rtc-cmos.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191
  1. /*
  2. * RTC class driver for "CMOS RTC": PCs, ACPI, etc
  3. *
  4. * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
  5. * Copyright (C) 2006 David Brownell (convert to new framework)
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. /*
  13. * The original "cmos clock" chip was an MC146818 chip, now obsolete.
  14. * That defined the register interface now provided by all PCs, some
  15. * non-PC systems, and incorporated into ACPI. Modern PC chipsets
  16. * integrate an MC146818 clone in their southbridge, and boards use
  17. * that instead of discrete clones like the DS12887 or M48T86. There
  18. * are also clones that connect using the LPC bus.
  19. *
  20. * That register API is also used directly by various other drivers
  21. * (notably for integrated NVRAM), infrastructure (x86 has code to
  22. * bypass the RTC framework, directly reading the RTC during boot
  23. * and updating minutes/seconds for systems using NTP synch) and
  24. * utilities (like userspace 'hwclock', if no /dev node exists).
  25. *
  26. * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
  27. * interrupts disabled, holding the global rtc_lock, to exclude those
  28. * other drivers and utilities on correctly configured systems.
  29. */
  30. #include <linux/kernel.h>
  31. #include <linux/module.h>
  32. #include <linux/init.h>
  33. #include <linux/interrupt.h>
  34. #include <linux/spinlock.h>
  35. #include <linux/platform_device.h>
  36. #include <linux/mod_devicetable.h>
  37. #include <linux/log2.h>
  38. #include <linux/pm.h>
  39. #include <linux/of.h>
  40. #include <linux/of_platform.h>
  41. /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
  42. #include <asm-generic/rtc.h>
  43. struct cmos_rtc {
  44. struct rtc_device *rtc;
  45. struct device *dev;
  46. int irq;
  47. struct resource *iomem;
  48. void (*wake_on)(struct device *);
  49. void (*wake_off)(struct device *);
  50. u8 enabled_wake;
  51. u8 suspend_ctrl;
  52. /* newer hardware extends the original register set */
  53. u8 day_alrm;
  54. u8 mon_alrm;
  55. u8 century;
  56. };
  57. /* both platform and pnp busses use negative numbers for invalid irqs */
  58. #define is_valid_irq(n) ((n) > 0)
  59. static const char driver_name[] = "rtc_cmos";
  60. /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
  61. * always mask it against the irq enable bits in RTC_CONTROL. Bit values
  62. * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
  63. */
  64. #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
  65. static inline int is_intr(u8 rtc_intr)
  66. {
  67. if (!(rtc_intr & RTC_IRQF))
  68. return 0;
  69. return rtc_intr & RTC_IRQMASK;
  70. }
  71. /*----------------------------------------------------------------*/
  72. /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
  73. * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
  74. * used in a broken "legacy replacement" mode. The breakage includes
  75. * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
  76. * other (better) use.
  77. *
  78. * When that broken mode is in use, platform glue provides a partial
  79. * emulation of hardware RTC IRQ facilities using HPET #1. We don't
  80. * want to use HPET for anything except those IRQs though...
  81. */
  82. #ifdef CONFIG_HPET_EMULATE_RTC
  83. #include <asm/hpet.h>
  84. #else
  85. static inline int is_hpet_enabled(void)
  86. {
  87. return 0;
  88. }
  89. static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
  90. {
  91. return 0;
  92. }
  93. static inline int hpet_set_rtc_irq_bit(unsigned long mask)
  94. {
  95. return 0;
  96. }
  97. static inline int
  98. hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
  99. {
  100. return 0;
  101. }
  102. static inline int hpet_set_periodic_freq(unsigned long freq)
  103. {
  104. return 0;
  105. }
  106. static inline int hpet_rtc_dropped_irq(void)
  107. {
  108. return 0;
  109. }
  110. static inline int hpet_rtc_timer_init(void)
  111. {
  112. return 0;
  113. }
  114. extern irq_handler_t hpet_rtc_interrupt;
  115. static inline int hpet_register_irq_handler(irq_handler_t handler)
  116. {
  117. return 0;
  118. }
  119. static inline int hpet_unregister_irq_handler(irq_handler_t handler)
  120. {
  121. return 0;
  122. }
  123. #endif
  124. /*----------------------------------------------------------------*/
  125. #ifdef RTC_PORT
  126. /* Most newer x86 systems have two register banks, the first used
  127. * for RTC and NVRAM and the second only for NVRAM. Caller must
  128. * own rtc_lock ... and we won't worry about access during NMI.
  129. */
  130. #define can_bank2 true
  131. static inline unsigned char cmos_read_bank2(unsigned char addr)
  132. {
  133. outb(addr, RTC_PORT(2));
  134. return inb(RTC_PORT(3));
  135. }
  136. static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
  137. {
  138. outb(addr, RTC_PORT(2));
  139. outb(val, RTC_PORT(3));
  140. }
  141. #else
  142. #define can_bank2 false
  143. static inline unsigned char cmos_read_bank2(unsigned char addr)
  144. {
  145. return 0;
  146. }
  147. static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
  148. {
  149. }
  150. #endif
  151. /*----------------------------------------------------------------*/
  152. static int cmos_read_time(struct device *dev, struct rtc_time *t)
  153. {
  154. /* REVISIT: if the clock has a "century" register, use
  155. * that instead of the heuristic in get_rtc_time().
  156. * That'll make Y3K compatility (year > 2070) easy!
  157. */
  158. get_rtc_time(t);
  159. return 0;
  160. }
  161. static int cmos_set_time(struct device *dev, struct rtc_time *t)
  162. {
  163. /* REVISIT: set the "century" register if available
  164. *
  165. * NOTE: this ignores the issue whereby updating the seconds
  166. * takes effect exactly 500ms after we write the register.
  167. * (Also queueing and other delays before we get this far.)
  168. */
  169. return set_rtc_time(t);
  170. }
  171. static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
  172. {
  173. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  174. unsigned char rtc_control;
  175. if (!is_valid_irq(cmos->irq))
  176. return -EIO;
  177. /* Basic alarms only support hour, minute, and seconds fields.
  178. * Some also support day and month, for alarms up to a year in
  179. * the future.
  180. */
  181. t->time.tm_mday = -1;
  182. t->time.tm_mon = -1;
  183. spin_lock_irq(&rtc_lock);
  184. t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
  185. t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
  186. t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
  187. if (cmos->day_alrm) {
  188. /* ignore upper bits on readback per ACPI spec */
  189. t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
  190. if (!t->time.tm_mday)
  191. t->time.tm_mday = -1;
  192. if (cmos->mon_alrm) {
  193. t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
  194. if (!t->time.tm_mon)
  195. t->time.tm_mon = -1;
  196. }
  197. }
  198. rtc_control = CMOS_READ(RTC_CONTROL);
  199. spin_unlock_irq(&rtc_lock);
  200. if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
  201. if (((unsigned)t->time.tm_sec) < 0x60)
  202. t->time.tm_sec = bcd2bin(t->time.tm_sec);
  203. else
  204. t->time.tm_sec = -1;
  205. if (((unsigned)t->time.tm_min) < 0x60)
  206. t->time.tm_min = bcd2bin(t->time.tm_min);
  207. else
  208. t->time.tm_min = -1;
  209. if (((unsigned)t->time.tm_hour) < 0x24)
  210. t->time.tm_hour = bcd2bin(t->time.tm_hour);
  211. else
  212. t->time.tm_hour = -1;
  213. if (cmos->day_alrm) {
  214. if (((unsigned)t->time.tm_mday) <= 0x31)
  215. t->time.tm_mday = bcd2bin(t->time.tm_mday);
  216. else
  217. t->time.tm_mday = -1;
  218. if (cmos->mon_alrm) {
  219. if (((unsigned)t->time.tm_mon) <= 0x12)
  220. t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
  221. else
  222. t->time.tm_mon = -1;
  223. }
  224. }
  225. }
  226. t->time.tm_year = -1;
  227. t->enabled = !!(rtc_control & RTC_AIE);
  228. t->pending = 0;
  229. return 0;
  230. }
  231. static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
  232. {
  233. unsigned char rtc_intr;
  234. /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
  235. * allegedly some older rtcs need that to handle irqs properly
  236. */
  237. rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
  238. if (is_hpet_enabled())
  239. return;
  240. rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
  241. if (is_intr(rtc_intr))
  242. rtc_update_irq(cmos->rtc, 1, rtc_intr);
  243. }
  244. static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
  245. {
  246. unsigned char rtc_control;
  247. /* flush any pending IRQ status, notably for update irqs,
  248. * before we enable new IRQs
  249. */
  250. rtc_control = CMOS_READ(RTC_CONTROL);
  251. cmos_checkintr(cmos, rtc_control);
  252. rtc_control |= mask;
  253. CMOS_WRITE(rtc_control, RTC_CONTROL);
  254. hpet_set_rtc_irq_bit(mask);
  255. cmos_checkintr(cmos, rtc_control);
  256. }
  257. static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
  258. {
  259. unsigned char rtc_control;
  260. rtc_control = CMOS_READ(RTC_CONTROL);
  261. rtc_control &= ~mask;
  262. CMOS_WRITE(rtc_control, RTC_CONTROL);
  263. hpet_mask_rtc_irq_bit(mask);
  264. cmos_checkintr(cmos, rtc_control);
  265. }
  266. static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
  267. {
  268. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  269. unsigned char mon, mday, hrs, min, sec, rtc_control;
  270. if (!is_valid_irq(cmos->irq))
  271. return -EIO;
  272. mon = t->time.tm_mon + 1;
  273. mday = t->time.tm_mday;
  274. hrs = t->time.tm_hour;
  275. min = t->time.tm_min;
  276. sec = t->time.tm_sec;
  277. rtc_control = CMOS_READ(RTC_CONTROL);
  278. if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
  279. /* Writing 0xff means "don't care" or "match all". */
  280. mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
  281. mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
  282. hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
  283. min = (min < 60) ? bin2bcd(min) : 0xff;
  284. sec = (sec < 60) ? bin2bcd(sec) : 0xff;
  285. }
  286. spin_lock_irq(&rtc_lock);
  287. /* next rtc irq must not be from previous alarm setting */
  288. cmos_irq_disable(cmos, RTC_AIE);
  289. /* update alarm */
  290. CMOS_WRITE(hrs, RTC_HOURS_ALARM);
  291. CMOS_WRITE(min, RTC_MINUTES_ALARM);
  292. CMOS_WRITE(sec, RTC_SECONDS_ALARM);
  293. /* the system may support an "enhanced" alarm */
  294. if (cmos->day_alrm) {
  295. CMOS_WRITE(mday, cmos->day_alrm);
  296. if (cmos->mon_alrm)
  297. CMOS_WRITE(mon, cmos->mon_alrm);
  298. }
  299. /* FIXME the HPET alarm glue currently ignores day_alrm
  300. * and mon_alrm ...
  301. */
  302. hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
  303. if (t->enabled)
  304. cmos_irq_enable(cmos, RTC_AIE);
  305. spin_unlock_irq(&rtc_lock);
  306. return 0;
  307. }
  308. static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
  309. {
  310. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  311. unsigned long flags;
  312. if (!is_valid_irq(cmos->irq))
  313. return -EINVAL;
  314. spin_lock_irqsave(&rtc_lock, flags);
  315. if (enabled)
  316. cmos_irq_enable(cmos, RTC_AIE);
  317. else
  318. cmos_irq_disable(cmos, RTC_AIE);
  319. spin_unlock_irqrestore(&rtc_lock, flags);
  320. return 0;
  321. }
  322. #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
  323. static int cmos_procfs(struct device *dev, struct seq_file *seq)
  324. {
  325. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  326. unsigned char rtc_control, valid;
  327. spin_lock_irq(&rtc_lock);
  328. rtc_control = CMOS_READ(RTC_CONTROL);
  329. valid = CMOS_READ(RTC_VALID);
  330. spin_unlock_irq(&rtc_lock);
  331. /* NOTE: at least ICH6 reports battery status using a different
  332. * (non-RTC) bit; and SQWE is ignored on many current systems.
  333. */
  334. return seq_printf(seq,
  335. "periodic_IRQ\t: %s\n"
  336. "update_IRQ\t: %s\n"
  337. "HPET_emulated\t: %s\n"
  338. // "square_wave\t: %s\n"
  339. "BCD\t\t: %s\n"
  340. "DST_enable\t: %s\n"
  341. "periodic_freq\t: %d\n"
  342. "batt_status\t: %s\n",
  343. (rtc_control & RTC_PIE) ? "yes" : "no",
  344. (rtc_control & RTC_UIE) ? "yes" : "no",
  345. is_hpet_enabled() ? "yes" : "no",
  346. // (rtc_control & RTC_SQWE) ? "yes" : "no",
  347. (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
  348. (rtc_control & RTC_DST_EN) ? "yes" : "no",
  349. cmos->rtc->irq_freq,
  350. (valid & RTC_VRT) ? "okay" : "dead");
  351. }
  352. #else
  353. #define cmos_procfs NULL
  354. #endif
  355. static const struct rtc_class_ops cmos_rtc_ops = {
  356. .read_time = cmos_read_time,
  357. .set_time = cmos_set_time,
  358. .read_alarm = cmos_read_alarm,
  359. .set_alarm = cmos_set_alarm,
  360. .proc = cmos_procfs,
  361. .alarm_irq_enable = cmos_alarm_irq_enable,
  362. };
  363. /*----------------------------------------------------------------*/
  364. /*
  365. * All these chips have at least 64 bytes of address space, shared by
  366. * RTC registers and NVRAM. Most of those bytes of NVRAM are used
  367. * by boot firmware. Modern chips have 128 or 256 bytes.
  368. */
  369. #define NVRAM_OFFSET (RTC_REG_D + 1)
  370. static ssize_t
  371. cmos_nvram_read(struct file *filp, struct kobject *kobj,
  372. struct bin_attribute *attr,
  373. char *buf, loff_t off, size_t count)
  374. {
  375. int retval;
  376. if (unlikely(off >= attr->size))
  377. return 0;
  378. if (unlikely(off < 0))
  379. return -EINVAL;
  380. if ((off + count) > attr->size)
  381. count = attr->size - off;
  382. off += NVRAM_OFFSET;
  383. spin_lock_irq(&rtc_lock);
  384. for (retval = 0; count; count--, off++, retval++) {
  385. if (off < 128)
  386. *buf++ = CMOS_READ(off);
  387. else if (can_bank2)
  388. *buf++ = cmos_read_bank2(off);
  389. else
  390. break;
  391. }
  392. spin_unlock_irq(&rtc_lock);
  393. return retval;
  394. }
  395. static ssize_t
  396. cmos_nvram_write(struct file *filp, struct kobject *kobj,
  397. struct bin_attribute *attr,
  398. char *buf, loff_t off, size_t count)
  399. {
  400. struct cmos_rtc *cmos;
  401. int retval;
  402. cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
  403. if (unlikely(off >= attr->size))
  404. return -EFBIG;
  405. if (unlikely(off < 0))
  406. return -EINVAL;
  407. if ((off + count) > attr->size)
  408. count = attr->size - off;
  409. /* NOTE: on at least PCs and Ataris, the boot firmware uses a
  410. * checksum on part of the NVRAM data. That's currently ignored
  411. * here. If userspace is smart enough to know what fields of
  412. * NVRAM to update, updating checksums is also part of its job.
  413. */
  414. off += NVRAM_OFFSET;
  415. spin_lock_irq(&rtc_lock);
  416. for (retval = 0; count; count--, off++, retval++) {
  417. /* don't trash RTC registers */
  418. if (off == cmos->day_alrm
  419. || off == cmos->mon_alrm
  420. || off == cmos->century)
  421. buf++;
  422. else if (off < 128)
  423. CMOS_WRITE(*buf++, off);
  424. else if (can_bank2)
  425. cmos_write_bank2(*buf++, off);
  426. else
  427. break;
  428. }
  429. spin_unlock_irq(&rtc_lock);
  430. return retval;
  431. }
  432. static struct bin_attribute nvram = {
  433. .attr = {
  434. .name = "nvram",
  435. .mode = S_IRUGO | S_IWUSR,
  436. },
  437. .read = cmos_nvram_read,
  438. .write = cmos_nvram_write,
  439. /* size gets set up later */
  440. };
  441. /*----------------------------------------------------------------*/
  442. static struct cmos_rtc cmos_rtc;
  443. static irqreturn_t cmos_interrupt(int irq, void *p)
  444. {
  445. u8 irqstat;
  446. u8 rtc_control;
  447. spin_lock(&rtc_lock);
  448. /* When the HPET interrupt handler calls us, the interrupt
  449. * status is passed as arg1 instead of the irq number. But
  450. * always clear irq status, even when HPET is in the way.
  451. *
  452. * Note that HPET and RTC are almost certainly out of phase,
  453. * giving different IRQ status ...
  454. */
  455. irqstat = CMOS_READ(RTC_INTR_FLAGS);
  456. rtc_control = CMOS_READ(RTC_CONTROL);
  457. if (is_hpet_enabled())
  458. irqstat = (unsigned long)irq & 0xF0;
  459. irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
  460. /* All Linux RTC alarms should be treated as if they were oneshot.
  461. * Similar code may be needed in system wakeup paths, in case the
  462. * alarm woke the system.
  463. */
  464. if (irqstat & RTC_AIE) {
  465. rtc_control &= ~RTC_AIE;
  466. CMOS_WRITE(rtc_control, RTC_CONTROL);
  467. hpet_mask_rtc_irq_bit(RTC_AIE);
  468. CMOS_READ(RTC_INTR_FLAGS);
  469. }
  470. spin_unlock(&rtc_lock);
  471. if (is_intr(irqstat)) {
  472. rtc_update_irq(p, 1, irqstat);
  473. return IRQ_HANDLED;
  474. } else
  475. return IRQ_NONE;
  476. }
  477. #ifdef CONFIG_PNP
  478. #define INITSECTION
  479. #else
  480. #define INITSECTION __init
  481. #endif
  482. static int INITSECTION
  483. cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
  484. {
  485. struct cmos_rtc_board_info *info = dev->platform_data;
  486. int retval = 0;
  487. unsigned char rtc_control;
  488. unsigned address_space;
  489. /* there can be only one ... */
  490. if (cmos_rtc.dev)
  491. return -EBUSY;
  492. if (!ports)
  493. return -ENODEV;
  494. /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
  495. *
  496. * REVISIT non-x86 systems may instead use memory space resources
  497. * (needing ioremap etc), not i/o space resources like this ...
  498. */
  499. ports = request_region(ports->start,
  500. resource_size(ports),
  501. driver_name);
  502. if (!ports) {
  503. dev_dbg(dev, "i/o registers already in use\n");
  504. return -EBUSY;
  505. }
  506. cmos_rtc.irq = rtc_irq;
  507. cmos_rtc.iomem = ports;
  508. /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
  509. * driver did, but don't reject unknown configs. Old hardware
  510. * won't address 128 bytes. Newer chips have multiple banks,
  511. * though they may not be listed in one I/O resource.
  512. */
  513. #if defined(CONFIG_ATARI)
  514. address_space = 64;
  515. #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
  516. || defined(__sparc__) || defined(__mips__) \
  517. || defined(__powerpc__)
  518. address_space = 128;
  519. #else
  520. #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
  521. address_space = 128;
  522. #endif
  523. if (can_bank2 && ports->end > (ports->start + 1))
  524. address_space = 256;
  525. /* For ACPI systems extension info comes from the FADT. On others,
  526. * board specific setup provides it as appropriate. Systems where
  527. * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
  528. * some almost-clones) can provide hooks to make that behave.
  529. *
  530. * Note that ACPI doesn't preclude putting these registers into
  531. * "extended" areas of the chip, including some that we won't yet
  532. * expect CMOS_READ and friends to handle.
  533. */
  534. if (info) {
  535. if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
  536. cmos_rtc.day_alrm = info->rtc_day_alarm;
  537. if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
  538. cmos_rtc.mon_alrm = info->rtc_mon_alarm;
  539. if (info->rtc_century && info->rtc_century < 128)
  540. cmos_rtc.century = info->rtc_century;
  541. if (info->wake_on && info->wake_off) {
  542. cmos_rtc.wake_on = info->wake_on;
  543. cmos_rtc.wake_off = info->wake_off;
  544. }
  545. }
  546. cmos_rtc.dev = dev;
  547. dev_set_drvdata(dev, &cmos_rtc);
  548. cmos_rtc.rtc = rtc_device_register(driver_name, dev,
  549. &cmos_rtc_ops, THIS_MODULE);
  550. if (IS_ERR(cmos_rtc.rtc)) {
  551. retval = PTR_ERR(cmos_rtc.rtc);
  552. goto cleanup0;
  553. }
  554. rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
  555. spin_lock_irq(&rtc_lock);
  556. /* force periodic irq to CMOS reset default of 1024Hz;
  557. *
  558. * REVISIT it's been reported that at least one x86_64 ALI mobo
  559. * doesn't use 32KHz here ... for portability we might need to
  560. * do something about other clock frequencies.
  561. */
  562. cmos_rtc.rtc->irq_freq = 1024;
  563. hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
  564. CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
  565. /* disable irqs */
  566. cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
  567. rtc_control = CMOS_READ(RTC_CONTROL);
  568. spin_unlock_irq(&rtc_lock);
  569. /* FIXME:
  570. * <asm-generic/rtc.h> doesn't know 12-hour mode either.
  571. */
  572. if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
  573. dev_warn(dev, "only 24-hr supported\n");
  574. retval = -ENXIO;
  575. goto cleanup1;
  576. }
  577. if (is_valid_irq(rtc_irq)) {
  578. irq_handler_t rtc_cmos_int_handler;
  579. if (is_hpet_enabled()) {
  580. int err;
  581. rtc_cmos_int_handler = hpet_rtc_interrupt;
  582. err = hpet_register_irq_handler(cmos_interrupt);
  583. if (err != 0) {
  584. dev_warn(dev, "hpet_register_irq_handler "
  585. " failed in rtc_init().");
  586. goto cleanup1;
  587. }
  588. } else
  589. rtc_cmos_int_handler = cmos_interrupt;
  590. retval = request_irq(rtc_irq, rtc_cmos_int_handler,
  591. 0, dev_name(&cmos_rtc.rtc->dev),
  592. cmos_rtc.rtc);
  593. if (retval < 0) {
  594. dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
  595. goto cleanup1;
  596. }
  597. }
  598. hpet_rtc_timer_init();
  599. /* export at least the first block of NVRAM */
  600. nvram.size = address_space - NVRAM_OFFSET;
  601. retval = sysfs_create_bin_file(&dev->kobj, &nvram);
  602. if (retval < 0) {
  603. dev_dbg(dev, "can't create nvram file? %d\n", retval);
  604. goto cleanup2;
  605. }
  606. dev_info(dev, "%s%s, %zd bytes nvram%s\n",
  607. !is_valid_irq(rtc_irq) ? "no alarms" :
  608. cmos_rtc.mon_alrm ? "alarms up to one year" :
  609. cmos_rtc.day_alrm ? "alarms up to one month" :
  610. "alarms up to one day",
  611. cmos_rtc.century ? ", y3k" : "",
  612. nvram.size,
  613. is_hpet_enabled() ? ", hpet irqs" : "");
  614. return 0;
  615. cleanup2:
  616. if (is_valid_irq(rtc_irq))
  617. free_irq(rtc_irq, cmos_rtc.rtc);
  618. cleanup1:
  619. cmos_rtc.dev = NULL;
  620. rtc_device_unregister(cmos_rtc.rtc);
  621. cleanup0:
  622. release_region(ports->start, resource_size(ports));
  623. return retval;
  624. }
  625. static void cmos_do_shutdown(void)
  626. {
  627. spin_lock_irq(&rtc_lock);
  628. cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
  629. spin_unlock_irq(&rtc_lock);
  630. }
  631. static void __exit cmos_do_remove(struct device *dev)
  632. {
  633. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  634. struct resource *ports;
  635. cmos_do_shutdown();
  636. sysfs_remove_bin_file(&dev->kobj, &nvram);
  637. if (is_valid_irq(cmos->irq)) {
  638. free_irq(cmos->irq, cmos->rtc);
  639. hpet_unregister_irq_handler(cmos_interrupt);
  640. }
  641. rtc_device_unregister(cmos->rtc);
  642. cmos->rtc = NULL;
  643. ports = cmos->iomem;
  644. release_region(ports->start, resource_size(ports));
  645. cmos->iomem = NULL;
  646. cmos->dev = NULL;
  647. dev_set_drvdata(dev, NULL);
  648. }
  649. #ifdef CONFIG_PM
  650. static int cmos_suspend(struct device *dev)
  651. {
  652. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  653. unsigned char tmp;
  654. /* only the alarm might be a wakeup event source */
  655. spin_lock_irq(&rtc_lock);
  656. cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
  657. if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
  658. unsigned char mask;
  659. if (device_may_wakeup(dev))
  660. mask = RTC_IRQMASK & ~RTC_AIE;
  661. else
  662. mask = RTC_IRQMASK;
  663. tmp &= ~mask;
  664. CMOS_WRITE(tmp, RTC_CONTROL);
  665. hpet_mask_rtc_irq_bit(mask);
  666. cmos_checkintr(cmos, tmp);
  667. }
  668. spin_unlock_irq(&rtc_lock);
  669. if (tmp & RTC_AIE) {
  670. cmos->enabled_wake = 1;
  671. if (cmos->wake_on)
  672. cmos->wake_on(dev);
  673. else
  674. enable_irq_wake(cmos->irq);
  675. }
  676. dev_dbg(dev, "suspend%s, ctrl %02x\n",
  677. (tmp & RTC_AIE) ? ", alarm may wake" : "",
  678. tmp);
  679. return 0;
  680. }
  681. /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
  682. * after a detour through G3 "mechanical off", although the ACPI spec
  683. * says wakeup should only work from G1/S4 "hibernate". To most users,
  684. * distinctions between S4 and S5 are pointless. So when the hardware
  685. * allows, don't draw that distinction.
  686. */
  687. static inline int cmos_poweroff(struct device *dev)
  688. {
  689. return cmos_suspend(dev);
  690. }
  691. static int cmos_resume(struct device *dev)
  692. {
  693. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  694. unsigned char tmp = cmos->suspend_ctrl;
  695. /* re-enable any irqs previously active */
  696. if (tmp & RTC_IRQMASK) {
  697. unsigned char mask;
  698. if (cmos->enabled_wake) {
  699. if (cmos->wake_off)
  700. cmos->wake_off(dev);
  701. else
  702. disable_irq_wake(cmos->irq);
  703. cmos->enabled_wake = 0;
  704. }
  705. spin_lock_irq(&rtc_lock);
  706. if (device_may_wakeup(dev))
  707. hpet_rtc_timer_init();
  708. do {
  709. CMOS_WRITE(tmp, RTC_CONTROL);
  710. hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
  711. mask = CMOS_READ(RTC_INTR_FLAGS);
  712. mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
  713. if (!is_hpet_enabled() || !is_intr(mask))
  714. break;
  715. /* force one-shot behavior if HPET blocked
  716. * the wake alarm's irq
  717. */
  718. rtc_update_irq(cmos->rtc, 1, mask);
  719. tmp &= ~RTC_AIE;
  720. hpet_mask_rtc_irq_bit(RTC_AIE);
  721. } while (mask & RTC_AIE);
  722. spin_unlock_irq(&rtc_lock);
  723. }
  724. dev_dbg(dev, "resume, ctrl %02x\n", tmp);
  725. return 0;
  726. }
  727. static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
  728. #else
  729. static inline int cmos_poweroff(struct device *dev)
  730. {
  731. return -ENOSYS;
  732. }
  733. #endif
  734. /*----------------------------------------------------------------*/
  735. /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
  736. * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
  737. * probably list them in similar PNPBIOS tables; so PNP is more common.
  738. *
  739. * We don't use legacy "poke at the hardware" probing. Ancient PCs that
  740. * predate even PNPBIOS should set up platform_bus devices.
  741. */
  742. #ifdef CONFIG_ACPI
  743. #include <linux/acpi.h>
  744. static u32 rtc_handler(void *context)
  745. {
  746. struct device *dev = context;
  747. pm_wakeup_event(dev, 0);
  748. acpi_clear_event(ACPI_EVENT_RTC);
  749. acpi_disable_event(ACPI_EVENT_RTC, 0);
  750. return ACPI_INTERRUPT_HANDLED;
  751. }
  752. static inline void rtc_wake_setup(struct device *dev)
  753. {
  754. acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
  755. /*
  756. * After the RTC handler is installed, the Fixed_RTC event should
  757. * be disabled. Only when the RTC alarm is set will it be enabled.
  758. */
  759. acpi_clear_event(ACPI_EVENT_RTC);
  760. acpi_disable_event(ACPI_EVENT_RTC, 0);
  761. }
  762. static void rtc_wake_on(struct device *dev)
  763. {
  764. acpi_clear_event(ACPI_EVENT_RTC);
  765. acpi_enable_event(ACPI_EVENT_RTC, 0);
  766. }
  767. static void rtc_wake_off(struct device *dev)
  768. {
  769. acpi_disable_event(ACPI_EVENT_RTC, 0);
  770. }
  771. /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
  772. * its device node and pass extra config data. This helps its driver use
  773. * capabilities that the now-obsolete mc146818 didn't have, and informs it
  774. * that this board's RTC is wakeup-capable (per ACPI spec).
  775. */
  776. static struct cmos_rtc_board_info acpi_rtc_info;
  777. static void cmos_wake_setup(struct device *dev)
  778. {
  779. if (acpi_disabled)
  780. return;
  781. rtc_wake_setup(dev);
  782. acpi_rtc_info.wake_on = rtc_wake_on;
  783. acpi_rtc_info.wake_off = rtc_wake_off;
  784. /* workaround bug in some ACPI tables */
  785. if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
  786. dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
  787. acpi_gbl_FADT.month_alarm);
  788. acpi_gbl_FADT.month_alarm = 0;
  789. }
  790. acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
  791. acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
  792. acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
  793. /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
  794. if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
  795. dev_info(dev, "RTC can wake from S4\n");
  796. dev->platform_data = &acpi_rtc_info;
  797. /* RTC always wakes from S1/S2/S3, and often S4/STD */
  798. device_init_wakeup(dev, 1);
  799. }
  800. #else
  801. static void cmos_wake_setup(struct device *dev)
  802. {
  803. }
  804. #endif
  805. #ifdef CONFIG_PNP
  806. #include <linux/pnp.h>
  807. static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
  808. {
  809. cmos_wake_setup(&pnp->dev);
  810. if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0))
  811. /* Some machines contain a PNP entry for the RTC, but
  812. * don't define the IRQ. It should always be safe to
  813. * hardcode it in these cases
  814. */
  815. return cmos_do_probe(&pnp->dev,
  816. pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
  817. else
  818. return cmos_do_probe(&pnp->dev,
  819. pnp_get_resource(pnp, IORESOURCE_IO, 0),
  820. pnp_irq(pnp, 0));
  821. }
  822. static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
  823. {
  824. cmos_do_remove(&pnp->dev);
  825. }
  826. #ifdef CONFIG_PM
  827. static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg)
  828. {
  829. return cmos_suspend(&pnp->dev);
  830. }
  831. static int cmos_pnp_resume(struct pnp_dev *pnp)
  832. {
  833. return cmos_resume(&pnp->dev);
  834. }
  835. #else
  836. #define cmos_pnp_suspend NULL
  837. #define cmos_pnp_resume NULL
  838. #endif
  839. static void cmos_pnp_shutdown(struct pnp_dev *pnp)
  840. {
  841. if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pnp->dev))
  842. return;
  843. cmos_do_shutdown();
  844. }
  845. static const struct pnp_device_id rtc_ids[] = {
  846. { .id = "PNP0b00", },
  847. { .id = "PNP0b01", },
  848. { .id = "PNP0b02", },
  849. { },
  850. };
  851. MODULE_DEVICE_TABLE(pnp, rtc_ids);
  852. static struct pnp_driver cmos_pnp_driver = {
  853. .name = (char *) driver_name,
  854. .id_table = rtc_ids,
  855. .probe = cmos_pnp_probe,
  856. .remove = __exit_p(cmos_pnp_remove),
  857. .shutdown = cmos_pnp_shutdown,
  858. /* flag ensures resume() gets called, and stops syslog spam */
  859. .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
  860. .suspend = cmos_pnp_suspend,
  861. .resume = cmos_pnp_resume,
  862. };
  863. #endif /* CONFIG_PNP */
  864. #ifdef CONFIG_OF
  865. static const struct of_device_id of_cmos_match[] = {
  866. {
  867. .compatible = "motorola,mc146818",
  868. },
  869. { },
  870. };
  871. MODULE_DEVICE_TABLE(of, of_cmos_match);
  872. static __init void cmos_of_init(struct platform_device *pdev)
  873. {
  874. struct device_node *node = pdev->dev.of_node;
  875. struct rtc_time time;
  876. int ret;
  877. const __be32 *val;
  878. if (!node)
  879. return;
  880. val = of_get_property(node, "ctrl-reg", NULL);
  881. if (val)
  882. CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
  883. val = of_get_property(node, "freq-reg", NULL);
  884. if (val)
  885. CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
  886. get_rtc_time(&time);
  887. ret = rtc_valid_tm(&time);
  888. if (ret) {
  889. struct rtc_time def_time = {
  890. .tm_year = 1,
  891. .tm_mday = 1,
  892. };
  893. set_rtc_time(&def_time);
  894. }
  895. }
  896. #else
  897. static inline void cmos_of_init(struct platform_device *pdev) {}
  898. #endif
  899. /*----------------------------------------------------------------*/
  900. /* Platform setup should have set up an RTC device, when PNP is
  901. * unavailable ... this could happen even on (older) PCs.
  902. */
  903. static int __init cmos_platform_probe(struct platform_device *pdev)
  904. {
  905. cmos_of_init(pdev);
  906. cmos_wake_setup(&pdev->dev);
  907. return cmos_do_probe(&pdev->dev,
  908. platform_get_resource(pdev, IORESOURCE_IO, 0),
  909. platform_get_irq(pdev, 0));
  910. }
  911. static int __exit cmos_platform_remove(struct platform_device *pdev)
  912. {
  913. cmos_do_remove(&pdev->dev);
  914. return 0;
  915. }
  916. static void cmos_platform_shutdown(struct platform_device *pdev)
  917. {
  918. if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev))
  919. return;
  920. cmos_do_shutdown();
  921. }
  922. /* work with hotplug and coldplug */
  923. MODULE_ALIAS("platform:rtc_cmos");
  924. static struct platform_driver cmos_platform_driver = {
  925. .remove = __exit_p(cmos_platform_remove),
  926. .shutdown = cmos_platform_shutdown,
  927. .driver = {
  928. .name = (char *) driver_name,
  929. #ifdef CONFIG_PM
  930. .pm = &cmos_pm_ops,
  931. #endif
  932. .of_match_table = of_match_ptr(of_cmos_match),
  933. }
  934. };
  935. #ifdef CONFIG_PNP
  936. static bool pnp_driver_registered;
  937. #endif
  938. static bool platform_driver_registered;
  939. static int __init cmos_init(void)
  940. {
  941. int retval = 0;
  942. #ifdef CONFIG_PNP
  943. retval = pnp_register_driver(&cmos_pnp_driver);
  944. if (retval == 0)
  945. pnp_driver_registered = true;
  946. #endif
  947. if (!cmos_rtc.dev) {
  948. retval = platform_driver_probe(&cmos_platform_driver,
  949. cmos_platform_probe);
  950. if (retval == 0)
  951. platform_driver_registered = true;
  952. }
  953. if (retval == 0)
  954. return 0;
  955. #ifdef CONFIG_PNP
  956. if (pnp_driver_registered)
  957. pnp_unregister_driver(&cmos_pnp_driver);
  958. #endif
  959. return retval;
  960. }
  961. module_init(cmos_init);
  962. static void __exit cmos_exit(void)
  963. {
  964. #ifdef CONFIG_PNP
  965. if (pnp_driver_registered)
  966. pnp_unregister_driver(&cmos_pnp_driver);
  967. #endif
  968. if (platform_driver_registered)
  969. platform_driver_unregister(&cmos_platform_driver);
  970. }
  971. module_exit(cmos_exit);
  972. MODULE_AUTHOR("David Brownell");
  973. MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
  974. MODULE_LICENSE("GPL");