netpoll.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792
  1. /*
  2. * Common framework for low-level network console, dump, and debugger code
  3. *
  4. * Sep 8 2003 Matt Mackall <mpm@selenic.com>
  5. *
  6. * based on the netconsole code from:
  7. *
  8. * Copyright (C) 2001 Ingo Molnar <mingo@redhat.com>
  9. * Copyright (C) 2002 Red Hat, Inc.
  10. */
  11. #include <linux/smp_lock.h>
  12. #include <linux/netdevice.h>
  13. #include <linux/etherdevice.h>
  14. #include <linux/string.h>
  15. #include <linux/if_arp.h>
  16. #include <linux/inetdevice.h>
  17. #include <linux/inet.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/netpoll.h>
  20. #include <linux/sched.h>
  21. #include <linux/delay.h>
  22. #include <linux/rcupdate.h>
  23. #include <linux/workqueue.h>
  24. #include <net/tcp.h>
  25. #include <net/udp.h>
  26. #include <asm/unaligned.h>
  27. /*
  28. * We maintain a small pool of fully-sized skbs, to make sure the
  29. * message gets out even in extreme OOM situations.
  30. */
  31. #define MAX_UDP_CHUNK 1460
  32. #define MAX_SKBS 32
  33. #define MAX_QUEUE_DEPTH (MAX_SKBS / 2)
  34. static struct sk_buff_head skb_pool;
  35. static atomic_t trapped;
  36. #define USEC_PER_POLL 50
  37. #define NETPOLL_RX_ENABLED 1
  38. #define NETPOLL_RX_DROP 2
  39. #define MAX_SKB_SIZE \
  40. (MAX_UDP_CHUNK + sizeof(struct udphdr) + \
  41. sizeof(struct iphdr) + sizeof(struct ethhdr))
  42. static void zap_completion_queue(void);
  43. static void arp_reply(struct sk_buff *skb);
  44. static void queue_process(void *p)
  45. {
  46. struct netpoll_info *npinfo = p;
  47. struct sk_buff *skb;
  48. while ((skb = skb_dequeue(&npinfo->txq))) {
  49. struct net_device *dev = skb->dev;
  50. if (!netif_device_present(dev) || !netif_running(dev)) {
  51. __kfree_skb(skb);
  52. continue;
  53. }
  54. netif_tx_lock_bh(dev);
  55. if (netif_queue_stopped(dev) ||
  56. dev->hard_start_xmit(skb, dev) != NETDEV_TX_OK) {
  57. skb_queue_head(&npinfo->txq, skb);
  58. netif_tx_unlock_bh(dev);
  59. schedule_delayed_work(&npinfo->tx_work, HZ/10);
  60. return;
  61. }
  62. netif_tx_unlock_bh(dev);
  63. }
  64. }
  65. static int checksum_udp(struct sk_buff *skb, struct udphdr *uh,
  66. unsigned short ulen, u32 saddr, u32 daddr)
  67. {
  68. unsigned int psum;
  69. if (uh->check == 0 || skb->ip_summed == CHECKSUM_UNNECESSARY)
  70. return 0;
  71. psum = csum_tcpudp_nofold(saddr, daddr, ulen, IPPROTO_UDP, 0);
  72. if (skb->ip_summed == CHECKSUM_COMPLETE &&
  73. !(u16)csum_fold(csum_add(psum, skb->csum)))
  74. return 0;
  75. skb->csum = psum;
  76. return __skb_checksum_complete(skb);
  77. }
  78. /*
  79. * Check whether delayed processing was scheduled for our NIC. If so,
  80. * we attempt to grab the poll lock and use ->poll() to pump the card.
  81. * If this fails, either we've recursed in ->poll() or it's already
  82. * running on another CPU.
  83. *
  84. * Note: we don't mask interrupts with this lock because we're using
  85. * trylock here and interrupts are already disabled in the softirq
  86. * case. Further, we test the poll_owner to avoid recursion on UP
  87. * systems where the lock doesn't exist.
  88. *
  89. * In cases where there is bi-directional communications, reading only
  90. * one message at a time can lead to packets being dropped by the
  91. * network adapter, forcing superfluous retries and possibly timeouts.
  92. * Thus, we set our budget to greater than 1.
  93. */
  94. static void poll_napi(struct netpoll *np)
  95. {
  96. struct netpoll_info *npinfo = np->dev->npinfo;
  97. int budget = 16;
  98. if (test_bit(__LINK_STATE_RX_SCHED, &np->dev->state) &&
  99. npinfo->poll_owner != smp_processor_id() &&
  100. spin_trylock(&npinfo->poll_lock)) {
  101. npinfo->rx_flags |= NETPOLL_RX_DROP;
  102. atomic_inc(&trapped);
  103. np->dev->poll(np->dev, &budget);
  104. atomic_dec(&trapped);
  105. npinfo->rx_flags &= ~NETPOLL_RX_DROP;
  106. spin_unlock(&npinfo->poll_lock);
  107. }
  108. }
  109. static void service_arp_queue(struct netpoll_info *npi)
  110. {
  111. struct sk_buff *skb;
  112. if (unlikely(!npi))
  113. return;
  114. skb = skb_dequeue(&npi->arp_tx);
  115. while (skb != NULL) {
  116. arp_reply(skb);
  117. skb = skb_dequeue(&npi->arp_tx);
  118. }
  119. }
  120. void netpoll_poll(struct netpoll *np)
  121. {
  122. if (!np->dev || !netif_running(np->dev) || !np->dev->poll_controller)
  123. return;
  124. /* Process pending work on NIC */
  125. np->dev->poll_controller(np->dev);
  126. if (np->dev->poll)
  127. poll_napi(np);
  128. service_arp_queue(np->dev->npinfo);
  129. zap_completion_queue();
  130. }
  131. static void refill_skbs(void)
  132. {
  133. struct sk_buff *skb;
  134. unsigned long flags;
  135. spin_lock_irqsave(&skb_pool.lock, flags);
  136. while (skb_pool.qlen < MAX_SKBS) {
  137. skb = alloc_skb(MAX_SKB_SIZE, GFP_ATOMIC);
  138. if (!skb)
  139. break;
  140. __skb_queue_tail(&skb_pool, skb);
  141. }
  142. spin_unlock_irqrestore(&skb_pool.lock, flags);
  143. }
  144. static void zap_completion_queue(void)
  145. {
  146. unsigned long flags;
  147. struct softnet_data *sd = &get_cpu_var(softnet_data);
  148. if (sd->completion_queue) {
  149. struct sk_buff *clist;
  150. local_irq_save(flags);
  151. clist = sd->completion_queue;
  152. sd->completion_queue = NULL;
  153. local_irq_restore(flags);
  154. while (clist != NULL) {
  155. struct sk_buff *skb = clist;
  156. clist = clist->next;
  157. if (skb->destructor)
  158. dev_kfree_skb_any(skb); /* put this one back */
  159. else
  160. __kfree_skb(skb);
  161. }
  162. }
  163. put_cpu_var(softnet_data);
  164. }
  165. static struct sk_buff *find_skb(struct netpoll *np, int len, int reserve)
  166. {
  167. int count = 0;
  168. struct sk_buff *skb;
  169. zap_completion_queue();
  170. refill_skbs();
  171. repeat:
  172. skb = alloc_skb(len, GFP_ATOMIC);
  173. if (!skb)
  174. skb = skb_dequeue(&skb_pool);
  175. if (!skb) {
  176. if (++count < 10) {
  177. netpoll_poll(np);
  178. goto repeat;
  179. }
  180. return NULL;
  181. }
  182. atomic_set(&skb->users, 1);
  183. skb_reserve(skb, reserve);
  184. return skb;
  185. }
  186. static void netpoll_send_skb(struct netpoll *np, struct sk_buff *skb)
  187. {
  188. int status = NETDEV_TX_BUSY;
  189. unsigned long tries;
  190. struct net_device *dev = np->dev;
  191. struct netpoll_info *npinfo = np->dev->npinfo;
  192. if (!npinfo || !netif_running(dev) || !netif_device_present(dev)) {
  193. __kfree_skb(skb);
  194. return;
  195. }
  196. /* don't get messages out of order, and no recursion */
  197. if (skb_queue_len(&npinfo->txq) == 0 &&
  198. npinfo->poll_owner != smp_processor_id() &&
  199. netif_tx_trylock(dev)) {
  200. /* try until next clock tick */
  201. for (tries = jiffies_to_usecs(1)/USEC_PER_POLL; tries > 0; --tries) {
  202. if (!netif_queue_stopped(dev))
  203. status = dev->hard_start_xmit(skb, dev);
  204. if (status == NETDEV_TX_OK)
  205. break;
  206. /* tickle device maybe there is some cleanup */
  207. netpoll_poll(np);
  208. udelay(USEC_PER_POLL);
  209. }
  210. netif_tx_unlock(dev);
  211. }
  212. if (status != NETDEV_TX_OK) {
  213. skb_queue_tail(&npinfo->txq, skb);
  214. schedule_work(&npinfo->tx_work);
  215. }
  216. }
  217. void netpoll_send_udp(struct netpoll *np, const char *msg, int len)
  218. {
  219. int total_len, eth_len, ip_len, udp_len;
  220. struct sk_buff *skb;
  221. struct udphdr *udph;
  222. struct iphdr *iph;
  223. struct ethhdr *eth;
  224. udp_len = len + sizeof(*udph);
  225. ip_len = eth_len = udp_len + sizeof(*iph);
  226. total_len = eth_len + ETH_HLEN + NET_IP_ALIGN;
  227. skb = find_skb(np, total_len, total_len - len);
  228. if (!skb)
  229. return;
  230. memcpy(skb->data, msg, len);
  231. skb->len += len;
  232. skb->h.uh = udph = (struct udphdr *) skb_push(skb, sizeof(*udph));
  233. udph->source = htons(np->local_port);
  234. udph->dest = htons(np->remote_port);
  235. udph->len = htons(udp_len);
  236. udph->check = 0;
  237. udph->check = csum_tcpudp_magic(htonl(np->local_ip),
  238. htonl(np->remote_ip),
  239. udp_len, IPPROTO_UDP,
  240. csum_partial((unsigned char *)udph, udp_len, 0));
  241. if (udph->check == 0)
  242. udph->check = -1;
  243. skb->nh.iph = iph = (struct iphdr *)skb_push(skb, sizeof(*iph));
  244. /* iph->version = 4; iph->ihl = 5; */
  245. put_unaligned(0x45, (unsigned char *)iph);
  246. iph->tos = 0;
  247. put_unaligned(htons(ip_len), &(iph->tot_len));
  248. iph->id = 0;
  249. iph->frag_off = 0;
  250. iph->ttl = 64;
  251. iph->protocol = IPPROTO_UDP;
  252. iph->check = 0;
  253. put_unaligned(htonl(np->local_ip), &(iph->saddr));
  254. put_unaligned(htonl(np->remote_ip), &(iph->daddr));
  255. iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
  256. eth = (struct ethhdr *) skb_push(skb, ETH_HLEN);
  257. skb->mac.raw = skb->data;
  258. skb->protocol = eth->h_proto = htons(ETH_P_IP);
  259. memcpy(eth->h_source, np->local_mac, 6);
  260. memcpy(eth->h_dest, np->remote_mac, 6);
  261. skb->dev = np->dev;
  262. netpoll_send_skb(np, skb);
  263. }
  264. static void arp_reply(struct sk_buff *skb)
  265. {
  266. struct netpoll_info *npinfo = skb->dev->npinfo;
  267. struct arphdr *arp;
  268. unsigned char *arp_ptr;
  269. int size, type = ARPOP_REPLY, ptype = ETH_P_ARP;
  270. u32 sip, tip;
  271. struct sk_buff *send_skb;
  272. struct netpoll *np = NULL;
  273. if (npinfo->rx_np && npinfo->rx_np->dev == skb->dev)
  274. np = npinfo->rx_np;
  275. if (!np)
  276. return;
  277. /* No arp on this interface */
  278. if (skb->dev->flags & IFF_NOARP)
  279. return;
  280. if (!pskb_may_pull(skb, (sizeof(struct arphdr) +
  281. (2 * skb->dev->addr_len) +
  282. (2 * sizeof(u32)))))
  283. return;
  284. skb->h.raw = skb->nh.raw = skb->data;
  285. arp = skb->nh.arph;
  286. if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
  287. arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
  288. arp->ar_pro != htons(ETH_P_IP) ||
  289. arp->ar_op != htons(ARPOP_REQUEST))
  290. return;
  291. arp_ptr = (unsigned char *)(arp+1) + skb->dev->addr_len;
  292. memcpy(&sip, arp_ptr, 4);
  293. arp_ptr += 4 + skb->dev->addr_len;
  294. memcpy(&tip, arp_ptr, 4);
  295. /* Should we ignore arp? */
  296. if (tip != htonl(np->local_ip) || LOOPBACK(tip) || MULTICAST(tip))
  297. return;
  298. size = sizeof(struct arphdr) + 2 * (skb->dev->addr_len + 4);
  299. send_skb = find_skb(np, size + LL_RESERVED_SPACE(np->dev),
  300. LL_RESERVED_SPACE(np->dev));
  301. if (!send_skb)
  302. return;
  303. send_skb->nh.raw = send_skb->data;
  304. arp = (struct arphdr *) skb_put(send_skb, size);
  305. send_skb->dev = skb->dev;
  306. send_skb->protocol = htons(ETH_P_ARP);
  307. /* Fill the device header for the ARP frame */
  308. if (np->dev->hard_header &&
  309. np->dev->hard_header(send_skb, skb->dev, ptype,
  310. np->remote_mac, np->local_mac,
  311. send_skb->len) < 0) {
  312. kfree_skb(send_skb);
  313. return;
  314. }
  315. /*
  316. * Fill out the arp protocol part.
  317. *
  318. * we only support ethernet device type,
  319. * which (according to RFC 1390) should always equal 1 (Ethernet).
  320. */
  321. arp->ar_hrd = htons(np->dev->type);
  322. arp->ar_pro = htons(ETH_P_IP);
  323. arp->ar_hln = np->dev->addr_len;
  324. arp->ar_pln = 4;
  325. arp->ar_op = htons(type);
  326. arp_ptr=(unsigned char *)(arp + 1);
  327. memcpy(arp_ptr, np->dev->dev_addr, np->dev->addr_len);
  328. arp_ptr += np->dev->addr_len;
  329. memcpy(arp_ptr, &tip, 4);
  330. arp_ptr += 4;
  331. memcpy(arp_ptr, np->remote_mac, np->dev->addr_len);
  332. arp_ptr += np->dev->addr_len;
  333. memcpy(arp_ptr, &sip, 4);
  334. netpoll_send_skb(np, send_skb);
  335. }
  336. int __netpoll_rx(struct sk_buff *skb)
  337. {
  338. int proto, len, ulen;
  339. struct iphdr *iph;
  340. struct udphdr *uh;
  341. struct netpoll_info *npi = skb->dev->npinfo;
  342. struct netpoll *np = npi->rx_np;
  343. if (!np)
  344. goto out;
  345. if (skb->dev->type != ARPHRD_ETHER)
  346. goto out;
  347. /* check if netpoll clients need ARP */
  348. if (skb->protocol == __constant_htons(ETH_P_ARP) &&
  349. atomic_read(&trapped)) {
  350. skb_queue_tail(&npi->arp_tx, skb);
  351. return 1;
  352. }
  353. proto = ntohs(eth_hdr(skb)->h_proto);
  354. if (proto != ETH_P_IP)
  355. goto out;
  356. if (skb->pkt_type == PACKET_OTHERHOST)
  357. goto out;
  358. if (skb_shared(skb))
  359. goto out;
  360. iph = (struct iphdr *)skb->data;
  361. if (!pskb_may_pull(skb, sizeof(struct iphdr)))
  362. goto out;
  363. if (iph->ihl < 5 || iph->version != 4)
  364. goto out;
  365. if (!pskb_may_pull(skb, iph->ihl*4))
  366. goto out;
  367. if (ip_fast_csum((u8 *)iph, iph->ihl) != 0)
  368. goto out;
  369. len = ntohs(iph->tot_len);
  370. if (skb->len < len || len < iph->ihl*4)
  371. goto out;
  372. if (iph->protocol != IPPROTO_UDP)
  373. goto out;
  374. len -= iph->ihl*4;
  375. uh = (struct udphdr *)(((char *)iph) + iph->ihl*4);
  376. ulen = ntohs(uh->len);
  377. if (ulen != len)
  378. goto out;
  379. if (checksum_udp(skb, uh, ulen, iph->saddr, iph->daddr))
  380. goto out;
  381. if (np->local_ip && np->local_ip != ntohl(iph->daddr))
  382. goto out;
  383. if (np->remote_ip && np->remote_ip != ntohl(iph->saddr))
  384. goto out;
  385. if (np->local_port && np->local_port != ntohs(uh->dest))
  386. goto out;
  387. np->rx_hook(np, ntohs(uh->source),
  388. (char *)(uh+1),
  389. ulen - sizeof(struct udphdr));
  390. kfree_skb(skb);
  391. return 1;
  392. out:
  393. if (atomic_read(&trapped)) {
  394. kfree_skb(skb);
  395. return 1;
  396. }
  397. return 0;
  398. }
  399. int netpoll_parse_options(struct netpoll *np, char *opt)
  400. {
  401. char *cur=opt, *delim;
  402. if (*cur != '@') {
  403. if ((delim = strchr(cur, '@')) == NULL)
  404. goto parse_failed;
  405. *delim = 0;
  406. np->local_port = simple_strtol(cur, NULL, 10);
  407. cur = delim;
  408. }
  409. cur++;
  410. printk(KERN_INFO "%s: local port %d\n", np->name, np->local_port);
  411. if (*cur != '/') {
  412. if ((delim = strchr(cur, '/')) == NULL)
  413. goto parse_failed;
  414. *delim = 0;
  415. np->local_ip = ntohl(in_aton(cur));
  416. cur = delim;
  417. printk(KERN_INFO "%s: local IP %d.%d.%d.%d\n",
  418. np->name, HIPQUAD(np->local_ip));
  419. }
  420. cur++;
  421. if (*cur != ',') {
  422. /* parse out dev name */
  423. if ((delim = strchr(cur, ',')) == NULL)
  424. goto parse_failed;
  425. *delim = 0;
  426. strlcpy(np->dev_name, cur, sizeof(np->dev_name));
  427. cur = delim;
  428. }
  429. cur++;
  430. printk(KERN_INFO "%s: interface %s\n", np->name, np->dev_name);
  431. if (*cur != '@') {
  432. /* dst port */
  433. if ((delim = strchr(cur, '@')) == NULL)
  434. goto parse_failed;
  435. *delim = 0;
  436. np->remote_port = simple_strtol(cur, NULL, 10);
  437. cur = delim;
  438. }
  439. cur++;
  440. printk(KERN_INFO "%s: remote port %d\n", np->name, np->remote_port);
  441. /* dst ip */
  442. if ((delim = strchr(cur, '/')) == NULL)
  443. goto parse_failed;
  444. *delim = 0;
  445. np->remote_ip = ntohl(in_aton(cur));
  446. cur = delim + 1;
  447. printk(KERN_INFO "%s: remote IP %d.%d.%d.%d\n",
  448. np->name, HIPQUAD(np->remote_ip));
  449. if (*cur != 0) {
  450. /* MAC address */
  451. if ((delim = strchr(cur, ':')) == NULL)
  452. goto parse_failed;
  453. *delim = 0;
  454. np->remote_mac[0] = simple_strtol(cur, NULL, 16);
  455. cur = delim + 1;
  456. if ((delim = strchr(cur, ':')) == NULL)
  457. goto parse_failed;
  458. *delim = 0;
  459. np->remote_mac[1] = simple_strtol(cur, NULL, 16);
  460. cur = delim + 1;
  461. if ((delim = strchr(cur, ':')) == NULL)
  462. goto parse_failed;
  463. *delim = 0;
  464. np->remote_mac[2] = simple_strtol(cur, NULL, 16);
  465. cur = delim + 1;
  466. if ((delim = strchr(cur, ':')) == NULL)
  467. goto parse_failed;
  468. *delim = 0;
  469. np->remote_mac[3] = simple_strtol(cur, NULL, 16);
  470. cur = delim + 1;
  471. if ((delim = strchr(cur, ':')) == NULL)
  472. goto parse_failed;
  473. *delim = 0;
  474. np->remote_mac[4] = simple_strtol(cur, NULL, 16);
  475. cur = delim + 1;
  476. np->remote_mac[5] = simple_strtol(cur, NULL, 16);
  477. }
  478. printk(KERN_INFO "%s: remote ethernet address "
  479. "%02x:%02x:%02x:%02x:%02x:%02x\n",
  480. np->name,
  481. np->remote_mac[0],
  482. np->remote_mac[1],
  483. np->remote_mac[2],
  484. np->remote_mac[3],
  485. np->remote_mac[4],
  486. np->remote_mac[5]);
  487. return 0;
  488. parse_failed:
  489. printk(KERN_INFO "%s: couldn't parse config at %s!\n",
  490. np->name, cur);
  491. return -1;
  492. }
  493. int netpoll_setup(struct netpoll *np)
  494. {
  495. struct net_device *ndev = NULL;
  496. struct in_device *in_dev;
  497. struct netpoll_info *npinfo;
  498. unsigned long flags;
  499. int err;
  500. if (np->dev_name)
  501. ndev = dev_get_by_name(np->dev_name);
  502. if (!ndev) {
  503. printk(KERN_ERR "%s: %s doesn't exist, aborting.\n",
  504. np->name, np->dev_name);
  505. return -ENODEV;
  506. }
  507. np->dev = ndev;
  508. if (!ndev->npinfo) {
  509. npinfo = kmalloc(sizeof(*npinfo), GFP_KERNEL);
  510. if (!npinfo) {
  511. err = -ENOMEM;
  512. goto release;
  513. }
  514. npinfo->rx_flags = 0;
  515. npinfo->rx_np = NULL;
  516. spin_lock_init(&npinfo->poll_lock);
  517. npinfo->poll_owner = -1;
  518. spin_lock_init(&npinfo->rx_lock);
  519. skb_queue_head_init(&npinfo->arp_tx);
  520. skb_queue_head_init(&npinfo->txq);
  521. INIT_WORK(&npinfo->tx_work, queue_process, npinfo);
  522. atomic_set(&npinfo->refcnt, 1);
  523. } else {
  524. npinfo = ndev->npinfo;
  525. atomic_inc(&npinfo->refcnt);
  526. }
  527. if (!ndev->poll_controller) {
  528. printk(KERN_ERR "%s: %s doesn't support polling, aborting.\n",
  529. np->name, np->dev_name);
  530. err = -ENOTSUPP;
  531. goto release;
  532. }
  533. if (!netif_running(ndev)) {
  534. unsigned long atmost, atleast;
  535. printk(KERN_INFO "%s: device %s not up yet, forcing it\n",
  536. np->name, np->dev_name);
  537. rtnl_lock();
  538. err = dev_open(ndev);
  539. rtnl_unlock();
  540. if (err) {
  541. printk(KERN_ERR "%s: failed to open %s\n",
  542. np->name, ndev->name);
  543. goto release;
  544. }
  545. atleast = jiffies + HZ/10;
  546. atmost = jiffies + 4*HZ;
  547. while (!netif_carrier_ok(ndev)) {
  548. if (time_after(jiffies, atmost)) {
  549. printk(KERN_NOTICE
  550. "%s: timeout waiting for carrier\n",
  551. np->name);
  552. break;
  553. }
  554. cond_resched();
  555. }
  556. /* If carrier appears to come up instantly, we don't
  557. * trust it and pause so that we don't pump all our
  558. * queued console messages into the bitbucket.
  559. */
  560. if (time_before(jiffies, atleast)) {
  561. printk(KERN_NOTICE "%s: carrier detect appears"
  562. " untrustworthy, waiting 4 seconds\n",
  563. np->name);
  564. msleep(4000);
  565. }
  566. }
  567. if (is_zero_ether_addr(np->local_mac) && ndev->dev_addr)
  568. memcpy(np->local_mac, ndev->dev_addr, 6);
  569. if (!np->local_ip) {
  570. rcu_read_lock();
  571. in_dev = __in_dev_get_rcu(ndev);
  572. if (!in_dev || !in_dev->ifa_list) {
  573. rcu_read_unlock();
  574. printk(KERN_ERR "%s: no IP address for %s, aborting\n",
  575. np->name, np->dev_name);
  576. err = -EDESTADDRREQ;
  577. goto release;
  578. }
  579. np->local_ip = ntohl(in_dev->ifa_list->ifa_local);
  580. rcu_read_unlock();
  581. printk(KERN_INFO "%s: local IP %d.%d.%d.%d\n",
  582. np->name, HIPQUAD(np->local_ip));
  583. }
  584. if (np->rx_hook) {
  585. spin_lock_irqsave(&npinfo->rx_lock, flags);
  586. npinfo->rx_flags |= NETPOLL_RX_ENABLED;
  587. npinfo->rx_np = np;
  588. spin_unlock_irqrestore(&npinfo->rx_lock, flags);
  589. }
  590. /* fill up the skb queue */
  591. refill_skbs();
  592. /* last thing to do is link it to the net device structure */
  593. ndev->npinfo = npinfo;
  594. /* avoid racing with NAPI reading npinfo */
  595. synchronize_rcu();
  596. return 0;
  597. release:
  598. if (!ndev->npinfo)
  599. kfree(npinfo);
  600. np->dev = NULL;
  601. dev_put(ndev);
  602. return err;
  603. }
  604. static int __init netpoll_init(void)
  605. {
  606. skb_queue_head_init(&skb_pool);
  607. return 0;
  608. }
  609. core_initcall(netpoll_init);
  610. void netpoll_cleanup(struct netpoll *np)
  611. {
  612. struct netpoll_info *npinfo;
  613. unsigned long flags;
  614. if (np->dev) {
  615. npinfo = np->dev->npinfo;
  616. if (npinfo) {
  617. if (npinfo->rx_np == np) {
  618. spin_lock_irqsave(&npinfo->rx_lock, flags);
  619. npinfo->rx_np = NULL;
  620. npinfo->rx_flags &= ~NETPOLL_RX_ENABLED;
  621. spin_unlock_irqrestore(&npinfo->rx_lock, flags);
  622. }
  623. np->dev->npinfo = NULL;
  624. if (atomic_dec_and_test(&npinfo->refcnt)) {
  625. skb_queue_purge(&npinfo->arp_tx);
  626. skb_queue_purge(&npinfo->txq);
  627. cancel_rearming_delayed_work(&npinfo->tx_work);
  628. flush_scheduled_work();
  629. kfree(npinfo);
  630. }
  631. }
  632. dev_put(np->dev);
  633. }
  634. np->dev = NULL;
  635. }
  636. int netpoll_trap(void)
  637. {
  638. return atomic_read(&trapped);
  639. }
  640. void netpoll_set_trap(int trap)
  641. {
  642. if (trap)
  643. atomic_inc(&trapped);
  644. else
  645. atomic_dec(&trapped);
  646. }
  647. EXPORT_SYMBOL(netpoll_set_trap);
  648. EXPORT_SYMBOL(netpoll_trap);
  649. EXPORT_SYMBOL(netpoll_parse_options);
  650. EXPORT_SYMBOL(netpoll_setup);
  651. EXPORT_SYMBOL(netpoll_cleanup);
  652. EXPORT_SYMBOL(netpoll_send_udp);
  653. EXPORT_SYMBOL(netpoll_poll);