sched.c 171 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/smp.h>
  47. #include <linux/threads.h>
  48. #include <linux/timer.h>
  49. #include <linux/rcupdate.h>
  50. #include <linux/cpu.h>
  51. #include <linux/cpuset.h>
  52. #include <linux/percpu.h>
  53. #include <linux/kthread.h>
  54. #include <linux/seq_file.h>
  55. #include <linux/sysctl.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/times.h>
  58. #include <linux/tsacct_kern.h>
  59. #include <linux/kprobes.h>
  60. #include <linux/delayacct.h>
  61. #include <linux/reciprocal_div.h>
  62. #include <linux/unistd.h>
  63. #include <linux/pagemap.h>
  64. #include <asm/tlb.h>
  65. /*
  66. * Scheduler clock - returns current time in nanosec units.
  67. * This is default implementation.
  68. * Architectures and sub-architectures can override this.
  69. */
  70. unsigned long long __attribute__((weak)) sched_clock(void)
  71. {
  72. return (unsigned long long)jiffies * (1000000000 / HZ);
  73. }
  74. /*
  75. * Convert user-nice values [ -20 ... 0 ... 19 ]
  76. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  77. * and back.
  78. */
  79. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  80. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  81. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  82. /*
  83. * 'User priority' is the nice value converted to something we
  84. * can work with better when scaling various scheduler parameters,
  85. * it's a [ 0 ... 39 ] range.
  86. */
  87. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  88. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  89. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  90. /*
  91. * Some helpers for converting nanosecond timing to jiffy resolution
  92. */
  93. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
  94. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  95. #define NICE_0_LOAD SCHED_LOAD_SCALE
  96. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  97. /*
  98. * These are the 'tuning knobs' of the scheduler:
  99. *
  100. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  101. * Timeslices get refilled after they expire.
  102. */
  103. #define DEF_TIMESLICE (100 * HZ / 1000)
  104. #ifdef CONFIG_SMP
  105. /*
  106. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  107. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  108. */
  109. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  110. {
  111. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  112. }
  113. /*
  114. * Each time a sched group cpu_power is changed,
  115. * we must compute its reciprocal value
  116. */
  117. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  118. {
  119. sg->__cpu_power += val;
  120. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  121. }
  122. #endif
  123. static inline int rt_policy(int policy)
  124. {
  125. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  126. return 1;
  127. return 0;
  128. }
  129. static inline int task_has_rt_policy(struct task_struct *p)
  130. {
  131. return rt_policy(p->policy);
  132. }
  133. /*
  134. * This is the priority-queue data structure of the RT scheduling class:
  135. */
  136. struct rt_prio_array {
  137. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  138. struct list_head queue[MAX_RT_PRIO];
  139. };
  140. #ifdef CONFIG_FAIR_GROUP_SCHED
  141. struct cfs_rq;
  142. /* task group related information */
  143. struct task_group {
  144. /* schedulable entities of this group on each cpu */
  145. struct sched_entity **se;
  146. /* runqueue "owned" by this group on each cpu */
  147. struct cfs_rq **cfs_rq;
  148. unsigned long shares;
  149. /* spinlock to serialize modification to shares */
  150. spinlock_t lock;
  151. };
  152. /* Default task group's sched entity on each cpu */
  153. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  154. /* Default task group's cfs_rq on each cpu */
  155. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  156. static struct sched_entity *init_sched_entity_p[NR_CPUS];
  157. static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
  158. /* Default task group.
  159. * Every task in system belong to this group at bootup.
  160. */
  161. struct task_group init_task_group = {
  162. .se = init_sched_entity_p,
  163. .cfs_rq = init_cfs_rq_p,
  164. };
  165. #ifdef CONFIG_FAIR_USER_SCHED
  166. # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
  167. #else
  168. # define INIT_TASK_GRP_LOAD NICE_0_LOAD
  169. #endif
  170. static int init_task_group_load = INIT_TASK_GRP_LOAD;
  171. /* return group to which a task belongs */
  172. static inline struct task_group *task_group(struct task_struct *p)
  173. {
  174. struct task_group *tg;
  175. #ifdef CONFIG_FAIR_USER_SCHED
  176. tg = p->user->tg;
  177. #else
  178. tg = &init_task_group;
  179. #endif
  180. return tg;
  181. }
  182. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  183. static inline void set_task_cfs_rq(struct task_struct *p)
  184. {
  185. p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
  186. p->se.parent = task_group(p)->se[task_cpu(p)];
  187. }
  188. #else
  189. static inline void set_task_cfs_rq(struct task_struct *p) { }
  190. #endif /* CONFIG_FAIR_GROUP_SCHED */
  191. /* CFS-related fields in a runqueue */
  192. struct cfs_rq {
  193. struct load_weight load;
  194. unsigned long nr_running;
  195. u64 exec_clock;
  196. u64 min_vruntime;
  197. struct rb_root tasks_timeline;
  198. struct rb_node *rb_leftmost;
  199. struct rb_node *rb_load_balance_curr;
  200. /* 'curr' points to currently running entity on this cfs_rq.
  201. * It is set to NULL otherwise (i.e when none are currently running).
  202. */
  203. struct sched_entity *curr;
  204. unsigned long nr_spread_over;
  205. #ifdef CONFIG_FAIR_GROUP_SCHED
  206. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  207. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  208. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  209. * (like users, containers etc.)
  210. *
  211. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  212. * list is used during load balance.
  213. */
  214. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  215. struct task_group *tg; /* group that "owns" this runqueue */
  216. struct rcu_head rcu;
  217. #endif
  218. };
  219. /* Real-Time classes' related field in a runqueue: */
  220. struct rt_rq {
  221. struct rt_prio_array active;
  222. int rt_load_balance_idx;
  223. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  224. };
  225. /*
  226. * This is the main, per-CPU runqueue data structure.
  227. *
  228. * Locking rule: those places that want to lock multiple runqueues
  229. * (such as the load balancing or the thread migration code), lock
  230. * acquire operations must be ordered by ascending &runqueue.
  231. */
  232. struct rq {
  233. spinlock_t lock; /* runqueue lock */
  234. /*
  235. * nr_running and cpu_load should be in the same cacheline because
  236. * remote CPUs use both these fields when doing load calculation.
  237. */
  238. unsigned long nr_running;
  239. #define CPU_LOAD_IDX_MAX 5
  240. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  241. unsigned char idle_at_tick;
  242. #ifdef CONFIG_NO_HZ
  243. unsigned char in_nohz_recently;
  244. #endif
  245. struct load_weight load; /* capture load from *all* tasks on this cpu */
  246. unsigned long nr_load_updates;
  247. u64 nr_switches;
  248. struct cfs_rq cfs;
  249. #ifdef CONFIG_FAIR_GROUP_SCHED
  250. struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
  251. #endif
  252. struct rt_rq rt;
  253. /*
  254. * This is part of a global counter where only the total sum
  255. * over all CPUs matters. A task can increase this counter on
  256. * one CPU and if it got migrated afterwards it may decrease
  257. * it on another CPU. Always updated under the runqueue lock:
  258. */
  259. unsigned long nr_uninterruptible;
  260. struct task_struct *curr, *idle;
  261. unsigned long next_balance;
  262. struct mm_struct *prev_mm;
  263. u64 clock, prev_clock_raw;
  264. s64 clock_max_delta;
  265. unsigned int clock_warps, clock_overflows;
  266. u64 idle_clock;
  267. unsigned int clock_deep_idle_events;
  268. u64 tick_timestamp;
  269. atomic_t nr_iowait;
  270. #ifdef CONFIG_SMP
  271. struct sched_domain *sd;
  272. /* For active balancing */
  273. int active_balance;
  274. int push_cpu;
  275. int cpu; /* cpu of this runqueue */
  276. struct task_struct *migration_thread;
  277. struct list_head migration_queue;
  278. #endif
  279. #ifdef CONFIG_SCHEDSTATS
  280. /* latency stats */
  281. struct sched_info rq_sched_info;
  282. /* sys_sched_yield() stats */
  283. unsigned long yld_exp_empty;
  284. unsigned long yld_act_empty;
  285. unsigned long yld_both_empty;
  286. unsigned long yld_count;
  287. /* schedule() stats */
  288. unsigned long sched_switch;
  289. unsigned long sched_count;
  290. unsigned long sched_goidle;
  291. /* try_to_wake_up() stats */
  292. unsigned long ttwu_count;
  293. unsigned long ttwu_local;
  294. /* BKL stats */
  295. unsigned long bkl_count;
  296. #endif
  297. struct lock_class_key rq_lock_key;
  298. };
  299. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  300. static DEFINE_MUTEX(sched_hotcpu_mutex);
  301. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  302. {
  303. rq->curr->sched_class->check_preempt_curr(rq, p);
  304. }
  305. static inline int cpu_of(struct rq *rq)
  306. {
  307. #ifdef CONFIG_SMP
  308. return rq->cpu;
  309. #else
  310. return 0;
  311. #endif
  312. }
  313. /*
  314. * Update the per-runqueue clock, as finegrained as the platform can give
  315. * us, but without assuming monotonicity, etc.:
  316. */
  317. static void __update_rq_clock(struct rq *rq)
  318. {
  319. u64 prev_raw = rq->prev_clock_raw;
  320. u64 now = sched_clock();
  321. s64 delta = now - prev_raw;
  322. u64 clock = rq->clock;
  323. #ifdef CONFIG_SCHED_DEBUG
  324. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  325. #endif
  326. /*
  327. * Protect against sched_clock() occasionally going backwards:
  328. */
  329. if (unlikely(delta < 0)) {
  330. clock++;
  331. rq->clock_warps++;
  332. } else {
  333. /*
  334. * Catch too large forward jumps too:
  335. */
  336. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  337. if (clock < rq->tick_timestamp + TICK_NSEC)
  338. clock = rq->tick_timestamp + TICK_NSEC;
  339. else
  340. clock++;
  341. rq->clock_overflows++;
  342. } else {
  343. if (unlikely(delta > rq->clock_max_delta))
  344. rq->clock_max_delta = delta;
  345. clock += delta;
  346. }
  347. }
  348. rq->prev_clock_raw = now;
  349. rq->clock = clock;
  350. }
  351. static void update_rq_clock(struct rq *rq)
  352. {
  353. if (likely(smp_processor_id() == cpu_of(rq)))
  354. __update_rq_clock(rq);
  355. }
  356. /*
  357. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  358. * See detach_destroy_domains: synchronize_sched for details.
  359. *
  360. * The domain tree of any CPU may only be accessed from within
  361. * preempt-disabled sections.
  362. */
  363. #define for_each_domain(cpu, __sd) \
  364. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  365. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  366. #define this_rq() (&__get_cpu_var(runqueues))
  367. #define task_rq(p) cpu_rq(task_cpu(p))
  368. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  369. /*
  370. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  371. */
  372. #ifdef CONFIG_SCHED_DEBUG
  373. # define const_debug __read_mostly
  374. #else
  375. # define const_debug static const
  376. #endif
  377. /*
  378. * Debugging: various feature bits
  379. */
  380. enum {
  381. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  382. SCHED_FEAT_START_DEBIT = 2,
  383. SCHED_FEAT_TREE_AVG = 4,
  384. SCHED_FEAT_APPROX_AVG = 8,
  385. SCHED_FEAT_WAKEUP_PREEMPT = 16,
  386. SCHED_FEAT_PREEMPT_RESTRICT = 32,
  387. };
  388. const_debug unsigned int sysctl_sched_features =
  389. SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
  390. SCHED_FEAT_START_DEBIT *1 |
  391. SCHED_FEAT_TREE_AVG *0 |
  392. SCHED_FEAT_APPROX_AVG *0 |
  393. SCHED_FEAT_WAKEUP_PREEMPT *1 |
  394. SCHED_FEAT_PREEMPT_RESTRICT *1;
  395. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  396. /*
  397. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  398. * clock constructed from sched_clock():
  399. */
  400. unsigned long long cpu_clock(int cpu)
  401. {
  402. unsigned long long now;
  403. unsigned long flags;
  404. struct rq *rq;
  405. local_irq_save(flags);
  406. rq = cpu_rq(cpu);
  407. update_rq_clock(rq);
  408. now = rq->clock;
  409. local_irq_restore(flags);
  410. return now;
  411. }
  412. EXPORT_SYMBOL_GPL(cpu_clock);
  413. #ifndef prepare_arch_switch
  414. # define prepare_arch_switch(next) do { } while (0)
  415. #endif
  416. #ifndef finish_arch_switch
  417. # define finish_arch_switch(prev) do { } while (0)
  418. #endif
  419. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  420. static inline int task_running(struct rq *rq, struct task_struct *p)
  421. {
  422. return rq->curr == p;
  423. }
  424. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  425. {
  426. }
  427. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  428. {
  429. #ifdef CONFIG_DEBUG_SPINLOCK
  430. /* this is a valid case when another task releases the spinlock */
  431. rq->lock.owner = current;
  432. #endif
  433. /*
  434. * If we are tracking spinlock dependencies then we have to
  435. * fix up the runqueue lock - which gets 'carried over' from
  436. * prev into current:
  437. */
  438. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  439. spin_unlock_irq(&rq->lock);
  440. }
  441. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  442. static inline int task_running(struct rq *rq, struct task_struct *p)
  443. {
  444. #ifdef CONFIG_SMP
  445. return p->oncpu;
  446. #else
  447. return rq->curr == p;
  448. #endif
  449. }
  450. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  451. {
  452. #ifdef CONFIG_SMP
  453. /*
  454. * We can optimise this out completely for !SMP, because the
  455. * SMP rebalancing from interrupt is the only thing that cares
  456. * here.
  457. */
  458. next->oncpu = 1;
  459. #endif
  460. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  461. spin_unlock_irq(&rq->lock);
  462. #else
  463. spin_unlock(&rq->lock);
  464. #endif
  465. }
  466. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  467. {
  468. #ifdef CONFIG_SMP
  469. /*
  470. * After ->oncpu is cleared, the task can be moved to a different CPU.
  471. * We must ensure this doesn't happen until the switch is completely
  472. * finished.
  473. */
  474. smp_wmb();
  475. prev->oncpu = 0;
  476. #endif
  477. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  478. local_irq_enable();
  479. #endif
  480. }
  481. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  482. /*
  483. * __task_rq_lock - lock the runqueue a given task resides on.
  484. * Must be called interrupts disabled.
  485. */
  486. static inline struct rq *__task_rq_lock(struct task_struct *p)
  487. __acquires(rq->lock)
  488. {
  489. for (;;) {
  490. struct rq *rq = task_rq(p);
  491. spin_lock(&rq->lock);
  492. if (likely(rq == task_rq(p)))
  493. return rq;
  494. spin_unlock(&rq->lock);
  495. }
  496. }
  497. /*
  498. * task_rq_lock - lock the runqueue a given task resides on and disable
  499. * interrupts. Note the ordering: we can safely lookup the task_rq without
  500. * explicitly disabling preemption.
  501. */
  502. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  503. __acquires(rq->lock)
  504. {
  505. struct rq *rq;
  506. for (;;) {
  507. local_irq_save(*flags);
  508. rq = task_rq(p);
  509. spin_lock(&rq->lock);
  510. if (likely(rq == task_rq(p)))
  511. return rq;
  512. spin_unlock_irqrestore(&rq->lock, *flags);
  513. }
  514. }
  515. static void __task_rq_unlock(struct rq *rq)
  516. __releases(rq->lock)
  517. {
  518. spin_unlock(&rq->lock);
  519. }
  520. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  521. __releases(rq->lock)
  522. {
  523. spin_unlock_irqrestore(&rq->lock, *flags);
  524. }
  525. /*
  526. * this_rq_lock - lock this runqueue and disable interrupts.
  527. */
  528. static struct rq *this_rq_lock(void)
  529. __acquires(rq->lock)
  530. {
  531. struct rq *rq;
  532. local_irq_disable();
  533. rq = this_rq();
  534. spin_lock(&rq->lock);
  535. return rq;
  536. }
  537. /*
  538. * We are going deep-idle (irqs are disabled):
  539. */
  540. void sched_clock_idle_sleep_event(void)
  541. {
  542. struct rq *rq = cpu_rq(smp_processor_id());
  543. spin_lock(&rq->lock);
  544. __update_rq_clock(rq);
  545. spin_unlock(&rq->lock);
  546. rq->clock_deep_idle_events++;
  547. }
  548. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  549. /*
  550. * We just idled delta nanoseconds (called with irqs disabled):
  551. */
  552. void sched_clock_idle_wakeup_event(u64 delta_ns)
  553. {
  554. struct rq *rq = cpu_rq(smp_processor_id());
  555. u64 now = sched_clock();
  556. rq->idle_clock += delta_ns;
  557. /*
  558. * Override the previous timestamp and ignore all
  559. * sched_clock() deltas that occured while we idled,
  560. * and use the PM-provided delta_ns to advance the
  561. * rq clock:
  562. */
  563. spin_lock(&rq->lock);
  564. rq->prev_clock_raw = now;
  565. rq->clock += delta_ns;
  566. spin_unlock(&rq->lock);
  567. }
  568. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  569. /*
  570. * resched_task - mark a task 'to be rescheduled now'.
  571. *
  572. * On UP this means the setting of the need_resched flag, on SMP it
  573. * might also involve a cross-CPU call to trigger the scheduler on
  574. * the target CPU.
  575. */
  576. #ifdef CONFIG_SMP
  577. #ifndef tsk_is_polling
  578. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  579. #endif
  580. static void resched_task(struct task_struct *p)
  581. {
  582. int cpu;
  583. assert_spin_locked(&task_rq(p)->lock);
  584. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  585. return;
  586. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  587. cpu = task_cpu(p);
  588. if (cpu == smp_processor_id())
  589. return;
  590. /* NEED_RESCHED must be visible before we test polling */
  591. smp_mb();
  592. if (!tsk_is_polling(p))
  593. smp_send_reschedule(cpu);
  594. }
  595. static void resched_cpu(int cpu)
  596. {
  597. struct rq *rq = cpu_rq(cpu);
  598. unsigned long flags;
  599. if (!spin_trylock_irqsave(&rq->lock, flags))
  600. return;
  601. resched_task(cpu_curr(cpu));
  602. spin_unlock_irqrestore(&rq->lock, flags);
  603. }
  604. #else
  605. static inline void resched_task(struct task_struct *p)
  606. {
  607. assert_spin_locked(&task_rq(p)->lock);
  608. set_tsk_need_resched(p);
  609. }
  610. #endif
  611. #if BITS_PER_LONG == 32
  612. # define WMULT_CONST (~0UL)
  613. #else
  614. # define WMULT_CONST (1UL << 32)
  615. #endif
  616. #define WMULT_SHIFT 32
  617. /*
  618. * Shift right and round:
  619. */
  620. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  621. static unsigned long
  622. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  623. struct load_weight *lw)
  624. {
  625. u64 tmp;
  626. if (unlikely(!lw->inv_weight))
  627. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  628. tmp = (u64)delta_exec * weight;
  629. /*
  630. * Check whether we'd overflow the 64-bit multiplication:
  631. */
  632. if (unlikely(tmp > WMULT_CONST))
  633. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  634. WMULT_SHIFT/2);
  635. else
  636. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  637. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  638. }
  639. static inline unsigned long
  640. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  641. {
  642. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  643. }
  644. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  645. {
  646. lw->weight += inc;
  647. }
  648. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  649. {
  650. lw->weight -= dec;
  651. }
  652. /*
  653. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  654. * of tasks with abnormal "nice" values across CPUs the contribution that
  655. * each task makes to its run queue's load is weighted according to its
  656. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  657. * scaled version of the new time slice allocation that they receive on time
  658. * slice expiry etc.
  659. */
  660. #define WEIGHT_IDLEPRIO 2
  661. #define WMULT_IDLEPRIO (1 << 31)
  662. /*
  663. * Nice levels are multiplicative, with a gentle 10% change for every
  664. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  665. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  666. * that remained on nice 0.
  667. *
  668. * The "10% effect" is relative and cumulative: from _any_ nice level,
  669. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  670. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  671. * If a task goes up by ~10% and another task goes down by ~10% then
  672. * the relative distance between them is ~25%.)
  673. */
  674. static const int prio_to_weight[40] = {
  675. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  676. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  677. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  678. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  679. /* 0 */ 1024, 820, 655, 526, 423,
  680. /* 5 */ 335, 272, 215, 172, 137,
  681. /* 10 */ 110, 87, 70, 56, 45,
  682. /* 15 */ 36, 29, 23, 18, 15,
  683. };
  684. /*
  685. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  686. *
  687. * In cases where the weight does not change often, we can use the
  688. * precalculated inverse to speed up arithmetics by turning divisions
  689. * into multiplications:
  690. */
  691. static const u32 prio_to_wmult[40] = {
  692. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  693. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  694. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  695. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  696. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  697. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  698. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  699. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  700. };
  701. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  702. /*
  703. * runqueue iterator, to support SMP load-balancing between different
  704. * scheduling classes, without having to expose their internal data
  705. * structures to the load-balancing proper:
  706. */
  707. struct rq_iterator {
  708. void *arg;
  709. struct task_struct *(*start)(void *);
  710. struct task_struct *(*next)(void *);
  711. };
  712. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  713. unsigned long max_nr_move, unsigned long max_load_move,
  714. struct sched_domain *sd, enum cpu_idle_type idle,
  715. int *all_pinned, unsigned long *load_moved,
  716. int *this_best_prio, struct rq_iterator *iterator);
  717. #include "sched_stats.h"
  718. #include "sched_idletask.c"
  719. #include "sched_fair.c"
  720. #include "sched_rt.c"
  721. #ifdef CONFIG_SCHED_DEBUG
  722. # include "sched_debug.c"
  723. #endif
  724. #define sched_class_highest (&rt_sched_class)
  725. /*
  726. * Update delta_exec, delta_fair fields for rq.
  727. *
  728. * delta_fair clock advances at a rate inversely proportional to
  729. * total load (rq->load.weight) on the runqueue, while
  730. * delta_exec advances at the same rate as wall-clock (provided
  731. * cpu is not idle).
  732. *
  733. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  734. * runqueue over any given interval. This (smoothened) load is used
  735. * during load balance.
  736. *
  737. * This function is called /before/ updating rq->load
  738. * and when switching tasks.
  739. */
  740. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  741. {
  742. update_load_add(&rq->load, p->se.load.weight);
  743. }
  744. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  745. {
  746. update_load_sub(&rq->load, p->se.load.weight);
  747. }
  748. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  749. {
  750. rq->nr_running++;
  751. inc_load(rq, p);
  752. }
  753. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  754. {
  755. rq->nr_running--;
  756. dec_load(rq, p);
  757. }
  758. static void set_load_weight(struct task_struct *p)
  759. {
  760. if (task_has_rt_policy(p)) {
  761. p->se.load.weight = prio_to_weight[0] * 2;
  762. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  763. return;
  764. }
  765. /*
  766. * SCHED_IDLE tasks get minimal weight:
  767. */
  768. if (p->policy == SCHED_IDLE) {
  769. p->se.load.weight = WEIGHT_IDLEPRIO;
  770. p->se.load.inv_weight = WMULT_IDLEPRIO;
  771. return;
  772. }
  773. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  774. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  775. }
  776. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  777. {
  778. sched_info_queued(p);
  779. p->sched_class->enqueue_task(rq, p, wakeup);
  780. p->se.on_rq = 1;
  781. }
  782. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  783. {
  784. p->sched_class->dequeue_task(rq, p, sleep);
  785. p->se.on_rq = 0;
  786. }
  787. /*
  788. * __normal_prio - return the priority that is based on the static prio
  789. */
  790. static inline int __normal_prio(struct task_struct *p)
  791. {
  792. return p->static_prio;
  793. }
  794. /*
  795. * Calculate the expected normal priority: i.e. priority
  796. * without taking RT-inheritance into account. Might be
  797. * boosted by interactivity modifiers. Changes upon fork,
  798. * setprio syscalls, and whenever the interactivity
  799. * estimator recalculates.
  800. */
  801. static inline int normal_prio(struct task_struct *p)
  802. {
  803. int prio;
  804. if (task_has_rt_policy(p))
  805. prio = MAX_RT_PRIO-1 - p->rt_priority;
  806. else
  807. prio = __normal_prio(p);
  808. return prio;
  809. }
  810. /*
  811. * Calculate the current priority, i.e. the priority
  812. * taken into account by the scheduler. This value might
  813. * be boosted by RT tasks, or might be boosted by
  814. * interactivity modifiers. Will be RT if the task got
  815. * RT-boosted. If not then it returns p->normal_prio.
  816. */
  817. static int effective_prio(struct task_struct *p)
  818. {
  819. p->normal_prio = normal_prio(p);
  820. /*
  821. * If we are RT tasks or we were boosted to RT priority,
  822. * keep the priority unchanged. Otherwise, update priority
  823. * to the normal priority:
  824. */
  825. if (!rt_prio(p->prio))
  826. return p->normal_prio;
  827. return p->prio;
  828. }
  829. /*
  830. * activate_task - move a task to the runqueue.
  831. */
  832. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  833. {
  834. if (p->state == TASK_UNINTERRUPTIBLE)
  835. rq->nr_uninterruptible--;
  836. enqueue_task(rq, p, wakeup);
  837. inc_nr_running(p, rq);
  838. }
  839. /*
  840. * deactivate_task - remove a task from the runqueue.
  841. */
  842. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  843. {
  844. if (p->state == TASK_UNINTERRUPTIBLE)
  845. rq->nr_uninterruptible++;
  846. dequeue_task(rq, p, sleep);
  847. dec_nr_running(p, rq);
  848. }
  849. /**
  850. * task_curr - is this task currently executing on a CPU?
  851. * @p: the task in question.
  852. */
  853. inline int task_curr(const struct task_struct *p)
  854. {
  855. return cpu_curr(task_cpu(p)) == p;
  856. }
  857. /* Used instead of source_load when we know the type == 0 */
  858. unsigned long weighted_cpuload(const int cpu)
  859. {
  860. return cpu_rq(cpu)->load.weight;
  861. }
  862. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  863. {
  864. #ifdef CONFIG_SMP
  865. task_thread_info(p)->cpu = cpu;
  866. #endif
  867. set_task_cfs_rq(p);
  868. }
  869. #ifdef CONFIG_SMP
  870. /*
  871. * Is this task likely cache-hot:
  872. */
  873. static inline int
  874. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  875. {
  876. s64 delta;
  877. if (p->sched_class != &fair_sched_class)
  878. return 0;
  879. if (sysctl_sched_migration_cost == -1)
  880. return 1;
  881. if (sysctl_sched_migration_cost == 0)
  882. return 0;
  883. delta = now - p->se.exec_start;
  884. return delta < (s64)sysctl_sched_migration_cost;
  885. }
  886. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  887. {
  888. int old_cpu = task_cpu(p);
  889. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  890. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  891. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  892. u64 clock_offset;
  893. clock_offset = old_rq->clock - new_rq->clock;
  894. #ifdef CONFIG_SCHEDSTATS
  895. if (p->se.wait_start)
  896. p->se.wait_start -= clock_offset;
  897. if (p->se.sleep_start)
  898. p->se.sleep_start -= clock_offset;
  899. if (p->se.block_start)
  900. p->se.block_start -= clock_offset;
  901. if (old_cpu != new_cpu) {
  902. schedstat_inc(p, se.nr_migrations);
  903. if (task_hot(p, old_rq->clock, NULL))
  904. schedstat_inc(p, se.nr_forced2_migrations);
  905. }
  906. #endif
  907. p->se.vruntime -= old_cfsrq->min_vruntime -
  908. new_cfsrq->min_vruntime;
  909. __set_task_cpu(p, new_cpu);
  910. }
  911. struct migration_req {
  912. struct list_head list;
  913. struct task_struct *task;
  914. int dest_cpu;
  915. struct completion done;
  916. };
  917. /*
  918. * The task's runqueue lock must be held.
  919. * Returns true if you have to wait for migration thread.
  920. */
  921. static int
  922. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  923. {
  924. struct rq *rq = task_rq(p);
  925. /*
  926. * If the task is not on a runqueue (and not running), then
  927. * it is sufficient to simply update the task's cpu field.
  928. */
  929. if (!p->se.on_rq && !task_running(rq, p)) {
  930. set_task_cpu(p, dest_cpu);
  931. return 0;
  932. }
  933. init_completion(&req->done);
  934. req->task = p;
  935. req->dest_cpu = dest_cpu;
  936. list_add(&req->list, &rq->migration_queue);
  937. return 1;
  938. }
  939. /*
  940. * wait_task_inactive - wait for a thread to unschedule.
  941. *
  942. * The caller must ensure that the task *will* unschedule sometime soon,
  943. * else this function might spin for a *long* time. This function can't
  944. * be called with interrupts off, or it may introduce deadlock with
  945. * smp_call_function() if an IPI is sent by the same process we are
  946. * waiting to become inactive.
  947. */
  948. void wait_task_inactive(struct task_struct *p)
  949. {
  950. unsigned long flags;
  951. int running, on_rq;
  952. struct rq *rq;
  953. for (;;) {
  954. /*
  955. * We do the initial early heuristics without holding
  956. * any task-queue locks at all. We'll only try to get
  957. * the runqueue lock when things look like they will
  958. * work out!
  959. */
  960. rq = task_rq(p);
  961. /*
  962. * If the task is actively running on another CPU
  963. * still, just relax and busy-wait without holding
  964. * any locks.
  965. *
  966. * NOTE! Since we don't hold any locks, it's not
  967. * even sure that "rq" stays as the right runqueue!
  968. * But we don't care, since "task_running()" will
  969. * return false if the runqueue has changed and p
  970. * is actually now running somewhere else!
  971. */
  972. while (task_running(rq, p))
  973. cpu_relax();
  974. /*
  975. * Ok, time to look more closely! We need the rq
  976. * lock now, to be *sure*. If we're wrong, we'll
  977. * just go back and repeat.
  978. */
  979. rq = task_rq_lock(p, &flags);
  980. running = task_running(rq, p);
  981. on_rq = p->se.on_rq;
  982. task_rq_unlock(rq, &flags);
  983. /*
  984. * Was it really running after all now that we
  985. * checked with the proper locks actually held?
  986. *
  987. * Oops. Go back and try again..
  988. */
  989. if (unlikely(running)) {
  990. cpu_relax();
  991. continue;
  992. }
  993. /*
  994. * It's not enough that it's not actively running,
  995. * it must be off the runqueue _entirely_, and not
  996. * preempted!
  997. *
  998. * So if it wa still runnable (but just not actively
  999. * running right now), it's preempted, and we should
  1000. * yield - it could be a while.
  1001. */
  1002. if (unlikely(on_rq)) {
  1003. schedule_timeout_uninterruptible(1);
  1004. continue;
  1005. }
  1006. /*
  1007. * Ahh, all good. It wasn't running, and it wasn't
  1008. * runnable, which means that it will never become
  1009. * running in the future either. We're all done!
  1010. */
  1011. break;
  1012. }
  1013. }
  1014. /***
  1015. * kick_process - kick a running thread to enter/exit the kernel
  1016. * @p: the to-be-kicked thread
  1017. *
  1018. * Cause a process which is running on another CPU to enter
  1019. * kernel-mode, without any delay. (to get signals handled.)
  1020. *
  1021. * NOTE: this function doesnt have to take the runqueue lock,
  1022. * because all it wants to ensure is that the remote task enters
  1023. * the kernel. If the IPI races and the task has been migrated
  1024. * to another CPU then no harm is done and the purpose has been
  1025. * achieved as well.
  1026. */
  1027. void kick_process(struct task_struct *p)
  1028. {
  1029. int cpu;
  1030. preempt_disable();
  1031. cpu = task_cpu(p);
  1032. if ((cpu != smp_processor_id()) && task_curr(p))
  1033. smp_send_reschedule(cpu);
  1034. preempt_enable();
  1035. }
  1036. /*
  1037. * Return a low guess at the load of a migration-source cpu weighted
  1038. * according to the scheduling class and "nice" value.
  1039. *
  1040. * We want to under-estimate the load of migration sources, to
  1041. * balance conservatively.
  1042. */
  1043. static unsigned long source_load(int cpu, int type)
  1044. {
  1045. struct rq *rq = cpu_rq(cpu);
  1046. unsigned long total = weighted_cpuload(cpu);
  1047. if (type == 0)
  1048. return total;
  1049. return min(rq->cpu_load[type-1], total);
  1050. }
  1051. /*
  1052. * Return a high guess at the load of a migration-target cpu weighted
  1053. * according to the scheduling class and "nice" value.
  1054. */
  1055. static unsigned long target_load(int cpu, int type)
  1056. {
  1057. struct rq *rq = cpu_rq(cpu);
  1058. unsigned long total = weighted_cpuload(cpu);
  1059. if (type == 0)
  1060. return total;
  1061. return max(rq->cpu_load[type-1], total);
  1062. }
  1063. /*
  1064. * Return the average load per task on the cpu's run queue
  1065. */
  1066. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1067. {
  1068. struct rq *rq = cpu_rq(cpu);
  1069. unsigned long total = weighted_cpuload(cpu);
  1070. unsigned long n = rq->nr_running;
  1071. return n ? total / n : SCHED_LOAD_SCALE;
  1072. }
  1073. /*
  1074. * find_idlest_group finds and returns the least busy CPU group within the
  1075. * domain.
  1076. */
  1077. static struct sched_group *
  1078. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1079. {
  1080. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1081. unsigned long min_load = ULONG_MAX, this_load = 0;
  1082. int load_idx = sd->forkexec_idx;
  1083. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1084. do {
  1085. unsigned long load, avg_load;
  1086. int local_group;
  1087. int i;
  1088. /* Skip over this group if it has no CPUs allowed */
  1089. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1090. continue;
  1091. local_group = cpu_isset(this_cpu, group->cpumask);
  1092. /* Tally up the load of all CPUs in the group */
  1093. avg_load = 0;
  1094. for_each_cpu_mask(i, group->cpumask) {
  1095. /* Bias balancing toward cpus of our domain */
  1096. if (local_group)
  1097. load = source_load(i, load_idx);
  1098. else
  1099. load = target_load(i, load_idx);
  1100. avg_load += load;
  1101. }
  1102. /* Adjust by relative CPU power of the group */
  1103. avg_load = sg_div_cpu_power(group,
  1104. avg_load * SCHED_LOAD_SCALE);
  1105. if (local_group) {
  1106. this_load = avg_load;
  1107. this = group;
  1108. } else if (avg_load < min_load) {
  1109. min_load = avg_load;
  1110. idlest = group;
  1111. }
  1112. } while (group = group->next, group != sd->groups);
  1113. if (!idlest || 100*this_load < imbalance*min_load)
  1114. return NULL;
  1115. return idlest;
  1116. }
  1117. /*
  1118. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1119. */
  1120. static int
  1121. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1122. {
  1123. cpumask_t tmp;
  1124. unsigned long load, min_load = ULONG_MAX;
  1125. int idlest = -1;
  1126. int i;
  1127. /* Traverse only the allowed CPUs */
  1128. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1129. for_each_cpu_mask(i, tmp) {
  1130. load = weighted_cpuload(i);
  1131. if (load < min_load || (load == min_load && i == this_cpu)) {
  1132. min_load = load;
  1133. idlest = i;
  1134. }
  1135. }
  1136. return idlest;
  1137. }
  1138. /*
  1139. * sched_balance_self: balance the current task (running on cpu) in domains
  1140. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1141. * SD_BALANCE_EXEC.
  1142. *
  1143. * Balance, ie. select the least loaded group.
  1144. *
  1145. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1146. *
  1147. * preempt must be disabled.
  1148. */
  1149. static int sched_balance_self(int cpu, int flag)
  1150. {
  1151. struct task_struct *t = current;
  1152. struct sched_domain *tmp, *sd = NULL;
  1153. for_each_domain(cpu, tmp) {
  1154. /*
  1155. * If power savings logic is enabled for a domain, stop there.
  1156. */
  1157. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1158. break;
  1159. if (tmp->flags & flag)
  1160. sd = tmp;
  1161. }
  1162. while (sd) {
  1163. cpumask_t span;
  1164. struct sched_group *group;
  1165. int new_cpu, weight;
  1166. if (!(sd->flags & flag)) {
  1167. sd = sd->child;
  1168. continue;
  1169. }
  1170. span = sd->span;
  1171. group = find_idlest_group(sd, t, cpu);
  1172. if (!group) {
  1173. sd = sd->child;
  1174. continue;
  1175. }
  1176. new_cpu = find_idlest_cpu(group, t, cpu);
  1177. if (new_cpu == -1 || new_cpu == cpu) {
  1178. /* Now try balancing at a lower domain level of cpu */
  1179. sd = sd->child;
  1180. continue;
  1181. }
  1182. /* Now try balancing at a lower domain level of new_cpu */
  1183. cpu = new_cpu;
  1184. sd = NULL;
  1185. weight = cpus_weight(span);
  1186. for_each_domain(cpu, tmp) {
  1187. if (weight <= cpus_weight(tmp->span))
  1188. break;
  1189. if (tmp->flags & flag)
  1190. sd = tmp;
  1191. }
  1192. /* while loop will break here if sd == NULL */
  1193. }
  1194. return cpu;
  1195. }
  1196. #endif /* CONFIG_SMP */
  1197. /*
  1198. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1199. * not idle and an idle cpu is available. The span of cpus to
  1200. * search starts with cpus closest then further out as needed,
  1201. * so we always favor a closer, idle cpu.
  1202. *
  1203. * Returns the CPU we should wake onto.
  1204. */
  1205. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1206. static int wake_idle(int cpu, struct task_struct *p)
  1207. {
  1208. cpumask_t tmp;
  1209. struct sched_domain *sd;
  1210. int i;
  1211. /*
  1212. * If it is idle, then it is the best cpu to run this task.
  1213. *
  1214. * This cpu is also the best, if it has more than one task already.
  1215. * Siblings must be also busy(in most cases) as they didn't already
  1216. * pickup the extra load from this cpu and hence we need not check
  1217. * sibling runqueue info. This will avoid the checks and cache miss
  1218. * penalities associated with that.
  1219. */
  1220. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1221. return cpu;
  1222. for_each_domain(cpu, sd) {
  1223. if (sd->flags & SD_WAKE_IDLE) {
  1224. cpus_and(tmp, sd->span, p->cpus_allowed);
  1225. for_each_cpu_mask(i, tmp) {
  1226. if (idle_cpu(i)) {
  1227. if (i != task_cpu(p)) {
  1228. schedstat_inc(p,
  1229. se.nr_wakeups_idle);
  1230. }
  1231. return i;
  1232. }
  1233. }
  1234. } else {
  1235. break;
  1236. }
  1237. }
  1238. return cpu;
  1239. }
  1240. #else
  1241. static inline int wake_idle(int cpu, struct task_struct *p)
  1242. {
  1243. return cpu;
  1244. }
  1245. #endif
  1246. /***
  1247. * try_to_wake_up - wake up a thread
  1248. * @p: the to-be-woken-up thread
  1249. * @state: the mask of task states that can be woken
  1250. * @sync: do a synchronous wakeup?
  1251. *
  1252. * Put it on the run-queue if it's not already there. The "current"
  1253. * thread is always on the run-queue (except when the actual
  1254. * re-schedule is in progress), and as such you're allowed to do
  1255. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1256. * runnable without the overhead of this.
  1257. *
  1258. * returns failure only if the task is already active.
  1259. */
  1260. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1261. {
  1262. int cpu, orig_cpu, this_cpu, success = 0;
  1263. unsigned long flags;
  1264. long old_state;
  1265. struct rq *rq;
  1266. #ifdef CONFIG_SMP
  1267. struct sched_domain *sd, *this_sd = NULL;
  1268. unsigned long load, this_load;
  1269. int new_cpu;
  1270. #endif
  1271. rq = task_rq_lock(p, &flags);
  1272. old_state = p->state;
  1273. if (!(old_state & state))
  1274. goto out;
  1275. if (p->se.on_rq)
  1276. goto out_running;
  1277. cpu = task_cpu(p);
  1278. orig_cpu = cpu;
  1279. this_cpu = smp_processor_id();
  1280. #ifdef CONFIG_SMP
  1281. if (unlikely(task_running(rq, p)))
  1282. goto out_activate;
  1283. new_cpu = cpu;
  1284. schedstat_inc(rq, ttwu_count);
  1285. if (cpu == this_cpu) {
  1286. schedstat_inc(rq, ttwu_local);
  1287. goto out_set_cpu;
  1288. }
  1289. for_each_domain(this_cpu, sd) {
  1290. if (cpu_isset(cpu, sd->span)) {
  1291. schedstat_inc(sd, ttwu_wake_remote);
  1292. this_sd = sd;
  1293. break;
  1294. }
  1295. }
  1296. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1297. goto out_set_cpu;
  1298. /*
  1299. * Check for affine wakeup and passive balancing possibilities.
  1300. */
  1301. if (this_sd) {
  1302. int idx = this_sd->wake_idx;
  1303. unsigned int imbalance;
  1304. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1305. load = source_load(cpu, idx);
  1306. this_load = target_load(this_cpu, idx);
  1307. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1308. if (this_sd->flags & SD_WAKE_AFFINE) {
  1309. unsigned long tl = this_load;
  1310. unsigned long tl_per_task;
  1311. /*
  1312. * Attract cache-cold tasks on sync wakeups:
  1313. */
  1314. if (sync && !task_hot(p, rq->clock, this_sd))
  1315. goto out_set_cpu;
  1316. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  1317. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1318. /*
  1319. * If sync wakeup then subtract the (maximum possible)
  1320. * effect of the currently running task from the load
  1321. * of the current CPU:
  1322. */
  1323. if (sync)
  1324. tl -= current->se.load.weight;
  1325. if ((tl <= load &&
  1326. tl + target_load(cpu, idx) <= tl_per_task) ||
  1327. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1328. /*
  1329. * This domain has SD_WAKE_AFFINE and
  1330. * p is cache cold in this domain, and
  1331. * there is no bad imbalance.
  1332. */
  1333. schedstat_inc(this_sd, ttwu_move_affine);
  1334. schedstat_inc(p, se.nr_wakeups_affine);
  1335. goto out_set_cpu;
  1336. }
  1337. }
  1338. /*
  1339. * Start passive balancing when half the imbalance_pct
  1340. * limit is reached.
  1341. */
  1342. if (this_sd->flags & SD_WAKE_BALANCE) {
  1343. if (imbalance*this_load <= 100*load) {
  1344. schedstat_inc(this_sd, ttwu_move_balance);
  1345. schedstat_inc(p, se.nr_wakeups_passive);
  1346. goto out_set_cpu;
  1347. }
  1348. }
  1349. }
  1350. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1351. out_set_cpu:
  1352. new_cpu = wake_idle(new_cpu, p);
  1353. if (new_cpu != cpu) {
  1354. set_task_cpu(p, new_cpu);
  1355. task_rq_unlock(rq, &flags);
  1356. /* might preempt at this point */
  1357. rq = task_rq_lock(p, &flags);
  1358. old_state = p->state;
  1359. if (!(old_state & state))
  1360. goto out;
  1361. if (p->se.on_rq)
  1362. goto out_running;
  1363. this_cpu = smp_processor_id();
  1364. cpu = task_cpu(p);
  1365. }
  1366. out_activate:
  1367. #endif /* CONFIG_SMP */
  1368. schedstat_inc(p, se.nr_wakeups);
  1369. if (sync)
  1370. schedstat_inc(p, se.nr_wakeups_sync);
  1371. if (orig_cpu != cpu)
  1372. schedstat_inc(p, se.nr_wakeups_migrate);
  1373. if (cpu == this_cpu)
  1374. schedstat_inc(p, se.nr_wakeups_local);
  1375. else
  1376. schedstat_inc(p, se.nr_wakeups_remote);
  1377. update_rq_clock(rq);
  1378. activate_task(rq, p, 1);
  1379. check_preempt_curr(rq, p);
  1380. success = 1;
  1381. out_running:
  1382. p->state = TASK_RUNNING;
  1383. out:
  1384. task_rq_unlock(rq, &flags);
  1385. return success;
  1386. }
  1387. int fastcall wake_up_process(struct task_struct *p)
  1388. {
  1389. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1390. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1391. }
  1392. EXPORT_SYMBOL(wake_up_process);
  1393. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1394. {
  1395. return try_to_wake_up(p, state, 0);
  1396. }
  1397. /*
  1398. * Perform scheduler related setup for a newly forked process p.
  1399. * p is forked by current.
  1400. *
  1401. * __sched_fork() is basic setup used by init_idle() too:
  1402. */
  1403. static void __sched_fork(struct task_struct *p)
  1404. {
  1405. p->se.exec_start = 0;
  1406. p->se.sum_exec_runtime = 0;
  1407. p->se.prev_sum_exec_runtime = 0;
  1408. #ifdef CONFIG_SCHEDSTATS
  1409. p->se.wait_start = 0;
  1410. p->se.sum_sleep_runtime = 0;
  1411. p->se.sleep_start = 0;
  1412. p->se.block_start = 0;
  1413. p->se.sleep_max = 0;
  1414. p->se.block_max = 0;
  1415. p->se.exec_max = 0;
  1416. p->se.slice_max = 0;
  1417. p->se.wait_max = 0;
  1418. #endif
  1419. INIT_LIST_HEAD(&p->run_list);
  1420. p->se.on_rq = 0;
  1421. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1422. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1423. #endif
  1424. /*
  1425. * We mark the process as running here, but have not actually
  1426. * inserted it onto the runqueue yet. This guarantees that
  1427. * nobody will actually run it, and a signal or other external
  1428. * event cannot wake it up and insert it on the runqueue either.
  1429. */
  1430. p->state = TASK_RUNNING;
  1431. }
  1432. /*
  1433. * fork()/clone()-time setup:
  1434. */
  1435. void sched_fork(struct task_struct *p, int clone_flags)
  1436. {
  1437. int cpu = get_cpu();
  1438. __sched_fork(p);
  1439. #ifdef CONFIG_SMP
  1440. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1441. #endif
  1442. set_task_cpu(p, cpu);
  1443. /*
  1444. * Make sure we do not leak PI boosting priority to the child:
  1445. */
  1446. p->prio = current->normal_prio;
  1447. if (!rt_prio(p->prio))
  1448. p->sched_class = &fair_sched_class;
  1449. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1450. if (likely(sched_info_on()))
  1451. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1452. #endif
  1453. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1454. p->oncpu = 0;
  1455. #endif
  1456. #ifdef CONFIG_PREEMPT
  1457. /* Want to start with kernel preemption disabled. */
  1458. task_thread_info(p)->preempt_count = 1;
  1459. #endif
  1460. put_cpu();
  1461. }
  1462. /*
  1463. * wake_up_new_task - wake up a newly created task for the first time.
  1464. *
  1465. * This function will do some initial scheduler statistics housekeeping
  1466. * that must be done for every newly created context, then puts the task
  1467. * on the runqueue and wakes it.
  1468. */
  1469. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1470. {
  1471. unsigned long flags;
  1472. struct rq *rq;
  1473. rq = task_rq_lock(p, &flags);
  1474. BUG_ON(p->state != TASK_RUNNING);
  1475. update_rq_clock(rq);
  1476. p->prio = effective_prio(p);
  1477. if (!p->sched_class->task_new || !current->se.on_rq) {
  1478. activate_task(rq, p, 0);
  1479. } else {
  1480. /*
  1481. * Let the scheduling class do new task startup
  1482. * management (if any):
  1483. */
  1484. p->sched_class->task_new(rq, p);
  1485. inc_nr_running(p, rq);
  1486. }
  1487. check_preempt_curr(rq, p);
  1488. task_rq_unlock(rq, &flags);
  1489. }
  1490. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1491. /**
  1492. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1493. * @notifier: notifier struct to register
  1494. */
  1495. void preempt_notifier_register(struct preempt_notifier *notifier)
  1496. {
  1497. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1498. }
  1499. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1500. /**
  1501. * preempt_notifier_unregister - no longer interested in preemption notifications
  1502. * @notifier: notifier struct to unregister
  1503. *
  1504. * This is safe to call from within a preemption notifier.
  1505. */
  1506. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1507. {
  1508. hlist_del(&notifier->link);
  1509. }
  1510. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1511. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1512. {
  1513. struct preempt_notifier *notifier;
  1514. struct hlist_node *node;
  1515. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1516. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1517. }
  1518. static void
  1519. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1520. struct task_struct *next)
  1521. {
  1522. struct preempt_notifier *notifier;
  1523. struct hlist_node *node;
  1524. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1525. notifier->ops->sched_out(notifier, next);
  1526. }
  1527. #else
  1528. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1529. {
  1530. }
  1531. static void
  1532. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1533. struct task_struct *next)
  1534. {
  1535. }
  1536. #endif
  1537. /**
  1538. * prepare_task_switch - prepare to switch tasks
  1539. * @rq: the runqueue preparing to switch
  1540. * @prev: the current task that is being switched out
  1541. * @next: the task we are going to switch to.
  1542. *
  1543. * This is called with the rq lock held and interrupts off. It must
  1544. * be paired with a subsequent finish_task_switch after the context
  1545. * switch.
  1546. *
  1547. * prepare_task_switch sets up locking and calls architecture specific
  1548. * hooks.
  1549. */
  1550. static inline void
  1551. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1552. struct task_struct *next)
  1553. {
  1554. fire_sched_out_preempt_notifiers(prev, next);
  1555. prepare_lock_switch(rq, next);
  1556. prepare_arch_switch(next);
  1557. }
  1558. /**
  1559. * finish_task_switch - clean up after a task-switch
  1560. * @rq: runqueue associated with task-switch
  1561. * @prev: the thread we just switched away from.
  1562. *
  1563. * finish_task_switch must be called after the context switch, paired
  1564. * with a prepare_task_switch call before the context switch.
  1565. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1566. * and do any other architecture-specific cleanup actions.
  1567. *
  1568. * Note that we may have delayed dropping an mm in context_switch(). If
  1569. * so, we finish that here outside of the runqueue lock. (Doing it
  1570. * with the lock held can cause deadlocks; see schedule() for
  1571. * details.)
  1572. */
  1573. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1574. __releases(rq->lock)
  1575. {
  1576. struct mm_struct *mm = rq->prev_mm;
  1577. long prev_state;
  1578. rq->prev_mm = NULL;
  1579. /*
  1580. * A task struct has one reference for the use as "current".
  1581. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1582. * schedule one last time. The schedule call will never return, and
  1583. * the scheduled task must drop that reference.
  1584. * The test for TASK_DEAD must occur while the runqueue locks are
  1585. * still held, otherwise prev could be scheduled on another cpu, die
  1586. * there before we look at prev->state, and then the reference would
  1587. * be dropped twice.
  1588. * Manfred Spraul <manfred@colorfullife.com>
  1589. */
  1590. prev_state = prev->state;
  1591. finish_arch_switch(prev);
  1592. finish_lock_switch(rq, prev);
  1593. fire_sched_in_preempt_notifiers(current);
  1594. if (mm)
  1595. mmdrop(mm);
  1596. if (unlikely(prev_state == TASK_DEAD)) {
  1597. /*
  1598. * Remove function-return probe instances associated with this
  1599. * task and put them back on the free list.
  1600. */
  1601. kprobe_flush_task(prev);
  1602. put_task_struct(prev);
  1603. }
  1604. }
  1605. /**
  1606. * schedule_tail - first thing a freshly forked thread must call.
  1607. * @prev: the thread we just switched away from.
  1608. */
  1609. asmlinkage void schedule_tail(struct task_struct *prev)
  1610. __releases(rq->lock)
  1611. {
  1612. struct rq *rq = this_rq();
  1613. finish_task_switch(rq, prev);
  1614. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1615. /* In this case, finish_task_switch does not reenable preemption */
  1616. preempt_enable();
  1617. #endif
  1618. if (current->set_child_tid)
  1619. put_user(current->pid, current->set_child_tid);
  1620. }
  1621. /*
  1622. * context_switch - switch to the new MM and the new
  1623. * thread's register state.
  1624. */
  1625. static inline void
  1626. context_switch(struct rq *rq, struct task_struct *prev,
  1627. struct task_struct *next)
  1628. {
  1629. struct mm_struct *mm, *oldmm;
  1630. prepare_task_switch(rq, prev, next);
  1631. mm = next->mm;
  1632. oldmm = prev->active_mm;
  1633. /*
  1634. * For paravirt, this is coupled with an exit in switch_to to
  1635. * combine the page table reload and the switch backend into
  1636. * one hypercall.
  1637. */
  1638. arch_enter_lazy_cpu_mode();
  1639. if (unlikely(!mm)) {
  1640. next->active_mm = oldmm;
  1641. atomic_inc(&oldmm->mm_count);
  1642. enter_lazy_tlb(oldmm, next);
  1643. } else
  1644. switch_mm(oldmm, mm, next);
  1645. if (unlikely(!prev->mm)) {
  1646. prev->active_mm = NULL;
  1647. rq->prev_mm = oldmm;
  1648. }
  1649. /*
  1650. * Since the runqueue lock will be released by the next
  1651. * task (which is an invalid locking op but in the case
  1652. * of the scheduler it's an obvious special-case), so we
  1653. * do an early lockdep release here:
  1654. */
  1655. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1656. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1657. #endif
  1658. /* Here we just switch the register state and the stack. */
  1659. switch_to(prev, next, prev);
  1660. barrier();
  1661. /*
  1662. * this_rq must be evaluated again because prev may have moved
  1663. * CPUs since it called schedule(), thus the 'rq' on its stack
  1664. * frame will be invalid.
  1665. */
  1666. finish_task_switch(this_rq(), prev);
  1667. }
  1668. /*
  1669. * nr_running, nr_uninterruptible and nr_context_switches:
  1670. *
  1671. * externally visible scheduler statistics: current number of runnable
  1672. * threads, current number of uninterruptible-sleeping threads, total
  1673. * number of context switches performed since bootup.
  1674. */
  1675. unsigned long nr_running(void)
  1676. {
  1677. unsigned long i, sum = 0;
  1678. for_each_online_cpu(i)
  1679. sum += cpu_rq(i)->nr_running;
  1680. return sum;
  1681. }
  1682. unsigned long nr_uninterruptible(void)
  1683. {
  1684. unsigned long i, sum = 0;
  1685. for_each_possible_cpu(i)
  1686. sum += cpu_rq(i)->nr_uninterruptible;
  1687. /*
  1688. * Since we read the counters lockless, it might be slightly
  1689. * inaccurate. Do not allow it to go below zero though:
  1690. */
  1691. if (unlikely((long)sum < 0))
  1692. sum = 0;
  1693. return sum;
  1694. }
  1695. unsigned long long nr_context_switches(void)
  1696. {
  1697. int i;
  1698. unsigned long long sum = 0;
  1699. for_each_possible_cpu(i)
  1700. sum += cpu_rq(i)->nr_switches;
  1701. return sum;
  1702. }
  1703. unsigned long nr_iowait(void)
  1704. {
  1705. unsigned long i, sum = 0;
  1706. for_each_possible_cpu(i)
  1707. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1708. return sum;
  1709. }
  1710. unsigned long nr_active(void)
  1711. {
  1712. unsigned long i, running = 0, uninterruptible = 0;
  1713. for_each_online_cpu(i) {
  1714. running += cpu_rq(i)->nr_running;
  1715. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1716. }
  1717. if (unlikely((long)uninterruptible < 0))
  1718. uninterruptible = 0;
  1719. return running + uninterruptible;
  1720. }
  1721. /*
  1722. * Update rq->cpu_load[] statistics. This function is usually called every
  1723. * scheduler tick (TICK_NSEC).
  1724. */
  1725. static void update_cpu_load(struct rq *this_rq)
  1726. {
  1727. unsigned long this_load = this_rq->load.weight;
  1728. int i, scale;
  1729. this_rq->nr_load_updates++;
  1730. /* Update our load: */
  1731. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1732. unsigned long old_load, new_load;
  1733. /* scale is effectively 1 << i now, and >> i divides by scale */
  1734. old_load = this_rq->cpu_load[i];
  1735. new_load = this_load;
  1736. /*
  1737. * Round up the averaging division if load is increasing. This
  1738. * prevents us from getting stuck on 9 if the load is 10, for
  1739. * example.
  1740. */
  1741. if (new_load > old_load)
  1742. new_load += scale-1;
  1743. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1744. }
  1745. }
  1746. #ifdef CONFIG_SMP
  1747. /*
  1748. * double_rq_lock - safely lock two runqueues
  1749. *
  1750. * Note this does not disable interrupts like task_rq_lock,
  1751. * you need to do so manually before calling.
  1752. */
  1753. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1754. __acquires(rq1->lock)
  1755. __acquires(rq2->lock)
  1756. {
  1757. BUG_ON(!irqs_disabled());
  1758. if (rq1 == rq2) {
  1759. spin_lock(&rq1->lock);
  1760. __acquire(rq2->lock); /* Fake it out ;) */
  1761. } else {
  1762. if (rq1 < rq2) {
  1763. spin_lock(&rq1->lock);
  1764. spin_lock(&rq2->lock);
  1765. } else {
  1766. spin_lock(&rq2->lock);
  1767. spin_lock(&rq1->lock);
  1768. }
  1769. }
  1770. update_rq_clock(rq1);
  1771. update_rq_clock(rq2);
  1772. }
  1773. /*
  1774. * double_rq_unlock - safely unlock two runqueues
  1775. *
  1776. * Note this does not restore interrupts like task_rq_unlock,
  1777. * you need to do so manually after calling.
  1778. */
  1779. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1780. __releases(rq1->lock)
  1781. __releases(rq2->lock)
  1782. {
  1783. spin_unlock(&rq1->lock);
  1784. if (rq1 != rq2)
  1785. spin_unlock(&rq2->lock);
  1786. else
  1787. __release(rq2->lock);
  1788. }
  1789. /*
  1790. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1791. */
  1792. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1793. __releases(this_rq->lock)
  1794. __acquires(busiest->lock)
  1795. __acquires(this_rq->lock)
  1796. {
  1797. if (unlikely(!irqs_disabled())) {
  1798. /* printk() doesn't work good under rq->lock */
  1799. spin_unlock(&this_rq->lock);
  1800. BUG_ON(1);
  1801. }
  1802. if (unlikely(!spin_trylock(&busiest->lock))) {
  1803. if (busiest < this_rq) {
  1804. spin_unlock(&this_rq->lock);
  1805. spin_lock(&busiest->lock);
  1806. spin_lock(&this_rq->lock);
  1807. } else
  1808. spin_lock(&busiest->lock);
  1809. }
  1810. }
  1811. /*
  1812. * If dest_cpu is allowed for this process, migrate the task to it.
  1813. * This is accomplished by forcing the cpu_allowed mask to only
  1814. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1815. * the cpu_allowed mask is restored.
  1816. */
  1817. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1818. {
  1819. struct migration_req req;
  1820. unsigned long flags;
  1821. struct rq *rq;
  1822. rq = task_rq_lock(p, &flags);
  1823. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1824. || unlikely(cpu_is_offline(dest_cpu)))
  1825. goto out;
  1826. /* force the process onto the specified CPU */
  1827. if (migrate_task(p, dest_cpu, &req)) {
  1828. /* Need to wait for migration thread (might exit: take ref). */
  1829. struct task_struct *mt = rq->migration_thread;
  1830. get_task_struct(mt);
  1831. task_rq_unlock(rq, &flags);
  1832. wake_up_process(mt);
  1833. put_task_struct(mt);
  1834. wait_for_completion(&req.done);
  1835. return;
  1836. }
  1837. out:
  1838. task_rq_unlock(rq, &flags);
  1839. }
  1840. /*
  1841. * sched_exec - execve() is a valuable balancing opportunity, because at
  1842. * this point the task has the smallest effective memory and cache footprint.
  1843. */
  1844. void sched_exec(void)
  1845. {
  1846. int new_cpu, this_cpu = get_cpu();
  1847. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1848. put_cpu();
  1849. if (new_cpu != this_cpu)
  1850. sched_migrate_task(current, new_cpu);
  1851. }
  1852. /*
  1853. * pull_task - move a task from a remote runqueue to the local runqueue.
  1854. * Both runqueues must be locked.
  1855. */
  1856. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1857. struct rq *this_rq, int this_cpu)
  1858. {
  1859. deactivate_task(src_rq, p, 0);
  1860. set_task_cpu(p, this_cpu);
  1861. activate_task(this_rq, p, 0);
  1862. /*
  1863. * Note that idle threads have a prio of MAX_PRIO, for this test
  1864. * to be always true for them.
  1865. */
  1866. check_preempt_curr(this_rq, p);
  1867. }
  1868. /*
  1869. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1870. */
  1871. static
  1872. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1873. struct sched_domain *sd, enum cpu_idle_type idle,
  1874. int *all_pinned)
  1875. {
  1876. /*
  1877. * We do not migrate tasks that are:
  1878. * 1) running (obviously), or
  1879. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1880. * 3) are cache-hot on their current CPU.
  1881. */
  1882. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  1883. schedstat_inc(p, se.nr_failed_migrations_affine);
  1884. return 0;
  1885. }
  1886. *all_pinned = 0;
  1887. if (task_running(rq, p)) {
  1888. schedstat_inc(p, se.nr_failed_migrations_running);
  1889. return 0;
  1890. }
  1891. /*
  1892. * Aggressive migration if:
  1893. * 1) task is cache cold, or
  1894. * 2) too many balance attempts have failed.
  1895. */
  1896. if (!task_hot(p, rq->clock, sd) ||
  1897. sd->nr_balance_failed > sd->cache_nice_tries) {
  1898. #ifdef CONFIG_SCHEDSTATS
  1899. if (task_hot(p, rq->clock, sd)) {
  1900. schedstat_inc(sd, lb_hot_gained[idle]);
  1901. schedstat_inc(p, se.nr_forced_migrations);
  1902. }
  1903. #endif
  1904. return 1;
  1905. }
  1906. if (task_hot(p, rq->clock, sd)) {
  1907. schedstat_inc(p, se.nr_failed_migrations_hot);
  1908. return 0;
  1909. }
  1910. return 1;
  1911. }
  1912. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1913. unsigned long max_nr_move, unsigned long max_load_move,
  1914. struct sched_domain *sd, enum cpu_idle_type idle,
  1915. int *all_pinned, unsigned long *load_moved,
  1916. int *this_best_prio, struct rq_iterator *iterator)
  1917. {
  1918. int pulled = 0, pinned = 0, skip_for_load;
  1919. struct task_struct *p;
  1920. long rem_load_move = max_load_move;
  1921. if (max_nr_move == 0 || max_load_move == 0)
  1922. goto out;
  1923. pinned = 1;
  1924. /*
  1925. * Start the load-balancing iterator:
  1926. */
  1927. p = iterator->start(iterator->arg);
  1928. next:
  1929. if (!p)
  1930. goto out;
  1931. /*
  1932. * To help distribute high priority tasks accross CPUs we don't
  1933. * skip a task if it will be the highest priority task (i.e. smallest
  1934. * prio value) on its new queue regardless of its load weight
  1935. */
  1936. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1937. SCHED_LOAD_SCALE_FUZZ;
  1938. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1939. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1940. p = iterator->next(iterator->arg);
  1941. goto next;
  1942. }
  1943. pull_task(busiest, p, this_rq, this_cpu);
  1944. pulled++;
  1945. rem_load_move -= p->se.load.weight;
  1946. /*
  1947. * We only want to steal up to the prescribed number of tasks
  1948. * and the prescribed amount of weighted load.
  1949. */
  1950. if (pulled < max_nr_move && rem_load_move > 0) {
  1951. if (p->prio < *this_best_prio)
  1952. *this_best_prio = p->prio;
  1953. p = iterator->next(iterator->arg);
  1954. goto next;
  1955. }
  1956. out:
  1957. /*
  1958. * Right now, this is the only place pull_task() is called,
  1959. * so we can safely collect pull_task() stats here rather than
  1960. * inside pull_task().
  1961. */
  1962. schedstat_add(sd, lb_gained[idle], pulled);
  1963. if (all_pinned)
  1964. *all_pinned = pinned;
  1965. *load_moved = max_load_move - rem_load_move;
  1966. return pulled;
  1967. }
  1968. /*
  1969. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1970. * this_rq, as part of a balancing operation within domain "sd".
  1971. * Returns 1 if successful and 0 otherwise.
  1972. *
  1973. * Called with both runqueues locked.
  1974. */
  1975. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1976. unsigned long max_load_move,
  1977. struct sched_domain *sd, enum cpu_idle_type idle,
  1978. int *all_pinned)
  1979. {
  1980. const struct sched_class *class = sched_class_highest;
  1981. unsigned long total_load_moved = 0;
  1982. int this_best_prio = this_rq->curr->prio;
  1983. do {
  1984. total_load_moved +=
  1985. class->load_balance(this_rq, this_cpu, busiest,
  1986. ULONG_MAX, max_load_move - total_load_moved,
  1987. sd, idle, all_pinned, &this_best_prio);
  1988. class = class->next;
  1989. } while (class && max_load_move > total_load_moved);
  1990. return total_load_moved > 0;
  1991. }
  1992. /*
  1993. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1994. * part of active balancing operations within "domain".
  1995. * Returns 1 if successful and 0 otherwise.
  1996. *
  1997. * Called with both runqueues locked.
  1998. */
  1999. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2000. struct sched_domain *sd, enum cpu_idle_type idle)
  2001. {
  2002. const struct sched_class *class;
  2003. int this_best_prio = MAX_PRIO;
  2004. for (class = sched_class_highest; class; class = class->next)
  2005. if (class->load_balance(this_rq, this_cpu, busiest,
  2006. 1, ULONG_MAX, sd, idle, NULL,
  2007. &this_best_prio))
  2008. return 1;
  2009. return 0;
  2010. }
  2011. /*
  2012. * find_busiest_group finds and returns the busiest CPU group within the
  2013. * domain. It calculates and returns the amount of weighted load which
  2014. * should be moved to restore balance via the imbalance parameter.
  2015. */
  2016. static struct sched_group *
  2017. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2018. unsigned long *imbalance, enum cpu_idle_type idle,
  2019. int *sd_idle, cpumask_t *cpus, int *balance)
  2020. {
  2021. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2022. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2023. unsigned long max_pull;
  2024. unsigned long busiest_load_per_task, busiest_nr_running;
  2025. unsigned long this_load_per_task, this_nr_running;
  2026. int load_idx, group_imb = 0;
  2027. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2028. int power_savings_balance = 1;
  2029. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2030. unsigned long min_nr_running = ULONG_MAX;
  2031. struct sched_group *group_min = NULL, *group_leader = NULL;
  2032. #endif
  2033. max_load = this_load = total_load = total_pwr = 0;
  2034. busiest_load_per_task = busiest_nr_running = 0;
  2035. this_load_per_task = this_nr_running = 0;
  2036. if (idle == CPU_NOT_IDLE)
  2037. load_idx = sd->busy_idx;
  2038. else if (idle == CPU_NEWLY_IDLE)
  2039. load_idx = sd->newidle_idx;
  2040. else
  2041. load_idx = sd->idle_idx;
  2042. do {
  2043. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2044. int local_group;
  2045. int i;
  2046. int __group_imb = 0;
  2047. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2048. unsigned long sum_nr_running, sum_weighted_load;
  2049. local_group = cpu_isset(this_cpu, group->cpumask);
  2050. if (local_group)
  2051. balance_cpu = first_cpu(group->cpumask);
  2052. /* Tally up the load of all CPUs in the group */
  2053. sum_weighted_load = sum_nr_running = avg_load = 0;
  2054. max_cpu_load = 0;
  2055. min_cpu_load = ~0UL;
  2056. for_each_cpu_mask(i, group->cpumask) {
  2057. struct rq *rq;
  2058. if (!cpu_isset(i, *cpus))
  2059. continue;
  2060. rq = cpu_rq(i);
  2061. if (*sd_idle && rq->nr_running)
  2062. *sd_idle = 0;
  2063. /* Bias balancing toward cpus of our domain */
  2064. if (local_group) {
  2065. if (idle_cpu(i) && !first_idle_cpu) {
  2066. first_idle_cpu = 1;
  2067. balance_cpu = i;
  2068. }
  2069. load = target_load(i, load_idx);
  2070. } else {
  2071. load = source_load(i, load_idx);
  2072. if (load > max_cpu_load)
  2073. max_cpu_load = load;
  2074. if (min_cpu_load > load)
  2075. min_cpu_load = load;
  2076. }
  2077. avg_load += load;
  2078. sum_nr_running += rq->nr_running;
  2079. sum_weighted_load += weighted_cpuload(i);
  2080. }
  2081. /*
  2082. * First idle cpu or the first cpu(busiest) in this sched group
  2083. * is eligible for doing load balancing at this and above
  2084. * domains. In the newly idle case, we will allow all the cpu's
  2085. * to do the newly idle load balance.
  2086. */
  2087. if (idle != CPU_NEWLY_IDLE && local_group &&
  2088. balance_cpu != this_cpu && balance) {
  2089. *balance = 0;
  2090. goto ret;
  2091. }
  2092. total_load += avg_load;
  2093. total_pwr += group->__cpu_power;
  2094. /* Adjust by relative CPU power of the group */
  2095. avg_load = sg_div_cpu_power(group,
  2096. avg_load * SCHED_LOAD_SCALE);
  2097. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2098. __group_imb = 1;
  2099. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2100. if (local_group) {
  2101. this_load = avg_load;
  2102. this = group;
  2103. this_nr_running = sum_nr_running;
  2104. this_load_per_task = sum_weighted_load;
  2105. } else if (avg_load > max_load &&
  2106. (sum_nr_running > group_capacity || __group_imb)) {
  2107. max_load = avg_load;
  2108. busiest = group;
  2109. busiest_nr_running = sum_nr_running;
  2110. busiest_load_per_task = sum_weighted_load;
  2111. group_imb = __group_imb;
  2112. }
  2113. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2114. /*
  2115. * Busy processors will not participate in power savings
  2116. * balance.
  2117. */
  2118. if (idle == CPU_NOT_IDLE ||
  2119. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2120. goto group_next;
  2121. /*
  2122. * If the local group is idle or completely loaded
  2123. * no need to do power savings balance at this domain
  2124. */
  2125. if (local_group && (this_nr_running >= group_capacity ||
  2126. !this_nr_running))
  2127. power_savings_balance = 0;
  2128. /*
  2129. * If a group is already running at full capacity or idle,
  2130. * don't include that group in power savings calculations
  2131. */
  2132. if (!power_savings_balance || sum_nr_running >= group_capacity
  2133. || !sum_nr_running)
  2134. goto group_next;
  2135. /*
  2136. * Calculate the group which has the least non-idle load.
  2137. * This is the group from where we need to pick up the load
  2138. * for saving power
  2139. */
  2140. if ((sum_nr_running < min_nr_running) ||
  2141. (sum_nr_running == min_nr_running &&
  2142. first_cpu(group->cpumask) <
  2143. first_cpu(group_min->cpumask))) {
  2144. group_min = group;
  2145. min_nr_running = sum_nr_running;
  2146. min_load_per_task = sum_weighted_load /
  2147. sum_nr_running;
  2148. }
  2149. /*
  2150. * Calculate the group which is almost near its
  2151. * capacity but still has some space to pick up some load
  2152. * from other group and save more power
  2153. */
  2154. if (sum_nr_running <= group_capacity - 1) {
  2155. if (sum_nr_running > leader_nr_running ||
  2156. (sum_nr_running == leader_nr_running &&
  2157. first_cpu(group->cpumask) >
  2158. first_cpu(group_leader->cpumask))) {
  2159. group_leader = group;
  2160. leader_nr_running = sum_nr_running;
  2161. }
  2162. }
  2163. group_next:
  2164. #endif
  2165. group = group->next;
  2166. } while (group != sd->groups);
  2167. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2168. goto out_balanced;
  2169. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2170. if (this_load >= avg_load ||
  2171. 100*max_load <= sd->imbalance_pct*this_load)
  2172. goto out_balanced;
  2173. busiest_load_per_task /= busiest_nr_running;
  2174. if (group_imb)
  2175. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2176. /*
  2177. * We're trying to get all the cpus to the average_load, so we don't
  2178. * want to push ourselves above the average load, nor do we wish to
  2179. * reduce the max loaded cpu below the average load, as either of these
  2180. * actions would just result in more rebalancing later, and ping-pong
  2181. * tasks around. Thus we look for the minimum possible imbalance.
  2182. * Negative imbalances (*we* are more loaded than anyone else) will
  2183. * be counted as no imbalance for these purposes -- we can't fix that
  2184. * by pulling tasks to us. Be careful of negative numbers as they'll
  2185. * appear as very large values with unsigned longs.
  2186. */
  2187. if (max_load <= busiest_load_per_task)
  2188. goto out_balanced;
  2189. /*
  2190. * In the presence of smp nice balancing, certain scenarios can have
  2191. * max load less than avg load(as we skip the groups at or below
  2192. * its cpu_power, while calculating max_load..)
  2193. */
  2194. if (max_load < avg_load) {
  2195. *imbalance = 0;
  2196. goto small_imbalance;
  2197. }
  2198. /* Don't want to pull so many tasks that a group would go idle */
  2199. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2200. /* How much load to actually move to equalise the imbalance */
  2201. *imbalance = min(max_pull * busiest->__cpu_power,
  2202. (avg_load - this_load) * this->__cpu_power)
  2203. / SCHED_LOAD_SCALE;
  2204. /*
  2205. * if *imbalance is less than the average load per runnable task
  2206. * there is no gaurantee that any tasks will be moved so we'll have
  2207. * a think about bumping its value to force at least one task to be
  2208. * moved
  2209. */
  2210. if (*imbalance < busiest_load_per_task) {
  2211. unsigned long tmp, pwr_now, pwr_move;
  2212. unsigned int imbn;
  2213. small_imbalance:
  2214. pwr_move = pwr_now = 0;
  2215. imbn = 2;
  2216. if (this_nr_running) {
  2217. this_load_per_task /= this_nr_running;
  2218. if (busiest_load_per_task > this_load_per_task)
  2219. imbn = 1;
  2220. } else
  2221. this_load_per_task = SCHED_LOAD_SCALE;
  2222. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2223. busiest_load_per_task * imbn) {
  2224. *imbalance = busiest_load_per_task;
  2225. return busiest;
  2226. }
  2227. /*
  2228. * OK, we don't have enough imbalance to justify moving tasks,
  2229. * however we may be able to increase total CPU power used by
  2230. * moving them.
  2231. */
  2232. pwr_now += busiest->__cpu_power *
  2233. min(busiest_load_per_task, max_load);
  2234. pwr_now += this->__cpu_power *
  2235. min(this_load_per_task, this_load);
  2236. pwr_now /= SCHED_LOAD_SCALE;
  2237. /* Amount of load we'd subtract */
  2238. tmp = sg_div_cpu_power(busiest,
  2239. busiest_load_per_task * SCHED_LOAD_SCALE);
  2240. if (max_load > tmp)
  2241. pwr_move += busiest->__cpu_power *
  2242. min(busiest_load_per_task, max_load - tmp);
  2243. /* Amount of load we'd add */
  2244. if (max_load * busiest->__cpu_power <
  2245. busiest_load_per_task * SCHED_LOAD_SCALE)
  2246. tmp = sg_div_cpu_power(this,
  2247. max_load * busiest->__cpu_power);
  2248. else
  2249. tmp = sg_div_cpu_power(this,
  2250. busiest_load_per_task * SCHED_LOAD_SCALE);
  2251. pwr_move += this->__cpu_power *
  2252. min(this_load_per_task, this_load + tmp);
  2253. pwr_move /= SCHED_LOAD_SCALE;
  2254. /* Move if we gain throughput */
  2255. if (pwr_move > pwr_now)
  2256. *imbalance = busiest_load_per_task;
  2257. }
  2258. return busiest;
  2259. out_balanced:
  2260. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2261. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2262. goto ret;
  2263. if (this == group_leader && group_leader != group_min) {
  2264. *imbalance = min_load_per_task;
  2265. return group_min;
  2266. }
  2267. #endif
  2268. ret:
  2269. *imbalance = 0;
  2270. return NULL;
  2271. }
  2272. /*
  2273. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2274. */
  2275. static struct rq *
  2276. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2277. unsigned long imbalance, cpumask_t *cpus)
  2278. {
  2279. struct rq *busiest = NULL, *rq;
  2280. unsigned long max_load = 0;
  2281. int i;
  2282. for_each_cpu_mask(i, group->cpumask) {
  2283. unsigned long wl;
  2284. if (!cpu_isset(i, *cpus))
  2285. continue;
  2286. rq = cpu_rq(i);
  2287. wl = weighted_cpuload(i);
  2288. if (rq->nr_running == 1 && wl > imbalance)
  2289. continue;
  2290. if (wl > max_load) {
  2291. max_load = wl;
  2292. busiest = rq;
  2293. }
  2294. }
  2295. return busiest;
  2296. }
  2297. /*
  2298. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2299. * so long as it is large enough.
  2300. */
  2301. #define MAX_PINNED_INTERVAL 512
  2302. /*
  2303. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2304. * tasks if there is an imbalance.
  2305. */
  2306. static int load_balance(int this_cpu, struct rq *this_rq,
  2307. struct sched_domain *sd, enum cpu_idle_type idle,
  2308. int *balance)
  2309. {
  2310. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2311. struct sched_group *group;
  2312. unsigned long imbalance;
  2313. struct rq *busiest;
  2314. cpumask_t cpus = CPU_MASK_ALL;
  2315. unsigned long flags;
  2316. /*
  2317. * When power savings policy is enabled for the parent domain, idle
  2318. * sibling can pick up load irrespective of busy siblings. In this case,
  2319. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2320. * portraying it as CPU_NOT_IDLE.
  2321. */
  2322. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2323. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2324. sd_idle = 1;
  2325. schedstat_inc(sd, lb_count[idle]);
  2326. redo:
  2327. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2328. &cpus, balance);
  2329. if (*balance == 0)
  2330. goto out_balanced;
  2331. if (!group) {
  2332. schedstat_inc(sd, lb_nobusyg[idle]);
  2333. goto out_balanced;
  2334. }
  2335. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2336. if (!busiest) {
  2337. schedstat_inc(sd, lb_nobusyq[idle]);
  2338. goto out_balanced;
  2339. }
  2340. BUG_ON(busiest == this_rq);
  2341. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2342. ld_moved = 0;
  2343. if (busiest->nr_running > 1) {
  2344. /*
  2345. * Attempt to move tasks. If find_busiest_group has found
  2346. * an imbalance but busiest->nr_running <= 1, the group is
  2347. * still unbalanced. ld_moved simply stays zero, so it is
  2348. * correctly treated as an imbalance.
  2349. */
  2350. local_irq_save(flags);
  2351. double_rq_lock(this_rq, busiest);
  2352. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2353. imbalance, sd, idle, &all_pinned);
  2354. double_rq_unlock(this_rq, busiest);
  2355. local_irq_restore(flags);
  2356. /*
  2357. * some other cpu did the load balance for us.
  2358. */
  2359. if (ld_moved && this_cpu != smp_processor_id())
  2360. resched_cpu(this_cpu);
  2361. /* All tasks on this runqueue were pinned by CPU affinity */
  2362. if (unlikely(all_pinned)) {
  2363. cpu_clear(cpu_of(busiest), cpus);
  2364. if (!cpus_empty(cpus))
  2365. goto redo;
  2366. goto out_balanced;
  2367. }
  2368. }
  2369. if (!ld_moved) {
  2370. schedstat_inc(sd, lb_failed[idle]);
  2371. sd->nr_balance_failed++;
  2372. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2373. spin_lock_irqsave(&busiest->lock, flags);
  2374. /* don't kick the migration_thread, if the curr
  2375. * task on busiest cpu can't be moved to this_cpu
  2376. */
  2377. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2378. spin_unlock_irqrestore(&busiest->lock, flags);
  2379. all_pinned = 1;
  2380. goto out_one_pinned;
  2381. }
  2382. if (!busiest->active_balance) {
  2383. busiest->active_balance = 1;
  2384. busiest->push_cpu = this_cpu;
  2385. active_balance = 1;
  2386. }
  2387. spin_unlock_irqrestore(&busiest->lock, flags);
  2388. if (active_balance)
  2389. wake_up_process(busiest->migration_thread);
  2390. /*
  2391. * We've kicked active balancing, reset the failure
  2392. * counter.
  2393. */
  2394. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2395. }
  2396. } else
  2397. sd->nr_balance_failed = 0;
  2398. if (likely(!active_balance)) {
  2399. /* We were unbalanced, so reset the balancing interval */
  2400. sd->balance_interval = sd->min_interval;
  2401. } else {
  2402. /*
  2403. * If we've begun active balancing, start to back off. This
  2404. * case may not be covered by the all_pinned logic if there
  2405. * is only 1 task on the busy runqueue (because we don't call
  2406. * move_tasks).
  2407. */
  2408. if (sd->balance_interval < sd->max_interval)
  2409. sd->balance_interval *= 2;
  2410. }
  2411. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2412. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2413. return -1;
  2414. return ld_moved;
  2415. out_balanced:
  2416. schedstat_inc(sd, lb_balanced[idle]);
  2417. sd->nr_balance_failed = 0;
  2418. out_one_pinned:
  2419. /* tune up the balancing interval */
  2420. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2421. (sd->balance_interval < sd->max_interval))
  2422. sd->balance_interval *= 2;
  2423. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2424. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2425. return -1;
  2426. return 0;
  2427. }
  2428. /*
  2429. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2430. * tasks if there is an imbalance.
  2431. *
  2432. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2433. * this_rq is locked.
  2434. */
  2435. static int
  2436. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2437. {
  2438. struct sched_group *group;
  2439. struct rq *busiest = NULL;
  2440. unsigned long imbalance;
  2441. int ld_moved = 0;
  2442. int sd_idle = 0;
  2443. int all_pinned = 0;
  2444. cpumask_t cpus = CPU_MASK_ALL;
  2445. /*
  2446. * When power savings policy is enabled for the parent domain, idle
  2447. * sibling can pick up load irrespective of busy siblings. In this case,
  2448. * let the state of idle sibling percolate up as IDLE, instead of
  2449. * portraying it as CPU_NOT_IDLE.
  2450. */
  2451. if (sd->flags & SD_SHARE_CPUPOWER &&
  2452. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2453. sd_idle = 1;
  2454. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2455. redo:
  2456. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2457. &sd_idle, &cpus, NULL);
  2458. if (!group) {
  2459. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2460. goto out_balanced;
  2461. }
  2462. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2463. &cpus);
  2464. if (!busiest) {
  2465. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2466. goto out_balanced;
  2467. }
  2468. BUG_ON(busiest == this_rq);
  2469. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2470. ld_moved = 0;
  2471. if (busiest->nr_running > 1) {
  2472. /* Attempt to move tasks */
  2473. double_lock_balance(this_rq, busiest);
  2474. /* this_rq->clock is already updated */
  2475. update_rq_clock(busiest);
  2476. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2477. imbalance, sd, CPU_NEWLY_IDLE,
  2478. &all_pinned);
  2479. spin_unlock(&busiest->lock);
  2480. if (unlikely(all_pinned)) {
  2481. cpu_clear(cpu_of(busiest), cpus);
  2482. if (!cpus_empty(cpus))
  2483. goto redo;
  2484. }
  2485. }
  2486. if (!ld_moved) {
  2487. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2488. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2489. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2490. return -1;
  2491. } else
  2492. sd->nr_balance_failed = 0;
  2493. return ld_moved;
  2494. out_balanced:
  2495. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2496. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2497. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2498. return -1;
  2499. sd->nr_balance_failed = 0;
  2500. return 0;
  2501. }
  2502. /*
  2503. * idle_balance is called by schedule() if this_cpu is about to become
  2504. * idle. Attempts to pull tasks from other CPUs.
  2505. */
  2506. static void idle_balance(int this_cpu, struct rq *this_rq)
  2507. {
  2508. struct sched_domain *sd;
  2509. int pulled_task = -1;
  2510. unsigned long next_balance = jiffies + HZ;
  2511. for_each_domain(this_cpu, sd) {
  2512. unsigned long interval;
  2513. if (!(sd->flags & SD_LOAD_BALANCE))
  2514. continue;
  2515. if (sd->flags & SD_BALANCE_NEWIDLE)
  2516. /* If we've pulled tasks over stop searching: */
  2517. pulled_task = load_balance_newidle(this_cpu,
  2518. this_rq, sd);
  2519. interval = msecs_to_jiffies(sd->balance_interval);
  2520. if (time_after(next_balance, sd->last_balance + interval))
  2521. next_balance = sd->last_balance + interval;
  2522. if (pulled_task)
  2523. break;
  2524. }
  2525. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2526. /*
  2527. * We are going idle. next_balance may be set based on
  2528. * a busy processor. So reset next_balance.
  2529. */
  2530. this_rq->next_balance = next_balance;
  2531. }
  2532. }
  2533. /*
  2534. * active_load_balance is run by migration threads. It pushes running tasks
  2535. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2536. * running on each physical CPU where possible, and avoids physical /
  2537. * logical imbalances.
  2538. *
  2539. * Called with busiest_rq locked.
  2540. */
  2541. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2542. {
  2543. int target_cpu = busiest_rq->push_cpu;
  2544. struct sched_domain *sd;
  2545. struct rq *target_rq;
  2546. /* Is there any task to move? */
  2547. if (busiest_rq->nr_running <= 1)
  2548. return;
  2549. target_rq = cpu_rq(target_cpu);
  2550. /*
  2551. * This condition is "impossible", if it occurs
  2552. * we need to fix it. Originally reported by
  2553. * Bjorn Helgaas on a 128-cpu setup.
  2554. */
  2555. BUG_ON(busiest_rq == target_rq);
  2556. /* move a task from busiest_rq to target_rq */
  2557. double_lock_balance(busiest_rq, target_rq);
  2558. update_rq_clock(busiest_rq);
  2559. update_rq_clock(target_rq);
  2560. /* Search for an sd spanning us and the target CPU. */
  2561. for_each_domain(target_cpu, sd) {
  2562. if ((sd->flags & SD_LOAD_BALANCE) &&
  2563. cpu_isset(busiest_cpu, sd->span))
  2564. break;
  2565. }
  2566. if (likely(sd)) {
  2567. schedstat_inc(sd, alb_count);
  2568. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2569. sd, CPU_IDLE))
  2570. schedstat_inc(sd, alb_pushed);
  2571. else
  2572. schedstat_inc(sd, alb_failed);
  2573. }
  2574. spin_unlock(&target_rq->lock);
  2575. }
  2576. #ifdef CONFIG_NO_HZ
  2577. static struct {
  2578. atomic_t load_balancer;
  2579. cpumask_t cpu_mask;
  2580. } nohz ____cacheline_aligned = {
  2581. .load_balancer = ATOMIC_INIT(-1),
  2582. .cpu_mask = CPU_MASK_NONE,
  2583. };
  2584. /*
  2585. * This routine will try to nominate the ilb (idle load balancing)
  2586. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2587. * load balancing on behalf of all those cpus. If all the cpus in the system
  2588. * go into this tickless mode, then there will be no ilb owner (as there is
  2589. * no need for one) and all the cpus will sleep till the next wakeup event
  2590. * arrives...
  2591. *
  2592. * For the ilb owner, tick is not stopped. And this tick will be used
  2593. * for idle load balancing. ilb owner will still be part of
  2594. * nohz.cpu_mask..
  2595. *
  2596. * While stopping the tick, this cpu will become the ilb owner if there
  2597. * is no other owner. And will be the owner till that cpu becomes busy
  2598. * or if all cpus in the system stop their ticks at which point
  2599. * there is no need for ilb owner.
  2600. *
  2601. * When the ilb owner becomes busy, it nominates another owner, during the
  2602. * next busy scheduler_tick()
  2603. */
  2604. int select_nohz_load_balancer(int stop_tick)
  2605. {
  2606. int cpu = smp_processor_id();
  2607. if (stop_tick) {
  2608. cpu_set(cpu, nohz.cpu_mask);
  2609. cpu_rq(cpu)->in_nohz_recently = 1;
  2610. /*
  2611. * If we are going offline and still the leader, give up!
  2612. */
  2613. if (cpu_is_offline(cpu) &&
  2614. atomic_read(&nohz.load_balancer) == cpu) {
  2615. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2616. BUG();
  2617. return 0;
  2618. }
  2619. /* time for ilb owner also to sleep */
  2620. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2621. if (atomic_read(&nohz.load_balancer) == cpu)
  2622. atomic_set(&nohz.load_balancer, -1);
  2623. return 0;
  2624. }
  2625. if (atomic_read(&nohz.load_balancer) == -1) {
  2626. /* make me the ilb owner */
  2627. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2628. return 1;
  2629. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2630. return 1;
  2631. } else {
  2632. if (!cpu_isset(cpu, nohz.cpu_mask))
  2633. return 0;
  2634. cpu_clear(cpu, nohz.cpu_mask);
  2635. if (atomic_read(&nohz.load_balancer) == cpu)
  2636. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2637. BUG();
  2638. }
  2639. return 0;
  2640. }
  2641. #endif
  2642. static DEFINE_SPINLOCK(balancing);
  2643. /*
  2644. * It checks each scheduling domain to see if it is due to be balanced,
  2645. * and initiates a balancing operation if so.
  2646. *
  2647. * Balancing parameters are set up in arch_init_sched_domains.
  2648. */
  2649. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2650. {
  2651. int balance = 1;
  2652. struct rq *rq = cpu_rq(cpu);
  2653. unsigned long interval;
  2654. struct sched_domain *sd;
  2655. /* Earliest time when we have to do rebalance again */
  2656. unsigned long next_balance = jiffies + 60*HZ;
  2657. int update_next_balance = 0;
  2658. for_each_domain(cpu, sd) {
  2659. if (!(sd->flags & SD_LOAD_BALANCE))
  2660. continue;
  2661. interval = sd->balance_interval;
  2662. if (idle != CPU_IDLE)
  2663. interval *= sd->busy_factor;
  2664. /* scale ms to jiffies */
  2665. interval = msecs_to_jiffies(interval);
  2666. if (unlikely(!interval))
  2667. interval = 1;
  2668. if (interval > HZ*NR_CPUS/10)
  2669. interval = HZ*NR_CPUS/10;
  2670. if (sd->flags & SD_SERIALIZE) {
  2671. if (!spin_trylock(&balancing))
  2672. goto out;
  2673. }
  2674. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2675. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2676. /*
  2677. * We've pulled tasks over so either we're no
  2678. * longer idle, or one of our SMT siblings is
  2679. * not idle.
  2680. */
  2681. idle = CPU_NOT_IDLE;
  2682. }
  2683. sd->last_balance = jiffies;
  2684. }
  2685. if (sd->flags & SD_SERIALIZE)
  2686. spin_unlock(&balancing);
  2687. out:
  2688. if (time_after(next_balance, sd->last_balance + interval)) {
  2689. next_balance = sd->last_balance + interval;
  2690. update_next_balance = 1;
  2691. }
  2692. /*
  2693. * Stop the load balance at this level. There is another
  2694. * CPU in our sched group which is doing load balancing more
  2695. * actively.
  2696. */
  2697. if (!balance)
  2698. break;
  2699. }
  2700. /*
  2701. * next_balance will be updated only when there is a need.
  2702. * When the cpu is attached to null domain for ex, it will not be
  2703. * updated.
  2704. */
  2705. if (likely(update_next_balance))
  2706. rq->next_balance = next_balance;
  2707. }
  2708. /*
  2709. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2710. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2711. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2712. */
  2713. static void run_rebalance_domains(struct softirq_action *h)
  2714. {
  2715. int this_cpu = smp_processor_id();
  2716. struct rq *this_rq = cpu_rq(this_cpu);
  2717. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2718. CPU_IDLE : CPU_NOT_IDLE;
  2719. rebalance_domains(this_cpu, idle);
  2720. #ifdef CONFIG_NO_HZ
  2721. /*
  2722. * If this cpu is the owner for idle load balancing, then do the
  2723. * balancing on behalf of the other idle cpus whose ticks are
  2724. * stopped.
  2725. */
  2726. if (this_rq->idle_at_tick &&
  2727. atomic_read(&nohz.load_balancer) == this_cpu) {
  2728. cpumask_t cpus = nohz.cpu_mask;
  2729. struct rq *rq;
  2730. int balance_cpu;
  2731. cpu_clear(this_cpu, cpus);
  2732. for_each_cpu_mask(balance_cpu, cpus) {
  2733. /*
  2734. * If this cpu gets work to do, stop the load balancing
  2735. * work being done for other cpus. Next load
  2736. * balancing owner will pick it up.
  2737. */
  2738. if (need_resched())
  2739. break;
  2740. rebalance_domains(balance_cpu, CPU_IDLE);
  2741. rq = cpu_rq(balance_cpu);
  2742. if (time_after(this_rq->next_balance, rq->next_balance))
  2743. this_rq->next_balance = rq->next_balance;
  2744. }
  2745. }
  2746. #endif
  2747. }
  2748. /*
  2749. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2750. *
  2751. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2752. * idle load balancing owner or decide to stop the periodic load balancing,
  2753. * if the whole system is idle.
  2754. */
  2755. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2756. {
  2757. #ifdef CONFIG_NO_HZ
  2758. /*
  2759. * If we were in the nohz mode recently and busy at the current
  2760. * scheduler tick, then check if we need to nominate new idle
  2761. * load balancer.
  2762. */
  2763. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2764. rq->in_nohz_recently = 0;
  2765. if (atomic_read(&nohz.load_balancer) == cpu) {
  2766. cpu_clear(cpu, nohz.cpu_mask);
  2767. atomic_set(&nohz.load_balancer, -1);
  2768. }
  2769. if (atomic_read(&nohz.load_balancer) == -1) {
  2770. /*
  2771. * simple selection for now: Nominate the
  2772. * first cpu in the nohz list to be the next
  2773. * ilb owner.
  2774. *
  2775. * TBD: Traverse the sched domains and nominate
  2776. * the nearest cpu in the nohz.cpu_mask.
  2777. */
  2778. int ilb = first_cpu(nohz.cpu_mask);
  2779. if (ilb != NR_CPUS)
  2780. resched_cpu(ilb);
  2781. }
  2782. }
  2783. /*
  2784. * If this cpu is idle and doing idle load balancing for all the
  2785. * cpus with ticks stopped, is it time for that to stop?
  2786. */
  2787. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2788. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2789. resched_cpu(cpu);
  2790. return;
  2791. }
  2792. /*
  2793. * If this cpu is idle and the idle load balancing is done by
  2794. * someone else, then no need raise the SCHED_SOFTIRQ
  2795. */
  2796. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2797. cpu_isset(cpu, nohz.cpu_mask))
  2798. return;
  2799. #endif
  2800. if (time_after_eq(jiffies, rq->next_balance))
  2801. raise_softirq(SCHED_SOFTIRQ);
  2802. }
  2803. #else /* CONFIG_SMP */
  2804. /*
  2805. * on UP we do not need to balance between CPUs:
  2806. */
  2807. static inline void idle_balance(int cpu, struct rq *rq)
  2808. {
  2809. }
  2810. /* Avoid "used but not defined" warning on UP */
  2811. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2812. unsigned long max_nr_move, unsigned long max_load_move,
  2813. struct sched_domain *sd, enum cpu_idle_type idle,
  2814. int *all_pinned, unsigned long *load_moved,
  2815. int *this_best_prio, struct rq_iterator *iterator)
  2816. {
  2817. *load_moved = 0;
  2818. return 0;
  2819. }
  2820. #endif
  2821. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2822. EXPORT_PER_CPU_SYMBOL(kstat);
  2823. /*
  2824. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2825. * that have not yet been banked in case the task is currently running.
  2826. */
  2827. unsigned long long task_sched_runtime(struct task_struct *p)
  2828. {
  2829. unsigned long flags;
  2830. u64 ns, delta_exec;
  2831. struct rq *rq;
  2832. rq = task_rq_lock(p, &flags);
  2833. ns = p->se.sum_exec_runtime;
  2834. if (rq->curr == p) {
  2835. update_rq_clock(rq);
  2836. delta_exec = rq->clock - p->se.exec_start;
  2837. if ((s64)delta_exec > 0)
  2838. ns += delta_exec;
  2839. }
  2840. task_rq_unlock(rq, &flags);
  2841. return ns;
  2842. }
  2843. /*
  2844. * Account user cpu time to a process.
  2845. * @p: the process that the cpu time gets accounted to
  2846. * @hardirq_offset: the offset to subtract from hardirq_count()
  2847. * @cputime: the cpu time spent in user space since the last update
  2848. */
  2849. void account_user_time(struct task_struct *p, cputime_t cputime)
  2850. {
  2851. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2852. cputime64_t tmp;
  2853. p->utime = cputime_add(p->utime, cputime);
  2854. /* Add user time to cpustat. */
  2855. tmp = cputime_to_cputime64(cputime);
  2856. if (TASK_NICE(p) > 0)
  2857. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2858. else
  2859. cpustat->user = cputime64_add(cpustat->user, tmp);
  2860. }
  2861. /*
  2862. * Account guest cpu time to a process.
  2863. * @p: the process that the cpu time gets accounted to
  2864. * @cputime: the cpu time spent in virtual machine since the last update
  2865. */
  2866. void account_guest_time(struct task_struct *p, cputime_t cputime)
  2867. {
  2868. cputime64_t tmp;
  2869. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2870. tmp = cputime_to_cputime64(cputime);
  2871. p->utime = cputime_add(p->utime, cputime);
  2872. p->gtime = cputime_add(p->gtime, cputime);
  2873. cpustat->user = cputime64_add(cpustat->user, tmp);
  2874. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2875. }
  2876. /*
  2877. * Account scaled user cpu time to a process.
  2878. * @p: the process that the cpu time gets accounted to
  2879. * @cputime: the cpu time spent in user space since the last update
  2880. */
  2881. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  2882. {
  2883. p->utimescaled = cputime_add(p->utimescaled, cputime);
  2884. }
  2885. /*
  2886. * Account system cpu time to a process.
  2887. * @p: the process that the cpu time gets accounted to
  2888. * @hardirq_offset: the offset to subtract from hardirq_count()
  2889. * @cputime: the cpu time spent in kernel space since the last update
  2890. */
  2891. void account_system_time(struct task_struct *p, int hardirq_offset,
  2892. cputime_t cputime)
  2893. {
  2894. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2895. struct rq *rq = this_rq();
  2896. cputime64_t tmp;
  2897. if (p->flags & PF_VCPU) {
  2898. account_guest_time(p, cputime);
  2899. p->flags &= ~PF_VCPU;
  2900. return;
  2901. }
  2902. p->stime = cputime_add(p->stime, cputime);
  2903. /* Add system time to cpustat. */
  2904. tmp = cputime_to_cputime64(cputime);
  2905. if (hardirq_count() - hardirq_offset)
  2906. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2907. else if (softirq_count())
  2908. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2909. else if (p != rq->idle)
  2910. cpustat->system = cputime64_add(cpustat->system, tmp);
  2911. else if (atomic_read(&rq->nr_iowait) > 0)
  2912. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2913. else
  2914. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2915. /* Account for system time used */
  2916. acct_update_integrals(p);
  2917. }
  2918. /*
  2919. * Account scaled system cpu time to a process.
  2920. * @p: the process that the cpu time gets accounted to
  2921. * @hardirq_offset: the offset to subtract from hardirq_count()
  2922. * @cputime: the cpu time spent in kernel space since the last update
  2923. */
  2924. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  2925. {
  2926. p->stimescaled = cputime_add(p->stimescaled, cputime);
  2927. }
  2928. /*
  2929. * Account for involuntary wait time.
  2930. * @p: the process from which the cpu time has been stolen
  2931. * @steal: the cpu time spent in involuntary wait
  2932. */
  2933. void account_steal_time(struct task_struct *p, cputime_t steal)
  2934. {
  2935. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2936. cputime64_t tmp = cputime_to_cputime64(steal);
  2937. struct rq *rq = this_rq();
  2938. if (p == rq->idle) {
  2939. p->stime = cputime_add(p->stime, steal);
  2940. if (atomic_read(&rq->nr_iowait) > 0)
  2941. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2942. else
  2943. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2944. } else
  2945. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2946. }
  2947. /*
  2948. * This function gets called by the timer code, with HZ frequency.
  2949. * We call it with interrupts disabled.
  2950. *
  2951. * It also gets called by the fork code, when changing the parent's
  2952. * timeslices.
  2953. */
  2954. void scheduler_tick(void)
  2955. {
  2956. int cpu = smp_processor_id();
  2957. struct rq *rq = cpu_rq(cpu);
  2958. struct task_struct *curr = rq->curr;
  2959. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  2960. spin_lock(&rq->lock);
  2961. __update_rq_clock(rq);
  2962. /*
  2963. * Let rq->clock advance by at least TICK_NSEC:
  2964. */
  2965. if (unlikely(rq->clock < next_tick))
  2966. rq->clock = next_tick;
  2967. rq->tick_timestamp = rq->clock;
  2968. update_cpu_load(rq);
  2969. if (curr != rq->idle) /* FIXME: needed? */
  2970. curr->sched_class->task_tick(rq, curr);
  2971. spin_unlock(&rq->lock);
  2972. #ifdef CONFIG_SMP
  2973. rq->idle_at_tick = idle_cpu(cpu);
  2974. trigger_load_balance(rq, cpu);
  2975. #endif
  2976. }
  2977. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2978. void fastcall add_preempt_count(int val)
  2979. {
  2980. /*
  2981. * Underflow?
  2982. */
  2983. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2984. return;
  2985. preempt_count() += val;
  2986. /*
  2987. * Spinlock count overflowing soon?
  2988. */
  2989. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2990. PREEMPT_MASK - 10);
  2991. }
  2992. EXPORT_SYMBOL(add_preempt_count);
  2993. void fastcall sub_preempt_count(int val)
  2994. {
  2995. /*
  2996. * Underflow?
  2997. */
  2998. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2999. return;
  3000. /*
  3001. * Is the spinlock portion underflowing?
  3002. */
  3003. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3004. !(preempt_count() & PREEMPT_MASK)))
  3005. return;
  3006. preempt_count() -= val;
  3007. }
  3008. EXPORT_SYMBOL(sub_preempt_count);
  3009. #endif
  3010. /*
  3011. * Print scheduling while atomic bug:
  3012. */
  3013. static noinline void __schedule_bug(struct task_struct *prev)
  3014. {
  3015. printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
  3016. prev->comm, preempt_count(), prev->pid);
  3017. debug_show_held_locks(prev);
  3018. if (irqs_disabled())
  3019. print_irqtrace_events(prev);
  3020. dump_stack();
  3021. }
  3022. /*
  3023. * Various schedule()-time debugging checks and statistics:
  3024. */
  3025. static inline void schedule_debug(struct task_struct *prev)
  3026. {
  3027. /*
  3028. * Test if we are atomic. Since do_exit() needs to call into
  3029. * schedule() atomically, we ignore that path for now.
  3030. * Otherwise, whine if we are scheduling when we should not be.
  3031. */
  3032. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3033. __schedule_bug(prev);
  3034. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3035. schedstat_inc(this_rq(), sched_count);
  3036. #ifdef CONFIG_SCHEDSTATS
  3037. if (unlikely(prev->lock_depth >= 0)) {
  3038. schedstat_inc(this_rq(), bkl_count);
  3039. schedstat_inc(prev, sched_info.bkl_count);
  3040. }
  3041. #endif
  3042. }
  3043. /*
  3044. * Pick up the highest-prio task:
  3045. */
  3046. static inline struct task_struct *
  3047. pick_next_task(struct rq *rq, struct task_struct *prev)
  3048. {
  3049. const struct sched_class *class;
  3050. struct task_struct *p;
  3051. /*
  3052. * Optimization: we know that if all tasks are in
  3053. * the fair class we can call that function directly:
  3054. */
  3055. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3056. p = fair_sched_class.pick_next_task(rq);
  3057. if (likely(p))
  3058. return p;
  3059. }
  3060. class = sched_class_highest;
  3061. for ( ; ; ) {
  3062. p = class->pick_next_task(rq);
  3063. if (p)
  3064. return p;
  3065. /*
  3066. * Will never be NULL as the idle class always
  3067. * returns a non-NULL p:
  3068. */
  3069. class = class->next;
  3070. }
  3071. }
  3072. /*
  3073. * schedule() is the main scheduler function.
  3074. */
  3075. asmlinkage void __sched schedule(void)
  3076. {
  3077. struct task_struct *prev, *next;
  3078. long *switch_count;
  3079. struct rq *rq;
  3080. int cpu;
  3081. need_resched:
  3082. preempt_disable();
  3083. cpu = smp_processor_id();
  3084. rq = cpu_rq(cpu);
  3085. rcu_qsctr_inc(cpu);
  3086. prev = rq->curr;
  3087. switch_count = &prev->nivcsw;
  3088. release_kernel_lock(prev);
  3089. need_resched_nonpreemptible:
  3090. schedule_debug(prev);
  3091. /*
  3092. * Do the rq-clock update outside the rq lock:
  3093. */
  3094. local_irq_disable();
  3095. __update_rq_clock(rq);
  3096. spin_lock(&rq->lock);
  3097. clear_tsk_need_resched(prev);
  3098. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3099. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3100. unlikely(signal_pending(prev)))) {
  3101. prev->state = TASK_RUNNING;
  3102. } else {
  3103. deactivate_task(rq, prev, 1);
  3104. }
  3105. switch_count = &prev->nvcsw;
  3106. }
  3107. if (unlikely(!rq->nr_running))
  3108. idle_balance(cpu, rq);
  3109. prev->sched_class->put_prev_task(rq, prev);
  3110. next = pick_next_task(rq, prev);
  3111. sched_info_switch(prev, next);
  3112. if (likely(prev != next)) {
  3113. rq->nr_switches++;
  3114. rq->curr = next;
  3115. ++*switch_count;
  3116. context_switch(rq, prev, next); /* unlocks the rq */
  3117. } else
  3118. spin_unlock_irq(&rq->lock);
  3119. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3120. cpu = smp_processor_id();
  3121. rq = cpu_rq(cpu);
  3122. goto need_resched_nonpreemptible;
  3123. }
  3124. preempt_enable_no_resched();
  3125. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3126. goto need_resched;
  3127. }
  3128. EXPORT_SYMBOL(schedule);
  3129. #ifdef CONFIG_PREEMPT
  3130. /*
  3131. * this is the entry point to schedule() from in-kernel preemption
  3132. * off of preempt_enable. Kernel preemptions off return from interrupt
  3133. * occur there and call schedule directly.
  3134. */
  3135. asmlinkage void __sched preempt_schedule(void)
  3136. {
  3137. struct thread_info *ti = current_thread_info();
  3138. #ifdef CONFIG_PREEMPT_BKL
  3139. struct task_struct *task = current;
  3140. int saved_lock_depth;
  3141. #endif
  3142. /*
  3143. * If there is a non-zero preempt_count or interrupts are disabled,
  3144. * we do not want to preempt the current task. Just return..
  3145. */
  3146. if (likely(ti->preempt_count || irqs_disabled()))
  3147. return;
  3148. do {
  3149. add_preempt_count(PREEMPT_ACTIVE);
  3150. /*
  3151. * We keep the big kernel semaphore locked, but we
  3152. * clear ->lock_depth so that schedule() doesnt
  3153. * auto-release the semaphore:
  3154. */
  3155. #ifdef CONFIG_PREEMPT_BKL
  3156. saved_lock_depth = task->lock_depth;
  3157. task->lock_depth = -1;
  3158. #endif
  3159. schedule();
  3160. #ifdef CONFIG_PREEMPT_BKL
  3161. task->lock_depth = saved_lock_depth;
  3162. #endif
  3163. sub_preempt_count(PREEMPT_ACTIVE);
  3164. /*
  3165. * Check again in case we missed a preemption opportunity
  3166. * between schedule and now.
  3167. */
  3168. barrier();
  3169. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3170. }
  3171. EXPORT_SYMBOL(preempt_schedule);
  3172. /*
  3173. * this is the entry point to schedule() from kernel preemption
  3174. * off of irq context.
  3175. * Note, that this is called and return with irqs disabled. This will
  3176. * protect us against recursive calling from irq.
  3177. */
  3178. asmlinkage void __sched preempt_schedule_irq(void)
  3179. {
  3180. struct thread_info *ti = current_thread_info();
  3181. #ifdef CONFIG_PREEMPT_BKL
  3182. struct task_struct *task = current;
  3183. int saved_lock_depth;
  3184. #endif
  3185. /* Catch callers which need to be fixed */
  3186. BUG_ON(ti->preempt_count || !irqs_disabled());
  3187. do {
  3188. add_preempt_count(PREEMPT_ACTIVE);
  3189. /*
  3190. * We keep the big kernel semaphore locked, but we
  3191. * clear ->lock_depth so that schedule() doesnt
  3192. * auto-release the semaphore:
  3193. */
  3194. #ifdef CONFIG_PREEMPT_BKL
  3195. saved_lock_depth = task->lock_depth;
  3196. task->lock_depth = -1;
  3197. #endif
  3198. local_irq_enable();
  3199. schedule();
  3200. local_irq_disable();
  3201. #ifdef CONFIG_PREEMPT_BKL
  3202. task->lock_depth = saved_lock_depth;
  3203. #endif
  3204. sub_preempt_count(PREEMPT_ACTIVE);
  3205. /*
  3206. * Check again in case we missed a preemption opportunity
  3207. * between schedule and now.
  3208. */
  3209. barrier();
  3210. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3211. }
  3212. #endif /* CONFIG_PREEMPT */
  3213. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3214. void *key)
  3215. {
  3216. return try_to_wake_up(curr->private, mode, sync);
  3217. }
  3218. EXPORT_SYMBOL(default_wake_function);
  3219. /*
  3220. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3221. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3222. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3223. *
  3224. * There are circumstances in which we can try to wake a task which has already
  3225. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3226. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3227. */
  3228. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3229. int nr_exclusive, int sync, void *key)
  3230. {
  3231. wait_queue_t *curr, *next;
  3232. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3233. unsigned flags = curr->flags;
  3234. if (curr->func(curr, mode, sync, key) &&
  3235. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3236. break;
  3237. }
  3238. }
  3239. /**
  3240. * __wake_up - wake up threads blocked on a waitqueue.
  3241. * @q: the waitqueue
  3242. * @mode: which threads
  3243. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3244. * @key: is directly passed to the wakeup function
  3245. */
  3246. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3247. int nr_exclusive, void *key)
  3248. {
  3249. unsigned long flags;
  3250. spin_lock_irqsave(&q->lock, flags);
  3251. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3252. spin_unlock_irqrestore(&q->lock, flags);
  3253. }
  3254. EXPORT_SYMBOL(__wake_up);
  3255. /*
  3256. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3257. */
  3258. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3259. {
  3260. __wake_up_common(q, mode, 1, 0, NULL);
  3261. }
  3262. /**
  3263. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3264. * @q: the waitqueue
  3265. * @mode: which threads
  3266. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3267. *
  3268. * The sync wakeup differs that the waker knows that it will schedule
  3269. * away soon, so while the target thread will be woken up, it will not
  3270. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3271. * with each other. This can prevent needless bouncing between CPUs.
  3272. *
  3273. * On UP it can prevent extra preemption.
  3274. */
  3275. void fastcall
  3276. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3277. {
  3278. unsigned long flags;
  3279. int sync = 1;
  3280. if (unlikely(!q))
  3281. return;
  3282. if (unlikely(!nr_exclusive))
  3283. sync = 0;
  3284. spin_lock_irqsave(&q->lock, flags);
  3285. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3286. spin_unlock_irqrestore(&q->lock, flags);
  3287. }
  3288. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3289. void fastcall complete(struct completion *x)
  3290. {
  3291. unsigned long flags;
  3292. spin_lock_irqsave(&x->wait.lock, flags);
  3293. x->done++;
  3294. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3295. 1, 0, NULL);
  3296. spin_unlock_irqrestore(&x->wait.lock, flags);
  3297. }
  3298. EXPORT_SYMBOL(complete);
  3299. void fastcall complete_all(struct completion *x)
  3300. {
  3301. unsigned long flags;
  3302. spin_lock_irqsave(&x->wait.lock, flags);
  3303. x->done += UINT_MAX/2;
  3304. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3305. 0, 0, NULL);
  3306. spin_unlock_irqrestore(&x->wait.lock, flags);
  3307. }
  3308. EXPORT_SYMBOL(complete_all);
  3309. static inline long __sched
  3310. do_wait_for_common(struct completion *x, long timeout, int state)
  3311. {
  3312. if (!x->done) {
  3313. DECLARE_WAITQUEUE(wait, current);
  3314. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3315. __add_wait_queue_tail(&x->wait, &wait);
  3316. do {
  3317. if (state == TASK_INTERRUPTIBLE &&
  3318. signal_pending(current)) {
  3319. __remove_wait_queue(&x->wait, &wait);
  3320. return -ERESTARTSYS;
  3321. }
  3322. __set_current_state(state);
  3323. spin_unlock_irq(&x->wait.lock);
  3324. timeout = schedule_timeout(timeout);
  3325. spin_lock_irq(&x->wait.lock);
  3326. if (!timeout) {
  3327. __remove_wait_queue(&x->wait, &wait);
  3328. return timeout;
  3329. }
  3330. } while (!x->done);
  3331. __remove_wait_queue(&x->wait, &wait);
  3332. }
  3333. x->done--;
  3334. return timeout;
  3335. }
  3336. static long __sched
  3337. wait_for_common(struct completion *x, long timeout, int state)
  3338. {
  3339. might_sleep();
  3340. spin_lock_irq(&x->wait.lock);
  3341. timeout = do_wait_for_common(x, timeout, state);
  3342. spin_unlock_irq(&x->wait.lock);
  3343. return timeout;
  3344. }
  3345. void fastcall __sched wait_for_completion(struct completion *x)
  3346. {
  3347. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3348. }
  3349. EXPORT_SYMBOL(wait_for_completion);
  3350. unsigned long fastcall __sched
  3351. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3352. {
  3353. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3354. }
  3355. EXPORT_SYMBOL(wait_for_completion_timeout);
  3356. int __sched wait_for_completion_interruptible(struct completion *x)
  3357. {
  3358. return wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3359. }
  3360. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3361. unsigned long fastcall __sched
  3362. wait_for_completion_interruptible_timeout(struct completion *x,
  3363. unsigned long timeout)
  3364. {
  3365. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3366. }
  3367. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3368. static long __sched
  3369. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3370. {
  3371. unsigned long flags;
  3372. wait_queue_t wait;
  3373. init_waitqueue_entry(&wait, current);
  3374. __set_current_state(state);
  3375. spin_lock_irqsave(&q->lock, flags);
  3376. __add_wait_queue(q, &wait);
  3377. spin_unlock(&q->lock);
  3378. timeout = schedule_timeout(timeout);
  3379. spin_lock_irq(&q->lock);
  3380. __remove_wait_queue(q, &wait);
  3381. spin_unlock_irqrestore(&q->lock, flags);
  3382. return timeout;
  3383. }
  3384. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3385. {
  3386. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3387. }
  3388. EXPORT_SYMBOL(interruptible_sleep_on);
  3389. long __sched
  3390. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3391. {
  3392. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3393. }
  3394. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3395. void __sched sleep_on(wait_queue_head_t *q)
  3396. {
  3397. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3398. }
  3399. EXPORT_SYMBOL(sleep_on);
  3400. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3401. {
  3402. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3403. }
  3404. EXPORT_SYMBOL(sleep_on_timeout);
  3405. #ifdef CONFIG_RT_MUTEXES
  3406. /*
  3407. * rt_mutex_setprio - set the current priority of a task
  3408. * @p: task
  3409. * @prio: prio value (kernel-internal form)
  3410. *
  3411. * This function changes the 'effective' priority of a task. It does
  3412. * not touch ->normal_prio like __setscheduler().
  3413. *
  3414. * Used by the rt_mutex code to implement priority inheritance logic.
  3415. */
  3416. void rt_mutex_setprio(struct task_struct *p, int prio)
  3417. {
  3418. unsigned long flags;
  3419. int oldprio, on_rq, running;
  3420. struct rq *rq;
  3421. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3422. rq = task_rq_lock(p, &flags);
  3423. update_rq_clock(rq);
  3424. oldprio = p->prio;
  3425. on_rq = p->se.on_rq;
  3426. running = task_running(rq, p);
  3427. if (on_rq) {
  3428. dequeue_task(rq, p, 0);
  3429. if (running)
  3430. p->sched_class->put_prev_task(rq, p);
  3431. }
  3432. if (rt_prio(prio))
  3433. p->sched_class = &rt_sched_class;
  3434. else
  3435. p->sched_class = &fair_sched_class;
  3436. p->prio = prio;
  3437. if (on_rq) {
  3438. if (running)
  3439. p->sched_class->set_curr_task(rq);
  3440. enqueue_task(rq, p, 0);
  3441. /*
  3442. * Reschedule if we are currently running on this runqueue and
  3443. * our priority decreased, or if we are not currently running on
  3444. * this runqueue and our priority is higher than the current's
  3445. */
  3446. if (running) {
  3447. if (p->prio > oldprio)
  3448. resched_task(rq->curr);
  3449. } else {
  3450. check_preempt_curr(rq, p);
  3451. }
  3452. }
  3453. task_rq_unlock(rq, &flags);
  3454. }
  3455. #endif
  3456. void set_user_nice(struct task_struct *p, long nice)
  3457. {
  3458. int old_prio, delta, on_rq;
  3459. unsigned long flags;
  3460. struct rq *rq;
  3461. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3462. return;
  3463. /*
  3464. * We have to be careful, if called from sys_setpriority(),
  3465. * the task might be in the middle of scheduling on another CPU.
  3466. */
  3467. rq = task_rq_lock(p, &flags);
  3468. update_rq_clock(rq);
  3469. /*
  3470. * The RT priorities are set via sched_setscheduler(), but we still
  3471. * allow the 'normal' nice value to be set - but as expected
  3472. * it wont have any effect on scheduling until the task is
  3473. * SCHED_FIFO/SCHED_RR:
  3474. */
  3475. if (task_has_rt_policy(p)) {
  3476. p->static_prio = NICE_TO_PRIO(nice);
  3477. goto out_unlock;
  3478. }
  3479. on_rq = p->se.on_rq;
  3480. if (on_rq) {
  3481. dequeue_task(rq, p, 0);
  3482. dec_load(rq, p);
  3483. }
  3484. p->static_prio = NICE_TO_PRIO(nice);
  3485. set_load_weight(p);
  3486. old_prio = p->prio;
  3487. p->prio = effective_prio(p);
  3488. delta = p->prio - old_prio;
  3489. if (on_rq) {
  3490. enqueue_task(rq, p, 0);
  3491. inc_load(rq, p);
  3492. /*
  3493. * If the task increased its priority or is running and
  3494. * lowered its priority, then reschedule its CPU:
  3495. */
  3496. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3497. resched_task(rq->curr);
  3498. }
  3499. out_unlock:
  3500. task_rq_unlock(rq, &flags);
  3501. }
  3502. EXPORT_SYMBOL(set_user_nice);
  3503. /*
  3504. * can_nice - check if a task can reduce its nice value
  3505. * @p: task
  3506. * @nice: nice value
  3507. */
  3508. int can_nice(const struct task_struct *p, const int nice)
  3509. {
  3510. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3511. int nice_rlim = 20 - nice;
  3512. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3513. capable(CAP_SYS_NICE));
  3514. }
  3515. #ifdef __ARCH_WANT_SYS_NICE
  3516. /*
  3517. * sys_nice - change the priority of the current process.
  3518. * @increment: priority increment
  3519. *
  3520. * sys_setpriority is a more generic, but much slower function that
  3521. * does similar things.
  3522. */
  3523. asmlinkage long sys_nice(int increment)
  3524. {
  3525. long nice, retval;
  3526. /*
  3527. * Setpriority might change our priority at the same moment.
  3528. * We don't have to worry. Conceptually one call occurs first
  3529. * and we have a single winner.
  3530. */
  3531. if (increment < -40)
  3532. increment = -40;
  3533. if (increment > 40)
  3534. increment = 40;
  3535. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3536. if (nice < -20)
  3537. nice = -20;
  3538. if (nice > 19)
  3539. nice = 19;
  3540. if (increment < 0 && !can_nice(current, nice))
  3541. return -EPERM;
  3542. retval = security_task_setnice(current, nice);
  3543. if (retval)
  3544. return retval;
  3545. set_user_nice(current, nice);
  3546. return 0;
  3547. }
  3548. #endif
  3549. /**
  3550. * task_prio - return the priority value of a given task.
  3551. * @p: the task in question.
  3552. *
  3553. * This is the priority value as seen by users in /proc.
  3554. * RT tasks are offset by -200. Normal tasks are centered
  3555. * around 0, value goes from -16 to +15.
  3556. */
  3557. int task_prio(const struct task_struct *p)
  3558. {
  3559. return p->prio - MAX_RT_PRIO;
  3560. }
  3561. /**
  3562. * task_nice - return the nice value of a given task.
  3563. * @p: the task in question.
  3564. */
  3565. int task_nice(const struct task_struct *p)
  3566. {
  3567. return TASK_NICE(p);
  3568. }
  3569. EXPORT_SYMBOL_GPL(task_nice);
  3570. /**
  3571. * idle_cpu - is a given cpu idle currently?
  3572. * @cpu: the processor in question.
  3573. */
  3574. int idle_cpu(int cpu)
  3575. {
  3576. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3577. }
  3578. /**
  3579. * idle_task - return the idle task for a given cpu.
  3580. * @cpu: the processor in question.
  3581. */
  3582. struct task_struct *idle_task(int cpu)
  3583. {
  3584. return cpu_rq(cpu)->idle;
  3585. }
  3586. /**
  3587. * find_process_by_pid - find a process with a matching PID value.
  3588. * @pid: the pid in question.
  3589. */
  3590. static struct task_struct *find_process_by_pid(pid_t pid)
  3591. {
  3592. return pid ? find_task_by_pid(pid) : current;
  3593. }
  3594. /* Actually do priority change: must hold rq lock. */
  3595. static void
  3596. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3597. {
  3598. BUG_ON(p->se.on_rq);
  3599. p->policy = policy;
  3600. switch (p->policy) {
  3601. case SCHED_NORMAL:
  3602. case SCHED_BATCH:
  3603. case SCHED_IDLE:
  3604. p->sched_class = &fair_sched_class;
  3605. break;
  3606. case SCHED_FIFO:
  3607. case SCHED_RR:
  3608. p->sched_class = &rt_sched_class;
  3609. break;
  3610. }
  3611. p->rt_priority = prio;
  3612. p->normal_prio = normal_prio(p);
  3613. /* we are holding p->pi_lock already */
  3614. p->prio = rt_mutex_getprio(p);
  3615. set_load_weight(p);
  3616. }
  3617. /**
  3618. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3619. * @p: the task in question.
  3620. * @policy: new policy.
  3621. * @param: structure containing the new RT priority.
  3622. *
  3623. * NOTE that the task may be already dead.
  3624. */
  3625. int sched_setscheduler(struct task_struct *p, int policy,
  3626. struct sched_param *param)
  3627. {
  3628. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3629. unsigned long flags;
  3630. struct rq *rq;
  3631. /* may grab non-irq protected spin_locks */
  3632. BUG_ON(in_interrupt());
  3633. recheck:
  3634. /* double check policy once rq lock held */
  3635. if (policy < 0)
  3636. policy = oldpolicy = p->policy;
  3637. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3638. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3639. policy != SCHED_IDLE)
  3640. return -EINVAL;
  3641. /*
  3642. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3643. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3644. * SCHED_BATCH and SCHED_IDLE is 0.
  3645. */
  3646. if (param->sched_priority < 0 ||
  3647. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3648. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3649. return -EINVAL;
  3650. if (rt_policy(policy) != (param->sched_priority != 0))
  3651. return -EINVAL;
  3652. /*
  3653. * Allow unprivileged RT tasks to decrease priority:
  3654. */
  3655. if (!capable(CAP_SYS_NICE)) {
  3656. if (rt_policy(policy)) {
  3657. unsigned long rlim_rtprio;
  3658. if (!lock_task_sighand(p, &flags))
  3659. return -ESRCH;
  3660. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3661. unlock_task_sighand(p, &flags);
  3662. /* can't set/change the rt policy */
  3663. if (policy != p->policy && !rlim_rtprio)
  3664. return -EPERM;
  3665. /* can't increase priority */
  3666. if (param->sched_priority > p->rt_priority &&
  3667. param->sched_priority > rlim_rtprio)
  3668. return -EPERM;
  3669. }
  3670. /*
  3671. * Like positive nice levels, dont allow tasks to
  3672. * move out of SCHED_IDLE either:
  3673. */
  3674. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3675. return -EPERM;
  3676. /* can't change other user's priorities */
  3677. if ((current->euid != p->euid) &&
  3678. (current->euid != p->uid))
  3679. return -EPERM;
  3680. }
  3681. retval = security_task_setscheduler(p, policy, param);
  3682. if (retval)
  3683. return retval;
  3684. /*
  3685. * make sure no PI-waiters arrive (or leave) while we are
  3686. * changing the priority of the task:
  3687. */
  3688. spin_lock_irqsave(&p->pi_lock, flags);
  3689. /*
  3690. * To be able to change p->policy safely, the apropriate
  3691. * runqueue lock must be held.
  3692. */
  3693. rq = __task_rq_lock(p);
  3694. /* recheck policy now with rq lock held */
  3695. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3696. policy = oldpolicy = -1;
  3697. __task_rq_unlock(rq);
  3698. spin_unlock_irqrestore(&p->pi_lock, flags);
  3699. goto recheck;
  3700. }
  3701. update_rq_clock(rq);
  3702. on_rq = p->se.on_rq;
  3703. running = task_running(rq, p);
  3704. if (on_rq) {
  3705. deactivate_task(rq, p, 0);
  3706. if (running)
  3707. p->sched_class->put_prev_task(rq, p);
  3708. }
  3709. oldprio = p->prio;
  3710. __setscheduler(rq, p, policy, param->sched_priority);
  3711. if (on_rq) {
  3712. if (running)
  3713. p->sched_class->set_curr_task(rq);
  3714. activate_task(rq, p, 0);
  3715. /*
  3716. * Reschedule if we are currently running on this runqueue and
  3717. * our priority decreased, or if we are not currently running on
  3718. * this runqueue and our priority is higher than the current's
  3719. */
  3720. if (running) {
  3721. if (p->prio > oldprio)
  3722. resched_task(rq->curr);
  3723. } else {
  3724. check_preempt_curr(rq, p);
  3725. }
  3726. }
  3727. __task_rq_unlock(rq);
  3728. spin_unlock_irqrestore(&p->pi_lock, flags);
  3729. rt_mutex_adjust_pi(p);
  3730. return 0;
  3731. }
  3732. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3733. static int
  3734. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3735. {
  3736. struct sched_param lparam;
  3737. struct task_struct *p;
  3738. int retval;
  3739. if (!param || pid < 0)
  3740. return -EINVAL;
  3741. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3742. return -EFAULT;
  3743. rcu_read_lock();
  3744. retval = -ESRCH;
  3745. p = find_process_by_pid(pid);
  3746. if (p != NULL)
  3747. retval = sched_setscheduler(p, policy, &lparam);
  3748. rcu_read_unlock();
  3749. return retval;
  3750. }
  3751. /**
  3752. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3753. * @pid: the pid in question.
  3754. * @policy: new policy.
  3755. * @param: structure containing the new RT priority.
  3756. */
  3757. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3758. struct sched_param __user *param)
  3759. {
  3760. /* negative values for policy are not valid */
  3761. if (policy < 0)
  3762. return -EINVAL;
  3763. return do_sched_setscheduler(pid, policy, param);
  3764. }
  3765. /**
  3766. * sys_sched_setparam - set/change the RT priority of a thread
  3767. * @pid: the pid in question.
  3768. * @param: structure containing the new RT priority.
  3769. */
  3770. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3771. {
  3772. return do_sched_setscheduler(pid, -1, param);
  3773. }
  3774. /**
  3775. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3776. * @pid: the pid in question.
  3777. */
  3778. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3779. {
  3780. struct task_struct *p;
  3781. int retval;
  3782. if (pid < 0)
  3783. return -EINVAL;
  3784. retval = -ESRCH;
  3785. read_lock(&tasklist_lock);
  3786. p = find_process_by_pid(pid);
  3787. if (p) {
  3788. retval = security_task_getscheduler(p);
  3789. if (!retval)
  3790. retval = p->policy;
  3791. }
  3792. read_unlock(&tasklist_lock);
  3793. return retval;
  3794. }
  3795. /**
  3796. * sys_sched_getscheduler - get the RT priority of a thread
  3797. * @pid: the pid in question.
  3798. * @param: structure containing the RT priority.
  3799. */
  3800. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3801. {
  3802. struct sched_param lp;
  3803. struct task_struct *p;
  3804. int retval;
  3805. if (!param || pid < 0)
  3806. return -EINVAL;
  3807. read_lock(&tasklist_lock);
  3808. p = find_process_by_pid(pid);
  3809. retval = -ESRCH;
  3810. if (!p)
  3811. goto out_unlock;
  3812. retval = security_task_getscheduler(p);
  3813. if (retval)
  3814. goto out_unlock;
  3815. lp.sched_priority = p->rt_priority;
  3816. read_unlock(&tasklist_lock);
  3817. /*
  3818. * This one might sleep, we cannot do it with a spinlock held ...
  3819. */
  3820. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3821. return retval;
  3822. out_unlock:
  3823. read_unlock(&tasklist_lock);
  3824. return retval;
  3825. }
  3826. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3827. {
  3828. cpumask_t cpus_allowed;
  3829. struct task_struct *p;
  3830. int retval;
  3831. mutex_lock(&sched_hotcpu_mutex);
  3832. read_lock(&tasklist_lock);
  3833. p = find_process_by_pid(pid);
  3834. if (!p) {
  3835. read_unlock(&tasklist_lock);
  3836. mutex_unlock(&sched_hotcpu_mutex);
  3837. return -ESRCH;
  3838. }
  3839. /*
  3840. * It is not safe to call set_cpus_allowed with the
  3841. * tasklist_lock held. We will bump the task_struct's
  3842. * usage count and then drop tasklist_lock.
  3843. */
  3844. get_task_struct(p);
  3845. read_unlock(&tasklist_lock);
  3846. retval = -EPERM;
  3847. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3848. !capable(CAP_SYS_NICE))
  3849. goto out_unlock;
  3850. retval = security_task_setscheduler(p, 0, NULL);
  3851. if (retval)
  3852. goto out_unlock;
  3853. cpus_allowed = cpuset_cpus_allowed(p);
  3854. cpus_and(new_mask, new_mask, cpus_allowed);
  3855. retval = set_cpus_allowed(p, new_mask);
  3856. out_unlock:
  3857. put_task_struct(p);
  3858. mutex_unlock(&sched_hotcpu_mutex);
  3859. return retval;
  3860. }
  3861. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3862. cpumask_t *new_mask)
  3863. {
  3864. if (len < sizeof(cpumask_t)) {
  3865. memset(new_mask, 0, sizeof(cpumask_t));
  3866. } else if (len > sizeof(cpumask_t)) {
  3867. len = sizeof(cpumask_t);
  3868. }
  3869. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3870. }
  3871. /**
  3872. * sys_sched_setaffinity - set the cpu affinity of a process
  3873. * @pid: pid of the process
  3874. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3875. * @user_mask_ptr: user-space pointer to the new cpu mask
  3876. */
  3877. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3878. unsigned long __user *user_mask_ptr)
  3879. {
  3880. cpumask_t new_mask;
  3881. int retval;
  3882. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3883. if (retval)
  3884. return retval;
  3885. return sched_setaffinity(pid, new_mask);
  3886. }
  3887. /*
  3888. * Represents all cpu's present in the system
  3889. * In systems capable of hotplug, this map could dynamically grow
  3890. * as new cpu's are detected in the system via any platform specific
  3891. * method, such as ACPI for e.g.
  3892. */
  3893. cpumask_t cpu_present_map __read_mostly;
  3894. EXPORT_SYMBOL(cpu_present_map);
  3895. #ifndef CONFIG_SMP
  3896. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3897. EXPORT_SYMBOL(cpu_online_map);
  3898. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3899. EXPORT_SYMBOL(cpu_possible_map);
  3900. #endif
  3901. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3902. {
  3903. struct task_struct *p;
  3904. int retval;
  3905. mutex_lock(&sched_hotcpu_mutex);
  3906. read_lock(&tasklist_lock);
  3907. retval = -ESRCH;
  3908. p = find_process_by_pid(pid);
  3909. if (!p)
  3910. goto out_unlock;
  3911. retval = security_task_getscheduler(p);
  3912. if (retval)
  3913. goto out_unlock;
  3914. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3915. out_unlock:
  3916. read_unlock(&tasklist_lock);
  3917. mutex_unlock(&sched_hotcpu_mutex);
  3918. return retval;
  3919. }
  3920. /**
  3921. * sys_sched_getaffinity - get the cpu affinity of a process
  3922. * @pid: pid of the process
  3923. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3924. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3925. */
  3926. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3927. unsigned long __user *user_mask_ptr)
  3928. {
  3929. int ret;
  3930. cpumask_t mask;
  3931. if (len < sizeof(cpumask_t))
  3932. return -EINVAL;
  3933. ret = sched_getaffinity(pid, &mask);
  3934. if (ret < 0)
  3935. return ret;
  3936. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3937. return -EFAULT;
  3938. return sizeof(cpumask_t);
  3939. }
  3940. /**
  3941. * sys_sched_yield - yield the current processor to other threads.
  3942. *
  3943. * This function yields the current CPU to other tasks. If there are no
  3944. * other threads running on this CPU then this function will return.
  3945. */
  3946. asmlinkage long sys_sched_yield(void)
  3947. {
  3948. struct rq *rq = this_rq_lock();
  3949. schedstat_inc(rq, yld_count);
  3950. current->sched_class->yield_task(rq);
  3951. /*
  3952. * Since we are going to call schedule() anyway, there's
  3953. * no need to preempt or enable interrupts:
  3954. */
  3955. __release(rq->lock);
  3956. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3957. _raw_spin_unlock(&rq->lock);
  3958. preempt_enable_no_resched();
  3959. schedule();
  3960. return 0;
  3961. }
  3962. static void __cond_resched(void)
  3963. {
  3964. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  3965. __might_sleep(__FILE__, __LINE__);
  3966. #endif
  3967. /*
  3968. * The BKS might be reacquired before we have dropped
  3969. * PREEMPT_ACTIVE, which could trigger a second
  3970. * cond_resched() call.
  3971. */
  3972. do {
  3973. add_preempt_count(PREEMPT_ACTIVE);
  3974. schedule();
  3975. sub_preempt_count(PREEMPT_ACTIVE);
  3976. } while (need_resched());
  3977. }
  3978. int __sched cond_resched(void)
  3979. {
  3980. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  3981. system_state == SYSTEM_RUNNING) {
  3982. __cond_resched();
  3983. return 1;
  3984. }
  3985. return 0;
  3986. }
  3987. EXPORT_SYMBOL(cond_resched);
  3988. /*
  3989. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3990. * call schedule, and on return reacquire the lock.
  3991. *
  3992. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3993. * operations here to prevent schedule() from being called twice (once via
  3994. * spin_unlock(), once by hand).
  3995. */
  3996. int cond_resched_lock(spinlock_t *lock)
  3997. {
  3998. int ret = 0;
  3999. if (need_lockbreak(lock)) {
  4000. spin_unlock(lock);
  4001. cpu_relax();
  4002. ret = 1;
  4003. spin_lock(lock);
  4004. }
  4005. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4006. spin_release(&lock->dep_map, 1, _THIS_IP_);
  4007. _raw_spin_unlock(lock);
  4008. preempt_enable_no_resched();
  4009. __cond_resched();
  4010. ret = 1;
  4011. spin_lock(lock);
  4012. }
  4013. return ret;
  4014. }
  4015. EXPORT_SYMBOL(cond_resched_lock);
  4016. int __sched cond_resched_softirq(void)
  4017. {
  4018. BUG_ON(!in_softirq());
  4019. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4020. local_bh_enable();
  4021. __cond_resched();
  4022. local_bh_disable();
  4023. return 1;
  4024. }
  4025. return 0;
  4026. }
  4027. EXPORT_SYMBOL(cond_resched_softirq);
  4028. /**
  4029. * yield - yield the current processor to other threads.
  4030. *
  4031. * This is a shortcut for kernel-space yielding - it marks the
  4032. * thread runnable and calls sys_sched_yield().
  4033. */
  4034. void __sched yield(void)
  4035. {
  4036. set_current_state(TASK_RUNNING);
  4037. sys_sched_yield();
  4038. }
  4039. EXPORT_SYMBOL(yield);
  4040. /*
  4041. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4042. * that process accounting knows that this is a task in IO wait state.
  4043. *
  4044. * But don't do that if it is a deliberate, throttling IO wait (this task
  4045. * has set its backing_dev_info: the queue against which it should throttle)
  4046. */
  4047. void __sched io_schedule(void)
  4048. {
  4049. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4050. delayacct_blkio_start();
  4051. atomic_inc(&rq->nr_iowait);
  4052. schedule();
  4053. atomic_dec(&rq->nr_iowait);
  4054. delayacct_blkio_end();
  4055. }
  4056. EXPORT_SYMBOL(io_schedule);
  4057. long __sched io_schedule_timeout(long timeout)
  4058. {
  4059. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4060. long ret;
  4061. delayacct_blkio_start();
  4062. atomic_inc(&rq->nr_iowait);
  4063. ret = schedule_timeout(timeout);
  4064. atomic_dec(&rq->nr_iowait);
  4065. delayacct_blkio_end();
  4066. return ret;
  4067. }
  4068. /**
  4069. * sys_sched_get_priority_max - return maximum RT priority.
  4070. * @policy: scheduling class.
  4071. *
  4072. * this syscall returns the maximum rt_priority that can be used
  4073. * by a given scheduling class.
  4074. */
  4075. asmlinkage long sys_sched_get_priority_max(int policy)
  4076. {
  4077. int ret = -EINVAL;
  4078. switch (policy) {
  4079. case SCHED_FIFO:
  4080. case SCHED_RR:
  4081. ret = MAX_USER_RT_PRIO-1;
  4082. break;
  4083. case SCHED_NORMAL:
  4084. case SCHED_BATCH:
  4085. case SCHED_IDLE:
  4086. ret = 0;
  4087. break;
  4088. }
  4089. return ret;
  4090. }
  4091. /**
  4092. * sys_sched_get_priority_min - return minimum RT priority.
  4093. * @policy: scheduling class.
  4094. *
  4095. * this syscall returns the minimum rt_priority that can be used
  4096. * by a given scheduling class.
  4097. */
  4098. asmlinkage long sys_sched_get_priority_min(int policy)
  4099. {
  4100. int ret = -EINVAL;
  4101. switch (policy) {
  4102. case SCHED_FIFO:
  4103. case SCHED_RR:
  4104. ret = 1;
  4105. break;
  4106. case SCHED_NORMAL:
  4107. case SCHED_BATCH:
  4108. case SCHED_IDLE:
  4109. ret = 0;
  4110. }
  4111. return ret;
  4112. }
  4113. /**
  4114. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4115. * @pid: pid of the process.
  4116. * @interval: userspace pointer to the timeslice value.
  4117. *
  4118. * this syscall writes the default timeslice value of a given process
  4119. * into the user-space timespec buffer. A value of '0' means infinity.
  4120. */
  4121. asmlinkage
  4122. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4123. {
  4124. struct task_struct *p;
  4125. unsigned int time_slice;
  4126. int retval;
  4127. struct timespec t;
  4128. if (pid < 0)
  4129. return -EINVAL;
  4130. retval = -ESRCH;
  4131. read_lock(&tasklist_lock);
  4132. p = find_process_by_pid(pid);
  4133. if (!p)
  4134. goto out_unlock;
  4135. retval = security_task_getscheduler(p);
  4136. if (retval)
  4137. goto out_unlock;
  4138. if (p->policy == SCHED_FIFO)
  4139. time_slice = 0;
  4140. else if (p->policy == SCHED_RR)
  4141. time_slice = DEF_TIMESLICE;
  4142. else {
  4143. struct sched_entity *se = &p->se;
  4144. unsigned long flags;
  4145. struct rq *rq;
  4146. rq = task_rq_lock(p, &flags);
  4147. time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
  4148. task_rq_unlock(rq, &flags);
  4149. }
  4150. read_unlock(&tasklist_lock);
  4151. jiffies_to_timespec(time_slice, &t);
  4152. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4153. return retval;
  4154. out_unlock:
  4155. read_unlock(&tasklist_lock);
  4156. return retval;
  4157. }
  4158. static const char stat_nam[] = "RSDTtZX";
  4159. static void show_task(struct task_struct *p)
  4160. {
  4161. unsigned long free = 0;
  4162. unsigned state;
  4163. state = p->state ? __ffs(p->state) + 1 : 0;
  4164. printk("%-13.13s %c", p->comm,
  4165. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4166. #if BITS_PER_LONG == 32
  4167. if (state == TASK_RUNNING)
  4168. printk(" running ");
  4169. else
  4170. printk(" %08lx ", thread_saved_pc(p));
  4171. #else
  4172. if (state == TASK_RUNNING)
  4173. printk(" running task ");
  4174. else
  4175. printk(" %016lx ", thread_saved_pc(p));
  4176. #endif
  4177. #ifdef CONFIG_DEBUG_STACK_USAGE
  4178. {
  4179. unsigned long *n = end_of_stack(p);
  4180. while (!*n)
  4181. n++;
  4182. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4183. }
  4184. #endif
  4185. printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
  4186. if (state != TASK_RUNNING)
  4187. show_stack(p, NULL);
  4188. }
  4189. void show_state_filter(unsigned long state_filter)
  4190. {
  4191. struct task_struct *g, *p;
  4192. #if BITS_PER_LONG == 32
  4193. printk(KERN_INFO
  4194. " task PC stack pid father\n");
  4195. #else
  4196. printk(KERN_INFO
  4197. " task PC stack pid father\n");
  4198. #endif
  4199. read_lock(&tasklist_lock);
  4200. do_each_thread(g, p) {
  4201. /*
  4202. * reset the NMI-timeout, listing all files on a slow
  4203. * console might take alot of time:
  4204. */
  4205. touch_nmi_watchdog();
  4206. if (!state_filter || (p->state & state_filter))
  4207. show_task(p);
  4208. } while_each_thread(g, p);
  4209. touch_all_softlockup_watchdogs();
  4210. #ifdef CONFIG_SCHED_DEBUG
  4211. sysrq_sched_debug_show();
  4212. #endif
  4213. read_unlock(&tasklist_lock);
  4214. /*
  4215. * Only show locks if all tasks are dumped:
  4216. */
  4217. if (state_filter == -1)
  4218. debug_show_all_locks();
  4219. }
  4220. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4221. {
  4222. idle->sched_class = &idle_sched_class;
  4223. }
  4224. /**
  4225. * init_idle - set up an idle thread for a given CPU
  4226. * @idle: task in question
  4227. * @cpu: cpu the idle task belongs to
  4228. *
  4229. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4230. * flag, to make booting more robust.
  4231. */
  4232. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4233. {
  4234. struct rq *rq = cpu_rq(cpu);
  4235. unsigned long flags;
  4236. __sched_fork(idle);
  4237. idle->se.exec_start = sched_clock();
  4238. idle->prio = idle->normal_prio = MAX_PRIO;
  4239. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4240. __set_task_cpu(idle, cpu);
  4241. spin_lock_irqsave(&rq->lock, flags);
  4242. rq->curr = rq->idle = idle;
  4243. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4244. idle->oncpu = 1;
  4245. #endif
  4246. spin_unlock_irqrestore(&rq->lock, flags);
  4247. /* Set the preempt count _outside_ the spinlocks! */
  4248. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4249. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4250. #else
  4251. task_thread_info(idle)->preempt_count = 0;
  4252. #endif
  4253. /*
  4254. * The idle tasks have their own, simple scheduling class:
  4255. */
  4256. idle->sched_class = &idle_sched_class;
  4257. }
  4258. /*
  4259. * In a system that switches off the HZ timer nohz_cpu_mask
  4260. * indicates which cpus entered this state. This is used
  4261. * in the rcu update to wait only for active cpus. For system
  4262. * which do not switch off the HZ timer nohz_cpu_mask should
  4263. * always be CPU_MASK_NONE.
  4264. */
  4265. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4266. #ifdef CONFIG_SMP
  4267. /*
  4268. * This is how migration works:
  4269. *
  4270. * 1) we queue a struct migration_req structure in the source CPU's
  4271. * runqueue and wake up that CPU's migration thread.
  4272. * 2) we down() the locked semaphore => thread blocks.
  4273. * 3) migration thread wakes up (implicitly it forces the migrated
  4274. * thread off the CPU)
  4275. * 4) it gets the migration request and checks whether the migrated
  4276. * task is still in the wrong runqueue.
  4277. * 5) if it's in the wrong runqueue then the migration thread removes
  4278. * it and puts it into the right queue.
  4279. * 6) migration thread up()s the semaphore.
  4280. * 7) we wake up and the migration is done.
  4281. */
  4282. /*
  4283. * Change a given task's CPU affinity. Migrate the thread to a
  4284. * proper CPU and schedule it away if the CPU it's executing on
  4285. * is removed from the allowed bitmask.
  4286. *
  4287. * NOTE: the caller must have a valid reference to the task, the
  4288. * task must not exit() & deallocate itself prematurely. The
  4289. * call is not atomic; no spinlocks may be held.
  4290. */
  4291. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4292. {
  4293. struct migration_req req;
  4294. unsigned long flags;
  4295. struct rq *rq;
  4296. int ret = 0;
  4297. rq = task_rq_lock(p, &flags);
  4298. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4299. ret = -EINVAL;
  4300. goto out;
  4301. }
  4302. p->cpus_allowed = new_mask;
  4303. /* Can the task run on the task's current CPU? If so, we're done */
  4304. if (cpu_isset(task_cpu(p), new_mask))
  4305. goto out;
  4306. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4307. /* Need help from migration thread: drop lock and wait. */
  4308. task_rq_unlock(rq, &flags);
  4309. wake_up_process(rq->migration_thread);
  4310. wait_for_completion(&req.done);
  4311. tlb_migrate_finish(p->mm);
  4312. return 0;
  4313. }
  4314. out:
  4315. task_rq_unlock(rq, &flags);
  4316. return ret;
  4317. }
  4318. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4319. /*
  4320. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4321. * this because either it can't run here any more (set_cpus_allowed()
  4322. * away from this CPU, or CPU going down), or because we're
  4323. * attempting to rebalance this task on exec (sched_exec).
  4324. *
  4325. * So we race with normal scheduler movements, but that's OK, as long
  4326. * as the task is no longer on this CPU.
  4327. *
  4328. * Returns non-zero if task was successfully migrated.
  4329. */
  4330. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4331. {
  4332. struct rq *rq_dest, *rq_src;
  4333. int ret = 0, on_rq;
  4334. if (unlikely(cpu_is_offline(dest_cpu)))
  4335. return ret;
  4336. rq_src = cpu_rq(src_cpu);
  4337. rq_dest = cpu_rq(dest_cpu);
  4338. double_rq_lock(rq_src, rq_dest);
  4339. /* Already moved. */
  4340. if (task_cpu(p) != src_cpu)
  4341. goto out;
  4342. /* Affinity changed (again). */
  4343. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4344. goto out;
  4345. on_rq = p->se.on_rq;
  4346. if (on_rq)
  4347. deactivate_task(rq_src, p, 0);
  4348. set_task_cpu(p, dest_cpu);
  4349. if (on_rq) {
  4350. activate_task(rq_dest, p, 0);
  4351. check_preempt_curr(rq_dest, p);
  4352. }
  4353. ret = 1;
  4354. out:
  4355. double_rq_unlock(rq_src, rq_dest);
  4356. return ret;
  4357. }
  4358. /*
  4359. * migration_thread - this is a highprio system thread that performs
  4360. * thread migration by bumping thread off CPU then 'pushing' onto
  4361. * another runqueue.
  4362. */
  4363. static int migration_thread(void *data)
  4364. {
  4365. int cpu = (long)data;
  4366. struct rq *rq;
  4367. rq = cpu_rq(cpu);
  4368. BUG_ON(rq->migration_thread != current);
  4369. set_current_state(TASK_INTERRUPTIBLE);
  4370. while (!kthread_should_stop()) {
  4371. struct migration_req *req;
  4372. struct list_head *head;
  4373. spin_lock_irq(&rq->lock);
  4374. if (cpu_is_offline(cpu)) {
  4375. spin_unlock_irq(&rq->lock);
  4376. goto wait_to_die;
  4377. }
  4378. if (rq->active_balance) {
  4379. active_load_balance(rq, cpu);
  4380. rq->active_balance = 0;
  4381. }
  4382. head = &rq->migration_queue;
  4383. if (list_empty(head)) {
  4384. spin_unlock_irq(&rq->lock);
  4385. schedule();
  4386. set_current_state(TASK_INTERRUPTIBLE);
  4387. continue;
  4388. }
  4389. req = list_entry(head->next, struct migration_req, list);
  4390. list_del_init(head->next);
  4391. spin_unlock(&rq->lock);
  4392. __migrate_task(req->task, cpu, req->dest_cpu);
  4393. local_irq_enable();
  4394. complete(&req->done);
  4395. }
  4396. __set_current_state(TASK_RUNNING);
  4397. return 0;
  4398. wait_to_die:
  4399. /* Wait for kthread_stop */
  4400. set_current_state(TASK_INTERRUPTIBLE);
  4401. while (!kthread_should_stop()) {
  4402. schedule();
  4403. set_current_state(TASK_INTERRUPTIBLE);
  4404. }
  4405. __set_current_state(TASK_RUNNING);
  4406. return 0;
  4407. }
  4408. #ifdef CONFIG_HOTPLUG_CPU
  4409. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4410. {
  4411. int ret;
  4412. local_irq_disable();
  4413. ret = __migrate_task(p, src_cpu, dest_cpu);
  4414. local_irq_enable();
  4415. return ret;
  4416. }
  4417. /*
  4418. * Figure out where task on dead CPU should go, use force if neccessary.
  4419. * NOTE: interrupts should be disabled by the caller
  4420. */
  4421. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4422. {
  4423. unsigned long flags;
  4424. cpumask_t mask;
  4425. struct rq *rq;
  4426. int dest_cpu;
  4427. do {
  4428. /* On same node? */
  4429. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4430. cpus_and(mask, mask, p->cpus_allowed);
  4431. dest_cpu = any_online_cpu(mask);
  4432. /* On any allowed CPU? */
  4433. if (dest_cpu == NR_CPUS)
  4434. dest_cpu = any_online_cpu(p->cpus_allowed);
  4435. /* No more Mr. Nice Guy. */
  4436. if (dest_cpu == NR_CPUS) {
  4437. rq = task_rq_lock(p, &flags);
  4438. cpus_setall(p->cpus_allowed);
  4439. dest_cpu = any_online_cpu(p->cpus_allowed);
  4440. task_rq_unlock(rq, &flags);
  4441. /*
  4442. * Don't tell them about moving exiting tasks or
  4443. * kernel threads (both mm NULL), since they never
  4444. * leave kernel.
  4445. */
  4446. if (p->mm && printk_ratelimit())
  4447. printk(KERN_INFO "process %d (%s) no "
  4448. "longer affine to cpu%d\n",
  4449. p->pid, p->comm, dead_cpu);
  4450. }
  4451. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4452. }
  4453. /*
  4454. * While a dead CPU has no uninterruptible tasks queued at this point,
  4455. * it might still have a nonzero ->nr_uninterruptible counter, because
  4456. * for performance reasons the counter is not stricly tracking tasks to
  4457. * their home CPUs. So we just add the counter to another CPU's counter,
  4458. * to keep the global sum constant after CPU-down:
  4459. */
  4460. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4461. {
  4462. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4463. unsigned long flags;
  4464. local_irq_save(flags);
  4465. double_rq_lock(rq_src, rq_dest);
  4466. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4467. rq_src->nr_uninterruptible = 0;
  4468. double_rq_unlock(rq_src, rq_dest);
  4469. local_irq_restore(flags);
  4470. }
  4471. /* Run through task list and migrate tasks from the dead cpu. */
  4472. static void migrate_live_tasks(int src_cpu)
  4473. {
  4474. struct task_struct *p, *t;
  4475. read_lock(&tasklist_lock);
  4476. do_each_thread(t, p) {
  4477. if (p == current)
  4478. continue;
  4479. if (task_cpu(p) == src_cpu)
  4480. move_task_off_dead_cpu(src_cpu, p);
  4481. } while_each_thread(t, p);
  4482. read_unlock(&tasklist_lock);
  4483. }
  4484. /*
  4485. * activate_idle_task - move idle task to the _front_ of runqueue.
  4486. */
  4487. static void activate_idle_task(struct task_struct *p, struct rq *rq)
  4488. {
  4489. update_rq_clock(rq);
  4490. if (p->state == TASK_UNINTERRUPTIBLE)
  4491. rq->nr_uninterruptible--;
  4492. enqueue_task(rq, p, 0);
  4493. inc_nr_running(p, rq);
  4494. }
  4495. /*
  4496. * Schedules idle task to be the next runnable task on current CPU.
  4497. * It does so by boosting its priority to highest possible and adding it to
  4498. * the _front_ of the runqueue. Used by CPU offline code.
  4499. */
  4500. void sched_idle_next(void)
  4501. {
  4502. int this_cpu = smp_processor_id();
  4503. struct rq *rq = cpu_rq(this_cpu);
  4504. struct task_struct *p = rq->idle;
  4505. unsigned long flags;
  4506. /* cpu has to be offline */
  4507. BUG_ON(cpu_online(this_cpu));
  4508. /*
  4509. * Strictly not necessary since rest of the CPUs are stopped by now
  4510. * and interrupts disabled on the current cpu.
  4511. */
  4512. spin_lock_irqsave(&rq->lock, flags);
  4513. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4514. /* Add idle task to the _front_ of its priority queue: */
  4515. activate_idle_task(p, rq);
  4516. spin_unlock_irqrestore(&rq->lock, flags);
  4517. }
  4518. /*
  4519. * Ensures that the idle task is using init_mm right before its cpu goes
  4520. * offline.
  4521. */
  4522. void idle_task_exit(void)
  4523. {
  4524. struct mm_struct *mm = current->active_mm;
  4525. BUG_ON(cpu_online(smp_processor_id()));
  4526. if (mm != &init_mm)
  4527. switch_mm(mm, &init_mm, current);
  4528. mmdrop(mm);
  4529. }
  4530. /* called under rq->lock with disabled interrupts */
  4531. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4532. {
  4533. struct rq *rq = cpu_rq(dead_cpu);
  4534. /* Must be exiting, otherwise would be on tasklist. */
  4535. BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
  4536. /* Cannot have done final schedule yet: would have vanished. */
  4537. BUG_ON(p->state == TASK_DEAD);
  4538. get_task_struct(p);
  4539. /*
  4540. * Drop lock around migration; if someone else moves it,
  4541. * that's OK. No task can be added to this CPU, so iteration is
  4542. * fine.
  4543. */
  4544. spin_unlock_irq(&rq->lock);
  4545. move_task_off_dead_cpu(dead_cpu, p);
  4546. spin_lock_irq(&rq->lock);
  4547. put_task_struct(p);
  4548. }
  4549. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4550. static void migrate_dead_tasks(unsigned int dead_cpu)
  4551. {
  4552. struct rq *rq = cpu_rq(dead_cpu);
  4553. struct task_struct *next;
  4554. for ( ; ; ) {
  4555. if (!rq->nr_running)
  4556. break;
  4557. update_rq_clock(rq);
  4558. next = pick_next_task(rq, rq->curr);
  4559. if (!next)
  4560. break;
  4561. migrate_dead(dead_cpu, next);
  4562. }
  4563. }
  4564. #endif /* CONFIG_HOTPLUG_CPU */
  4565. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4566. static struct ctl_table sd_ctl_dir[] = {
  4567. {
  4568. .procname = "sched_domain",
  4569. .mode = 0555,
  4570. },
  4571. {0,},
  4572. };
  4573. static struct ctl_table sd_ctl_root[] = {
  4574. {
  4575. .ctl_name = CTL_KERN,
  4576. .procname = "kernel",
  4577. .mode = 0555,
  4578. .child = sd_ctl_dir,
  4579. },
  4580. {0,},
  4581. };
  4582. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4583. {
  4584. struct ctl_table *entry =
  4585. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4586. return entry;
  4587. }
  4588. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4589. {
  4590. struct ctl_table *entry;
  4591. /*
  4592. * In the intermediate directories, both the child directory and
  4593. * procname are dynamically allocated and could fail but the mode
  4594. * will always be set. In the lowest directory the names are
  4595. * static strings and all have proc handlers.
  4596. */
  4597. for (entry = *tablep; entry->mode; entry++) {
  4598. if (entry->child)
  4599. sd_free_ctl_entry(&entry->child);
  4600. if (entry->proc_handler == NULL)
  4601. kfree(entry->procname);
  4602. }
  4603. kfree(*tablep);
  4604. *tablep = NULL;
  4605. }
  4606. static void
  4607. set_table_entry(struct ctl_table *entry,
  4608. const char *procname, void *data, int maxlen,
  4609. mode_t mode, proc_handler *proc_handler)
  4610. {
  4611. entry->procname = procname;
  4612. entry->data = data;
  4613. entry->maxlen = maxlen;
  4614. entry->mode = mode;
  4615. entry->proc_handler = proc_handler;
  4616. }
  4617. static struct ctl_table *
  4618. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4619. {
  4620. struct ctl_table *table = sd_alloc_ctl_entry(12);
  4621. if (table == NULL)
  4622. return NULL;
  4623. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4624. sizeof(long), 0644, proc_doulongvec_minmax);
  4625. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4626. sizeof(long), 0644, proc_doulongvec_minmax);
  4627. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4628. sizeof(int), 0644, proc_dointvec_minmax);
  4629. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4630. sizeof(int), 0644, proc_dointvec_minmax);
  4631. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4632. sizeof(int), 0644, proc_dointvec_minmax);
  4633. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4634. sizeof(int), 0644, proc_dointvec_minmax);
  4635. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4636. sizeof(int), 0644, proc_dointvec_minmax);
  4637. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4638. sizeof(int), 0644, proc_dointvec_minmax);
  4639. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4640. sizeof(int), 0644, proc_dointvec_minmax);
  4641. set_table_entry(&table[9], "cache_nice_tries",
  4642. &sd->cache_nice_tries,
  4643. sizeof(int), 0644, proc_dointvec_minmax);
  4644. set_table_entry(&table[10], "flags", &sd->flags,
  4645. sizeof(int), 0644, proc_dointvec_minmax);
  4646. /* &table[11] is terminator */
  4647. return table;
  4648. }
  4649. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4650. {
  4651. struct ctl_table *entry, *table;
  4652. struct sched_domain *sd;
  4653. int domain_num = 0, i;
  4654. char buf[32];
  4655. for_each_domain(cpu, sd)
  4656. domain_num++;
  4657. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4658. if (table == NULL)
  4659. return NULL;
  4660. i = 0;
  4661. for_each_domain(cpu, sd) {
  4662. snprintf(buf, 32, "domain%d", i);
  4663. entry->procname = kstrdup(buf, GFP_KERNEL);
  4664. entry->mode = 0555;
  4665. entry->child = sd_alloc_ctl_domain_table(sd);
  4666. entry++;
  4667. i++;
  4668. }
  4669. return table;
  4670. }
  4671. static struct ctl_table_header *sd_sysctl_header;
  4672. static void register_sched_domain_sysctl(void)
  4673. {
  4674. int i, cpu_num = num_online_cpus();
  4675. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4676. char buf[32];
  4677. if (entry == NULL)
  4678. return;
  4679. sd_ctl_dir[0].child = entry;
  4680. for_each_online_cpu(i) {
  4681. snprintf(buf, 32, "cpu%d", i);
  4682. entry->procname = kstrdup(buf, GFP_KERNEL);
  4683. entry->mode = 0555;
  4684. entry->child = sd_alloc_ctl_cpu_table(i);
  4685. entry++;
  4686. }
  4687. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4688. }
  4689. static void unregister_sched_domain_sysctl(void)
  4690. {
  4691. unregister_sysctl_table(sd_sysctl_header);
  4692. sd_sysctl_header = NULL;
  4693. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4694. }
  4695. #else
  4696. static void register_sched_domain_sysctl(void)
  4697. {
  4698. }
  4699. static void unregister_sched_domain_sysctl(void)
  4700. {
  4701. }
  4702. #endif
  4703. /*
  4704. * migration_call - callback that gets triggered when a CPU is added.
  4705. * Here we can start up the necessary migration thread for the new CPU.
  4706. */
  4707. static int __cpuinit
  4708. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4709. {
  4710. struct task_struct *p;
  4711. int cpu = (long)hcpu;
  4712. unsigned long flags;
  4713. struct rq *rq;
  4714. switch (action) {
  4715. case CPU_LOCK_ACQUIRE:
  4716. mutex_lock(&sched_hotcpu_mutex);
  4717. break;
  4718. case CPU_UP_PREPARE:
  4719. case CPU_UP_PREPARE_FROZEN:
  4720. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4721. if (IS_ERR(p))
  4722. return NOTIFY_BAD;
  4723. kthread_bind(p, cpu);
  4724. /* Must be high prio: stop_machine expects to yield to it. */
  4725. rq = task_rq_lock(p, &flags);
  4726. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4727. task_rq_unlock(rq, &flags);
  4728. cpu_rq(cpu)->migration_thread = p;
  4729. break;
  4730. case CPU_ONLINE:
  4731. case CPU_ONLINE_FROZEN:
  4732. /* Strictly unneccessary, as first user will wake it. */
  4733. wake_up_process(cpu_rq(cpu)->migration_thread);
  4734. break;
  4735. #ifdef CONFIG_HOTPLUG_CPU
  4736. case CPU_UP_CANCELED:
  4737. case CPU_UP_CANCELED_FROZEN:
  4738. if (!cpu_rq(cpu)->migration_thread)
  4739. break;
  4740. /* Unbind it from offline cpu so it can run. Fall thru. */
  4741. kthread_bind(cpu_rq(cpu)->migration_thread,
  4742. any_online_cpu(cpu_online_map));
  4743. kthread_stop(cpu_rq(cpu)->migration_thread);
  4744. cpu_rq(cpu)->migration_thread = NULL;
  4745. break;
  4746. case CPU_DEAD:
  4747. case CPU_DEAD_FROZEN:
  4748. migrate_live_tasks(cpu);
  4749. rq = cpu_rq(cpu);
  4750. kthread_stop(rq->migration_thread);
  4751. rq->migration_thread = NULL;
  4752. /* Idle task back to normal (off runqueue, low prio) */
  4753. spin_lock_irq(&rq->lock);
  4754. update_rq_clock(rq);
  4755. deactivate_task(rq, rq->idle, 0);
  4756. rq->idle->static_prio = MAX_PRIO;
  4757. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4758. rq->idle->sched_class = &idle_sched_class;
  4759. migrate_dead_tasks(cpu);
  4760. spin_unlock_irq(&rq->lock);
  4761. migrate_nr_uninterruptible(rq);
  4762. BUG_ON(rq->nr_running != 0);
  4763. /* No need to migrate the tasks: it was best-effort if
  4764. * they didn't take sched_hotcpu_mutex. Just wake up
  4765. * the requestors. */
  4766. spin_lock_irq(&rq->lock);
  4767. while (!list_empty(&rq->migration_queue)) {
  4768. struct migration_req *req;
  4769. req = list_entry(rq->migration_queue.next,
  4770. struct migration_req, list);
  4771. list_del_init(&req->list);
  4772. complete(&req->done);
  4773. }
  4774. spin_unlock_irq(&rq->lock);
  4775. break;
  4776. #endif
  4777. case CPU_LOCK_RELEASE:
  4778. mutex_unlock(&sched_hotcpu_mutex);
  4779. break;
  4780. }
  4781. return NOTIFY_OK;
  4782. }
  4783. /* Register at highest priority so that task migration (migrate_all_tasks)
  4784. * happens before everything else.
  4785. */
  4786. static struct notifier_block __cpuinitdata migration_notifier = {
  4787. .notifier_call = migration_call,
  4788. .priority = 10
  4789. };
  4790. int __init migration_init(void)
  4791. {
  4792. void *cpu = (void *)(long)smp_processor_id();
  4793. int err;
  4794. /* Start one for the boot CPU: */
  4795. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4796. BUG_ON(err == NOTIFY_BAD);
  4797. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4798. register_cpu_notifier(&migration_notifier);
  4799. return 0;
  4800. }
  4801. #endif
  4802. #ifdef CONFIG_SMP
  4803. /* Number of possible processor ids */
  4804. int nr_cpu_ids __read_mostly = NR_CPUS;
  4805. EXPORT_SYMBOL(nr_cpu_ids);
  4806. #ifdef CONFIG_SCHED_DEBUG
  4807. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4808. {
  4809. int level = 0;
  4810. if (!sd) {
  4811. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4812. return;
  4813. }
  4814. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4815. do {
  4816. int i;
  4817. char str[NR_CPUS];
  4818. struct sched_group *group = sd->groups;
  4819. cpumask_t groupmask;
  4820. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4821. cpus_clear(groupmask);
  4822. printk(KERN_DEBUG);
  4823. for (i = 0; i < level + 1; i++)
  4824. printk(" ");
  4825. printk("domain %d: ", level);
  4826. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4827. printk("does not load-balance\n");
  4828. if (sd->parent)
  4829. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4830. " has parent");
  4831. break;
  4832. }
  4833. printk("span %s\n", str);
  4834. if (!cpu_isset(cpu, sd->span))
  4835. printk(KERN_ERR "ERROR: domain->span does not contain "
  4836. "CPU%d\n", cpu);
  4837. if (!cpu_isset(cpu, group->cpumask))
  4838. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4839. " CPU%d\n", cpu);
  4840. printk(KERN_DEBUG);
  4841. for (i = 0; i < level + 2; i++)
  4842. printk(" ");
  4843. printk("groups:");
  4844. do {
  4845. if (!group) {
  4846. printk("\n");
  4847. printk(KERN_ERR "ERROR: group is NULL\n");
  4848. break;
  4849. }
  4850. if (!group->__cpu_power) {
  4851. printk("\n");
  4852. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4853. "set\n");
  4854. break;
  4855. }
  4856. if (!cpus_weight(group->cpumask)) {
  4857. printk("\n");
  4858. printk(KERN_ERR "ERROR: empty group\n");
  4859. break;
  4860. }
  4861. if (cpus_intersects(groupmask, group->cpumask)) {
  4862. printk("\n");
  4863. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4864. break;
  4865. }
  4866. cpus_or(groupmask, groupmask, group->cpumask);
  4867. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4868. printk(" %s", str);
  4869. group = group->next;
  4870. } while (group != sd->groups);
  4871. printk("\n");
  4872. if (!cpus_equal(sd->span, groupmask))
  4873. printk(KERN_ERR "ERROR: groups don't span "
  4874. "domain->span\n");
  4875. level++;
  4876. sd = sd->parent;
  4877. if (!sd)
  4878. continue;
  4879. if (!cpus_subset(groupmask, sd->span))
  4880. printk(KERN_ERR "ERROR: parent span is not a superset "
  4881. "of domain->span\n");
  4882. } while (sd);
  4883. }
  4884. #else
  4885. # define sched_domain_debug(sd, cpu) do { } while (0)
  4886. #endif
  4887. static int sd_degenerate(struct sched_domain *sd)
  4888. {
  4889. if (cpus_weight(sd->span) == 1)
  4890. return 1;
  4891. /* Following flags need at least 2 groups */
  4892. if (sd->flags & (SD_LOAD_BALANCE |
  4893. SD_BALANCE_NEWIDLE |
  4894. SD_BALANCE_FORK |
  4895. SD_BALANCE_EXEC |
  4896. SD_SHARE_CPUPOWER |
  4897. SD_SHARE_PKG_RESOURCES)) {
  4898. if (sd->groups != sd->groups->next)
  4899. return 0;
  4900. }
  4901. /* Following flags don't use groups */
  4902. if (sd->flags & (SD_WAKE_IDLE |
  4903. SD_WAKE_AFFINE |
  4904. SD_WAKE_BALANCE))
  4905. return 0;
  4906. return 1;
  4907. }
  4908. static int
  4909. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4910. {
  4911. unsigned long cflags = sd->flags, pflags = parent->flags;
  4912. if (sd_degenerate(parent))
  4913. return 1;
  4914. if (!cpus_equal(sd->span, parent->span))
  4915. return 0;
  4916. /* Does parent contain flags not in child? */
  4917. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4918. if (cflags & SD_WAKE_AFFINE)
  4919. pflags &= ~SD_WAKE_BALANCE;
  4920. /* Flags needing groups don't count if only 1 group in parent */
  4921. if (parent->groups == parent->groups->next) {
  4922. pflags &= ~(SD_LOAD_BALANCE |
  4923. SD_BALANCE_NEWIDLE |
  4924. SD_BALANCE_FORK |
  4925. SD_BALANCE_EXEC |
  4926. SD_SHARE_CPUPOWER |
  4927. SD_SHARE_PKG_RESOURCES);
  4928. }
  4929. if (~cflags & pflags)
  4930. return 0;
  4931. return 1;
  4932. }
  4933. /*
  4934. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4935. * hold the hotplug lock.
  4936. */
  4937. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4938. {
  4939. struct rq *rq = cpu_rq(cpu);
  4940. struct sched_domain *tmp;
  4941. /* Remove the sched domains which do not contribute to scheduling. */
  4942. for (tmp = sd; tmp; tmp = tmp->parent) {
  4943. struct sched_domain *parent = tmp->parent;
  4944. if (!parent)
  4945. break;
  4946. if (sd_parent_degenerate(tmp, parent)) {
  4947. tmp->parent = parent->parent;
  4948. if (parent->parent)
  4949. parent->parent->child = tmp;
  4950. }
  4951. }
  4952. if (sd && sd_degenerate(sd)) {
  4953. sd = sd->parent;
  4954. if (sd)
  4955. sd->child = NULL;
  4956. }
  4957. sched_domain_debug(sd, cpu);
  4958. rcu_assign_pointer(rq->sd, sd);
  4959. }
  4960. /* cpus with isolated domains */
  4961. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  4962. /* Setup the mask of cpus configured for isolated domains */
  4963. static int __init isolated_cpu_setup(char *str)
  4964. {
  4965. int ints[NR_CPUS], i;
  4966. str = get_options(str, ARRAY_SIZE(ints), ints);
  4967. cpus_clear(cpu_isolated_map);
  4968. for (i = 1; i <= ints[0]; i++)
  4969. if (ints[i] < NR_CPUS)
  4970. cpu_set(ints[i], cpu_isolated_map);
  4971. return 1;
  4972. }
  4973. __setup("isolcpus=", isolated_cpu_setup);
  4974. /*
  4975. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  4976. * to a function which identifies what group(along with sched group) a CPU
  4977. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  4978. * (due to the fact that we keep track of groups covered with a cpumask_t).
  4979. *
  4980. * init_sched_build_groups will build a circular linked list of the groups
  4981. * covered by the given span, and will set each group's ->cpumask correctly,
  4982. * and ->cpu_power to 0.
  4983. */
  4984. static void
  4985. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  4986. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  4987. struct sched_group **sg))
  4988. {
  4989. struct sched_group *first = NULL, *last = NULL;
  4990. cpumask_t covered = CPU_MASK_NONE;
  4991. int i;
  4992. for_each_cpu_mask(i, span) {
  4993. struct sched_group *sg;
  4994. int group = group_fn(i, cpu_map, &sg);
  4995. int j;
  4996. if (cpu_isset(i, covered))
  4997. continue;
  4998. sg->cpumask = CPU_MASK_NONE;
  4999. sg->__cpu_power = 0;
  5000. for_each_cpu_mask(j, span) {
  5001. if (group_fn(j, cpu_map, NULL) != group)
  5002. continue;
  5003. cpu_set(j, covered);
  5004. cpu_set(j, sg->cpumask);
  5005. }
  5006. if (!first)
  5007. first = sg;
  5008. if (last)
  5009. last->next = sg;
  5010. last = sg;
  5011. }
  5012. last->next = first;
  5013. }
  5014. #define SD_NODES_PER_DOMAIN 16
  5015. #ifdef CONFIG_NUMA
  5016. /**
  5017. * find_next_best_node - find the next node to include in a sched_domain
  5018. * @node: node whose sched_domain we're building
  5019. * @used_nodes: nodes already in the sched_domain
  5020. *
  5021. * Find the next node to include in a given scheduling domain. Simply
  5022. * finds the closest node not already in the @used_nodes map.
  5023. *
  5024. * Should use nodemask_t.
  5025. */
  5026. static int find_next_best_node(int node, unsigned long *used_nodes)
  5027. {
  5028. int i, n, val, min_val, best_node = 0;
  5029. min_val = INT_MAX;
  5030. for (i = 0; i < MAX_NUMNODES; i++) {
  5031. /* Start at @node */
  5032. n = (node + i) % MAX_NUMNODES;
  5033. if (!nr_cpus_node(n))
  5034. continue;
  5035. /* Skip already used nodes */
  5036. if (test_bit(n, used_nodes))
  5037. continue;
  5038. /* Simple min distance search */
  5039. val = node_distance(node, n);
  5040. if (val < min_val) {
  5041. min_val = val;
  5042. best_node = n;
  5043. }
  5044. }
  5045. set_bit(best_node, used_nodes);
  5046. return best_node;
  5047. }
  5048. /**
  5049. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5050. * @node: node whose cpumask we're constructing
  5051. * @size: number of nodes to include in this span
  5052. *
  5053. * Given a node, construct a good cpumask for its sched_domain to span. It
  5054. * should be one that prevents unnecessary balancing, but also spreads tasks
  5055. * out optimally.
  5056. */
  5057. static cpumask_t sched_domain_node_span(int node)
  5058. {
  5059. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5060. cpumask_t span, nodemask;
  5061. int i;
  5062. cpus_clear(span);
  5063. bitmap_zero(used_nodes, MAX_NUMNODES);
  5064. nodemask = node_to_cpumask(node);
  5065. cpus_or(span, span, nodemask);
  5066. set_bit(node, used_nodes);
  5067. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5068. int next_node = find_next_best_node(node, used_nodes);
  5069. nodemask = node_to_cpumask(next_node);
  5070. cpus_or(span, span, nodemask);
  5071. }
  5072. return span;
  5073. }
  5074. #endif
  5075. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5076. /*
  5077. * SMT sched-domains:
  5078. */
  5079. #ifdef CONFIG_SCHED_SMT
  5080. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5081. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5082. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  5083. struct sched_group **sg)
  5084. {
  5085. if (sg)
  5086. *sg = &per_cpu(sched_group_cpus, cpu);
  5087. return cpu;
  5088. }
  5089. #endif
  5090. /*
  5091. * multi-core sched-domains:
  5092. */
  5093. #ifdef CONFIG_SCHED_MC
  5094. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5095. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5096. #endif
  5097. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5098. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5099. struct sched_group **sg)
  5100. {
  5101. int group;
  5102. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5103. cpus_and(mask, mask, *cpu_map);
  5104. group = first_cpu(mask);
  5105. if (sg)
  5106. *sg = &per_cpu(sched_group_core, group);
  5107. return group;
  5108. }
  5109. #elif defined(CONFIG_SCHED_MC)
  5110. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5111. struct sched_group **sg)
  5112. {
  5113. if (sg)
  5114. *sg = &per_cpu(sched_group_core, cpu);
  5115. return cpu;
  5116. }
  5117. #endif
  5118. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5119. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5120. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  5121. struct sched_group **sg)
  5122. {
  5123. int group;
  5124. #ifdef CONFIG_SCHED_MC
  5125. cpumask_t mask = cpu_coregroup_map(cpu);
  5126. cpus_and(mask, mask, *cpu_map);
  5127. group = first_cpu(mask);
  5128. #elif defined(CONFIG_SCHED_SMT)
  5129. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5130. cpus_and(mask, mask, *cpu_map);
  5131. group = first_cpu(mask);
  5132. #else
  5133. group = cpu;
  5134. #endif
  5135. if (sg)
  5136. *sg = &per_cpu(sched_group_phys, group);
  5137. return group;
  5138. }
  5139. #ifdef CONFIG_NUMA
  5140. /*
  5141. * The init_sched_build_groups can't handle what we want to do with node
  5142. * groups, so roll our own. Now each node has its own list of groups which
  5143. * gets dynamically allocated.
  5144. */
  5145. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5146. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5147. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5148. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5149. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5150. struct sched_group **sg)
  5151. {
  5152. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5153. int group;
  5154. cpus_and(nodemask, nodemask, *cpu_map);
  5155. group = first_cpu(nodemask);
  5156. if (sg)
  5157. *sg = &per_cpu(sched_group_allnodes, group);
  5158. return group;
  5159. }
  5160. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5161. {
  5162. struct sched_group *sg = group_head;
  5163. int j;
  5164. if (!sg)
  5165. return;
  5166. do {
  5167. for_each_cpu_mask(j, sg->cpumask) {
  5168. struct sched_domain *sd;
  5169. sd = &per_cpu(phys_domains, j);
  5170. if (j != first_cpu(sd->groups->cpumask)) {
  5171. /*
  5172. * Only add "power" once for each
  5173. * physical package.
  5174. */
  5175. continue;
  5176. }
  5177. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5178. }
  5179. sg = sg->next;
  5180. } while (sg != group_head);
  5181. }
  5182. #endif
  5183. #ifdef CONFIG_NUMA
  5184. /* Free memory allocated for various sched_group structures */
  5185. static void free_sched_groups(const cpumask_t *cpu_map)
  5186. {
  5187. int cpu, i;
  5188. for_each_cpu_mask(cpu, *cpu_map) {
  5189. struct sched_group **sched_group_nodes
  5190. = sched_group_nodes_bycpu[cpu];
  5191. if (!sched_group_nodes)
  5192. continue;
  5193. for (i = 0; i < MAX_NUMNODES; i++) {
  5194. cpumask_t nodemask = node_to_cpumask(i);
  5195. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5196. cpus_and(nodemask, nodemask, *cpu_map);
  5197. if (cpus_empty(nodemask))
  5198. continue;
  5199. if (sg == NULL)
  5200. continue;
  5201. sg = sg->next;
  5202. next_sg:
  5203. oldsg = sg;
  5204. sg = sg->next;
  5205. kfree(oldsg);
  5206. if (oldsg != sched_group_nodes[i])
  5207. goto next_sg;
  5208. }
  5209. kfree(sched_group_nodes);
  5210. sched_group_nodes_bycpu[cpu] = NULL;
  5211. }
  5212. }
  5213. #else
  5214. static void free_sched_groups(const cpumask_t *cpu_map)
  5215. {
  5216. }
  5217. #endif
  5218. /*
  5219. * Initialize sched groups cpu_power.
  5220. *
  5221. * cpu_power indicates the capacity of sched group, which is used while
  5222. * distributing the load between different sched groups in a sched domain.
  5223. * Typically cpu_power for all the groups in a sched domain will be same unless
  5224. * there are asymmetries in the topology. If there are asymmetries, group
  5225. * having more cpu_power will pickup more load compared to the group having
  5226. * less cpu_power.
  5227. *
  5228. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5229. * the maximum number of tasks a group can handle in the presence of other idle
  5230. * or lightly loaded groups in the same sched domain.
  5231. */
  5232. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5233. {
  5234. struct sched_domain *child;
  5235. struct sched_group *group;
  5236. WARN_ON(!sd || !sd->groups);
  5237. if (cpu != first_cpu(sd->groups->cpumask))
  5238. return;
  5239. child = sd->child;
  5240. sd->groups->__cpu_power = 0;
  5241. /*
  5242. * For perf policy, if the groups in child domain share resources
  5243. * (for example cores sharing some portions of the cache hierarchy
  5244. * or SMT), then set this domain groups cpu_power such that each group
  5245. * can handle only one task, when there are other idle groups in the
  5246. * same sched domain.
  5247. */
  5248. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5249. (child->flags &
  5250. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5251. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5252. return;
  5253. }
  5254. /*
  5255. * add cpu_power of each child group to this groups cpu_power
  5256. */
  5257. group = child->groups;
  5258. do {
  5259. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5260. group = group->next;
  5261. } while (group != child->groups);
  5262. }
  5263. /*
  5264. * Build sched domains for a given set of cpus and attach the sched domains
  5265. * to the individual cpus
  5266. */
  5267. static int build_sched_domains(const cpumask_t *cpu_map)
  5268. {
  5269. int i;
  5270. #ifdef CONFIG_NUMA
  5271. struct sched_group **sched_group_nodes = NULL;
  5272. int sd_allnodes = 0;
  5273. /*
  5274. * Allocate the per-node list of sched groups
  5275. */
  5276. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5277. GFP_KERNEL);
  5278. if (!sched_group_nodes) {
  5279. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5280. return -ENOMEM;
  5281. }
  5282. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5283. #endif
  5284. /*
  5285. * Set up domains for cpus specified by the cpu_map.
  5286. */
  5287. for_each_cpu_mask(i, *cpu_map) {
  5288. struct sched_domain *sd = NULL, *p;
  5289. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5290. cpus_and(nodemask, nodemask, *cpu_map);
  5291. #ifdef CONFIG_NUMA
  5292. if (cpus_weight(*cpu_map) >
  5293. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5294. sd = &per_cpu(allnodes_domains, i);
  5295. *sd = SD_ALLNODES_INIT;
  5296. sd->span = *cpu_map;
  5297. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5298. p = sd;
  5299. sd_allnodes = 1;
  5300. } else
  5301. p = NULL;
  5302. sd = &per_cpu(node_domains, i);
  5303. *sd = SD_NODE_INIT;
  5304. sd->span = sched_domain_node_span(cpu_to_node(i));
  5305. sd->parent = p;
  5306. if (p)
  5307. p->child = sd;
  5308. cpus_and(sd->span, sd->span, *cpu_map);
  5309. #endif
  5310. p = sd;
  5311. sd = &per_cpu(phys_domains, i);
  5312. *sd = SD_CPU_INIT;
  5313. sd->span = nodemask;
  5314. sd->parent = p;
  5315. if (p)
  5316. p->child = sd;
  5317. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5318. #ifdef CONFIG_SCHED_MC
  5319. p = sd;
  5320. sd = &per_cpu(core_domains, i);
  5321. *sd = SD_MC_INIT;
  5322. sd->span = cpu_coregroup_map(i);
  5323. cpus_and(sd->span, sd->span, *cpu_map);
  5324. sd->parent = p;
  5325. p->child = sd;
  5326. cpu_to_core_group(i, cpu_map, &sd->groups);
  5327. #endif
  5328. #ifdef CONFIG_SCHED_SMT
  5329. p = sd;
  5330. sd = &per_cpu(cpu_domains, i);
  5331. *sd = SD_SIBLING_INIT;
  5332. sd->span = per_cpu(cpu_sibling_map, i);
  5333. cpus_and(sd->span, sd->span, *cpu_map);
  5334. sd->parent = p;
  5335. p->child = sd;
  5336. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5337. #endif
  5338. }
  5339. #ifdef CONFIG_SCHED_SMT
  5340. /* Set up CPU (sibling) groups */
  5341. for_each_cpu_mask(i, *cpu_map) {
  5342. cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
  5343. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5344. if (i != first_cpu(this_sibling_map))
  5345. continue;
  5346. init_sched_build_groups(this_sibling_map, cpu_map,
  5347. &cpu_to_cpu_group);
  5348. }
  5349. #endif
  5350. #ifdef CONFIG_SCHED_MC
  5351. /* Set up multi-core groups */
  5352. for_each_cpu_mask(i, *cpu_map) {
  5353. cpumask_t this_core_map = cpu_coregroup_map(i);
  5354. cpus_and(this_core_map, this_core_map, *cpu_map);
  5355. if (i != first_cpu(this_core_map))
  5356. continue;
  5357. init_sched_build_groups(this_core_map, cpu_map,
  5358. &cpu_to_core_group);
  5359. }
  5360. #endif
  5361. /* Set up physical groups */
  5362. for (i = 0; i < MAX_NUMNODES; i++) {
  5363. cpumask_t nodemask = node_to_cpumask(i);
  5364. cpus_and(nodemask, nodemask, *cpu_map);
  5365. if (cpus_empty(nodemask))
  5366. continue;
  5367. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5368. }
  5369. #ifdef CONFIG_NUMA
  5370. /* Set up node groups */
  5371. if (sd_allnodes)
  5372. init_sched_build_groups(*cpu_map, cpu_map,
  5373. &cpu_to_allnodes_group);
  5374. for (i = 0; i < MAX_NUMNODES; i++) {
  5375. /* Set up node groups */
  5376. struct sched_group *sg, *prev;
  5377. cpumask_t nodemask = node_to_cpumask(i);
  5378. cpumask_t domainspan;
  5379. cpumask_t covered = CPU_MASK_NONE;
  5380. int j;
  5381. cpus_and(nodemask, nodemask, *cpu_map);
  5382. if (cpus_empty(nodemask)) {
  5383. sched_group_nodes[i] = NULL;
  5384. continue;
  5385. }
  5386. domainspan = sched_domain_node_span(i);
  5387. cpus_and(domainspan, domainspan, *cpu_map);
  5388. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5389. if (!sg) {
  5390. printk(KERN_WARNING "Can not alloc domain group for "
  5391. "node %d\n", i);
  5392. goto error;
  5393. }
  5394. sched_group_nodes[i] = sg;
  5395. for_each_cpu_mask(j, nodemask) {
  5396. struct sched_domain *sd;
  5397. sd = &per_cpu(node_domains, j);
  5398. sd->groups = sg;
  5399. }
  5400. sg->__cpu_power = 0;
  5401. sg->cpumask = nodemask;
  5402. sg->next = sg;
  5403. cpus_or(covered, covered, nodemask);
  5404. prev = sg;
  5405. for (j = 0; j < MAX_NUMNODES; j++) {
  5406. cpumask_t tmp, notcovered;
  5407. int n = (i + j) % MAX_NUMNODES;
  5408. cpus_complement(notcovered, covered);
  5409. cpus_and(tmp, notcovered, *cpu_map);
  5410. cpus_and(tmp, tmp, domainspan);
  5411. if (cpus_empty(tmp))
  5412. break;
  5413. nodemask = node_to_cpumask(n);
  5414. cpus_and(tmp, tmp, nodemask);
  5415. if (cpus_empty(tmp))
  5416. continue;
  5417. sg = kmalloc_node(sizeof(struct sched_group),
  5418. GFP_KERNEL, i);
  5419. if (!sg) {
  5420. printk(KERN_WARNING
  5421. "Can not alloc domain group for node %d\n", j);
  5422. goto error;
  5423. }
  5424. sg->__cpu_power = 0;
  5425. sg->cpumask = tmp;
  5426. sg->next = prev->next;
  5427. cpus_or(covered, covered, tmp);
  5428. prev->next = sg;
  5429. prev = sg;
  5430. }
  5431. }
  5432. #endif
  5433. /* Calculate CPU power for physical packages and nodes */
  5434. #ifdef CONFIG_SCHED_SMT
  5435. for_each_cpu_mask(i, *cpu_map) {
  5436. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5437. init_sched_groups_power(i, sd);
  5438. }
  5439. #endif
  5440. #ifdef CONFIG_SCHED_MC
  5441. for_each_cpu_mask(i, *cpu_map) {
  5442. struct sched_domain *sd = &per_cpu(core_domains, i);
  5443. init_sched_groups_power(i, sd);
  5444. }
  5445. #endif
  5446. for_each_cpu_mask(i, *cpu_map) {
  5447. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5448. init_sched_groups_power(i, sd);
  5449. }
  5450. #ifdef CONFIG_NUMA
  5451. for (i = 0; i < MAX_NUMNODES; i++)
  5452. init_numa_sched_groups_power(sched_group_nodes[i]);
  5453. if (sd_allnodes) {
  5454. struct sched_group *sg;
  5455. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5456. init_numa_sched_groups_power(sg);
  5457. }
  5458. #endif
  5459. /* Attach the domains */
  5460. for_each_cpu_mask(i, *cpu_map) {
  5461. struct sched_domain *sd;
  5462. #ifdef CONFIG_SCHED_SMT
  5463. sd = &per_cpu(cpu_domains, i);
  5464. #elif defined(CONFIG_SCHED_MC)
  5465. sd = &per_cpu(core_domains, i);
  5466. #else
  5467. sd = &per_cpu(phys_domains, i);
  5468. #endif
  5469. cpu_attach_domain(sd, i);
  5470. }
  5471. return 0;
  5472. #ifdef CONFIG_NUMA
  5473. error:
  5474. free_sched_groups(cpu_map);
  5475. return -ENOMEM;
  5476. #endif
  5477. }
  5478. /*
  5479. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5480. */
  5481. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5482. {
  5483. cpumask_t cpu_default_map;
  5484. int err;
  5485. /*
  5486. * Setup mask for cpus without special case scheduling requirements.
  5487. * For now this just excludes isolated cpus, but could be used to
  5488. * exclude other special cases in the future.
  5489. */
  5490. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5491. err = build_sched_domains(&cpu_default_map);
  5492. register_sched_domain_sysctl();
  5493. return err;
  5494. }
  5495. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5496. {
  5497. free_sched_groups(cpu_map);
  5498. }
  5499. /*
  5500. * Detach sched domains from a group of cpus specified in cpu_map
  5501. * These cpus will now be attached to the NULL domain
  5502. */
  5503. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5504. {
  5505. int i;
  5506. unregister_sched_domain_sysctl();
  5507. for_each_cpu_mask(i, *cpu_map)
  5508. cpu_attach_domain(NULL, i);
  5509. synchronize_sched();
  5510. arch_destroy_sched_domains(cpu_map);
  5511. }
  5512. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5513. static int arch_reinit_sched_domains(void)
  5514. {
  5515. int err;
  5516. mutex_lock(&sched_hotcpu_mutex);
  5517. detach_destroy_domains(&cpu_online_map);
  5518. err = arch_init_sched_domains(&cpu_online_map);
  5519. mutex_unlock(&sched_hotcpu_mutex);
  5520. return err;
  5521. }
  5522. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5523. {
  5524. int ret;
  5525. if (buf[0] != '0' && buf[0] != '1')
  5526. return -EINVAL;
  5527. if (smt)
  5528. sched_smt_power_savings = (buf[0] == '1');
  5529. else
  5530. sched_mc_power_savings = (buf[0] == '1');
  5531. ret = arch_reinit_sched_domains();
  5532. return ret ? ret : count;
  5533. }
  5534. #ifdef CONFIG_SCHED_MC
  5535. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5536. {
  5537. return sprintf(page, "%u\n", sched_mc_power_savings);
  5538. }
  5539. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5540. const char *buf, size_t count)
  5541. {
  5542. return sched_power_savings_store(buf, count, 0);
  5543. }
  5544. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5545. sched_mc_power_savings_store);
  5546. #endif
  5547. #ifdef CONFIG_SCHED_SMT
  5548. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5549. {
  5550. return sprintf(page, "%u\n", sched_smt_power_savings);
  5551. }
  5552. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5553. const char *buf, size_t count)
  5554. {
  5555. return sched_power_savings_store(buf, count, 1);
  5556. }
  5557. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5558. sched_smt_power_savings_store);
  5559. #endif
  5560. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5561. {
  5562. int err = 0;
  5563. #ifdef CONFIG_SCHED_SMT
  5564. if (smt_capable())
  5565. err = sysfs_create_file(&cls->kset.kobj,
  5566. &attr_sched_smt_power_savings.attr);
  5567. #endif
  5568. #ifdef CONFIG_SCHED_MC
  5569. if (!err && mc_capable())
  5570. err = sysfs_create_file(&cls->kset.kobj,
  5571. &attr_sched_mc_power_savings.attr);
  5572. #endif
  5573. return err;
  5574. }
  5575. #endif
  5576. /*
  5577. * Force a reinitialization of the sched domains hierarchy. The domains
  5578. * and groups cannot be updated in place without racing with the balancing
  5579. * code, so we temporarily attach all running cpus to the NULL domain
  5580. * which will prevent rebalancing while the sched domains are recalculated.
  5581. */
  5582. static int update_sched_domains(struct notifier_block *nfb,
  5583. unsigned long action, void *hcpu)
  5584. {
  5585. switch (action) {
  5586. case CPU_UP_PREPARE:
  5587. case CPU_UP_PREPARE_FROZEN:
  5588. case CPU_DOWN_PREPARE:
  5589. case CPU_DOWN_PREPARE_FROZEN:
  5590. detach_destroy_domains(&cpu_online_map);
  5591. return NOTIFY_OK;
  5592. case CPU_UP_CANCELED:
  5593. case CPU_UP_CANCELED_FROZEN:
  5594. case CPU_DOWN_FAILED:
  5595. case CPU_DOWN_FAILED_FROZEN:
  5596. case CPU_ONLINE:
  5597. case CPU_ONLINE_FROZEN:
  5598. case CPU_DEAD:
  5599. case CPU_DEAD_FROZEN:
  5600. /*
  5601. * Fall through and re-initialise the domains.
  5602. */
  5603. break;
  5604. default:
  5605. return NOTIFY_DONE;
  5606. }
  5607. /* The hotplug lock is already held by cpu_up/cpu_down */
  5608. arch_init_sched_domains(&cpu_online_map);
  5609. return NOTIFY_OK;
  5610. }
  5611. void __init sched_init_smp(void)
  5612. {
  5613. cpumask_t non_isolated_cpus;
  5614. mutex_lock(&sched_hotcpu_mutex);
  5615. arch_init_sched_domains(&cpu_online_map);
  5616. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5617. if (cpus_empty(non_isolated_cpus))
  5618. cpu_set(smp_processor_id(), non_isolated_cpus);
  5619. mutex_unlock(&sched_hotcpu_mutex);
  5620. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5621. hotcpu_notifier(update_sched_domains, 0);
  5622. /* Move init over to a non-isolated CPU */
  5623. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5624. BUG();
  5625. }
  5626. #else
  5627. void __init sched_init_smp(void)
  5628. {
  5629. }
  5630. #endif /* CONFIG_SMP */
  5631. int in_sched_functions(unsigned long addr)
  5632. {
  5633. /* Linker adds these: start and end of __sched functions */
  5634. extern char __sched_text_start[], __sched_text_end[];
  5635. return in_lock_functions(addr) ||
  5636. (addr >= (unsigned long)__sched_text_start
  5637. && addr < (unsigned long)__sched_text_end);
  5638. }
  5639. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5640. {
  5641. cfs_rq->tasks_timeline = RB_ROOT;
  5642. #ifdef CONFIG_FAIR_GROUP_SCHED
  5643. cfs_rq->rq = rq;
  5644. #endif
  5645. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  5646. }
  5647. void __init sched_init(void)
  5648. {
  5649. int highest_cpu = 0;
  5650. int i, j;
  5651. for_each_possible_cpu(i) {
  5652. struct rt_prio_array *array;
  5653. struct rq *rq;
  5654. rq = cpu_rq(i);
  5655. spin_lock_init(&rq->lock);
  5656. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5657. rq->nr_running = 0;
  5658. rq->clock = 1;
  5659. init_cfs_rq(&rq->cfs, rq);
  5660. #ifdef CONFIG_FAIR_GROUP_SCHED
  5661. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5662. {
  5663. struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
  5664. struct sched_entity *se =
  5665. &per_cpu(init_sched_entity, i);
  5666. init_cfs_rq_p[i] = cfs_rq;
  5667. init_cfs_rq(cfs_rq, rq);
  5668. cfs_rq->tg = &init_task_group;
  5669. list_add(&cfs_rq->leaf_cfs_rq_list,
  5670. &rq->leaf_cfs_rq_list);
  5671. init_sched_entity_p[i] = se;
  5672. se->cfs_rq = &rq->cfs;
  5673. se->my_q = cfs_rq;
  5674. se->load.weight = init_task_group_load;
  5675. se->load.inv_weight =
  5676. div64_64(1ULL<<32, init_task_group_load);
  5677. se->parent = NULL;
  5678. }
  5679. init_task_group.shares = init_task_group_load;
  5680. spin_lock_init(&init_task_group.lock);
  5681. #endif
  5682. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5683. rq->cpu_load[j] = 0;
  5684. #ifdef CONFIG_SMP
  5685. rq->sd = NULL;
  5686. rq->active_balance = 0;
  5687. rq->next_balance = jiffies;
  5688. rq->push_cpu = 0;
  5689. rq->cpu = i;
  5690. rq->migration_thread = NULL;
  5691. INIT_LIST_HEAD(&rq->migration_queue);
  5692. #endif
  5693. atomic_set(&rq->nr_iowait, 0);
  5694. array = &rq->rt.active;
  5695. for (j = 0; j < MAX_RT_PRIO; j++) {
  5696. INIT_LIST_HEAD(array->queue + j);
  5697. __clear_bit(j, array->bitmap);
  5698. }
  5699. highest_cpu = i;
  5700. /* delimiter for bitsearch: */
  5701. __set_bit(MAX_RT_PRIO, array->bitmap);
  5702. }
  5703. set_load_weight(&init_task);
  5704. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5705. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5706. #endif
  5707. #ifdef CONFIG_SMP
  5708. nr_cpu_ids = highest_cpu + 1;
  5709. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5710. #endif
  5711. #ifdef CONFIG_RT_MUTEXES
  5712. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5713. #endif
  5714. /*
  5715. * The boot idle thread does lazy MMU switching as well:
  5716. */
  5717. atomic_inc(&init_mm.mm_count);
  5718. enter_lazy_tlb(&init_mm, current);
  5719. /*
  5720. * Make us the idle thread. Technically, schedule() should not be
  5721. * called from this thread, however somewhere below it might be,
  5722. * but because we are the idle thread, we just pick up running again
  5723. * when this runqueue becomes "idle".
  5724. */
  5725. init_idle(current, smp_processor_id());
  5726. /*
  5727. * During early bootup we pretend to be a normal task:
  5728. */
  5729. current->sched_class = &fair_sched_class;
  5730. }
  5731. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5732. void __might_sleep(char *file, int line)
  5733. {
  5734. #ifdef in_atomic
  5735. static unsigned long prev_jiffy; /* ratelimiting */
  5736. if ((in_atomic() || irqs_disabled()) &&
  5737. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5738. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5739. return;
  5740. prev_jiffy = jiffies;
  5741. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5742. " context at %s:%d\n", file, line);
  5743. printk("in_atomic():%d, irqs_disabled():%d\n",
  5744. in_atomic(), irqs_disabled());
  5745. debug_show_held_locks(current);
  5746. if (irqs_disabled())
  5747. print_irqtrace_events(current);
  5748. dump_stack();
  5749. }
  5750. #endif
  5751. }
  5752. EXPORT_SYMBOL(__might_sleep);
  5753. #endif
  5754. #ifdef CONFIG_MAGIC_SYSRQ
  5755. static void normalize_task(struct rq *rq, struct task_struct *p)
  5756. {
  5757. int on_rq;
  5758. update_rq_clock(rq);
  5759. on_rq = p->se.on_rq;
  5760. if (on_rq)
  5761. deactivate_task(rq, p, 0);
  5762. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5763. if (on_rq) {
  5764. activate_task(rq, p, 0);
  5765. resched_task(rq->curr);
  5766. }
  5767. }
  5768. void normalize_rt_tasks(void)
  5769. {
  5770. struct task_struct *g, *p;
  5771. unsigned long flags;
  5772. struct rq *rq;
  5773. read_lock_irq(&tasklist_lock);
  5774. do_each_thread(g, p) {
  5775. /*
  5776. * Only normalize user tasks:
  5777. */
  5778. if (!p->mm)
  5779. continue;
  5780. p->se.exec_start = 0;
  5781. #ifdef CONFIG_SCHEDSTATS
  5782. p->se.wait_start = 0;
  5783. p->se.sleep_start = 0;
  5784. p->se.block_start = 0;
  5785. #endif
  5786. task_rq(p)->clock = 0;
  5787. if (!rt_task(p)) {
  5788. /*
  5789. * Renice negative nice level userspace
  5790. * tasks back to 0:
  5791. */
  5792. if (TASK_NICE(p) < 0 && p->mm)
  5793. set_user_nice(p, 0);
  5794. continue;
  5795. }
  5796. spin_lock_irqsave(&p->pi_lock, flags);
  5797. rq = __task_rq_lock(p);
  5798. normalize_task(rq, p);
  5799. __task_rq_unlock(rq);
  5800. spin_unlock_irqrestore(&p->pi_lock, flags);
  5801. } while_each_thread(g, p);
  5802. read_unlock_irq(&tasklist_lock);
  5803. }
  5804. #endif /* CONFIG_MAGIC_SYSRQ */
  5805. #ifdef CONFIG_IA64
  5806. /*
  5807. * These functions are only useful for the IA64 MCA handling.
  5808. *
  5809. * They can only be called when the whole system has been
  5810. * stopped - every CPU needs to be quiescent, and no scheduling
  5811. * activity can take place. Using them for anything else would
  5812. * be a serious bug, and as a result, they aren't even visible
  5813. * under any other configuration.
  5814. */
  5815. /**
  5816. * curr_task - return the current task for a given cpu.
  5817. * @cpu: the processor in question.
  5818. *
  5819. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5820. */
  5821. struct task_struct *curr_task(int cpu)
  5822. {
  5823. return cpu_curr(cpu);
  5824. }
  5825. /**
  5826. * set_curr_task - set the current task for a given cpu.
  5827. * @cpu: the processor in question.
  5828. * @p: the task pointer to set.
  5829. *
  5830. * Description: This function must only be used when non-maskable interrupts
  5831. * are serviced on a separate stack. It allows the architecture to switch the
  5832. * notion of the current task on a cpu in a non-blocking manner. This function
  5833. * must be called with all CPU's synchronized, and interrupts disabled, the
  5834. * and caller must save the original value of the current task (see
  5835. * curr_task() above) and restore that value before reenabling interrupts and
  5836. * re-starting the system.
  5837. *
  5838. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5839. */
  5840. void set_curr_task(int cpu, struct task_struct *p)
  5841. {
  5842. cpu_curr(cpu) = p;
  5843. }
  5844. #endif
  5845. #ifdef CONFIG_FAIR_GROUP_SCHED
  5846. /* allocate runqueue etc for a new task group */
  5847. struct task_group *sched_create_group(void)
  5848. {
  5849. struct task_group *tg;
  5850. struct cfs_rq *cfs_rq;
  5851. struct sched_entity *se;
  5852. struct rq *rq;
  5853. int i;
  5854. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  5855. if (!tg)
  5856. return ERR_PTR(-ENOMEM);
  5857. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
  5858. if (!tg->cfs_rq)
  5859. goto err;
  5860. tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
  5861. if (!tg->se)
  5862. goto err;
  5863. for_each_possible_cpu(i) {
  5864. rq = cpu_rq(i);
  5865. cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
  5866. cpu_to_node(i));
  5867. if (!cfs_rq)
  5868. goto err;
  5869. se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
  5870. cpu_to_node(i));
  5871. if (!se)
  5872. goto err;
  5873. memset(cfs_rq, 0, sizeof(struct cfs_rq));
  5874. memset(se, 0, sizeof(struct sched_entity));
  5875. tg->cfs_rq[i] = cfs_rq;
  5876. init_cfs_rq(cfs_rq, rq);
  5877. cfs_rq->tg = tg;
  5878. tg->se[i] = se;
  5879. se->cfs_rq = &rq->cfs;
  5880. se->my_q = cfs_rq;
  5881. se->load.weight = NICE_0_LOAD;
  5882. se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
  5883. se->parent = NULL;
  5884. }
  5885. for_each_possible_cpu(i) {
  5886. rq = cpu_rq(i);
  5887. cfs_rq = tg->cfs_rq[i];
  5888. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  5889. }
  5890. tg->shares = NICE_0_LOAD;
  5891. spin_lock_init(&tg->lock);
  5892. return tg;
  5893. err:
  5894. for_each_possible_cpu(i) {
  5895. if (tg->cfs_rq)
  5896. kfree(tg->cfs_rq[i]);
  5897. if (tg->se)
  5898. kfree(tg->se[i]);
  5899. }
  5900. kfree(tg->cfs_rq);
  5901. kfree(tg->se);
  5902. kfree(tg);
  5903. return ERR_PTR(-ENOMEM);
  5904. }
  5905. /* rcu callback to free various structures associated with a task group */
  5906. static void free_sched_group(struct rcu_head *rhp)
  5907. {
  5908. struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
  5909. struct task_group *tg = cfs_rq->tg;
  5910. struct sched_entity *se;
  5911. int i;
  5912. /* now it should be safe to free those cfs_rqs */
  5913. for_each_possible_cpu(i) {
  5914. cfs_rq = tg->cfs_rq[i];
  5915. kfree(cfs_rq);
  5916. se = tg->se[i];
  5917. kfree(se);
  5918. }
  5919. kfree(tg->cfs_rq);
  5920. kfree(tg->se);
  5921. kfree(tg);
  5922. }
  5923. /* Destroy runqueue etc associated with a task group */
  5924. void sched_destroy_group(struct task_group *tg)
  5925. {
  5926. struct cfs_rq *cfs_rq;
  5927. int i;
  5928. for_each_possible_cpu(i) {
  5929. cfs_rq = tg->cfs_rq[i];
  5930. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  5931. }
  5932. cfs_rq = tg->cfs_rq[0];
  5933. /* wait for possible concurrent references to cfs_rqs complete */
  5934. call_rcu(&cfs_rq->rcu, free_sched_group);
  5935. }
  5936. /* change task's runqueue when it moves between groups.
  5937. * The caller of this function should have put the task in its new group
  5938. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  5939. * reflect its new group.
  5940. */
  5941. void sched_move_task(struct task_struct *tsk)
  5942. {
  5943. int on_rq, running;
  5944. unsigned long flags;
  5945. struct rq *rq;
  5946. rq = task_rq_lock(tsk, &flags);
  5947. if (tsk->sched_class != &fair_sched_class)
  5948. goto done;
  5949. update_rq_clock(rq);
  5950. running = task_running(rq, tsk);
  5951. on_rq = tsk->se.on_rq;
  5952. if (on_rq) {
  5953. dequeue_task(rq, tsk, 0);
  5954. if (unlikely(running))
  5955. tsk->sched_class->put_prev_task(rq, tsk);
  5956. }
  5957. set_task_cfs_rq(tsk);
  5958. if (on_rq) {
  5959. if (unlikely(running))
  5960. tsk->sched_class->set_curr_task(rq);
  5961. enqueue_task(rq, tsk, 0);
  5962. }
  5963. done:
  5964. task_rq_unlock(rq, &flags);
  5965. }
  5966. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  5967. {
  5968. struct cfs_rq *cfs_rq = se->cfs_rq;
  5969. struct rq *rq = cfs_rq->rq;
  5970. int on_rq;
  5971. spin_lock_irq(&rq->lock);
  5972. on_rq = se->on_rq;
  5973. if (on_rq)
  5974. dequeue_entity(cfs_rq, se, 0);
  5975. se->load.weight = shares;
  5976. se->load.inv_weight = div64_64((1ULL<<32), shares);
  5977. if (on_rq)
  5978. enqueue_entity(cfs_rq, se, 0);
  5979. spin_unlock_irq(&rq->lock);
  5980. }
  5981. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  5982. {
  5983. int i;
  5984. spin_lock(&tg->lock);
  5985. if (tg->shares == shares)
  5986. goto done;
  5987. tg->shares = shares;
  5988. for_each_possible_cpu(i)
  5989. set_se_shares(tg->se[i], shares);
  5990. done:
  5991. spin_unlock(&tg->lock);
  5992. return 0;
  5993. }
  5994. unsigned long sched_group_shares(struct task_group *tg)
  5995. {
  5996. return tg->shares;
  5997. }
  5998. #endif /* CONFIG_FAIR_GROUP_SCHED */