vmx.c 212 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include "cpuid.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/sched.h>
  27. #include <linux/moduleparam.h>
  28. #include <linux/mod_devicetable.h>
  29. #include <linux/ftrace_event.h>
  30. #include <linux/slab.h>
  31. #include <linux/tboot.h>
  32. #include "kvm_cache_regs.h"
  33. #include "x86.h"
  34. #include <asm/io.h>
  35. #include <asm/desc.h>
  36. #include <asm/vmx.h>
  37. #include <asm/virtext.h>
  38. #include <asm/mce.h>
  39. #include <asm/i387.h>
  40. #include <asm/xcr.h>
  41. #include <asm/perf_event.h>
  42. #include <asm/kexec.h>
  43. #include "trace.h"
  44. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  45. #define __ex_clear(x, reg) \
  46. ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
  47. MODULE_AUTHOR("Qumranet");
  48. MODULE_LICENSE("GPL");
  49. static const struct x86_cpu_id vmx_cpu_id[] = {
  50. X86_FEATURE_MATCH(X86_FEATURE_VMX),
  51. {}
  52. };
  53. MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
  54. static bool __read_mostly enable_vpid = 1;
  55. module_param_named(vpid, enable_vpid, bool, 0444);
  56. static bool __read_mostly flexpriority_enabled = 1;
  57. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  58. static bool __read_mostly enable_ept = 1;
  59. module_param_named(ept, enable_ept, bool, S_IRUGO);
  60. static bool __read_mostly enable_unrestricted_guest = 1;
  61. module_param_named(unrestricted_guest,
  62. enable_unrestricted_guest, bool, S_IRUGO);
  63. static bool __read_mostly enable_ept_ad_bits = 1;
  64. module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
  65. static bool __read_mostly emulate_invalid_guest_state = true;
  66. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  67. static bool __read_mostly vmm_exclusive = 1;
  68. module_param(vmm_exclusive, bool, S_IRUGO);
  69. static bool __read_mostly fasteoi = 1;
  70. module_param(fasteoi, bool, S_IRUGO);
  71. /*
  72. * If nested=1, nested virtualization is supported, i.e., guests may use
  73. * VMX and be a hypervisor for its own guests. If nested=0, guests may not
  74. * use VMX instructions.
  75. */
  76. static bool __read_mostly nested = 0;
  77. module_param(nested, bool, S_IRUGO);
  78. #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
  79. (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
  80. #define KVM_GUEST_CR0_MASK \
  81. (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  82. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
  83. (X86_CR0_WP | X86_CR0_NE)
  84. #define KVM_VM_CR0_ALWAYS_ON \
  85. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  86. #define KVM_CR4_GUEST_OWNED_BITS \
  87. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  88. | X86_CR4_OSXMMEXCPT)
  89. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  90. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  91. #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
  92. /*
  93. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  94. * ple_gap: upper bound on the amount of time between two successive
  95. * executions of PAUSE in a loop. Also indicate if ple enabled.
  96. * According to test, this time is usually smaller than 128 cycles.
  97. * ple_window: upper bound on the amount of time a guest is allowed to execute
  98. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  99. * less than 2^12 cycles
  100. * Time is measured based on a counter that runs at the same rate as the TSC,
  101. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  102. */
  103. #define KVM_VMX_DEFAULT_PLE_GAP 128
  104. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  105. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  106. module_param(ple_gap, int, S_IRUGO);
  107. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  108. module_param(ple_window, int, S_IRUGO);
  109. extern const ulong vmx_return;
  110. #define NR_AUTOLOAD_MSRS 8
  111. #define VMCS02_POOL_SIZE 1
  112. struct vmcs {
  113. u32 revision_id;
  114. u32 abort;
  115. char data[0];
  116. };
  117. /*
  118. * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
  119. * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
  120. * loaded on this CPU (so we can clear them if the CPU goes down).
  121. */
  122. struct loaded_vmcs {
  123. struct vmcs *vmcs;
  124. int cpu;
  125. int launched;
  126. struct list_head loaded_vmcss_on_cpu_link;
  127. };
  128. struct shared_msr_entry {
  129. unsigned index;
  130. u64 data;
  131. u64 mask;
  132. };
  133. /*
  134. * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
  135. * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
  136. * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
  137. * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
  138. * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
  139. * More than one of these structures may exist, if L1 runs multiple L2 guests.
  140. * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
  141. * underlying hardware which will be used to run L2.
  142. * This structure is packed to ensure that its layout is identical across
  143. * machines (necessary for live migration).
  144. * If there are changes in this struct, VMCS12_REVISION must be changed.
  145. */
  146. typedef u64 natural_width;
  147. struct __packed vmcs12 {
  148. /* According to the Intel spec, a VMCS region must start with the
  149. * following two fields. Then follow implementation-specific data.
  150. */
  151. u32 revision_id;
  152. u32 abort;
  153. u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
  154. u32 padding[7]; /* room for future expansion */
  155. u64 io_bitmap_a;
  156. u64 io_bitmap_b;
  157. u64 msr_bitmap;
  158. u64 vm_exit_msr_store_addr;
  159. u64 vm_exit_msr_load_addr;
  160. u64 vm_entry_msr_load_addr;
  161. u64 tsc_offset;
  162. u64 virtual_apic_page_addr;
  163. u64 apic_access_addr;
  164. u64 ept_pointer;
  165. u64 guest_physical_address;
  166. u64 vmcs_link_pointer;
  167. u64 guest_ia32_debugctl;
  168. u64 guest_ia32_pat;
  169. u64 guest_ia32_efer;
  170. u64 guest_ia32_perf_global_ctrl;
  171. u64 guest_pdptr0;
  172. u64 guest_pdptr1;
  173. u64 guest_pdptr2;
  174. u64 guest_pdptr3;
  175. u64 host_ia32_pat;
  176. u64 host_ia32_efer;
  177. u64 host_ia32_perf_global_ctrl;
  178. u64 padding64[8]; /* room for future expansion */
  179. /*
  180. * To allow migration of L1 (complete with its L2 guests) between
  181. * machines of different natural widths (32 or 64 bit), we cannot have
  182. * unsigned long fields with no explict size. We use u64 (aliased
  183. * natural_width) instead. Luckily, x86 is little-endian.
  184. */
  185. natural_width cr0_guest_host_mask;
  186. natural_width cr4_guest_host_mask;
  187. natural_width cr0_read_shadow;
  188. natural_width cr4_read_shadow;
  189. natural_width cr3_target_value0;
  190. natural_width cr3_target_value1;
  191. natural_width cr3_target_value2;
  192. natural_width cr3_target_value3;
  193. natural_width exit_qualification;
  194. natural_width guest_linear_address;
  195. natural_width guest_cr0;
  196. natural_width guest_cr3;
  197. natural_width guest_cr4;
  198. natural_width guest_es_base;
  199. natural_width guest_cs_base;
  200. natural_width guest_ss_base;
  201. natural_width guest_ds_base;
  202. natural_width guest_fs_base;
  203. natural_width guest_gs_base;
  204. natural_width guest_ldtr_base;
  205. natural_width guest_tr_base;
  206. natural_width guest_gdtr_base;
  207. natural_width guest_idtr_base;
  208. natural_width guest_dr7;
  209. natural_width guest_rsp;
  210. natural_width guest_rip;
  211. natural_width guest_rflags;
  212. natural_width guest_pending_dbg_exceptions;
  213. natural_width guest_sysenter_esp;
  214. natural_width guest_sysenter_eip;
  215. natural_width host_cr0;
  216. natural_width host_cr3;
  217. natural_width host_cr4;
  218. natural_width host_fs_base;
  219. natural_width host_gs_base;
  220. natural_width host_tr_base;
  221. natural_width host_gdtr_base;
  222. natural_width host_idtr_base;
  223. natural_width host_ia32_sysenter_esp;
  224. natural_width host_ia32_sysenter_eip;
  225. natural_width host_rsp;
  226. natural_width host_rip;
  227. natural_width paddingl[8]; /* room for future expansion */
  228. u32 pin_based_vm_exec_control;
  229. u32 cpu_based_vm_exec_control;
  230. u32 exception_bitmap;
  231. u32 page_fault_error_code_mask;
  232. u32 page_fault_error_code_match;
  233. u32 cr3_target_count;
  234. u32 vm_exit_controls;
  235. u32 vm_exit_msr_store_count;
  236. u32 vm_exit_msr_load_count;
  237. u32 vm_entry_controls;
  238. u32 vm_entry_msr_load_count;
  239. u32 vm_entry_intr_info_field;
  240. u32 vm_entry_exception_error_code;
  241. u32 vm_entry_instruction_len;
  242. u32 tpr_threshold;
  243. u32 secondary_vm_exec_control;
  244. u32 vm_instruction_error;
  245. u32 vm_exit_reason;
  246. u32 vm_exit_intr_info;
  247. u32 vm_exit_intr_error_code;
  248. u32 idt_vectoring_info_field;
  249. u32 idt_vectoring_error_code;
  250. u32 vm_exit_instruction_len;
  251. u32 vmx_instruction_info;
  252. u32 guest_es_limit;
  253. u32 guest_cs_limit;
  254. u32 guest_ss_limit;
  255. u32 guest_ds_limit;
  256. u32 guest_fs_limit;
  257. u32 guest_gs_limit;
  258. u32 guest_ldtr_limit;
  259. u32 guest_tr_limit;
  260. u32 guest_gdtr_limit;
  261. u32 guest_idtr_limit;
  262. u32 guest_es_ar_bytes;
  263. u32 guest_cs_ar_bytes;
  264. u32 guest_ss_ar_bytes;
  265. u32 guest_ds_ar_bytes;
  266. u32 guest_fs_ar_bytes;
  267. u32 guest_gs_ar_bytes;
  268. u32 guest_ldtr_ar_bytes;
  269. u32 guest_tr_ar_bytes;
  270. u32 guest_interruptibility_info;
  271. u32 guest_activity_state;
  272. u32 guest_sysenter_cs;
  273. u32 host_ia32_sysenter_cs;
  274. u32 padding32[8]; /* room for future expansion */
  275. u16 virtual_processor_id;
  276. u16 guest_es_selector;
  277. u16 guest_cs_selector;
  278. u16 guest_ss_selector;
  279. u16 guest_ds_selector;
  280. u16 guest_fs_selector;
  281. u16 guest_gs_selector;
  282. u16 guest_ldtr_selector;
  283. u16 guest_tr_selector;
  284. u16 host_es_selector;
  285. u16 host_cs_selector;
  286. u16 host_ss_selector;
  287. u16 host_ds_selector;
  288. u16 host_fs_selector;
  289. u16 host_gs_selector;
  290. u16 host_tr_selector;
  291. };
  292. /*
  293. * VMCS12_REVISION is an arbitrary id that should be changed if the content or
  294. * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
  295. * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
  296. */
  297. #define VMCS12_REVISION 0x11e57ed0
  298. /*
  299. * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
  300. * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
  301. * current implementation, 4K are reserved to avoid future complications.
  302. */
  303. #define VMCS12_SIZE 0x1000
  304. /* Used to remember the last vmcs02 used for some recently used vmcs12s */
  305. struct vmcs02_list {
  306. struct list_head list;
  307. gpa_t vmptr;
  308. struct loaded_vmcs vmcs02;
  309. };
  310. /*
  311. * The nested_vmx structure is part of vcpu_vmx, and holds information we need
  312. * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
  313. */
  314. struct nested_vmx {
  315. /* Has the level1 guest done vmxon? */
  316. bool vmxon;
  317. /* The guest-physical address of the current VMCS L1 keeps for L2 */
  318. gpa_t current_vmptr;
  319. /* The host-usable pointer to the above */
  320. struct page *current_vmcs12_page;
  321. struct vmcs12 *current_vmcs12;
  322. /* vmcs02_list cache of VMCSs recently used to run L2 guests */
  323. struct list_head vmcs02_pool;
  324. int vmcs02_num;
  325. u64 vmcs01_tsc_offset;
  326. /* L2 must run next, and mustn't decide to exit to L1. */
  327. bool nested_run_pending;
  328. /*
  329. * Guest pages referred to in vmcs02 with host-physical pointers, so
  330. * we must keep them pinned while L2 runs.
  331. */
  332. struct page *apic_access_page;
  333. };
  334. struct vcpu_vmx {
  335. struct kvm_vcpu vcpu;
  336. unsigned long host_rsp;
  337. u8 fail;
  338. u8 cpl;
  339. bool nmi_known_unmasked;
  340. u32 exit_intr_info;
  341. u32 idt_vectoring_info;
  342. ulong rflags;
  343. struct shared_msr_entry *guest_msrs;
  344. int nmsrs;
  345. int save_nmsrs;
  346. #ifdef CONFIG_X86_64
  347. u64 msr_host_kernel_gs_base;
  348. u64 msr_guest_kernel_gs_base;
  349. #endif
  350. /*
  351. * loaded_vmcs points to the VMCS currently used in this vcpu. For a
  352. * non-nested (L1) guest, it always points to vmcs01. For a nested
  353. * guest (L2), it points to a different VMCS.
  354. */
  355. struct loaded_vmcs vmcs01;
  356. struct loaded_vmcs *loaded_vmcs;
  357. bool __launched; /* temporary, used in vmx_vcpu_run */
  358. struct msr_autoload {
  359. unsigned nr;
  360. struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
  361. struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
  362. } msr_autoload;
  363. struct {
  364. int loaded;
  365. u16 fs_sel, gs_sel, ldt_sel;
  366. #ifdef CONFIG_X86_64
  367. u16 ds_sel, es_sel;
  368. #endif
  369. int gs_ldt_reload_needed;
  370. int fs_reload_needed;
  371. } host_state;
  372. struct {
  373. int vm86_active;
  374. ulong save_rflags;
  375. struct kvm_segment segs[8];
  376. } rmode;
  377. struct {
  378. u32 bitmask; /* 4 bits per segment (1 bit per field) */
  379. struct kvm_save_segment {
  380. u16 selector;
  381. unsigned long base;
  382. u32 limit;
  383. u32 ar;
  384. } seg[8];
  385. } segment_cache;
  386. int vpid;
  387. bool emulation_required;
  388. /* Support for vnmi-less CPUs */
  389. int soft_vnmi_blocked;
  390. ktime_t entry_time;
  391. s64 vnmi_blocked_time;
  392. u32 exit_reason;
  393. bool rdtscp_enabled;
  394. /* Support for a guest hypervisor (nested VMX) */
  395. struct nested_vmx nested;
  396. };
  397. enum segment_cache_field {
  398. SEG_FIELD_SEL = 0,
  399. SEG_FIELD_BASE = 1,
  400. SEG_FIELD_LIMIT = 2,
  401. SEG_FIELD_AR = 3,
  402. SEG_FIELD_NR = 4
  403. };
  404. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  405. {
  406. return container_of(vcpu, struct vcpu_vmx, vcpu);
  407. }
  408. #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
  409. #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
  410. #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
  411. [number##_HIGH] = VMCS12_OFFSET(name)+4
  412. static const unsigned short vmcs_field_to_offset_table[] = {
  413. FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
  414. FIELD(GUEST_ES_SELECTOR, guest_es_selector),
  415. FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
  416. FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
  417. FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
  418. FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
  419. FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
  420. FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
  421. FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
  422. FIELD(HOST_ES_SELECTOR, host_es_selector),
  423. FIELD(HOST_CS_SELECTOR, host_cs_selector),
  424. FIELD(HOST_SS_SELECTOR, host_ss_selector),
  425. FIELD(HOST_DS_SELECTOR, host_ds_selector),
  426. FIELD(HOST_FS_SELECTOR, host_fs_selector),
  427. FIELD(HOST_GS_SELECTOR, host_gs_selector),
  428. FIELD(HOST_TR_SELECTOR, host_tr_selector),
  429. FIELD64(IO_BITMAP_A, io_bitmap_a),
  430. FIELD64(IO_BITMAP_B, io_bitmap_b),
  431. FIELD64(MSR_BITMAP, msr_bitmap),
  432. FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
  433. FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
  434. FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
  435. FIELD64(TSC_OFFSET, tsc_offset),
  436. FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
  437. FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
  438. FIELD64(EPT_POINTER, ept_pointer),
  439. FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
  440. FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
  441. FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
  442. FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
  443. FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
  444. FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
  445. FIELD64(GUEST_PDPTR0, guest_pdptr0),
  446. FIELD64(GUEST_PDPTR1, guest_pdptr1),
  447. FIELD64(GUEST_PDPTR2, guest_pdptr2),
  448. FIELD64(GUEST_PDPTR3, guest_pdptr3),
  449. FIELD64(HOST_IA32_PAT, host_ia32_pat),
  450. FIELD64(HOST_IA32_EFER, host_ia32_efer),
  451. FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
  452. FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
  453. FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
  454. FIELD(EXCEPTION_BITMAP, exception_bitmap),
  455. FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
  456. FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
  457. FIELD(CR3_TARGET_COUNT, cr3_target_count),
  458. FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
  459. FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
  460. FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
  461. FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
  462. FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
  463. FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
  464. FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
  465. FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
  466. FIELD(TPR_THRESHOLD, tpr_threshold),
  467. FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
  468. FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
  469. FIELD(VM_EXIT_REASON, vm_exit_reason),
  470. FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
  471. FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
  472. FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
  473. FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
  474. FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
  475. FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
  476. FIELD(GUEST_ES_LIMIT, guest_es_limit),
  477. FIELD(GUEST_CS_LIMIT, guest_cs_limit),
  478. FIELD(GUEST_SS_LIMIT, guest_ss_limit),
  479. FIELD(GUEST_DS_LIMIT, guest_ds_limit),
  480. FIELD(GUEST_FS_LIMIT, guest_fs_limit),
  481. FIELD(GUEST_GS_LIMIT, guest_gs_limit),
  482. FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
  483. FIELD(GUEST_TR_LIMIT, guest_tr_limit),
  484. FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
  485. FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
  486. FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
  487. FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
  488. FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
  489. FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
  490. FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
  491. FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
  492. FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
  493. FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
  494. FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
  495. FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
  496. FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
  497. FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
  498. FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
  499. FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
  500. FIELD(CR0_READ_SHADOW, cr0_read_shadow),
  501. FIELD(CR4_READ_SHADOW, cr4_read_shadow),
  502. FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
  503. FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
  504. FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
  505. FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
  506. FIELD(EXIT_QUALIFICATION, exit_qualification),
  507. FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
  508. FIELD(GUEST_CR0, guest_cr0),
  509. FIELD(GUEST_CR3, guest_cr3),
  510. FIELD(GUEST_CR4, guest_cr4),
  511. FIELD(GUEST_ES_BASE, guest_es_base),
  512. FIELD(GUEST_CS_BASE, guest_cs_base),
  513. FIELD(GUEST_SS_BASE, guest_ss_base),
  514. FIELD(GUEST_DS_BASE, guest_ds_base),
  515. FIELD(GUEST_FS_BASE, guest_fs_base),
  516. FIELD(GUEST_GS_BASE, guest_gs_base),
  517. FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
  518. FIELD(GUEST_TR_BASE, guest_tr_base),
  519. FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
  520. FIELD(GUEST_IDTR_BASE, guest_idtr_base),
  521. FIELD(GUEST_DR7, guest_dr7),
  522. FIELD(GUEST_RSP, guest_rsp),
  523. FIELD(GUEST_RIP, guest_rip),
  524. FIELD(GUEST_RFLAGS, guest_rflags),
  525. FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
  526. FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
  527. FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
  528. FIELD(HOST_CR0, host_cr0),
  529. FIELD(HOST_CR3, host_cr3),
  530. FIELD(HOST_CR4, host_cr4),
  531. FIELD(HOST_FS_BASE, host_fs_base),
  532. FIELD(HOST_GS_BASE, host_gs_base),
  533. FIELD(HOST_TR_BASE, host_tr_base),
  534. FIELD(HOST_GDTR_BASE, host_gdtr_base),
  535. FIELD(HOST_IDTR_BASE, host_idtr_base),
  536. FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
  537. FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
  538. FIELD(HOST_RSP, host_rsp),
  539. FIELD(HOST_RIP, host_rip),
  540. };
  541. static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
  542. static inline short vmcs_field_to_offset(unsigned long field)
  543. {
  544. if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
  545. return -1;
  546. return vmcs_field_to_offset_table[field];
  547. }
  548. static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
  549. {
  550. return to_vmx(vcpu)->nested.current_vmcs12;
  551. }
  552. static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
  553. {
  554. struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
  555. if (is_error_page(page))
  556. return NULL;
  557. return page;
  558. }
  559. static void nested_release_page(struct page *page)
  560. {
  561. kvm_release_page_dirty(page);
  562. }
  563. static void nested_release_page_clean(struct page *page)
  564. {
  565. kvm_release_page_clean(page);
  566. }
  567. static u64 construct_eptp(unsigned long root_hpa);
  568. static void kvm_cpu_vmxon(u64 addr);
  569. static void kvm_cpu_vmxoff(void);
  570. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
  571. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
  572. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  573. struct kvm_segment *var, int seg);
  574. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  575. struct kvm_segment *var, int seg);
  576. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  577. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  578. /*
  579. * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
  580. * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
  581. */
  582. static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
  583. static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
  584. static unsigned long *vmx_io_bitmap_a;
  585. static unsigned long *vmx_io_bitmap_b;
  586. static unsigned long *vmx_msr_bitmap_legacy;
  587. static unsigned long *vmx_msr_bitmap_longmode;
  588. static bool cpu_has_load_ia32_efer;
  589. static bool cpu_has_load_perf_global_ctrl;
  590. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  591. static DEFINE_SPINLOCK(vmx_vpid_lock);
  592. static struct vmcs_config {
  593. int size;
  594. int order;
  595. u32 revision_id;
  596. u32 pin_based_exec_ctrl;
  597. u32 cpu_based_exec_ctrl;
  598. u32 cpu_based_2nd_exec_ctrl;
  599. u32 vmexit_ctrl;
  600. u32 vmentry_ctrl;
  601. } vmcs_config;
  602. static struct vmx_capability {
  603. u32 ept;
  604. u32 vpid;
  605. } vmx_capability;
  606. #define VMX_SEGMENT_FIELD(seg) \
  607. [VCPU_SREG_##seg] = { \
  608. .selector = GUEST_##seg##_SELECTOR, \
  609. .base = GUEST_##seg##_BASE, \
  610. .limit = GUEST_##seg##_LIMIT, \
  611. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  612. }
  613. static const struct kvm_vmx_segment_field {
  614. unsigned selector;
  615. unsigned base;
  616. unsigned limit;
  617. unsigned ar_bytes;
  618. } kvm_vmx_segment_fields[] = {
  619. VMX_SEGMENT_FIELD(CS),
  620. VMX_SEGMENT_FIELD(DS),
  621. VMX_SEGMENT_FIELD(ES),
  622. VMX_SEGMENT_FIELD(FS),
  623. VMX_SEGMENT_FIELD(GS),
  624. VMX_SEGMENT_FIELD(SS),
  625. VMX_SEGMENT_FIELD(TR),
  626. VMX_SEGMENT_FIELD(LDTR),
  627. };
  628. static u64 host_efer;
  629. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  630. /*
  631. * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
  632. * away by decrementing the array size.
  633. */
  634. static const u32 vmx_msr_index[] = {
  635. #ifdef CONFIG_X86_64
  636. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  637. #endif
  638. MSR_EFER, MSR_TSC_AUX, MSR_STAR,
  639. };
  640. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  641. static inline bool is_page_fault(u32 intr_info)
  642. {
  643. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  644. INTR_INFO_VALID_MASK)) ==
  645. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  646. }
  647. static inline bool is_no_device(u32 intr_info)
  648. {
  649. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  650. INTR_INFO_VALID_MASK)) ==
  651. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  652. }
  653. static inline bool is_invalid_opcode(u32 intr_info)
  654. {
  655. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  656. INTR_INFO_VALID_MASK)) ==
  657. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  658. }
  659. static inline bool is_external_interrupt(u32 intr_info)
  660. {
  661. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  662. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  663. }
  664. static inline bool is_machine_check(u32 intr_info)
  665. {
  666. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  667. INTR_INFO_VALID_MASK)) ==
  668. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  669. }
  670. static inline bool cpu_has_vmx_msr_bitmap(void)
  671. {
  672. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  673. }
  674. static inline bool cpu_has_vmx_tpr_shadow(void)
  675. {
  676. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  677. }
  678. static inline bool vm_need_tpr_shadow(struct kvm *kvm)
  679. {
  680. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  681. }
  682. static inline bool cpu_has_secondary_exec_ctrls(void)
  683. {
  684. return vmcs_config.cpu_based_exec_ctrl &
  685. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  686. }
  687. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  688. {
  689. return vmcs_config.cpu_based_2nd_exec_ctrl &
  690. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  691. }
  692. static inline bool cpu_has_vmx_flexpriority(void)
  693. {
  694. return cpu_has_vmx_tpr_shadow() &&
  695. cpu_has_vmx_virtualize_apic_accesses();
  696. }
  697. static inline bool cpu_has_vmx_ept_execute_only(void)
  698. {
  699. return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
  700. }
  701. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  702. {
  703. return vmx_capability.ept & VMX_EPTP_UC_BIT;
  704. }
  705. static inline bool cpu_has_vmx_eptp_writeback(void)
  706. {
  707. return vmx_capability.ept & VMX_EPTP_WB_BIT;
  708. }
  709. static inline bool cpu_has_vmx_ept_2m_page(void)
  710. {
  711. return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
  712. }
  713. static inline bool cpu_has_vmx_ept_1g_page(void)
  714. {
  715. return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
  716. }
  717. static inline bool cpu_has_vmx_ept_4levels(void)
  718. {
  719. return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
  720. }
  721. static inline bool cpu_has_vmx_ept_ad_bits(void)
  722. {
  723. return vmx_capability.ept & VMX_EPT_AD_BIT;
  724. }
  725. static inline bool cpu_has_vmx_invept_context(void)
  726. {
  727. return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
  728. }
  729. static inline bool cpu_has_vmx_invept_global(void)
  730. {
  731. return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
  732. }
  733. static inline bool cpu_has_vmx_invvpid_single(void)
  734. {
  735. return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
  736. }
  737. static inline bool cpu_has_vmx_invvpid_global(void)
  738. {
  739. return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
  740. }
  741. static inline bool cpu_has_vmx_ept(void)
  742. {
  743. return vmcs_config.cpu_based_2nd_exec_ctrl &
  744. SECONDARY_EXEC_ENABLE_EPT;
  745. }
  746. static inline bool cpu_has_vmx_unrestricted_guest(void)
  747. {
  748. return vmcs_config.cpu_based_2nd_exec_ctrl &
  749. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  750. }
  751. static inline bool cpu_has_vmx_ple(void)
  752. {
  753. return vmcs_config.cpu_based_2nd_exec_ctrl &
  754. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  755. }
  756. static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
  757. {
  758. return flexpriority_enabled && irqchip_in_kernel(kvm);
  759. }
  760. static inline bool cpu_has_vmx_vpid(void)
  761. {
  762. return vmcs_config.cpu_based_2nd_exec_ctrl &
  763. SECONDARY_EXEC_ENABLE_VPID;
  764. }
  765. static inline bool cpu_has_vmx_rdtscp(void)
  766. {
  767. return vmcs_config.cpu_based_2nd_exec_ctrl &
  768. SECONDARY_EXEC_RDTSCP;
  769. }
  770. static inline bool cpu_has_vmx_invpcid(void)
  771. {
  772. return vmcs_config.cpu_based_2nd_exec_ctrl &
  773. SECONDARY_EXEC_ENABLE_INVPCID;
  774. }
  775. static inline bool cpu_has_virtual_nmis(void)
  776. {
  777. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  778. }
  779. static inline bool cpu_has_vmx_wbinvd_exit(void)
  780. {
  781. return vmcs_config.cpu_based_2nd_exec_ctrl &
  782. SECONDARY_EXEC_WBINVD_EXITING;
  783. }
  784. static inline bool report_flexpriority(void)
  785. {
  786. return flexpriority_enabled;
  787. }
  788. static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
  789. {
  790. return vmcs12->cpu_based_vm_exec_control & bit;
  791. }
  792. static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
  793. {
  794. return (vmcs12->cpu_based_vm_exec_control &
  795. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
  796. (vmcs12->secondary_vm_exec_control & bit);
  797. }
  798. static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
  799. struct kvm_vcpu *vcpu)
  800. {
  801. return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
  802. }
  803. static inline bool is_exception(u32 intr_info)
  804. {
  805. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  806. == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
  807. }
  808. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
  809. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  810. struct vmcs12 *vmcs12,
  811. u32 reason, unsigned long qualification);
  812. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  813. {
  814. int i;
  815. for (i = 0; i < vmx->nmsrs; ++i)
  816. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  817. return i;
  818. return -1;
  819. }
  820. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  821. {
  822. struct {
  823. u64 vpid : 16;
  824. u64 rsvd : 48;
  825. u64 gva;
  826. } operand = { vpid, 0, gva };
  827. asm volatile (__ex(ASM_VMX_INVVPID)
  828. /* CF==1 or ZF==1 --> rc = -1 */
  829. "; ja 1f ; ud2 ; 1:"
  830. : : "a"(&operand), "c"(ext) : "cc", "memory");
  831. }
  832. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  833. {
  834. struct {
  835. u64 eptp, gpa;
  836. } operand = {eptp, gpa};
  837. asm volatile (__ex(ASM_VMX_INVEPT)
  838. /* CF==1 or ZF==1 --> rc = -1 */
  839. "; ja 1f ; ud2 ; 1:\n"
  840. : : "a" (&operand), "c" (ext) : "cc", "memory");
  841. }
  842. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  843. {
  844. int i;
  845. i = __find_msr_index(vmx, msr);
  846. if (i >= 0)
  847. return &vmx->guest_msrs[i];
  848. return NULL;
  849. }
  850. static void vmcs_clear(struct vmcs *vmcs)
  851. {
  852. u64 phys_addr = __pa(vmcs);
  853. u8 error;
  854. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  855. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  856. : "cc", "memory");
  857. if (error)
  858. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  859. vmcs, phys_addr);
  860. }
  861. static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
  862. {
  863. vmcs_clear(loaded_vmcs->vmcs);
  864. loaded_vmcs->cpu = -1;
  865. loaded_vmcs->launched = 0;
  866. }
  867. static void vmcs_load(struct vmcs *vmcs)
  868. {
  869. u64 phys_addr = __pa(vmcs);
  870. u8 error;
  871. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  872. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  873. : "cc", "memory");
  874. if (error)
  875. printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
  876. vmcs, phys_addr);
  877. }
  878. #ifdef CONFIG_KEXEC
  879. /*
  880. * This bitmap is used to indicate whether the vmclear
  881. * operation is enabled on all cpus. All disabled by
  882. * default.
  883. */
  884. static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
  885. static inline void crash_enable_local_vmclear(int cpu)
  886. {
  887. cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
  888. }
  889. static inline void crash_disable_local_vmclear(int cpu)
  890. {
  891. cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
  892. }
  893. static inline int crash_local_vmclear_enabled(int cpu)
  894. {
  895. return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
  896. }
  897. static void crash_vmclear_local_loaded_vmcss(void)
  898. {
  899. int cpu = raw_smp_processor_id();
  900. struct loaded_vmcs *v;
  901. if (!crash_local_vmclear_enabled(cpu))
  902. return;
  903. list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
  904. loaded_vmcss_on_cpu_link)
  905. vmcs_clear(v->vmcs);
  906. }
  907. #else
  908. static inline void crash_enable_local_vmclear(int cpu) { }
  909. static inline void crash_disable_local_vmclear(int cpu) { }
  910. #endif /* CONFIG_KEXEC */
  911. static void __loaded_vmcs_clear(void *arg)
  912. {
  913. struct loaded_vmcs *loaded_vmcs = arg;
  914. int cpu = raw_smp_processor_id();
  915. if (loaded_vmcs->cpu != cpu)
  916. return; /* vcpu migration can race with cpu offline */
  917. if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
  918. per_cpu(current_vmcs, cpu) = NULL;
  919. crash_disable_local_vmclear(cpu);
  920. list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
  921. /*
  922. * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
  923. * is before setting loaded_vmcs->vcpu to -1 which is done in
  924. * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
  925. * then adds the vmcs into percpu list before it is deleted.
  926. */
  927. smp_wmb();
  928. loaded_vmcs_init(loaded_vmcs);
  929. crash_enable_local_vmclear(cpu);
  930. }
  931. static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
  932. {
  933. int cpu = loaded_vmcs->cpu;
  934. if (cpu != -1)
  935. smp_call_function_single(cpu,
  936. __loaded_vmcs_clear, loaded_vmcs, 1);
  937. }
  938. static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
  939. {
  940. if (vmx->vpid == 0)
  941. return;
  942. if (cpu_has_vmx_invvpid_single())
  943. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  944. }
  945. static inline void vpid_sync_vcpu_global(void)
  946. {
  947. if (cpu_has_vmx_invvpid_global())
  948. __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
  949. }
  950. static inline void vpid_sync_context(struct vcpu_vmx *vmx)
  951. {
  952. if (cpu_has_vmx_invvpid_single())
  953. vpid_sync_vcpu_single(vmx);
  954. else
  955. vpid_sync_vcpu_global();
  956. }
  957. static inline void ept_sync_global(void)
  958. {
  959. if (cpu_has_vmx_invept_global())
  960. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  961. }
  962. static inline void ept_sync_context(u64 eptp)
  963. {
  964. if (enable_ept) {
  965. if (cpu_has_vmx_invept_context())
  966. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  967. else
  968. ept_sync_global();
  969. }
  970. }
  971. static __always_inline unsigned long vmcs_readl(unsigned long field)
  972. {
  973. unsigned long value;
  974. asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
  975. : "=a"(value) : "d"(field) : "cc");
  976. return value;
  977. }
  978. static __always_inline u16 vmcs_read16(unsigned long field)
  979. {
  980. return vmcs_readl(field);
  981. }
  982. static __always_inline u32 vmcs_read32(unsigned long field)
  983. {
  984. return vmcs_readl(field);
  985. }
  986. static __always_inline u64 vmcs_read64(unsigned long field)
  987. {
  988. #ifdef CONFIG_X86_64
  989. return vmcs_readl(field);
  990. #else
  991. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  992. #endif
  993. }
  994. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  995. {
  996. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  997. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  998. dump_stack();
  999. }
  1000. static void vmcs_writel(unsigned long field, unsigned long value)
  1001. {
  1002. u8 error;
  1003. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  1004. : "=q"(error) : "a"(value), "d"(field) : "cc");
  1005. if (unlikely(error))
  1006. vmwrite_error(field, value);
  1007. }
  1008. static void vmcs_write16(unsigned long field, u16 value)
  1009. {
  1010. vmcs_writel(field, value);
  1011. }
  1012. static void vmcs_write32(unsigned long field, u32 value)
  1013. {
  1014. vmcs_writel(field, value);
  1015. }
  1016. static void vmcs_write64(unsigned long field, u64 value)
  1017. {
  1018. vmcs_writel(field, value);
  1019. #ifndef CONFIG_X86_64
  1020. asm volatile ("");
  1021. vmcs_writel(field+1, value >> 32);
  1022. #endif
  1023. }
  1024. static void vmcs_clear_bits(unsigned long field, u32 mask)
  1025. {
  1026. vmcs_writel(field, vmcs_readl(field) & ~mask);
  1027. }
  1028. static void vmcs_set_bits(unsigned long field, u32 mask)
  1029. {
  1030. vmcs_writel(field, vmcs_readl(field) | mask);
  1031. }
  1032. static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
  1033. {
  1034. vmx->segment_cache.bitmask = 0;
  1035. }
  1036. static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
  1037. unsigned field)
  1038. {
  1039. bool ret;
  1040. u32 mask = 1 << (seg * SEG_FIELD_NR + field);
  1041. if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
  1042. vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
  1043. vmx->segment_cache.bitmask = 0;
  1044. }
  1045. ret = vmx->segment_cache.bitmask & mask;
  1046. vmx->segment_cache.bitmask |= mask;
  1047. return ret;
  1048. }
  1049. static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
  1050. {
  1051. u16 *p = &vmx->segment_cache.seg[seg].selector;
  1052. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
  1053. *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
  1054. return *p;
  1055. }
  1056. static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
  1057. {
  1058. ulong *p = &vmx->segment_cache.seg[seg].base;
  1059. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
  1060. *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
  1061. return *p;
  1062. }
  1063. static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
  1064. {
  1065. u32 *p = &vmx->segment_cache.seg[seg].limit;
  1066. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
  1067. *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
  1068. return *p;
  1069. }
  1070. static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
  1071. {
  1072. u32 *p = &vmx->segment_cache.seg[seg].ar;
  1073. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
  1074. *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
  1075. return *p;
  1076. }
  1077. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  1078. {
  1079. u32 eb;
  1080. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  1081. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  1082. if ((vcpu->guest_debug &
  1083. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  1084. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  1085. eb |= 1u << BP_VECTOR;
  1086. if (to_vmx(vcpu)->rmode.vm86_active)
  1087. eb = ~0;
  1088. if (enable_ept)
  1089. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  1090. if (vcpu->fpu_active)
  1091. eb &= ~(1u << NM_VECTOR);
  1092. /* When we are running a nested L2 guest and L1 specified for it a
  1093. * certain exception bitmap, we must trap the same exceptions and pass
  1094. * them to L1. When running L2, we will only handle the exceptions
  1095. * specified above if L1 did not want them.
  1096. */
  1097. if (is_guest_mode(vcpu))
  1098. eb |= get_vmcs12(vcpu)->exception_bitmap;
  1099. vmcs_write32(EXCEPTION_BITMAP, eb);
  1100. }
  1101. static void clear_atomic_switch_msr_special(unsigned long entry,
  1102. unsigned long exit)
  1103. {
  1104. vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
  1105. vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
  1106. }
  1107. static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
  1108. {
  1109. unsigned i;
  1110. struct msr_autoload *m = &vmx->msr_autoload;
  1111. switch (msr) {
  1112. case MSR_EFER:
  1113. if (cpu_has_load_ia32_efer) {
  1114. clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
  1115. VM_EXIT_LOAD_IA32_EFER);
  1116. return;
  1117. }
  1118. break;
  1119. case MSR_CORE_PERF_GLOBAL_CTRL:
  1120. if (cpu_has_load_perf_global_ctrl) {
  1121. clear_atomic_switch_msr_special(
  1122. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
  1123. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
  1124. return;
  1125. }
  1126. break;
  1127. }
  1128. for (i = 0; i < m->nr; ++i)
  1129. if (m->guest[i].index == msr)
  1130. break;
  1131. if (i == m->nr)
  1132. return;
  1133. --m->nr;
  1134. m->guest[i] = m->guest[m->nr];
  1135. m->host[i] = m->host[m->nr];
  1136. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1137. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1138. }
  1139. static void add_atomic_switch_msr_special(unsigned long entry,
  1140. unsigned long exit, unsigned long guest_val_vmcs,
  1141. unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
  1142. {
  1143. vmcs_write64(guest_val_vmcs, guest_val);
  1144. vmcs_write64(host_val_vmcs, host_val);
  1145. vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
  1146. vmcs_set_bits(VM_EXIT_CONTROLS, exit);
  1147. }
  1148. static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
  1149. u64 guest_val, u64 host_val)
  1150. {
  1151. unsigned i;
  1152. struct msr_autoload *m = &vmx->msr_autoload;
  1153. switch (msr) {
  1154. case MSR_EFER:
  1155. if (cpu_has_load_ia32_efer) {
  1156. add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
  1157. VM_EXIT_LOAD_IA32_EFER,
  1158. GUEST_IA32_EFER,
  1159. HOST_IA32_EFER,
  1160. guest_val, host_val);
  1161. return;
  1162. }
  1163. break;
  1164. case MSR_CORE_PERF_GLOBAL_CTRL:
  1165. if (cpu_has_load_perf_global_ctrl) {
  1166. add_atomic_switch_msr_special(
  1167. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
  1168. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
  1169. GUEST_IA32_PERF_GLOBAL_CTRL,
  1170. HOST_IA32_PERF_GLOBAL_CTRL,
  1171. guest_val, host_val);
  1172. return;
  1173. }
  1174. break;
  1175. }
  1176. for (i = 0; i < m->nr; ++i)
  1177. if (m->guest[i].index == msr)
  1178. break;
  1179. if (i == NR_AUTOLOAD_MSRS) {
  1180. printk_once(KERN_WARNING"Not enough mst switch entries. "
  1181. "Can't add msr %x\n", msr);
  1182. return;
  1183. } else if (i == m->nr) {
  1184. ++m->nr;
  1185. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1186. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1187. }
  1188. m->guest[i].index = msr;
  1189. m->guest[i].value = guest_val;
  1190. m->host[i].index = msr;
  1191. m->host[i].value = host_val;
  1192. }
  1193. static void reload_tss(void)
  1194. {
  1195. /*
  1196. * VT restores TR but not its size. Useless.
  1197. */
  1198. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1199. struct desc_struct *descs;
  1200. descs = (void *)gdt->address;
  1201. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  1202. load_TR_desc();
  1203. }
  1204. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  1205. {
  1206. u64 guest_efer;
  1207. u64 ignore_bits;
  1208. guest_efer = vmx->vcpu.arch.efer;
  1209. /*
  1210. * NX is emulated; LMA and LME handled by hardware; SCE meaningless
  1211. * outside long mode
  1212. */
  1213. ignore_bits = EFER_NX | EFER_SCE;
  1214. #ifdef CONFIG_X86_64
  1215. ignore_bits |= EFER_LMA | EFER_LME;
  1216. /* SCE is meaningful only in long mode on Intel */
  1217. if (guest_efer & EFER_LMA)
  1218. ignore_bits &= ~(u64)EFER_SCE;
  1219. #endif
  1220. guest_efer &= ~ignore_bits;
  1221. guest_efer |= host_efer & ignore_bits;
  1222. vmx->guest_msrs[efer_offset].data = guest_efer;
  1223. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  1224. clear_atomic_switch_msr(vmx, MSR_EFER);
  1225. /* On ept, can't emulate nx, and must switch nx atomically */
  1226. if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
  1227. guest_efer = vmx->vcpu.arch.efer;
  1228. if (!(guest_efer & EFER_LMA))
  1229. guest_efer &= ~EFER_LME;
  1230. add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
  1231. return false;
  1232. }
  1233. return true;
  1234. }
  1235. static unsigned long segment_base(u16 selector)
  1236. {
  1237. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1238. struct desc_struct *d;
  1239. unsigned long table_base;
  1240. unsigned long v;
  1241. if (!(selector & ~3))
  1242. return 0;
  1243. table_base = gdt->address;
  1244. if (selector & 4) { /* from ldt */
  1245. u16 ldt_selector = kvm_read_ldt();
  1246. if (!(ldt_selector & ~3))
  1247. return 0;
  1248. table_base = segment_base(ldt_selector);
  1249. }
  1250. d = (struct desc_struct *)(table_base + (selector & ~7));
  1251. v = get_desc_base(d);
  1252. #ifdef CONFIG_X86_64
  1253. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  1254. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  1255. #endif
  1256. return v;
  1257. }
  1258. static inline unsigned long kvm_read_tr_base(void)
  1259. {
  1260. u16 tr;
  1261. asm("str %0" : "=g"(tr));
  1262. return segment_base(tr);
  1263. }
  1264. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  1265. {
  1266. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1267. int i;
  1268. if (vmx->host_state.loaded)
  1269. return;
  1270. vmx->host_state.loaded = 1;
  1271. /*
  1272. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1273. * allow segment selectors with cpl > 0 or ti == 1.
  1274. */
  1275. vmx->host_state.ldt_sel = kvm_read_ldt();
  1276. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  1277. savesegment(fs, vmx->host_state.fs_sel);
  1278. if (!(vmx->host_state.fs_sel & 7)) {
  1279. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  1280. vmx->host_state.fs_reload_needed = 0;
  1281. } else {
  1282. vmcs_write16(HOST_FS_SELECTOR, 0);
  1283. vmx->host_state.fs_reload_needed = 1;
  1284. }
  1285. savesegment(gs, vmx->host_state.gs_sel);
  1286. if (!(vmx->host_state.gs_sel & 7))
  1287. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  1288. else {
  1289. vmcs_write16(HOST_GS_SELECTOR, 0);
  1290. vmx->host_state.gs_ldt_reload_needed = 1;
  1291. }
  1292. #ifdef CONFIG_X86_64
  1293. savesegment(ds, vmx->host_state.ds_sel);
  1294. savesegment(es, vmx->host_state.es_sel);
  1295. #endif
  1296. #ifdef CONFIG_X86_64
  1297. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1298. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1299. #else
  1300. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  1301. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  1302. #endif
  1303. #ifdef CONFIG_X86_64
  1304. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1305. if (is_long_mode(&vmx->vcpu))
  1306. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1307. #endif
  1308. for (i = 0; i < vmx->save_nmsrs; ++i)
  1309. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  1310. vmx->guest_msrs[i].data,
  1311. vmx->guest_msrs[i].mask);
  1312. }
  1313. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  1314. {
  1315. if (!vmx->host_state.loaded)
  1316. return;
  1317. ++vmx->vcpu.stat.host_state_reload;
  1318. vmx->host_state.loaded = 0;
  1319. #ifdef CONFIG_X86_64
  1320. if (is_long_mode(&vmx->vcpu))
  1321. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1322. #endif
  1323. if (vmx->host_state.gs_ldt_reload_needed) {
  1324. kvm_load_ldt(vmx->host_state.ldt_sel);
  1325. #ifdef CONFIG_X86_64
  1326. load_gs_index(vmx->host_state.gs_sel);
  1327. #else
  1328. loadsegment(gs, vmx->host_state.gs_sel);
  1329. #endif
  1330. }
  1331. if (vmx->host_state.fs_reload_needed)
  1332. loadsegment(fs, vmx->host_state.fs_sel);
  1333. #ifdef CONFIG_X86_64
  1334. if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
  1335. loadsegment(ds, vmx->host_state.ds_sel);
  1336. loadsegment(es, vmx->host_state.es_sel);
  1337. }
  1338. #endif
  1339. reload_tss();
  1340. #ifdef CONFIG_X86_64
  1341. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1342. #endif
  1343. /*
  1344. * If the FPU is not active (through the host task or
  1345. * the guest vcpu), then restore the cr0.TS bit.
  1346. */
  1347. if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
  1348. stts();
  1349. load_gdt(&__get_cpu_var(host_gdt));
  1350. }
  1351. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  1352. {
  1353. preempt_disable();
  1354. __vmx_load_host_state(vmx);
  1355. preempt_enable();
  1356. }
  1357. /*
  1358. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  1359. * vcpu mutex is already taken.
  1360. */
  1361. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1362. {
  1363. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1364. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1365. if (!vmm_exclusive)
  1366. kvm_cpu_vmxon(phys_addr);
  1367. else if (vmx->loaded_vmcs->cpu != cpu)
  1368. loaded_vmcs_clear(vmx->loaded_vmcs);
  1369. if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
  1370. per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
  1371. vmcs_load(vmx->loaded_vmcs->vmcs);
  1372. }
  1373. if (vmx->loaded_vmcs->cpu != cpu) {
  1374. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1375. unsigned long sysenter_esp;
  1376. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1377. local_irq_disable();
  1378. crash_disable_local_vmclear(cpu);
  1379. /*
  1380. * Read loaded_vmcs->cpu should be before fetching
  1381. * loaded_vmcs->loaded_vmcss_on_cpu_link.
  1382. * See the comments in __loaded_vmcs_clear().
  1383. */
  1384. smp_rmb();
  1385. list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
  1386. &per_cpu(loaded_vmcss_on_cpu, cpu));
  1387. crash_enable_local_vmclear(cpu);
  1388. local_irq_enable();
  1389. /*
  1390. * Linux uses per-cpu TSS and GDT, so set these when switching
  1391. * processors.
  1392. */
  1393. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  1394. vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
  1395. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  1396. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  1397. vmx->loaded_vmcs->cpu = cpu;
  1398. }
  1399. }
  1400. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  1401. {
  1402. __vmx_load_host_state(to_vmx(vcpu));
  1403. if (!vmm_exclusive) {
  1404. __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
  1405. vcpu->cpu = -1;
  1406. kvm_cpu_vmxoff();
  1407. }
  1408. }
  1409. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  1410. {
  1411. ulong cr0;
  1412. if (vcpu->fpu_active)
  1413. return;
  1414. vcpu->fpu_active = 1;
  1415. cr0 = vmcs_readl(GUEST_CR0);
  1416. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  1417. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  1418. vmcs_writel(GUEST_CR0, cr0);
  1419. update_exception_bitmap(vcpu);
  1420. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  1421. if (is_guest_mode(vcpu))
  1422. vcpu->arch.cr0_guest_owned_bits &=
  1423. ~get_vmcs12(vcpu)->cr0_guest_host_mask;
  1424. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1425. }
  1426. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  1427. /*
  1428. * Return the cr0 value that a nested guest would read. This is a combination
  1429. * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
  1430. * its hypervisor (cr0_read_shadow).
  1431. */
  1432. static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
  1433. {
  1434. return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
  1435. (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
  1436. }
  1437. static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
  1438. {
  1439. return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
  1440. (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
  1441. }
  1442. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  1443. {
  1444. /* Note that there is no vcpu->fpu_active = 0 here. The caller must
  1445. * set this *before* calling this function.
  1446. */
  1447. vmx_decache_cr0_guest_bits(vcpu);
  1448. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  1449. update_exception_bitmap(vcpu);
  1450. vcpu->arch.cr0_guest_owned_bits = 0;
  1451. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1452. if (is_guest_mode(vcpu)) {
  1453. /*
  1454. * L1's specified read shadow might not contain the TS bit,
  1455. * so now that we turned on shadowing of this bit, we need to
  1456. * set this bit of the shadow. Like in nested_vmx_run we need
  1457. * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
  1458. * up-to-date here because we just decached cr0.TS (and we'll
  1459. * only update vmcs12->guest_cr0 on nested exit).
  1460. */
  1461. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1462. vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
  1463. (vcpu->arch.cr0 & X86_CR0_TS);
  1464. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  1465. } else
  1466. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  1467. }
  1468. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  1469. {
  1470. unsigned long rflags, save_rflags;
  1471. if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
  1472. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1473. rflags = vmcs_readl(GUEST_RFLAGS);
  1474. if (to_vmx(vcpu)->rmode.vm86_active) {
  1475. rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  1476. save_rflags = to_vmx(vcpu)->rmode.save_rflags;
  1477. rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  1478. }
  1479. to_vmx(vcpu)->rflags = rflags;
  1480. }
  1481. return to_vmx(vcpu)->rflags;
  1482. }
  1483. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  1484. {
  1485. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1486. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  1487. to_vmx(vcpu)->rflags = rflags;
  1488. if (to_vmx(vcpu)->rmode.vm86_active) {
  1489. to_vmx(vcpu)->rmode.save_rflags = rflags;
  1490. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1491. }
  1492. vmcs_writel(GUEST_RFLAGS, rflags);
  1493. }
  1494. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1495. {
  1496. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1497. int ret = 0;
  1498. if (interruptibility & GUEST_INTR_STATE_STI)
  1499. ret |= KVM_X86_SHADOW_INT_STI;
  1500. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  1501. ret |= KVM_X86_SHADOW_INT_MOV_SS;
  1502. return ret & mask;
  1503. }
  1504. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1505. {
  1506. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1507. u32 interruptibility = interruptibility_old;
  1508. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  1509. if (mask & KVM_X86_SHADOW_INT_MOV_SS)
  1510. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  1511. else if (mask & KVM_X86_SHADOW_INT_STI)
  1512. interruptibility |= GUEST_INTR_STATE_STI;
  1513. if ((interruptibility != interruptibility_old))
  1514. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  1515. }
  1516. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  1517. {
  1518. unsigned long rip;
  1519. rip = kvm_rip_read(vcpu);
  1520. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1521. kvm_rip_write(vcpu, rip);
  1522. /* skipping an emulated instruction also counts */
  1523. vmx_set_interrupt_shadow(vcpu, 0);
  1524. }
  1525. /*
  1526. * KVM wants to inject page-faults which it got to the guest. This function
  1527. * checks whether in a nested guest, we need to inject them to L1 or L2.
  1528. * This function assumes it is called with the exit reason in vmcs02 being
  1529. * a #PF exception (this is the only case in which KVM injects a #PF when L2
  1530. * is running).
  1531. */
  1532. static int nested_pf_handled(struct kvm_vcpu *vcpu)
  1533. {
  1534. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1535. /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
  1536. if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
  1537. return 0;
  1538. nested_vmx_vmexit(vcpu);
  1539. return 1;
  1540. }
  1541. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  1542. bool has_error_code, u32 error_code,
  1543. bool reinject)
  1544. {
  1545. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1546. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  1547. if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
  1548. nested_pf_handled(vcpu))
  1549. return;
  1550. if (has_error_code) {
  1551. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  1552. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  1553. }
  1554. if (vmx->rmode.vm86_active) {
  1555. int inc_eip = 0;
  1556. if (kvm_exception_is_soft(nr))
  1557. inc_eip = vcpu->arch.event_exit_inst_len;
  1558. if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
  1559. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1560. return;
  1561. }
  1562. if (kvm_exception_is_soft(nr)) {
  1563. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1564. vmx->vcpu.arch.event_exit_inst_len);
  1565. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  1566. } else
  1567. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  1568. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  1569. }
  1570. static bool vmx_rdtscp_supported(void)
  1571. {
  1572. return cpu_has_vmx_rdtscp();
  1573. }
  1574. static bool vmx_invpcid_supported(void)
  1575. {
  1576. return cpu_has_vmx_invpcid() && enable_ept;
  1577. }
  1578. /*
  1579. * Swap MSR entry in host/guest MSR entry array.
  1580. */
  1581. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  1582. {
  1583. struct shared_msr_entry tmp;
  1584. tmp = vmx->guest_msrs[to];
  1585. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  1586. vmx->guest_msrs[from] = tmp;
  1587. }
  1588. /*
  1589. * Set up the vmcs to automatically save and restore system
  1590. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  1591. * mode, as fiddling with msrs is very expensive.
  1592. */
  1593. static void setup_msrs(struct vcpu_vmx *vmx)
  1594. {
  1595. int save_nmsrs, index;
  1596. unsigned long *msr_bitmap;
  1597. save_nmsrs = 0;
  1598. #ifdef CONFIG_X86_64
  1599. if (is_long_mode(&vmx->vcpu)) {
  1600. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  1601. if (index >= 0)
  1602. move_msr_up(vmx, index, save_nmsrs++);
  1603. index = __find_msr_index(vmx, MSR_LSTAR);
  1604. if (index >= 0)
  1605. move_msr_up(vmx, index, save_nmsrs++);
  1606. index = __find_msr_index(vmx, MSR_CSTAR);
  1607. if (index >= 0)
  1608. move_msr_up(vmx, index, save_nmsrs++);
  1609. index = __find_msr_index(vmx, MSR_TSC_AUX);
  1610. if (index >= 0 && vmx->rdtscp_enabled)
  1611. move_msr_up(vmx, index, save_nmsrs++);
  1612. /*
  1613. * MSR_STAR is only needed on long mode guests, and only
  1614. * if efer.sce is enabled.
  1615. */
  1616. index = __find_msr_index(vmx, MSR_STAR);
  1617. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  1618. move_msr_up(vmx, index, save_nmsrs++);
  1619. }
  1620. #endif
  1621. index = __find_msr_index(vmx, MSR_EFER);
  1622. if (index >= 0 && update_transition_efer(vmx, index))
  1623. move_msr_up(vmx, index, save_nmsrs++);
  1624. vmx->save_nmsrs = save_nmsrs;
  1625. if (cpu_has_vmx_msr_bitmap()) {
  1626. if (is_long_mode(&vmx->vcpu))
  1627. msr_bitmap = vmx_msr_bitmap_longmode;
  1628. else
  1629. msr_bitmap = vmx_msr_bitmap_legacy;
  1630. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  1631. }
  1632. }
  1633. /*
  1634. * reads and returns guest's timestamp counter "register"
  1635. * guest_tsc = host_tsc + tsc_offset -- 21.3
  1636. */
  1637. static u64 guest_read_tsc(void)
  1638. {
  1639. u64 host_tsc, tsc_offset;
  1640. rdtscll(host_tsc);
  1641. tsc_offset = vmcs_read64(TSC_OFFSET);
  1642. return host_tsc + tsc_offset;
  1643. }
  1644. /*
  1645. * Like guest_read_tsc, but always returns L1's notion of the timestamp
  1646. * counter, even if a nested guest (L2) is currently running.
  1647. */
  1648. u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
  1649. {
  1650. u64 tsc_offset;
  1651. tsc_offset = is_guest_mode(vcpu) ?
  1652. to_vmx(vcpu)->nested.vmcs01_tsc_offset :
  1653. vmcs_read64(TSC_OFFSET);
  1654. return host_tsc + tsc_offset;
  1655. }
  1656. /*
  1657. * Engage any workarounds for mis-matched TSC rates. Currently limited to
  1658. * software catchup for faster rates on slower CPUs.
  1659. */
  1660. static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
  1661. {
  1662. if (!scale)
  1663. return;
  1664. if (user_tsc_khz > tsc_khz) {
  1665. vcpu->arch.tsc_catchup = 1;
  1666. vcpu->arch.tsc_always_catchup = 1;
  1667. } else
  1668. WARN(1, "user requested TSC rate below hardware speed\n");
  1669. }
  1670. static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
  1671. {
  1672. return vmcs_read64(TSC_OFFSET);
  1673. }
  1674. /*
  1675. * writes 'offset' into guest's timestamp counter offset register
  1676. */
  1677. static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
  1678. {
  1679. if (is_guest_mode(vcpu)) {
  1680. /*
  1681. * We're here if L1 chose not to trap WRMSR to TSC. According
  1682. * to the spec, this should set L1's TSC; The offset that L1
  1683. * set for L2 remains unchanged, and still needs to be added
  1684. * to the newly set TSC to get L2's TSC.
  1685. */
  1686. struct vmcs12 *vmcs12;
  1687. to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
  1688. /* recalculate vmcs02.TSC_OFFSET: */
  1689. vmcs12 = get_vmcs12(vcpu);
  1690. vmcs_write64(TSC_OFFSET, offset +
  1691. (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
  1692. vmcs12->tsc_offset : 0));
  1693. } else {
  1694. vmcs_write64(TSC_OFFSET, offset);
  1695. }
  1696. }
  1697. static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
  1698. {
  1699. u64 offset = vmcs_read64(TSC_OFFSET);
  1700. vmcs_write64(TSC_OFFSET, offset + adjustment);
  1701. if (is_guest_mode(vcpu)) {
  1702. /* Even when running L2, the adjustment needs to apply to L1 */
  1703. to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
  1704. }
  1705. }
  1706. static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
  1707. {
  1708. return target_tsc - native_read_tsc();
  1709. }
  1710. static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
  1711. {
  1712. struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
  1713. return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
  1714. }
  1715. /*
  1716. * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
  1717. * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
  1718. * all guests if the "nested" module option is off, and can also be disabled
  1719. * for a single guest by disabling its VMX cpuid bit.
  1720. */
  1721. static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
  1722. {
  1723. return nested && guest_cpuid_has_vmx(vcpu);
  1724. }
  1725. /*
  1726. * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
  1727. * returned for the various VMX controls MSRs when nested VMX is enabled.
  1728. * The same values should also be used to verify that vmcs12 control fields are
  1729. * valid during nested entry from L1 to L2.
  1730. * Each of these control msrs has a low and high 32-bit half: A low bit is on
  1731. * if the corresponding bit in the (32-bit) control field *must* be on, and a
  1732. * bit in the high half is on if the corresponding bit in the control field
  1733. * may be on. See also vmx_control_verify().
  1734. * TODO: allow these variables to be modified (downgraded) by module options
  1735. * or other means.
  1736. */
  1737. static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
  1738. static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
  1739. static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
  1740. static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
  1741. static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
  1742. static __init void nested_vmx_setup_ctls_msrs(void)
  1743. {
  1744. /*
  1745. * Note that as a general rule, the high half of the MSRs (bits in
  1746. * the control fields which may be 1) should be initialized by the
  1747. * intersection of the underlying hardware's MSR (i.e., features which
  1748. * can be supported) and the list of features we want to expose -
  1749. * because they are known to be properly supported in our code.
  1750. * Also, usually, the low half of the MSRs (bits which must be 1) can
  1751. * be set to 0, meaning that L1 may turn off any of these bits. The
  1752. * reason is that if one of these bits is necessary, it will appear
  1753. * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
  1754. * fields of vmcs01 and vmcs02, will turn these bits off - and
  1755. * nested_vmx_exit_handled() will not pass related exits to L1.
  1756. * These rules have exceptions below.
  1757. */
  1758. /* pin-based controls */
  1759. /*
  1760. * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
  1761. * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
  1762. */
  1763. nested_vmx_pinbased_ctls_low = 0x16 ;
  1764. nested_vmx_pinbased_ctls_high = 0x16 |
  1765. PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
  1766. PIN_BASED_VIRTUAL_NMIS;
  1767. /* exit controls */
  1768. nested_vmx_exit_ctls_low = 0;
  1769. /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
  1770. #ifdef CONFIG_X86_64
  1771. nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1772. #else
  1773. nested_vmx_exit_ctls_high = 0;
  1774. #endif
  1775. /* entry controls */
  1776. rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
  1777. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
  1778. nested_vmx_entry_ctls_low = 0;
  1779. nested_vmx_entry_ctls_high &=
  1780. VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
  1781. /* cpu-based controls */
  1782. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
  1783. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
  1784. nested_vmx_procbased_ctls_low = 0;
  1785. nested_vmx_procbased_ctls_high &=
  1786. CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
  1787. CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
  1788. CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
  1789. CPU_BASED_CR3_STORE_EXITING |
  1790. #ifdef CONFIG_X86_64
  1791. CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
  1792. #endif
  1793. CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
  1794. CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
  1795. CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
  1796. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1797. /*
  1798. * We can allow some features even when not supported by the
  1799. * hardware. For example, L1 can specify an MSR bitmap - and we
  1800. * can use it to avoid exits to L1 - even when L0 runs L2
  1801. * without MSR bitmaps.
  1802. */
  1803. nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
  1804. /* secondary cpu-based controls */
  1805. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  1806. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
  1807. nested_vmx_secondary_ctls_low = 0;
  1808. nested_vmx_secondary_ctls_high &=
  1809. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1810. }
  1811. static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
  1812. {
  1813. /*
  1814. * Bits 0 in high must be 0, and bits 1 in low must be 1.
  1815. */
  1816. return ((control & high) | low) == control;
  1817. }
  1818. static inline u64 vmx_control_msr(u32 low, u32 high)
  1819. {
  1820. return low | ((u64)high << 32);
  1821. }
  1822. /*
  1823. * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
  1824. * also let it use VMX-specific MSRs.
  1825. * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
  1826. * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
  1827. * like all other MSRs).
  1828. */
  1829. static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1830. {
  1831. if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
  1832. msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
  1833. /*
  1834. * According to the spec, processors which do not support VMX
  1835. * should throw a #GP(0) when VMX capability MSRs are read.
  1836. */
  1837. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  1838. return 1;
  1839. }
  1840. switch (msr_index) {
  1841. case MSR_IA32_FEATURE_CONTROL:
  1842. *pdata = 0;
  1843. break;
  1844. case MSR_IA32_VMX_BASIC:
  1845. /*
  1846. * This MSR reports some information about VMX support. We
  1847. * should return information about the VMX we emulate for the
  1848. * guest, and the VMCS structure we give it - not about the
  1849. * VMX support of the underlying hardware.
  1850. */
  1851. *pdata = VMCS12_REVISION |
  1852. ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
  1853. (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
  1854. break;
  1855. case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
  1856. case MSR_IA32_VMX_PINBASED_CTLS:
  1857. *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
  1858. nested_vmx_pinbased_ctls_high);
  1859. break;
  1860. case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
  1861. case MSR_IA32_VMX_PROCBASED_CTLS:
  1862. *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
  1863. nested_vmx_procbased_ctls_high);
  1864. break;
  1865. case MSR_IA32_VMX_TRUE_EXIT_CTLS:
  1866. case MSR_IA32_VMX_EXIT_CTLS:
  1867. *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
  1868. nested_vmx_exit_ctls_high);
  1869. break;
  1870. case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
  1871. case MSR_IA32_VMX_ENTRY_CTLS:
  1872. *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
  1873. nested_vmx_entry_ctls_high);
  1874. break;
  1875. case MSR_IA32_VMX_MISC:
  1876. *pdata = 0;
  1877. break;
  1878. /*
  1879. * These MSRs specify bits which the guest must keep fixed (on or off)
  1880. * while L1 is in VMXON mode (in L1's root mode, or running an L2).
  1881. * We picked the standard core2 setting.
  1882. */
  1883. #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
  1884. #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
  1885. case MSR_IA32_VMX_CR0_FIXED0:
  1886. *pdata = VMXON_CR0_ALWAYSON;
  1887. break;
  1888. case MSR_IA32_VMX_CR0_FIXED1:
  1889. *pdata = -1ULL;
  1890. break;
  1891. case MSR_IA32_VMX_CR4_FIXED0:
  1892. *pdata = VMXON_CR4_ALWAYSON;
  1893. break;
  1894. case MSR_IA32_VMX_CR4_FIXED1:
  1895. *pdata = -1ULL;
  1896. break;
  1897. case MSR_IA32_VMX_VMCS_ENUM:
  1898. *pdata = 0x1f;
  1899. break;
  1900. case MSR_IA32_VMX_PROCBASED_CTLS2:
  1901. *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
  1902. nested_vmx_secondary_ctls_high);
  1903. break;
  1904. case MSR_IA32_VMX_EPT_VPID_CAP:
  1905. /* Currently, no nested ept or nested vpid */
  1906. *pdata = 0;
  1907. break;
  1908. default:
  1909. return 0;
  1910. }
  1911. return 1;
  1912. }
  1913. static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1914. {
  1915. if (!nested_vmx_allowed(vcpu))
  1916. return 0;
  1917. if (msr_index == MSR_IA32_FEATURE_CONTROL)
  1918. /* TODO: the right thing. */
  1919. return 1;
  1920. /*
  1921. * No need to treat VMX capability MSRs specially: If we don't handle
  1922. * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
  1923. */
  1924. return 0;
  1925. }
  1926. /*
  1927. * Reads an msr value (of 'msr_index') into 'pdata'.
  1928. * Returns 0 on success, non-0 otherwise.
  1929. * Assumes vcpu_load() was already called.
  1930. */
  1931. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1932. {
  1933. u64 data;
  1934. struct shared_msr_entry *msr;
  1935. if (!pdata) {
  1936. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  1937. return -EINVAL;
  1938. }
  1939. switch (msr_index) {
  1940. #ifdef CONFIG_X86_64
  1941. case MSR_FS_BASE:
  1942. data = vmcs_readl(GUEST_FS_BASE);
  1943. break;
  1944. case MSR_GS_BASE:
  1945. data = vmcs_readl(GUEST_GS_BASE);
  1946. break;
  1947. case MSR_KERNEL_GS_BASE:
  1948. vmx_load_host_state(to_vmx(vcpu));
  1949. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  1950. break;
  1951. #endif
  1952. case MSR_EFER:
  1953. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1954. case MSR_IA32_TSC:
  1955. data = guest_read_tsc();
  1956. break;
  1957. case MSR_IA32_SYSENTER_CS:
  1958. data = vmcs_read32(GUEST_SYSENTER_CS);
  1959. break;
  1960. case MSR_IA32_SYSENTER_EIP:
  1961. data = vmcs_readl(GUEST_SYSENTER_EIP);
  1962. break;
  1963. case MSR_IA32_SYSENTER_ESP:
  1964. data = vmcs_readl(GUEST_SYSENTER_ESP);
  1965. break;
  1966. case MSR_TSC_AUX:
  1967. if (!to_vmx(vcpu)->rdtscp_enabled)
  1968. return 1;
  1969. /* Otherwise falls through */
  1970. default:
  1971. if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
  1972. return 0;
  1973. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  1974. if (msr) {
  1975. data = msr->data;
  1976. break;
  1977. }
  1978. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1979. }
  1980. *pdata = data;
  1981. return 0;
  1982. }
  1983. /*
  1984. * Writes msr value into into the appropriate "register".
  1985. * Returns 0 on success, non-0 otherwise.
  1986. * Assumes vcpu_load() was already called.
  1987. */
  1988. static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
  1989. {
  1990. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1991. struct shared_msr_entry *msr;
  1992. int ret = 0;
  1993. u32 msr_index = msr_info->index;
  1994. u64 data = msr_info->data;
  1995. switch (msr_index) {
  1996. case MSR_EFER:
  1997. ret = kvm_set_msr_common(vcpu, msr_info);
  1998. break;
  1999. #ifdef CONFIG_X86_64
  2000. case MSR_FS_BASE:
  2001. vmx_segment_cache_clear(vmx);
  2002. vmcs_writel(GUEST_FS_BASE, data);
  2003. break;
  2004. case MSR_GS_BASE:
  2005. vmx_segment_cache_clear(vmx);
  2006. vmcs_writel(GUEST_GS_BASE, data);
  2007. break;
  2008. case MSR_KERNEL_GS_BASE:
  2009. vmx_load_host_state(vmx);
  2010. vmx->msr_guest_kernel_gs_base = data;
  2011. break;
  2012. #endif
  2013. case MSR_IA32_SYSENTER_CS:
  2014. vmcs_write32(GUEST_SYSENTER_CS, data);
  2015. break;
  2016. case MSR_IA32_SYSENTER_EIP:
  2017. vmcs_writel(GUEST_SYSENTER_EIP, data);
  2018. break;
  2019. case MSR_IA32_SYSENTER_ESP:
  2020. vmcs_writel(GUEST_SYSENTER_ESP, data);
  2021. break;
  2022. case MSR_IA32_TSC:
  2023. kvm_write_tsc(vcpu, msr_info);
  2024. break;
  2025. case MSR_IA32_CR_PAT:
  2026. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2027. vmcs_write64(GUEST_IA32_PAT, data);
  2028. vcpu->arch.pat = data;
  2029. break;
  2030. }
  2031. ret = kvm_set_msr_common(vcpu, msr_info);
  2032. break;
  2033. case MSR_IA32_TSC_ADJUST:
  2034. ret = kvm_set_msr_common(vcpu, msr_info);
  2035. break;
  2036. case MSR_TSC_AUX:
  2037. if (!vmx->rdtscp_enabled)
  2038. return 1;
  2039. /* Check reserved bit, higher 32 bits should be zero */
  2040. if ((data >> 32) != 0)
  2041. return 1;
  2042. /* Otherwise falls through */
  2043. default:
  2044. if (vmx_set_vmx_msr(vcpu, msr_index, data))
  2045. break;
  2046. msr = find_msr_entry(vmx, msr_index);
  2047. if (msr) {
  2048. msr->data = data;
  2049. if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
  2050. preempt_disable();
  2051. kvm_set_shared_msr(msr->index, msr->data,
  2052. msr->mask);
  2053. preempt_enable();
  2054. }
  2055. break;
  2056. }
  2057. ret = kvm_set_msr_common(vcpu, msr_info);
  2058. }
  2059. return ret;
  2060. }
  2061. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  2062. {
  2063. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  2064. switch (reg) {
  2065. case VCPU_REGS_RSP:
  2066. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  2067. break;
  2068. case VCPU_REGS_RIP:
  2069. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  2070. break;
  2071. case VCPU_EXREG_PDPTR:
  2072. if (enable_ept)
  2073. ept_save_pdptrs(vcpu);
  2074. break;
  2075. default:
  2076. break;
  2077. }
  2078. }
  2079. static __init int cpu_has_kvm_support(void)
  2080. {
  2081. return cpu_has_vmx();
  2082. }
  2083. static __init int vmx_disabled_by_bios(void)
  2084. {
  2085. u64 msr;
  2086. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  2087. if (msr & FEATURE_CONTROL_LOCKED) {
  2088. /* launched w/ TXT and VMX disabled */
  2089. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  2090. && tboot_enabled())
  2091. return 1;
  2092. /* launched w/o TXT and VMX only enabled w/ TXT */
  2093. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  2094. && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  2095. && !tboot_enabled()) {
  2096. printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
  2097. "activate TXT before enabling KVM\n");
  2098. return 1;
  2099. }
  2100. /* launched w/o TXT and VMX disabled */
  2101. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  2102. && !tboot_enabled())
  2103. return 1;
  2104. }
  2105. return 0;
  2106. }
  2107. static void kvm_cpu_vmxon(u64 addr)
  2108. {
  2109. asm volatile (ASM_VMX_VMXON_RAX
  2110. : : "a"(&addr), "m"(addr)
  2111. : "memory", "cc");
  2112. }
  2113. static int hardware_enable(void *garbage)
  2114. {
  2115. int cpu = raw_smp_processor_id();
  2116. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  2117. u64 old, test_bits;
  2118. if (read_cr4() & X86_CR4_VMXE)
  2119. return -EBUSY;
  2120. INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
  2121. /*
  2122. * Now we can enable the vmclear operation in kdump
  2123. * since the loaded_vmcss_on_cpu list on this cpu
  2124. * has been initialized.
  2125. *
  2126. * Though the cpu is not in VMX operation now, there
  2127. * is no problem to enable the vmclear operation
  2128. * for the loaded_vmcss_on_cpu list is empty!
  2129. */
  2130. crash_enable_local_vmclear(cpu);
  2131. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  2132. test_bits = FEATURE_CONTROL_LOCKED;
  2133. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  2134. if (tboot_enabled())
  2135. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
  2136. if ((old & test_bits) != test_bits) {
  2137. /* enable and lock */
  2138. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
  2139. }
  2140. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  2141. if (vmm_exclusive) {
  2142. kvm_cpu_vmxon(phys_addr);
  2143. ept_sync_global();
  2144. }
  2145. store_gdt(&__get_cpu_var(host_gdt));
  2146. return 0;
  2147. }
  2148. static void vmclear_local_loaded_vmcss(void)
  2149. {
  2150. int cpu = raw_smp_processor_id();
  2151. struct loaded_vmcs *v, *n;
  2152. list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
  2153. loaded_vmcss_on_cpu_link)
  2154. __loaded_vmcs_clear(v);
  2155. }
  2156. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  2157. * tricks.
  2158. */
  2159. static void kvm_cpu_vmxoff(void)
  2160. {
  2161. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  2162. }
  2163. static void hardware_disable(void *garbage)
  2164. {
  2165. if (vmm_exclusive) {
  2166. vmclear_local_loaded_vmcss();
  2167. kvm_cpu_vmxoff();
  2168. }
  2169. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  2170. }
  2171. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  2172. u32 msr, u32 *result)
  2173. {
  2174. u32 vmx_msr_low, vmx_msr_high;
  2175. u32 ctl = ctl_min | ctl_opt;
  2176. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2177. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  2178. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  2179. /* Ensure minimum (required) set of control bits are supported. */
  2180. if (ctl_min & ~ctl)
  2181. return -EIO;
  2182. *result = ctl;
  2183. return 0;
  2184. }
  2185. static __init bool allow_1_setting(u32 msr, u32 ctl)
  2186. {
  2187. u32 vmx_msr_low, vmx_msr_high;
  2188. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2189. return vmx_msr_high & ctl;
  2190. }
  2191. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  2192. {
  2193. u32 vmx_msr_low, vmx_msr_high;
  2194. u32 min, opt, min2, opt2;
  2195. u32 _pin_based_exec_control = 0;
  2196. u32 _cpu_based_exec_control = 0;
  2197. u32 _cpu_based_2nd_exec_control = 0;
  2198. u32 _vmexit_control = 0;
  2199. u32 _vmentry_control = 0;
  2200. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  2201. opt = PIN_BASED_VIRTUAL_NMIS;
  2202. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  2203. &_pin_based_exec_control) < 0)
  2204. return -EIO;
  2205. min = CPU_BASED_HLT_EXITING |
  2206. #ifdef CONFIG_X86_64
  2207. CPU_BASED_CR8_LOAD_EXITING |
  2208. CPU_BASED_CR8_STORE_EXITING |
  2209. #endif
  2210. CPU_BASED_CR3_LOAD_EXITING |
  2211. CPU_BASED_CR3_STORE_EXITING |
  2212. CPU_BASED_USE_IO_BITMAPS |
  2213. CPU_BASED_MOV_DR_EXITING |
  2214. CPU_BASED_USE_TSC_OFFSETING |
  2215. CPU_BASED_MWAIT_EXITING |
  2216. CPU_BASED_MONITOR_EXITING |
  2217. CPU_BASED_INVLPG_EXITING |
  2218. CPU_BASED_RDPMC_EXITING;
  2219. opt = CPU_BASED_TPR_SHADOW |
  2220. CPU_BASED_USE_MSR_BITMAPS |
  2221. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  2222. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  2223. &_cpu_based_exec_control) < 0)
  2224. return -EIO;
  2225. #ifdef CONFIG_X86_64
  2226. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  2227. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  2228. ~CPU_BASED_CR8_STORE_EXITING;
  2229. #endif
  2230. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  2231. min2 = 0;
  2232. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  2233. SECONDARY_EXEC_WBINVD_EXITING |
  2234. SECONDARY_EXEC_ENABLE_VPID |
  2235. SECONDARY_EXEC_ENABLE_EPT |
  2236. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  2237. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  2238. SECONDARY_EXEC_RDTSCP |
  2239. SECONDARY_EXEC_ENABLE_INVPCID;
  2240. if (adjust_vmx_controls(min2, opt2,
  2241. MSR_IA32_VMX_PROCBASED_CTLS2,
  2242. &_cpu_based_2nd_exec_control) < 0)
  2243. return -EIO;
  2244. }
  2245. #ifndef CONFIG_X86_64
  2246. if (!(_cpu_based_2nd_exec_control &
  2247. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  2248. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  2249. #endif
  2250. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  2251. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  2252. enabled */
  2253. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  2254. CPU_BASED_CR3_STORE_EXITING |
  2255. CPU_BASED_INVLPG_EXITING);
  2256. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  2257. vmx_capability.ept, vmx_capability.vpid);
  2258. }
  2259. min = 0;
  2260. #ifdef CONFIG_X86_64
  2261. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  2262. #endif
  2263. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  2264. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  2265. &_vmexit_control) < 0)
  2266. return -EIO;
  2267. min = 0;
  2268. opt = VM_ENTRY_LOAD_IA32_PAT;
  2269. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  2270. &_vmentry_control) < 0)
  2271. return -EIO;
  2272. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  2273. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  2274. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  2275. return -EIO;
  2276. #ifdef CONFIG_X86_64
  2277. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  2278. if (vmx_msr_high & (1u<<16))
  2279. return -EIO;
  2280. #endif
  2281. /* Require Write-Back (WB) memory type for VMCS accesses. */
  2282. if (((vmx_msr_high >> 18) & 15) != 6)
  2283. return -EIO;
  2284. vmcs_conf->size = vmx_msr_high & 0x1fff;
  2285. vmcs_conf->order = get_order(vmcs_config.size);
  2286. vmcs_conf->revision_id = vmx_msr_low;
  2287. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  2288. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  2289. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  2290. vmcs_conf->vmexit_ctrl = _vmexit_control;
  2291. vmcs_conf->vmentry_ctrl = _vmentry_control;
  2292. cpu_has_load_ia32_efer =
  2293. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2294. VM_ENTRY_LOAD_IA32_EFER)
  2295. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2296. VM_EXIT_LOAD_IA32_EFER);
  2297. cpu_has_load_perf_global_ctrl =
  2298. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2299. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
  2300. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2301. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
  2302. /*
  2303. * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
  2304. * but due to arrata below it can't be used. Workaround is to use
  2305. * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
  2306. *
  2307. * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
  2308. *
  2309. * AAK155 (model 26)
  2310. * AAP115 (model 30)
  2311. * AAT100 (model 37)
  2312. * BC86,AAY89,BD102 (model 44)
  2313. * BA97 (model 46)
  2314. *
  2315. */
  2316. if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
  2317. switch (boot_cpu_data.x86_model) {
  2318. case 26:
  2319. case 30:
  2320. case 37:
  2321. case 44:
  2322. case 46:
  2323. cpu_has_load_perf_global_ctrl = false;
  2324. printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
  2325. "does not work properly. Using workaround\n");
  2326. break;
  2327. default:
  2328. break;
  2329. }
  2330. }
  2331. return 0;
  2332. }
  2333. static struct vmcs *alloc_vmcs_cpu(int cpu)
  2334. {
  2335. int node = cpu_to_node(cpu);
  2336. struct page *pages;
  2337. struct vmcs *vmcs;
  2338. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  2339. if (!pages)
  2340. return NULL;
  2341. vmcs = page_address(pages);
  2342. memset(vmcs, 0, vmcs_config.size);
  2343. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  2344. return vmcs;
  2345. }
  2346. static struct vmcs *alloc_vmcs(void)
  2347. {
  2348. return alloc_vmcs_cpu(raw_smp_processor_id());
  2349. }
  2350. static void free_vmcs(struct vmcs *vmcs)
  2351. {
  2352. free_pages((unsigned long)vmcs, vmcs_config.order);
  2353. }
  2354. /*
  2355. * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
  2356. */
  2357. static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
  2358. {
  2359. if (!loaded_vmcs->vmcs)
  2360. return;
  2361. loaded_vmcs_clear(loaded_vmcs);
  2362. free_vmcs(loaded_vmcs->vmcs);
  2363. loaded_vmcs->vmcs = NULL;
  2364. }
  2365. static void free_kvm_area(void)
  2366. {
  2367. int cpu;
  2368. for_each_possible_cpu(cpu) {
  2369. free_vmcs(per_cpu(vmxarea, cpu));
  2370. per_cpu(vmxarea, cpu) = NULL;
  2371. }
  2372. }
  2373. static __init int alloc_kvm_area(void)
  2374. {
  2375. int cpu;
  2376. for_each_possible_cpu(cpu) {
  2377. struct vmcs *vmcs;
  2378. vmcs = alloc_vmcs_cpu(cpu);
  2379. if (!vmcs) {
  2380. free_kvm_area();
  2381. return -ENOMEM;
  2382. }
  2383. per_cpu(vmxarea, cpu) = vmcs;
  2384. }
  2385. return 0;
  2386. }
  2387. static __init int hardware_setup(void)
  2388. {
  2389. if (setup_vmcs_config(&vmcs_config) < 0)
  2390. return -EIO;
  2391. if (boot_cpu_has(X86_FEATURE_NX))
  2392. kvm_enable_efer_bits(EFER_NX);
  2393. if (!cpu_has_vmx_vpid())
  2394. enable_vpid = 0;
  2395. if (!cpu_has_vmx_ept() ||
  2396. !cpu_has_vmx_ept_4levels()) {
  2397. enable_ept = 0;
  2398. enable_unrestricted_guest = 0;
  2399. enable_ept_ad_bits = 0;
  2400. }
  2401. if (!cpu_has_vmx_ept_ad_bits())
  2402. enable_ept_ad_bits = 0;
  2403. if (!cpu_has_vmx_unrestricted_guest())
  2404. enable_unrestricted_guest = 0;
  2405. if (!cpu_has_vmx_flexpriority())
  2406. flexpriority_enabled = 0;
  2407. if (!cpu_has_vmx_tpr_shadow())
  2408. kvm_x86_ops->update_cr8_intercept = NULL;
  2409. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  2410. kvm_disable_largepages();
  2411. if (!cpu_has_vmx_ple())
  2412. ple_gap = 0;
  2413. if (nested)
  2414. nested_vmx_setup_ctls_msrs();
  2415. return alloc_kvm_area();
  2416. }
  2417. static __exit void hardware_unsetup(void)
  2418. {
  2419. free_kvm_area();
  2420. }
  2421. static void fix_pmode_dataseg(struct kvm_vcpu *vcpu, int seg, struct kvm_segment *save)
  2422. {
  2423. const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2424. struct kvm_segment tmp = *save;
  2425. if (!(vmcs_readl(sf->base) == tmp.base && tmp.s)) {
  2426. tmp.base = vmcs_readl(sf->base);
  2427. tmp.selector = vmcs_read16(sf->selector);
  2428. tmp.dpl = tmp.selector & SELECTOR_RPL_MASK;
  2429. tmp.s = 1;
  2430. }
  2431. vmx_set_segment(vcpu, &tmp, seg);
  2432. }
  2433. static void enter_pmode(struct kvm_vcpu *vcpu)
  2434. {
  2435. unsigned long flags;
  2436. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2437. vmx->emulation_required = 1;
  2438. vmx->rmode.vm86_active = 0;
  2439. vmx_segment_cache_clear(vmx);
  2440. vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
  2441. flags = vmcs_readl(GUEST_RFLAGS);
  2442. flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  2443. flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  2444. vmcs_writel(GUEST_RFLAGS, flags);
  2445. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  2446. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  2447. update_exception_bitmap(vcpu);
  2448. if (emulate_invalid_guest_state)
  2449. return;
  2450. fix_pmode_dataseg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
  2451. fix_pmode_dataseg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
  2452. fix_pmode_dataseg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
  2453. fix_pmode_dataseg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
  2454. vmx_segment_cache_clear(vmx);
  2455. vmcs_write16(GUEST_SS_SELECTOR, 0);
  2456. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  2457. vmcs_write16(GUEST_CS_SELECTOR,
  2458. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  2459. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  2460. }
  2461. static gva_t rmode_tss_base(struct kvm *kvm)
  2462. {
  2463. if (!kvm->arch.tss_addr) {
  2464. struct kvm_memslots *slots;
  2465. struct kvm_memory_slot *slot;
  2466. gfn_t base_gfn;
  2467. slots = kvm_memslots(kvm);
  2468. slot = id_to_memslot(slots, 0);
  2469. base_gfn = slot->base_gfn + slot->npages - 3;
  2470. return base_gfn << PAGE_SHIFT;
  2471. }
  2472. return kvm->arch.tss_addr;
  2473. }
  2474. static void fix_rmode_seg(int seg, struct kvm_segment *save)
  2475. {
  2476. const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2477. vmcs_write16(sf->selector, save->base >> 4);
  2478. vmcs_write32(sf->base, save->base & 0xffff0);
  2479. vmcs_write32(sf->limit, 0xffff);
  2480. vmcs_write32(sf->ar_bytes, 0xf3);
  2481. if (save->base & 0xf)
  2482. printk_once(KERN_WARNING "kvm: segment base is not paragraph"
  2483. " aligned when entering protected mode (seg=%d)",
  2484. seg);
  2485. }
  2486. static void enter_rmode(struct kvm_vcpu *vcpu)
  2487. {
  2488. unsigned long flags;
  2489. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2490. struct kvm_segment var;
  2491. if (enable_unrestricted_guest)
  2492. return;
  2493. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
  2494. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
  2495. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
  2496. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
  2497. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
  2498. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
  2499. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
  2500. vmx->emulation_required = 1;
  2501. vmx->rmode.vm86_active = 1;
  2502. /*
  2503. * Very old userspace does not call KVM_SET_TSS_ADDR before entering
  2504. * vcpu. Call it here with phys address pointing 16M below 4G.
  2505. */
  2506. if (!vcpu->kvm->arch.tss_addr) {
  2507. printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
  2508. "called before entering vcpu\n");
  2509. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  2510. vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
  2511. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  2512. }
  2513. vmx_segment_cache_clear(vmx);
  2514. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  2515. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  2516. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2517. flags = vmcs_readl(GUEST_RFLAGS);
  2518. vmx->rmode.save_rflags = flags;
  2519. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  2520. vmcs_writel(GUEST_RFLAGS, flags);
  2521. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  2522. update_exception_bitmap(vcpu);
  2523. if (emulate_invalid_guest_state)
  2524. goto continue_rmode;
  2525. vmx_get_segment(vcpu, &var, VCPU_SREG_SS);
  2526. vmx_set_segment(vcpu, &var, VCPU_SREG_SS);
  2527. vmx_get_segment(vcpu, &var, VCPU_SREG_CS);
  2528. vmx_set_segment(vcpu, &var, VCPU_SREG_CS);
  2529. vmx_get_segment(vcpu, &var, VCPU_SREG_ES);
  2530. vmx_set_segment(vcpu, &var, VCPU_SREG_ES);
  2531. vmx_get_segment(vcpu, &var, VCPU_SREG_DS);
  2532. vmx_set_segment(vcpu, &var, VCPU_SREG_DS);
  2533. vmx_get_segment(vcpu, &var, VCPU_SREG_GS);
  2534. vmx_set_segment(vcpu, &var, VCPU_SREG_GS);
  2535. vmx_get_segment(vcpu, &var, VCPU_SREG_FS);
  2536. vmx_set_segment(vcpu, &var, VCPU_SREG_FS);
  2537. continue_rmode:
  2538. kvm_mmu_reset_context(vcpu);
  2539. }
  2540. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  2541. {
  2542. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2543. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  2544. if (!msr)
  2545. return;
  2546. /*
  2547. * Force kernel_gs_base reloading before EFER changes, as control
  2548. * of this msr depends on is_long_mode().
  2549. */
  2550. vmx_load_host_state(to_vmx(vcpu));
  2551. vcpu->arch.efer = efer;
  2552. if (efer & EFER_LMA) {
  2553. vmcs_write32(VM_ENTRY_CONTROLS,
  2554. vmcs_read32(VM_ENTRY_CONTROLS) |
  2555. VM_ENTRY_IA32E_MODE);
  2556. msr->data = efer;
  2557. } else {
  2558. vmcs_write32(VM_ENTRY_CONTROLS,
  2559. vmcs_read32(VM_ENTRY_CONTROLS) &
  2560. ~VM_ENTRY_IA32E_MODE);
  2561. msr->data = efer & ~EFER_LME;
  2562. }
  2563. setup_msrs(vmx);
  2564. }
  2565. #ifdef CONFIG_X86_64
  2566. static void enter_lmode(struct kvm_vcpu *vcpu)
  2567. {
  2568. u32 guest_tr_ar;
  2569. vmx_segment_cache_clear(to_vmx(vcpu));
  2570. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  2571. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  2572. pr_debug_ratelimited("%s: tss fixup for long mode. \n",
  2573. __func__);
  2574. vmcs_write32(GUEST_TR_AR_BYTES,
  2575. (guest_tr_ar & ~AR_TYPE_MASK)
  2576. | AR_TYPE_BUSY_64_TSS);
  2577. }
  2578. vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
  2579. }
  2580. static void exit_lmode(struct kvm_vcpu *vcpu)
  2581. {
  2582. vmcs_write32(VM_ENTRY_CONTROLS,
  2583. vmcs_read32(VM_ENTRY_CONTROLS)
  2584. & ~VM_ENTRY_IA32E_MODE);
  2585. vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
  2586. }
  2587. #endif
  2588. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  2589. {
  2590. vpid_sync_context(to_vmx(vcpu));
  2591. if (enable_ept) {
  2592. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2593. return;
  2594. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  2595. }
  2596. }
  2597. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  2598. {
  2599. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  2600. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  2601. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  2602. }
  2603. static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
  2604. {
  2605. if (enable_ept && is_paging(vcpu))
  2606. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2607. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  2608. }
  2609. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  2610. {
  2611. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  2612. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  2613. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  2614. }
  2615. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  2616. {
  2617. if (!test_bit(VCPU_EXREG_PDPTR,
  2618. (unsigned long *)&vcpu->arch.regs_dirty))
  2619. return;
  2620. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2621. vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
  2622. vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
  2623. vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
  2624. vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
  2625. }
  2626. }
  2627. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  2628. {
  2629. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2630. vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  2631. vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  2632. vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  2633. vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  2634. }
  2635. __set_bit(VCPU_EXREG_PDPTR,
  2636. (unsigned long *)&vcpu->arch.regs_avail);
  2637. __set_bit(VCPU_EXREG_PDPTR,
  2638. (unsigned long *)&vcpu->arch.regs_dirty);
  2639. }
  2640. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  2641. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  2642. unsigned long cr0,
  2643. struct kvm_vcpu *vcpu)
  2644. {
  2645. if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
  2646. vmx_decache_cr3(vcpu);
  2647. if (!(cr0 & X86_CR0_PG)) {
  2648. /* From paging/starting to nonpaging */
  2649. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2650. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  2651. (CPU_BASED_CR3_LOAD_EXITING |
  2652. CPU_BASED_CR3_STORE_EXITING));
  2653. vcpu->arch.cr0 = cr0;
  2654. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2655. } else if (!is_paging(vcpu)) {
  2656. /* From nonpaging to paging */
  2657. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2658. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  2659. ~(CPU_BASED_CR3_LOAD_EXITING |
  2660. CPU_BASED_CR3_STORE_EXITING));
  2661. vcpu->arch.cr0 = cr0;
  2662. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2663. }
  2664. if (!(cr0 & X86_CR0_WP))
  2665. *hw_cr0 &= ~X86_CR0_WP;
  2666. }
  2667. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  2668. {
  2669. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2670. unsigned long hw_cr0;
  2671. if (enable_unrestricted_guest)
  2672. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  2673. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  2674. else
  2675. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  2676. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  2677. enter_pmode(vcpu);
  2678. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  2679. enter_rmode(vcpu);
  2680. #ifdef CONFIG_X86_64
  2681. if (vcpu->arch.efer & EFER_LME) {
  2682. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  2683. enter_lmode(vcpu);
  2684. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  2685. exit_lmode(vcpu);
  2686. }
  2687. #endif
  2688. if (enable_ept)
  2689. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  2690. if (!vcpu->fpu_active)
  2691. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  2692. vmcs_writel(CR0_READ_SHADOW, cr0);
  2693. vmcs_writel(GUEST_CR0, hw_cr0);
  2694. vcpu->arch.cr0 = cr0;
  2695. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2696. }
  2697. static u64 construct_eptp(unsigned long root_hpa)
  2698. {
  2699. u64 eptp;
  2700. /* TODO write the value reading from MSR */
  2701. eptp = VMX_EPT_DEFAULT_MT |
  2702. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  2703. if (enable_ept_ad_bits)
  2704. eptp |= VMX_EPT_AD_ENABLE_BIT;
  2705. eptp |= (root_hpa & PAGE_MASK);
  2706. return eptp;
  2707. }
  2708. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  2709. {
  2710. unsigned long guest_cr3;
  2711. u64 eptp;
  2712. guest_cr3 = cr3;
  2713. if (enable_ept) {
  2714. eptp = construct_eptp(cr3);
  2715. vmcs_write64(EPT_POINTER, eptp);
  2716. guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
  2717. vcpu->kvm->arch.ept_identity_map_addr;
  2718. ept_load_pdptrs(vcpu);
  2719. }
  2720. vmx_flush_tlb(vcpu);
  2721. vmcs_writel(GUEST_CR3, guest_cr3);
  2722. }
  2723. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  2724. {
  2725. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  2726. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  2727. if (cr4 & X86_CR4_VMXE) {
  2728. /*
  2729. * To use VMXON (and later other VMX instructions), a guest
  2730. * must first be able to turn on cr4.VMXE (see handle_vmon()).
  2731. * So basically the check on whether to allow nested VMX
  2732. * is here.
  2733. */
  2734. if (!nested_vmx_allowed(vcpu))
  2735. return 1;
  2736. } else if (to_vmx(vcpu)->nested.vmxon)
  2737. return 1;
  2738. vcpu->arch.cr4 = cr4;
  2739. if (enable_ept) {
  2740. if (!is_paging(vcpu)) {
  2741. hw_cr4 &= ~X86_CR4_PAE;
  2742. hw_cr4 |= X86_CR4_PSE;
  2743. } else if (!(cr4 & X86_CR4_PAE)) {
  2744. hw_cr4 &= ~X86_CR4_PAE;
  2745. }
  2746. }
  2747. vmcs_writel(CR4_READ_SHADOW, cr4);
  2748. vmcs_writel(GUEST_CR4, hw_cr4);
  2749. return 0;
  2750. }
  2751. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  2752. struct kvm_segment *var, int seg)
  2753. {
  2754. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2755. u32 ar;
  2756. if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
  2757. *var = vmx->rmode.segs[seg];
  2758. if (seg == VCPU_SREG_TR
  2759. || var->selector == vmx_read_guest_seg_selector(vmx, seg))
  2760. return;
  2761. var->base = vmx_read_guest_seg_base(vmx, seg);
  2762. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  2763. return;
  2764. }
  2765. var->base = vmx_read_guest_seg_base(vmx, seg);
  2766. var->limit = vmx_read_guest_seg_limit(vmx, seg);
  2767. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  2768. ar = vmx_read_guest_seg_ar(vmx, seg);
  2769. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  2770. ar = 0;
  2771. var->type = ar & 15;
  2772. var->s = (ar >> 4) & 1;
  2773. var->dpl = (ar >> 5) & 3;
  2774. var->present = (ar >> 7) & 1;
  2775. var->avl = (ar >> 12) & 1;
  2776. var->l = (ar >> 13) & 1;
  2777. var->db = (ar >> 14) & 1;
  2778. var->g = (ar >> 15) & 1;
  2779. var->unusable = (ar >> 16) & 1;
  2780. }
  2781. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2782. {
  2783. struct kvm_segment s;
  2784. if (to_vmx(vcpu)->rmode.vm86_active) {
  2785. vmx_get_segment(vcpu, &s, seg);
  2786. return s.base;
  2787. }
  2788. return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
  2789. }
  2790. static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
  2791. {
  2792. if (!is_protmode(vcpu))
  2793. return 0;
  2794. if (!is_long_mode(vcpu)
  2795. && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
  2796. return 3;
  2797. return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
  2798. }
  2799. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  2800. {
  2801. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2802. /*
  2803. * If we enter real mode with cs.sel & 3 != 0, the normal CPL calculations
  2804. * fail; use the cache instead.
  2805. */
  2806. if (unlikely(vmx->emulation_required && emulate_invalid_guest_state)) {
  2807. return vmx->cpl;
  2808. }
  2809. if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
  2810. __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2811. vmx->cpl = __vmx_get_cpl(vcpu);
  2812. }
  2813. return vmx->cpl;
  2814. }
  2815. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  2816. {
  2817. u32 ar;
  2818. if (var->unusable || !var->present)
  2819. ar = 1 << 16;
  2820. else {
  2821. ar = var->type & 15;
  2822. ar |= (var->s & 1) << 4;
  2823. ar |= (var->dpl & 3) << 5;
  2824. ar |= (var->present & 1) << 7;
  2825. ar |= (var->avl & 1) << 12;
  2826. ar |= (var->l & 1) << 13;
  2827. ar |= (var->db & 1) << 14;
  2828. ar |= (var->g & 1) << 15;
  2829. }
  2830. return ar;
  2831. }
  2832. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  2833. struct kvm_segment *var, int seg)
  2834. {
  2835. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2836. const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2837. u32 ar;
  2838. vmx_segment_cache_clear(vmx);
  2839. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  2840. vmcs_write16(sf->selector, var->selector);
  2841. vmx->rmode.segs[VCPU_SREG_TR] = *var;
  2842. return;
  2843. }
  2844. vmcs_writel(sf->base, var->base);
  2845. vmcs_write32(sf->limit, var->limit);
  2846. vmcs_write16(sf->selector, var->selector);
  2847. if (vmx->rmode.vm86_active && var->s) {
  2848. vmx->rmode.segs[seg] = *var;
  2849. /*
  2850. * Hack real-mode segments into vm86 compatibility.
  2851. */
  2852. if (var->base == 0xffff0000 && var->selector == 0xf000)
  2853. vmcs_writel(sf->base, 0xf0000);
  2854. ar = 0xf3;
  2855. } else
  2856. ar = vmx_segment_access_rights(var);
  2857. /*
  2858. * Fix the "Accessed" bit in AR field of segment registers for older
  2859. * qemu binaries.
  2860. * IA32 arch specifies that at the time of processor reset the
  2861. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  2862. * is setting it to 0 in the userland code. This causes invalid guest
  2863. * state vmexit when "unrestricted guest" mode is turned on.
  2864. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  2865. * tree. Newer qemu binaries with that qemu fix would not need this
  2866. * kvm hack.
  2867. */
  2868. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  2869. ar |= 0x1; /* Accessed */
  2870. vmcs_write32(sf->ar_bytes, ar);
  2871. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2872. /*
  2873. * Fix segments for real mode guest in hosts that don't have
  2874. * "unrestricted_mode" or it was disabled.
  2875. * This is done to allow migration of the guests from hosts with
  2876. * unrestricted guest like Westmere to older host that don't have
  2877. * unrestricted guest like Nehelem.
  2878. */
  2879. if (vmx->rmode.vm86_active) {
  2880. switch (seg) {
  2881. case VCPU_SREG_CS:
  2882. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  2883. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  2884. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  2885. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  2886. vmcs_write16(GUEST_CS_SELECTOR,
  2887. vmcs_readl(GUEST_CS_BASE) >> 4);
  2888. break;
  2889. case VCPU_SREG_ES:
  2890. case VCPU_SREG_DS:
  2891. case VCPU_SREG_GS:
  2892. case VCPU_SREG_FS:
  2893. fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
  2894. break;
  2895. case VCPU_SREG_SS:
  2896. vmcs_write16(GUEST_SS_SELECTOR,
  2897. vmcs_readl(GUEST_SS_BASE) >> 4);
  2898. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  2899. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  2900. break;
  2901. }
  2902. }
  2903. }
  2904. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2905. {
  2906. u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
  2907. *db = (ar >> 14) & 1;
  2908. *l = (ar >> 13) & 1;
  2909. }
  2910. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2911. {
  2912. dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
  2913. dt->address = vmcs_readl(GUEST_IDTR_BASE);
  2914. }
  2915. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2916. {
  2917. vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
  2918. vmcs_writel(GUEST_IDTR_BASE, dt->address);
  2919. }
  2920. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2921. {
  2922. dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
  2923. dt->address = vmcs_readl(GUEST_GDTR_BASE);
  2924. }
  2925. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2926. {
  2927. vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
  2928. vmcs_writel(GUEST_GDTR_BASE, dt->address);
  2929. }
  2930. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2931. {
  2932. struct kvm_segment var;
  2933. u32 ar;
  2934. vmx_get_segment(vcpu, &var, seg);
  2935. var.dpl = 0x3;
  2936. var.g = 0;
  2937. var.db = 0;
  2938. if (seg == VCPU_SREG_CS)
  2939. var.type = 0x3;
  2940. ar = vmx_segment_access_rights(&var);
  2941. if (var.base != (var.selector << 4))
  2942. return false;
  2943. if (var.limit < 0xffff)
  2944. return false;
  2945. if (ar != 0xf3)
  2946. return false;
  2947. return true;
  2948. }
  2949. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  2950. {
  2951. struct kvm_segment cs;
  2952. unsigned int cs_rpl;
  2953. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2954. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  2955. if (cs.unusable)
  2956. return false;
  2957. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  2958. return false;
  2959. if (!cs.s)
  2960. return false;
  2961. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  2962. if (cs.dpl > cs_rpl)
  2963. return false;
  2964. } else {
  2965. if (cs.dpl != cs_rpl)
  2966. return false;
  2967. }
  2968. if (!cs.present)
  2969. return false;
  2970. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  2971. return true;
  2972. }
  2973. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  2974. {
  2975. struct kvm_segment ss;
  2976. unsigned int ss_rpl;
  2977. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  2978. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  2979. if (ss.unusable)
  2980. return true;
  2981. if (ss.type != 3 && ss.type != 7)
  2982. return false;
  2983. if (!ss.s)
  2984. return false;
  2985. if (ss.dpl != ss_rpl) /* DPL != RPL */
  2986. return false;
  2987. if (!ss.present)
  2988. return false;
  2989. return true;
  2990. }
  2991. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2992. {
  2993. struct kvm_segment var;
  2994. unsigned int rpl;
  2995. vmx_get_segment(vcpu, &var, seg);
  2996. rpl = var.selector & SELECTOR_RPL_MASK;
  2997. if (var.unusable)
  2998. return true;
  2999. if (!var.s)
  3000. return false;
  3001. if (!var.present)
  3002. return false;
  3003. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  3004. if (var.dpl < rpl) /* DPL < RPL */
  3005. return false;
  3006. }
  3007. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  3008. * rights flags
  3009. */
  3010. return true;
  3011. }
  3012. static bool tr_valid(struct kvm_vcpu *vcpu)
  3013. {
  3014. struct kvm_segment tr;
  3015. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  3016. if (tr.unusable)
  3017. return false;
  3018. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  3019. return false;
  3020. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  3021. return false;
  3022. if (!tr.present)
  3023. return false;
  3024. return true;
  3025. }
  3026. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  3027. {
  3028. struct kvm_segment ldtr;
  3029. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  3030. if (ldtr.unusable)
  3031. return true;
  3032. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  3033. return false;
  3034. if (ldtr.type != 2)
  3035. return false;
  3036. if (!ldtr.present)
  3037. return false;
  3038. return true;
  3039. }
  3040. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  3041. {
  3042. struct kvm_segment cs, ss;
  3043. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3044. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  3045. return ((cs.selector & SELECTOR_RPL_MASK) ==
  3046. (ss.selector & SELECTOR_RPL_MASK));
  3047. }
  3048. /*
  3049. * Check if guest state is valid. Returns true if valid, false if
  3050. * not.
  3051. * We assume that registers are always usable
  3052. */
  3053. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  3054. {
  3055. /* real mode guest state checks */
  3056. if (!is_protmode(vcpu)) {
  3057. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  3058. return false;
  3059. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  3060. return false;
  3061. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  3062. return false;
  3063. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  3064. return false;
  3065. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  3066. return false;
  3067. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  3068. return false;
  3069. } else {
  3070. /* protected mode guest state checks */
  3071. if (!cs_ss_rpl_check(vcpu))
  3072. return false;
  3073. if (!code_segment_valid(vcpu))
  3074. return false;
  3075. if (!stack_segment_valid(vcpu))
  3076. return false;
  3077. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  3078. return false;
  3079. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  3080. return false;
  3081. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  3082. return false;
  3083. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  3084. return false;
  3085. if (!tr_valid(vcpu))
  3086. return false;
  3087. if (!ldtr_valid(vcpu))
  3088. return false;
  3089. }
  3090. /* TODO:
  3091. * - Add checks on RIP
  3092. * - Add checks on RFLAGS
  3093. */
  3094. return true;
  3095. }
  3096. static int init_rmode_tss(struct kvm *kvm)
  3097. {
  3098. gfn_t fn;
  3099. u16 data = 0;
  3100. int r, idx, ret = 0;
  3101. idx = srcu_read_lock(&kvm->srcu);
  3102. fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  3103. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  3104. if (r < 0)
  3105. goto out;
  3106. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  3107. r = kvm_write_guest_page(kvm, fn++, &data,
  3108. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  3109. if (r < 0)
  3110. goto out;
  3111. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  3112. if (r < 0)
  3113. goto out;
  3114. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  3115. if (r < 0)
  3116. goto out;
  3117. data = ~0;
  3118. r = kvm_write_guest_page(kvm, fn, &data,
  3119. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  3120. sizeof(u8));
  3121. if (r < 0)
  3122. goto out;
  3123. ret = 1;
  3124. out:
  3125. srcu_read_unlock(&kvm->srcu, idx);
  3126. return ret;
  3127. }
  3128. static int init_rmode_identity_map(struct kvm *kvm)
  3129. {
  3130. int i, idx, r, ret;
  3131. pfn_t identity_map_pfn;
  3132. u32 tmp;
  3133. if (!enable_ept)
  3134. return 1;
  3135. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  3136. printk(KERN_ERR "EPT: identity-mapping pagetable "
  3137. "haven't been allocated!\n");
  3138. return 0;
  3139. }
  3140. if (likely(kvm->arch.ept_identity_pagetable_done))
  3141. return 1;
  3142. ret = 0;
  3143. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  3144. idx = srcu_read_lock(&kvm->srcu);
  3145. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  3146. if (r < 0)
  3147. goto out;
  3148. /* Set up identity-mapping pagetable for EPT in real mode */
  3149. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  3150. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  3151. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  3152. r = kvm_write_guest_page(kvm, identity_map_pfn,
  3153. &tmp, i * sizeof(tmp), sizeof(tmp));
  3154. if (r < 0)
  3155. goto out;
  3156. }
  3157. kvm->arch.ept_identity_pagetable_done = true;
  3158. ret = 1;
  3159. out:
  3160. srcu_read_unlock(&kvm->srcu, idx);
  3161. return ret;
  3162. }
  3163. static void seg_setup(int seg)
  3164. {
  3165. const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  3166. unsigned int ar;
  3167. vmcs_write16(sf->selector, 0);
  3168. vmcs_writel(sf->base, 0);
  3169. vmcs_write32(sf->limit, 0xffff);
  3170. if (enable_unrestricted_guest) {
  3171. ar = 0x93;
  3172. if (seg == VCPU_SREG_CS)
  3173. ar |= 0x08; /* code segment */
  3174. } else
  3175. ar = 0xf3;
  3176. vmcs_write32(sf->ar_bytes, ar);
  3177. }
  3178. static int alloc_apic_access_page(struct kvm *kvm)
  3179. {
  3180. struct page *page;
  3181. struct kvm_userspace_memory_region kvm_userspace_mem;
  3182. int r = 0;
  3183. mutex_lock(&kvm->slots_lock);
  3184. if (kvm->arch.apic_access_page)
  3185. goto out;
  3186. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  3187. kvm_userspace_mem.flags = 0;
  3188. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  3189. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3190. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, false);
  3191. if (r)
  3192. goto out;
  3193. page = gfn_to_page(kvm, 0xfee00);
  3194. if (is_error_page(page)) {
  3195. r = -EFAULT;
  3196. goto out;
  3197. }
  3198. kvm->arch.apic_access_page = page;
  3199. out:
  3200. mutex_unlock(&kvm->slots_lock);
  3201. return r;
  3202. }
  3203. static int alloc_identity_pagetable(struct kvm *kvm)
  3204. {
  3205. struct page *page;
  3206. struct kvm_userspace_memory_region kvm_userspace_mem;
  3207. int r = 0;
  3208. mutex_lock(&kvm->slots_lock);
  3209. if (kvm->arch.ept_identity_pagetable)
  3210. goto out;
  3211. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  3212. kvm_userspace_mem.flags = 0;
  3213. kvm_userspace_mem.guest_phys_addr =
  3214. kvm->arch.ept_identity_map_addr;
  3215. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3216. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, false);
  3217. if (r)
  3218. goto out;
  3219. page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  3220. if (is_error_page(page)) {
  3221. r = -EFAULT;
  3222. goto out;
  3223. }
  3224. kvm->arch.ept_identity_pagetable = page;
  3225. out:
  3226. mutex_unlock(&kvm->slots_lock);
  3227. return r;
  3228. }
  3229. static void allocate_vpid(struct vcpu_vmx *vmx)
  3230. {
  3231. int vpid;
  3232. vmx->vpid = 0;
  3233. if (!enable_vpid)
  3234. return;
  3235. spin_lock(&vmx_vpid_lock);
  3236. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  3237. if (vpid < VMX_NR_VPIDS) {
  3238. vmx->vpid = vpid;
  3239. __set_bit(vpid, vmx_vpid_bitmap);
  3240. }
  3241. spin_unlock(&vmx_vpid_lock);
  3242. }
  3243. static void free_vpid(struct vcpu_vmx *vmx)
  3244. {
  3245. if (!enable_vpid)
  3246. return;
  3247. spin_lock(&vmx_vpid_lock);
  3248. if (vmx->vpid != 0)
  3249. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3250. spin_unlock(&vmx_vpid_lock);
  3251. }
  3252. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  3253. {
  3254. int f = sizeof(unsigned long);
  3255. if (!cpu_has_vmx_msr_bitmap())
  3256. return;
  3257. /*
  3258. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  3259. * have the write-low and read-high bitmap offsets the wrong way round.
  3260. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  3261. */
  3262. if (msr <= 0x1fff) {
  3263. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  3264. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  3265. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  3266. msr &= 0x1fff;
  3267. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  3268. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  3269. }
  3270. }
  3271. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  3272. {
  3273. if (!longmode_only)
  3274. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  3275. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  3276. }
  3277. /*
  3278. * Set up the vmcs's constant host-state fields, i.e., host-state fields that
  3279. * will not change in the lifetime of the guest.
  3280. * Note that host-state that does change is set elsewhere. E.g., host-state
  3281. * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
  3282. */
  3283. static void vmx_set_constant_host_state(void)
  3284. {
  3285. u32 low32, high32;
  3286. unsigned long tmpl;
  3287. struct desc_ptr dt;
  3288. vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
  3289. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  3290. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  3291. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  3292. #ifdef CONFIG_X86_64
  3293. /*
  3294. * Load null selectors, so we can avoid reloading them in
  3295. * __vmx_load_host_state(), in case userspace uses the null selectors
  3296. * too (the expected case).
  3297. */
  3298. vmcs_write16(HOST_DS_SELECTOR, 0);
  3299. vmcs_write16(HOST_ES_SELECTOR, 0);
  3300. #else
  3301. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3302. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3303. #endif
  3304. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3305. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  3306. native_store_idt(&dt);
  3307. vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
  3308. vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
  3309. rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
  3310. vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
  3311. rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
  3312. vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
  3313. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  3314. rdmsr(MSR_IA32_CR_PAT, low32, high32);
  3315. vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
  3316. }
  3317. }
  3318. static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
  3319. {
  3320. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  3321. if (enable_ept)
  3322. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  3323. if (is_guest_mode(&vmx->vcpu))
  3324. vmx->vcpu.arch.cr4_guest_owned_bits &=
  3325. ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
  3326. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  3327. }
  3328. static u32 vmx_exec_control(struct vcpu_vmx *vmx)
  3329. {
  3330. u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
  3331. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  3332. exec_control &= ~CPU_BASED_TPR_SHADOW;
  3333. #ifdef CONFIG_X86_64
  3334. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  3335. CPU_BASED_CR8_LOAD_EXITING;
  3336. #endif
  3337. }
  3338. if (!enable_ept)
  3339. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  3340. CPU_BASED_CR3_LOAD_EXITING |
  3341. CPU_BASED_INVLPG_EXITING;
  3342. return exec_control;
  3343. }
  3344. static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
  3345. {
  3346. u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  3347. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3348. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  3349. if (vmx->vpid == 0)
  3350. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  3351. if (!enable_ept) {
  3352. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  3353. enable_unrestricted_guest = 0;
  3354. /* Enable INVPCID for non-ept guests may cause performance regression. */
  3355. exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
  3356. }
  3357. if (!enable_unrestricted_guest)
  3358. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  3359. if (!ple_gap)
  3360. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  3361. return exec_control;
  3362. }
  3363. static void ept_set_mmio_spte_mask(void)
  3364. {
  3365. /*
  3366. * EPT Misconfigurations can be generated if the value of bits 2:0
  3367. * of an EPT paging-structure entry is 110b (write/execute).
  3368. * Also, magic bits (0xffull << 49) is set to quickly identify mmio
  3369. * spte.
  3370. */
  3371. kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
  3372. }
  3373. /*
  3374. * Sets up the vmcs for emulated real mode.
  3375. */
  3376. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  3377. {
  3378. #ifdef CONFIG_X86_64
  3379. unsigned long a;
  3380. #endif
  3381. int i;
  3382. /* I/O */
  3383. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  3384. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  3385. if (cpu_has_vmx_msr_bitmap())
  3386. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  3387. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  3388. /* Control */
  3389. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  3390. vmcs_config.pin_based_exec_ctrl);
  3391. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
  3392. if (cpu_has_secondary_exec_ctrls()) {
  3393. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3394. vmx_secondary_exec_control(vmx));
  3395. }
  3396. if (ple_gap) {
  3397. vmcs_write32(PLE_GAP, ple_gap);
  3398. vmcs_write32(PLE_WINDOW, ple_window);
  3399. }
  3400. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  3401. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  3402. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  3403. vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
  3404. vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
  3405. vmx_set_constant_host_state();
  3406. #ifdef CONFIG_X86_64
  3407. rdmsrl(MSR_FS_BASE, a);
  3408. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  3409. rdmsrl(MSR_GS_BASE, a);
  3410. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  3411. #else
  3412. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  3413. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  3414. #endif
  3415. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  3416. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  3417. vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
  3418. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  3419. vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
  3420. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  3421. u32 msr_low, msr_high;
  3422. u64 host_pat;
  3423. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  3424. host_pat = msr_low | ((u64) msr_high << 32);
  3425. /* Write the default value follow host pat */
  3426. vmcs_write64(GUEST_IA32_PAT, host_pat);
  3427. /* Keep arch.pat sync with GUEST_IA32_PAT */
  3428. vmx->vcpu.arch.pat = host_pat;
  3429. }
  3430. for (i = 0; i < NR_VMX_MSR; ++i) {
  3431. u32 index = vmx_msr_index[i];
  3432. u32 data_low, data_high;
  3433. int j = vmx->nmsrs;
  3434. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  3435. continue;
  3436. if (wrmsr_safe(index, data_low, data_high) < 0)
  3437. continue;
  3438. vmx->guest_msrs[j].index = i;
  3439. vmx->guest_msrs[j].data = 0;
  3440. vmx->guest_msrs[j].mask = -1ull;
  3441. ++vmx->nmsrs;
  3442. }
  3443. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  3444. /* 22.2.1, 20.8.1 */
  3445. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  3446. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  3447. set_cr4_guest_host_mask(vmx);
  3448. return 0;
  3449. }
  3450. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  3451. {
  3452. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3453. u64 msr;
  3454. int ret;
  3455. vmx->rmode.vm86_active = 0;
  3456. vmx->soft_vnmi_blocked = 0;
  3457. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  3458. kvm_set_cr8(&vmx->vcpu, 0);
  3459. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  3460. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3461. msr |= MSR_IA32_APICBASE_BSP;
  3462. kvm_set_apic_base(&vmx->vcpu, msr);
  3463. vmx_segment_cache_clear(vmx);
  3464. seg_setup(VCPU_SREG_CS);
  3465. /*
  3466. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  3467. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  3468. */
  3469. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  3470. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  3471. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  3472. } else {
  3473. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  3474. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  3475. }
  3476. seg_setup(VCPU_SREG_DS);
  3477. seg_setup(VCPU_SREG_ES);
  3478. seg_setup(VCPU_SREG_FS);
  3479. seg_setup(VCPU_SREG_GS);
  3480. seg_setup(VCPU_SREG_SS);
  3481. vmcs_write16(GUEST_TR_SELECTOR, 0);
  3482. vmcs_writel(GUEST_TR_BASE, 0);
  3483. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  3484. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  3485. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  3486. vmcs_writel(GUEST_LDTR_BASE, 0);
  3487. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  3488. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  3489. vmcs_write32(GUEST_SYSENTER_CS, 0);
  3490. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  3491. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  3492. vmcs_writel(GUEST_RFLAGS, 0x02);
  3493. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3494. kvm_rip_write(vcpu, 0xfff0);
  3495. else
  3496. kvm_rip_write(vcpu, 0);
  3497. vmcs_writel(GUEST_GDTR_BASE, 0);
  3498. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  3499. vmcs_writel(GUEST_IDTR_BASE, 0);
  3500. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  3501. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  3502. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  3503. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  3504. /* Special registers */
  3505. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  3506. setup_msrs(vmx);
  3507. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  3508. if (cpu_has_vmx_tpr_shadow()) {
  3509. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  3510. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  3511. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  3512. __pa(vmx->vcpu.arch.apic->regs));
  3513. vmcs_write32(TPR_THRESHOLD, 0);
  3514. }
  3515. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3516. vmcs_write64(APIC_ACCESS_ADDR,
  3517. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  3518. if (vmx->vpid != 0)
  3519. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  3520. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  3521. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  3522. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  3523. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  3524. vmx_set_cr4(&vmx->vcpu, 0);
  3525. vmx_set_efer(&vmx->vcpu, 0);
  3526. vmx_fpu_activate(&vmx->vcpu);
  3527. update_exception_bitmap(&vmx->vcpu);
  3528. vpid_sync_context(vmx);
  3529. ret = 0;
  3530. /* HACK: Don't enable emulation on guest boot/reset */
  3531. vmx->emulation_required = 0;
  3532. return ret;
  3533. }
  3534. /*
  3535. * In nested virtualization, check if L1 asked to exit on external interrupts.
  3536. * For most existing hypervisors, this will always return true.
  3537. */
  3538. static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
  3539. {
  3540. return get_vmcs12(vcpu)->pin_based_vm_exec_control &
  3541. PIN_BASED_EXT_INTR_MASK;
  3542. }
  3543. static void enable_irq_window(struct kvm_vcpu *vcpu)
  3544. {
  3545. u32 cpu_based_vm_exec_control;
  3546. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
  3547. /*
  3548. * We get here if vmx_interrupt_allowed() said we can't
  3549. * inject to L1 now because L2 must run. Ask L2 to exit
  3550. * right after entry, so we can inject to L1 more promptly.
  3551. */
  3552. kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
  3553. return;
  3554. }
  3555. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3556. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  3557. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3558. }
  3559. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  3560. {
  3561. u32 cpu_based_vm_exec_control;
  3562. if (!cpu_has_virtual_nmis()) {
  3563. enable_irq_window(vcpu);
  3564. return;
  3565. }
  3566. if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
  3567. enable_irq_window(vcpu);
  3568. return;
  3569. }
  3570. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3571. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  3572. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3573. }
  3574. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  3575. {
  3576. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3577. uint32_t intr;
  3578. int irq = vcpu->arch.interrupt.nr;
  3579. trace_kvm_inj_virq(irq);
  3580. ++vcpu->stat.irq_injections;
  3581. if (vmx->rmode.vm86_active) {
  3582. int inc_eip = 0;
  3583. if (vcpu->arch.interrupt.soft)
  3584. inc_eip = vcpu->arch.event_exit_inst_len;
  3585. if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
  3586. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3587. return;
  3588. }
  3589. intr = irq | INTR_INFO_VALID_MASK;
  3590. if (vcpu->arch.interrupt.soft) {
  3591. intr |= INTR_TYPE_SOFT_INTR;
  3592. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  3593. vmx->vcpu.arch.event_exit_inst_len);
  3594. } else
  3595. intr |= INTR_TYPE_EXT_INTR;
  3596. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  3597. }
  3598. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  3599. {
  3600. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3601. if (is_guest_mode(vcpu))
  3602. return;
  3603. if (!cpu_has_virtual_nmis()) {
  3604. /*
  3605. * Tracking the NMI-blocked state in software is built upon
  3606. * finding the next open IRQ window. This, in turn, depends on
  3607. * well-behaving guests: They have to keep IRQs disabled at
  3608. * least as long as the NMI handler runs. Otherwise we may
  3609. * cause NMI nesting, maybe breaking the guest. But as this is
  3610. * highly unlikely, we can live with the residual risk.
  3611. */
  3612. vmx->soft_vnmi_blocked = 1;
  3613. vmx->vnmi_blocked_time = 0;
  3614. }
  3615. ++vcpu->stat.nmi_injections;
  3616. vmx->nmi_known_unmasked = false;
  3617. if (vmx->rmode.vm86_active) {
  3618. if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
  3619. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3620. return;
  3621. }
  3622. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  3623. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  3624. }
  3625. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  3626. {
  3627. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  3628. return 0;
  3629. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3630. (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
  3631. | GUEST_INTR_STATE_NMI));
  3632. }
  3633. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  3634. {
  3635. if (!cpu_has_virtual_nmis())
  3636. return to_vmx(vcpu)->soft_vnmi_blocked;
  3637. if (to_vmx(vcpu)->nmi_known_unmasked)
  3638. return false;
  3639. return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
  3640. }
  3641. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  3642. {
  3643. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3644. if (!cpu_has_virtual_nmis()) {
  3645. if (vmx->soft_vnmi_blocked != masked) {
  3646. vmx->soft_vnmi_blocked = masked;
  3647. vmx->vnmi_blocked_time = 0;
  3648. }
  3649. } else {
  3650. vmx->nmi_known_unmasked = !masked;
  3651. if (masked)
  3652. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3653. GUEST_INTR_STATE_NMI);
  3654. else
  3655. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3656. GUEST_INTR_STATE_NMI);
  3657. }
  3658. }
  3659. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  3660. {
  3661. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
  3662. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  3663. if (to_vmx(vcpu)->nested.nested_run_pending ||
  3664. (vmcs12->idt_vectoring_info_field &
  3665. VECTORING_INFO_VALID_MASK))
  3666. return 0;
  3667. nested_vmx_vmexit(vcpu);
  3668. vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
  3669. vmcs12->vm_exit_intr_info = 0;
  3670. /* fall through to normal code, but now in L1, not L2 */
  3671. }
  3672. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  3673. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3674. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  3675. }
  3676. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  3677. {
  3678. int ret;
  3679. struct kvm_userspace_memory_region tss_mem = {
  3680. .slot = TSS_PRIVATE_MEMSLOT,
  3681. .guest_phys_addr = addr,
  3682. .memory_size = PAGE_SIZE * 3,
  3683. .flags = 0,
  3684. };
  3685. ret = kvm_set_memory_region(kvm, &tss_mem, false);
  3686. if (ret)
  3687. return ret;
  3688. kvm->arch.tss_addr = addr;
  3689. if (!init_rmode_tss(kvm))
  3690. return -ENOMEM;
  3691. return 0;
  3692. }
  3693. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  3694. int vec, u32 err_code)
  3695. {
  3696. /*
  3697. * Instruction with address size override prefix opcode 0x67
  3698. * Cause the #SS fault with 0 error code in VM86 mode.
  3699. */
  3700. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  3701. if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
  3702. return 1;
  3703. /*
  3704. * Forward all other exceptions that are valid in real mode.
  3705. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  3706. * the required debugging infrastructure rework.
  3707. */
  3708. switch (vec) {
  3709. case DB_VECTOR:
  3710. if (vcpu->guest_debug &
  3711. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  3712. return 0;
  3713. kvm_queue_exception(vcpu, vec);
  3714. return 1;
  3715. case BP_VECTOR:
  3716. /*
  3717. * Update instruction length as we may reinject the exception
  3718. * from user space while in guest debugging mode.
  3719. */
  3720. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  3721. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3722. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  3723. return 0;
  3724. /* fall through */
  3725. case DE_VECTOR:
  3726. case OF_VECTOR:
  3727. case BR_VECTOR:
  3728. case UD_VECTOR:
  3729. case DF_VECTOR:
  3730. case SS_VECTOR:
  3731. case GP_VECTOR:
  3732. case MF_VECTOR:
  3733. kvm_queue_exception(vcpu, vec);
  3734. return 1;
  3735. }
  3736. return 0;
  3737. }
  3738. /*
  3739. * Trigger machine check on the host. We assume all the MSRs are already set up
  3740. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  3741. * We pass a fake environment to the machine check handler because we want
  3742. * the guest to be always treated like user space, no matter what context
  3743. * it used internally.
  3744. */
  3745. static void kvm_machine_check(void)
  3746. {
  3747. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  3748. struct pt_regs regs = {
  3749. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  3750. .flags = X86_EFLAGS_IF,
  3751. };
  3752. do_machine_check(&regs, 0);
  3753. #endif
  3754. }
  3755. static int handle_machine_check(struct kvm_vcpu *vcpu)
  3756. {
  3757. /* already handled by vcpu_run */
  3758. return 1;
  3759. }
  3760. static int handle_exception(struct kvm_vcpu *vcpu)
  3761. {
  3762. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3763. struct kvm_run *kvm_run = vcpu->run;
  3764. u32 intr_info, ex_no, error_code;
  3765. unsigned long cr2, rip, dr6;
  3766. u32 vect_info;
  3767. enum emulation_result er;
  3768. vect_info = vmx->idt_vectoring_info;
  3769. intr_info = vmx->exit_intr_info;
  3770. if (is_machine_check(intr_info))
  3771. return handle_machine_check(vcpu);
  3772. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  3773. return 1; /* already handled by vmx_vcpu_run() */
  3774. if (is_no_device(intr_info)) {
  3775. vmx_fpu_activate(vcpu);
  3776. return 1;
  3777. }
  3778. if (is_invalid_opcode(intr_info)) {
  3779. er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
  3780. if (er != EMULATE_DONE)
  3781. kvm_queue_exception(vcpu, UD_VECTOR);
  3782. return 1;
  3783. }
  3784. error_code = 0;
  3785. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  3786. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  3787. /*
  3788. * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
  3789. * MMIO, it is better to report an internal error.
  3790. * See the comments in vmx_handle_exit.
  3791. */
  3792. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  3793. !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
  3794. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3795. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  3796. vcpu->run->internal.ndata = 2;
  3797. vcpu->run->internal.data[0] = vect_info;
  3798. vcpu->run->internal.data[1] = intr_info;
  3799. return 0;
  3800. }
  3801. if (is_page_fault(intr_info)) {
  3802. /* EPT won't cause page fault directly */
  3803. BUG_ON(enable_ept);
  3804. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  3805. trace_kvm_page_fault(cr2, error_code);
  3806. if (kvm_event_needs_reinjection(vcpu))
  3807. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  3808. return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
  3809. }
  3810. if (vmx->rmode.vm86_active &&
  3811. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  3812. error_code)) {
  3813. if (vcpu->arch.halt_request) {
  3814. vcpu->arch.halt_request = 0;
  3815. return kvm_emulate_halt(vcpu);
  3816. }
  3817. return 1;
  3818. }
  3819. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  3820. switch (ex_no) {
  3821. case DB_VECTOR:
  3822. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  3823. if (!(vcpu->guest_debug &
  3824. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  3825. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  3826. kvm_queue_exception(vcpu, DB_VECTOR);
  3827. return 1;
  3828. }
  3829. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  3830. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  3831. /* fall through */
  3832. case BP_VECTOR:
  3833. /*
  3834. * Update instruction length as we may reinject #BP from
  3835. * user space while in guest debugging mode. Reading it for
  3836. * #DB as well causes no harm, it is not used in that case.
  3837. */
  3838. vmx->vcpu.arch.event_exit_inst_len =
  3839. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3840. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  3841. rip = kvm_rip_read(vcpu);
  3842. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  3843. kvm_run->debug.arch.exception = ex_no;
  3844. break;
  3845. default:
  3846. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  3847. kvm_run->ex.exception = ex_no;
  3848. kvm_run->ex.error_code = error_code;
  3849. break;
  3850. }
  3851. return 0;
  3852. }
  3853. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  3854. {
  3855. ++vcpu->stat.irq_exits;
  3856. return 1;
  3857. }
  3858. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  3859. {
  3860. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3861. return 0;
  3862. }
  3863. static int handle_io(struct kvm_vcpu *vcpu)
  3864. {
  3865. unsigned long exit_qualification;
  3866. int size, in, string;
  3867. unsigned port;
  3868. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3869. string = (exit_qualification & 16) != 0;
  3870. in = (exit_qualification & 8) != 0;
  3871. ++vcpu->stat.io_exits;
  3872. if (string || in)
  3873. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3874. port = exit_qualification >> 16;
  3875. size = (exit_qualification & 7) + 1;
  3876. skip_emulated_instruction(vcpu);
  3877. return kvm_fast_pio_out(vcpu, size, port);
  3878. }
  3879. static void
  3880. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  3881. {
  3882. /*
  3883. * Patch in the VMCALL instruction:
  3884. */
  3885. hypercall[0] = 0x0f;
  3886. hypercall[1] = 0x01;
  3887. hypercall[2] = 0xc1;
  3888. }
  3889. /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
  3890. static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
  3891. {
  3892. if (to_vmx(vcpu)->nested.vmxon &&
  3893. ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
  3894. return 1;
  3895. if (is_guest_mode(vcpu)) {
  3896. /*
  3897. * We get here when L2 changed cr0 in a way that did not change
  3898. * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
  3899. * but did change L0 shadowed bits. This can currently happen
  3900. * with the TS bit: L0 may want to leave TS on (for lazy fpu
  3901. * loading) while pretending to allow the guest to change it.
  3902. */
  3903. if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
  3904. (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
  3905. return 1;
  3906. vmcs_writel(CR0_READ_SHADOW, val);
  3907. return 0;
  3908. } else
  3909. return kvm_set_cr0(vcpu, val);
  3910. }
  3911. static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
  3912. {
  3913. if (is_guest_mode(vcpu)) {
  3914. if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
  3915. (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
  3916. return 1;
  3917. vmcs_writel(CR4_READ_SHADOW, val);
  3918. return 0;
  3919. } else
  3920. return kvm_set_cr4(vcpu, val);
  3921. }
  3922. /* called to set cr0 as approriate for clts instruction exit. */
  3923. static void handle_clts(struct kvm_vcpu *vcpu)
  3924. {
  3925. if (is_guest_mode(vcpu)) {
  3926. /*
  3927. * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
  3928. * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
  3929. * just pretend it's off (also in arch.cr0 for fpu_activate).
  3930. */
  3931. vmcs_writel(CR0_READ_SHADOW,
  3932. vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
  3933. vcpu->arch.cr0 &= ~X86_CR0_TS;
  3934. } else
  3935. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  3936. }
  3937. static int handle_cr(struct kvm_vcpu *vcpu)
  3938. {
  3939. unsigned long exit_qualification, val;
  3940. int cr;
  3941. int reg;
  3942. int err;
  3943. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3944. cr = exit_qualification & 15;
  3945. reg = (exit_qualification >> 8) & 15;
  3946. switch ((exit_qualification >> 4) & 3) {
  3947. case 0: /* mov to cr */
  3948. val = kvm_register_read(vcpu, reg);
  3949. trace_kvm_cr_write(cr, val);
  3950. switch (cr) {
  3951. case 0:
  3952. err = handle_set_cr0(vcpu, val);
  3953. kvm_complete_insn_gp(vcpu, err);
  3954. return 1;
  3955. case 3:
  3956. err = kvm_set_cr3(vcpu, val);
  3957. kvm_complete_insn_gp(vcpu, err);
  3958. return 1;
  3959. case 4:
  3960. err = handle_set_cr4(vcpu, val);
  3961. kvm_complete_insn_gp(vcpu, err);
  3962. return 1;
  3963. case 8: {
  3964. u8 cr8_prev = kvm_get_cr8(vcpu);
  3965. u8 cr8 = kvm_register_read(vcpu, reg);
  3966. err = kvm_set_cr8(vcpu, cr8);
  3967. kvm_complete_insn_gp(vcpu, err);
  3968. if (irqchip_in_kernel(vcpu->kvm))
  3969. return 1;
  3970. if (cr8_prev <= cr8)
  3971. return 1;
  3972. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  3973. return 0;
  3974. }
  3975. }
  3976. break;
  3977. case 2: /* clts */
  3978. handle_clts(vcpu);
  3979. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  3980. skip_emulated_instruction(vcpu);
  3981. vmx_fpu_activate(vcpu);
  3982. return 1;
  3983. case 1: /*mov from cr*/
  3984. switch (cr) {
  3985. case 3:
  3986. val = kvm_read_cr3(vcpu);
  3987. kvm_register_write(vcpu, reg, val);
  3988. trace_kvm_cr_read(cr, val);
  3989. skip_emulated_instruction(vcpu);
  3990. return 1;
  3991. case 8:
  3992. val = kvm_get_cr8(vcpu);
  3993. kvm_register_write(vcpu, reg, val);
  3994. trace_kvm_cr_read(cr, val);
  3995. skip_emulated_instruction(vcpu);
  3996. return 1;
  3997. }
  3998. break;
  3999. case 3: /* lmsw */
  4000. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  4001. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  4002. kvm_lmsw(vcpu, val);
  4003. skip_emulated_instruction(vcpu);
  4004. return 1;
  4005. default:
  4006. break;
  4007. }
  4008. vcpu->run->exit_reason = 0;
  4009. vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  4010. (int)(exit_qualification >> 4) & 3, cr);
  4011. return 0;
  4012. }
  4013. static int handle_dr(struct kvm_vcpu *vcpu)
  4014. {
  4015. unsigned long exit_qualification;
  4016. int dr, reg;
  4017. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  4018. if (!kvm_require_cpl(vcpu, 0))
  4019. return 1;
  4020. dr = vmcs_readl(GUEST_DR7);
  4021. if (dr & DR7_GD) {
  4022. /*
  4023. * As the vm-exit takes precedence over the debug trap, we
  4024. * need to emulate the latter, either for the host or the
  4025. * guest debugging itself.
  4026. */
  4027. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4028. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  4029. vcpu->run->debug.arch.dr7 = dr;
  4030. vcpu->run->debug.arch.pc =
  4031. vmcs_readl(GUEST_CS_BASE) +
  4032. vmcs_readl(GUEST_RIP);
  4033. vcpu->run->debug.arch.exception = DB_VECTOR;
  4034. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  4035. return 0;
  4036. } else {
  4037. vcpu->arch.dr7 &= ~DR7_GD;
  4038. vcpu->arch.dr6 |= DR6_BD;
  4039. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  4040. kvm_queue_exception(vcpu, DB_VECTOR);
  4041. return 1;
  4042. }
  4043. }
  4044. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4045. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  4046. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  4047. if (exit_qualification & TYPE_MOV_FROM_DR) {
  4048. unsigned long val;
  4049. if (!kvm_get_dr(vcpu, dr, &val))
  4050. kvm_register_write(vcpu, reg, val);
  4051. } else
  4052. kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
  4053. skip_emulated_instruction(vcpu);
  4054. return 1;
  4055. }
  4056. static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
  4057. {
  4058. vmcs_writel(GUEST_DR7, val);
  4059. }
  4060. static int handle_cpuid(struct kvm_vcpu *vcpu)
  4061. {
  4062. kvm_emulate_cpuid(vcpu);
  4063. return 1;
  4064. }
  4065. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  4066. {
  4067. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  4068. u64 data;
  4069. if (vmx_get_msr(vcpu, ecx, &data)) {
  4070. trace_kvm_msr_read_ex(ecx);
  4071. kvm_inject_gp(vcpu, 0);
  4072. return 1;
  4073. }
  4074. trace_kvm_msr_read(ecx, data);
  4075. /* FIXME: handling of bits 32:63 of rax, rdx */
  4076. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  4077. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  4078. skip_emulated_instruction(vcpu);
  4079. return 1;
  4080. }
  4081. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  4082. {
  4083. struct msr_data msr;
  4084. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  4085. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  4086. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  4087. msr.data = data;
  4088. msr.index = ecx;
  4089. msr.host_initiated = false;
  4090. if (vmx_set_msr(vcpu, &msr) != 0) {
  4091. trace_kvm_msr_write_ex(ecx, data);
  4092. kvm_inject_gp(vcpu, 0);
  4093. return 1;
  4094. }
  4095. trace_kvm_msr_write(ecx, data);
  4096. skip_emulated_instruction(vcpu);
  4097. return 1;
  4098. }
  4099. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  4100. {
  4101. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4102. return 1;
  4103. }
  4104. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  4105. {
  4106. u32 cpu_based_vm_exec_control;
  4107. /* clear pending irq */
  4108. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4109. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  4110. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  4111. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4112. ++vcpu->stat.irq_window_exits;
  4113. /*
  4114. * If the user space waits to inject interrupts, exit as soon as
  4115. * possible
  4116. */
  4117. if (!irqchip_in_kernel(vcpu->kvm) &&
  4118. vcpu->run->request_interrupt_window &&
  4119. !kvm_cpu_has_interrupt(vcpu)) {
  4120. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  4121. return 0;
  4122. }
  4123. return 1;
  4124. }
  4125. static int handle_halt(struct kvm_vcpu *vcpu)
  4126. {
  4127. skip_emulated_instruction(vcpu);
  4128. return kvm_emulate_halt(vcpu);
  4129. }
  4130. static int handle_vmcall(struct kvm_vcpu *vcpu)
  4131. {
  4132. skip_emulated_instruction(vcpu);
  4133. kvm_emulate_hypercall(vcpu);
  4134. return 1;
  4135. }
  4136. static int handle_invd(struct kvm_vcpu *vcpu)
  4137. {
  4138. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4139. }
  4140. static int handle_invlpg(struct kvm_vcpu *vcpu)
  4141. {
  4142. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4143. kvm_mmu_invlpg(vcpu, exit_qualification);
  4144. skip_emulated_instruction(vcpu);
  4145. return 1;
  4146. }
  4147. static int handle_rdpmc(struct kvm_vcpu *vcpu)
  4148. {
  4149. int err;
  4150. err = kvm_rdpmc(vcpu);
  4151. kvm_complete_insn_gp(vcpu, err);
  4152. return 1;
  4153. }
  4154. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  4155. {
  4156. skip_emulated_instruction(vcpu);
  4157. kvm_emulate_wbinvd(vcpu);
  4158. return 1;
  4159. }
  4160. static int handle_xsetbv(struct kvm_vcpu *vcpu)
  4161. {
  4162. u64 new_bv = kvm_read_edx_eax(vcpu);
  4163. u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4164. if (kvm_set_xcr(vcpu, index, new_bv) == 0)
  4165. skip_emulated_instruction(vcpu);
  4166. return 1;
  4167. }
  4168. static int handle_apic_access(struct kvm_vcpu *vcpu)
  4169. {
  4170. if (likely(fasteoi)) {
  4171. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4172. int access_type, offset;
  4173. access_type = exit_qualification & APIC_ACCESS_TYPE;
  4174. offset = exit_qualification & APIC_ACCESS_OFFSET;
  4175. /*
  4176. * Sane guest uses MOV to write EOI, with written value
  4177. * not cared. So make a short-circuit here by avoiding
  4178. * heavy instruction emulation.
  4179. */
  4180. if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
  4181. (offset == APIC_EOI)) {
  4182. kvm_lapic_set_eoi(vcpu);
  4183. skip_emulated_instruction(vcpu);
  4184. return 1;
  4185. }
  4186. }
  4187. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4188. }
  4189. static int handle_task_switch(struct kvm_vcpu *vcpu)
  4190. {
  4191. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4192. unsigned long exit_qualification;
  4193. bool has_error_code = false;
  4194. u32 error_code = 0;
  4195. u16 tss_selector;
  4196. int reason, type, idt_v, idt_index;
  4197. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  4198. idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
  4199. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  4200. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4201. reason = (u32)exit_qualification >> 30;
  4202. if (reason == TASK_SWITCH_GATE && idt_v) {
  4203. switch (type) {
  4204. case INTR_TYPE_NMI_INTR:
  4205. vcpu->arch.nmi_injected = false;
  4206. vmx_set_nmi_mask(vcpu, true);
  4207. break;
  4208. case INTR_TYPE_EXT_INTR:
  4209. case INTR_TYPE_SOFT_INTR:
  4210. kvm_clear_interrupt_queue(vcpu);
  4211. break;
  4212. case INTR_TYPE_HARD_EXCEPTION:
  4213. if (vmx->idt_vectoring_info &
  4214. VECTORING_INFO_DELIVER_CODE_MASK) {
  4215. has_error_code = true;
  4216. error_code =
  4217. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  4218. }
  4219. /* fall through */
  4220. case INTR_TYPE_SOFT_EXCEPTION:
  4221. kvm_clear_exception_queue(vcpu);
  4222. break;
  4223. default:
  4224. break;
  4225. }
  4226. }
  4227. tss_selector = exit_qualification;
  4228. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  4229. type != INTR_TYPE_EXT_INTR &&
  4230. type != INTR_TYPE_NMI_INTR))
  4231. skip_emulated_instruction(vcpu);
  4232. if (kvm_task_switch(vcpu, tss_selector,
  4233. type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
  4234. has_error_code, error_code) == EMULATE_FAIL) {
  4235. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4236. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4237. vcpu->run->internal.ndata = 0;
  4238. return 0;
  4239. }
  4240. /* clear all local breakpoint enable flags */
  4241. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  4242. /*
  4243. * TODO: What about debug traps on tss switch?
  4244. * Are we supposed to inject them and update dr6?
  4245. */
  4246. return 1;
  4247. }
  4248. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  4249. {
  4250. unsigned long exit_qualification;
  4251. gpa_t gpa;
  4252. u32 error_code;
  4253. int gla_validity;
  4254. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4255. gla_validity = (exit_qualification >> 7) & 0x3;
  4256. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  4257. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  4258. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  4259. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  4260. vmcs_readl(GUEST_LINEAR_ADDRESS));
  4261. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  4262. (long unsigned int)exit_qualification);
  4263. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4264. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  4265. return 0;
  4266. }
  4267. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4268. trace_kvm_page_fault(gpa, exit_qualification);
  4269. /* It is a write fault? */
  4270. error_code = exit_qualification & (1U << 1);
  4271. /* ept page table is present? */
  4272. error_code |= (exit_qualification >> 3) & 0x1;
  4273. return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
  4274. }
  4275. static u64 ept_rsvd_mask(u64 spte, int level)
  4276. {
  4277. int i;
  4278. u64 mask = 0;
  4279. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  4280. mask |= (1ULL << i);
  4281. if (level > 2)
  4282. /* bits 7:3 reserved */
  4283. mask |= 0xf8;
  4284. else if (level == 2) {
  4285. if (spte & (1ULL << 7))
  4286. /* 2MB ref, bits 20:12 reserved */
  4287. mask |= 0x1ff000;
  4288. else
  4289. /* bits 6:3 reserved */
  4290. mask |= 0x78;
  4291. }
  4292. return mask;
  4293. }
  4294. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  4295. int level)
  4296. {
  4297. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  4298. /* 010b (write-only) */
  4299. WARN_ON((spte & 0x7) == 0x2);
  4300. /* 110b (write/execute) */
  4301. WARN_ON((spte & 0x7) == 0x6);
  4302. /* 100b (execute-only) and value not supported by logical processor */
  4303. if (!cpu_has_vmx_ept_execute_only())
  4304. WARN_ON((spte & 0x7) == 0x4);
  4305. /* not 000b */
  4306. if ((spte & 0x7)) {
  4307. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  4308. if (rsvd_bits != 0) {
  4309. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  4310. __func__, rsvd_bits);
  4311. WARN_ON(1);
  4312. }
  4313. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  4314. u64 ept_mem_type = (spte & 0x38) >> 3;
  4315. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  4316. ept_mem_type == 7) {
  4317. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  4318. __func__, ept_mem_type);
  4319. WARN_ON(1);
  4320. }
  4321. }
  4322. }
  4323. }
  4324. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  4325. {
  4326. u64 sptes[4];
  4327. int nr_sptes, i, ret;
  4328. gpa_t gpa;
  4329. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4330. ret = handle_mmio_page_fault_common(vcpu, gpa, true);
  4331. if (likely(ret == 1))
  4332. return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
  4333. EMULATE_DONE;
  4334. if (unlikely(!ret))
  4335. return 1;
  4336. /* It is the real ept misconfig */
  4337. printk(KERN_ERR "EPT: Misconfiguration.\n");
  4338. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  4339. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  4340. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  4341. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  4342. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4343. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  4344. return 0;
  4345. }
  4346. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  4347. {
  4348. u32 cpu_based_vm_exec_control;
  4349. /* clear pending NMI */
  4350. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4351. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  4352. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  4353. ++vcpu->stat.nmi_window_exits;
  4354. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4355. return 1;
  4356. }
  4357. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  4358. {
  4359. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4360. enum emulation_result err = EMULATE_DONE;
  4361. int ret = 1;
  4362. u32 cpu_exec_ctrl;
  4363. bool intr_window_requested;
  4364. unsigned count = 130;
  4365. cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4366. intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
  4367. while (!guest_state_valid(vcpu) && count-- != 0) {
  4368. if (intr_window_requested && vmx_interrupt_allowed(vcpu))
  4369. return handle_interrupt_window(&vmx->vcpu);
  4370. if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
  4371. return 1;
  4372. err = emulate_instruction(vcpu, 0);
  4373. if (err == EMULATE_DO_MMIO) {
  4374. ret = 0;
  4375. goto out;
  4376. }
  4377. if (err != EMULATE_DONE) {
  4378. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4379. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4380. vcpu->run->internal.ndata = 0;
  4381. return 0;
  4382. }
  4383. if (signal_pending(current))
  4384. goto out;
  4385. if (need_resched())
  4386. schedule();
  4387. }
  4388. vmx->emulation_required = !guest_state_valid(vcpu);
  4389. out:
  4390. return ret;
  4391. }
  4392. /*
  4393. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  4394. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  4395. */
  4396. static int handle_pause(struct kvm_vcpu *vcpu)
  4397. {
  4398. skip_emulated_instruction(vcpu);
  4399. kvm_vcpu_on_spin(vcpu);
  4400. return 1;
  4401. }
  4402. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  4403. {
  4404. kvm_queue_exception(vcpu, UD_VECTOR);
  4405. return 1;
  4406. }
  4407. /*
  4408. * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
  4409. * We could reuse a single VMCS for all the L2 guests, but we also want the
  4410. * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
  4411. * allows keeping them loaded on the processor, and in the future will allow
  4412. * optimizations where prepare_vmcs02 doesn't need to set all the fields on
  4413. * every entry if they never change.
  4414. * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
  4415. * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
  4416. *
  4417. * The following functions allocate and free a vmcs02 in this pool.
  4418. */
  4419. /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
  4420. static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
  4421. {
  4422. struct vmcs02_list *item;
  4423. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4424. if (item->vmptr == vmx->nested.current_vmptr) {
  4425. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4426. return &item->vmcs02;
  4427. }
  4428. if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
  4429. /* Recycle the least recently used VMCS. */
  4430. item = list_entry(vmx->nested.vmcs02_pool.prev,
  4431. struct vmcs02_list, list);
  4432. item->vmptr = vmx->nested.current_vmptr;
  4433. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4434. return &item->vmcs02;
  4435. }
  4436. /* Create a new VMCS */
  4437. item = (struct vmcs02_list *)
  4438. kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
  4439. if (!item)
  4440. return NULL;
  4441. item->vmcs02.vmcs = alloc_vmcs();
  4442. if (!item->vmcs02.vmcs) {
  4443. kfree(item);
  4444. return NULL;
  4445. }
  4446. loaded_vmcs_init(&item->vmcs02);
  4447. item->vmptr = vmx->nested.current_vmptr;
  4448. list_add(&(item->list), &(vmx->nested.vmcs02_pool));
  4449. vmx->nested.vmcs02_num++;
  4450. return &item->vmcs02;
  4451. }
  4452. /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
  4453. static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
  4454. {
  4455. struct vmcs02_list *item;
  4456. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4457. if (item->vmptr == vmptr) {
  4458. free_loaded_vmcs(&item->vmcs02);
  4459. list_del(&item->list);
  4460. kfree(item);
  4461. vmx->nested.vmcs02_num--;
  4462. return;
  4463. }
  4464. }
  4465. /*
  4466. * Free all VMCSs saved for this vcpu, except the one pointed by
  4467. * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
  4468. * currently used, if running L2), and vmcs01 when running L2.
  4469. */
  4470. static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
  4471. {
  4472. struct vmcs02_list *item, *n;
  4473. list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
  4474. if (vmx->loaded_vmcs != &item->vmcs02)
  4475. free_loaded_vmcs(&item->vmcs02);
  4476. list_del(&item->list);
  4477. kfree(item);
  4478. }
  4479. vmx->nested.vmcs02_num = 0;
  4480. if (vmx->loaded_vmcs != &vmx->vmcs01)
  4481. free_loaded_vmcs(&vmx->vmcs01);
  4482. }
  4483. /*
  4484. * Emulate the VMXON instruction.
  4485. * Currently, we just remember that VMX is active, and do not save or even
  4486. * inspect the argument to VMXON (the so-called "VMXON pointer") because we
  4487. * do not currently need to store anything in that guest-allocated memory
  4488. * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
  4489. * argument is different from the VMXON pointer (which the spec says they do).
  4490. */
  4491. static int handle_vmon(struct kvm_vcpu *vcpu)
  4492. {
  4493. struct kvm_segment cs;
  4494. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4495. /* The Intel VMX Instruction Reference lists a bunch of bits that
  4496. * are prerequisite to running VMXON, most notably cr4.VMXE must be
  4497. * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
  4498. * Otherwise, we should fail with #UD. We test these now:
  4499. */
  4500. if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
  4501. !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
  4502. (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
  4503. kvm_queue_exception(vcpu, UD_VECTOR);
  4504. return 1;
  4505. }
  4506. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4507. if (is_long_mode(vcpu) && !cs.l) {
  4508. kvm_queue_exception(vcpu, UD_VECTOR);
  4509. return 1;
  4510. }
  4511. if (vmx_get_cpl(vcpu)) {
  4512. kvm_inject_gp(vcpu, 0);
  4513. return 1;
  4514. }
  4515. INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
  4516. vmx->nested.vmcs02_num = 0;
  4517. vmx->nested.vmxon = true;
  4518. skip_emulated_instruction(vcpu);
  4519. return 1;
  4520. }
  4521. /*
  4522. * Intel's VMX Instruction Reference specifies a common set of prerequisites
  4523. * for running VMX instructions (except VMXON, whose prerequisites are
  4524. * slightly different). It also specifies what exception to inject otherwise.
  4525. */
  4526. static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
  4527. {
  4528. struct kvm_segment cs;
  4529. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4530. if (!vmx->nested.vmxon) {
  4531. kvm_queue_exception(vcpu, UD_VECTOR);
  4532. return 0;
  4533. }
  4534. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4535. if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
  4536. (is_long_mode(vcpu) && !cs.l)) {
  4537. kvm_queue_exception(vcpu, UD_VECTOR);
  4538. return 0;
  4539. }
  4540. if (vmx_get_cpl(vcpu)) {
  4541. kvm_inject_gp(vcpu, 0);
  4542. return 0;
  4543. }
  4544. return 1;
  4545. }
  4546. /*
  4547. * Free whatever needs to be freed from vmx->nested when L1 goes down, or
  4548. * just stops using VMX.
  4549. */
  4550. static void free_nested(struct vcpu_vmx *vmx)
  4551. {
  4552. if (!vmx->nested.vmxon)
  4553. return;
  4554. vmx->nested.vmxon = false;
  4555. if (vmx->nested.current_vmptr != -1ull) {
  4556. kunmap(vmx->nested.current_vmcs12_page);
  4557. nested_release_page(vmx->nested.current_vmcs12_page);
  4558. vmx->nested.current_vmptr = -1ull;
  4559. vmx->nested.current_vmcs12 = NULL;
  4560. }
  4561. /* Unpin physical memory we referred to in current vmcs02 */
  4562. if (vmx->nested.apic_access_page) {
  4563. nested_release_page(vmx->nested.apic_access_page);
  4564. vmx->nested.apic_access_page = 0;
  4565. }
  4566. nested_free_all_saved_vmcss(vmx);
  4567. }
  4568. /* Emulate the VMXOFF instruction */
  4569. static int handle_vmoff(struct kvm_vcpu *vcpu)
  4570. {
  4571. if (!nested_vmx_check_permission(vcpu))
  4572. return 1;
  4573. free_nested(to_vmx(vcpu));
  4574. skip_emulated_instruction(vcpu);
  4575. return 1;
  4576. }
  4577. /*
  4578. * Decode the memory-address operand of a vmx instruction, as recorded on an
  4579. * exit caused by such an instruction (run by a guest hypervisor).
  4580. * On success, returns 0. When the operand is invalid, returns 1 and throws
  4581. * #UD or #GP.
  4582. */
  4583. static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
  4584. unsigned long exit_qualification,
  4585. u32 vmx_instruction_info, gva_t *ret)
  4586. {
  4587. /*
  4588. * According to Vol. 3B, "Information for VM Exits Due to Instruction
  4589. * Execution", on an exit, vmx_instruction_info holds most of the
  4590. * addressing components of the operand. Only the displacement part
  4591. * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
  4592. * For how an actual address is calculated from all these components,
  4593. * refer to Vol. 1, "Operand Addressing".
  4594. */
  4595. int scaling = vmx_instruction_info & 3;
  4596. int addr_size = (vmx_instruction_info >> 7) & 7;
  4597. bool is_reg = vmx_instruction_info & (1u << 10);
  4598. int seg_reg = (vmx_instruction_info >> 15) & 7;
  4599. int index_reg = (vmx_instruction_info >> 18) & 0xf;
  4600. bool index_is_valid = !(vmx_instruction_info & (1u << 22));
  4601. int base_reg = (vmx_instruction_info >> 23) & 0xf;
  4602. bool base_is_valid = !(vmx_instruction_info & (1u << 27));
  4603. if (is_reg) {
  4604. kvm_queue_exception(vcpu, UD_VECTOR);
  4605. return 1;
  4606. }
  4607. /* Addr = segment_base + offset */
  4608. /* offset = base + [index * scale] + displacement */
  4609. *ret = vmx_get_segment_base(vcpu, seg_reg);
  4610. if (base_is_valid)
  4611. *ret += kvm_register_read(vcpu, base_reg);
  4612. if (index_is_valid)
  4613. *ret += kvm_register_read(vcpu, index_reg)<<scaling;
  4614. *ret += exit_qualification; /* holds the displacement */
  4615. if (addr_size == 1) /* 32 bit */
  4616. *ret &= 0xffffffff;
  4617. /*
  4618. * TODO: throw #GP (and return 1) in various cases that the VM*
  4619. * instructions require it - e.g., offset beyond segment limit,
  4620. * unusable or unreadable/unwritable segment, non-canonical 64-bit
  4621. * address, and so on. Currently these are not checked.
  4622. */
  4623. return 0;
  4624. }
  4625. /*
  4626. * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
  4627. * set the success or error code of an emulated VMX instruction, as specified
  4628. * by Vol 2B, VMX Instruction Reference, "Conventions".
  4629. */
  4630. static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
  4631. {
  4632. vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
  4633. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4634. X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
  4635. }
  4636. static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
  4637. {
  4638. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4639. & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
  4640. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4641. | X86_EFLAGS_CF);
  4642. }
  4643. static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
  4644. u32 vm_instruction_error)
  4645. {
  4646. if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
  4647. /*
  4648. * failValid writes the error number to the current VMCS, which
  4649. * can't be done there isn't a current VMCS.
  4650. */
  4651. nested_vmx_failInvalid(vcpu);
  4652. return;
  4653. }
  4654. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4655. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4656. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4657. | X86_EFLAGS_ZF);
  4658. get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
  4659. }
  4660. /* Emulate the VMCLEAR instruction */
  4661. static int handle_vmclear(struct kvm_vcpu *vcpu)
  4662. {
  4663. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4664. gva_t gva;
  4665. gpa_t vmptr;
  4666. struct vmcs12 *vmcs12;
  4667. struct page *page;
  4668. struct x86_exception e;
  4669. if (!nested_vmx_check_permission(vcpu))
  4670. return 1;
  4671. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  4672. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  4673. return 1;
  4674. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  4675. sizeof(vmptr), &e)) {
  4676. kvm_inject_page_fault(vcpu, &e);
  4677. return 1;
  4678. }
  4679. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  4680. nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
  4681. skip_emulated_instruction(vcpu);
  4682. return 1;
  4683. }
  4684. if (vmptr == vmx->nested.current_vmptr) {
  4685. kunmap(vmx->nested.current_vmcs12_page);
  4686. nested_release_page(vmx->nested.current_vmcs12_page);
  4687. vmx->nested.current_vmptr = -1ull;
  4688. vmx->nested.current_vmcs12 = NULL;
  4689. }
  4690. page = nested_get_page(vcpu, vmptr);
  4691. if (page == NULL) {
  4692. /*
  4693. * For accurate processor emulation, VMCLEAR beyond available
  4694. * physical memory should do nothing at all. However, it is
  4695. * possible that a nested vmx bug, not a guest hypervisor bug,
  4696. * resulted in this case, so let's shut down before doing any
  4697. * more damage:
  4698. */
  4699. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  4700. return 1;
  4701. }
  4702. vmcs12 = kmap(page);
  4703. vmcs12->launch_state = 0;
  4704. kunmap(page);
  4705. nested_release_page(page);
  4706. nested_free_vmcs02(vmx, vmptr);
  4707. skip_emulated_instruction(vcpu);
  4708. nested_vmx_succeed(vcpu);
  4709. return 1;
  4710. }
  4711. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
  4712. /* Emulate the VMLAUNCH instruction */
  4713. static int handle_vmlaunch(struct kvm_vcpu *vcpu)
  4714. {
  4715. return nested_vmx_run(vcpu, true);
  4716. }
  4717. /* Emulate the VMRESUME instruction */
  4718. static int handle_vmresume(struct kvm_vcpu *vcpu)
  4719. {
  4720. return nested_vmx_run(vcpu, false);
  4721. }
  4722. enum vmcs_field_type {
  4723. VMCS_FIELD_TYPE_U16 = 0,
  4724. VMCS_FIELD_TYPE_U64 = 1,
  4725. VMCS_FIELD_TYPE_U32 = 2,
  4726. VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
  4727. };
  4728. static inline int vmcs_field_type(unsigned long field)
  4729. {
  4730. if (0x1 & field) /* the *_HIGH fields are all 32 bit */
  4731. return VMCS_FIELD_TYPE_U32;
  4732. return (field >> 13) & 0x3 ;
  4733. }
  4734. static inline int vmcs_field_readonly(unsigned long field)
  4735. {
  4736. return (((field >> 10) & 0x3) == 1);
  4737. }
  4738. /*
  4739. * Read a vmcs12 field. Since these can have varying lengths and we return
  4740. * one type, we chose the biggest type (u64) and zero-extend the return value
  4741. * to that size. Note that the caller, handle_vmread, might need to use only
  4742. * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
  4743. * 64-bit fields are to be returned).
  4744. */
  4745. static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
  4746. unsigned long field, u64 *ret)
  4747. {
  4748. short offset = vmcs_field_to_offset(field);
  4749. char *p;
  4750. if (offset < 0)
  4751. return 0;
  4752. p = ((char *)(get_vmcs12(vcpu))) + offset;
  4753. switch (vmcs_field_type(field)) {
  4754. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4755. *ret = *((natural_width *)p);
  4756. return 1;
  4757. case VMCS_FIELD_TYPE_U16:
  4758. *ret = *((u16 *)p);
  4759. return 1;
  4760. case VMCS_FIELD_TYPE_U32:
  4761. *ret = *((u32 *)p);
  4762. return 1;
  4763. case VMCS_FIELD_TYPE_U64:
  4764. *ret = *((u64 *)p);
  4765. return 1;
  4766. default:
  4767. return 0; /* can never happen. */
  4768. }
  4769. }
  4770. /*
  4771. * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
  4772. * used before) all generate the same failure when it is missing.
  4773. */
  4774. static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
  4775. {
  4776. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4777. if (vmx->nested.current_vmptr == -1ull) {
  4778. nested_vmx_failInvalid(vcpu);
  4779. skip_emulated_instruction(vcpu);
  4780. return 0;
  4781. }
  4782. return 1;
  4783. }
  4784. static int handle_vmread(struct kvm_vcpu *vcpu)
  4785. {
  4786. unsigned long field;
  4787. u64 field_value;
  4788. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4789. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4790. gva_t gva = 0;
  4791. if (!nested_vmx_check_permission(vcpu) ||
  4792. !nested_vmx_check_vmcs12(vcpu))
  4793. return 1;
  4794. /* Decode instruction info and find the field to read */
  4795. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4796. /* Read the field, zero-extended to a u64 field_value */
  4797. if (!vmcs12_read_any(vcpu, field, &field_value)) {
  4798. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4799. skip_emulated_instruction(vcpu);
  4800. return 1;
  4801. }
  4802. /*
  4803. * Now copy part of this value to register or memory, as requested.
  4804. * Note that the number of bits actually copied is 32 or 64 depending
  4805. * on the guest's mode (32 or 64 bit), not on the given field's length.
  4806. */
  4807. if (vmx_instruction_info & (1u << 10)) {
  4808. kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
  4809. field_value);
  4810. } else {
  4811. if (get_vmx_mem_address(vcpu, exit_qualification,
  4812. vmx_instruction_info, &gva))
  4813. return 1;
  4814. /* _system ok, as nested_vmx_check_permission verified cpl=0 */
  4815. kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
  4816. &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
  4817. }
  4818. nested_vmx_succeed(vcpu);
  4819. skip_emulated_instruction(vcpu);
  4820. return 1;
  4821. }
  4822. static int handle_vmwrite(struct kvm_vcpu *vcpu)
  4823. {
  4824. unsigned long field;
  4825. gva_t gva;
  4826. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4827. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4828. char *p;
  4829. short offset;
  4830. /* The value to write might be 32 or 64 bits, depending on L1's long
  4831. * mode, and eventually we need to write that into a field of several
  4832. * possible lengths. The code below first zero-extends the value to 64
  4833. * bit (field_value), and then copies only the approriate number of
  4834. * bits into the vmcs12 field.
  4835. */
  4836. u64 field_value = 0;
  4837. struct x86_exception e;
  4838. if (!nested_vmx_check_permission(vcpu) ||
  4839. !nested_vmx_check_vmcs12(vcpu))
  4840. return 1;
  4841. if (vmx_instruction_info & (1u << 10))
  4842. field_value = kvm_register_read(vcpu,
  4843. (((vmx_instruction_info) >> 3) & 0xf));
  4844. else {
  4845. if (get_vmx_mem_address(vcpu, exit_qualification,
  4846. vmx_instruction_info, &gva))
  4847. return 1;
  4848. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
  4849. &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
  4850. kvm_inject_page_fault(vcpu, &e);
  4851. return 1;
  4852. }
  4853. }
  4854. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4855. if (vmcs_field_readonly(field)) {
  4856. nested_vmx_failValid(vcpu,
  4857. VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
  4858. skip_emulated_instruction(vcpu);
  4859. return 1;
  4860. }
  4861. offset = vmcs_field_to_offset(field);
  4862. if (offset < 0) {
  4863. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4864. skip_emulated_instruction(vcpu);
  4865. return 1;
  4866. }
  4867. p = ((char *) get_vmcs12(vcpu)) + offset;
  4868. switch (vmcs_field_type(field)) {
  4869. case VMCS_FIELD_TYPE_U16:
  4870. *(u16 *)p = field_value;
  4871. break;
  4872. case VMCS_FIELD_TYPE_U32:
  4873. *(u32 *)p = field_value;
  4874. break;
  4875. case VMCS_FIELD_TYPE_U64:
  4876. *(u64 *)p = field_value;
  4877. break;
  4878. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4879. *(natural_width *)p = field_value;
  4880. break;
  4881. default:
  4882. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4883. skip_emulated_instruction(vcpu);
  4884. return 1;
  4885. }
  4886. nested_vmx_succeed(vcpu);
  4887. skip_emulated_instruction(vcpu);
  4888. return 1;
  4889. }
  4890. /* Emulate the VMPTRLD instruction */
  4891. static int handle_vmptrld(struct kvm_vcpu *vcpu)
  4892. {
  4893. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4894. gva_t gva;
  4895. gpa_t vmptr;
  4896. struct x86_exception e;
  4897. if (!nested_vmx_check_permission(vcpu))
  4898. return 1;
  4899. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  4900. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  4901. return 1;
  4902. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  4903. sizeof(vmptr), &e)) {
  4904. kvm_inject_page_fault(vcpu, &e);
  4905. return 1;
  4906. }
  4907. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  4908. nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
  4909. skip_emulated_instruction(vcpu);
  4910. return 1;
  4911. }
  4912. if (vmx->nested.current_vmptr != vmptr) {
  4913. struct vmcs12 *new_vmcs12;
  4914. struct page *page;
  4915. page = nested_get_page(vcpu, vmptr);
  4916. if (page == NULL) {
  4917. nested_vmx_failInvalid(vcpu);
  4918. skip_emulated_instruction(vcpu);
  4919. return 1;
  4920. }
  4921. new_vmcs12 = kmap(page);
  4922. if (new_vmcs12->revision_id != VMCS12_REVISION) {
  4923. kunmap(page);
  4924. nested_release_page_clean(page);
  4925. nested_vmx_failValid(vcpu,
  4926. VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
  4927. skip_emulated_instruction(vcpu);
  4928. return 1;
  4929. }
  4930. if (vmx->nested.current_vmptr != -1ull) {
  4931. kunmap(vmx->nested.current_vmcs12_page);
  4932. nested_release_page(vmx->nested.current_vmcs12_page);
  4933. }
  4934. vmx->nested.current_vmptr = vmptr;
  4935. vmx->nested.current_vmcs12 = new_vmcs12;
  4936. vmx->nested.current_vmcs12_page = page;
  4937. }
  4938. nested_vmx_succeed(vcpu);
  4939. skip_emulated_instruction(vcpu);
  4940. return 1;
  4941. }
  4942. /* Emulate the VMPTRST instruction */
  4943. static int handle_vmptrst(struct kvm_vcpu *vcpu)
  4944. {
  4945. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4946. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4947. gva_t vmcs_gva;
  4948. struct x86_exception e;
  4949. if (!nested_vmx_check_permission(vcpu))
  4950. return 1;
  4951. if (get_vmx_mem_address(vcpu, exit_qualification,
  4952. vmx_instruction_info, &vmcs_gva))
  4953. return 1;
  4954. /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
  4955. if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
  4956. (void *)&to_vmx(vcpu)->nested.current_vmptr,
  4957. sizeof(u64), &e)) {
  4958. kvm_inject_page_fault(vcpu, &e);
  4959. return 1;
  4960. }
  4961. nested_vmx_succeed(vcpu);
  4962. skip_emulated_instruction(vcpu);
  4963. return 1;
  4964. }
  4965. /*
  4966. * The exit handlers return 1 if the exit was handled fully and guest execution
  4967. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  4968. * to be done to userspace and return 0.
  4969. */
  4970. static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  4971. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  4972. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  4973. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  4974. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  4975. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  4976. [EXIT_REASON_CR_ACCESS] = handle_cr,
  4977. [EXIT_REASON_DR_ACCESS] = handle_dr,
  4978. [EXIT_REASON_CPUID] = handle_cpuid,
  4979. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  4980. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  4981. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  4982. [EXIT_REASON_HLT] = handle_halt,
  4983. [EXIT_REASON_INVD] = handle_invd,
  4984. [EXIT_REASON_INVLPG] = handle_invlpg,
  4985. [EXIT_REASON_RDPMC] = handle_rdpmc,
  4986. [EXIT_REASON_VMCALL] = handle_vmcall,
  4987. [EXIT_REASON_VMCLEAR] = handle_vmclear,
  4988. [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
  4989. [EXIT_REASON_VMPTRLD] = handle_vmptrld,
  4990. [EXIT_REASON_VMPTRST] = handle_vmptrst,
  4991. [EXIT_REASON_VMREAD] = handle_vmread,
  4992. [EXIT_REASON_VMRESUME] = handle_vmresume,
  4993. [EXIT_REASON_VMWRITE] = handle_vmwrite,
  4994. [EXIT_REASON_VMOFF] = handle_vmoff,
  4995. [EXIT_REASON_VMON] = handle_vmon,
  4996. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  4997. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  4998. [EXIT_REASON_WBINVD] = handle_wbinvd,
  4999. [EXIT_REASON_XSETBV] = handle_xsetbv,
  5000. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  5001. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  5002. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  5003. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  5004. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  5005. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  5006. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  5007. };
  5008. static const int kvm_vmx_max_exit_handlers =
  5009. ARRAY_SIZE(kvm_vmx_exit_handlers);
  5010. /*
  5011. * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
  5012. * rather than handle it ourselves in L0. I.e., check whether L1 expressed
  5013. * disinterest in the current event (read or write a specific MSR) by using an
  5014. * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
  5015. */
  5016. static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
  5017. struct vmcs12 *vmcs12, u32 exit_reason)
  5018. {
  5019. u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
  5020. gpa_t bitmap;
  5021. if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
  5022. return 1;
  5023. /*
  5024. * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
  5025. * for the four combinations of read/write and low/high MSR numbers.
  5026. * First we need to figure out which of the four to use:
  5027. */
  5028. bitmap = vmcs12->msr_bitmap;
  5029. if (exit_reason == EXIT_REASON_MSR_WRITE)
  5030. bitmap += 2048;
  5031. if (msr_index >= 0xc0000000) {
  5032. msr_index -= 0xc0000000;
  5033. bitmap += 1024;
  5034. }
  5035. /* Then read the msr_index'th bit from this bitmap: */
  5036. if (msr_index < 1024*8) {
  5037. unsigned char b;
  5038. kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
  5039. return 1 & (b >> (msr_index & 7));
  5040. } else
  5041. return 1; /* let L1 handle the wrong parameter */
  5042. }
  5043. /*
  5044. * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
  5045. * rather than handle it ourselves in L0. I.e., check if L1 wanted to
  5046. * intercept (via guest_host_mask etc.) the current event.
  5047. */
  5048. static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
  5049. struct vmcs12 *vmcs12)
  5050. {
  5051. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5052. int cr = exit_qualification & 15;
  5053. int reg = (exit_qualification >> 8) & 15;
  5054. unsigned long val = kvm_register_read(vcpu, reg);
  5055. switch ((exit_qualification >> 4) & 3) {
  5056. case 0: /* mov to cr */
  5057. switch (cr) {
  5058. case 0:
  5059. if (vmcs12->cr0_guest_host_mask &
  5060. (val ^ vmcs12->cr0_read_shadow))
  5061. return 1;
  5062. break;
  5063. case 3:
  5064. if ((vmcs12->cr3_target_count >= 1 &&
  5065. vmcs12->cr3_target_value0 == val) ||
  5066. (vmcs12->cr3_target_count >= 2 &&
  5067. vmcs12->cr3_target_value1 == val) ||
  5068. (vmcs12->cr3_target_count >= 3 &&
  5069. vmcs12->cr3_target_value2 == val) ||
  5070. (vmcs12->cr3_target_count >= 4 &&
  5071. vmcs12->cr3_target_value3 == val))
  5072. return 0;
  5073. if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
  5074. return 1;
  5075. break;
  5076. case 4:
  5077. if (vmcs12->cr4_guest_host_mask &
  5078. (vmcs12->cr4_read_shadow ^ val))
  5079. return 1;
  5080. break;
  5081. case 8:
  5082. if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
  5083. return 1;
  5084. break;
  5085. }
  5086. break;
  5087. case 2: /* clts */
  5088. if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
  5089. (vmcs12->cr0_read_shadow & X86_CR0_TS))
  5090. return 1;
  5091. break;
  5092. case 1: /* mov from cr */
  5093. switch (cr) {
  5094. case 3:
  5095. if (vmcs12->cpu_based_vm_exec_control &
  5096. CPU_BASED_CR3_STORE_EXITING)
  5097. return 1;
  5098. break;
  5099. case 8:
  5100. if (vmcs12->cpu_based_vm_exec_control &
  5101. CPU_BASED_CR8_STORE_EXITING)
  5102. return 1;
  5103. break;
  5104. }
  5105. break;
  5106. case 3: /* lmsw */
  5107. /*
  5108. * lmsw can change bits 1..3 of cr0, and only set bit 0 of
  5109. * cr0. Other attempted changes are ignored, with no exit.
  5110. */
  5111. if (vmcs12->cr0_guest_host_mask & 0xe &
  5112. (val ^ vmcs12->cr0_read_shadow))
  5113. return 1;
  5114. if ((vmcs12->cr0_guest_host_mask & 0x1) &&
  5115. !(vmcs12->cr0_read_shadow & 0x1) &&
  5116. (val & 0x1))
  5117. return 1;
  5118. break;
  5119. }
  5120. return 0;
  5121. }
  5122. /*
  5123. * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
  5124. * should handle it ourselves in L0 (and then continue L2). Only call this
  5125. * when in is_guest_mode (L2).
  5126. */
  5127. static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
  5128. {
  5129. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  5130. u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5131. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5132. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5133. if (vmx->nested.nested_run_pending)
  5134. return 0;
  5135. if (unlikely(vmx->fail)) {
  5136. pr_info_ratelimited("%s failed vm entry %x\n", __func__,
  5137. vmcs_read32(VM_INSTRUCTION_ERROR));
  5138. return 1;
  5139. }
  5140. switch (exit_reason) {
  5141. case EXIT_REASON_EXCEPTION_NMI:
  5142. if (!is_exception(intr_info))
  5143. return 0;
  5144. else if (is_page_fault(intr_info))
  5145. return enable_ept;
  5146. return vmcs12->exception_bitmap &
  5147. (1u << (intr_info & INTR_INFO_VECTOR_MASK));
  5148. case EXIT_REASON_EXTERNAL_INTERRUPT:
  5149. return 0;
  5150. case EXIT_REASON_TRIPLE_FAULT:
  5151. return 1;
  5152. case EXIT_REASON_PENDING_INTERRUPT:
  5153. case EXIT_REASON_NMI_WINDOW:
  5154. /*
  5155. * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
  5156. * (aka Interrupt Window Exiting) only when L1 turned it on,
  5157. * so if we got a PENDING_INTERRUPT exit, this must be for L1.
  5158. * Same for NMI Window Exiting.
  5159. */
  5160. return 1;
  5161. case EXIT_REASON_TASK_SWITCH:
  5162. return 1;
  5163. case EXIT_REASON_CPUID:
  5164. return 1;
  5165. case EXIT_REASON_HLT:
  5166. return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
  5167. case EXIT_REASON_INVD:
  5168. return 1;
  5169. case EXIT_REASON_INVLPG:
  5170. return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
  5171. case EXIT_REASON_RDPMC:
  5172. return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
  5173. case EXIT_REASON_RDTSC:
  5174. return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
  5175. case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
  5176. case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
  5177. case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
  5178. case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
  5179. case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
  5180. /*
  5181. * VMX instructions trap unconditionally. This allows L1 to
  5182. * emulate them for its L2 guest, i.e., allows 3-level nesting!
  5183. */
  5184. return 1;
  5185. case EXIT_REASON_CR_ACCESS:
  5186. return nested_vmx_exit_handled_cr(vcpu, vmcs12);
  5187. case EXIT_REASON_DR_ACCESS:
  5188. return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
  5189. case EXIT_REASON_IO_INSTRUCTION:
  5190. /* TODO: support IO bitmaps */
  5191. return 1;
  5192. case EXIT_REASON_MSR_READ:
  5193. case EXIT_REASON_MSR_WRITE:
  5194. return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
  5195. case EXIT_REASON_INVALID_STATE:
  5196. return 1;
  5197. case EXIT_REASON_MWAIT_INSTRUCTION:
  5198. return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
  5199. case EXIT_REASON_MONITOR_INSTRUCTION:
  5200. return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
  5201. case EXIT_REASON_PAUSE_INSTRUCTION:
  5202. return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
  5203. nested_cpu_has2(vmcs12,
  5204. SECONDARY_EXEC_PAUSE_LOOP_EXITING);
  5205. case EXIT_REASON_MCE_DURING_VMENTRY:
  5206. return 0;
  5207. case EXIT_REASON_TPR_BELOW_THRESHOLD:
  5208. return 1;
  5209. case EXIT_REASON_APIC_ACCESS:
  5210. return nested_cpu_has2(vmcs12,
  5211. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  5212. case EXIT_REASON_EPT_VIOLATION:
  5213. case EXIT_REASON_EPT_MISCONFIG:
  5214. return 0;
  5215. case EXIT_REASON_WBINVD:
  5216. return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
  5217. case EXIT_REASON_XSETBV:
  5218. return 1;
  5219. default:
  5220. return 1;
  5221. }
  5222. }
  5223. static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
  5224. {
  5225. *info1 = vmcs_readl(EXIT_QUALIFICATION);
  5226. *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
  5227. }
  5228. /*
  5229. * The guest has exited. See if we can fix it or if we need userspace
  5230. * assistance.
  5231. */
  5232. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  5233. {
  5234. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5235. u32 exit_reason = vmx->exit_reason;
  5236. u32 vectoring_info = vmx->idt_vectoring_info;
  5237. /* If guest state is invalid, start emulating */
  5238. if (vmx->emulation_required && emulate_invalid_guest_state)
  5239. return handle_invalid_guest_state(vcpu);
  5240. /*
  5241. * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
  5242. * we did not inject a still-pending event to L1 now because of
  5243. * nested_run_pending, we need to re-enable this bit.
  5244. */
  5245. if (vmx->nested.nested_run_pending)
  5246. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5247. if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
  5248. exit_reason == EXIT_REASON_VMRESUME))
  5249. vmx->nested.nested_run_pending = 1;
  5250. else
  5251. vmx->nested.nested_run_pending = 0;
  5252. if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
  5253. nested_vmx_vmexit(vcpu);
  5254. return 1;
  5255. }
  5256. if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
  5257. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5258. vcpu->run->fail_entry.hardware_entry_failure_reason
  5259. = exit_reason;
  5260. return 0;
  5261. }
  5262. if (unlikely(vmx->fail)) {
  5263. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5264. vcpu->run->fail_entry.hardware_entry_failure_reason
  5265. = vmcs_read32(VM_INSTRUCTION_ERROR);
  5266. return 0;
  5267. }
  5268. /*
  5269. * Note:
  5270. * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
  5271. * delivery event since it indicates guest is accessing MMIO.
  5272. * The vm-exit can be triggered again after return to guest that
  5273. * will cause infinite loop.
  5274. */
  5275. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  5276. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  5277. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  5278. exit_reason != EXIT_REASON_TASK_SWITCH)) {
  5279. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  5280. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
  5281. vcpu->run->internal.ndata = 2;
  5282. vcpu->run->internal.data[0] = vectoring_info;
  5283. vcpu->run->internal.data[1] = exit_reason;
  5284. return 0;
  5285. }
  5286. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
  5287. !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
  5288. get_vmcs12(vcpu), vcpu)))) {
  5289. if (vmx_interrupt_allowed(vcpu)) {
  5290. vmx->soft_vnmi_blocked = 0;
  5291. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  5292. vcpu->arch.nmi_pending) {
  5293. /*
  5294. * This CPU don't support us in finding the end of an
  5295. * NMI-blocked window if the guest runs with IRQs
  5296. * disabled. So we pull the trigger after 1 s of
  5297. * futile waiting, but inform the user about this.
  5298. */
  5299. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  5300. "state on VCPU %d after 1 s timeout\n",
  5301. __func__, vcpu->vcpu_id);
  5302. vmx->soft_vnmi_blocked = 0;
  5303. }
  5304. }
  5305. if (exit_reason < kvm_vmx_max_exit_handlers
  5306. && kvm_vmx_exit_handlers[exit_reason])
  5307. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  5308. else {
  5309. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  5310. vcpu->run->hw.hardware_exit_reason = exit_reason;
  5311. }
  5312. return 0;
  5313. }
  5314. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  5315. {
  5316. if (irr == -1 || tpr < irr) {
  5317. vmcs_write32(TPR_THRESHOLD, 0);
  5318. return;
  5319. }
  5320. vmcs_write32(TPR_THRESHOLD, irr);
  5321. }
  5322. static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
  5323. {
  5324. u32 exit_intr_info;
  5325. if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
  5326. || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
  5327. return;
  5328. vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5329. exit_intr_info = vmx->exit_intr_info;
  5330. /* Handle machine checks before interrupts are enabled */
  5331. if (is_machine_check(exit_intr_info))
  5332. kvm_machine_check();
  5333. /* We need to handle NMIs before interrupts are enabled */
  5334. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  5335. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  5336. kvm_before_handle_nmi(&vmx->vcpu);
  5337. asm("int $2");
  5338. kvm_after_handle_nmi(&vmx->vcpu);
  5339. }
  5340. }
  5341. static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
  5342. {
  5343. u32 exit_intr_info;
  5344. bool unblock_nmi;
  5345. u8 vector;
  5346. bool idtv_info_valid;
  5347. idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5348. if (cpu_has_virtual_nmis()) {
  5349. if (vmx->nmi_known_unmasked)
  5350. return;
  5351. /*
  5352. * Can't use vmx->exit_intr_info since we're not sure what
  5353. * the exit reason is.
  5354. */
  5355. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5356. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  5357. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  5358. /*
  5359. * SDM 3: 27.7.1.2 (September 2008)
  5360. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  5361. * a guest IRET fault.
  5362. * SDM 3: 23.2.2 (September 2008)
  5363. * Bit 12 is undefined in any of the following cases:
  5364. * If the VM exit sets the valid bit in the IDT-vectoring
  5365. * information field.
  5366. * If the VM exit is due to a double fault.
  5367. */
  5368. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  5369. vector != DF_VECTOR && !idtv_info_valid)
  5370. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  5371. GUEST_INTR_STATE_NMI);
  5372. else
  5373. vmx->nmi_known_unmasked =
  5374. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
  5375. & GUEST_INTR_STATE_NMI);
  5376. } else if (unlikely(vmx->soft_vnmi_blocked))
  5377. vmx->vnmi_blocked_time +=
  5378. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  5379. }
  5380. static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
  5381. u32 idt_vectoring_info,
  5382. int instr_len_field,
  5383. int error_code_field)
  5384. {
  5385. u8 vector;
  5386. int type;
  5387. bool idtv_info_valid;
  5388. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5389. vmx->vcpu.arch.nmi_injected = false;
  5390. kvm_clear_exception_queue(&vmx->vcpu);
  5391. kvm_clear_interrupt_queue(&vmx->vcpu);
  5392. if (!idtv_info_valid)
  5393. return;
  5394. kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
  5395. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  5396. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  5397. switch (type) {
  5398. case INTR_TYPE_NMI_INTR:
  5399. vmx->vcpu.arch.nmi_injected = true;
  5400. /*
  5401. * SDM 3: 27.7.1.2 (September 2008)
  5402. * Clear bit "block by NMI" before VM entry if a NMI
  5403. * delivery faulted.
  5404. */
  5405. vmx_set_nmi_mask(&vmx->vcpu, false);
  5406. break;
  5407. case INTR_TYPE_SOFT_EXCEPTION:
  5408. vmx->vcpu.arch.event_exit_inst_len =
  5409. vmcs_read32(instr_len_field);
  5410. /* fall through */
  5411. case INTR_TYPE_HARD_EXCEPTION:
  5412. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  5413. u32 err = vmcs_read32(error_code_field);
  5414. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  5415. } else
  5416. kvm_queue_exception(&vmx->vcpu, vector);
  5417. break;
  5418. case INTR_TYPE_SOFT_INTR:
  5419. vmx->vcpu.arch.event_exit_inst_len =
  5420. vmcs_read32(instr_len_field);
  5421. /* fall through */
  5422. case INTR_TYPE_EXT_INTR:
  5423. kvm_queue_interrupt(&vmx->vcpu, vector,
  5424. type == INTR_TYPE_SOFT_INTR);
  5425. break;
  5426. default:
  5427. break;
  5428. }
  5429. }
  5430. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  5431. {
  5432. if (is_guest_mode(&vmx->vcpu))
  5433. return;
  5434. __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
  5435. VM_EXIT_INSTRUCTION_LEN,
  5436. IDT_VECTORING_ERROR_CODE);
  5437. }
  5438. static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
  5439. {
  5440. if (is_guest_mode(vcpu))
  5441. return;
  5442. __vmx_complete_interrupts(to_vmx(vcpu),
  5443. vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
  5444. VM_ENTRY_INSTRUCTION_LEN,
  5445. VM_ENTRY_EXCEPTION_ERROR_CODE);
  5446. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
  5447. }
  5448. static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
  5449. {
  5450. int i, nr_msrs;
  5451. struct perf_guest_switch_msr *msrs;
  5452. msrs = perf_guest_get_msrs(&nr_msrs);
  5453. if (!msrs)
  5454. return;
  5455. for (i = 0; i < nr_msrs; i++)
  5456. if (msrs[i].host == msrs[i].guest)
  5457. clear_atomic_switch_msr(vmx, msrs[i].msr);
  5458. else
  5459. add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
  5460. msrs[i].host);
  5461. }
  5462. static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
  5463. {
  5464. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5465. unsigned long debugctlmsr;
  5466. if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
  5467. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5468. if (vmcs12->idt_vectoring_info_field &
  5469. VECTORING_INFO_VALID_MASK) {
  5470. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  5471. vmcs12->idt_vectoring_info_field);
  5472. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  5473. vmcs12->vm_exit_instruction_len);
  5474. if (vmcs12->idt_vectoring_info_field &
  5475. VECTORING_INFO_DELIVER_CODE_MASK)
  5476. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  5477. vmcs12->idt_vectoring_error_code);
  5478. }
  5479. }
  5480. /* Record the guest's net vcpu time for enforced NMI injections. */
  5481. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  5482. vmx->entry_time = ktime_get();
  5483. /* Don't enter VMX if guest state is invalid, let the exit handler
  5484. start emulation until we arrive back to a valid state */
  5485. if (vmx->emulation_required && emulate_invalid_guest_state)
  5486. return;
  5487. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  5488. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  5489. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  5490. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  5491. /* When single-stepping over STI and MOV SS, we must clear the
  5492. * corresponding interruptibility bits in the guest state. Otherwise
  5493. * vmentry fails as it then expects bit 14 (BS) in pending debug
  5494. * exceptions being set, but that's not correct for the guest debugging
  5495. * case. */
  5496. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5497. vmx_set_interrupt_shadow(vcpu, 0);
  5498. atomic_switch_perf_msrs(vmx);
  5499. debugctlmsr = get_debugctlmsr();
  5500. vmx->__launched = vmx->loaded_vmcs->launched;
  5501. asm(
  5502. /* Store host registers */
  5503. "push %%" _ASM_DX "; push %%" _ASM_BP ";"
  5504. "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
  5505. "push %%" _ASM_CX " \n\t"
  5506. "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
  5507. "je 1f \n\t"
  5508. "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
  5509. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  5510. "1: \n\t"
  5511. /* Reload cr2 if changed */
  5512. "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
  5513. "mov %%cr2, %%" _ASM_DX " \n\t"
  5514. "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
  5515. "je 2f \n\t"
  5516. "mov %%" _ASM_AX", %%cr2 \n\t"
  5517. "2: \n\t"
  5518. /* Check if vmlaunch of vmresume is needed */
  5519. "cmpl $0, %c[launched](%0) \n\t"
  5520. /* Load guest registers. Don't clobber flags. */
  5521. "mov %c[rax](%0), %%" _ASM_AX " \n\t"
  5522. "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
  5523. "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
  5524. "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
  5525. "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
  5526. "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
  5527. #ifdef CONFIG_X86_64
  5528. "mov %c[r8](%0), %%r8 \n\t"
  5529. "mov %c[r9](%0), %%r9 \n\t"
  5530. "mov %c[r10](%0), %%r10 \n\t"
  5531. "mov %c[r11](%0), %%r11 \n\t"
  5532. "mov %c[r12](%0), %%r12 \n\t"
  5533. "mov %c[r13](%0), %%r13 \n\t"
  5534. "mov %c[r14](%0), %%r14 \n\t"
  5535. "mov %c[r15](%0), %%r15 \n\t"
  5536. #endif
  5537. "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
  5538. /* Enter guest mode */
  5539. "jne 1f \n\t"
  5540. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  5541. "jmp 2f \n\t"
  5542. "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
  5543. "2: "
  5544. /* Save guest registers, load host registers, keep flags */
  5545. "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
  5546. "pop %0 \n\t"
  5547. "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
  5548. "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
  5549. __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
  5550. "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
  5551. "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
  5552. "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
  5553. "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
  5554. #ifdef CONFIG_X86_64
  5555. "mov %%r8, %c[r8](%0) \n\t"
  5556. "mov %%r9, %c[r9](%0) \n\t"
  5557. "mov %%r10, %c[r10](%0) \n\t"
  5558. "mov %%r11, %c[r11](%0) \n\t"
  5559. "mov %%r12, %c[r12](%0) \n\t"
  5560. "mov %%r13, %c[r13](%0) \n\t"
  5561. "mov %%r14, %c[r14](%0) \n\t"
  5562. "mov %%r15, %c[r15](%0) \n\t"
  5563. #endif
  5564. "mov %%cr2, %%" _ASM_AX " \n\t"
  5565. "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
  5566. "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
  5567. "setbe %c[fail](%0) \n\t"
  5568. ".pushsection .rodata \n\t"
  5569. ".global vmx_return \n\t"
  5570. "vmx_return: " _ASM_PTR " 2b \n\t"
  5571. ".popsection"
  5572. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  5573. [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
  5574. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  5575. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  5576. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  5577. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  5578. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  5579. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  5580. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  5581. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  5582. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  5583. #ifdef CONFIG_X86_64
  5584. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  5585. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  5586. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  5587. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  5588. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  5589. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  5590. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  5591. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  5592. #endif
  5593. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
  5594. [wordsize]"i"(sizeof(ulong))
  5595. : "cc", "memory"
  5596. #ifdef CONFIG_X86_64
  5597. , "rax", "rbx", "rdi", "rsi"
  5598. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  5599. #else
  5600. , "eax", "ebx", "edi", "esi"
  5601. #endif
  5602. );
  5603. /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
  5604. if (debugctlmsr)
  5605. update_debugctlmsr(debugctlmsr);
  5606. #ifndef CONFIG_X86_64
  5607. /*
  5608. * The sysexit path does not restore ds/es, so we must set them to
  5609. * a reasonable value ourselves.
  5610. *
  5611. * We can't defer this to vmx_load_host_state() since that function
  5612. * may be executed in interrupt context, which saves and restore segments
  5613. * around it, nullifying its effect.
  5614. */
  5615. loadsegment(ds, __USER_DS);
  5616. loadsegment(es, __USER_DS);
  5617. #endif
  5618. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  5619. | (1 << VCPU_EXREG_RFLAGS)
  5620. | (1 << VCPU_EXREG_CPL)
  5621. | (1 << VCPU_EXREG_PDPTR)
  5622. | (1 << VCPU_EXREG_SEGMENTS)
  5623. | (1 << VCPU_EXREG_CR3));
  5624. vcpu->arch.regs_dirty = 0;
  5625. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  5626. if (is_guest_mode(vcpu)) {
  5627. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5628. vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
  5629. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  5630. vmcs12->idt_vectoring_error_code =
  5631. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  5632. vmcs12->vm_exit_instruction_len =
  5633. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  5634. }
  5635. }
  5636. vmx->loaded_vmcs->launched = 1;
  5637. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  5638. trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
  5639. vmx_complete_atomic_exit(vmx);
  5640. vmx_recover_nmi_blocking(vmx);
  5641. vmx_complete_interrupts(vmx);
  5642. }
  5643. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  5644. {
  5645. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5646. free_vpid(vmx);
  5647. free_nested(vmx);
  5648. free_loaded_vmcs(vmx->loaded_vmcs);
  5649. kfree(vmx->guest_msrs);
  5650. kvm_vcpu_uninit(vcpu);
  5651. kmem_cache_free(kvm_vcpu_cache, vmx);
  5652. }
  5653. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  5654. {
  5655. int err;
  5656. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  5657. int cpu;
  5658. if (!vmx)
  5659. return ERR_PTR(-ENOMEM);
  5660. allocate_vpid(vmx);
  5661. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  5662. if (err)
  5663. goto free_vcpu;
  5664. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  5665. err = -ENOMEM;
  5666. if (!vmx->guest_msrs) {
  5667. goto uninit_vcpu;
  5668. }
  5669. vmx->loaded_vmcs = &vmx->vmcs01;
  5670. vmx->loaded_vmcs->vmcs = alloc_vmcs();
  5671. if (!vmx->loaded_vmcs->vmcs)
  5672. goto free_msrs;
  5673. if (!vmm_exclusive)
  5674. kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
  5675. loaded_vmcs_init(vmx->loaded_vmcs);
  5676. if (!vmm_exclusive)
  5677. kvm_cpu_vmxoff();
  5678. cpu = get_cpu();
  5679. vmx_vcpu_load(&vmx->vcpu, cpu);
  5680. vmx->vcpu.cpu = cpu;
  5681. err = vmx_vcpu_setup(vmx);
  5682. vmx_vcpu_put(&vmx->vcpu);
  5683. put_cpu();
  5684. if (err)
  5685. goto free_vmcs;
  5686. if (vm_need_virtualize_apic_accesses(kvm))
  5687. err = alloc_apic_access_page(kvm);
  5688. if (err)
  5689. goto free_vmcs;
  5690. if (enable_ept) {
  5691. if (!kvm->arch.ept_identity_map_addr)
  5692. kvm->arch.ept_identity_map_addr =
  5693. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  5694. err = -ENOMEM;
  5695. if (alloc_identity_pagetable(kvm) != 0)
  5696. goto free_vmcs;
  5697. if (!init_rmode_identity_map(kvm))
  5698. goto free_vmcs;
  5699. }
  5700. vmx->nested.current_vmptr = -1ull;
  5701. vmx->nested.current_vmcs12 = NULL;
  5702. return &vmx->vcpu;
  5703. free_vmcs:
  5704. free_loaded_vmcs(vmx->loaded_vmcs);
  5705. free_msrs:
  5706. kfree(vmx->guest_msrs);
  5707. uninit_vcpu:
  5708. kvm_vcpu_uninit(&vmx->vcpu);
  5709. free_vcpu:
  5710. free_vpid(vmx);
  5711. kmem_cache_free(kvm_vcpu_cache, vmx);
  5712. return ERR_PTR(err);
  5713. }
  5714. static void __init vmx_check_processor_compat(void *rtn)
  5715. {
  5716. struct vmcs_config vmcs_conf;
  5717. *(int *)rtn = 0;
  5718. if (setup_vmcs_config(&vmcs_conf) < 0)
  5719. *(int *)rtn = -EIO;
  5720. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  5721. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  5722. smp_processor_id());
  5723. *(int *)rtn = -EIO;
  5724. }
  5725. }
  5726. static int get_ept_level(void)
  5727. {
  5728. return VMX_EPT_DEFAULT_GAW + 1;
  5729. }
  5730. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  5731. {
  5732. u64 ret;
  5733. /* For VT-d and EPT combination
  5734. * 1. MMIO: always map as UC
  5735. * 2. EPT with VT-d:
  5736. * a. VT-d without snooping control feature: can't guarantee the
  5737. * result, try to trust guest.
  5738. * b. VT-d with snooping control feature: snooping control feature of
  5739. * VT-d engine can guarantee the cache correctness. Just set it
  5740. * to WB to keep consistent with host. So the same as item 3.
  5741. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  5742. * consistent with host MTRR
  5743. */
  5744. if (is_mmio)
  5745. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  5746. else if (vcpu->kvm->arch.iommu_domain &&
  5747. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  5748. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  5749. VMX_EPT_MT_EPTE_SHIFT;
  5750. else
  5751. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  5752. | VMX_EPT_IPAT_BIT;
  5753. return ret;
  5754. }
  5755. static int vmx_get_lpage_level(void)
  5756. {
  5757. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  5758. return PT_DIRECTORY_LEVEL;
  5759. else
  5760. /* For shadow and EPT supported 1GB page */
  5761. return PT_PDPE_LEVEL;
  5762. }
  5763. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  5764. {
  5765. struct kvm_cpuid_entry2 *best;
  5766. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5767. u32 exec_control;
  5768. vmx->rdtscp_enabled = false;
  5769. if (vmx_rdtscp_supported()) {
  5770. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5771. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  5772. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  5773. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  5774. vmx->rdtscp_enabled = true;
  5775. else {
  5776. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  5777. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  5778. exec_control);
  5779. }
  5780. }
  5781. }
  5782. /* Exposing INVPCID only when PCID is exposed */
  5783. best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
  5784. if (vmx_invpcid_supported() &&
  5785. best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
  5786. guest_cpuid_has_pcid(vcpu)) {
  5787. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5788. exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
  5789. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  5790. exec_control);
  5791. } else {
  5792. if (cpu_has_secondary_exec_ctrls()) {
  5793. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5794. exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
  5795. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  5796. exec_control);
  5797. }
  5798. if (best)
  5799. best->ebx &= ~bit(X86_FEATURE_INVPCID);
  5800. }
  5801. }
  5802. static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  5803. {
  5804. if (func == 1 && nested)
  5805. entry->ecx |= bit(X86_FEATURE_VMX);
  5806. }
  5807. /*
  5808. * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
  5809. * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
  5810. * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
  5811. * guest in a way that will both be appropriate to L1's requests, and our
  5812. * needs. In addition to modifying the active vmcs (which is vmcs02), this
  5813. * function also has additional necessary side-effects, like setting various
  5814. * vcpu->arch fields.
  5815. */
  5816. static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5817. {
  5818. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5819. u32 exec_control;
  5820. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
  5821. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
  5822. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
  5823. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
  5824. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
  5825. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
  5826. vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
  5827. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
  5828. vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
  5829. vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
  5830. vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
  5831. vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
  5832. vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
  5833. vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
  5834. vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
  5835. vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
  5836. vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
  5837. vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
  5838. vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
  5839. vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
  5840. vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
  5841. vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
  5842. vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
  5843. vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
  5844. vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
  5845. vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
  5846. vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
  5847. vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
  5848. vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
  5849. vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
  5850. vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
  5851. vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
  5852. vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
  5853. vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
  5854. vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
  5855. vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
  5856. vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
  5857. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  5858. vmcs12->vm_entry_intr_info_field);
  5859. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  5860. vmcs12->vm_entry_exception_error_code);
  5861. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  5862. vmcs12->vm_entry_instruction_len);
  5863. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  5864. vmcs12->guest_interruptibility_info);
  5865. vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
  5866. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
  5867. vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
  5868. vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
  5869. vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
  5870. vmcs12->guest_pending_dbg_exceptions);
  5871. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
  5872. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
  5873. vmcs_write64(VMCS_LINK_POINTER, -1ull);
  5874. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  5875. (vmcs_config.pin_based_exec_ctrl |
  5876. vmcs12->pin_based_vm_exec_control));
  5877. /*
  5878. * Whether page-faults are trapped is determined by a combination of
  5879. * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
  5880. * If enable_ept, L0 doesn't care about page faults and we should
  5881. * set all of these to L1's desires. However, if !enable_ept, L0 does
  5882. * care about (at least some) page faults, and because it is not easy
  5883. * (if at all possible?) to merge L0 and L1's desires, we simply ask
  5884. * to exit on each and every L2 page fault. This is done by setting
  5885. * MASK=MATCH=0 and (see below) EB.PF=1.
  5886. * Note that below we don't need special code to set EB.PF beyond the
  5887. * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
  5888. * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
  5889. * !enable_ept, EB.PF is 1, so the "or" will always be 1.
  5890. *
  5891. * A problem with this approach (when !enable_ept) is that L1 may be
  5892. * injected with more page faults than it asked for. This could have
  5893. * caused problems, but in practice existing hypervisors don't care.
  5894. * To fix this, we will need to emulate the PFEC checking (on the L1
  5895. * page tables), using walk_addr(), when injecting PFs to L1.
  5896. */
  5897. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
  5898. enable_ept ? vmcs12->page_fault_error_code_mask : 0);
  5899. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
  5900. enable_ept ? vmcs12->page_fault_error_code_match : 0);
  5901. if (cpu_has_secondary_exec_ctrls()) {
  5902. u32 exec_control = vmx_secondary_exec_control(vmx);
  5903. if (!vmx->rdtscp_enabled)
  5904. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  5905. /* Take the following fields only from vmcs12 */
  5906. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5907. if (nested_cpu_has(vmcs12,
  5908. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
  5909. exec_control |= vmcs12->secondary_vm_exec_control;
  5910. if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
  5911. /*
  5912. * Translate L1 physical address to host physical
  5913. * address for vmcs02. Keep the page pinned, so this
  5914. * physical address remains valid. We keep a reference
  5915. * to it so we can release it later.
  5916. */
  5917. if (vmx->nested.apic_access_page) /* shouldn't happen */
  5918. nested_release_page(vmx->nested.apic_access_page);
  5919. vmx->nested.apic_access_page =
  5920. nested_get_page(vcpu, vmcs12->apic_access_addr);
  5921. /*
  5922. * If translation failed, no matter: This feature asks
  5923. * to exit when accessing the given address, and if it
  5924. * can never be accessed, this feature won't do
  5925. * anything anyway.
  5926. */
  5927. if (!vmx->nested.apic_access_page)
  5928. exec_control &=
  5929. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5930. else
  5931. vmcs_write64(APIC_ACCESS_ADDR,
  5932. page_to_phys(vmx->nested.apic_access_page));
  5933. }
  5934. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  5935. }
  5936. /*
  5937. * Set host-state according to L0's settings (vmcs12 is irrelevant here)
  5938. * Some constant fields are set here by vmx_set_constant_host_state().
  5939. * Other fields are different per CPU, and will be set later when
  5940. * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
  5941. */
  5942. vmx_set_constant_host_state();
  5943. /*
  5944. * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
  5945. * entry, but only if the current (host) sp changed from the value
  5946. * we wrote last (vmx->host_rsp). This cache is no longer relevant
  5947. * if we switch vmcs, and rather than hold a separate cache per vmcs,
  5948. * here we just force the write to happen on entry.
  5949. */
  5950. vmx->host_rsp = 0;
  5951. exec_control = vmx_exec_control(vmx); /* L0's desires */
  5952. exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  5953. exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  5954. exec_control &= ~CPU_BASED_TPR_SHADOW;
  5955. exec_control |= vmcs12->cpu_based_vm_exec_control;
  5956. /*
  5957. * Merging of IO and MSR bitmaps not currently supported.
  5958. * Rather, exit every time.
  5959. */
  5960. exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
  5961. exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
  5962. exec_control |= CPU_BASED_UNCOND_IO_EXITING;
  5963. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  5964. /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
  5965. * bitwise-or of what L1 wants to trap for L2, and what we want to
  5966. * trap. Note that CR0.TS also needs updating - we do this later.
  5967. */
  5968. update_exception_bitmap(vcpu);
  5969. vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
  5970. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  5971. /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
  5972. vmcs_write32(VM_EXIT_CONTROLS,
  5973. vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
  5974. vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
  5975. (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
  5976. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
  5977. vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
  5978. else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
  5979. vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
  5980. set_cr4_guest_host_mask(vmx);
  5981. if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
  5982. vmcs_write64(TSC_OFFSET,
  5983. vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
  5984. else
  5985. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  5986. if (enable_vpid) {
  5987. /*
  5988. * Trivially support vpid by letting L2s share their parent
  5989. * L1's vpid. TODO: move to a more elaborate solution, giving
  5990. * each L2 its own vpid and exposing the vpid feature to L1.
  5991. */
  5992. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  5993. vmx_flush_tlb(vcpu);
  5994. }
  5995. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
  5996. vcpu->arch.efer = vmcs12->guest_ia32_efer;
  5997. if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
  5998. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  5999. else
  6000. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  6001. /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
  6002. vmx_set_efer(vcpu, vcpu->arch.efer);
  6003. /*
  6004. * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
  6005. * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
  6006. * The CR0_READ_SHADOW is what L2 should have expected to read given
  6007. * the specifications by L1; It's not enough to take
  6008. * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
  6009. * have more bits than L1 expected.
  6010. */
  6011. vmx_set_cr0(vcpu, vmcs12->guest_cr0);
  6012. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  6013. vmx_set_cr4(vcpu, vmcs12->guest_cr4);
  6014. vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
  6015. /* shadow page tables on either EPT or shadow page tables */
  6016. kvm_set_cr3(vcpu, vmcs12->guest_cr3);
  6017. kvm_mmu_reset_context(vcpu);
  6018. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
  6019. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
  6020. }
  6021. /*
  6022. * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
  6023. * for running an L2 nested guest.
  6024. */
  6025. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
  6026. {
  6027. struct vmcs12 *vmcs12;
  6028. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6029. int cpu;
  6030. struct loaded_vmcs *vmcs02;
  6031. if (!nested_vmx_check_permission(vcpu) ||
  6032. !nested_vmx_check_vmcs12(vcpu))
  6033. return 1;
  6034. skip_emulated_instruction(vcpu);
  6035. vmcs12 = get_vmcs12(vcpu);
  6036. /*
  6037. * The nested entry process starts with enforcing various prerequisites
  6038. * on vmcs12 as required by the Intel SDM, and act appropriately when
  6039. * they fail: As the SDM explains, some conditions should cause the
  6040. * instruction to fail, while others will cause the instruction to seem
  6041. * to succeed, but return an EXIT_REASON_INVALID_STATE.
  6042. * To speed up the normal (success) code path, we should avoid checking
  6043. * for misconfigurations which will anyway be caught by the processor
  6044. * when using the merged vmcs02.
  6045. */
  6046. if (vmcs12->launch_state == launch) {
  6047. nested_vmx_failValid(vcpu,
  6048. launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
  6049. : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
  6050. return 1;
  6051. }
  6052. if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
  6053. !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
  6054. /*TODO: Also verify bits beyond physical address width are 0*/
  6055. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6056. return 1;
  6057. }
  6058. if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
  6059. !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
  6060. /*TODO: Also verify bits beyond physical address width are 0*/
  6061. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6062. return 1;
  6063. }
  6064. if (vmcs12->vm_entry_msr_load_count > 0 ||
  6065. vmcs12->vm_exit_msr_load_count > 0 ||
  6066. vmcs12->vm_exit_msr_store_count > 0) {
  6067. pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
  6068. __func__);
  6069. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6070. return 1;
  6071. }
  6072. if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
  6073. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
  6074. !vmx_control_verify(vmcs12->secondary_vm_exec_control,
  6075. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
  6076. !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
  6077. nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
  6078. !vmx_control_verify(vmcs12->vm_exit_controls,
  6079. nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
  6080. !vmx_control_verify(vmcs12->vm_entry_controls,
  6081. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
  6082. {
  6083. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6084. return 1;
  6085. }
  6086. if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  6087. ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  6088. nested_vmx_failValid(vcpu,
  6089. VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
  6090. return 1;
  6091. }
  6092. if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  6093. ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  6094. nested_vmx_entry_failure(vcpu, vmcs12,
  6095. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
  6096. return 1;
  6097. }
  6098. if (vmcs12->vmcs_link_pointer != -1ull) {
  6099. nested_vmx_entry_failure(vcpu, vmcs12,
  6100. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
  6101. return 1;
  6102. }
  6103. /*
  6104. * We're finally done with prerequisite checking, and can start with
  6105. * the nested entry.
  6106. */
  6107. vmcs02 = nested_get_current_vmcs02(vmx);
  6108. if (!vmcs02)
  6109. return -ENOMEM;
  6110. enter_guest_mode(vcpu);
  6111. vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
  6112. cpu = get_cpu();
  6113. vmx->loaded_vmcs = vmcs02;
  6114. vmx_vcpu_put(vcpu);
  6115. vmx_vcpu_load(vcpu, cpu);
  6116. vcpu->cpu = cpu;
  6117. put_cpu();
  6118. vmcs12->launch_state = 1;
  6119. prepare_vmcs02(vcpu, vmcs12);
  6120. /*
  6121. * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
  6122. * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
  6123. * returned as far as L1 is concerned. It will only return (and set
  6124. * the success flag) when L2 exits (see nested_vmx_vmexit()).
  6125. */
  6126. return 1;
  6127. }
  6128. /*
  6129. * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
  6130. * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
  6131. * This function returns the new value we should put in vmcs12.guest_cr0.
  6132. * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
  6133. * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
  6134. * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
  6135. * didn't trap the bit, because if L1 did, so would L0).
  6136. * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
  6137. * been modified by L2, and L1 knows it. So just leave the old value of
  6138. * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
  6139. * isn't relevant, because if L0 traps this bit it can set it to anything.
  6140. * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
  6141. * changed these bits, and therefore they need to be updated, but L0
  6142. * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
  6143. * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
  6144. */
  6145. static inline unsigned long
  6146. vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6147. {
  6148. return
  6149. /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
  6150. /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
  6151. /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
  6152. vcpu->arch.cr0_guest_owned_bits));
  6153. }
  6154. static inline unsigned long
  6155. vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6156. {
  6157. return
  6158. /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
  6159. /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
  6160. /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
  6161. vcpu->arch.cr4_guest_owned_bits));
  6162. }
  6163. /*
  6164. * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
  6165. * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
  6166. * and this function updates it to reflect the changes to the guest state while
  6167. * L2 was running (and perhaps made some exits which were handled directly by L0
  6168. * without going back to L1), and to reflect the exit reason.
  6169. * Note that we do not have to copy here all VMCS fields, just those that
  6170. * could have changed by the L2 guest or the exit - i.e., the guest-state and
  6171. * exit-information fields only. Other fields are modified by L1 with VMWRITE,
  6172. * which already writes to vmcs12 directly.
  6173. */
  6174. void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6175. {
  6176. /* update guest state fields: */
  6177. vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
  6178. vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
  6179. kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
  6180. vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  6181. vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
  6182. vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
  6183. vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
  6184. vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
  6185. vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
  6186. vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
  6187. vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
  6188. vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
  6189. vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
  6190. vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
  6191. vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
  6192. vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
  6193. vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  6194. vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
  6195. vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
  6196. vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
  6197. vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
  6198. vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
  6199. vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
  6200. vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
  6201. vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
  6202. vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
  6203. vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
  6204. vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
  6205. vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
  6206. vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
  6207. vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
  6208. vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
  6209. vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
  6210. vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
  6211. vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
  6212. vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
  6213. vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
  6214. vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
  6215. vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
  6216. vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
  6217. vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
  6218. vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
  6219. vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
  6220. vmcs12->guest_interruptibility_info =
  6221. vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  6222. vmcs12->guest_pending_dbg_exceptions =
  6223. vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
  6224. /* TODO: These cannot have changed unless we have MSR bitmaps and
  6225. * the relevant bit asks not to trap the change */
  6226. vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
  6227. if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
  6228. vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
  6229. vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
  6230. vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
  6231. vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
  6232. /* update exit information fields: */
  6233. vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
  6234. vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  6235. vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  6236. vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  6237. vmcs12->idt_vectoring_info_field =
  6238. vmcs_read32(IDT_VECTORING_INFO_FIELD);
  6239. vmcs12->idt_vectoring_error_code =
  6240. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  6241. vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  6242. vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  6243. /* clear vm-entry fields which are to be cleared on exit */
  6244. if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
  6245. vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
  6246. }
  6247. /*
  6248. * A part of what we need to when the nested L2 guest exits and we want to
  6249. * run its L1 parent, is to reset L1's guest state to the host state specified
  6250. * in vmcs12.
  6251. * This function is to be called not only on normal nested exit, but also on
  6252. * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
  6253. * Failures During or After Loading Guest State").
  6254. * This function should be called when the active VMCS is L1's (vmcs01).
  6255. */
  6256. void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6257. {
  6258. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
  6259. vcpu->arch.efer = vmcs12->host_ia32_efer;
  6260. if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
  6261. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  6262. else
  6263. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  6264. vmx_set_efer(vcpu, vcpu->arch.efer);
  6265. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
  6266. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
  6267. /*
  6268. * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
  6269. * actually changed, because it depends on the current state of
  6270. * fpu_active (which may have changed).
  6271. * Note that vmx_set_cr0 refers to efer set above.
  6272. */
  6273. kvm_set_cr0(vcpu, vmcs12->host_cr0);
  6274. /*
  6275. * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
  6276. * to apply the same changes to L1's vmcs. We just set cr0 correctly,
  6277. * but we also need to update cr0_guest_host_mask and exception_bitmap.
  6278. */
  6279. update_exception_bitmap(vcpu);
  6280. vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
  6281. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  6282. /*
  6283. * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
  6284. * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
  6285. */
  6286. vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
  6287. kvm_set_cr4(vcpu, vmcs12->host_cr4);
  6288. /* shadow page tables on either EPT or shadow page tables */
  6289. kvm_set_cr3(vcpu, vmcs12->host_cr3);
  6290. kvm_mmu_reset_context(vcpu);
  6291. if (enable_vpid) {
  6292. /*
  6293. * Trivially support vpid by letting L2s share their parent
  6294. * L1's vpid. TODO: move to a more elaborate solution, giving
  6295. * each L2 its own vpid and exposing the vpid feature to L1.
  6296. */
  6297. vmx_flush_tlb(vcpu);
  6298. }
  6299. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
  6300. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
  6301. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
  6302. vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
  6303. vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
  6304. vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
  6305. vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
  6306. vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
  6307. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
  6308. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
  6309. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
  6310. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
  6311. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
  6312. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
  6313. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
  6314. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
  6315. vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
  6316. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
  6317. vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
  6318. vmcs12->host_ia32_perf_global_ctrl);
  6319. }
  6320. /*
  6321. * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
  6322. * and modify vmcs12 to make it see what it would expect to see there if
  6323. * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
  6324. */
  6325. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
  6326. {
  6327. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6328. int cpu;
  6329. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  6330. leave_guest_mode(vcpu);
  6331. prepare_vmcs12(vcpu, vmcs12);
  6332. cpu = get_cpu();
  6333. vmx->loaded_vmcs = &vmx->vmcs01;
  6334. vmx_vcpu_put(vcpu);
  6335. vmx_vcpu_load(vcpu, cpu);
  6336. vcpu->cpu = cpu;
  6337. put_cpu();
  6338. /* if no vmcs02 cache requested, remove the one we used */
  6339. if (VMCS02_POOL_SIZE == 0)
  6340. nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
  6341. load_vmcs12_host_state(vcpu, vmcs12);
  6342. /* Update TSC_OFFSET if TSC was changed while L2 ran */
  6343. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  6344. /* This is needed for same reason as it was needed in prepare_vmcs02 */
  6345. vmx->host_rsp = 0;
  6346. /* Unpin physical memory we referred to in vmcs02 */
  6347. if (vmx->nested.apic_access_page) {
  6348. nested_release_page(vmx->nested.apic_access_page);
  6349. vmx->nested.apic_access_page = 0;
  6350. }
  6351. /*
  6352. * Exiting from L2 to L1, we're now back to L1 which thinks it just
  6353. * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
  6354. * success or failure flag accordingly.
  6355. */
  6356. if (unlikely(vmx->fail)) {
  6357. vmx->fail = 0;
  6358. nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
  6359. } else
  6360. nested_vmx_succeed(vcpu);
  6361. }
  6362. /*
  6363. * L1's failure to enter L2 is a subset of a normal exit, as explained in
  6364. * 23.7 "VM-entry failures during or after loading guest state" (this also
  6365. * lists the acceptable exit-reason and exit-qualification parameters).
  6366. * It should only be called before L2 actually succeeded to run, and when
  6367. * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
  6368. */
  6369. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  6370. struct vmcs12 *vmcs12,
  6371. u32 reason, unsigned long qualification)
  6372. {
  6373. load_vmcs12_host_state(vcpu, vmcs12);
  6374. vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
  6375. vmcs12->exit_qualification = qualification;
  6376. nested_vmx_succeed(vcpu);
  6377. }
  6378. static int vmx_check_intercept(struct kvm_vcpu *vcpu,
  6379. struct x86_instruction_info *info,
  6380. enum x86_intercept_stage stage)
  6381. {
  6382. return X86EMUL_CONTINUE;
  6383. }
  6384. static struct kvm_x86_ops vmx_x86_ops = {
  6385. .cpu_has_kvm_support = cpu_has_kvm_support,
  6386. .disabled_by_bios = vmx_disabled_by_bios,
  6387. .hardware_setup = hardware_setup,
  6388. .hardware_unsetup = hardware_unsetup,
  6389. .check_processor_compatibility = vmx_check_processor_compat,
  6390. .hardware_enable = hardware_enable,
  6391. .hardware_disable = hardware_disable,
  6392. .cpu_has_accelerated_tpr = report_flexpriority,
  6393. .vcpu_create = vmx_create_vcpu,
  6394. .vcpu_free = vmx_free_vcpu,
  6395. .vcpu_reset = vmx_vcpu_reset,
  6396. .prepare_guest_switch = vmx_save_host_state,
  6397. .vcpu_load = vmx_vcpu_load,
  6398. .vcpu_put = vmx_vcpu_put,
  6399. .update_db_bp_intercept = update_exception_bitmap,
  6400. .get_msr = vmx_get_msr,
  6401. .set_msr = vmx_set_msr,
  6402. .get_segment_base = vmx_get_segment_base,
  6403. .get_segment = vmx_get_segment,
  6404. .set_segment = vmx_set_segment,
  6405. .get_cpl = vmx_get_cpl,
  6406. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  6407. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  6408. .decache_cr3 = vmx_decache_cr3,
  6409. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  6410. .set_cr0 = vmx_set_cr0,
  6411. .set_cr3 = vmx_set_cr3,
  6412. .set_cr4 = vmx_set_cr4,
  6413. .set_efer = vmx_set_efer,
  6414. .get_idt = vmx_get_idt,
  6415. .set_idt = vmx_set_idt,
  6416. .get_gdt = vmx_get_gdt,
  6417. .set_gdt = vmx_set_gdt,
  6418. .set_dr7 = vmx_set_dr7,
  6419. .cache_reg = vmx_cache_reg,
  6420. .get_rflags = vmx_get_rflags,
  6421. .set_rflags = vmx_set_rflags,
  6422. .fpu_activate = vmx_fpu_activate,
  6423. .fpu_deactivate = vmx_fpu_deactivate,
  6424. .tlb_flush = vmx_flush_tlb,
  6425. .run = vmx_vcpu_run,
  6426. .handle_exit = vmx_handle_exit,
  6427. .skip_emulated_instruction = skip_emulated_instruction,
  6428. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  6429. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  6430. .patch_hypercall = vmx_patch_hypercall,
  6431. .set_irq = vmx_inject_irq,
  6432. .set_nmi = vmx_inject_nmi,
  6433. .queue_exception = vmx_queue_exception,
  6434. .cancel_injection = vmx_cancel_injection,
  6435. .interrupt_allowed = vmx_interrupt_allowed,
  6436. .nmi_allowed = vmx_nmi_allowed,
  6437. .get_nmi_mask = vmx_get_nmi_mask,
  6438. .set_nmi_mask = vmx_set_nmi_mask,
  6439. .enable_nmi_window = enable_nmi_window,
  6440. .enable_irq_window = enable_irq_window,
  6441. .update_cr8_intercept = update_cr8_intercept,
  6442. .set_tss_addr = vmx_set_tss_addr,
  6443. .get_tdp_level = get_ept_level,
  6444. .get_mt_mask = vmx_get_mt_mask,
  6445. .get_exit_info = vmx_get_exit_info,
  6446. .get_lpage_level = vmx_get_lpage_level,
  6447. .cpuid_update = vmx_cpuid_update,
  6448. .rdtscp_supported = vmx_rdtscp_supported,
  6449. .invpcid_supported = vmx_invpcid_supported,
  6450. .set_supported_cpuid = vmx_set_supported_cpuid,
  6451. .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
  6452. .set_tsc_khz = vmx_set_tsc_khz,
  6453. .read_tsc_offset = vmx_read_tsc_offset,
  6454. .write_tsc_offset = vmx_write_tsc_offset,
  6455. .adjust_tsc_offset = vmx_adjust_tsc_offset,
  6456. .compute_tsc_offset = vmx_compute_tsc_offset,
  6457. .read_l1_tsc = vmx_read_l1_tsc,
  6458. .set_tdp_cr3 = vmx_set_cr3,
  6459. .check_intercept = vmx_check_intercept,
  6460. };
  6461. static int __init vmx_init(void)
  6462. {
  6463. int r, i;
  6464. rdmsrl_safe(MSR_EFER, &host_efer);
  6465. for (i = 0; i < NR_VMX_MSR; ++i)
  6466. kvm_define_shared_msr(i, vmx_msr_index[i]);
  6467. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  6468. if (!vmx_io_bitmap_a)
  6469. return -ENOMEM;
  6470. r = -ENOMEM;
  6471. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  6472. if (!vmx_io_bitmap_b)
  6473. goto out;
  6474. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  6475. if (!vmx_msr_bitmap_legacy)
  6476. goto out1;
  6477. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  6478. if (!vmx_msr_bitmap_longmode)
  6479. goto out2;
  6480. /*
  6481. * Allow direct access to the PC debug port (it is often used for I/O
  6482. * delays, but the vmexits simply slow things down).
  6483. */
  6484. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  6485. clear_bit(0x80, vmx_io_bitmap_a);
  6486. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  6487. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  6488. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  6489. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  6490. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
  6491. __alignof__(struct vcpu_vmx), THIS_MODULE);
  6492. if (r)
  6493. goto out3;
  6494. #ifdef CONFIG_KEXEC
  6495. rcu_assign_pointer(crash_vmclear_loaded_vmcss,
  6496. crash_vmclear_local_loaded_vmcss);
  6497. #endif
  6498. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  6499. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  6500. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  6501. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  6502. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  6503. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  6504. if (enable_ept) {
  6505. kvm_mmu_set_mask_ptes(0ull,
  6506. (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
  6507. (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
  6508. 0ull, VMX_EPT_EXECUTABLE_MASK);
  6509. ept_set_mmio_spte_mask();
  6510. kvm_enable_tdp();
  6511. } else
  6512. kvm_disable_tdp();
  6513. return 0;
  6514. out3:
  6515. free_page((unsigned long)vmx_msr_bitmap_longmode);
  6516. out2:
  6517. free_page((unsigned long)vmx_msr_bitmap_legacy);
  6518. out1:
  6519. free_page((unsigned long)vmx_io_bitmap_b);
  6520. out:
  6521. free_page((unsigned long)vmx_io_bitmap_a);
  6522. return r;
  6523. }
  6524. static void __exit vmx_exit(void)
  6525. {
  6526. free_page((unsigned long)vmx_msr_bitmap_legacy);
  6527. free_page((unsigned long)vmx_msr_bitmap_longmode);
  6528. free_page((unsigned long)vmx_io_bitmap_b);
  6529. free_page((unsigned long)vmx_io_bitmap_a);
  6530. #ifdef CONFIG_KEXEC
  6531. rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
  6532. synchronize_rcu();
  6533. #endif
  6534. kvm_exit();
  6535. }
  6536. module_init(vmx_init)
  6537. module_exit(vmx_exit)