mmzone.h 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127
  1. #ifndef _LINUX_MMZONE_H
  2. #define _LINUX_MMZONE_H
  3. #ifndef __ASSEMBLY__
  4. #ifndef __GENERATING_BOUNDS_H
  5. #include <linux/spinlock.h>
  6. #include <linux/list.h>
  7. #include <linux/wait.h>
  8. #include <linux/bitops.h>
  9. #include <linux/cache.h>
  10. #include <linux/threads.h>
  11. #include <linux/numa.h>
  12. #include <linux/init.h>
  13. #include <linux/seqlock.h>
  14. #include <linux/nodemask.h>
  15. #include <linux/pageblock-flags.h>
  16. #include <linux/bounds.h>
  17. #include <asm/atomic.h>
  18. #include <asm/page.h>
  19. /* Free memory management - zoned buddy allocator. */
  20. #ifndef CONFIG_FORCE_MAX_ZONEORDER
  21. #define MAX_ORDER 11
  22. #else
  23. #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  24. #endif
  25. #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  26. /*
  27. * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  28. * costly to service. That is between allocation orders which should
  29. * coelesce naturally under reasonable reclaim pressure and those which
  30. * will not.
  31. */
  32. #define PAGE_ALLOC_COSTLY_ORDER 3
  33. #define MIGRATE_UNMOVABLE 0
  34. #define MIGRATE_RECLAIMABLE 1
  35. #define MIGRATE_MOVABLE 2
  36. #define MIGRATE_RESERVE 3
  37. #define MIGRATE_ISOLATE 4 /* can't allocate from here */
  38. #define MIGRATE_TYPES 5
  39. #define for_each_migratetype_order(order, type) \
  40. for (order = 0; order < MAX_ORDER; order++) \
  41. for (type = 0; type < MIGRATE_TYPES; type++)
  42. extern int page_group_by_mobility_disabled;
  43. static inline int get_pageblock_migratetype(struct page *page)
  44. {
  45. return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
  46. }
  47. struct free_area {
  48. struct list_head free_list[MIGRATE_TYPES];
  49. unsigned long nr_free;
  50. };
  51. struct pglist_data;
  52. /*
  53. * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
  54. * So add a wild amount of padding here to ensure that they fall into separate
  55. * cachelines. There are very few zone structures in the machine, so space
  56. * consumption is not a concern here.
  57. */
  58. #if defined(CONFIG_SMP)
  59. struct zone_padding {
  60. char x[0];
  61. } ____cacheline_internodealigned_in_smp;
  62. #define ZONE_PADDING(name) struct zone_padding name;
  63. #else
  64. #define ZONE_PADDING(name)
  65. #endif
  66. enum zone_stat_item {
  67. /* First 128 byte cacheline (assuming 64 bit words) */
  68. NR_FREE_PAGES,
  69. NR_LRU_BASE,
  70. NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
  71. NR_ACTIVE_ANON, /* " " " " " */
  72. NR_INACTIVE_FILE, /* " " " " " */
  73. NR_ACTIVE_FILE, /* " " " " " */
  74. NR_UNEVICTABLE, /* " " " " " */
  75. NR_MLOCK, /* mlock()ed pages found and moved off LRU */
  76. NR_ANON_PAGES, /* Mapped anonymous pages */
  77. NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
  78. only modified from process context */
  79. NR_FILE_PAGES,
  80. NR_FILE_DIRTY,
  81. NR_WRITEBACK,
  82. NR_SLAB_RECLAIMABLE,
  83. NR_SLAB_UNRECLAIMABLE,
  84. NR_PAGETABLE, /* used for pagetables */
  85. NR_KERNEL_STACK,
  86. /* Second 128 byte cacheline */
  87. NR_UNSTABLE_NFS, /* NFS unstable pages */
  88. NR_BOUNCE,
  89. NR_VMSCAN_WRITE,
  90. NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
  91. #ifdef CONFIG_NUMA
  92. NUMA_HIT, /* allocated in intended node */
  93. NUMA_MISS, /* allocated in non intended node */
  94. NUMA_FOREIGN, /* was intended here, hit elsewhere */
  95. NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
  96. NUMA_LOCAL, /* allocation from local node */
  97. NUMA_OTHER, /* allocation from other node */
  98. #endif
  99. NR_VM_ZONE_STAT_ITEMS };
  100. /*
  101. * We do arithmetic on the LRU lists in various places in the code,
  102. * so it is important to keep the active lists LRU_ACTIVE higher in
  103. * the array than the corresponding inactive lists, and to keep
  104. * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
  105. *
  106. * This has to be kept in sync with the statistics in zone_stat_item
  107. * above and the descriptions in vmstat_text in mm/vmstat.c
  108. */
  109. #define LRU_BASE 0
  110. #define LRU_ACTIVE 1
  111. #define LRU_FILE 2
  112. enum lru_list {
  113. LRU_INACTIVE_ANON = LRU_BASE,
  114. LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
  115. LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
  116. LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
  117. LRU_UNEVICTABLE,
  118. NR_LRU_LISTS
  119. };
  120. #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
  121. #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
  122. static inline int is_file_lru(enum lru_list l)
  123. {
  124. return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
  125. }
  126. static inline int is_active_lru(enum lru_list l)
  127. {
  128. return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
  129. }
  130. static inline int is_unevictable_lru(enum lru_list l)
  131. {
  132. return (l == LRU_UNEVICTABLE);
  133. }
  134. enum zone_watermarks {
  135. WMARK_MIN,
  136. WMARK_LOW,
  137. WMARK_HIGH,
  138. NR_WMARK
  139. };
  140. #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
  141. #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
  142. #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
  143. struct per_cpu_pages {
  144. int count; /* number of pages in the list */
  145. int high; /* high watermark, emptying needed */
  146. int batch; /* chunk size for buddy add/remove */
  147. struct list_head list; /* the list of pages */
  148. };
  149. struct per_cpu_pageset {
  150. struct per_cpu_pages pcp;
  151. #ifdef CONFIG_NUMA
  152. s8 expire;
  153. #endif
  154. #ifdef CONFIG_SMP
  155. s8 stat_threshold;
  156. s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
  157. #endif
  158. } ____cacheline_aligned_in_smp;
  159. #ifdef CONFIG_NUMA
  160. #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
  161. #else
  162. #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
  163. #endif
  164. #endif /* !__GENERATING_BOUNDS.H */
  165. enum zone_type {
  166. #ifdef CONFIG_ZONE_DMA
  167. /*
  168. * ZONE_DMA is used when there are devices that are not able
  169. * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
  170. * carve out the portion of memory that is needed for these devices.
  171. * The range is arch specific.
  172. *
  173. * Some examples
  174. *
  175. * Architecture Limit
  176. * ---------------------------
  177. * parisc, ia64, sparc <4G
  178. * s390 <2G
  179. * arm Various
  180. * alpha Unlimited or 0-16MB.
  181. *
  182. * i386, x86_64 and multiple other arches
  183. * <16M.
  184. */
  185. ZONE_DMA,
  186. #endif
  187. #ifdef CONFIG_ZONE_DMA32
  188. /*
  189. * x86_64 needs two ZONE_DMAs because it supports devices that are
  190. * only able to do DMA to the lower 16M but also 32 bit devices that
  191. * can only do DMA areas below 4G.
  192. */
  193. ZONE_DMA32,
  194. #endif
  195. /*
  196. * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
  197. * performed on pages in ZONE_NORMAL if the DMA devices support
  198. * transfers to all addressable memory.
  199. */
  200. ZONE_NORMAL,
  201. #ifdef CONFIG_HIGHMEM
  202. /*
  203. * A memory area that is only addressable by the kernel through
  204. * mapping portions into its own address space. This is for example
  205. * used by i386 to allow the kernel to address the memory beyond
  206. * 900MB. The kernel will set up special mappings (page
  207. * table entries on i386) for each page that the kernel needs to
  208. * access.
  209. */
  210. ZONE_HIGHMEM,
  211. #endif
  212. ZONE_MOVABLE,
  213. __MAX_NR_ZONES
  214. };
  215. #ifndef __GENERATING_BOUNDS_H
  216. /*
  217. * When a memory allocation must conform to specific limitations (such
  218. * as being suitable for DMA) the caller will pass in hints to the
  219. * allocator in the gfp_mask, in the zone modifier bits. These bits
  220. * are used to select a priority ordered list of memory zones which
  221. * match the requested limits. See gfp_zone() in include/linux/gfp.h
  222. */
  223. #if MAX_NR_ZONES < 2
  224. #define ZONES_SHIFT 0
  225. #elif MAX_NR_ZONES <= 2
  226. #define ZONES_SHIFT 1
  227. #elif MAX_NR_ZONES <= 4
  228. #define ZONES_SHIFT 2
  229. #else
  230. #error ZONES_SHIFT -- too many zones configured adjust calculation
  231. #endif
  232. struct zone_reclaim_stat {
  233. /*
  234. * The pageout code in vmscan.c keeps track of how many of the
  235. * mem/swap backed and file backed pages are refeferenced.
  236. * The higher the rotated/scanned ratio, the more valuable
  237. * that cache is.
  238. *
  239. * The anon LRU stats live in [0], file LRU stats in [1]
  240. */
  241. unsigned long recent_rotated[2];
  242. unsigned long recent_scanned[2];
  243. };
  244. struct zone {
  245. /* Fields commonly accessed by the page allocator */
  246. /* zone watermarks, access with *_wmark_pages(zone) macros */
  247. unsigned long watermark[NR_WMARK];
  248. /*
  249. * We don't know if the memory that we're going to allocate will be freeable
  250. * or/and it will be released eventually, so to avoid totally wasting several
  251. * GB of ram we must reserve some of the lower zone memory (otherwise we risk
  252. * to run OOM on the lower zones despite there's tons of freeable ram
  253. * on the higher zones). This array is recalculated at runtime if the
  254. * sysctl_lowmem_reserve_ratio sysctl changes.
  255. */
  256. unsigned long lowmem_reserve[MAX_NR_ZONES];
  257. #ifdef CONFIG_NUMA
  258. int node;
  259. /*
  260. * zone reclaim becomes active if more unmapped pages exist.
  261. */
  262. unsigned long min_unmapped_pages;
  263. unsigned long min_slab_pages;
  264. struct per_cpu_pageset *pageset[NR_CPUS];
  265. #else
  266. struct per_cpu_pageset pageset[NR_CPUS];
  267. #endif
  268. /*
  269. * free areas of different sizes
  270. */
  271. spinlock_t lock;
  272. #ifdef CONFIG_MEMORY_HOTPLUG
  273. /* see spanned/present_pages for more description */
  274. seqlock_t span_seqlock;
  275. #endif
  276. struct free_area free_area[MAX_ORDER];
  277. #ifndef CONFIG_SPARSEMEM
  278. /*
  279. * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
  280. * In SPARSEMEM, this map is stored in struct mem_section
  281. */
  282. unsigned long *pageblock_flags;
  283. #endif /* CONFIG_SPARSEMEM */
  284. ZONE_PADDING(_pad1_)
  285. /* Fields commonly accessed by the page reclaim scanner */
  286. spinlock_t lru_lock;
  287. struct zone_lru {
  288. struct list_head list;
  289. unsigned long nr_saved_scan; /* accumulated for batching */
  290. } lru[NR_LRU_LISTS];
  291. struct zone_reclaim_stat reclaim_stat;
  292. unsigned long pages_scanned; /* since last reclaim */
  293. unsigned long flags; /* zone flags, see below */
  294. /* Zone statistics */
  295. atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
  296. /*
  297. * prev_priority holds the scanning priority for this zone. It is
  298. * defined as the scanning priority at which we achieved our reclaim
  299. * target at the previous try_to_free_pages() or balance_pgdat()
  300. * invokation.
  301. *
  302. * We use prev_priority as a measure of how much stress page reclaim is
  303. * under - it drives the swappiness decision: whether to unmap mapped
  304. * pages.
  305. *
  306. * Access to both this field is quite racy even on uniprocessor. But
  307. * it is expected to average out OK.
  308. */
  309. int prev_priority;
  310. /*
  311. * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
  312. * this zone's LRU. Maintained by the pageout code.
  313. */
  314. unsigned int inactive_ratio;
  315. ZONE_PADDING(_pad2_)
  316. /* Rarely used or read-mostly fields */
  317. /*
  318. * wait_table -- the array holding the hash table
  319. * wait_table_hash_nr_entries -- the size of the hash table array
  320. * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
  321. *
  322. * The purpose of all these is to keep track of the people
  323. * waiting for a page to become available and make them
  324. * runnable again when possible. The trouble is that this
  325. * consumes a lot of space, especially when so few things
  326. * wait on pages at a given time. So instead of using
  327. * per-page waitqueues, we use a waitqueue hash table.
  328. *
  329. * The bucket discipline is to sleep on the same queue when
  330. * colliding and wake all in that wait queue when removing.
  331. * When something wakes, it must check to be sure its page is
  332. * truly available, a la thundering herd. The cost of a
  333. * collision is great, but given the expected load of the
  334. * table, they should be so rare as to be outweighed by the
  335. * benefits from the saved space.
  336. *
  337. * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
  338. * primary users of these fields, and in mm/page_alloc.c
  339. * free_area_init_core() performs the initialization of them.
  340. */
  341. wait_queue_head_t * wait_table;
  342. unsigned long wait_table_hash_nr_entries;
  343. unsigned long wait_table_bits;
  344. /*
  345. * Discontig memory support fields.
  346. */
  347. struct pglist_data *zone_pgdat;
  348. /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
  349. unsigned long zone_start_pfn;
  350. /*
  351. * zone_start_pfn, spanned_pages and present_pages are all
  352. * protected by span_seqlock. It is a seqlock because it has
  353. * to be read outside of zone->lock, and it is done in the main
  354. * allocator path. But, it is written quite infrequently.
  355. *
  356. * The lock is declared along with zone->lock because it is
  357. * frequently read in proximity to zone->lock. It's good to
  358. * give them a chance of being in the same cacheline.
  359. */
  360. unsigned long spanned_pages; /* total size, including holes */
  361. unsigned long present_pages; /* amount of memory (excluding holes) */
  362. /*
  363. * rarely used fields:
  364. */
  365. const char *name;
  366. } ____cacheline_internodealigned_in_smp;
  367. typedef enum {
  368. ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */
  369. ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
  370. ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
  371. } zone_flags_t;
  372. static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
  373. {
  374. set_bit(flag, &zone->flags);
  375. }
  376. static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
  377. {
  378. return test_and_set_bit(flag, &zone->flags);
  379. }
  380. static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
  381. {
  382. clear_bit(flag, &zone->flags);
  383. }
  384. static inline int zone_is_all_unreclaimable(const struct zone *zone)
  385. {
  386. return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
  387. }
  388. static inline int zone_is_reclaim_locked(const struct zone *zone)
  389. {
  390. return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
  391. }
  392. static inline int zone_is_oom_locked(const struct zone *zone)
  393. {
  394. return test_bit(ZONE_OOM_LOCKED, &zone->flags);
  395. }
  396. /*
  397. * The "priority" of VM scanning is how much of the queues we will scan in one
  398. * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
  399. * queues ("queue_length >> 12") during an aging round.
  400. */
  401. #define DEF_PRIORITY 12
  402. /* Maximum number of zones on a zonelist */
  403. #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
  404. #ifdef CONFIG_NUMA
  405. /*
  406. * The NUMA zonelists are doubled becausse we need zonelists that restrict the
  407. * allocations to a single node for GFP_THISNODE.
  408. *
  409. * [0] : Zonelist with fallback
  410. * [1] : No fallback (GFP_THISNODE)
  411. */
  412. #define MAX_ZONELISTS 2
  413. /*
  414. * We cache key information from each zonelist for smaller cache
  415. * footprint when scanning for free pages in get_page_from_freelist().
  416. *
  417. * 1) The BITMAP fullzones tracks which zones in a zonelist have come
  418. * up short of free memory since the last time (last_fullzone_zap)
  419. * we zero'd fullzones.
  420. * 2) The array z_to_n[] maps each zone in the zonelist to its node
  421. * id, so that we can efficiently evaluate whether that node is
  422. * set in the current tasks mems_allowed.
  423. *
  424. * Both fullzones and z_to_n[] are one-to-one with the zonelist,
  425. * indexed by a zones offset in the zonelist zones[] array.
  426. *
  427. * The get_page_from_freelist() routine does two scans. During the
  428. * first scan, we skip zones whose corresponding bit in 'fullzones'
  429. * is set or whose corresponding node in current->mems_allowed (which
  430. * comes from cpusets) is not set. During the second scan, we bypass
  431. * this zonelist_cache, to ensure we look methodically at each zone.
  432. *
  433. * Once per second, we zero out (zap) fullzones, forcing us to
  434. * reconsider nodes that might have regained more free memory.
  435. * The field last_full_zap is the time we last zapped fullzones.
  436. *
  437. * This mechanism reduces the amount of time we waste repeatedly
  438. * reexaming zones for free memory when they just came up low on
  439. * memory momentarilly ago.
  440. *
  441. * The zonelist_cache struct members logically belong in struct
  442. * zonelist. However, the mempolicy zonelists constructed for
  443. * MPOL_BIND are intentionally variable length (and usually much
  444. * shorter). A general purpose mechanism for handling structs with
  445. * multiple variable length members is more mechanism than we want
  446. * here. We resort to some special case hackery instead.
  447. *
  448. * The MPOL_BIND zonelists don't need this zonelist_cache (in good
  449. * part because they are shorter), so we put the fixed length stuff
  450. * at the front of the zonelist struct, ending in a variable length
  451. * zones[], as is needed by MPOL_BIND.
  452. *
  453. * Then we put the optional zonelist cache on the end of the zonelist
  454. * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
  455. * the fixed length portion at the front of the struct. This pointer
  456. * both enables us to find the zonelist cache, and in the case of
  457. * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
  458. * to know that the zonelist cache is not there.
  459. *
  460. * The end result is that struct zonelists come in two flavors:
  461. * 1) The full, fixed length version, shown below, and
  462. * 2) The custom zonelists for MPOL_BIND.
  463. * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
  464. *
  465. * Even though there may be multiple CPU cores on a node modifying
  466. * fullzones or last_full_zap in the same zonelist_cache at the same
  467. * time, we don't lock it. This is just hint data - if it is wrong now
  468. * and then, the allocator will still function, perhaps a bit slower.
  469. */
  470. struct zonelist_cache {
  471. unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
  472. DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
  473. unsigned long last_full_zap; /* when last zap'd (jiffies) */
  474. };
  475. #else
  476. #define MAX_ZONELISTS 1
  477. struct zonelist_cache;
  478. #endif
  479. /*
  480. * This struct contains information about a zone in a zonelist. It is stored
  481. * here to avoid dereferences into large structures and lookups of tables
  482. */
  483. struct zoneref {
  484. struct zone *zone; /* Pointer to actual zone */
  485. int zone_idx; /* zone_idx(zoneref->zone) */
  486. };
  487. /*
  488. * One allocation request operates on a zonelist. A zonelist
  489. * is a list of zones, the first one is the 'goal' of the
  490. * allocation, the other zones are fallback zones, in decreasing
  491. * priority.
  492. *
  493. * If zlcache_ptr is not NULL, then it is just the address of zlcache,
  494. * as explained above. If zlcache_ptr is NULL, there is no zlcache.
  495. * *
  496. * To speed the reading of the zonelist, the zonerefs contain the zone index
  497. * of the entry being read. Helper functions to access information given
  498. * a struct zoneref are
  499. *
  500. * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
  501. * zonelist_zone_idx() - Return the index of the zone for an entry
  502. * zonelist_node_idx() - Return the index of the node for an entry
  503. */
  504. struct zonelist {
  505. struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
  506. struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
  507. #ifdef CONFIG_NUMA
  508. struct zonelist_cache zlcache; // optional ...
  509. #endif
  510. };
  511. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  512. struct node_active_region {
  513. unsigned long start_pfn;
  514. unsigned long end_pfn;
  515. int nid;
  516. };
  517. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  518. #ifndef CONFIG_DISCONTIGMEM
  519. /* The array of struct pages - for discontigmem use pgdat->lmem_map */
  520. extern struct page *mem_map;
  521. #endif
  522. /*
  523. * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
  524. * (mostly NUMA machines?) to denote a higher-level memory zone than the
  525. * zone denotes.
  526. *
  527. * On NUMA machines, each NUMA node would have a pg_data_t to describe
  528. * it's memory layout.
  529. *
  530. * Memory statistics and page replacement data structures are maintained on a
  531. * per-zone basis.
  532. */
  533. struct bootmem_data;
  534. typedef struct pglist_data {
  535. struct zone node_zones[MAX_NR_ZONES];
  536. struct zonelist node_zonelists[MAX_ZONELISTS];
  537. int nr_zones;
  538. #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
  539. struct page *node_mem_map;
  540. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  541. struct page_cgroup *node_page_cgroup;
  542. #endif
  543. #endif
  544. struct bootmem_data *bdata;
  545. #ifdef CONFIG_MEMORY_HOTPLUG
  546. /*
  547. * Must be held any time you expect node_start_pfn, node_present_pages
  548. * or node_spanned_pages stay constant. Holding this will also
  549. * guarantee that any pfn_valid() stays that way.
  550. *
  551. * Nests above zone->lock and zone->size_seqlock.
  552. */
  553. spinlock_t node_size_lock;
  554. #endif
  555. unsigned long node_start_pfn;
  556. unsigned long node_present_pages; /* total number of physical pages */
  557. unsigned long node_spanned_pages; /* total size of physical page
  558. range, including holes */
  559. int node_id;
  560. wait_queue_head_t kswapd_wait;
  561. struct task_struct *kswapd;
  562. int kswapd_max_order;
  563. } pg_data_t;
  564. #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
  565. #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
  566. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  567. #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
  568. #else
  569. #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
  570. #endif
  571. #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
  572. #include <linux/memory_hotplug.h>
  573. void get_zone_counts(unsigned long *active, unsigned long *inactive,
  574. unsigned long *free);
  575. void build_all_zonelists(void);
  576. void wakeup_kswapd(struct zone *zone, int order);
  577. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  578. int classzone_idx, int alloc_flags);
  579. enum memmap_context {
  580. MEMMAP_EARLY,
  581. MEMMAP_HOTPLUG,
  582. };
  583. extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
  584. unsigned long size,
  585. enum memmap_context context);
  586. #ifdef CONFIG_HAVE_MEMORY_PRESENT
  587. void memory_present(int nid, unsigned long start, unsigned long end);
  588. #else
  589. static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
  590. #endif
  591. #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
  592. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  593. #endif
  594. /*
  595. * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
  596. */
  597. #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
  598. static inline int populated_zone(struct zone *zone)
  599. {
  600. return (!!zone->present_pages);
  601. }
  602. extern int movable_zone;
  603. static inline int zone_movable_is_highmem(void)
  604. {
  605. #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
  606. return movable_zone == ZONE_HIGHMEM;
  607. #else
  608. return 0;
  609. #endif
  610. }
  611. static inline int is_highmem_idx(enum zone_type idx)
  612. {
  613. #ifdef CONFIG_HIGHMEM
  614. return (idx == ZONE_HIGHMEM ||
  615. (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
  616. #else
  617. return 0;
  618. #endif
  619. }
  620. static inline int is_normal_idx(enum zone_type idx)
  621. {
  622. return (idx == ZONE_NORMAL);
  623. }
  624. /**
  625. * is_highmem - helper function to quickly check if a struct zone is a
  626. * highmem zone or not. This is an attempt to keep references
  627. * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
  628. * @zone - pointer to struct zone variable
  629. */
  630. static inline int is_highmem(struct zone *zone)
  631. {
  632. #ifdef CONFIG_HIGHMEM
  633. int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
  634. return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
  635. (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
  636. zone_movable_is_highmem());
  637. #else
  638. return 0;
  639. #endif
  640. }
  641. static inline int is_normal(struct zone *zone)
  642. {
  643. return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
  644. }
  645. static inline int is_dma32(struct zone *zone)
  646. {
  647. #ifdef CONFIG_ZONE_DMA32
  648. return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
  649. #else
  650. return 0;
  651. #endif
  652. }
  653. static inline int is_dma(struct zone *zone)
  654. {
  655. #ifdef CONFIG_ZONE_DMA
  656. return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
  657. #else
  658. return 0;
  659. #endif
  660. }
  661. /* These two functions are used to setup the per zone pages min values */
  662. struct ctl_table;
  663. struct file;
  664. int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
  665. void __user *, size_t *, loff_t *);
  666. extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
  667. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
  668. void __user *, size_t *, loff_t *);
  669. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
  670. void __user *, size_t *, loff_t *);
  671. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
  672. struct file *, void __user *, size_t *, loff_t *);
  673. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
  674. struct file *, void __user *, size_t *, loff_t *);
  675. extern int numa_zonelist_order_handler(struct ctl_table *, int,
  676. struct file *, void __user *, size_t *, loff_t *);
  677. extern char numa_zonelist_order[];
  678. #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
  679. #ifndef CONFIG_NEED_MULTIPLE_NODES
  680. extern struct pglist_data contig_page_data;
  681. #define NODE_DATA(nid) (&contig_page_data)
  682. #define NODE_MEM_MAP(nid) mem_map
  683. #else /* CONFIG_NEED_MULTIPLE_NODES */
  684. #include <asm/mmzone.h>
  685. #endif /* !CONFIG_NEED_MULTIPLE_NODES */
  686. extern struct pglist_data *first_online_pgdat(void);
  687. extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
  688. extern struct zone *next_zone(struct zone *zone);
  689. /**
  690. * for_each_online_pgdat - helper macro to iterate over all online nodes
  691. * @pgdat - pointer to a pg_data_t variable
  692. */
  693. #define for_each_online_pgdat(pgdat) \
  694. for (pgdat = first_online_pgdat(); \
  695. pgdat; \
  696. pgdat = next_online_pgdat(pgdat))
  697. /**
  698. * for_each_zone - helper macro to iterate over all memory zones
  699. * @zone - pointer to struct zone variable
  700. *
  701. * The user only needs to declare the zone variable, for_each_zone
  702. * fills it in.
  703. */
  704. #define for_each_zone(zone) \
  705. for (zone = (first_online_pgdat())->node_zones; \
  706. zone; \
  707. zone = next_zone(zone))
  708. #define for_each_populated_zone(zone) \
  709. for (zone = (first_online_pgdat())->node_zones; \
  710. zone; \
  711. zone = next_zone(zone)) \
  712. if (!populated_zone(zone)) \
  713. ; /* do nothing */ \
  714. else
  715. static inline struct zone *zonelist_zone(struct zoneref *zoneref)
  716. {
  717. return zoneref->zone;
  718. }
  719. static inline int zonelist_zone_idx(struct zoneref *zoneref)
  720. {
  721. return zoneref->zone_idx;
  722. }
  723. static inline int zonelist_node_idx(struct zoneref *zoneref)
  724. {
  725. #ifdef CONFIG_NUMA
  726. /* zone_to_nid not available in this context */
  727. return zoneref->zone->node;
  728. #else
  729. return 0;
  730. #endif /* CONFIG_NUMA */
  731. }
  732. /**
  733. * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
  734. * @z - The cursor used as a starting point for the search
  735. * @highest_zoneidx - The zone index of the highest zone to return
  736. * @nodes - An optional nodemask to filter the zonelist with
  737. * @zone - The first suitable zone found is returned via this parameter
  738. *
  739. * This function returns the next zone at or below a given zone index that is
  740. * within the allowed nodemask using a cursor as the starting point for the
  741. * search. The zoneref returned is a cursor that represents the current zone
  742. * being examined. It should be advanced by one before calling
  743. * next_zones_zonelist again.
  744. */
  745. struct zoneref *next_zones_zonelist(struct zoneref *z,
  746. enum zone_type highest_zoneidx,
  747. nodemask_t *nodes,
  748. struct zone **zone);
  749. /**
  750. * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
  751. * @zonelist - The zonelist to search for a suitable zone
  752. * @highest_zoneidx - The zone index of the highest zone to return
  753. * @nodes - An optional nodemask to filter the zonelist with
  754. * @zone - The first suitable zone found is returned via this parameter
  755. *
  756. * This function returns the first zone at or below a given zone index that is
  757. * within the allowed nodemask. The zoneref returned is a cursor that can be
  758. * used to iterate the zonelist with next_zones_zonelist by advancing it by
  759. * one before calling.
  760. */
  761. static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
  762. enum zone_type highest_zoneidx,
  763. nodemask_t *nodes,
  764. struct zone **zone)
  765. {
  766. return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
  767. zone);
  768. }
  769. /**
  770. * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
  771. * @zone - The current zone in the iterator
  772. * @z - The current pointer within zonelist->zones being iterated
  773. * @zlist - The zonelist being iterated
  774. * @highidx - The zone index of the highest zone to return
  775. * @nodemask - Nodemask allowed by the allocator
  776. *
  777. * This iterator iterates though all zones at or below a given zone index and
  778. * within a given nodemask
  779. */
  780. #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
  781. for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
  782. zone; \
  783. z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
  784. /**
  785. * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
  786. * @zone - The current zone in the iterator
  787. * @z - The current pointer within zonelist->zones being iterated
  788. * @zlist - The zonelist being iterated
  789. * @highidx - The zone index of the highest zone to return
  790. *
  791. * This iterator iterates though all zones at or below a given zone index.
  792. */
  793. #define for_each_zone_zonelist(zone, z, zlist, highidx) \
  794. for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
  795. #ifdef CONFIG_SPARSEMEM
  796. #include <asm/sparsemem.h>
  797. #endif
  798. #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
  799. !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
  800. static inline unsigned long early_pfn_to_nid(unsigned long pfn)
  801. {
  802. return 0;
  803. }
  804. #endif
  805. #ifdef CONFIG_FLATMEM
  806. #define pfn_to_nid(pfn) (0)
  807. #endif
  808. #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
  809. #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
  810. #ifdef CONFIG_SPARSEMEM
  811. /*
  812. * SECTION_SHIFT #bits space required to store a section #
  813. *
  814. * PA_SECTION_SHIFT physical address to/from section number
  815. * PFN_SECTION_SHIFT pfn to/from section number
  816. */
  817. #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
  818. #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
  819. #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
  820. #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
  821. #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
  822. #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
  823. #define SECTION_BLOCKFLAGS_BITS \
  824. ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
  825. #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
  826. #error Allocator MAX_ORDER exceeds SECTION_SIZE
  827. #endif
  828. struct page;
  829. struct page_cgroup;
  830. struct mem_section {
  831. /*
  832. * This is, logically, a pointer to an array of struct
  833. * pages. However, it is stored with some other magic.
  834. * (see sparse.c::sparse_init_one_section())
  835. *
  836. * Additionally during early boot we encode node id of
  837. * the location of the section here to guide allocation.
  838. * (see sparse.c::memory_present())
  839. *
  840. * Making it a UL at least makes someone do a cast
  841. * before using it wrong.
  842. */
  843. unsigned long section_mem_map;
  844. /* See declaration of similar field in struct zone */
  845. unsigned long *pageblock_flags;
  846. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  847. /*
  848. * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
  849. * section. (see memcontrol.h/page_cgroup.h about this.)
  850. */
  851. struct page_cgroup *page_cgroup;
  852. unsigned long pad;
  853. #endif
  854. };
  855. #ifdef CONFIG_SPARSEMEM_EXTREME
  856. #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
  857. #else
  858. #define SECTIONS_PER_ROOT 1
  859. #endif
  860. #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
  861. #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
  862. #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
  863. #ifdef CONFIG_SPARSEMEM_EXTREME
  864. extern struct mem_section *mem_section[NR_SECTION_ROOTS];
  865. #else
  866. extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
  867. #endif
  868. static inline struct mem_section *__nr_to_section(unsigned long nr)
  869. {
  870. if (!mem_section[SECTION_NR_TO_ROOT(nr)])
  871. return NULL;
  872. return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
  873. }
  874. extern int __section_nr(struct mem_section* ms);
  875. extern unsigned long usemap_size(void);
  876. /*
  877. * We use the lower bits of the mem_map pointer to store
  878. * a little bit of information. There should be at least
  879. * 3 bits here due to 32-bit alignment.
  880. */
  881. #define SECTION_MARKED_PRESENT (1UL<<0)
  882. #define SECTION_HAS_MEM_MAP (1UL<<1)
  883. #define SECTION_MAP_LAST_BIT (1UL<<2)
  884. #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
  885. #define SECTION_NID_SHIFT 2
  886. static inline struct page *__section_mem_map_addr(struct mem_section *section)
  887. {
  888. unsigned long map = section->section_mem_map;
  889. map &= SECTION_MAP_MASK;
  890. return (struct page *)map;
  891. }
  892. static inline int present_section(struct mem_section *section)
  893. {
  894. return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
  895. }
  896. static inline int present_section_nr(unsigned long nr)
  897. {
  898. return present_section(__nr_to_section(nr));
  899. }
  900. static inline int valid_section(struct mem_section *section)
  901. {
  902. return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
  903. }
  904. static inline int valid_section_nr(unsigned long nr)
  905. {
  906. return valid_section(__nr_to_section(nr));
  907. }
  908. static inline struct mem_section *__pfn_to_section(unsigned long pfn)
  909. {
  910. return __nr_to_section(pfn_to_section_nr(pfn));
  911. }
  912. static inline int pfn_valid(unsigned long pfn)
  913. {
  914. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  915. return 0;
  916. return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
  917. }
  918. static inline int pfn_present(unsigned long pfn)
  919. {
  920. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  921. return 0;
  922. return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
  923. }
  924. /*
  925. * These are _only_ used during initialisation, therefore they
  926. * can use __initdata ... They could have names to indicate
  927. * this restriction.
  928. */
  929. #ifdef CONFIG_NUMA
  930. #define pfn_to_nid(pfn) \
  931. ({ \
  932. unsigned long __pfn_to_nid_pfn = (pfn); \
  933. page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
  934. })
  935. #else
  936. #define pfn_to_nid(pfn) (0)
  937. #endif
  938. #define early_pfn_valid(pfn) pfn_valid(pfn)
  939. void sparse_init(void);
  940. #else
  941. #define sparse_init() do {} while (0)
  942. #define sparse_index_init(_sec, _nid) do {} while (0)
  943. #endif /* CONFIG_SPARSEMEM */
  944. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  945. bool early_pfn_in_nid(unsigned long pfn, int nid);
  946. #else
  947. #define early_pfn_in_nid(pfn, nid) (1)
  948. #endif
  949. #ifndef early_pfn_valid
  950. #define early_pfn_valid(pfn) (1)
  951. #endif
  952. void memory_present(int nid, unsigned long start, unsigned long end);
  953. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  954. /*
  955. * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
  956. * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
  957. * pfn_valid_within() should be used in this case; we optimise this away
  958. * when we have no holes within a MAX_ORDER_NR_PAGES block.
  959. */
  960. #ifdef CONFIG_HOLES_IN_ZONE
  961. #define pfn_valid_within(pfn) pfn_valid(pfn)
  962. #else
  963. #define pfn_valid_within(pfn) (1)
  964. #endif
  965. #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
  966. /*
  967. * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
  968. * associated with it or not. In FLATMEM, it is expected that holes always
  969. * have valid memmap as long as there is valid PFNs either side of the hole.
  970. * In SPARSEMEM, it is assumed that a valid section has a memmap for the
  971. * entire section.
  972. *
  973. * However, an ARM, and maybe other embedded architectures in the future
  974. * free memmap backing holes to save memory on the assumption the memmap is
  975. * never used. The page_zone linkages are then broken even though pfn_valid()
  976. * returns true. A walker of the full memmap must then do this additional
  977. * check to ensure the memmap they are looking at is sane by making sure
  978. * the zone and PFN linkages are still valid. This is expensive, but walkers
  979. * of the full memmap are extremely rare.
  980. */
  981. int memmap_valid_within(unsigned long pfn,
  982. struct page *page, struct zone *zone);
  983. #else
  984. static inline int memmap_valid_within(unsigned long pfn,
  985. struct page *page, struct zone *zone)
  986. {
  987. return 1;
  988. }
  989. #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
  990. #endif /* !__GENERATING_BOUNDS.H */
  991. #endif /* !__ASSEMBLY__ */
  992. #endif /* _LINUX_MMZONE_H */