fork.c 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/personality.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/sem.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/iocontext.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/mmu_notifier.h>
  28. #include <linux/fs.h>
  29. #include <linux/nsproxy.h>
  30. #include <linux/capability.h>
  31. #include <linux/cpu.h>
  32. #include <linux/cgroup.h>
  33. #include <linux/security.h>
  34. #include <linux/hugetlb.h>
  35. #include <linux/swap.h>
  36. #include <linux/syscalls.h>
  37. #include <linux/jiffies.h>
  38. #include <linux/tracehook.h>
  39. #include <linux/futex.h>
  40. #include <linux/compat.h>
  41. #include <linux/task_io_accounting_ops.h>
  42. #include <linux/rcupdate.h>
  43. #include <linux/ptrace.h>
  44. #include <linux/mount.h>
  45. #include <linux/audit.h>
  46. #include <linux/memcontrol.h>
  47. #include <linux/ftrace.h>
  48. #include <linux/profile.h>
  49. #include <linux/rmap.h>
  50. #include <linux/acct.h>
  51. #include <linux/tsacct_kern.h>
  52. #include <linux/cn_proc.h>
  53. #include <linux/freezer.h>
  54. #include <linux/delayacct.h>
  55. #include <linux/taskstats_kern.h>
  56. #include <linux/random.h>
  57. #include <linux/tty.h>
  58. #include <linux/proc_fs.h>
  59. #include <linux/blkdev.h>
  60. #include <linux/fs_struct.h>
  61. #include <linux/magic.h>
  62. #include <linux/perf_event.h>
  63. #include <asm/pgtable.h>
  64. #include <asm/pgalloc.h>
  65. #include <asm/uaccess.h>
  66. #include <asm/mmu_context.h>
  67. #include <asm/cacheflush.h>
  68. #include <asm/tlbflush.h>
  69. #include <trace/events/sched.h>
  70. /*
  71. * Protected counters by write_lock_irq(&tasklist_lock)
  72. */
  73. unsigned long total_forks; /* Handle normal Linux uptimes. */
  74. int nr_threads; /* The idle threads do not count.. */
  75. int max_threads; /* tunable limit on nr_threads */
  76. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  77. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  78. int nr_processes(void)
  79. {
  80. int cpu;
  81. int total = 0;
  82. for_each_online_cpu(cpu)
  83. total += per_cpu(process_counts, cpu);
  84. return total;
  85. }
  86. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  87. # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
  88. # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
  89. static struct kmem_cache *task_struct_cachep;
  90. #endif
  91. #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
  92. static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
  93. {
  94. #ifdef CONFIG_DEBUG_STACK_USAGE
  95. gfp_t mask = GFP_KERNEL | __GFP_ZERO;
  96. #else
  97. gfp_t mask = GFP_KERNEL;
  98. #endif
  99. return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
  100. }
  101. static inline void free_thread_info(struct thread_info *ti)
  102. {
  103. free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
  104. }
  105. #endif
  106. /* SLAB cache for signal_struct structures (tsk->signal) */
  107. static struct kmem_cache *signal_cachep;
  108. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  109. struct kmem_cache *sighand_cachep;
  110. /* SLAB cache for files_struct structures (tsk->files) */
  111. struct kmem_cache *files_cachep;
  112. /* SLAB cache for fs_struct structures (tsk->fs) */
  113. struct kmem_cache *fs_cachep;
  114. /* SLAB cache for vm_area_struct structures */
  115. struct kmem_cache *vm_area_cachep;
  116. /* SLAB cache for mm_struct structures (tsk->mm) */
  117. static struct kmem_cache *mm_cachep;
  118. static void account_kernel_stack(struct thread_info *ti, int account)
  119. {
  120. struct zone *zone = page_zone(virt_to_page(ti));
  121. mod_zone_page_state(zone, NR_KERNEL_STACK, account);
  122. }
  123. void free_task(struct task_struct *tsk)
  124. {
  125. prop_local_destroy_single(&tsk->dirties);
  126. account_kernel_stack(tsk->stack, -1);
  127. free_thread_info(tsk->stack);
  128. rt_mutex_debug_task_free(tsk);
  129. ftrace_graph_exit_task(tsk);
  130. free_task_struct(tsk);
  131. }
  132. EXPORT_SYMBOL(free_task);
  133. void __put_task_struct(struct task_struct *tsk)
  134. {
  135. WARN_ON(!tsk->exit_state);
  136. WARN_ON(atomic_read(&tsk->usage));
  137. WARN_ON(tsk == current);
  138. exit_creds(tsk);
  139. delayacct_tsk_free(tsk);
  140. if (!profile_handoff_task(tsk))
  141. free_task(tsk);
  142. }
  143. /*
  144. * macro override instead of weak attribute alias, to workaround
  145. * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
  146. */
  147. #ifndef arch_task_cache_init
  148. #define arch_task_cache_init()
  149. #endif
  150. void __init fork_init(unsigned long mempages)
  151. {
  152. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  153. #ifndef ARCH_MIN_TASKALIGN
  154. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  155. #endif
  156. /* create a slab on which task_structs can be allocated */
  157. task_struct_cachep =
  158. kmem_cache_create("task_struct", sizeof(struct task_struct),
  159. ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
  160. #endif
  161. /* do the arch specific task caches init */
  162. arch_task_cache_init();
  163. /*
  164. * The default maximum number of threads is set to a safe
  165. * value: the thread structures can take up at most half
  166. * of memory.
  167. */
  168. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  169. /*
  170. * we need to allow at least 20 threads to boot a system
  171. */
  172. if(max_threads < 20)
  173. max_threads = 20;
  174. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  175. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  176. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  177. init_task.signal->rlim[RLIMIT_NPROC];
  178. }
  179. int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
  180. struct task_struct *src)
  181. {
  182. *dst = *src;
  183. return 0;
  184. }
  185. static struct task_struct *dup_task_struct(struct task_struct *orig)
  186. {
  187. struct task_struct *tsk;
  188. struct thread_info *ti;
  189. unsigned long *stackend;
  190. int err;
  191. prepare_to_copy(orig);
  192. tsk = alloc_task_struct();
  193. if (!tsk)
  194. return NULL;
  195. ti = alloc_thread_info(tsk);
  196. if (!ti) {
  197. free_task_struct(tsk);
  198. return NULL;
  199. }
  200. err = arch_dup_task_struct(tsk, orig);
  201. if (err)
  202. goto out;
  203. tsk->stack = ti;
  204. err = prop_local_init_single(&tsk->dirties);
  205. if (err)
  206. goto out;
  207. setup_thread_stack(tsk, orig);
  208. stackend = end_of_stack(tsk);
  209. *stackend = STACK_END_MAGIC; /* for overflow detection */
  210. #ifdef CONFIG_CC_STACKPROTECTOR
  211. tsk->stack_canary = get_random_int();
  212. #endif
  213. /* One for us, one for whoever does the "release_task()" (usually parent) */
  214. atomic_set(&tsk->usage,2);
  215. atomic_set(&tsk->fs_excl, 0);
  216. #ifdef CONFIG_BLK_DEV_IO_TRACE
  217. tsk->btrace_seq = 0;
  218. #endif
  219. tsk->splice_pipe = NULL;
  220. account_kernel_stack(ti, 1);
  221. return tsk;
  222. out:
  223. free_thread_info(ti);
  224. free_task_struct(tsk);
  225. return NULL;
  226. }
  227. #ifdef CONFIG_MMU
  228. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  229. {
  230. struct vm_area_struct *mpnt, *tmp, **pprev;
  231. struct rb_node **rb_link, *rb_parent;
  232. int retval;
  233. unsigned long charge;
  234. struct mempolicy *pol;
  235. down_write(&oldmm->mmap_sem);
  236. flush_cache_dup_mm(oldmm);
  237. /*
  238. * Not linked in yet - no deadlock potential:
  239. */
  240. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  241. mm->locked_vm = 0;
  242. mm->mmap = NULL;
  243. mm->mmap_cache = NULL;
  244. mm->free_area_cache = oldmm->mmap_base;
  245. mm->cached_hole_size = ~0UL;
  246. mm->map_count = 0;
  247. cpumask_clear(mm_cpumask(mm));
  248. mm->mm_rb = RB_ROOT;
  249. rb_link = &mm->mm_rb.rb_node;
  250. rb_parent = NULL;
  251. pprev = &mm->mmap;
  252. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  253. struct file *file;
  254. if (mpnt->vm_flags & VM_DONTCOPY) {
  255. long pages = vma_pages(mpnt);
  256. mm->total_vm -= pages;
  257. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  258. -pages);
  259. continue;
  260. }
  261. charge = 0;
  262. if (mpnt->vm_flags & VM_ACCOUNT) {
  263. unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
  264. if (security_vm_enough_memory(len))
  265. goto fail_nomem;
  266. charge = len;
  267. }
  268. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  269. if (!tmp)
  270. goto fail_nomem;
  271. *tmp = *mpnt;
  272. pol = mpol_dup(vma_policy(mpnt));
  273. retval = PTR_ERR(pol);
  274. if (IS_ERR(pol))
  275. goto fail_nomem_policy;
  276. vma_set_policy(tmp, pol);
  277. tmp->vm_flags &= ~VM_LOCKED;
  278. tmp->vm_mm = mm;
  279. tmp->vm_next = NULL;
  280. anon_vma_link(tmp);
  281. file = tmp->vm_file;
  282. if (file) {
  283. struct inode *inode = file->f_path.dentry->d_inode;
  284. struct address_space *mapping = file->f_mapping;
  285. get_file(file);
  286. if (tmp->vm_flags & VM_DENYWRITE)
  287. atomic_dec(&inode->i_writecount);
  288. spin_lock(&mapping->i_mmap_lock);
  289. if (tmp->vm_flags & VM_SHARED)
  290. mapping->i_mmap_writable++;
  291. tmp->vm_truncate_count = mpnt->vm_truncate_count;
  292. flush_dcache_mmap_lock(mapping);
  293. /* insert tmp into the share list, just after mpnt */
  294. vma_prio_tree_add(tmp, mpnt);
  295. flush_dcache_mmap_unlock(mapping);
  296. spin_unlock(&mapping->i_mmap_lock);
  297. }
  298. /*
  299. * Clear hugetlb-related page reserves for children. This only
  300. * affects MAP_PRIVATE mappings. Faults generated by the child
  301. * are not guaranteed to succeed, even if read-only
  302. */
  303. if (is_vm_hugetlb_page(tmp))
  304. reset_vma_resv_huge_pages(tmp);
  305. /*
  306. * Link in the new vma and copy the page table entries.
  307. */
  308. *pprev = tmp;
  309. pprev = &tmp->vm_next;
  310. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  311. rb_link = &tmp->vm_rb.rb_right;
  312. rb_parent = &tmp->vm_rb;
  313. mm->map_count++;
  314. retval = copy_page_range(mm, oldmm, mpnt);
  315. if (tmp->vm_ops && tmp->vm_ops->open)
  316. tmp->vm_ops->open(tmp);
  317. if (retval)
  318. goto out;
  319. }
  320. /* a new mm has just been created */
  321. arch_dup_mmap(oldmm, mm);
  322. retval = 0;
  323. out:
  324. up_write(&mm->mmap_sem);
  325. flush_tlb_mm(oldmm);
  326. up_write(&oldmm->mmap_sem);
  327. return retval;
  328. fail_nomem_policy:
  329. kmem_cache_free(vm_area_cachep, tmp);
  330. fail_nomem:
  331. retval = -ENOMEM;
  332. vm_unacct_memory(charge);
  333. goto out;
  334. }
  335. static inline int mm_alloc_pgd(struct mm_struct * mm)
  336. {
  337. mm->pgd = pgd_alloc(mm);
  338. if (unlikely(!mm->pgd))
  339. return -ENOMEM;
  340. return 0;
  341. }
  342. static inline void mm_free_pgd(struct mm_struct * mm)
  343. {
  344. pgd_free(mm, mm->pgd);
  345. }
  346. #else
  347. #define dup_mmap(mm, oldmm) (0)
  348. #define mm_alloc_pgd(mm) (0)
  349. #define mm_free_pgd(mm)
  350. #endif /* CONFIG_MMU */
  351. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  352. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  353. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  354. static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
  355. static int __init coredump_filter_setup(char *s)
  356. {
  357. default_dump_filter =
  358. (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
  359. MMF_DUMP_FILTER_MASK;
  360. return 1;
  361. }
  362. __setup("coredump_filter=", coredump_filter_setup);
  363. #include <linux/init_task.h>
  364. static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
  365. {
  366. atomic_set(&mm->mm_users, 1);
  367. atomic_set(&mm->mm_count, 1);
  368. init_rwsem(&mm->mmap_sem);
  369. INIT_LIST_HEAD(&mm->mmlist);
  370. mm->flags = (current->mm) ? current->mm->flags : default_dump_filter;
  371. mm->core_state = NULL;
  372. mm->nr_ptes = 0;
  373. set_mm_counter(mm, file_rss, 0);
  374. set_mm_counter(mm, anon_rss, 0);
  375. spin_lock_init(&mm->page_table_lock);
  376. spin_lock_init(&mm->ioctx_lock);
  377. INIT_HLIST_HEAD(&mm->ioctx_list);
  378. mm->free_area_cache = TASK_UNMAPPED_BASE;
  379. mm->cached_hole_size = ~0UL;
  380. mm_init_owner(mm, p);
  381. if (likely(!mm_alloc_pgd(mm))) {
  382. mm->def_flags = 0;
  383. mmu_notifier_mm_init(mm);
  384. return mm;
  385. }
  386. free_mm(mm);
  387. return NULL;
  388. }
  389. /*
  390. * Allocate and initialize an mm_struct.
  391. */
  392. struct mm_struct * mm_alloc(void)
  393. {
  394. struct mm_struct * mm;
  395. mm = allocate_mm();
  396. if (mm) {
  397. memset(mm, 0, sizeof(*mm));
  398. mm = mm_init(mm, current);
  399. }
  400. return mm;
  401. }
  402. /*
  403. * Called when the last reference to the mm
  404. * is dropped: either by a lazy thread or by
  405. * mmput. Free the page directory and the mm.
  406. */
  407. void __mmdrop(struct mm_struct *mm)
  408. {
  409. BUG_ON(mm == &init_mm);
  410. mm_free_pgd(mm);
  411. destroy_context(mm);
  412. mmu_notifier_mm_destroy(mm);
  413. free_mm(mm);
  414. }
  415. EXPORT_SYMBOL_GPL(__mmdrop);
  416. /*
  417. * Decrement the use count and release all resources for an mm.
  418. */
  419. void mmput(struct mm_struct *mm)
  420. {
  421. might_sleep();
  422. if (atomic_dec_and_test(&mm->mm_users)) {
  423. exit_aio(mm);
  424. exit_mmap(mm);
  425. set_mm_exe_file(mm, NULL);
  426. if (!list_empty(&mm->mmlist)) {
  427. spin_lock(&mmlist_lock);
  428. list_del(&mm->mmlist);
  429. spin_unlock(&mmlist_lock);
  430. }
  431. put_swap_token(mm);
  432. mmdrop(mm);
  433. }
  434. }
  435. EXPORT_SYMBOL_GPL(mmput);
  436. /**
  437. * get_task_mm - acquire a reference to the task's mm
  438. *
  439. * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
  440. * this kernel workthread has transiently adopted a user mm with use_mm,
  441. * to do its AIO) is not set and if so returns a reference to it, after
  442. * bumping up the use count. User must release the mm via mmput()
  443. * after use. Typically used by /proc and ptrace.
  444. */
  445. struct mm_struct *get_task_mm(struct task_struct *task)
  446. {
  447. struct mm_struct *mm;
  448. task_lock(task);
  449. mm = task->mm;
  450. if (mm) {
  451. if (task->flags & PF_KTHREAD)
  452. mm = NULL;
  453. else
  454. atomic_inc(&mm->mm_users);
  455. }
  456. task_unlock(task);
  457. return mm;
  458. }
  459. EXPORT_SYMBOL_GPL(get_task_mm);
  460. /* Please note the differences between mmput and mm_release.
  461. * mmput is called whenever we stop holding onto a mm_struct,
  462. * error success whatever.
  463. *
  464. * mm_release is called after a mm_struct has been removed
  465. * from the current process.
  466. *
  467. * This difference is important for error handling, when we
  468. * only half set up a mm_struct for a new process and need to restore
  469. * the old one. Because we mmput the new mm_struct before
  470. * restoring the old one. . .
  471. * Eric Biederman 10 January 1998
  472. */
  473. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  474. {
  475. struct completion *vfork_done = tsk->vfork_done;
  476. /* Get rid of any futexes when releasing the mm */
  477. #ifdef CONFIG_FUTEX
  478. if (unlikely(tsk->robust_list))
  479. exit_robust_list(tsk);
  480. #ifdef CONFIG_COMPAT
  481. if (unlikely(tsk->compat_robust_list))
  482. compat_exit_robust_list(tsk);
  483. #endif
  484. #endif
  485. /* Get rid of any cached register state */
  486. deactivate_mm(tsk, mm);
  487. /* notify parent sleeping on vfork() */
  488. if (vfork_done) {
  489. tsk->vfork_done = NULL;
  490. complete(vfork_done);
  491. }
  492. /*
  493. * If we're exiting normally, clear a user-space tid field if
  494. * requested. We leave this alone when dying by signal, to leave
  495. * the value intact in a core dump, and to save the unnecessary
  496. * trouble otherwise. Userland only wants this done for a sys_exit.
  497. */
  498. if (tsk->clear_child_tid) {
  499. if (!(tsk->flags & PF_SIGNALED) &&
  500. atomic_read(&mm->mm_users) > 1) {
  501. /*
  502. * We don't check the error code - if userspace has
  503. * not set up a proper pointer then tough luck.
  504. */
  505. put_user(0, tsk->clear_child_tid);
  506. sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
  507. 1, NULL, NULL, 0);
  508. }
  509. tsk->clear_child_tid = NULL;
  510. }
  511. }
  512. /*
  513. * Allocate a new mm structure and copy contents from the
  514. * mm structure of the passed in task structure.
  515. */
  516. struct mm_struct *dup_mm(struct task_struct *tsk)
  517. {
  518. struct mm_struct *mm, *oldmm = current->mm;
  519. int err;
  520. if (!oldmm)
  521. return NULL;
  522. mm = allocate_mm();
  523. if (!mm)
  524. goto fail_nomem;
  525. memcpy(mm, oldmm, sizeof(*mm));
  526. /* Initializing for Swap token stuff */
  527. mm->token_priority = 0;
  528. mm->last_interval = 0;
  529. if (!mm_init(mm, tsk))
  530. goto fail_nomem;
  531. if (init_new_context(tsk, mm))
  532. goto fail_nocontext;
  533. dup_mm_exe_file(oldmm, mm);
  534. err = dup_mmap(mm, oldmm);
  535. if (err)
  536. goto free_pt;
  537. mm->hiwater_rss = get_mm_rss(mm);
  538. mm->hiwater_vm = mm->total_vm;
  539. return mm;
  540. free_pt:
  541. mmput(mm);
  542. fail_nomem:
  543. return NULL;
  544. fail_nocontext:
  545. /*
  546. * If init_new_context() failed, we cannot use mmput() to free the mm
  547. * because it calls destroy_context()
  548. */
  549. mm_free_pgd(mm);
  550. free_mm(mm);
  551. return NULL;
  552. }
  553. static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
  554. {
  555. struct mm_struct * mm, *oldmm;
  556. int retval;
  557. tsk->min_flt = tsk->maj_flt = 0;
  558. tsk->nvcsw = tsk->nivcsw = 0;
  559. #ifdef CONFIG_DETECT_HUNG_TASK
  560. tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
  561. #endif
  562. tsk->mm = NULL;
  563. tsk->active_mm = NULL;
  564. /*
  565. * Are we cloning a kernel thread?
  566. *
  567. * We need to steal a active VM for that..
  568. */
  569. oldmm = current->mm;
  570. if (!oldmm)
  571. return 0;
  572. if (clone_flags & CLONE_VM) {
  573. atomic_inc(&oldmm->mm_users);
  574. mm = oldmm;
  575. goto good_mm;
  576. }
  577. retval = -ENOMEM;
  578. mm = dup_mm(tsk);
  579. if (!mm)
  580. goto fail_nomem;
  581. good_mm:
  582. /* Initializing for Swap token stuff */
  583. mm->token_priority = 0;
  584. mm->last_interval = 0;
  585. tsk->mm = mm;
  586. tsk->active_mm = mm;
  587. return 0;
  588. fail_nomem:
  589. return retval;
  590. }
  591. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  592. {
  593. struct fs_struct *fs = current->fs;
  594. if (clone_flags & CLONE_FS) {
  595. /* tsk->fs is already what we want */
  596. write_lock(&fs->lock);
  597. if (fs->in_exec) {
  598. write_unlock(&fs->lock);
  599. return -EAGAIN;
  600. }
  601. fs->users++;
  602. write_unlock(&fs->lock);
  603. return 0;
  604. }
  605. tsk->fs = copy_fs_struct(fs);
  606. if (!tsk->fs)
  607. return -ENOMEM;
  608. return 0;
  609. }
  610. static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
  611. {
  612. struct files_struct *oldf, *newf;
  613. int error = 0;
  614. /*
  615. * A background process may not have any files ...
  616. */
  617. oldf = current->files;
  618. if (!oldf)
  619. goto out;
  620. if (clone_flags & CLONE_FILES) {
  621. atomic_inc(&oldf->count);
  622. goto out;
  623. }
  624. newf = dup_fd(oldf, &error);
  625. if (!newf)
  626. goto out;
  627. tsk->files = newf;
  628. error = 0;
  629. out:
  630. return error;
  631. }
  632. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  633. {
  634. #ifdef CONFIG_BLOCK
  635. struct io_context *ioc = current->io_context;
  636. if (!ioc)
  637. return 0;
  638. /*
  639. * Share io context with parent, if CLONE_IO is set
  640. */
  641. if (clone_flags & CLONE_IO) {
  642. tsk->io_context = ioc_task_link(ioc);
  643. if (unlikely(!tsk->io_context))
  644. return -ENOMEM;
  645. } else if (ioprio_valid(ioc->ioprio)) {
  646. tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
  647. if (unlikely(!tsk->io_context))
  648. return -ENOMEM;
  649. tsk->io_context->ioprio = ioc->ioprio;
  650. }
  651. #endif
  652. return 0;
  653. }
  654. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  655. {
  656. struct sighand_struct *sig;
  657. if (clone_flags & CLONE_SIGHAND) {
  658. atomic_inc(&current->sighand->count);
  659. return 0;
  660. }
  661. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  662. rcu_assign_pointer(tsk->sighand, sig);
  663. if (!sig)
  664. return -ENOMEM;
  665. atomic_set(&sig->count, 1);
  666. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  667. return 0;
  668. }
  669. void __cleanup_sighand(struct sighand_struct *sighand)
  670. {
  671. if (atomic_dec_and_test(&sighand->count))
  672. kmem_cache_free(sighand_cachep, sighand);
  673. }
  674. /*
  675. * Initialize POSIX timer handling for a thread group.
  676. */
  677. static void posix_cpu_timers_init_group(struct signal_struct *sig)
  678. {
  679. /* Thread group counters. */
  680. thread_group_cputime_init(sig);
  681. /* Expiration times and increments. */
  682. sig->it_virt_expires = cputime_zero;
  683. sig->it_virt_incr = cputime_zero;
  684. sig->it_prof_expires = cputime_zero;
  685. sig->it_prof_incr = cputime_zero;
  686. /* Cached expiration times. */
  687. sig->cputime_expires.prof_exp = cputime_zero;
  688. sig->cputime_expires.virt_exp = cputime_zero;
  689. sig->cputime_expires.sched_exp = 0;
  690. if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
  691. sig->cputime_expires.prof_exp =
  692. secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
  693. sig->cputimer.running = 1;
  694. }
  695. /* The timer lists. */
  696. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  697. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  698. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  699. }
  700. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  701. {
  702. struct signal_struct *sig;
  703. if (clone_flags & CLONE_THREAD)
  704. return 0;
  705. sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
  706. tsk->signal = sig;
  707. if (!sig)
  708. return -ENOMEM;
  709. atomic_set(&sig->count, 1);
  710. atomic_set(&sig->live, 1);
  711. init_waitqueue_head(&sig->wait_chldexit);
  712. sig->flags = 0;
  713. if (clone_flags & CLONE_NEWPID)
  714. sig->flags |= SIGNAL_UNKILLABLE;
  715. sig->group_exit_code = 0;
  716. sig->group_exit_task = NULL;
  717. sig->group_stop_count = 0;
  718. sig->curr_target = tsk;
  719. init_sigpending(&sig->shared_pending);
  720. INIT_LIST_HEAD(&sig->posix_timers);
  721. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  722. sig->it_real_incr.tv64 = 0;
  723. sig->real_timer.function = it_real_fn;
  724. sig->leader = 0; /* session leadership doesn't inherit */
  725. sig->tty_old_pgrp = NULL;
  726. sig->tty = NULL;
  727. sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
  728. sig->gtime = cputime_zero;
  729. sig->cgtime = cputime_zero;
  730. sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
  731. sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
  732. sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
  733. task_io_accounting_init(&sig->ioac);
  734. sig->sum_sched_runtime = 0;
  735. taskstats_tgid_init(sig);
  736. task_lock(current->group_leader);
  737. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  738. task_unlock(current->group_leader);
  739. posix_cpu_timers_init_group(sig);
  740. acct_init_pacct(&sig->pacct);
  741. tty_audit_fork(sig);
  742. return 0;
  743. }
  744. void __cleanup_signal(struct signal_struct *sig)
  745. {
  746. thread_group_cputime_free(sig);
  747. tty_kref_put(sig->tty);
  748. kmem_cache_free(signal_cachep, sig);
  749. }
  750. static void copy_flags(unsigned long clone_flags, struct task_struct *p)
  751. {
  752. unsigned long new_flags = p->flags;
  753. new_flags &= ~PF_SUPERPRIV;
  754. new_flags |= PF_FORKNOEXEC;
  755. new_flags |= PF_STARTING;
  756. p->flags = new_flags;
  757. clear_freeze_flag(p);
  758. }
  759. SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
  760. {
  761. current->clear_child_tid = tidptr;
  762. return task_pid_vnr(current);
  763. }
  764. static void rt_mutex_init_task(struct task_struct *p)
  765. {
  766. spin_lock_init(&p->pi_lock);
  767. #ifdef CONFIG_RT_MUTEXES
  768. plist_head_init(&p->pi_waiters, &p->pi_lock);
  769. p->pi_blocked_on = NULL;
  770. #endif
  771. }
  772. #ifdef CONFIG_MM_OWNER
  773. void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  774. {
  775. mm->owner = p;
  776. }
  777. #endif /* CONFIG_MM_OWNER */
  778. /*
  779. * Initialize POSIX timer handling for a single task.
  780. */
  781. static void posix_cpu_timers_init(struct task_struct *tsk)
  782. {
  783. tsk->cputime_expires.prof_exp = cputime_zero;
  784. tsk->cputime_expires.virt_exp = cputime_zero;
  785. tsk->cputime_expires.sched_exp = 0;
  786. INIT_LIST_HEAD(&tsk->cpu_timers[0]);
  787. INIT_LIST_HEAD(&tsk->cpu_timers[1]);
  788. INIT_LIST_HEAD(&tsk->cpu_timers[2]);
  789. }
  790. /*
  791. * This creates a new process as a copy of the old one,
  792. * but does not actually start it yet.
  793. *
  794. * It copies the registers, and all the appropriate
  795. * parts of the process environment (as per the clone
  796. * flags). The actual kick-off is left to the caller.
  797. */
  798. static struct task_struct *copy_process(unsigned long clone_flags,
  799. unsigned long stack_start,
  800. struct pt_regs *regs,
  801. unsigned long stack_size,
  802. int __user *child_tidptr,
  803. struct pid *pid,
  804. int trace)
  805. {
  806. int retval;
  807. struct task_struct *p;
  808. int cgroup_callbacks_done = 0;
  809. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  810. return ERR_PTR(-EINVAL);
  811. /*
  812. * Thread groups must share signals as well, and detached threads
  813. * can only be started up within the thread group.
  814. */
  815. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  816. return ERR_PTR(-EINVAL);
  817. /*
  818. * Shared signal handlers imply shared VM. By way of the above,
  819. * thread groups also imply shared VM. Blocking this case allows
  820. * for various simplifications in other code.
  821. */
  822. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  823. return ERR_PTR(-EINVAL);
  824. retval = security_task_create(clone_flags);
  825. if (retval)
  826. goto fork_out;
  827. retval = -ENOMEM;
  828. p = dup_task_struct(current);
  829. if (!p)
  830. goto fork_out;
  831. ftrace_graph_init_task(p);
  832. rt_mutex_init_task(p);
  833. #ifdef CONFIG_PROVE_LOCKING
  834. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  835. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  836. #endif
  837. retval = -EAGAIN;
  838. if (atomic_read(&p->real_cred->user->processes) >=
  839. p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
  840. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  841. p->real_cred->user != INIT_USER)
  842. goto bad_fork_free;
  843. }
  844. retval = copy_creds(p, clone_flags);
  845. if (retval < 0)
  846. goto bad_fork_free;
  847. /*
  848. * If multiple threads are within copy_process(), then this check
  849. * triggers too late. This doesn't hurt, the check is only there
  850. * to stop root fork bombs.
  851. */
  852. retval = -EAGAIN;
  853. if (nr_threads >= max_threads)
  854. goto bad_fork_cleanup_count;
  855. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  856. goto bad_fork_cleanup_count;
  857. if (p->binfmt && !try_module_get(p->binfmt->module))
  858. goto bad_fork_cleanup_put_domain;
  859. p->did_exec = 0;
  860. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  861. copy_flags(clone_flags, p);
  862. INIT_LIST_HEAD(&p->children);
  863. INIT_LIST_HEAD(&p->sibling);
  864. rcu_copy_process(p);
  865. p->vfork_done = NULL;
  866. spin_lock_init(&p->alloc_lock);
  867. init_sigpending(&p->pending);
  868. p->utime = cputime_zero;
  869. p->stime = cputime_zero;
  870. p->gtime = cputime_zero;
  871. p->utimescaled = cputime_zero;
  872. p->stimescaled = cputime_zero;
  873. p->prev_utime = cputime_zero;
  874. p->prev_stime = cputime_zero;
  875. p->default_timer_slack_ns = current->timer_slack_ns;
  876. task_io_accounting_init(&p->ioac);
  877. acct_clear_integrals(p);
  878. posix_cpu_timers_init(p);
  879. p->lock_depth = -1; /* -1 = no lock */
  880. do_posix_clock_monotonic_gettime(&p->start_time);
  881. p->real_start_time = p->start_time;
  882. monotonic_to_bootbased(&p->real_start_time);
  883. p->io_context = NULL;
  884. p->audit_context = NULL;
  885. cgroup_fork(p);
  886. #ifdef CONFIG_NUMA
  887. p->mempolicy = mpol_dup(p->mempolicy);
  888. if (IS_ERR(p->mempolicy)) {
  889. retval = PTR_ERR(p->mempolicy);
  890. p->mempolicy = NULL;
  891. goto bad_fork_cleanup_cgroup;
  892. }
  893. mpol_fix_fork_child_flag(p);
  894. #endif
  895. #ifdef CONFIG_TRACE_IRQFLAGS
  896. p->irq_events = 0;
  897. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  898. p->hardirqs_enabled = 1;
  899. #else
  900. p->hardirqs_enabled = 0;
  901. #endif
  902. p->hardirq_enable_ip = 0;
  903. p->hardirq_enable_event = 0;
  904. p->hardirq_disable_ip = _THIS_IP_;
  905. p->hardirq_disable_event = 0;
  906. p->softirqs_enabled = 1;
  907. p->softirq_enable_ip = _THIS_IP_;
  908. p->softirq_enable_event = 0;
  909. p->softirq_disable_ip = 0;
  910. p->softirq_disable_event = 0;
  911. p->hardirq_context = 0;
  912. p->softirq_context = 0;
  913. #endif
  914. #ifdef CONFIG_LOCKDEP
  915. p->lockdep_depth = 0; /* no locks held yet */
  916. p->curr_chain_key = 0;
  917. p->lockdep_recursion = 0;
  918. #endif
  919. #ifdef CONFIG_DEBUG_MUTEXES
  920. p->blocked_on = NULL; /* not blocked yet */
  921. #endif
  922. p->bts = NULL;
  923. /* Perform scheduler related setup. Assign this task to a CPU. */
  924. sched_fork(p, clone_flags);
  925. retval = perf_event_init_task(p);
  926. if (retval)
  927. goto bad_fork_cleanup_policy;
  928. if ((retval = audit_alloc(p)))
  929. goto bad_fork_cleanup_policy;
  930. /* copy all the process information */
  931. if ((retval = copy_semundo(clone_flags, p)))
  932. goto bad_fork_cleanup_audit;
  933. if ((retval = copy_files(clone_flags, p)))
  934. goto bad_fork_cleanup_semundo;
  935. if ((retval = copy_fs(clone_flags, p)))
  936. goto bad_fork_cleanup_files;
  937. if ((retval = copy_sighand(clone_flags, p)))
  938. goto bad_fork_cleanup_fs;
  939. if ((retval = copy_signal(clone_flags, p)))
  940. goto bad_fork_cleanup_sighand;
  941. if ((retval = copy_mm(clone_flags, p)))
  942. goto bad_fork_cleanup_signal;
  943. if ((retval = copy_namespaces(clone_flags, p)))
  944. goto bad_fork_cleanup_mm;
  945. if ((retval = copy_io(clone_flags, p)))
  946. goto bad_fork_cleanup_namespaces;
  947. retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
  948. if (retval)
  949. goto bad_fork_cleanup_io;
  950. if (pid != &init_struct_pid) {
  951. retval = -ENOMEM;
  952. pid = alloc_pid(p->nsproxy->pid_ns);
  953. if (!pid)
  954. goto bad_fork_cleanup_io;
  955. if (clone_flags & CLONE_NEWPID) {
  956. retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
  957. if (retval < 0)
  958. goto bad_fork_free_pid;
  959. }
  960. }
  961. p->pid = pid_nr(pid);
  962. p->tgid = p->pid;
  963. if (clone_flags & CLONE_THREAD)
  964. p->tgid = current->tgid;
  965. if (current->nsproxy != p->nsproxy) {
  966. retval = ns_cgroup_clone(p, pid);
  967. if (retval)
  968. goto bad_fork_free_pid;
  969. }
  970. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  971. /*
  972. * Clear TID on mm_release()?
  973. */
  974. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
  975. #ifdef CONFIG_FUTEX
  976. p->robust_list = NULL;
  977. #ifdef CONFIG_COMPAT
  978. p->compat_robust_list = NULL;
  979. #endif
  980. INIT_LIST_HEAD(&p->pi_state_list);
  981. p->pi_state_cache = NULL;
  982. #endif
  983. /*
  984. * sigaltstack should be cleared when sharing the same VM
  985. */
  986. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  987. p->sas_ss_sp = p->sas_ss_size = 0;
  988. /*
  989. * Syscall tracing should be turned off in the child regardless
  990. * of CLONE_PTRACE.
  991. */
  992. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  993. #ifdef TIF_SYSCALL_EMU
  994. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  995. #endif
  996. clear_all_latency_tracing(p);
  997. /* ok, now we should be set up.. */
  998. p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
  999. p->pdeath_signal = 0;
  1000. p->exit_state = 0;
  1001. /*
  1002. * Ok, make it visible to the rest of the system.
  1003. * We dont wake it up yet.
  1004. */
  1005. p->group_leader = p;
  1006. INIT_LIST_HEAD(&p->thread_group);
  1007. /* Now that the task is set up, run cgroup callbacks if
  1008. * necessary. We need to run them before the task is visible
  1009. * on the tasklist. */
  1010. cgroup_fork_callbacks(p);
  1011. cgroup_callbacks_done = 1;
  1012. /* Need tasklist lock for parent etc handling! */
  1013. write_lock_irq(&tasklist_lock);
  1014. /*
  1015. * The task hasn't been attached yet, so its cpus_allowed mask will
  1016. * not be changed, nor will its assigned CPU.
  1017. *
  1018. * The cpus_allowed mask of the parent may have changed after it was
  1019. * copied first time - so re-copy it here, then check the child's CPU
  1020. * to ensure it is on a valid CPU (and if not, just force it back to
  1021. * parent's CPU). This avoids alot of nasty races.
  1022. */
  1023. p->cpus_allowed = current->cpus_allowed;
  1024. p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
  1025. if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
  1026. !cpu_online(task_cpu(p))))
  1027. set_task_cpu(p, smp_processor_id());
  1028. /* CLONE_PARENT re-uses the old parent */
  1029. if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
  1030. p->real_parent = current->real_parent;
  1031. p->parent_exec_id = current->parent_exec_id;
  1032. } else {
  1033. p->real_parent = current;
  1034. p->parent_exec_id = current->self_exec_id;
  1035. }
  1036. spin_lock(&current->sighand->siglock);
  1037. /*
  1038. * Process group and session signals need to be delivered to just the
  1039. * parent before the fork or both the parent and the child after the
  1040. * fork. Restart if a signal comes in before we add the new process to
  1041. * it's process group.
  1042. * A fatal signal pending means that current will exit, so the new
  1043. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1044. */
  1045. recalc_sigpending();
  1046. if (signal_pending(current)) {
  1047. spin_unlock(&current->sighand->siglock);
  1048. write_unlock_irq(&tasklist_lock);
  1049. retval = -ERESTARTNOINTR;
  1050. goto bad_fork_free_pid;
  1051. }
  1052. if (clone_flags & CLONE_THREAD) {
  1053. atomic_inc(&current->signal->count);
  1054. atomic_inc(&current->signal->live);
  1055. p->group_leader = current->group_leader;
  1056. list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
  1057. }
  1058. if (likely(p->pid)) {
  1059. list_add_tail(&p->sibling, &p->real_parent->children);
  1060. tracehook_finish_clone(p, clone_flags, trace);
  1061. if (thread_group_leader(p)) {
  1062. if (clone_flags & CLONE_NEWPID)
  1063. p->nsproxy->pid_ns->child_reaper = p;
  1064. p->signal->leader_pid = pid;
  1065. tty_kref_put(p->signal->tty);
  1066. p->signal->tty = tty_kref_get(current->signal->tty);
  1067. attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1068. attach_pid(p, PIDTYPE_SID, task_session(current));
  1069. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1070. __get_cpu_var(process_counts)++;
  1071. }
  1072. attach_pid(p, PIDTYPE_PID, pid);
  1073. nr_threads++;
  1074. }
  1075. total_forks++;
  1076. spin_unlock(&current->sighand->siglock);
  1077. write_unlock_irq(&tasklist_lock);
  1078. proc_fork_connector(p);
  1079. cgroup_post_fork(p);
  1080. perf_event_fork(p);
  1081. return p;
  1082. bad_fork_free_pid:
  1083. if (pid != &init_struct_pid)
  1084. free_pid(pid);
  1085. bad_fork_cleanup_io:
  1086. put_io_context(p->io_context);
  1087. bad_fork_cleanup_namespaces:
  1088. exit_task_namespaces(p);
  1089. bad_fork_cleanup_mm:
  1090. if (p->mm)
  1091. mmput(p->mm);
  1092. bad_fork_cleanup_signal:
  1093. if (!(clone_flags & CLONE_THREAD))
  1094. __cleanup_signal(p->signal);
  1095. bad_fork_cleanup_sighand:
  1096. __cleanup_sighand(p->sighand);
  1097. bad_fork_cleanup_fs:
  1098. exit_fs(p); /* blocking */
  1099. bad_fork_cleanup_files:
  1100. exit_files(p); /* blocking */
  1101. bad_fork_cleanup_semundo:
  1102. exit_sem(p);
  1103. bad_fork_cleanup_audit:
  1104. audit_free(p);
  1105. bad_fork_cleanup_policy:
  1106. perf_event_free_task(p);
  1107. #ifdef CONFIG_NUMA
  1108. mpol_put(p->mempolicy);
  1109. bad_fork_cleanup_cgroup:
  1110. #endif
  1111. cgroup_exit(p, cgroup_callbacks_done);
  1112. delayacct_tsk_free(p);
  1113. if (p->binfmt)
  1114. module_put(p->binfmt->module);
  1115. bad_fork_cleanup_put_domain:
  1116. module_put(task_thread_info(p)->exec_domain->module);
  1117. bad_fork_cleanup_count:
  1118. atomic_dec(&p->cred->user->processes);
  1119. exit_creds(p);
  1120. bad_fork_free:
  1121. free_task(p);
  1122. fork_out:
  1123. return ERR_PTR(retval);
  1124. }
  1125. noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
  1126. {
  1127. memset(regs, 0, sizeof(struct pt_regs));
  1128. return regs;
  1129. }
  1130. struct task_struct * __cpuinit fork_idle(int cpu)
  1131. {
  1132. struct task_struct *task;
  1133. struct pt_regs regs;
  1134. task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
  1135. &init_struct_pid, 0);
  1136. if (!IS_ERR(task))
  1137. init_idle(task, cpu);
  1138. return task;
  1139. }
  1140. /*
  1141. * Ok, this is the main fork-routine.
  1142. *
  1143. * It copies the process, and if successful kick-starts
  1144. * it and waits for it to finish using the VM if required.
  1145. */
  1146. long do_fork(unsigned long clone_flags,
  1147. unsigned long stack_start,
  1148. struct pt_regs *regs,
  1149. unsigned long stack_size,
  1150. int __user *parent_tidptr,
  1151. int __user *child_tidptr)
  1152. {
  1153. struct task_struct *p;
  1154. int trace = 0;
  1155. long nr;
  1156. /*
  1157. * Do some preliminary argument and permissions checking before we
  1158. * actually start allocating stuff
  1159. */
  1160. if (clone_flags & CLONE_NEWUSER) {
  1161. if (clone_flags & CLONE_THREAD)
  1162. return -EINVAL;
  1163. /* hopefully this check will go away when userns support is
  1164. * complete
  1165. */
  1166. if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
  1167. !capable(CAP_SETGID))
  1168. return -EPERM;
  1169. }
  1170. /*
  1171. * We hope to recycle these flags after 2.6.26
  1172. */
  1173. if (unlikely(clone_flags & CLONE_STOPPED)) {
  1174. static int __read_mostly count = 100;
  1175. if (count > 0 && printk_ratelimit()) {
  1176. char comm[TASK_COMM_LEN];
  1177. count--;
  1178. printk(KERN_INFO "fork(): process `%s' used deprecated "
  1179. "clone flags 0x%lx\n",
  1180. get_task_comm(comm, current),
  1181. clone_flags & CLONE_STOPPED);
  1182. }
  1183. }
  1184. /*
  1185. * When called from kernel_thread, don't do user tracing stuff.
  1186. */
  1187. if (likely(user_mode(regs)))
  1188. trace = tracehook_prepare_clone(clone_flags);
  1189. p = copy_process(clone_flags, stack_start, regs, stack_size,
  1190. child_tidptr, NULL, trace);
  1191. /*
  1192. * Do this prior waking up the new thread - the thread pointer
  1193. * might get invalid after that point, if the thread exits quickly.
  1194. */
  1195. if (!IS_ERR(p)) {
  1196. struct completion vfork;
  1197. trace_sched_process_fork(current, p);
  1198. nr = task_pid_vnr(p);
  1199. if (clone_flags & CLONE_PARENT_SETTID)
  1200. put_user(nr, parent_tidptr);
  1201. if (clone_flags & CLONE_VFORK) {
  1202. p->vfork_done = &vfork;
  1203. init_completion(&vfork);
  1204. }
  1205. audit_finish_fork(p);
  1206. tracehook_report_clone(regs, clone_flags, nr, p);
  1207. /*
  1208. * We set PF_STARTING at creation in case tracing wants to
  1209. * use this to distinguish a fully live task from one that
  1210. * hasn't gotten to tracehook_report_clone() yet. Now we
  1211. * clear it and set the child going.
  1212. */
  1213. p->flags &= ~PF_STARTING;
  1214. if (unlikely(clone_flags & CLONE_STOPPED)) {
  1215. /*
  1216. * We'll start up with an immediate SIGSTOP.
  1217. */
  1218. sigaddset(&p->pending.signal, SIGSTOP);
  1219. set_tsk_thread_flag(p, TIF_SIGPENDING);
  1220. __set_task_state(p, TASK_STOPPED);
  1221. } else {
  1222. wake_up_new_task(p, clone_flags);
  1223. }
  1224. tracehook_report_clone_complete(trace, regs,
  1225. clone_flags, nr, p);
  1226. if (clone_flags & CLONE_VFORK) {
  1227. freezer_do_not_count();
  1228. wait_for_completion(&vfork);
  1229. freezer_count();
  1230. tracehook_report_vfork_done(p, nr);
  1231. }
  1232. } else {
  1233. nr = PTR_ERR(p);
  1234. }
  1235. return nr;
  1236. }
  1237. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1238. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1239. #endif
  1240. static void sighand_ctor(void *data)
  1241. {
  1242. struct sighand_struct *sighand = data;
  1243. spin_lock_init(&sighand->siglock);
  1244. init_waitqueue_head(&sighand->signalfd_wqh);
  1245. }
  1246. void __init proc_caches_init(void)
  1247. {
  1248. sighand_cachep = kmem_cache_create("sighand_cache",
  1249. sizeof(struct sighand_struct), 0,
  1250. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
  1251. SLAB_NOTRACK, sighand_ctor);
  1252. signal_cachep = kmem_cache_create("signal_cache",
  1253. sizeof(struct signal_struct), 0,
  1254. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1255. files_cachep = kmem_cache_create("files_cache",
  1256. sizeof(struct files_struct), 0,
  1257. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1258. fs_cachep = kmem_cache_create("fs_cache",
  1259. sizeof(struct fs_struct), 0,
  1260. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1261. mm_cachep = kmem_cache_create("mm_struct",
  1262. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1263. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1264. vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
  1265. mmap_init();
  1266. }
  1267. /*
  1268. * Check constraints on flags passed to the unshare system call and
  1269. * force unsharing of additional process context as appropriate.
  1270. */
  1271. static void check_unshare_flags(unsigned long *flags_ptr)
  1272. {
  1273. /*
  1274. * If unsharing a thread from a thread group, must also
  1275. * unshare vm.
  1276. */
  1277. if (*flags_ptr & CLONE_THREAD)
  1278. *flags_ptr |= CLONE_VM;
  1279. /*
  1280. * If unsharing vm, must also unshare signal handlers.
  1281. */
  1282. if (*flags_ptr & CLONE_VM)
  1283. *flags_ptr |= CLONE_SIGHAND;
  1284. /*
  1285. * If unsharing signal handlers and the task was created
  1286. * using CLONE_THREAD, then must unshare the thread
  1287. */
  1288. if ((*flags_ptr & CLONE_SIGHAND) &&
  1289. (atomic_read(&current->signal->count) > 1))
  1290. *flags_ptr |= CLONE_THREAD;
  1291. /*
  1292. * If unsharing namespace, must also unshare filesystem information.
  1293. */
  1294. if (*flags_ptr & CLONE_NEWNS)
  1295. *flags_ptr |= CLONE_FS;
  1296. }
  1297. /*
  1298. * Unsharing of tasks created with CLONE_THREAD is not supported yet
  1299. */
  1300. static int unshare_thread(unsigned long unshare_flags)
  1301. {
  1302. if (unshare_flags & CLONE_THREAD)
  1303. return -EINVAL;
  1304. return 0;
  1305. }
  1306. /*
  1307. * Unshare the filesystem structure if it is being shared
  1308. */
  1309. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1310. {
  1311. struct fs_struct *fs = current->fs;
  1312. if (!(unshare_flags & CLONE_FS) || !fs)
  1313. return 0;
  1314. /* don't need lock here; in the worst case we'll do useless copy */
  1315. if (fs->users == 1)
  1316. return 0;
  1317. *new_fsp = copy_fs_struct(fs);
  1318. if (!*new_fsp)
  1319. return -ENOMEM;
  1320. return 0;
  1321. }
  1322. /*
  1323. * Unsharing of sighand is not supported yet
  1324. */
  1325. static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
  1326. {
  1327. struct sighand_struct *sigh = current->sighand;
  1328. if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
  1329. return -EINVAL;
  1330. else
  1331. return 0;
  1332. }
  1333. /*
  1334. * Unshare vm if it is being shared
  1335. */
  1336. static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
  1337. {
  1338. struct mm_struct *mm = current->mm;
  1339. if ((unshare_flags & CLONE_VM) &&
  1340. (mm && atomic_read(&mm->mm_users) > 1)) {
  1341. return -EINVAL;
  1342. }
  1343. return 0;
  1344. }
  1345. /*
  1346. * Unshare file descriptor table if it is being shared
  1347. */
  1348. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1349. {
  1350. struct files_struct *fd = current->files;
  1351. int error = 0;
  1352. if ((unshare_flags & CLONE_FILES) &&
  1353. (fd && atomic_read(&fd->count) > 1)) {
  1354. *new_fdp = dup_fd(fd, &error);
  1355. if (!*new_fdp)
  1356. return error;
  1357. }
  1358. return 0;
  1359. }
  1360. /*
  1361. * unshare allows a process to 'unshare' part of the process
  1362. * context which was originally shared using clone. copy_*
  1363. * functions used by do_fork() cannot be used here directly
  1364. * because they modify an inactive task_struct that is being
  1365. * constructed. Here we are modifying the current, active,
  1366. * task_struct.
  1367. */
  1368. SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
  1369. {
  1370. int err = 0;
  1371. struct fs_struct *fs, *new_fs = NULL;
  1372. struct sighand_struct *new_sigh = NULL;
  1373. struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
  1374. struct files_struct *fd, *new_fd = NULL;
  1375. struct nsproxy *new_nsproxy = NULL;
  1376. int do_sysvsem = 0;
  1377. check_unshare_flags(&unshare_flags);
  1378. /* Return -EINVAL for all unsupported flags */
  1379. err = -EINVAL;
  1380. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1381. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1382. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
  1383. goto bad_unshare_out;
  1384. /*
  1385. * CLONE_NEWIPC must also detach from the undolist: after switching
  1386. * to a new ipc namespace, the semaphore arrays from the old
  1387. * namespace are unreachable.
  1388. */
  1389. if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
  1390. do_sysvsem = 1;
  1391. if ((err = unshare_thread(unshare_flags)))
  1392. goto bad_unshare_out;
  1393. if ((err = unshare_fs(unshare_flags, &new_fs)))
  1394. goto bad_unshare_cleanup_thread;
  1395. if ((err = unshare_sighand(unshare_flags, &new_sigh)))
  1396. goto bad_unshare_cleanup_fs;
  1397. if ((err = unshare_vm(unshare_flags, &new_mm)))
  1398. goto bad_unshare_cleanup_sigh;
  1399. if ((err = unshare_fd(unshare_flags, &new_fd)))
  1400. goto bad_unshare_cleanup_vm;
  1401. if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1402. new_fs)))
  1403. goto bad_unshare_cleanup_fd;
  1404. if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
  1405. if (do_sysvsem) {
  1406. /*
  1407. * CLONE_SYSVSEM is equivalent to sys_exit().
  1408. */
  1409. exit_sem(current);
  1410. }
  1411. if (new_nsproxy) {
  1412. switch_task_namespaces(current, new_nsproxy);
  1413. new_nsproxy = NULL;
  1414. }
  1415. task_lock(current);
  1416. if (new_fs) {
  1417. fs = current->fs;
  1418. write_lock(&fs->lock);
  1419. current->fs = new_fs;
  1420. if (--fs->users)
  1421. new_fs = NULL;
  1422. else
  1423. new_fs = fs;
  1424. write_unlock(&fs->lock);
  1425. }
  1426. if (new_mm) {
  1427. mm = current->mm;
  1428. active_mm = current->active_mm;
  1429. current->mm = new_mm;
  1430. current->active_mm = new_mm;
  1431. activate_mm(active_mm, new_mm);
  1432. new_mm = mm;
  1433. }
  1434. if (new_fd) {
  1435. fd = current->files;
  1436. current->files = new_fd;
  1437. new_fd = fd;
  1438. }
  1439. task_unlock(current);
  1440. }
  1441. if (new_nsproxy)
  1442. put_nsproxy(new_nsproxy);
  1443. bad_unshare_cleanup_fd:
  1444. if (new_fd)
  1445. put_files_struct(new_fd);
  1446. bad_unshare_cleanup_vm:
  1447. if (new_mm)
  1448. mmput(new_mm);
  1449. bad_unshare_cleanup_sigh:
  1450. if (new_sigh)
  1451. if (atomic_dec_and_test(&new_sigh->count))
  1452. kmem_cache_free(sighand_cachep, new_sigh);
  1453. bad_unshare_cleanup_fs:
  1454. if (new_fs)
  1455. free_fs_struct(new_fs);
  1456. bad_unshare_cleanup_thread:
  1457. bad_unshare_out:
  1458. return err;
  1459. }
  1460. /*
  1461. * Helper to unshare the files of the current task.
  1462. * We don't want to expose copy_files internals to
  1463. * the exec layer of the kernel.
  1464. */
  1465. int unshare_files(struct files_struct **displaced)
  1466. {
  1467. struct task_struct *task = current;
  1468. struct files_struct *copy = NULL;
  1469. int error;
  1470. error = unshare_fd(CLONE_FILES, &copy);
  1471. if (error || !copy) {
  1472. *displaced = NULL;
  1473. return error;
  1474. }
  1475. *displaced = task->files;
  1476. task_lock(task);
  1477. task->files = copy;
  1478. task_unlock(task);
  1479. return 0;
  1480. }