcpu->arch.shared->mas1;
  821. sregs->u.e.mas2 = vcpu->arch.shared->mas2;
  822. sregs->u.e.mas7_3 = vcpu->arch.shared->mas7_3;
  823. sregs->u.e.mas4 = vcpu->arch.shared->mas4;
  824. sregs->u.e.mas6 = vcpu->arch.shared->mas6;
  825. sregs->u.e.mmucfg = vcpu->arch.mmucfg;
  826. sregs->u.e.tlbcfg[0] = vcpu->arch.tlbcfg[0];
  827. sregs->u.e.tlbcfg[1] = vcpu->arch.tlbcfg[1];
  828. sregs->u.e.tlbcfg[2] = 0;
  829. sregs->u.e.tlbcfg[3] = 0;
  830. }
  831. int kvmppc_set_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
  832. {
  833. if (sregs->u.e.features & KVM_SREGS_E_ARCH206_MMU) {
  834. vcpu->arch.shared->mas0 = sregs->u.e.mas0;
  835. vcpu->arch.shared->mas1 = sregs->u.e.mas1;
  836. vcpu->arch.shared->mas2 = sregs->u.e.mas2;
  837. vcpu->arch.shared->mas7_3 = sregs->u.e.mas7_3;
  838. vcpu->arch.shared->mas4 = sregs->u.e.mas4;
  839. vcpu->arch.shared->mas6 = sregs->u.e.mas6;
  840. }
  841. return 0;
  842. }
  843. int kvm_vcpu_ioctl_config_tlb(struct kvm_vcpu *vcpu,
  844. struct kvm_config_tlb *cfg)
  845. {
  846. struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
  847. struct kvm_book3e_206_tlb_params params;
  848. char *virt;
  849. struct page **pages;
  850. struct tlbe_priv *privs[2] = {};
  851. u64 *g2h_bitmap = NULL;
  852. size_t array_len;
  853. u32 sets;
  854. int num_pages, ret, i;
  855. if (cfg->mmu_type != KVM_MMU_FSL_BOOKE_NOHV)
  856. return -EINVAL;
  857. if (copy_from_user(&params, (void __user *)(uintptr_t)cfg->params,
  858. sizeof(params)))
  859. return -EFAULT;
  860. if (params.tlb_sizes[1] > 64)
  861. return -EINVAL;
  862. if (params.tlb_ways[1] != params.tlb_sizes[1])
  863. return -EINVAL;
  864. if (params.tlb_sizes[2] != 0 || params.tlb_sizes[3] != 0)
  865. return -EINVAL;
  866. if (params.tlb_ways[2] != 0 || params.tlb_ways[3] != 0)
  867. return -EINVAL;
  868. if (!is_power_of_2(params.tlb_ways[0]))
  869. return -EINVAL;
  870. sets = params.tlb_sizes[0] >> ilog2(params.tlb_ways[0]);
  871. if (!is_power_of_2(sets))
  872. return -EINVAL;
  873. array_len = params.tlb_sizes[0] + params.tlb_sizes[1];
  874. array_len *= sizeof(struct kvm_book3e_206_tlb_entry);
  875. if (cfg->array_len < array_len)
  876. return -EINVAL;
  877. num_pages = DIV_ROUND_UP(cfg->array + array_len - 1, PAGE_SIZE) -
  878. cfg->array / PAGE_SIZE;
  879. pages = kmalloc(sizeof(struct page *) * num_pages, GFP_KERNEL);
  880. if (!pages)
  881. return -ENOMEM;
  882. ret = get_user_pages_fast(cfg->array, num_pages, 1, pages);
  883. if (ret < 0)
  884. goto err_pages;
  885. if (ret != num_pages) {
  886. num_pages = ret;
  887. ret = -EFAULT;
  888. goto err_put_page;
  889. }
  890. virt = vmap(pages, num_pages, VM_MAP, PAGE_KERNEL);
  891. if (!virt)
  892. goto err_put_page;
  893. privs[0] = kzalloc(sizeof(struct tlbe_priv) * params.tlb_sizes[0],
  894. GFP_KERNEL);
  895. privs[1] = kzalloc(sizeof(struct tlbe_priv) * params.tlb_sizes[1],
  896. GFP_KERNEL);
  897. if (!privs[0] || !privs[1])
  898. goto err_put_page;
  899. g2h_bitmap = kzalloc(sizeof(u64) * params.tlb_sizes[1],
  900. GFP_KERNEL);
  901. if (!g2h_bitmap)
  902. goto err_put_page;
  903. free_gtlb(vcpu_e500);
  904. vcpu_e500->gtlb_priv[0] = privs[0];
  905. vcpu_e500->gtlb_priv[1] = privs[1];
  906. vcpu_e500->g2h_tlb1_map = g2h_bitmap;
  907. vcpu_e500->gtlb_arch = (struct kvm_book3e_206_tlb_entry *)
  908. (virt + (cfg->array & (PAGE_SIZE - 1)));
  909. vcpu_e500->gtlb_params[0].entries = params.tlb_sizes[0];
  910. vcpu_e500->gtlb_params[1].entries = params.tlb_sizes[1];
  911. vcpu_e500->gtlb_offset[0] = 0;
  912. vcpu_e500->gtlb_offset[1] = params.tlb_sizes[0];
  913. vcpu->arch.mmucfg = mfspr(SPRN_MMUCFG) & ~MMUCFG_LPIDSIZE;
  914. vcpu->arch.tlbcfg[0] &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
  915. if (params.tlb_sizes[0] <= 2048)
  916. vcpu->arch.tlbcfg[0] |= params.tlb_sizes[0];
  917. vcpu->arch.tlbcfg[0] |= params.tlb_ways[0] << TLBnCFG_ASSOC_SHIFT;
  918. vcpu->arch.tlbcfg[1] &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
  919. vcpu->arch.tlbcfg[1] |= params.tlb_sizes[1];
  920. vcpu->arch.tlbcfg[1] |= params.tlb_ways[1] << TLBnCFG_ASSOC_SHIFT;
  921. vcpu_e500->shared_tlb_pages = pages;
  922. vcpu_e500->num_shared_tlb_pages = num_pages;
  923. vcpu_e500->gtlb_params[0].ways = params.tlb_ways[0];
  924. vcpu_e500->gtlb_params[0].sets = sets;
  925. vcpu_e500->gtlb_params[1].ways = params.tlb_sizes[1];
  926. vcpu_e500->gtlb_params[1].sets = 1;
  927. return 0;
  928. err_put_page:
  929. kfree(privs[0]);
  930. kfree(privs[1]);
  931. for (i = 0; i < num_pages; i++)
  932. put_page(pages[i]);
  933. err_pages:
  934. kfree(pages);
  935. return ret;
  936. }
  937. int kvm_vcpu_ioctl_dirty_tlb(struct kvm_vcpu *vcpu,
  938. struct kvm_dirty_tlb *dirty)
  939. {
  940. struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
  941. clear_tlb_refs(vcpu_e500);
  942. return 0;
  943. }
  944. int kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 *vcpu_e500)
  945. {
  946. struct kvm_vcpu *vcpu = &vcpu_e500->vcpu;
  947. int entry_size = sizeof(struct kvm_book3e_206_tlb_entry);
  948. int entries = KVM_E500_TLB0_SIZE + KVM_E500_TLB1_SIZE;
  949. host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY;
  950. host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY;
  951. /*
  952. * This should never happen on real e500 hardware, but is
  953. * architecturally possible -- e.g. in some weird nested
  954. * virtualization case.
  955. */
  956. if (host_tlb_params[0].entries == 0 ||
  957. host_tlb_params[1].entries == 0) {
  958. pr_err("%s: need to know host tlb size\n", __func__);
  959. return -ENODEV;
  960. }
  961. host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >>
  962. TLBnCFG_ASSOC_SHIFT;
  963. host_tlb_params[1].ways = host_tlb_params[1].entries;
  964. if (!is_power_of_2(host_tlb_params[0].entries) ||
  965. !is_power_of_2(host_tlb_params[0].ways) ||
  966. host_tlb_params[0].entries < host_tlb_params[0].ways ||
  967. host_tlb_params[0].ways == 0) {
  968. pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
  969. __func__, host_tlb_params[0].entries,
  970. host_tlb_params[0].ways);
  971. return -ENODEV;
  972. }
  973. host_tlb_params[0].sets =
  974. host_tlb_params[0].entries / host_tlb_params[0].ways;
  975. host_tlb_params[1].sets = 1;
  976. vcpu_e500->gtlb_params[0].entries = KVM_E500_TLB0_SIZE;
  977. vcpu_e500->gtlb_params[1].entries = KVM_E500_TLB1_SIZE;
  978. vcpu_e500->gtlb_params[0].ways = KVM_E500_TLB0_WAY_NUM;
  979. vcpu_e500->gtlb_params[0].sets =
  980. KVM_E500_TLB0_SIZE / KVM_E500_TLB0_WAY_NUM;
  981. vcpu_e500->gtlb_params[1].ways = KVM_E500_TLB1_SIZE;
  982. vcpu_e500->gtlb_params[1].sets = 1;
  983. vcpu_e500->gtlb_arch = kmalloc(entries * entry_size, GFP_KERNEL);
  984. if (!vcpu_e500->gtlb_arch)
  985. return -ENOMEM;
  986. vcpu_e500->gtlb_offset[0] = 0;
  987. vcpu_e500->gtlb_offset[1] = KVM_E500_TLB0_SIZE;
  988. vcpu_e500->tlb_refs[0] =
  989. kzalloc(sizeof(struct tlbe_ref) * host_tlb_params[0].entries,
  990. GFP_KERNEL);
  991. if (!vcpu_e500->tlb_refs[0])
  992. goto err;
  993. vcpu_e500->tlb_refs[1] =
  994. kzalloc(sizeof(struct tlbe_ref) * host_tlb_params[1].entries,
  995. GFP_KERNEL);
  996. if (!vcpu_e500->tlb_refs[1])
  997. goto err;
  998. vcpu_e500->gtlb_priv[0] = kzalloc(sizeof(struct tlbe_ref) *
  999. vcpu_e500->gtlb_params[0].entries,
  1000. GFP_KERNEL);
  1001. if (!vcpu_e500->gtlb_priv[0])
  1002. goto err;
  1003. vcpu_e500->gtlb_priv[1] = kzalloc(sizeof(struct tlbe_ref) *
  1004. vcpu_e500->gtlb_params[1].entries,
  1005. GFP_KERNEL);
  1006. if (!vcpu_e500->gtlb_priv[1])
  1007. goto err;
  1008. vcpu_e500->g2h_tlb1_map = kzalloc(sizeof(unsigned int) *
  1009. vcpu_e500->gtlb_params[1].entries,
  1010. GFP_KERNEL);
  1011. if (!vcpu_e500->g2h_tlb1_map)
  1012. goto err;
  1013. vcpu_e500->h2g_tlb1_rmap = kzalloc(sizeof(unsigned int) *
  1014. host_tlb_params[1].entries,
  1015. GFP_KERNEL);
  1016. if (!vcpu_e500->h2g_tlb1_rmap)
  1017. goto err;
  1018. /* Init TLB configuration register */
  1019. vcpu->arch.tlbcfg[0] = mfspr(SPRN_TLB0CFG) &
  1020. ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
  1021. vcpu->arch.tlbcfg[0] |= vcpu_e500->gtlb_params[0].entries;
  1022. vcpu->arch.tlbcfg[0] |=
  1023. vcpu_e500->gtlb_params[0].ways << TLBnCFG_ASSOC_SHIFT;
  1024. vcpu->arch.tlbcfg[1] = mfspr(SPRN_TLB1CFG) &
  1025. ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
  1026. vcpu->arch.tlbcfg[1] |= vcpu_e500->gtlb_params[1].entries;
  1027. vcpu->arch.tlbcfg[1] |=
  1028. vcpu_e500->gtlb_params[1].ways << TLBnCFG_ASSOC_SHIFT;
  1029. return 0;
  1030. err:
  1031. free_gtlb(vcpu_e500);
  1032. kfree(vcpu_e500->tlb_refs[0]);
  1033. kfree(vcpu_e500->tlb_refs[1]);
  1034. return -1;
  1035. }
  1036. void kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
  1037. {
  1038. free_gtlb(vcpu_e500);
  1039. kfree(vcpu_e500->h2g_tlb1_rmap);
  1040. kfree(vcpu_e500->tlb_refs[0]);
  1041. kfree(vcpu_e500->tlb_refs[1]);
  1042. }