intel_display.c 250 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/cpufreq.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include "drmP.h"
  35. #include "intel_drv.h"
  36. #include "i915_drm.h"
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include "drm_dp_helper.h"
  40. #include "drm_crtc_helper.h"
  41. #include <linux/dma_remapping.h>
  42. #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  43. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  44. static void intel_update_watermarks(struct drm_device *dev);
  45. static void intel_increase_pllclock(struct drm_crtc *crtc);
  46. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  47. typedef struct {
  48. /* given values */
  49. int n;
  50. int m1, m2;
  51. int p1, p2;
  52. /* derived values */
  53. int dot;
  54. int vco;
  55. int m;
  56. int p;
  57. } intel_clock_t;
  58. typedef struct {
  59. int min, max;
  60. } intel_range_t;
  61. typedef struct {
  62. int dot_limit;
  63. int p2_slow, p2_fast;
  64. } intel_p2_t;
  65. #define INTEL_P2_NUM 2
  66. typedef struct intel_limit intel_limit_t;
  67. struct intel_limit {
  68. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  69. intel_p2_t p2;
  70. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  71. int, int, intel_clock_t *, intel_clock_t *);
  72. };
  73. /* FDI */
  74. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  75. static bool
  76. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  77. int target, int refclk, intel_clock_t *match_clock,
  78. intel_clock_t *best_clock);
  79. static bool
  80. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  81. int target, int refclk, intel_clock_t *match_clock,
  82. intel_clock_t *best_clock);
  83. static bool
  84. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  85. int target, int refclk, intel_clock_t *match_clock,
  86. intel_clock_t *best_clock);
  87. static bool
  88. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  89. int target, int refclk, intel_clock_t *match_clock,
  90. intel_clock_t *best_clock);
  91. static inline u32 /* units of 100MHz */
  92. intel_fdi_link_freq(struct drm_device *dev)
  93. {
  94. if (IS_GEN5(dev)) {
  95. struct drm_i915_private *dev_priv = dev->dev_private;
  96. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  97. } else
  98. return 27;
  99. }
  100. static const intel_limit_t intel_limits_i8xx_dvo = {
  101. .dot = { .min = 25000, .max = 350000 },
  102. .vco = { .min = 930000, .max = 1400000 },
  103. .n = { .min = 3, .max = 16 },
  104. .m = { .min = 96, .max = 140 },
  105. .m1 = { .min = 18, .max = 26 },
  106. .m2 = { .min = 6, .max = 16 },
  107. .p = { .min = 4, .max = 128 },
  108. .p1 = { .min = 2, .max = 33 },
  109. .p2 = { .dot_limit = 165000,
  110. .p2_slow = 4, .p2_fast = 2 },
  111. .find_pll = intel_find_best_PLL,
  112. };
  113. static const intel_limit_t intel_limits_i8xx_lvds = {
  114. .dot = { .min = 25000, .max = 350000 },
  115. .vco = { .min = 930000, .max = 1400000 },
  116. .n = { .min = 3, .max = 16 },
  117. .m = { .min = 96, .max = 140 },
  118. .m1 = { .min = 18, .max = 26 },
  119. .m2 = { .min = 6, .max = 16 },
  120. .p = { .min = 4, .max = 128 },
  121. .p1 = { .min = 1, .max = 6 },
  122. .p2 = { .dot_limit = 165000,
  123. .p2_slow = 14, .p2_fast = 7 },
  124. .find_pll = intel_find_best_PLL,
  125. };
  126. static const intel_limit_t intel_limits_i9xx_sdvo = {
  127. .dot = { .min = 20000, .max = 400000 },
  128. .vco = { .min = 1400000, .max = 2800000 },
  129. .n = { .min = 1, .max = 6 },
  130. .m = { .min = 70, .max = 120 },
  131. .m1 = { .min = 10, .max = 22 },
  132. .m2 = { .min = 5, .max = 9 },
  133. .p = { .min = 5, .max = 80 },
  134. .p1 = { .min = 1, .max = 8 },
  135. .p2 = { .dot_limit = 200000,
  136. .p2_slow = 10, .p2_fast = 5 },
  137. .find_pll = intel_find_best_PLL,
  138. };
  139. static const intel_limit_t intel_limits_i9xx_lvds = {
  140. .dot = { .min = 20000, .max = 400000 },
  141. .vco = { .min = 1400000, .max = 2800000 },
  142. .n = { .min = 1, .max = 6 },
  143. .m = { .min = 70, .max = 120 },
  144. .m1 = { .min = 10, .max = 22 },
  145. .m2 = { .min = 5, .max = 9 },
  146. .p = { .min = 7, .max = 98 },
  147. .p1 = { .min = 1, .max = 8 },
  148. .p2 = { .dot_limit = 112000,
  149. .p2_slow = 14, .p2_fast = 7 },
  150. .find_pll = intel_find_best_PLL,
  151. };
  152. static const intel_limit_t intel_limits_g4x_sdvo = {
  153. .dot = { .min = 25000, .max = 270000 },
  154. .vco = { .min = 1750000, .max = 3500000},
  155. .n = { .min = 1, .max = 4 },
  156. .m = { .min = 104, .max = 138 },
  157. .m1 = { .min = 17, .max = 23 },
  158. .m2 = { .min = 5, .max = 11 },
  159. .p = { .min = 10, .max = 30 },
  160. .p1 = { .min = 1, .max = 3},
  161. .p2 = { .dot_limit = 270000,
  162. .p2_slow = 10,
  163. .p2_fast = 10
  164. },
  165. .find_pll = intel_g4x_find_best_PLL,
  166. };
  167. static const intel_limit_t intel_limits_g4x_hdmi = {
  168. .dot = { .min = 22000, .max = 400000 },
  169. .vco = { .min = 1750000, .max = 3500000},
  170. .n = { .min = 1, .max = 4 },
  171. .m = { .min = 104, .max = 138 },
  172. .m1 = { .min = 16, .max = 23 },
  173. .m2 = { .min = 5, .max = 11 },
  174. .p = { .min = 5, .max = 80 },
  175. .p1 = { .min = 1, .max = 8},
  176. .p2 = { .dot_limit = 165000,
  177. .p2_slow = 10, .p2_fast = 5 },
  178. .find_pll = intel_g4x_find_best_PLL,
  179. };
  180. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  181. .dot = { .min = 20000, .max = 115000 },
  182. .vco = { .min = 1750000, .max = 3500000 },
  183. .n = { .min = 1, .max = 3 },
  184. .m = { .min = 104, .max = 138 },
  185. .m1 = { .min = 17, .max = 23 },
  186. .m2 = { .min = 5, .max = 11 },
  187. .p = { .min = 28, .max = 112 },
  188. .p1 = { .min = 2, .max = 8 },
  189. .p2 = { .dot_limit = 0,
  190. .p2_slow = 14, .p2_fast = 14
  191. },
  192. .find_pll = intel_g4x_find_best_PLL,
  193. };
  194. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  195. .dot = { .min = 80000, .max = 224000 },
  196. .vco = { .min = 1750000, .max = 3500000 },
  197. .n = { .min = 1, .max = 3 },
  198. .m = { .min = 104, .max = 138 },
  199. .m1 = { .min = 17, .max = 23 },
  200. .m2 = { .min = 5, .max = 11 },
  201. .p = { .min = 14, .max = 42 },
  202. .p1 = { .min = 2, .max = 6 },
  203. .p2 = { .dot_limit = 0,
  204. .p2_slow = 7, .p2_fast = 7
  205. },
  206. .find_pll = intel_g4x_find_best_PLL,
  207. };
  208. static const intel_limit_t intel_limits_g4x_display_port = {
  209. .dot = { .min = 161670, .max = 227000 },
  210. .vco = { .min = 1750000, .max = 3500000},
  211. .n = { .min = 1, .max = 2 },
  212. .m = { .min = 97, .max = 108 },
  213. .m1 = { .min = 0x10, .max = 0x12 },
  214. .m2 = { .min = 0x05, .max = 0x06 },
  215. .p = { .min = 10, .max = 20 },
  216. .p1 = { .min = 1, .max = 2},
  217. .p2 = { .dot_limit = 0,
  218. .p2_slow = 10, .p2_fast = 10 },
  219. .find_pll = intel_find_pll_g4x_dp,
  220. };
  221. static const intel_limit_t intel_limits_pineview_sdvo = {
  222. .dot = { .min = 20000, .max = 400000},
  223. .vco = { .min = 1700000, .max = 3500000 },
  224. /* Pineview's Ncounter is a ring counter */
  225. .n = { .min = 3, .max = 6 },
  226. .m = { .min = 2, .max = 256 },
  227. /* Pineview only has one combined m divider, which we treat as m2. */
  228. .m1 = { .min = 0, .max = 0 },
  229. .m2 = { .min = 0, .max = 254 },
  230. .p = { .min = 5, .max = 80 },
  231. .p1 = { .min = 1, .max = 8 },
  232. .p2 = { .dot_limit = 200000,
  233. .p2_slow = 10, .p2_fast = 5 },
  234. .find_pll = intel_find_best_PLL,
  235. };
  236. static const intel_limit_t intel_limits_pineview_lvds = {
  237. .dot = { .min = 20000, .max = 400000 },
  238. .vco = { .min = 1700000, .max = 3500000 },
  239. .n = { .min = 3, .max = 6 },
  240. .m = { .min = 2, .max = 256 },
  241. .m1 = { .min = 0, .max = 0 },
  242. .m2 = { .min = 0, .max = 254 },
  243. .p = { .min = 7, .max = 112 },
  244. .p1 = { .min = 1, .max = 8 },
  245. .p2 = { .dot_limit = 112000,
  246. .p2_slow = 14, .p2_fast = 14 },
  247. .find_pll = intel_find_best_PLL,
  248. };
  249. /* Ironlake / Sandybridge
  250. *
  251. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  252. * the range value for them is (actual_value - 2).
  253. */
  254. static const intel_limit_t intel_limits_ironlake_dac = {
  255. .dot = { .min = 25000, .max = 350000 },
  256. .vco = { .min = 1760000, .max = 3510000 },
  257. .n = { .min = 1, .max = 5 },
  258. .m = { .min = 79, .max = 127 },
  259. .m1 = { .min = 12, .max = 22 },
  260. .m2 = { .min = 5, .max = 9 },
  261. .p = { .min = 5, .max = 80 },
  262. .p1 = { .min = 1, .max = 8 },
  263. .p2 = { .dot_limit = 225000,
  264. .p2_slow = 10, .p2_fast = 5 },
  265. .find_pll = intel_g4x_find_best_PLL,
  266. };
  267. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  268. .dot = { .min = 25000, .max = 350000 },
  269. .vco = { .min = 1760000, .max = 3510000 },
  270. .n = { .min = 1, .max = 3 },
  271. .m = { .min = 79, .max = 118 },
  272. .m1 = { .min = 12, .max = 22 },
  273. .m2 = { .min = 5, .max = 9 },
  274. .p = { .min = 28, .max = 112 },
  275. .p1 = { .min = 2, .max = 8 },
  276. .p2 = { .dot_limit = 225000,
  277. .p2_slow = 14, .p2_fast = 14 },
  278. .find_pll = intel_g4x_find_best_PLL,
  279. };
  280. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  281. .dot = { .min = 25000, .max = 350000 },
  282. .vco = { .min = 1760000, .max = 3510000 },
  283. .n = { .min = 1, .max = 3 },
  284. .m = { .min = 79, .max = 127 },
  285. .m1 = { .min = 12, .max = 22 },
  286. .m2 = { .min = 5, .max = 9 },
  287. .p = { .min = 14, .max = 56 },
  288. .p1 = { .min = 2, .max = 8 },
  289. .p2 = { .dot_limit = 225000,
  290. .p2_slow = 7, .p2_fast = 7 },
  291. .find_pll = intel_g4x_find_best_PLL,
  292. };
  293. /* LVDS 100mhz refclk limits. */
  294. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  295. .dot = { .min = 25000, .max = 350000 },
  296. .vco = { .min = 1760000, .max = 3510000 },
  297. .n = { .min = 1, .max = 2 },
  298. .m = { .min = 79, .max = 126 },
  299. .m1 = { .min = 12, .max = 22 },
  300. .m2 = { .min = 5, .max = 9 },
  301. .p = { .min = 28, .max = 112 },
  302. .p1 = { .min = 2, .max = 8 },
  303. .p2 = { .dot_limit = 225000,
  304. .p2_slow = 14, .p2_fast = 14 },
  305. .find_pll = intel_g4x_find_best_PLL,
  306. };
  307. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  308. .dot = { .min = 25000, .max = 350000 },
  309. .vco = { .min = 1760000, .max = 3510000 },
  310. .n = { .min = 1, .max = 3 },
  311. .m = { .min = 79, .max = 126 },
  312. .m1 = { .min = 12, .max = 22 },
  313. .m2 = { .min = 5, .max = 9 },
  314. .p = { .min = 14, .max = 42 },
  315. .p1 = { .min = 2, .max = 6 },
  316. .p2 = { .dot_limit = 225000,
  317. .p2_slow = 7, .p2_fast = 7 },
  318. .find_pll = intel_g4x_find_best_PLL,
  319. };
  320. static const intel_limit_t intel_limits_ironlake_display_port = {
  321. .dot = { .min = 25000, .max = 350000 },
  322. .vco = { .min = 1760000, .max = 3510000},
  323. .n = { .min = 1, .max = 2 },
  324. .m = { .min = 81, .max = 90 },
  325. .m1 = { .min = 12, .max = 22 },
  326. .m2 = { .min = 5, .max = 9 },
  327. .p = { .min = 10, .max = 20 },
  328. .p1 = { .min = 1, .max = 2},
  329. .p2 = { .dot_limit = 0,
  330. .p2_slow = 10, .p2_fast = 10 },
  331. .find_pll = intel_find_pll_ironlake_dp,
  332. };
  333. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  334. int refclk)
  335. {
  336. struct drm_device *dev = crtc->dev;
  337. struct drm_i915_private *dev_priv = dev->dev_private;
  338. const intel_limit_t *limit;
  339. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  340. if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
  341. LVDS_CLKB_POWER_UP) {
  342. /* LVDS dual channel */
  343. if (refclk == 100000)
  344. limit = &intel_limits_ironlake_dual_lvds_100m;
  345. else
  346. limit = &intel_limits_ironlake_dual_lvds;
  347. } else {
  348. if (refclk == 100000)
  349. limit = &intel_limits_ironlake_single_lvds_100m;
  350. else
  351. limit = &intel_limits_ironlake_single_lvds;
  352. }
  353. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  354. HAS_eDP)
  355. limit = &intel_limits_ironlake_display_port;
  356. else
  357. limit = &intel_limits_ironlake_dac;
  358. return limit;
  359. }
  360. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  361. {
  362. struct drm_device *dev = crtc->dev;
  363. struct drm_i915_private *dev_priv = dev->dev_private;
  364. const intel_limit_t *limit;
  365. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  366. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  367. LVDS_CLKB_POWER_UP)
  368. /* LVDS with dual channel */
  369. limit = &intel_limits_g4x_dual_channel_lvds;
  370. else
  371. /* LVDS with dual channel */
  372. limit = &intel_limits_g4x_single_channel_lvds;
  373. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  374. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  375. limit = &intel_limits_g4x_hdmi;
  376. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  377. limit = &intel_limits_g4x_sdvo;
  378. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  379. limit = &intel_limits_g4x_display_port;
  380. } else /* The option is for other outputs */
  381. limit = &intel_limits_i9xx_sdvo;
  382. return limit;
  383. }
  384. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  385. {
  386. struct drm_device *dev = crtc->dev;
  387. const intel_limit_t *limit;
  388. if (HAS_PCH_SPLIT(dev))
  389. limit = intel_ironlake_limit(crtc, refclk);
  390. else if (IS_G4X(dev)) {
  391. limit = intel_g4x_limit(crtc);
  392. } else if (IS_PINEVIEW(dev)) {
  393. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  394. limit = &intel_limits_pineview_lvds;
  395. else
  396. limit = &intel_limits_pineview_sdvo;
  397. } else if (!IS_GEN2(dev)) {
  398. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  399. limit = &intel_limits_i9xx_lvds;
  400. else
  401. limit = &intel_limits_i9xx_sdvo;
  402. } else {
  403. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  404. limit = &intel_limits_i8xx_lvds;
  405. else
  406. limit = &intel_limits_i8xx_dvo;
  407. }
  408. return limit;
  409. }
  410. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  411. static void pineview_clock(int refclk, intel_clock_t *clock)
  412. {
  413. clock->m = clock->m2 + 2;
  414. clock->p = clock->p1 * clock->p2;
  415. clock->vco = refclk * clock->m / clock->n;
  416. clock->dot = clock->vco / clock->p;
  417. }
  418. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  419. {
  420. if (IS_PINEVIEW(dev)) {
  421. pineview_clock(refclk, clock);
  422. return;
  423. }
  424. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  425. clock->p = clock->p1 * clock->p2;
  426. clock->vco = refclk * clock->m / (clock->n + 2);
  427. clock->dot = clock->vco / clock->p;
  428. }
  429. /**
  430. * Returns whether any output on the specified pipe is of the specified type
  431. */
  432. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  433. {
  434. struct drm_device *dev = crtc->dev;
  435. struct drm_mode_config *mode_config = &dev->mode_config;
  436. struct intel_encoder *encoder;
  437. list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
  438. if (encoder->base.crtc == crtc && encoder->type == type)
  439. return true;
  440. return false;
  441. }
  442. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  443. /**
  444. * Returns whether the given set of divisors are valid for a given refclk with
  445. * the given connectors.
  446. */
  447. static bool intel_PLL_is_valid(struct drm_device *dev,
  448. const intel_limit_t *limit,
  449. const intel_clock_t *clock)
  450. {
  451. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  452. INTELPllInvalid("p1 out of range\n");
  453. if (clock->p < limit->p.min || limit->p.max < clock->p)
  454. INTELPllInvalid("p out of range\n");
  455. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  456. INTELPllInvalid("m2 out of range\n");
  457. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  458. INTELPllInvalid("m1 out of range\n");
  459. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  460. INTELPllInvalid("m1 <= m2\n");
  461. if (clock->m < limit->m.min || limit->m.max < clock->m)
  462. INTELPllInvalid("m out of range\n");
  463. if (clock->n < limit->n.min || limit->n.max < clock->n)
  464. INTELPllInvalid("n out of range\n");
  465. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  466. INTELPllInvalid("vco out of range\n");
  467. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  468. * connector, etc., rather than just a single range.
  469. */
  470. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  471. INTELPllInvalid("dot out of range\n");
  472. return true;
  473. }
  474. static bool
  475. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  476. int target, int refclk, intel_clock_t *match_clock,
  477. intel_clock_t *best_clock)
  478. {
  479. struct drm_device *dev = crtc->dev;
  480. struct drm_i915_private *dev_priv = dev->dev_private;
  481. intel_clock_t clock;
  482. int err = target;
  483. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  484. (I915_READ(LVDS)) != 0) {
  485. /*
  486. * For LVDS, if the panel is on, just rely on its current
  487. * settings for dual-channel. We haven't figured out how to
  488. * reliably set up different single/dual channel state, if we
  489. * even can.
  490. */
  491. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  492. LVDS_CLKB_POWER_UP)
  493. clock.p2 = limit->p2.p2_fast;
  494. else
  495. clock.p2 = limit->p2.p2_slow;
  496. } else {
  497. if (target < limit->p2.dot_limit)
  498. clock.p2 = limit->p2.p2_slow;
  499. else
  500. clock.p2 = limit->p2.p2_fast;
  501. }
  502. memset(best_clock, 0, sizeof(*best_clock));
  503. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  504. clock.m1++) {
  505. for (clock.m2 = limit->m2.min;
  506. clock.m2 <= limit->m2.max; clock.m2++) {
  507. /* m1 is always 0 in Pineview */
  508. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  509. break;
  510. for (clock.n = limit->n.min;
  511. clock.n <= limit->n.max; clock.n++) {
  512. for (clock.p1 = limit->p1.min;
  513. clock.p1 <= limit->p1.max; clock.p1++) {
  514. int this_err;
  515. intel_clock(dev, refclk, &clock);
  516. if (!intel_PLL_is_valid(dev, limit,
  517. &clock))
  518. continue;
  519. if (match_clock &&
  520. clock.p != match_clock->p)
  521. continue;
  522. this_err = abs(clock.dot - target);
  523. if (this_err < err) {
  524. *best_clock = clock;
  525. err = this_err;
  526. }
  527. }
  528. }
  529. }
  530. }
  531. return (err != target);
  532. }
  533. static bool
  534. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  535. int target, int refclk, intel_clock_t *match_clock,
  536. intel_clock_t *best_clock)
  537. {
  538. struct drm_device *dev = crtc->dev;
  539. struct drm_i915_private *dev_priv = dev->dev_private;
  540. intel_clock_t clock;
  541. int max_n;
  542. bool found;
  543. /* approximately equals target * 0.00585 */
  544. int err_most = (target >> 8) + (target >> 9);
  545. found = false;
  546. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  547. int lvds_reg;
  548. if (HAS_PCH_SPLIT(dev))
  549. lvds_reg = PCH_LVDS;
  550. else
  551. lvds_reg = LVDS;
  552. if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
  553. LVDS_CLKB_POWER_UP)
  554. clock.p2 = limit->p2.p2_fast;
  555. else
  556. clock.p2 = limit->p2.p2_slow;
  557. } else {
  558. if (target < limit->p2.dot_limit)
  559. clock.p2 = limit->p2.p2_slow;
  560. else
  561. clock.p2 = limit->p2.p2_fast;
  562. }
  563. memset(best_clock, 0, sizeof(*best_clock));
  564. max_n = limit->n.max;
  565. /* based on hardware requirement, prefer smaller n to precision */
  566. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  567. /* based on hardware requirement, prefere larger m1,m2 */
  568. for (clock.m1 = limit->m1.max;
  569. clock.m1 >= limit->m1.min; clock.m1--) {
  570. for (clock.m2 = limit->m2.max;
  571. clock.m2 >= limit->m2.min; clock.m2--) {
  572. for (clock.p1 = limit->p1.max;
  573. clock.p1 >= limit->p1.min; clock.p1--) {
  574. int this_err;
  575. intel_clock(dev, refclk, &clock);
  576. if (!intel_PLL_is_valid(dev, limit,
  577. &clock))
  578. continue;
  579. if (match_clock &&
  580. clock.p != match_clock->p)
  581. continue;
  582. this_err = abs(clock.dot - target);
  583. if (this_err < err_most) {
  584. *best_clock = clock;
  585. err_most = this_err;
  586. max_n = clock.n;
  587. found = true;
  588. }
  589. }
  590. }
  591. }
  592. }
  593. return found;
  594. }
  595. static bool
  596. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  597. int target, int refclk, intel_clock_t *match_clock,
  598. intel_clock_t *best_clock)
  599. {
  600. struct drm_device *dev = crtc->dev;
  601. intel_clock_t clock;
  602. if (target < 200000) {
  603. clock.n = 1;
  604. clock.p1 = 2;
  605. clock.p2 = 10;
  606. clock.m1 = 12;
  607. clock.m2 = 9;
  608. } else {
  609. clock.n = 2;
  610. clock.p1 = 1;
  611. clock.p2 = 10;
  612. clock.m1 = 14;
  613. clock.m2 = 8;
  614. }
  615. intel_clock(dev, refclk, &clock);
  616. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  617. return true;
  618. }
  619. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  620. static bool
  621. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  622. int target, int refclk, intel_clock_t *match_clock,
  623. intel_clock_t *best_clock)
  624. {
  625. intel_clock_t clock;
  626. if (target < 200000) {
  627. clock.p1 = 2;
  628. clock.p2 = 10;
  629. clock.n = 2;
  630. clock.m1 = 23;
  631. clock.m2 = 8;
  632. } else {
  633. clock.p1 = 1;
  634. clock.p2 = 10;
  635. clock.n = 1;
  636. clock.m1 = 14;
  637. clock.m2 = 2;
  638. }
  639. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  640. clock.p = (clock.p1 * clock.p2);
  641. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  642. clock.vco = 0;
  643. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  644. return true;
  645. }
  646. /**
  647. * intel_wait_for_vblank - wait for vblank on a given pipe
  648. * @dev: drm device
  649. * @pipe: pipe to wait for
  650. *
  651. * Wait for vblank to occur on a given pipe. Needed for various bits of
  652. * mode setting code.
  653. */
  654. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  655. {
  656. struct drm_i915_private *dev_priv = dev->dev_private;
  657. int pipestat_reg = PIPESTAT(pipe);
  658. /* Clear existing vblank status. Note this will clear any other
  659. * sticky status fields as well.
  660. *
  661. * This races with i915_driver_irq_handler() with the result
  662. * that either function could miss a vblank event. Here it is not
  663. * fatal, as we will either wait upon the next vblank interrupt or
  664. * timeout. Generally speaking intel_wait_for_vblank() is only
  665. * called during modeset at which time the GPU should be idle and
  666. * should *not* be performing page flips and thus not waiting on
  667. * vblanks...
  668. * Currently, the result of us stealing a vblank from the irq
  669. * handler is that a single frame will be skipped during swapbuffers.
  670. */
  671. I915_WRITE(pipestat_reg,
  672. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  673. /* Wait for vblank interrupt bit to set */
  674. if (wait_for(I915_READ(pipestat_reg) &
  675. PIPE_VBLANK_INTERRUPT_STATUS,
  676. 50))
  677. DRM_DEBUG_KMS("vblank wait timed out\n");
  678. }
  679. /*
  680. * intel_wait_for_pipe_off - wait for pipe to turn off
  681. * @dev: drm device
  682. * @pipe: pipe to wait for
  683. *
  684. * After disabling a pipe, we can't wait for vblank in the usual way,
  685. * spinning on the vblank interrupt status bit, since we won't actually
  686. * see an interrupt when the pipe is disabled.
  687. *
  688. * On Gen4 and above:
  689. * wait for the pipe register state bit to turn off
  690. *
  691. * Otherwise:
  692. * wait for the display line value to settle (it usually
  693. * ends up stopping at the start of the next frame).
  694. *
  695. */
  696. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  697. {
  698. struct drm_i915_private *dev_priv = dev->dev_private;
  699. if (INTEL_INFO(dev)->gen >= 4) {
  700. int reg = PIPECONF(pipe);
  701. /* Wait for the Pipe State to go off */
  702. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  703. 100))
  704. DRM_DEBUG_KMS("pipe_off wait timed out\n");
  705. } else {
  706. u32 last_line;
  707. int reg = PIPEDSL(pipe);
  708. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  709. /* Wait for the display line to settle */
  710. do {
  711. last_line = I915_READ(reg) & DSL_LINEMASK;
  712. mdelay(5);
  713. } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
  714. time_after(timeout, jiffies));
  715. if (time_after(jiffies, timeout))
  716. DRM_DEBUG_KMS("pipe_off wait timed out\n");
  717. }
  718. }
  719. static const char *state_string(bool enabled)
  720. {
  721. return enabled ? "on" : "off";
  722. }
  723. /* Only for pre-ILK configs */
  724. static void assert_pll(struct drm_i915_private *dev_priv,
  725. enum pipe pipe, bool state)
  726. {
  727. int reg;
  728. u32 val;
  729. bool cur_state;
  730. reg = DPLL(pipe);
  731. val = I915_READ(reg);
  732. cur_state = !!(val & DPLL_VCO_ENABLE);
  733. WARN(cur_state != state,
  734. "PLL state assertion failure (expected %s, current %s)\n",
  735. state_string(state), state_string(cur_state));
  736. }
  737. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  738. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  739. /* For ILK+ */
  740. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  741. enum pipe pipe, bool state)
  742. {
  743. int reg;
  744. u32 val;
  745. bool cur_state;
  746. if (HAS_PCH_CPT(dev_priv->dev)) {
  747. u32 pch_dpll;
  748. pch_dpll = I915_READ(PCH_DPLL_SEL);
  749. /* Make sure the selected PLL is enabled to the transcoder */
  750. WARN(!((pch_dpll >> (4 * pipe)) & 8),
  751. "transcoder %d PLL not enabled\n", pipe);
  752. /* Convert the transcoder pipe number to a pll pipe number */
  753. pipe = (pch_dpll >> (4 * pipe)) & 1;
  754. }
  755. reg = PCH_DPLL(pipe);
  756. val = I915_READ(reg);
  757. cur_state = !!(val & DPLL_VCO_ENABLE);
  758. WARN(cur_state != state,
  759. "PCH PLL state assertion failure (expected %s, current %s)\n",
  760. state_string(state), state_string(cur_state));
  761. }
  762. #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
  763. #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
  764. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  765. enum pipe pipe, bool state)
  766. {
  767. int reg;
  768. u32 val;
  769. bool cur_state;
  770. reg = FDI_TX_CTL(pipe);
  771. val = I915_READ(reg);
  772. cur_state = !!(val & FDI_TX_ENABLE);
  773. WARN(cur_state != state,
  774. "FDI TX state assertion failure (expected %s, current %s)\n",
  775. state_string(state), state_string(cur_state));
  776. }
  777. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  778. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  779. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  780. enum pipe pipe, bool state)
  781. {
  782. int reg;
  783. u32 val;
  784. bool cur_state;
  785. reg = FDI_RX_CTL(pipe);
  786. val = I915_READ(reg);
  787. cur_state = !!(val & FDI_RX_ENABLE);
  788. WARN(cur_state != state,
  789. "FDI RX state assertion failure (expected %s, current %s)\n",
  790. state_string(state), state_string(cur_state));
  791. }
  792. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  793. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  794. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  795. enum pipe pipe)
  796. {
  797. int reg;
  798. u32 val;
  799. /* ILK FDI PLL is always enabled */
  800. if (dev_priv->info->gen == 5)
  801. return;
  802. reg = FDI_TX_CTL(pipe);
  803. val = I915_READ(reg);
  804. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  805. }
  806. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  807. enum pipe pipe)
  808. {
  809. int reg;
  810. u32 val;
  811. reg = FDI_RX_CTL(pipe);
  812. val = I915_READ(reg);
  813. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  814. }
  815. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  816. enum pipe pipe)
  817. {
  818. int pp_reg, lvds_reg;
  819. u32 val;
  820. enum pipe panel_pipe = PIPE_A;
  821. bool locked = true;
  822. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  823. pp_reg = PCH_PP_CONTROL;
  824. lvds_reg = PCH_LVDS;
  825. } else {
  826. pp_reg = PP_CONTROL;
  827. lvds_reg = LVDS;
  828. }
  829. val = I915_READ(pp_reg);
  830. if (!(val & PANEL_POWER_ON) ||
  831. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  832. locked = false;
  833. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  834. panel_pipe = PIPE_B;
  835. WARN(panel_pipe == pipe && locked,
  836. "panel assertion failure, pipe %c regs locked\n",
  837. pipe_name(pipe));
  838. }
  839. void assert_pipe(struct drm_i915_private *dev_priv,
  840. enum pipe pipe, bool state)
  841. {
  842. int reg;
  843. u32 val;
  844. bool cur_state;
  845. reg = PIPECONF(pipe);
  846. val = I915_READ(reg);
  847. cur_state = !!(val & PIPECONF_ENABLE);
  848. WARN(cur_state != state,
  849. "pipe %c assertion failure (expected %s, current %s)\n",
  850. pipe_name(pipe), state_string(state), state_string(cur_state));
  851. }
  852. static void assert_plane_enabled(struct drm_i915_private *dev_priv,
  853. enum plane plane)
  854. {
  855. int reg;
  856. u32 val;
  857. reg = DSPCNTR(plane);
  858. val = I915_READ(reg);
  859. WARN(!(val & DISPLAY_PLANE_ENABLE),
  860. "plane %c assertion failure, should be active but is disabled\n",
  861. plane_name(plane));
  862. }
  863. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  864. enum pipe pipe)
  865. {
  866. int reg, i;
  867. u32 val;
  868. int cur_pipe;
  869. /* Planes are fixed to pipes on ILK+ */
  870. if (HAS_PCH_SPLIT(dev_priv->dev))
  871. return;
  872. /* Need to check both planes against the pipe */
  873. for (i = 0; i < 2; i++) {
  874. reg = DSPCNTR(i);
  875. val = I915_READ(reg);
  876. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  877. DISPPLANE_SEL_PIPE_SHIFT;
  878. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  879. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  880. plane_name(i), pipe_name(pipe));
  881. }
  882. }
  883. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  884. {
  885. u32 val;
  886. bool enabled;
  887. val = I915_READ(PCH_DREF_CONTROL);
  888. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  889. DREF_SUPERSPREAD_SOURCE_MASK));
  890. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  891. }
  892. static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
  893. enum pipe pipe)
  894. {
  895. int reg;
  896. u32 val;
  897. bool enabled;
  898. reg = TRANSCONF(pipe);
  899. val = I915_READ(reg);
  900. enabled = !!(val & TRANS_ENABLE);
  901. WARN(enabled,
  902. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  903. pipe_name(pipe));
  904. }
  905. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  906. enum pipe pipe, u32 port_sel, u32 val)
  907. {
  908. if ((val & DP_PORT_EN) == 0)
  909. return false;
  910. if (HAS_PCH_CPT(dev_priv->dev)) {
  911. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  912. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  913. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  914. return false;
  915. } else {
  916. if ((val & DP_PIPE_MASK) != (pipe << 30))
  917. return false;
  918. }
  919. return true;
  920. }
  921. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  922. enum pipe pipe, u32 val)
  923. {
  924. if ((val & PORT_ENABLE) == 0)
  925. return false;
  926. if (HAS_PCH_CPT(dev_priv->dev)) {
  927. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  928. return false;
  929. } else {
  930. if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
  931. return false;
  932. }
  933. return true;
  934. }
  935. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  936. enum pipe pipe, u32 val)
  937. {
  938. if ((val & LVDS_PORT_EN) == 0)
  939. return false;
  940. if (HAS_PCH_CPT(dev_priv->dev)) {
  941. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  942. return false;
  943. } else {
  944. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  945. return false;
  946. }
  947. return true;
  948. }
  949. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  950. enum pipe pipe, u32 val)
  951. {
  952. if ((val & ADPA_DAC_ENABLE) == 0)
  953. return false;
  954. if (HAS_PCH_CPT(dev_priv->dev)) {
  955. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  956. return false;
  957. } else {
  958. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  959. return false;
  960. }
  961. return true;
  962. }
  963. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  964. enum pipe pipe, int reg, u32 port_sel)
  965. {
  966. u32 val = I915_READ(reg);
  967. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  968. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  969. reg, pipe_name(pipe));
  970. }
  971. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  972. enum pipe pipe, int reg)
  973. {
  974. u32 val = I915_READ(reg);
  975. WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
  976. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  977. reg, pipe_name(pipe));
  978. }
  979. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  980. enum pipe pipe)
  981. {
  982. int reg;
  983. u32 val;
  984. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  985. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  986. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  987. reg = PCH_ADPA;
  988. val = I915_READ(reg);
  989. WARN(adpa_pipe_enabled(dev_priv, val, pipe),
  990. "PCH VGA enabled on transcoder %c, should be disabled\n",
  991. pipe_name(pipe));
  992. reg = PCH_LVDS;
  993. val = I915_READ(reg);
  994. WARN(lvds_pipe_enabled(dev_priv, val, pipe),
  995. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  996. pipe_name(pipe));
  997. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
  998. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
  999. assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
  1000. }
  1001. /**
  1002. * intel_enable_pll - enable a PLL
  1003. * @dev_priv: i915 private structure
  1004. * @pipe: pipe PLL to enable
  1005. *
  1006. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1007. * make sure the PLL reg is writable first though, since the panel write
  1008. * protect mechanism may be enabled.
  1009. *
  1010. * Note! This is for pre-ILK only.
  1011. */
  1012. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1013. {
  1014. int reg;
  1015. u32 val;
  1016. /* No really, not for ILK+ */
  1017. BUG_ON(dev_priv->info->gen >= 5);
  1018. /* PLL is protected by panel, make sure we can write it */
  1019. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1020. assert_panel_unlocked(dev_priv, pipe);
  1021. reg = DPLL(pipe);
  1022. val = I915_READ(reg);
  1023. val |= DPLL_VCO_ENABLE;
  1024. /* We do this three times for luck */
  1025. I915_WRITE(reg, val);
  1026. POSTING_READ(reg);
  1027. udelay(150); /* wait for warmup */
  1028. I915_WRITE(reg, val);
  1029. POSTING_READ(reg);
  1030. udelay(150); /* wait for warmup */
  1031. I915_WRITE(reg, val);
  1032. POSTING_READ(reg);
  1033. udelay(150); /* wait for warmup */
  1034. }
  1035. /**
  1036. * intel_disable_pll - disable a PLL
  1037. * @dev_priv: i915 private structure
  1038. * @pipe: pipe PLL to disable
  1039. *
  1040. * Disable the PLL for @pipe, making sure the pipe is off first.
  1041. *
  1042. * Note! This is for pre-ILK only.
  1043. */
  1044. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1045. {
  1046. int reg;
  1047. u32 val;
  1048. /* Don't disable pipe A or pipe A PLLs if needed */
  1049. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1050. return;
  1051. /* Make sure the pipe isn't still relying on us */
  1052. assert_pipe_disabled(dev_priv, pipe);
  1053. reg = DPLL(pipe);
  1054. val = I915_READ(reg);
  1055. val &= ~DPLL_VCO_ENABLE;
  1056. I915_WRITE(reg, val);
  1057. POSTING_READ(reg);
  1058. }
  1059. /**
  1060. * intel_enable_pch_pll - enable PCH PLL
  1061. * @dev_priv: i915 private structure
  1062. * @pipe: pipe PLL to enable
  1063. *
  1064. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1065. * drives the transcoder clock.
  1066. */
  1067. static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
  1068. enum pipe pipe)
  1069. {
  1070. int reg;
  1071. u32 val;
  1072. if (pipe > 1)
  1073. return;
  1074. /* PCH only available on ILK+ */
  1075. BUG_ON(dev_priv->info->gen < 5);
  1076. /* PCH refclock must be enabled first */
  1077. assert_pch_refclk_enabled(dev_priv);
  1078. reg = PCH_DPLL(pipe);
  1079. val = I915_READ(reg);
  1080. val |= DPLL_VCO_ENABLE;
  1081. I915_WRITE(reg, val);
  1082. POSTING_READ(reg);
  1083. udelay(200);
  1084. }
  1085. static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
  1086. enum pipe pipe)
  1087. {
  1088. int reg;
  1089. u32 val, pll_mask = TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL,
  1090. pll_sel = TRANSC_DPLL_ENABLE;
  1091. if (pipe > 1)
  1092. return;
  1093. /* PCH only available on ILK+ */
  1094. BUG_ON(dev_priv->info->gen < 5);
  1095. /* Make sure transcoder isn't still depending on us */
  1096. assert_transcoder_disabled(dev_priv, pipe);
  1097. if (pipe == 0)
  1098. pll_sel |= TRANSC_DPLLA_SEL;
  1099. else if (pipe == 1)
  1100. pll_sel |= TRANSC_DPLLB_SEL;
  1101. if ((I915_READ(PCH_DPLL_SEL) & pll_mask) == pll_sel)
  1102. return;
  1103. reg = PCH_DPLL(pipe);
  1104. val = I915_READ(reg);
  1105. val &= ~DPLL_VCO_ENABLE;
  1106. I915_WRITE(reg, val);
  1107. POSTING_READ(reg);
  1108. udelay(200);
  1109. }
  1110. static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
  1111. enum pipe pipe)
  1112. {
  1113. int reg;
  1114. u32 val;
  1115. /* PCH only available on ILK+ */
  1116. BUG_ON(dev_priv->info->gen < 5);
  1117. /* Make sure PCH DPLL is enabled */
  1118. assert_pch_pll_enabled(dev_priv, pipe);
  1119. /* FDI must be feeding us bits for PCH ports */
  1120. assert_fdi_tx_enabled(dev_priv, pipe);
  1121. assert_fdi_rx_enabled(dev_priv, pipe);
  1122. reg = TRANSCONF(pipe);
  1123. val = I915_READ(reg);
  1124. if (HAS_PCH_IBX(dev_priv->dev)) {
  1125. /*
  1126. * make the BPC in transcoder be consistent with
  1127. * that in pipeconf reg.
  1128. */
  1129. val &= ~PIPE_BPC_MASK;
  1130. val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
  1131. }
  1132. I915_WRITE(reg, val | TRANS_ENABLE);
  1133. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1134. DRM_ERROR("failed to enable transcoder %d\n", pipe);
  1135. }
  1136. static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
  1137. enum pipe pipe)
  1138. {
  1139. int reg;
  1140. u32 val;
  1141. /* FDI relies on the transcoder */
  1142. assert_fdi_tx_disabled(dev_priv, pipe);
  1143. assert_fdi_rx_disabled(dev_priv, pipe);
  1144. /* Ports must be off as well */
  1145. assert_pch_ports_disabled(dev_priv, pipe);
  1146. reg = TRANSCONF(pipe);
  1147. val = I915_READ(reg);
  1148. val &= ~TRANS_ENABLE;
  1149. I915_WRITE(reg, val);
  1150. /* wait for PCH transcoder off, transcoder state */
  1151. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1152. DRM_ERROR("failed to disable transcoder %d\n", pipe);
  1153. }
  1154. /**
  1155. * intel_enable_pipe - enable a pipe, asserting requirements
  1156. * @dev_priv: i915 private structure
  1157. * @pipe: pipe to enable
  1158. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1159. *
  1160. * Enable @pipe, making sure that various hardware specific requirements
  1161. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1162. *
  1163. * @pipe should be %PIPE_A or %PIPE_B.
  1164. *
  1165. * Will wait until the pipe is actually running (i.e. first vblank) before
  1166. * returning.
  1167. */
  1168. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1169. bool pch_port)
  1170. {
  1171. int reg;
  1172. u32 val;
  1173. /*
  1174. * A pipe without a PLL won't actually be able to drive bits from
  1175. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1176. * need the check.
  1177. */
  1178. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1179. assert_pll_enabled(dev_priv, pipe);
  1180. else {
  1181. if (pch_port) {
  1182. /* if driving the PCH, we need FDI enabled */
  1183. assert_fdi_rx_pll_enabled(dev_priv, pipe);
  1184. assert_fdi_tx_pll_enabled(dev_priv, pipe);
  1185. }
  1186. /* FIXME: assert CPU port conditions for SNB+ */
  1187. }
  1188. reg = PIPECONF(pipe);
  1189. val = I915_READ(reg);
  1190. if (val & PIPECONF_ENABLE)
  1191. return;
  1192. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1193. intel_wait_for_vblank(dev_priv->dev, pipe);
  1194. }
  1195. /**
  1196. * intel_disable_pipe - disable a pipe, asserting requirements
  1197. * @dev_priv: i915 private structure
  1198. * @pipe: pipe to disable
  1199. *
  1200. * Disable @pipe, making sure that various hardware specific requirements
  1201. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1202. *
  1203. * @pipe should be %PIPE_A or %PIPE_B.
  1204. *
  1205. * Will wait until the pipe has shut down before returning.
  1206. */
  1207. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1208. enum pipe pipe)
  1209. {
  1210. int reg;
  1211. u32 val;
  1212. /*
  1213. * Make sure planes won't keep trying to pump pixels to us,
  1214. * or we might hang the display.
  1215. */
  1216. assert_planes_disabled(dev_priv, pipe);
  1217. /* Don't disable pipe A or pipe A PLLs if needed */
  1218. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1219. return;
  1220. reg = PIPECONF(pipe);
  1221. val = I915_READ(reg);
  1222. if ((val & PIPECONF_ENABLE) == 0)
  1223. return;
  1224. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1225. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1226. }
  1227. /*
  1228. * Plane regs are double buffered, going from enabled->disabled needs a
  1229. * trigger in order to latch. The display address reg provides this.
  1230. */
  1231. static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1232. enum plane plane)
  1233. {
  1234. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1235. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1236. }
  1237. /**
  1238. * intel_enable_plane - enable a display plane on a given pipe
  1239. * @dev_priv: i915 private structure
  1240. * @plane: plane to enable
  1241. * @pipe: pipe being fed
  1242. *
  1243. * Enable @plane on @pipe, making sure that @pipe is running first.
  1244. */
  1245. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1246. enum plane plane, enum pipe pipe)
  1247. {
  1248. int reg;
  1249. u32 val;
  1250. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1251. assert_pipe_enabled(dev_priv, pipe);
  1252. reg = DSPCNTR(plane);
  1253. val = I915_READ(reg);
  1254. if (val & DISPLAY_PLANE_ENABLE)
  1255. return;
  1256. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1257. intel_flush_display_plane(dev_priv, plane);
  1258. intel_wait_for_vblank(dev_priv->dev, pipe);
  1259. }
  1260. /**
  1261. * intel_disable_plane - disable a display plane
  1262. * @dev_priv: i915 private structure
  1263. * @plane: plane to disable
  1264. * @pipe: pipe consuming the data
  1265. *
  1266. * Disable @plane; should be an independent operation.
  1267. */
  1268. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1269. enum plane plane, enum pipe pipe)
  1270. {
  1271. int reg;
  1272. u32 val;
  1273. reg = DSPCNTR(plane);
  1274. val = I915_READ(reg);
  1275. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1276. return;
  1277. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1278. intel_flush_display_plane(dev_priv, plane);
  1279. intel_wait_for_vblank(dev_priv->dev, pipe);
  1280. }
  1281. static void disable_pch_dp(struct drm_i915_private *dev_priv,
  1282. enum pipe pipe, int reg, u32 port_sel)
  1283. {
  1284. u32 val = I915_READ(reg);
  1285. if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
  1286. DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
  1287. I915_WRITE(reg, val & ~DP_PORT_EN);
  1288. }
  1289. }
  1290. static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
  1291. enum pipe pipe, int reg)
  1292. {
  1293. u32 val = I915_READ(reg);
  1294. if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
  1295. DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
  1296. reg, pipe);
  1297. I915_WRITE(reg, val & ~PORT_ENABLE);
  1298. }
  1299. }
  1300. /* Disable any ports connected to this transcoder */
  1301. static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
  1302. enum pipe pipe)
  1303. {
  1304. u32 reg, val;
  1305. val = I915_READ(PCH_PP_CONTROL);
  1306. I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
  1307. disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1308. disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1309. disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1310. reg = PCH_ADPA;
  1311. val = I915_READ(reg);
  1312. if (adpa_pipe_enabled(dev_priv, val, pipe))
  1313. I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
  1314. reg = PCH_LVDS;
  1315. val = I915_READ(reg);
  1316. if (lvds_pipe_enabled(dev_priv, val, pipe)) {
  1317. DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
  1318. I915_WRITE(reg, val & ~LVDS_PORT_EN);
  1319. POSTING_READ(reg);
  1320. udelay(100);
  1321. }
  1322. disable_pch_hdmi(dev_priv, pipe, HDMIB);
  1323. disable_pch_hdmi(dev_priv, pipe, HDMIC);
  1324. disable_pch_hdmi(dev_priv, pipe, HDMID);
  1325. }
  1326. static void i8xx_disable_fbc(struct drm_device *dev)
  1327. {
  1328. struct drm_i915_private *dev_priv = dev->dev_private;
  1329. u32 fbc_ctl;
  1330. /* Disable compression */
  1331. fbc_ctl = I915_READ(FBC_CONTROL);
  1332. if ((fbc_ctl & FBC_CTL_EN) == 0)
  1333. return;
  1334. fbc_ctl &= ~FBC_CTL_EN;
  1335. I915_WRITE(FBC_CONTROL, fbc_ctl);
  1336. /* Wait for compressing bit to clear */
  1337. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  1338. DRM_DEBUG_KMS("FBC idle timed out\n");
  1339. return;
  1340. }
  1341. DRM_DEBUG_KMS("disabled FBC\n");
  1342. }
  1343. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1344. {
  1345. struct drm_device *dev = crtc->dev;
  1346. struct drm_i915_private *dev_priv = dev->dev_private;
  1347. struct drm_framebuffer *fb = crtc->fb;
  1348. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1349. struct drm_i915_gem_object *obj = intel_fb->obj;
  1350. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1351. int cfb_pitch;
  1352. int plane, i;
  1353. u32 fbc_ctl, fbc_ctl2;
  1354. cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
  1355. if (fb->pitches[0] < cfb_pitch)
  1356. cfb_pitch = fb->pitches[0];
  1357. /* FBC_CTL wants 64B units */
  1358. cfb_pitch = (cfb_pitch / 64) - 1;
  1359. plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  1360. /* Clear old tags */
  1361. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  1362. I915_WRITE(FBC_TAG + (i * 4), 0);
  1363. /* Set it up... */
  1364. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  1365. fbc_ctl2 |= plane;
  1366. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  1367. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  1368. /* enable it... */
  1369. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  1370. if (IS_I945GM(dev))
  1371. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  1372. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  1373. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  1374. fbc_ctl |= obj->fence_reg;
  1375. I915_WRITE(FBC_CONTROL, fbc_ctl);
  1376. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
  1377. cfb_pitch, crtc->y, intel_crtc->plane);
  1378. }
  1379. static bool i8xx_fbc_enabled(struct drm_device *dev)
  1380. {
  1381. struct drm_i915_private *dev_priv = dev->dev_private;
  1382. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  1383. }
  1384. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1385. {
  1386. struct drm_device *dev = crtc->dev;
  1387. struct drm_i915_private *dev_priv = dev->dev_private;
  1388. struct drm_framebuffer *fb = crtc->fb;
  1389. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1390. struct drm_i915_gem_object *obj = intel_fb->obj;
  1391. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1392. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  1393. unsigned long stall_watermark = 200;
  1394. u32 dpfc_ctl;
  1395. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  1396. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  1397. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  1398. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  1399. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  1400. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  1401. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  1402. /* enable it... */
  1403. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  1404. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1405. }
  1406. static void g4x_disable_fbc(struct drm_device *dev)
  1407. {
  1408. struct drm_i915_private *dev_priv = dev->dev_private;
  1409. u32 dpfc_ctl;
  1410. /* Disable compression */
  1411. dpfc_ctl = I915_READ(DPFC_CONTROL);
  1412. if (dpfc_ctl & DPFC_CTL_EN) {
  1413. dpfc_ctl &= ~DPFC_CTL_EN;
  1414. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  1415. DRM_DEBUG_KMS("disabled FBC\n");
  1416. }
  1417. }
  1418. static bool g4x_fbc_enabled(struct drm_device *dev)
  1419. {
  1420. struct drm_i915_private *dev_priv = dev->dev_private;
  1421. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  1422. }
  1423. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  1424. {
  1425. struct drm_i915_private *dev_priv = dev->dev_private;
  1426. u32 blt_ecoskpd;
  1427. /* Make sure blitter notifies FBC of writes */
  1428. gen6_gt_force_wake_get(dev_priv);
  1429. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  1430. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  1431. GEN6_BLITTER_LOCK_SHIFT;
  1432. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1433. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  1434. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1435. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  1436. GEN6_BLITTER_LOCK_SHIFT);
  1437. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1438. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  1439. gen6_gt_force_wake_put(dev_priv);
  1440. }
  1441. static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1442. {
  1443. struct drm_device *dev = crtc->dev;
  1444. struct drm_i915_private *dev_priv = dev->dev_private;
  1445. struct drm_framebuffer *fb = crtc->fb;
  1446. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1447. struct drm_i915_gem_object *obj = intel_fb->obj;
  1448. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1449. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  1450. unsigned long stall_watermark = 200;
  1451. u32 dpfc_ctl;
  1452. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  1453. dpfc_ctl &= DPFC_RESERVED;
  1454. dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
  1455. /* Set persistent mode for front-buffer rendering, ala X. */
  1456. dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
  1457. dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
  1458. I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
  1459. I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  1460. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  1461. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  1462. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  1463. I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
  1464. /* enable it... */
  1465. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  1466. if (IS_GEN6(dev)) {
  1467. I915_WRITE(SNB_DPFC_CTL_SA,
  1468. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  1469. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  1470. sandybridge_blit_fbc_update(dev);
  1471. }
  1472. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1473. }
  1474. static void ironlake_disable_fbc(struct drm_device *dev)
  1475. {
  1476. struct drm_i915_private *dev_priv = dev->dev_private;
  1477. u32 dpfc_ctl;
  1478. /* Disable compression */
  1479. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  1480. if (dpfc_ctl & DPFC_CTL_EN) {
  1481. dpfc_ctl &= ~DPFC_CTL_EN;
  1482. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  1483. DRM_DEBUG_KMS("disabled FBC\n");
  1484. }
  1485. }
  1486. static bool ironlake_fbc_enabled(struct drm_device *dev)
  1487. {
  1488. struct drm_i915_private *dev_priv = dev->dev_private;
  1489. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  1490. }
  1491. bool intel_fbc_enabled(struct drm_device *dev)
  1492. {
  1493. struct drm_i915_private *dev_priv = dev->dev_private;
  1494. if (!dev_priv->display.fbc_enabled)
  1495. return false;
  1496. return dev_priv->display.fbc_enabled(dev);
  1497. }
  1498. static void intel_fbc_work_fn(struct work_struct *__work)
  1499. {
  1500. struct intel_fbc_work *work =
  1501. container_of(to_delayed_work(__work),
  1502. struct intel_fbc_work, work);
  1503. struct drm_device *dev = work->crtc->dev;
  1504. struct drm_i915_private *dev_priv = dev->dev_private;
  1505. mutex_lock(&dev->struct_mutex);
  1506. if (work == dev_priv->fbc_work) {
  1507. /* Double check that we haven't switched fb without cancelling
  1508. * the prior work.
  1509. */
  1510. if (work->crtc->fb == work->fb) {
  1511. dev_priv->display.enable_fbc(work->crtc,
  1512. work->interval);
  1513. dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
  1514. dev_priv->cfb_fb = work->crtc->fb->base.id;
  1515. dev_priv->cfb_y = work->crtc->y;
  1516. }
  1517. dev_priv->fbc_work = NULL;
  1518. }
  1519. mutex_unlock(&dev->struct_mutex);
  1520. kfree(work);
  1521. }
  1522. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  1523. {
  1524. if (dev_priv->fbc_work == NULL)
  1525. return;
  1526. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  1527. /* Synchronisation is provided by struct_mutex and checking of
  1528. * dev_priv->fbc_work, so we can perform the cancellation
  1529. * entirely asynchronously.
  1530. */
  1531. if (cancel_delayed_work(&dev_priv->fbc_work->work))
  1532. /* tasklet was killed before being run, clean up */
  1533. kfree(dev_priv->fbc_work);
  1534. /* Mark the work as no longer wanted so that if it does
  1535. * wake-up (because the work was already running and waiting
  1536. * for our mutex), it will discover that is no longer
  1537. * necessary to run.
  1538. */
  1539. dev_priv->fbc_work = NULL;
  1540. }
  1541. static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1542. {
  1543. struct intel_fbc_work *work;
  1544. struct drm_device *dev = crtc->dev;
  1545. struct drm_i915_private *dev_priv = dev->dev_private;
  1546. if (!dev_priv->display.enable_fbc)
  1547. return;
  1548. intel_cancel_fbc_work(dev_priv);
  1549. work = kzalloc(sizeof *work, GFP_KERNEL);
  1550. if (work == NULL) {
  1551. dev_priv->display.enable_fbc(crtc, interval);
  1552. return;
  1553. }
  1554. work->crtc = crtc;
  1555. work->fb = crtc->fb;
  1556. work->interval = interval;
  1557. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  1558. dev_priv->fbc_work = work;
  1559. DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
  1560. /* Delay the actual enabling to let pageflipping cease and the
  1561. * display to settle before starting the compression. Note that
  1562. * this delay also serves a second purpose: it allows for a
  1563. * vblank to pass after disabling the FBC before we attempt
  1564. * to modify the control registers.
  1565. *
  1566. * A more complicated solution would involve tracking vblanks
  1567. * following the termination of the page-flipping sequence
  1568. * and indeed performing the enable as a co-routine and not
  1569. * waiting synchronously upon the vblank.
  1570. */
  1571. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  1572. }
  1573. void intel_disable_fbc(struct drm_device *dev)
  1574. {
  1575. struct drm_i915_private *dev_priv = dev->dev_private;
  1576. intel_cancel_fbc_work(dev_priv);
  1577. if (!dev_priv->display.disable_fbc)
  1578. return;
  1579. dev_priv->display.disable_fbc(dev);
  1580. dev_priv->cfb_plane = -1;
  1581. }
  1582. /**
  1583. * intel_update_fbc - enable/disable FBC as needed
  1584. * @dev: the drm_device
  1585. *
  1586. * Set up the framebuffer compression hardware at mode set time. We
  1587. * enable it if possible:
  1588. * - plane A only (on pre-965)
  1589. * - no pixel mulitply/line duplication
  1590. * - no alpha buffer discard
  1591. * - no dual wide
  1592. * - framebuffer <= 2048 in width, 1536 in height
  1593. *
  1594. * We can't assume that any compression will take place (worst case),
  1595. * so the compressed buffer has to be the same size as the uncompressed
  1596. * one. It also must reside (along with the line length buffer) in
  1597. * stolen memory.
  1598. *
  1599. * We need to enable/disable FBC on a global basis.
  1600. */
  1601. static void intel_update_fbc(struct drm_device *dev)
  1602. {
  1603. struct drm_i915_private *dev_priv = dev->dev_private;
  1604. struct drm_crtc *crtc = NULL, *tmp_crtc;
  1605. struct intel_crtc *intel_crtc;
  1606. struct drm_framebuffer *fb;
  1607. struct intel_framebuffer *intel_fb;
  1608. struct drm_i915_gem_object *obj;
  1609. int enable_fbc;
  1610. DRM_DEBUG_KMS("\n");
  1611. if (!i915_powersave)
  1612. return;
  1613. if (!I915_HAS_FBC(dev))
  1614. return;
  1615. /*
  1616. * If FBC is already on, we just have to verify that we can
  1617. * keep it that way...
  1618. * Need to disable if:
  1619. * - more than one pipe is active
  1620. * - changing FBC params (stride, fence, mode)
  1621. * - new fb is too large to fit in compressed buffer
  1622. * - going to an unsupported config (interlace, pixel multiply, etc.)
  1623. */
  1624. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  1625. if (tmp_crtc->enabled && tmp_crtc->fb) {
  1626. if (crtc) {
  1627. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  1628. dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
  1629. goto out_disable;
  1630. }
  1631. crtc = tmp_crtc;
  1632. }
  1633. }
  1634. if (!crtc || crtc->fb == NULL) {
  1635. DRM_DEBUG_KMS("no output, disabling\n");
  1636. dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
  1637. goto out_disable;
  1638. }
  1639. intel_crtc = to_intel_crtc(crtc);
  1640. fb = crtc->fb;
  1641. intel_fb = to_intel_framebuffer(fb);
  1642. obj = intel_fb->obj;
  1643. enable_fbc = i915_enable_fbc;
  1644. if (enable_fbc < 0) {
  1645. DRM_DEBUG_KMS("fbc set to per-chip default\n");
  1646. enable_fbc = 1;
  1647. if (INTEL_INFO(dev)->gen <= 5)
  1648. enable_fbc = 0;
  1649. }
  1650. if (!enable_fbc) {
  1651. DRM_DEBUG_KMS("fbc disabled per module param\n");
  1652. dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
  1653. goto out_disable;
  1654. }
  1655. if (intel_fb->obj->base.size > dev_priv->cfb_size) {
  1656. DRM_DEBUG_KMS("framebuffer too large, disabling "
  1657. "compression\n");
  1658. dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
  1659. goto out_disable;
  1660. }
  1661. if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
  1662. (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
  1663. DRM_DEBUG_KMS("mode incompatible with compression, "
  1664. "disabling\n");
  1665. dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
  1666. goto out_disable;
  1667. }
  1668. if ((crtc->mode.hdisplay > 2048) ||
  1669. (crtc->mode.vdisplay > 1536)) {
  1670. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  1671. dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
  1672. goto out_disable;
  1673. }
  1674. if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
  1675. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  1676. dev_priv->no_fbc_reason = FBC_BAD_PLANE;
  1677. goto out_disable;
  1678. }
  1679. /* The use of a CPU fence is mandatory in order to detect writes
  1680. * by the CPU to the scanout and trigger updates to the FBC.
  1681. */
  1682. if (obj->tiling_mode != I915_TILING_X ||
  1683. obj->fence_reg == I915_FENCE_REG_NONE) {
  1684. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  1685. dev_priv->no_fbc_reason = FBC_NOT_TILED;
  1686. goto out_disable;
  1687. }
  1688. /* If the kernel debugger is active, always disable compression */
  1689. if (in_dbg_master())
  1690. goto out_disable;
  1691. /* If the scanout has not changed, don't modify the FBC settings.
  1692. * Note that we make the fundamental assumption that the fb->obj
  1693. * cannot be unpinned (and have its GTT offset and fence revoked)
  1694. * without first being decoupled from the scanout and FBC disabled.
  1695. */
  1696. if (dev_priv->cfb_plane == intel_crtc->plane &&
  1697. dev_priv->cfb_fb == fb->base.id &&
  1698. dev_priv->cfb_y == crtc->y)
  1699. return;
  1700. if (intel_fbc_enabled(dev)) {
  1701. /* We update FBC along two paths, after changing fb/crtc
  1702. * configuration (modeswitching) and after page-flipping
  1703. * finishes. For the latter, we know that not only did
  1704. * we disable the FBC at the start of the page-flip
  1705. * sequence, but also more than one vblank has passed.
  1706. *
  1707. * For the former case of modeswitching, it is possible
  1708. * to switch between two FBC valid configurations
  1709. * instantaneously so we do need to disable the FBC
  1710. * before we can modify its control registers. We also
  1711. * have to wait for the next vblank for that to take
  1712. * effect. However, since we delay enabling FBC we can
  1713. * assume that a vblank has passed since disabling and
  1714. * that we can safely alter the registers in the deferred
  1715. * callback.
  1716. *
  1717. * In the scenario that we go from a valid to invalid
  1718. * and then back to valid FBC configuration we have
  1719. * no strict enforcement that a vblank occurred since
  1720. * disabling the FBC. However, along all current pipe
  1721. * disabling paths we do need to wait for a vblank at
  1722. * some point. And we wait before enabling FBC anyway.
  1723. */
  1724. DRM_DEBUG_KMS("disabling active FBC for update\n");
  1725. intel_disable_fbc(dev);
  1726. }
  1727. intel_enable_fbc(crtc, 500);
  1728. return;
  1729. out_disable:
  1730. /* Multiple disables should be harmless */
  1731. if (intel_fbc_enabled(dev)) {
  1732. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  1733. intel_disable_fbc(dev);
  1734. }
  1735. }
  1736. int
  1737. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1738. struct drm_i915_gem_object *obj,
  1739. struct intel_ring_buffer *pipelined)
  1740. {
  1741. struct drm_i915_private *dev_priv = dev->dev_private;
  1742. u32 alignment;
  1743. int ret;
  1744. switch (obj->tiling_mode) {
  1745. case I915_TILING_NONE:
  1746. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1747. alignment = 128 * 1024;
  1748. else if (INTEL_INFO(dev)->gen >= 4)
  1749. alignment = 4 * 1024;
  1750. else
  1751. alignment = 64 * 1024;
  1752. break;
  1753. case I915_TILING_X:
  1754. /* pin() will align the object as required by fence */
  1755. alignment = 0;
  1756. break;
  1757. case I915_TILING_Y:
  1758. /* FIXME: Is this true? */
  1759. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1760. return -EINVAL;
  1761. default:
  1762. BUG();
  1763. }
  1764. dev_priv->mm.interruptible = false;
  1765. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1766. if (ret)
  1767. goto err_interruptible;
  1768. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1769. * fence, whereas 965+ only requires a fence if using
  1770. * framebuffer compression. For simplicity, we always install
  1771. * a fence as the cost is not that onerous.
  1772. */
  1773. if (obj->tiling_mode != I915_TILING_NONE) {
  1774. ret = i915_gem_object_get_fence(obj, pipelined);
  1775. if (ret)
  1776. goto err_unpin;
  1777. }
  1778. dev_priv->mm.interruptible = true;
  1779. return 0;
  1780. err_unpin:
  1781. i915_gem_object_unpin(obj);
  1782. err_interruptible:
  1783. dev_priv->mm.interruptible = true;
  1784. return ret;
  1785. }
  1786. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1787. int x, int y)
  1788. {
  1789. struct drm_device *dev = crtc->dev;
  1790. struct drm_i915_private *dev_priv = dev->dev_private;
  1791. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1792. struct intel_framebuffer *intel_fb;
  1793. struct drm_i915_gem_object *obj;
  1794. int plane = intel_crtc->plane;
  1795. unsigned long Start, Offset;
  1796. u32 dspcntr;
  1797. u32 reg;
  1798. switch (plane) {
  1799. case 0:
  1800. case 1:
  1801. break;
  1802. default:
  1803. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1804. return -EINVAL;
  1805. }
  1806. intel_fb = to_intel_framebuffer(fb);
  1807. obj = intel_fb->obj;
  1808. reg = DSPCNTR(plane);
  1809. dspcntr = I915_READ(reg);
  1810. /* Mask out pixel format bits in case we change it */
  1811. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1812. switch (fb->bits_per_pixel) {
  1813. case 8:
  1814. dspcntr |= DISPPLANE_8BPP;
  1815. break;
  1816. case 16:
  1817. if (fb->depth == 15)
  1818. dspcntr |= DISPPLANE_15_16BPP;
  1819. else
  1820. dspcntr |= DISPPLANE_16BPP;
  1821. break;
  1822. case 24:
  1823. case 32:
  1824. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1825. break;
  1826. default:
  1827. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  1828. return -EINVAL;
  1829. }
  1830. if (INTEL_INFO(dev)->gen >= 4) {
  1831. if (obj->tiling_mode != I915_TILING_NONE)
  1832. dspcntr |= DISPPLANE_TILED;
  1833. else
  1834. dspcntr &= ~DISPPLANE_TILED;
  1835. }
  1836. I915_WRITE(reg, dspcntr);
  1837. Start = obj->gtt_offset;
  1838. Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1839. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1840. Start, Offset, x, y, fb->pitches[0]);
  1841. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1842. if (INTEL_INFO(dev)->gen >= 4) {
  1843. I915_WRITE(DSPSURF(plane), Start);
  1844. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1845. I915_WRITE(DSPADDR(plane), Offset);
  1846. } else
  1847. I915_WRITE(DSPADDR(plane), Start + Offset);
  1848. POSTING_READ(reg);
  1849. return 0;
  1850. }
  1851. static int ironlake_update_plane(struct drm_crtc *crtc,
  1852. struct drm_framebuffer *fb, int x, int y)
  1853. {
  1854. struct drm_device *dev = crtc->dev;
  1855. struct drm_i915_private *dev_priv = dev->dev_private;
  1856. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1857. struct intel_framebuffer *intel_fb;
  1858. struct drm_i915_gem_object *obj;
  1859. int plane = intel_crtc->plane;
  1860. unsigned long Start, Offset;
  1861. u32 dspcntr;
  1862. u32 reg;
  1863. switch (plane) {
  1864. case 0:
  1865. case 1:
  1866. case 2:
  1867. break;
  1868. default:
  1869. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1870. return -EINVAL;
  1871. }
  1872. intel_fb = to_intel_framebuffer(fb);
  1873. obj = intel_fb->obj;
  1874. reg = DSPCNTR(plane);
  1875. dspcntr = I915_READ(reg);
  1876. /* Mask out pixel format bits in case we change it */
  1877. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1878. switch (fb->bits_per_pixel) {
  1879. case 8:
  1880. dspcntr |= DISPPLANE_8BPP;
  1881. break;
  1882. case 16:
  1883. if (fb->depth != 16)
  1884. return -EINVAL;
  1885. dspcntr |= DISPPLANE_16BPP;
  1886. break;
  1887. case 24:
  1888. case 32:
  1889. if (fb->depth == 24)
  1890. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1891. else if (fb->depth == 30)
  1892. dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
  1893. else
  1894. return -EINVAL;
  1895. break;
  1896. default:
  1897. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  1898. return -EINVAL;
  1899. }
  1900. if (obj->tiling_mode != I915_TILING_NONE)
  1901. dspcntr |= DISPPLANE_TILED;
  1902. else
  1903. dspcntr &= ~DISPPLANE_TILED;
  1904. /* must disable */
  1905. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1906. I915_WRITE(reg, dspcntr);
  1907. Start = obj->gtt_offset;
  1908. Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1909. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1910. Start, Offset, x, y, fb->pitches[0]);
  1911. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1912. I915_WRITE(DSPSURF(plane), Start);
  1913. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1914. I915_WRITE(DSPADDR(plane), Offset);
  1915. POSTING_READ(reg);
  1916. return 0;
  1917. }
  1918. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1919. static int
  1920. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1921. int x, int y, enum mode_set_atomic state)
  1922. {
  1923. struct drm_device *dev = crtc->dev;
  1924. struct drm_i915_private *dev_priv = dev->dev_private;
  1925. int ret;
  1926. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1927. if (ret)
  1928. return ret;
  1929. intel_update_fbc(dev);
  1930. intel_increase_pllclock(crtc);
  1931. return 0;
  1932. }
  1933. static int
  1934. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1935. struct drm_framebuffer *old_fb)
  1936. {
  1937. struct drm_device *dev = crtc->dev;
  1938. struct drm_i915_master_private *master_priv;
  1939. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1940. int ret;
  1941. /* no fb bound */
  1942. if (!crtc->fb) {
  1943. DRM_ERROR("No FB bound\n");
  1944. return 0;
  1945. }
  1946. switch (intel_crtc->plane) {
  1947. case 0:
  1948. case 1:
  1949. break;
  1950. case 2:
  1951. if (IS_IVYBRIDGE(dev))
  1952. break;
  1953. /* fall through otherwise */
  1954. default:
  1955. DRM_ERROR("no plane for crtc\n");
  1956. return -EINVAL;
  1957. }
  1958. mutex_lock(&dev->struct_mutex);
  1959. ret = intel_pin_and_fence_fb_obj(dev,
  1960. to_intel_framebuffer(crtc->fb)->obj,
  1961. NULL);
  1962. if (ret != 0) {
  1963. mutex_unlock(&dev->struct_mutex);
  1964. DRM_ERROR("pin & fence failed\n");
  1965. return ret;
  1966. }
  1967. if (old_fb) {
  1968. struct drm_i915_private *dev_priv = dev->dev_private;
  1969. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1970. wait_event(dev_priv->pending_flip_queue,
  1971. atomic_read(&dev_priv->mm.wedged) ||
  1972. atomic_read(&obj->pending_flip) == 0);
  1973. /* Big Hammer, we also need to ensure that any pending
  1974. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1975. * current scanout is retired before unpinning the old
  1976. * framebuffer.
  1977. *
  1978. * This should only fail upon a hung GPU, in which case we
  1979. * can safely continue.
  1980. */
  1981. ret = i915_gem_object_finish_gpu(obj);
  1982. (void) ret;
  1983. }
  1984. ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
  1985. LEAVE_ATOMIC_MODE_SET);
  1986. if (ret) {
  1987. i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
  1988. mutex_unlock(&dev->struct_mutex);
  1989. DRM_ERROR("failed to update base address\n");
  1990. return ret;
  1991. }
  1992. if (old_fb) {
  1993. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1994. i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
  1995. }
  1996. mutex_unlock(&dev->struct_mutex);
  1997. if (!dev->primary->master)
  1998. return 0;
  1999. master_priv = dev->primary->master->driver_priv;
  2000. if (!master_priv->sarea_priv)
  2001. return 0;
  2002. if (intel_crtc->pipe) {
  2003. master_priv->sarea_priv->pipeB_x = x;
  2004. master_priv->sarea_priv->pipeB_y = y;
  2005. } else {
  2006. master_priv->sarea_priv->pipeA_x = x;
  2007. master_priv->sarea_priv->pipeA_y = y;
  2008. }
  2009. return 0;
  2010. }
  2011. static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
  2012. {
  2013. struct drm_device *dev = crtc->dev;
  2014. struct drm_i915_private *dev_priv = dev->dev_private;
  2015. u32 dpa_ctl;
  2016. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  2017. dpa_ctl = I915_READ(DP_A);
  2018. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  2019. if (clock < 200000) {
  2020. u32 temp;
  2021. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  2022. /* workaround for 160Mhz:
  2023. 1) program 0x4600c bits 15:0 = 0x8124
  2024. 2) program 0x46010 bit 0 = 1
  2025. 3) program 0x46034 bit 24 = 1
  2026. 4) program 0x64000 bit 14 = 1
  2027. */
  2028. temp = I915_READ(0x4600c);
  2029. temp &= 0xffff0000;
  2030. I915_WRITE(0x4600c, temp | 0x8124);
  2031. temp = I915_READ(0x46010);
  2032. I915_WRITE(0x46010, temp | 1);
  2033. temp = I915_READ(0x46034);
  2034. I915_WRITE(0x46034, temp | (1 << 24));
  2035. } else {
  2036. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  2037. }
  2038. I915_WRITE(DP_A, dpa_ctl);
  2039. POSTING_READ(DP_A);
  2040. udelay(500);
  2041. }
  2042. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2043. {
  2044. struct drm_device *dev = crtc->dev;
  2045. struct drm_i915_private *dev_priv = dev->dev_private;
  2046. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2047. int pipe = intel_crtc->pipe;
  2048. u32 reg, temp;
  2049. /* enable normal train */
  2050. reg = FDI_TX_CTL(pipe);
  2051. temp = I915_READ(reg);
  2052. if (IS_IVYBRIDGE(dev)) {
  2053. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2054. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2055. } else {
  2056. temp &= ~FDI_LINK_TRAIN_NONE;
  2057. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2058. }
  2059. I915_WRITE(reg, temp);
  2060. reg = FDI_RX_CTL(pipe);
  2061. temp = I915_READ(reg);
  2062. if (HAS_PCH_CPT(dev)) {
  2063. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2064. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2065. } else {
  2066. temp &= ~FDI_LINK_TRAIN_NONE;
  2067. temp |= FDI_LINK_TRAIN_NONE;
  2068. }
  2069. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2070. /* wait one idle pattern time */
  2071. POSTING_READ(reg);
  2072. udelay(1000);
  2073. /* IVB wants error correction enabled */
  2074. if (IS_IVYBRIDGE(dev))
  2075. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2076. FDI_FE_ERRC_ENABLE);
  2077. }
  2078. static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
  2079. {
  2080. struct drm_i915_private *dev_priv = dev->dev_private;
  2081. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2082. flags |= FDI_PHASE_SYNC_OVR(pipe);
  2083. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
  2084. flags |= FDI_PHASE_SYNC_EN(pipe);
  2085. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
  2086. POSTING_READ(SOUTH_CHICKEN1);
  2087. }
  2088. /* The FDI link training functions for ILK/Ibexpeak. */
  2089. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2090. {
  2091. struct drm_device *dev = crtc->dev;
  2092. struct drm_i915_private *dev_priv = dev->dev_private;
  2093. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2094. int pipe = intel_crtc->pipe;
  2095. int plane = intel_crtc->plane;
  2096. u32 reg, temp, tries;
  2097. /* FDI needs bits from pipe & plane first */
  2098. assert_pipe_enabled(dev_priv, pipe);
  2099. assert_plane_enabled(dev_priv, plane);
  2100. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2101. for train result */
  2102. reg = FDI_RX_IMR(pipe);
  2103. temp = I915_READ(reg);
  2104. temp &= ~FDI_RX_SYMBOL_LOCK;
  2105. temp &= ~FDI_RX_BIT_LOCK;
  2106. I915_WRITE(reg, temp);
  2107. I915_READ(reg);
  2108. udelay(150);
  2109. /* enable CPU FDI TX and PCH FDI RX */
  2110. reg = FDI_TX_CTL(pipe);
  2111. temp = I915_READ(reg);
  2112. temp &= ~(7 << 19);
  2113. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2114. temp &= ~FDI_LINK_TRAIN_NONE;
  2115. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2116. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2117. reg = FDI_RX_CTL(pipe);
  2118. temp = I915_READ(reg);
  2119. temp &= ~FDI_LINK_TRAIN_NONE;
  2120. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2121. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2122. POSTING_READ(reg);
  2123. udelay(150);
  2124. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2125. if (HAS_PCH_IBX(dev)) {
  2126. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2127. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2128. FDI_RX_PHASE_SYNC_POINTER_EN);
  2129. }
  2130. reg = FDI_RX_IIR(pipe);
  2131. for (tries = 0; tries < 5; tries++) {
  2132. temp = I915_READ(reg);
  2133. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2134. if ((temp & FDI_RX_BIT_LOCK)) {
  2135. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2136. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2137. break;
  2138. }
  2139. }
  2140. if (tries == 5)
  2141. DRM_ERROR("FDI train 1 fail!\n");
  2142. /* Train 2 */
  2143. reg = FDI_TX_CTL(pipe);
  2144. temp = I915_READ(reg);
  2145. temp &= ~FDI_LINK_TRAIN_NONE;
  2146. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2147. I915_WRITE(reg, temp);
  2148. reg = FDI_RX_CTL(pipe);
  2149. temp = I915_READ(reg);
  2150. temp &= ~FDI_LINK_TRAIN_NONE;
  2151. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2152. I915_WRITE(reg, temp);
  2153. POSTING_READ(reg);
  2154. udelay(150);
  2155. reg = FDI_RX_IIR(pipe);
  2156. for (tries = 0; tries < 5; tries++) {
  2157. temp = I915_READ(reg);
  2158. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2159. if (temp & FDI_RX_SYMBOL_LOCK) {
  2160. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2161. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2162. break;
  2163. }
  2164. }
  2165. if (tries == 5)
  2166. DRM_ERROR("FDI train 2 fail!\n");
  2167. DRM_DEBUG_KMS("FDI train done\n");
  2168. }
  2169. static const int snb_b_fdi_train_param[] = {
  2170. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2171. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2172. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2173. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2174. };
  2175. /* The FDI link training functions for SNB/Cougarpoint. */
  2176. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2177. {
  2178. struct drm_device *dev = crtc->dev;
  2179. struct drm_i915_private *dev_priv = dev->dev_private;
  2180. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2181. int pipe = intel_crtc->pipe;
  2182. u32 reg, temp, i;
  2183. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2184. for train result */
  2185. reg = FDI_RX_IMR(pipe);
  2186. temp = I915_READ(reg);
  2187. temp &= ~FDI_RX_SYMBOL_LOCK;
  2188. temp &= ~FDI_RX_BIT_LOCK;
  2189. I915_WRITE(reg, temp);
  2190. POSTING_READ(reg);
  2191. udelay(150);
  2192. /* enable CPU FDI TX and PCH FDI RX */
  2193. reg = FDI_TX_CTL(pipe);
  2194. temp = I915_READ(reg);
  2195. temp &= ~(7 << 19);
  2196. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2197. temp &= ~FDI_LINK_TRAIN_NONE;
  2198. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2199. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2200. /* SNB-B */
  2201. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2202. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2203. reg = FDI_RX_CTL(pipe);
  2204. temp = I915_READ(reg);
  2205. if (HAS_PCH_CPT(dev)) {
  2206. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2207. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2208. } else {
  2209. temp &= ~FDI_LINK_TRAIN_NONE;
  2210. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2211. }
  2212. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2213. POSTING_READ(reg);
  2214. udelay(150);
  2215. if (HAS_PCH_CPT(dev))
  2216. cpt_phase_pointer_enable(dev, pipe);
  2217. for (i = 0; i < 4; i++) {
  2218. reg = FDI_TX_CTL(pipe);
  2219. temp = I915_READ(reg);
  2220. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2221. temp |= snb_b_fdi_train_param[i];
  2222. I915_WRITE(reg, temp);
  2223. POSTING_READ(reg);
  2224. udelay(500);
  2225. reg = FDI_RX_IIR(pipe);
  2226. temp = I915_READ(reg);
  2227. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2228. if (temp & FDI_RX_BIT_LOCK) {
  2229. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2230. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2231. break;
  2232. }
  2233. }
  2234. if (i == 4)
  2235. DRM_ERROR("FDI train 1 fail!\n");
  2236. /* Train 2 */
  2237. reg = FDI_TX_CTL(pipe);
  2238. temp = I915_READ(reg);
  2239. temp &= ~FDI_LINK_TRAIN_NONE;
  2240. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2241. if (IS_GEN6(dev)) {
  2242. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2243. /* SNB-B */
  2244. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2245. }
  2246. I915_WRITE(reg, temp);
  2247. reg = FDI_RX_CTL(pipe);
  2248. temp = I915_READ(reg);
  2249. if (HAS_PCH_CPT(dev)) {
  2250. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2251. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2252. } else {
  2253. temp &= ~FDI_LINK_TRAIN_NONE;
  2254. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2255. }
  2256. I915_WRITE(reg, temp);
  2257. POSTING_READ(reg);
  2258. udelay(150);
  2259. for (i = 0; i < 4; i++) {
  2260. reg = FDI_TX_CTL(pipe);
  2261. temp = I915_READ(reg);
  2262. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2263. temp |= snb_b_fdi_train_param[i];
  2264. I915_WRITE(reg, temp);
  2265. POSTING_READ(reg);
  2266. udelay(500);
  2267. reg = FDI_RX_IIR(pipe);
  2268. temp = I915_READ(reg);
  2269. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2270. if (temp & FDI_RX_SYMBOL_LOCK) {
  2271. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2272. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2273. break;
  2274. }
  2275. }
  2276. if (i == 4)
  2277. DRM_ERROR("FDI train 2 fail!\n");
  2278. DRM_DEBUG_KMS("FDI train done.\n");
  2279. }
  2280. /* Manual link training for Ivy Bridge A0 parts */
  2281. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2282. {
  2283. struct drm_device *dev = crtc->dev;
  2284. struct drm_i915_private *dev_priv = dev->dev_private;
  2285. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2286. int pipe = intel_crtc->pipe;
  2287. u32 reg, temp, i;
  2288. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2289. for train result */
  2290. reg = FDI_RX_IMR(pipe);
  2291. temp = I915_READ(reg);
  2292. temp &= ~FDI_RX_SYMBOL_LOCK;
  2293. temp &= ~FDI_RX_BIT_LOCK;
  2294. I915_WRITE(reg, temp);
  2295. POSTING_READ(reg);
  2296. udelay(150);
  2297. /* enable CPU FDI TX and PCH FDI RX */
  2298. reg = FDI_TX_CTL(pipe);
  2299. temp = I915_READ(reg);
  2300. temp &= ~(7 << 19);
  2301. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2302. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2303. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2304. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2305. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2306. temp |= FDI_COMPOSITE_SYNC;
  2307. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2308. reg = FDI_RX_CTL(pipe);
  2309. temp = I915_READ(reg);
  2310. temp &= ~FDI_LINK_TRAIN_AUTO;
  2311. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2312. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2313. temp |= FDI_COMPOSITE_SYNC;
  2314. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2315. POSTING_READ(reg);
  2316. udelay(150);
  2317. if (HAS_PCH_CPT(dev))
  2318. cpt_phase_pointer_enable(dev, pipe);
  2319. for (i = 0; i < 4; i++) {
  2320. reg = FDI_TX_CTL(pipe);
  2321. temp = I915_READ(reg);
  2322. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2323. temp |= snb_b_fdi_train_param[i];
  2324. I915_WRITE(reg, temp);
  2325. POSTING_READ(reg);
  2326. udelay(500);
  2327. reg = FDI_RX_IIR(pipe);
  2328. temp = I915_READ(reg);
  2329. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2330. if (temp & FDI_RX_BIT_LOCK ||
  2331. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2332. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2333. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2334. break;
  2335. }
  2336. }
  2337. if (i == 4)
  2338. DRM_ERROR("FDI train 1 fail!\n");
  2339. /* Train 2 */
  2340. reg = FDI_TX_CTL(pipe);
  2341. temp = I915_READ(reg);
  2342. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2343. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2344. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2345. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2346. I915_WRITE(reg, temp);
  2347. reg = FDI_RX_CTL(pipe);
  2348. temp = I915_READ(reg);
  2349. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2350. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2351. I915_WRITE(reg, temp);
  2352. POSTING_READ(reg);
  2353. udelay(150);
  2354. for (i = 0; i < 4; i++) {
  2355. reg = FDI_TX_CTL(pipe);
  2356. temp = I915_READ(reg);
  2357. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2358. temp |= snb_b_fdi_train_param[i];
  2359. I915_WRITE(reg, temp);
  2360. POSTING_READ(reg);
  2361. udelay(500);
  2362. reg = FDI_RX_IIR(pipe);
  2363. temp = I915_READ(reg);
  2364. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2365. if (temp & FDI_RX_SYMBOL_LOCK) {
  2366. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2367. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2368. break;
  2369. }
  2370. }
  2371. if (i == 4)
  2372. DRM_ERROR("FDI train 2 fail!\n");
  2373. DRM_DEBUG_KMS("FDI train done.\n");
  2374. }
  2375. static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
  2376. {
  2377. struct drm_device *dev = crtc->dev;
  2378. struct drm_i915_private *dev_priv = dev->dev_private;
  2379. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2380. int pipe = intel_crtc->pipe;
  2381. u32 reg, temp;
  2382. /* Write the TU size bits so error detection works */
  2383. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2384. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2385. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2386. reg = FDI_RX_CTL(pipe);
  2387. temp = I915_READ(reg);
  2388. temp &= ~((0x7 << 19) | (0x7 << 16));
  2389. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2390. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2391. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2392. POSTING_READ(reg);
  2393. udelay(200);
  2394. /* Switch from Rawclk to PCDclk */
  2395. temp = I915_READ(reg);
  2396. I915_WRITE(reg, temp | FDI_PCDCLK);
  2397. POSTING_READ(reg);
  2398. udelay(200);
  2399. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2400. reg = FDI_TX_CTL(pipe);
  2401. temp = I915_READ(reg);
  2402. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2403. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2404. POSTING_READ(reg);
  2405. udelay(100);
  2406. }
  2407. }
  2408. static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
  2409. {
  2410. struct drm_i915_private *dev_priv = dev->dev_private;
  2411. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2412. flags &= ~(FDI_PHASE_SYNC_EN(pipe));
  2413. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
  2414. flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
  2415. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
  2416. POSTING_READ(SOUTH_CHICKEN1);
  2417. }
  2418. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2419. {
  2420. struct drm_device *dev = crtc->dev;
  2421. struct drm_i915_private *dev_priv = dev->dev_private;
  2422. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2423. int pipe = intel_crtc->pipe;
  2424. u32 reg, temp;
  2425. /* disable CPU FDI tx and PCH FDI rx */
  2426. reg = FDI_TX_CTL(pipe);
  2427. temp = I915_READ(reg);
  2428. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2429. POSTING_READ(reg);
  2430. reg = FDI_RX_CTL(pipe);
  2431. temp = I915_READ(reg);
  2432. temp &= ~(0x7 << 16);
  2433. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2434. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2435. POSTING_READ(reg);
  2436. udelay(100);
  2437. /* Ironlake workaround, disable clock pointer after downing FDI */
  2438. if (HAS_PCH_IBX(dev)) {
  2439. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2440. I915_WRITE(FDI_RX_CHICKEN(pipe),
  2441. I915_READ(FDI_RX_CHICKEN(pipe) &
  2442. ~FDI_RX_PHASE_SYNC_POINTER_EN));
  2443. } else if (HAS_PCH_CPT(dev)) {
  2444. cpt_phase_pointer_disable(dev, pipe);
  2445. }
  2446. /* still set train pattern 1 */
  2447. reg = FDI_TX_CTL(pipe);
  2448. temp = I915_READ(reg);
  2449. temp &= ~FDI_LINK_TRAIN_NONE;
  2450. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2451. I915_WRITE(reg, temp);
  2452. reg = FDI_RX_CTL(pipe);
  2453. temp = I915_READ(reg);
  2454. if (HAS_PCH_CPT(dev)) {
  2455. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2456. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2457. } else {
  2458. temp &= ~FDI_LINK_TRAIN_NONE;
  2459. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2460. }
  2461. /* BPC in FDI rx is consistent with that in PIPECONF */
  2462. temp &= ~(0x07 << 16);
  2463. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2464. I915_WRITE(reg, temp);
  2465. POSTING_READ(reg);
  2466. udelay(100);
  2467. }
  2468. /*
  2469. * When we disable a pipe, we need to clear any pending scanline wait events
  2470. * to avoid hanging the ring, which we assume we are waiting on.
  2471. */
  2472. static void intel_clear_scanline_wait(struct drm_device *dev)
  2473. {
  2474. struct drm_i915_private *dev_priv = dev->dev_private;
  2475. struct intel_ring_buffer *ring;
  2476. u32 tmp;
  2477. if (IS_GEN2(dev))
  2478. /* Can't break the hang on i8xx */
  2479. return;
  2480. ring = LP_RING(dev_priv);
  2481. tmp = I915_READ_CTL(ring);
  2482. if (tmp & RING_WAIT)
  2483. I915_WRITE_CTL(ring, tmp);
  2484. }
  2485. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2486. {
  2487. struct drm_i915_gem_object *obj;
  2488. struct drm_i915_private *dev_priv;
  2489. if (crtc->fb == NULL)
  2490. return;
  2491. obj = to_intel_framebuffer(crtc->fb)->obj;
  2492. dev_priv = crtc->dev->dev_private;
  2493. wait_event(dev_priv->pending_flip_queue,
  2494. atomic_read(&obj->pending_flip) == 0);
  2495. }
  2496. static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
  2497. {
  2498. struct drm_device *dev = crtc->dev;
  2499. struct drm_mode_config *mode_config = &dev->mode_config;
  2500. struct intel_encoder *encoder;
  2501. /*
  2502. * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
  2503. * must be driven by its own crtc; no sharing is possible.
  2504. */
  2505. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  2506. if (encoder->base.crtc != crtc)
  2507. continue;
  2508. switch (encoder->type) {
  2509. case INTEL_OUTPUT_EDP:
  2510. if (!intel_encoder_is_pch_edp(&encoder->base))
  2511. return false;
  2512. continue;
  2513. }
  2514. }
  2515. return true;
  2516. }
  2517. /*
  2518. * Enable PCH resources required for PCH ports:
  2519. * - PCH PLLs
  2520. * - FDI training & RX/TX
  2521. * - update transcoder timings
  2522. * - DP transcoding bits
  2523. * - transcoder
  2524. */
  2525. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2526. {
  2527. struct drm_device *dev = crtc->dev;
  2528. struct drm_i915_private *dev_priv = dev->dev_private;
  2529. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2530. int pipe = intel_crtc->pipe;
  2531. u32 reg, temp, transc_sel;
  2532. /* For PCH output, training FDI link */
  2533. dev_priv->display.fdi_link_train(crtc);
  2534. intel_enable_pch_pll(dev_priv, pipe);
  2535. if (HAS_PCH_CPT(dev)) {
  2536. transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
  2537. TRANSC_DPLLB_SEL;
  2538. /* Be sure PCH DPLL SEL is set */
  2539. temp = I915_READ(PCH_DPLL_SEL);
  2540. if (pipe == 0) {
  2541. temp &= ~(TRANSA_DPLLB_SEL);
  2542. temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
  2543. } else if (pipe == 1) {
  2544. temp &= ~(TRANSB_DPLLB_SEL);
  2545. temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2546. } else if (pipe == 2) {
  2547. temp &= ~(TRANSC_DPLLB_SEL);
  2548. temp |= (TRANSC_DPLL_ENABLE | transc_sel);
  2549. }
  2550. I915_WRITE(PCH_DPLL_SEL, temp);
  2551. }
  2552. /* set transcoder timing, panel must allow it */
  2553. assert_panel_unlocked(dev_priv, pipe);
  2554. I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
  2555. I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
  2556. I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
  2557. I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
  2558. I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
  2559. I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
  2560. intel_fdi_normal_train(crtc);
  2561. /* For PCH DP, enable TRANS_DP_CTL */
  2562. if (HAS_PCH_CPT(dev) &&
  2563. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2564. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2565. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
  2566. reg = TRANS_DP_CTL(pipe);
  2567. temp = I915_READ(reg);
  2568. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2569. TRANS_DP_SYNC_MASK |
  2570. TRANS_DP_BPC_MASK);
  2571. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2572. TRANS_DP_ENH_FRAMING);
  2573. temp |= bpc << 9; /* same format but at 11:9 */
  2574. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2575. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2576. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2577. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2578. switch (intel_trans_dp_port_sel(crtc)) {
  2579. case PCH_DP_B:
  2580. temp |= TRANS_DP_PORT_SEL_B;
  2581. break;
  2582. case PCH_DP_C:
  2583. temp |= TRANS_DP_PORT_SEL_C;
  2584. break;
  2585. case PCH_DP_D:
  2586. temp |= TRANS_DP_PORT_SEL_D;
  2587. break;
  2588. default:
  2589. DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
  2590. temp |= TRANS_DP_PORT_SEL_B;
  2591. break;
  2592. }
  2593. I915_WRITE(reg, temp);
  2594. }
  2595. intel_enable_transcoder(dev_priv, pipe);
  2596. }
  2597. void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
  2598. {
  2599. struct drm_i915_private *dev_priv = dev->dev_private;
  2600. int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
  2601. u32 temp;
  2602. temp = I915_READ(dslreg);
  2603. udelay(500);
  2604. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2605. /* Without this, mode sets may fail silently on FDI */
  2606. I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
  2607. udelay(250);
  2608. I915_WRITE(tc2reg, 0);
  2609. if (wait_for(I915_READ(dslreg) != temp, 5))
  2610. DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
  2611. }
  2612. }
  2613. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2614. {
  2615. struct drm_device *dev = crtc->dev;
  2616. struct drm_i915_private *dev_priv = dev->dev_private;
  2617. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2618. int pipe = intel_crtc->pipe;
  2619. int plane = intel_crtc->plane;
  2620. u32 temp;
  2621. bool is_pch_port;
  2622. if (intel_crtc->active)
  2623. return;
  2624. intel_crtc->active = true;
  2625. intel_update_watermarks(dev);
  2626. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2627. temp = I915_READ(PCH_LVDS);
  2628. if ((temp & LVDS_PORT_EN) == 0)
  2629. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2630. }
  2631. is_pch_port = intel_crtc_driving_pch(crtc);
  2632. if (is_pch_port)
  2633. ironlake_fdi_pll_enable(crtc);
  2634. else
  2635. ironlake_fdi_disable(crtc);
  2636. /* Enable panel fitting for LVDS */
  2637. if (dev_priv->pch_pf_size &&
  2638. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
  2639. /* Force use of hard-coded filter coefficients
  2640. * as some pre-programmed values are broken,
  2641. * e.g. x201.
  2642. */
  2643. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2644. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2645. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2646. }
  2647. /*
  2648. * On ILK+ LUT must be loaded before the pipe is running but with
  2649. * clocks enabled
  2650. */
  2651. intel_crtc_load_lut(crtc);
  2652. intel_enable_pipe(dev_priv, pipe, is_pch_port);
  2653. intel_enable_plane(dev_priv, plane, pipe);
  2654. if (is_pch_port)
  2655. ironlake_pch_enable(crtc);
  2656. mutex_lock(&dev->struct_mutex);
  2657. intel_update_fbc(dev);
  2658. mutex_unlock(&dev->struct_mutex);
  2659. intel_crtc_update_cursor(crtc, true);
  2660. }
  2661. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2662. {
  2663. struct drm_device *dev = crtc->dev;
  2664. struct drm_i915_private *dev_priv = dev->dev_private;
  2665. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2666. int pipe = intel_crtc->pipe;
  2667. int plane = intel_crtc->plane;
  2668. u32 reg, temp;
  2669. if (!intel_crtc->active)
  2670. return;
  2671. intel_crtc_wait_for_pending_flips(crtc);
  2672. drm_vblank_off(dev, pipe);
  2673. intel_crtc_update_cursor(crtc, false);
  2674. intel_disable_plane(dev_priv, plane, pipe);
  2675. if (dev_priv->cfb_plane == plane)
  2676. intel_disable_fbc(dev);
  2677. intel_disable_pipe(dev_priv, pipe);
  2678. /* Disable PF */
  2679. I915_WRITE(PF_CTL(pipe), 0);
  2680. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2681. ironlake_fdi_disable(crtc);
  2682. /* This is a horrible layering violation; we should be doing this in
  2683. * the connector/encoder ->prepare instead, but we don't always have
  2684. * enough information there about the config to know whether it will
  2685. * actually be necessary or just cause undesired flicker.
  2686. */
  2687. intel_disable_pch_ports(dev_priv, pipe);
  2688. intel_disable_transcoder(dev_priv, pipe);
  2689. if (HAS_PCH_CPT(dev)) {
  2690. /* disable TRANS_DP_CTL */
  2691. reg = TRANS_DP_CTL(pipe);
  2692. temp = I915_READ(reg);
  2693. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  2694. temp |= TRANS_DP_PORT_SEL_NONE;
  2695. I915_WRITE(reg, temp);
  2696. /* disable DPLL_SEL */
  2697. temp = I915_READ(PCH_DPLL_SEL);
  2698. switch (pipe) {
  2699. case 0:
  2700. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  2701. break;
  2702. case 1:
  2703. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2704. break;
  2705. case 2:
  2706. /* C shares PLL A or B */
  2707. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  2708. break;
  2709. default:
  2710. BUG(); /* wtf */
  2711. }
  2712. I915_WRITE(PCH_DPLL_SEL, temp);
  2713. }
  2714. /* disable PCH DPLL */
  2715. if (!intel_crtc->no_pll)
  2716. intel_disable_pch_pll(dev_priv, pipe);
  2717. /* Switch from PCDclk to Rawclk */
  2718. reg = FDI_RX_CTL(pipe);
  2719. temp = I915_READ(reg);
  2720. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2721. /* Disable CPU FDI TX PLL */
  2722. reg = FDI_TX_CTL(pipe);
  2723. temp = I915_READ(reg);
  2724. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2725. POSTING_READ(reg);
  2726. udelay(100);
  2727. reg = FDI_RX_CTL(pipe);
  2728. temp = I915_READ(reg);
  2729. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2730. /* Wait for the clocks to turn off. */
  2731. POSTING_READ(reg);
  2732. udelay(100);
  2733. intel_crtc->active = false;
  2734. intel_update_watermarks(dev);
  2735. mutex_lock(&dev->struct_mutex);
  2736. intel_update_fbc(dev);
  2737. intel_clear_scanline_wait(dev);
  2738. mutex_unlock(&dev->struct_mutex);
  2739. }
  2740. static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
  2741. {
  2742. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2743. int pipe = intel_crtc->pipe;
  2744. int plane = intel_crtc->plane;
  2745. /* XXX: When our outputs are all unaware of DPMS modes other than off
  2746. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  2747. */
  2748. switch (mode) {
  2749. case DRM_MODE_DPMS_ON:
  2750. case DRM_MODE_DPMS_STANDBY:
  2751. case DRM_MODE_DPMS_SUSPEND:
  2752. DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
  2753. ironlake_crtc_enable(crtc);
  2754. break;
  2755. case DRM_MODE_DPMS_OFF:
  2756. DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
  2757. ironlake_crtc_disable(crtc);
  2758. break;
  2759. }
  2760. }
  2761. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  2762. {
  2763. if (!enable && intel_crtc->overlay) {
  2764. struct drm_device *dev = intel_crtc->base.dev;
  2765. struct drm_i915_private *dev_priv = dev->dev_private;
  2766. mutex_lock(&dev->struct_mutex);
  2767. dev_priv->mm.interruptible = false;
  2768. (void) intel_overlay_switch_off(intel_crtc->overlay);
  2769. dev_priv->mm.interruptible = true;
  2770. mutex_unlock(&dev->struct_mutex);
  2771. }
  2772. /* Let userspace switch the overlay on again. In most cases userspace
  2773. * has to recompute where to put it anyway.
  2774. */
  2775. }
  2776. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  2777. {
  2778. struct drm_device *dev = crtc->dev;
  2779. struct drm_i915_private *dev_priv = dev->dev_private;
  2780. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2781. int pipe = intel_crtc->pipe;
  2782. int plane = intel_crtc->plane;
  2783. if (intel_crtc->active)
  2784. return;
  2785. intel_crtc->active = true;
  2786. intel_update_watermarks(dev);
  2787. intel_enable_pll(dev_priv, pipe);
  2788. intel_enable_pipe(dev_priv, pipe, false);
  2789. intel_enable_plane(dev_priv, plane, pipe);
  2790. intel_crtc_load_lut(crtc);
  2791. intel_update_fbc(dev);
  2792. /* Give the overlay scaler a chance to enable if it's on this pipe */
  2793. intel_crtc_dpms_overlay(intel_crtc, true);
  2794. intel_crtc_update_cursor(crtc, true);
  2795. }
  2796. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  2797. {
  2798. struct drm_device *dev = crtc->dev;
  2799. struct drm_i915_private *dev_priv = dev->dev_private;
  2800. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2801. int pipe = intel_crtc->pipe;
  2802. int plane = intel_crtc->plane;
  2803. if (!intel_crtc->active)
  2804. return;
  2805. /* Give the overlay scaler a chance to disable if it's on this pipe */
  2806. intel_crtc_wait_for_pending_flips(crtc);
  2807. drm_vblank_off(dev, pipe);
  2808. intel_crtc_dpms_overlay(intel_crtc, false);
  2809. intel_crtc_update_cursor(crtc, false);
  2810. if (dev_priv->cfb_plane == plane)
  2811. intel_disable_fbc(dev);
  2812. intel_disable_plane(dev_priv, plane, pipe);
  2813. intel_disable_pipe(dev_priv, pipe);
  2814. intel_disable_pll(dev_priv, pipe);
  2815. intel_crtc->active = false;
  2816. intel_update_fbc(dev);
  2817. intel_update_watermarks(dev);
  2818. intel_clear_scanline_wait(dev);
  2819. }
  2820. static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
  2821. {
  2822. /* XXX: When our outputs are all unaware of DPMS modes other than off
  2823. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  2824. */
  2825. switch (mode) {
  2826. case DRM_MODE_DPMS_ON:
  2827. case DRM_MODE_DPMS_STANDBY:
  2828. case DRM_MODE_DPMS_SUSPEND:
  2829. i9xx_crtc_enable(crtc);
  2830. break;
  2831. case DRM_MODE_DPMS_OFF:
  2832. i9xx_crtc_disable(crtc);
  2833. break;
  2834. }
  2835. }
  2836. /**
  2837. * Sets the power management mode of the pipe and plane.
  2838. */
  2839. static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
  2840. {
  2841. struct drm_device *dev = crtc->dev;
  2842. struct drm_i915_private *dev_priv = dev->dev_private;
  2843. struct drm_i915_master_private *master_priv;
  2844. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2845. int pipe = intel_crtc->pipe;
  2846. bool enabled;
  2847. if (intel_crtc->dpms_mode == mode)
  2848. return;
  2849. intel_crtc->dpms_mode = mode;
  2850. dev_priv->display.dpms(crtc, mode);
  2851. if (!dev->primary->master)
  2852. return;
  2853. master_priv = dev->primary->master->driver_priv;
  2854. if (!master_priv->sarea_priv)
  2855. return;
  2856. enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
  2857. switch (pipe) {
  2858. case 0:
  2859. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  2860. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  2861. break;
  2862. case 1:
  2863. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  2864. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  2865. break;
  2866. default:
  2867. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  2868. break;
  2869. }
  2870. }
  2871. static void intel_crtc_disable(struct drm_crtc *crtc)
  2872. {
  2873. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  2874. struct drm_device *dev = crtc->dev;
  2875. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
  2876. if (crtc->fb) {
  2877. mutex_lock(&dev->struct_mutex);
  2878. i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
  2879. mutex_unlock(&dev->struct_mutex);
  2880. }
  2881. }
  2882. /* Prepare for a mode set.
  2883. *
  2884. * Note we could be a lot smarter here. We need to figure out which outputs
  2885. * will be enabled, which disabled (in short, how the config will changes)
  2886. * and perform the minimum necessary steps to accomplish that, e.g. updating
  2887. * watermarks, FBC configuration, making sure PLLs are programmed correctly,
  2888. * panel fitting is in the proper state, etc.
  2889. */
  2890. static void i9xx_crtc_prepare(struct drm_crtc *crtc)
  2891. {
  2892. i9xx_crtc_disable(crtc);
  2893. }
  2894. static void i9xx_crtc_commit(struct drm_crtc *crtc)
  2895. {
  2896. i9xx_crtc_enable(crtc);
  2897. }
  2898. static void ironlake_crtc_prepare(struct drm_crtc *crtc)
  2899. {
  2900. ironlake_crtc_disable(crtc);
  2901. }
  2902. static void ironlake_crtc_commit(struct drm_crtc *crtc)
  2903. {
  2904. ironlake_crtc_enable(crtc);
  2905. }
  2906. void intel_encoder_prepare(struct drm_encoder *encoder)
  2907. {
  2908. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2909. /* lvds has its own version of prepare see intel_lvds_prepare */
  2910. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
  2911. }
  2912. void intel_encoder_commit(struct drm_encoder *encoder)
  2913. {
  2914. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2915. struct drm_device *dev = encoder->dev;
  2916. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  2917. struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  2918. /* lvds has its own version of commit see intel_lvds_commit */
  2919. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  2920. if (HAS_PCH_CPT(dev))
  2921. intel_cpt_verify_modeset(dev, intel_crtc->pipe);
  2922. }
  2923. void intel_encoder_destroy(struct drm_encoder *encoder)
  2924. {
  2925. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  2926. drm_encoder_cleanup(encoder);
  2927. kfree(intel_encoder);
  2928. }
  2929. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  2930. struct drm_display_mode *mode,
  2931. struct drm_display_mode *adjusted_mode)
  2932. {
  2933. struct drm_device *dev = crtc->dev;
  2934. if (HAS_PCH_SPLIT(dev)) {
  2935. /* FDI link clock is fixed at 2.7G */
  2936. if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
  2937. return false;
  2938. }
  2939. /* XXX some encoders set the crtcinfo, others don't.
  2940. * Obviously we need some form of conflict resolution here...
  2941. */
  2942. if (adjusted_mode->crtc_htotal == 0)
  2943. drm_mode_set_crtcinfo(adjusted_mode, 0);
  2944. return true;
  2945. }
  2946. static int i945_get_display_clock_speed(struct drm_device *dev)
  2947. {
  2948. return 400000;
  2949. }
  2950. static int i915_get_display_clock_speed(struct drm_device *dev)
  2951. {
  2952. return 333000;
  2953. }
  2954. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  2955. {
  2956. return 200000;
  2957. }
  2958. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  2959. {
  2960. u16 gcfgc = 0;
  2961. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  2962. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  2963. return 133000;
  2964. else {
  2965. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  2966. case GC_DISPLAY_CLOCK_333_MHZ:
  2967. return 333000;
  2968. default:
  2969. case GC_DISPLAY_CLOCK_190_200_MHZ:
  2970. return 190000;
  2971. }
  2972. }
  2973. }
  2974. static int i865_get_display_clock_speed(struct drm_device *dev)
  2975. {
  2976. return 266000;
  2977. }
  2978. static int i855_get_display_clock_speed(struct drm_device *dev)
  2979. {
  2980. u16 hpllcc = 0;
  2981. /* Assume that the hardware is in the high speed state. This
  2982. * should be the default.
  2983. */
  2984. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  2985. case GC_CLOCK_133_200:
  2986. case GC_CLOCK_100_200:
  2987. return 200000;
  2988. case GC_CLOCK_166_250:
  2989. return 250000;
  2990. case GC_CLOCK_100_133:
  2991. return 133000;
  2992. }
  2993. /* Shouldn't happen */
  2994. return 0;
  2995. }
  2996. static int i830_get_display_clock_speed(struct drm_device *dev)
  2997. {
  2998. return 133000;
  2999. }
  3000. struct fdi_m_n {
  3001. u32 tu;
  3002. u32 gmch_m;
  3003. u32 gmch_n;
  3004. u32 link_m;
  3005. u32 link_n;
  3006. };
  3007. static void
  3008. fdi_reduce_ratio(u32 *num, u32 *den)
  3009. {
  3010. while (*num > 0xffffff || *den > 0xffffff) {
  3011. *num >>= 1;
  3012. *den >>= 1;
  3013. }
  3014. }
  3015. static void
  3016. ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
  3017. int link_clock, struct fdi_m_n *m_n)
  3018. {
  3019. m_n->tu = 64; /* default size */
  3020. /* BUG_ON(pixel_clock > INT_MAX / 36); */
  3021. m_n->gmch_m = bits_per_pixel * pixel_clock;
  3022. m_n->gmch_n = link_clock * nlanes * 8;
  3023. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  3024. m_n->link_m = pixel_clock;
  3025. m_n->link_n = link_clock;
  3026. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  3027. }
  3028. struct intel_watermark_params {
  3029. unsigned long fifo_size;
  3030. unsigned long max_wm;
  3031. unsigned long default_wm;
  3032. unsigned long guard_size;
  3033. unsigned long cacheline_size;
  3034. };
  3035. /* Pineview has different values for various configs */
  3036. static const struct intel_watermark_params pineview_display_wm = {
  3037. PINEVIEW_DISPLAY_FIFO,
  3038. PINEVIEW_MAX_WM,
  3039. PINEVIEW_DFT_WM,
  3040. PINEVIEW_GUARD_WM,
  3041. PINEVIEW_FIFO_LINE_SIZE
  3042. };
  3043. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  3044. PINEVIEW_DISPLAY_FIFO,
  3045. PINEVIEW_MAX_WM,
  3046. PINEVIEW_DFT_HPLLOFF_WM,
  3047. PINEVIEW_GUARD_WM,
  3048. PINEVIEW_FIFO_LINE_SIZE
  3049. };
  3050. static const struct intel_watermark_params pineview_cursor_wm = {
  3051. PINEVIEW_CURSOR_FIFO,
  3052. PINEVIEW_CURSOR_MAX_WM,
  3053. PINEVIEW_CURSOR_DFT_WM,
  3054. PINEVIEW_CURSOR_GUARD_WM,
  3055. PINEVIEW_FIFO_LINE_SIZE,
  3056. };
  3057. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  3058. PINEVIEW_CURSOR_FIFO,
  3059. PINEVIEW_CURSOR_MAX_WM,
  3060. PINEVIEW_CURSOR_DFT_WM,
  3061. PINEVIEW_CURSOR_GUARD_WM,
  3062. PINEVIEW_FIFO_LINE_SIZE
  3063. };
  3064. static const struct intel_watermark_params g4x_wm_info = {
  3065. G4X_FIFO_SIZE,
  3066. G4X_MAX_WM,
  3067. G4X_MAX_WM,
  3068. 2,
  3069. G4X_FIFO_LINE_SIZE,
  3070. };
  3071. static const struct intel_watermark_params g4x_cursor_wm_info = {
  3072. I965_CURSOR_FIFO,
  3073. I965_CURSOR_MAX_WM,
  3074. I965_CURSOR_DFT_WM,
  3075. 2,
  3076. G4X_FIFO_LINE_SIZE,
  3077. };
  3078. static const struct intel_watermark_params i965_cursor_wm_info = {
  3079. I965_CURSOR_FIFO,
  3080. I965_CURSOR_MAX_WM,
  3081. I965_CURSOR_DFT_WM,
  3082. 2,
  3083. I915_FIFO_LINE_SIZE,
  3084. };
  3085. static const struct intel_watermark_params i945_wm_info = {
  3086. I945_FIFO_SIZE,
  3087. I915_MAX_WM,
  3088. 1,
  3089. 2,
  3090. I915_FIFO_LINE_SIZE
  3091. };
  3092. static const struct intel_watermark_params i915_wm_info = {
  3093. I915_FIFO_SIZE,
  3094. I915_MAX_WM,
  3095. 1,
  3096. 2,
  3097. I915_FIFO_LINE_SIZE
  3098. };
  3099. static const struct intel_watermark_params i855_wm_info = {
  3100. I855GM_FIFO_SIZE,
  3101. I915_MAX_WM,
  3102. 1,
  3103. 2,
  3104. I830_FIFO_LINE_SIZE
  3105. };
  3106. static const struct intel_watermark_params i830_wm_info = {
  3107. I830_FIFO_SIZE,
  3108. I915_MAX_WM,
  3109. 1,
  3110. 2,
  3111. I830_FIFO_LINE_SIZE
  3112. };
  3113. static const struct intel_watermark_params ironlake_display_wm_info = {
  3114. ILK_DISPLAY_FIFO,
  3115. ILK_DISPLAY_MAXWM,
  3116. ILK_DISPLAY_DFTWM,
  3117. 2,
  3118. ILK_FIFO_LINE_SIZE
  3119. };
  3120. static const struct intel_watermark_params ironlake_cursor_wm_info = {
  3121. ILK_CURSOR_FIFO,
  3122. ILK_CURSOR_MAXWM,
  3123. ILK_CURSOR_DFTWM,
  3124. 2,
  3125. ILK_FIFO_LINE_SIZE
  3126. };
  3127. static const struct intel_watermark_params ironlake_display_srwm_info = {
  3128. ILK_DISPLAY_SR_FIFO,
  3129. ILK_DISPLAY_MAX_SRWM,
  3130. ILK_DISPLAY_DFT_SRWM,
  3131. 2,
  3132. ILK_FIFO_LINE_SIZE
  3133. };
  3134. static const struct intel_watermark_params ironlake_cursor_srwm_info = {
  3135. ILK_CURSOR_SR_FIFO,
  3136. ILK_CURSOR_MAX_SRWM,
  3137. ILK_CURSOR_DFT_SRWM,
  3138. 2,
  3139. ILK_FIFO_LINE_SIZE
  3140. };
  3141. static const struct intel_watermark_params sandybridge_display_wm_info = {
  3142. SNB_DISPLAY_FIFO,
  3143. SNB_DISPLAY_MAXWM,
  3144. SNB_DISPLAY_DFTWM,
  3145. 2,
  3146. SNB_FIFO_LINE_SIZE
  3147. };
  3148. static const struct intel_watermark_params sandybridge_cursor_wm_info = {
  3149. SNB_CURSOR_FIFO,
  3150. SNB_CURSOR_MAXWM,
  3151. SNB_CURSOR_DFTWM,
  3152. 2,
  3153. SNB_FIFO_LINE_SIZE
  3154. };
  3155. static const struct intel_watermark_params sandybridge_display_srwm_info = {
  3156. SNB_DISPLAY_SR_FIFO,
  3157. SNB_DISPLAY_MAX_SRWM,
  3158. SNB_DISPLAY_DFT_SRWM,
  3159. 2,
  3160. SNB_FIFO_LINE_SIZE
  3161. };
  3162. static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
  3163. SNB_CURSOR_SR_FIFO,
  3164. SNB_CURSOR_MAX_SRWM,
  3165. SNB_CURSOR_DFT_SRWM,
  3166. 2,
  3167. SNB_FIFO_LINE_SIZE
  3168. };
  3169. /**
  3170. * intel_calculate_wm - calculate watermark level
  3171. * @clock_in_khz: pixel clock
  3172. * @wm: chip FIFO params
  3173. * @pixel_size: display pixel size
  3174. * @latency_ns: memory latency for the platform
  3175. *
  3176. * Calculate the watermark level (the level at which the display plane will
  3177. * start fetching from memory again). Each chip has a different display
  3178. * FIFO size and allocation, so the caller needs to figure that out and pass
  3179. * in the correct intel_watermark_params structure.
  3180. *
  3181. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  3182. * on the pixel size. When it reaches the watermark level, it'll start
  3183. * fetching FIFO line sized based chunks from memory until the FIFO fills
  3184. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  3185. * will occur, and a display engine hang could result.
  3186. */
  3187. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  3188. const struct intel_watermark_params *wm,
  3189. int fifo_size,
  3190. int pixel_size,
  3191. unsigned long latency_ns)
  3192. {
  3193. long entries_required, wm_size;
  3194. /*
  3195. * Note: we need to make sure we don't overflow for various clock &
  3196. * latency values.
  3197. * clocks go from a few thousand to several hundred thousand.
  3198. * latency is usually a few thousand
  3199. */
  3200. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  3201. 1000;
  3202. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  3203. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  3204. wm_size = fifo_size - (entries_required + wm->guard_size);
  3205. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  3206. /* Don't promote wm_size to unsigned... */
  3207. if (wm_size > (long)wm->max_wm)
  3208. wm_size = wm->max_wm;
  3209. if (wm_size <= 0)
  3210. wm_size = wm->default_wm;
  3211. return wm_size;
  3212. }
  3213. struct cxsr_latency {
  3214. int is_desktop;
  3215. int is_ddr3;
  3216. unsigned long fsb_freq;
  3217. unsigned long mem_freq;
  3218. unsigned long display_sr;
  3219. unsigned long display_hpll_disable;
  3220. unsigned long cursor_sr;
  3221. unsigned long cursor_hpll_disable;
  3222. };
  3223. static const struct cxsr_latency cxsr_latency_table[] = {
  3224. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  3225. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  3226. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  3227. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  3228. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  3229. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  3230. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  3231. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  3232. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  3233. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  3234. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  3235. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  3236. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  3237. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  3238. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  3239. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  3240. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  3241. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  3242. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  3243. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  3244. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  3245. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  3246. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  3247. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  3248. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  3249. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  3250. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  3251. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  3252. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  3253. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  3254. };
  3255. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  3256. int is_ddr3,
  3257. int fsb,
  3258. int mem)
  3259. {
  3260. const struct cxsr_latency *latency;
  3261. int i;
  3262. if (fsb == 0 || mem == 0)
  3263. return NULL;
  3264. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  3265. latency = &cxsr_latency_table[i];
  3266. if (is_desktop == latency->is_desktop &&
  3267. is_ddr3 == latency->is_ddr3 &&
  3268. fsb == latency->fsb_freq && mem == latency->mem_freq)
  3269. return latency;
  3270. }
  3271. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  3272. return NULL;
  3273. }
  3274. static void pineview_disable_cxsr(struct drm_device *dev)
  3275. {
  3276. struct drm_i915_private *dev_priv = dev->dev_private;
  3277. /* deactivate cxsr */
  3278. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  3279. }
  3280. /*
  3281. * Latency for FIFO fetches is dependent on several factors:
  3282. * - memory configuration (speed, channels)
  3283. * - chipset
  3284. * - current MCH state
  3285. * It can be fairly high in some situations, so here we assume a fairly
  3286. * pessimal value. It's a tradeoff between extra memory fetches (if we
  3287. * set this value too high, the FIFO will fetch frequently to stay full)
  3288. * and power consumption (set it too low to save power and we might see
  3289. * FIFO underruns and display "flicker").
  3290. *
  3291. * A value of 5us seems to be a good balance; safe for very low end
  3292. * platforms but not overly aggressive on lower latency configs.
  3293. */
  3294. static const int latency_ns = 5000;
  3295. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  3296. {
  3297. struct drm_i915_private *dev_priv = dev->dev_private;
  3298. uint32_t dsparb = I915_READ(DSPARB);
  3299. int size;
  3300. size = dsparb & 0x7f;
  3301. if (plane)
  3302. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  3303. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3304. plane ? "B" : "A", size);
  3305. return size;
  3306. }
  3307. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  3308. {
  3309. struct drm_i915_private *dev_priv = dev->dev_private;
  3310. uint32_t dsparb = I915_READ(DSPARB);
  3311. int size;
  3312. size = dsparb & 0x1ff;
  3313. if (plane)
  3314. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  3315. size >>= 1; /* Convert to cachelines */
  3316. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3317. plane ? "B" : "A", size);
  3318. return size;
  3319. }
  3320. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  3321. {
  3322. struct drm_i915_private *dev_priv = dev->dev_private;
  3323. uint32_t dsparb = I915_READ(DSPARB);
  3324. int size;
  3325. size = dsparb & 0x7f;
  3326. size >>= 2; /* Convert to cachelines */
  3327. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3328. plane ? "B" : "A",
  3329. size);
  3330. return size;
  3331. }
  3332. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  3333. {
  3334. struct drm_i915_private *dev_priv = dev->dev_private;
  3335. uint32_t dsparb = I915_READ(DSPARB);
  3336. int size;
  3337. size = dsparb & 0x7f;
  3338. size >>= 1; /* Convert to cachelines */
  3339. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3340. plane ? "B" : "A", size);
  3341. return size;
  3342. }
  3343. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  3344. {
  3345. struct drm_crtc *crtc, *enabled = NULL;
  3346. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3347. if (crtc->enabled && crtc->fb) {
  3348. if (enabled)
  3349. return NULL;
  3350. enabled = crtc;
  3351. }
  3352. }
  3353. return enabled;
  3354. }
  3355. static void pineview_update_wm(struct drm_device *dev)
  3356. {
  3357. struct drm_i915_private *dev_priv = dev->dev_private;
  3358. struct drm_crtc *crtc;
  3359. const struct cxsr_latency *latency;
  3360. u32 reg;
  3361. unsigned long wm;
  3362. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  3363. dev_priv->fsb_freq, dev_priv->mem_freq);
  3364. if (!latency) {
  3365. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  3366. pineview_disable_cxsr(dev);
  3367. return;
  3368. }
  3369. crtc = single_enabled_crtc(dev);
  3370. if (crtc) {
  3371. int clock = crtc->mode.clock;
  3372. int pixel_size = crtc->fb->bits_per_pixel / 8;
  3373. /* Display SR */
  3374. wm = intel_calculate_wm(clock, &pineview_display_wm,
  3375. pineview_display_wm.fifo_size,
  3376. pixel_size, latency->display_sr);
  3377. reg = I915_READ(DSPFW1);
  3378. reg &= ~DSPFW_SR_MASK;
  3379. reg |= wm << DSPFW_SR_SHIFT;
  3380. I915_WRITE(DSPFW1, reg);
  3381. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  3382. /* cursor SR */
  3383. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  3384. pineview_display_wm.fifo_size,
  3385. pixel_size, latency->cursor_sr);
  3386. reg = I915_READ(DSPFW3);
  3387. reg &= ~DSPFW_CURSOR_SR_MASK;
  3388. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  3389. I915_WRITE(DSPFW3, reg);
  3390. /* Display HPLL off SR */
  3391. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  3392. pineview_display_hplloff_wm.fifo_size,
  3393. pixel_size, latency->display_hpll_disable);
  3394. reg = I915_READ(DSPFW3);
  3395. reg &= ~DSPFW_HPLL_SR_MASK;
  3396. reg |= wm & DSPFW_HPLL_SR_MASK;
  3397. I915_WRITE(DSPFW3, reg);
  3398. /* cursor HPLL off SR */
  3399. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  3400. pineview_display_hplloff_wm.fifo_size,
  3401. pixel_size, latency->cursor_hpll_disable);
  3402. reg = I915_READ(DSPFW3);
  3403. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  3404. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  3405. I915_WRITE(DSPFW3, reg);
  3406. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  3407. /* activate cxsr */
  3408. I915_WRITE(DSPFW3,
  3409. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  3410. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  3411. } else {
  3412. pineview_disable_cxsr(dev);
  3413. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  3414. }
  3415. }
  3416. static bool g4x_compute_wm0(struct drm_device *dev,
  3417. int plane,
  3418. const struct intel_watermark_params *display,
  3419. int display_latency_ns,
  3420. const struct intel_watermark_params *cursor,
  3421. int cursor_latency_ns,
  3422. int *plane_wm,
  3423. int *cursor_wm)
  3424. {
  3425. struct drm_crtc *crtc;
  3426. int htotal, hdisplay, clock, pixel_size;
  3427. int line_time_us, line_count;
  3428. int entries, tlb_miss;
  3429. crtc = intel_get_crtc_for_plane(dev, plane);
  3430. if (crtc->fb == NULL || !crtc->enabled) {
  3431. *cursor_wm = cursor->guard_size;
  3432. *plane_wm = display->guard_size;
  3433. return false;
  3434. }
  3435. htotal = crtc->mode.htotal;
  3436. hdisplay = crtc->mode.hdisplay;
  3437. clock = crtc->mode.clock;
  3438. pixel_size = crtc->fb->bits_per_pixel / 8;
  3439. /* Use the small buffer method to calculate plane watermark */
  3440. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  3441. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  3442. if (tlb_miss > 0)
  3443. entries += tlb_miss;
  3444. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  3445. *plane_wm = entries + display->guard_size;
  3446. if (*plane_wm > (int)display->max_wm)
  3447. *plane_wm = display->max_wm;
  3448. /* Use the large buffer method to calculate cursor watermark */
  3449. line_time_us = ((htotal * 1000) / clock);
  3450. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  3451. entries = line_count * 64 * pixel_size;
  3452. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  3453. if (tlb_miss > 0)
  3454. entries += tlb_miss;
  3455. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3456. *cursor_wm = entries + cursor->guard_size;
  3457. if (*cursor_wm > (int)cursor->max_wm)
  3458. *cursor_wm = (int)cursor->max_wm;
  3459. return true;
  3460. }
  3461. /*
  3462. * Check the wm result.
  3463. *
  3464. * If any calculated watermark values is larger than the maximum value that
  3465. * can be programmed into the associated watermark register, that watermark
  3466. * must be disabled.
  3467. */
  3468. static bool g4x_check_srwm(struct drm_device *dev,
  3469. int display_wm, int cursor_wm,
  3470. const struct intel_watermark_params *display,
  3471. const struct intel_watermark_params *cursor)
  3472. {
  3473. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  3474. display_wm, cursor_wm);
  3475. if (display_wm > display->max_wm) {
  3476. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  3477. display_wm, display->max_wm);
  3478. return false;
  3479. }
  3480. if (cursor_wm > cursor->max_wm) {
  3481. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  3482. cursor_wm, cursor->max_wm);
  3483. return false;
  3484. }
  3485. if (!(display_wm || cursor_wm)) {
  3486. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  3487. return false;
  3488. }
  3489. return true;
  3490. }
  3491. static bool g4x_compute_srwm(struct drm_device *dev,
  3492. int plane,
  3493. int latency_ns,
  3494. const struct intel_watermark_params *display,
  3495. const struct intel_watermark_params *cursor,
  3496. int *display_wm, int *cursor_wm)
  3497. {
  3498. struct drm_crtc *crtc;
  3499. int hdisplay, htotal, pixel_size, clock;
  3500. unsigned long line_time_us;
  3501. int line_count, line_size;
  3502. int small, large;
  3503. int entries;
  3504. if (!latency_ns) {
  3505. *display_wm = *cursor_wm = 0;
  3506. return false;
  3507. }
  3508. crtc = intel_get_crtc_for_plane(dev, plane);
  3509. hdisplay = crtc->mode.hdisplay;
  3510. htotal = crtc->mode.htotal;
  3511. clock = crtc->mode.clock;
  3512. pixel_size = crtc->fb->bits_per_pixel / 8;
  3513. line_time_us = (htotal * 1000) / clock;
  3514. line_count = (latency_ns / line_time_us + 1000) / 1000;
  3515. line_size = hdisplay * pixel_size;
  3516. /* Use the minimum of the small and large buffer method for primary */
  3517. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  3518. large = line_count * line_size;
  3519. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  3520. *display_wm = entries + display->guard_size;
  3521. /* calculate the self-refresh watermark for display cursor */
  3522. entries = line_count * pixel_size * 64;
  3523. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3524. *cursor_wm = entries + cursor->guard_size;
  3525. return g4x_check_srwm(dev,
  3526. *display_wm, *cursor_wm,
  3527. display, cursor);
  3528. }
  3529. #define single_plane_enabled(mask) is_power_of_2(mask)
  3530. static void g4x_update_wm(struct drm_device *dev)
  3531. {
  3532. static const int sr_latency_ns = 12000;
  3533. struct drm_i915_private *dev_priv = dev->dev_private;
  3534. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  3535. int plane_sr, cursor_sr;
  3536. unsigned int enabled = 0;
  3537. if (g4x_compute_wm0(dev, 0,
  3538. &g4x_wm_info, latency_ns,
  3539. &g4x_cursor_wm_info, latency_ns,
  3540. &planea_wm, &cursora_wm))
  3541. enabled |= 1;
  3542. if (g4x_compute_wm0(dev, 1,
  3543. &g4x_wm_info, latency_ns,
  3544. &g4x_cursor_wm_info, latency_ns,
  3545. &planeb_wm, &cursorb_wm))
  3546. enabled |= 2;
  3547. plane_sr = cursor_sr = 0;
  3548. if (single_plane_enabled(enabled) &&
  3549. g4x_compute_srwm(dev, ffs(enabled) - 1,
  3550. sr_latency_ns,
  3551. &g4x_wm_info,
  3552. &g4x_cursor_wm_info,
  3553. &plane_sr, &cursor_sr))
  3554. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  3555. else
  3556. I915_WRITE(FW_BLC_SELF,
  3557. I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
  3558. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  3559. planea_wm, cursora_wm,
  3560. planeb_wm, cursorb_wm,
  3561. plane_sr, cursor_sr);
  3562. I915_WRITE(DSPFW1,
  3563. (plane_sr << DSPFW_SR_SHIFT) |
  3564. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  3565. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  3566. planea_wm);
  3567. I915_WRITE(DSPFW2,
  3568. (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
  3569. (cursora_wm << DSPFW_CURSORA_SHIFT));
  3570. /* HPLL off in SR has some issues on G4x... disable it */
  3571. I915_WRITE(DSPFW3,
  3572. (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
  3573. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  3574. }
  3575. static void i965_update_wm(struct drm_device *dev)
  3576. {
  3577. struct drm_i915_private *dev_priv = dev->dev_private;
  3578. struct drm_crtc *crtc;
  3579. int srwm = 1;
  3580. int cursor_sr = 16;
  3581. /* Calc sr entries for one plane configs */
  3582. crtc = single_enabled_crtc(dev);
  3583. if (crtc) {
  3584. /* self-refresh has much higher latency */
  3585. static const int sr_latency_ns = 12000;
  3586. int clock = crtc->mode.clock;
  3587. int htotal = crtc->mode.htotal;
  3588. int hdisplay = crtc->mode.hdisplay;
  3589. int pixel_size = crtc->fb->bits_per_pixel / 8;
  3590. unsigned long line_time_us;
  3591. int entries;
  3592. line_time_us = ((htotal * 1000) / clock);
  3593. /* Use ns/us then divide to preserve precision */
  3594. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3595. pixel_size * hdisplay;
  3596. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  3597. srwm = I965_FIFO_SIZE - entries;
  3598. if (srwm < 0)
  3599. srwm = 1;
  3600. srwm &= 0x1ff;
  3601. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  3602. entries, srwm);
  3603. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3604. pixel_size * 64;
  3605. entries = DIV_ROUND_UP(entries,
  3606. i965_cursor_wm_info.cacheline_size);
  3607. cursor_sr = i965_cursor_wm_info.fifo_size -
  3608. (entries + i965_cursor_wm_info.guard_size);
  3609. if (cursor_sr > i965_cursor_wm_info.max_wm)
  3610. cursor_sr = i965_cursor_wm_info.max_wm;
  3611. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  3612. "cursor %d\n", srwm, cursor_sr);
  3613. if (IS_CRESTLINE(dev))
  3614. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  3615. } else {
  3616. /* Turn off self refresh if both pipes are enabled */
  3617. if (IS_CRESTLINE(dev))
  3618. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  3619. & ~FW_BLC_SELF_EN);
  3620. }
  3621. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  3622. srwm);
  3623. /* 965 has limitations... */
  3624. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  3625. (8 << 16) | (8 << 8) | (8 << 0));
  3626. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  3627. /* update cursor SR watermark */
  3628. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  3629. }
  3630. static void i9xx_update_wm(struct drm_device *dev)
  3631. {
  3632. struct drm_i915_private *dev_priv = dev->dev_private;
  3633. const struct intel_watermark_params *wm_info;
  3634. uint32_t fwater_lo;
  3635. uint32_t fwater_hi;
  3636. int cwm, srwm = 1;
  3637. int fifo_size;
  3638. int planea_wm, planeb_wm;
  3639. struct drm_crtc *crtc, *enabled = NULL;
  3640. if (IS_I945GM(dev))
  3641. wm_info = &i945_wm_info;
  3642. else if (!IS_GEN2(dev))
  3643. wm_info = &i915_wm_info;
  3644. else
  3645. wm_info = &i855_wm_info;
  3646. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  3647. crtc = intel_get_crtc_for_plane(dev, 0);
  3648. if (crtc->enabled && crtc->fb) {
  3649. planea_wm = intel_calculate_wm(crtc->mode.clock,
  3650. wm_info, fifo_size,
  3651. crtc->fb->bits_per_pixel / 8,
  3652. latency_ns);
  3653. enabled = crtc;
  3654. } else
  3655. planea_wm = fifo_size - wm_info->guard_size;
  3656. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  3657. crtc = intel_get_crtc_for_plane(dev, 1);
  3658. if (crtc->enabled && crtc->fb) {
  3659. planeb_wm = intel_calculate_wm(crtc->mode.clock,
  3660. wm_info, fifo_size,
  3661. crtc->fb->bits_per_pixel / 8,
  3662. latency_ns);
  3663. if (enabled == NULL)
  3664. enabled = crtc;
  3665. else
  3666. enabled = NULL;
  3667. } else
  3668. planeb_wm = fifo_size - wm_info->guard_size;
  3669. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  3670. /*
  3671. * Overlay gets an aggressive default since video jitter is bad.
  3672. */
  3673. cwm = 2;
  3674. /* Play safe and disable self-refresh before adjusting watermarks. */
  3675. if (IS_I945G(dev) || IS_I945GM(dev))
  3676. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
  3677. else if (IS_I915GM(dev))
  3678. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  3679. /* Calc sr entries for one plane configs */
  3680. if (HAS_FW_BLC(dev) && enabled) {
  3681. /* self-refresh has much higher latency */
  3682. static const int sr_latency_ns = 6000;
  3683. int clock = enabled->mode.clock;
  3684. int htotal = enabled->mode.htotal;
  3685. int hdisplay = enabled->mode.hdisplay;
  3686. int pixel_size = enabled->fb->bits_per_pixel / 8;
  3687. unsigned long line_time_us;
  3688. int entries;
  3689. line_time_us = (htotal * 1000) / clock;
  3690. /* Use ns/us then divide to preserve precision */
  3691. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3692. pixel_size * hdisplay;
  3693. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  3694. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  3695. srwm = wm_info->fifo_size - entries;
  3696. if (srwm < 0)
  3697. srwm = 1;
  3698. if (IS_I945G(dev) || IS_I945GM(dev))
  3699. I915_WRITE(FW_BLC_SELF,
  3700. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  3701. else if (IS_I915GM(dev))
  3702. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  3703. }
  3704. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  3705. planea_wm, planeb_wm, cwm, srwm);
  3706. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  3707. fwater_hi = (cwm & 0x1f);
  3708. /* Set request length to 8 cachelines per fetch */
  3709. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  3710. fwater_hi = fwater_hi | (1 << 8);
  3711. I915_WRITE(FW_BLC, fwater_lo);
  3712. I915_WRITE(FW_BLC2, fwater_hi);
  3713. if (HAS_FW_BLC(dev)) {
  3714. if (enabled) {
  3715. if (IS_I945G(dev) || IS_I945GM(dev))
  3716. I915_WRITE(FW_BLC_SELF,
  3717. FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  3718. else if (IS_I915GM(dev))
  3719. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  3720. DRM_DEBUG_KMS("memory self refresh enabled\n");
  3721. } else
  3722. DRM_DEBUG_KMS("memory self refresh disabled\n");
  3723. }
  3724. }
  3725. static void i830_update_wm(struct drm_device *dev)
  3726. {
  3727. struct drm_i915_private *dev_priv = dev->dev_private;
  3728. struct drm_crtc *crtc;
  3729. uint32_t fwater_lo;
  3730. int planea_wm;
  3731. crtc = single_enabled_crtc(dev);
  3732. if (crtc == NULL)
  3733. return;
  3734. planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
  3735. dev_priv->display.get_fifo_size(dev, 0),
  3736. crtc->fb->bits_per_pixel / 8,
  3737. latency_ns);
  3738. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  3739. fwater_lo |= (3<<8) | planea_wm;
  3740. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  3741. I915_WRITE(FW_BLC, fwater_lo);
  3742. }
  3743. #define ILK_LP0_PLANE_LATENCY 700
  3744. #define ILK_LP0_CURSOR_LATENCY 1300
  3745. /*
  3746. * Check the wm result.
  3747. *
  3748. * If any calculated watermark values is larger than the maximum value that
  3749. * can be programmed into the associated watermark register, that watermark
  3750. * must be disabled.
  3751. */
  3752. static bool ironlake_check_srwm(struct drm_device *dev, int level,
  3753. int fbc_wm, int display_wm, int cursor_wm,
  3754. const struct intel_watermark_params *display,
  3755. const struct intel_watermark_params *cursor)
  3756. {
  3757. struct drm_i915_private *dev_priv = dev->dev_private;
  3758. DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
  3759. " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
  3760. if (fbc_wm > SNB_FBC_MAX_SRWM) {
  3761. DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
  3762. fbc_wm, SNB_FBC_MAX_SRWM, level);
  3763. /* fbc has it's own way to disable FBC WM */
  3764. I915_WRITE(DISP_ARB_CTL,
  3765. I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
  3766. return false;
  3767. }
  3768. if (display_wm > display->max_wm) {
  3769. DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
  3770. display_wm, SNB_DISPLAY_MAX_SRWM, level);
  3771. return false;
  3772. }
  3773. if (cursor_wm > cursor->max_wm) {
  3774. DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
  3775. cursor_wm, SNB_CURSOR_MAX_SRWM, level);
  3776. return false;
  3777. }
  3778. if (!(fbc_wm || display_wm || cursor_wm)) {
  3779. DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
  3780. return false;
  3781. }
  3782. return true;
  3783. }
  3784. /*
  3785. * Compute watermark values of WM[1-3],
  3786. */
  3787. static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
  3788. int latency_ns,
  3789. const struct intel_watermark_params *display,
  3790. const struct intel_watermark_params *cursor,
  3791. int *fbc_wm, int *display_wm, int *cursor_wm)
  3792. {
  3793. struct drm_crtc *crtc;
  3794. unsigned long line_time_us;
  3795. int hdisplay, htotal, pixel_size, clock;
  3796. int line_count, line_size;
  3797. int small, large;
  3798. int entries;
  3799. if (!latency_ns) {
  3800. *fbc_wm = *display_wm = *cursor_wm = 0;
  3801. return false;
  3802. }
  3803. crtc = intel_get_crtc_for_plane(dev, plane);
  3804. hdisplay = crtc->mode.hdisplay;
  3805. htotal = crtc->mode.htotal;
  3806. clock = crtc->mode.clock;
  3807. pixel_size = crtc->fb->bits_per_pixel / 8;
  3808. line_time_us = (htotal * 1000) / clock;
  3809. line_count = (latency_ns / line_time_us + 1000) / 1000;
  3810. line_size = hdisplay * pixel_size;
  3811. /* Use the minimum of the small and large buffer method for primary */
  3812. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  3813. large = line_count * line_size;
  3814. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  3815. *display_wm = entries + display->guard_size;
  3816. /*
  3817. * Spec says:
  3818. * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
  3819. */
  3820. *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
  3821. /* calculate the self-refresh watermark for display cursor */
  3822. entries = line_count * pixel_size * 64;
  3823. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3824. *cursor_wm = entries + cursor->guard_size;
  3825. return ironlake_check_srwm(dev, level,
  3826. *fbc_wm, *display_wm, *cursor_wm,
  3827. display, cursor);
  3828. }
  3829. static void ironlake_update_wm(struct drm_device *dev)
  3830. {
  3831. struct drm_i915_private *dev_priv = dev->dev_private;
  3832. int fbc_wm, plane_wm, cursor_wm;
  3833. unsigned int enabled;
  3834. enabled = 0;
  3835. if (g4x_compute_wm0(dev, 0,
  3836. &ironlake_display_wm_info,
  3837. ILK_LP0_PLANE_LATENCY,
  3838. &ironlake_cursor_wm_info,
  3839. ILK_LP0_CURSOR_LATENCY,
  3840. &plane_wm, &cursor_wm)) {
  3841. I915_WRITE(WM0_PIPEA_ILK,
  3842. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  3843. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  3844. " plane %d, " "cursor: %d\n",
  3845. plane_wm, cursor_wm);
  3846. enabled |= 1;
  3847. }
  3848. if (g4x_compute_wm0(dev, 1,
  3849. &ironlake_display_wm_info,
  3850. ILK_LP0_PLANE_LATENCY,
  3851. &ironlake_cursor_wm_info,
  3852. ILK_LP0_CURSOR_LATENCY,
  3853. &plane_wm, &cursor_wm)) {
  3854. I915_WRITE(WM0_PIPEB_ILK,
  3855. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  3856. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  3857. " plane %d, cursor: %d\n",
  3858. plane_wm, cursor_wm);
  3859. enabled |= 2;
  3860. }
  3861. /*
  3862. * Calculate and update the self-refresh watermark only when one
  3863. * display plane is used.
  3864. */
  3865. I915_WRITE(WM3_LP_ILK, 0);
  3866. I915_WRITE(WM2_LP_ILK, 0);
  3867. I915_WRITE(WM1_LP_ILK, 0);
  3868. if (!single_plane_enabled(enabled))
  3869. return;
  3870. enabled = ffs(enabled) - 1;
  3871. /* WM1 */
  3872. if (!ironlake_compute_srwm(dev, 1, enabled,
  3873. ILK_READ_WM1_LATENCY() * 500,
  3874. &ironlake_display_srwm_info,
  3875. &ironlake_cursor_srwm_info,
  3876. &fbc_wm, &plane_wm, &cursor_wm))
  3877. return;
  3878. I915_WRITE(WM1_LP_ILK,
  3879. WM1_LP_SR_EN |
  3880. (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3881. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3882. (plane_wm << WM1_LP_SR_SHIFT) |
  3883. cursor_wm);
  3884. /* WM2 */
  3885. if (!ironlake_compute_srwm(dev, 2, enabled,
  3886. ILK_READ_WM2_LATENCY() * 500,
  3887. &ironlake_display_srwm_info,
  3888. &ironlake_cursor_srwm_info,
  3889. &fbc_wm, &plane_wm, &cursor_wm))
  3890. return;
  3891. I915_WRITE(WM2_LP_ILK,
  3892. WM2_LP_EN |
  3893. (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3894. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3895. (plane_wm << WM1_LP_SR_SHIFT) |
  3896. cursor_wm);
  3897. /*
  3898. * WM3 is unsupported on ILK, probably because we don't have latency
  3899. * data for that power state
  3900. */
  3901. }
  3902. void sandybridge_update_wm(struct drm_device *dev)
  3903. {
  3904. struct drm_i915_private *dev_priv = dev->dev_private;
  3905. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  3906. int fbc_wm, plane_wm, cursor_wm;
  3907. unsigned int enabled;
  3908. enabled = 0;
  3909. if (g4x_compute_wm0(dev, 0,
  3910. &sandybridge_display_wm_info, latency,
  3911. &sandybridge_cursor_wm_info, latency,
  3912. &plane_wm, &cursor_wm)) {
  3913. I915_WRITE(WM0_PIPEA_ILK,
  3914. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  3915. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  3916. " plane %d, " "cursor: %d\n",
  3917. plane_wm, cursor_wm);
  3918. enabled |= 1;
  3919. }
  3920. if (g4x_compute_wm0(dev, 1,
  3921. &sandybridge_display_wm_info, latency,
  3922. &sandybridge_cursor_wm_info, latency,
  3923. &plane_wm, &cursor_wm)) {
  3924. I915_WRITE(WM0_PIPEB_ILK,
  3925. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  3926. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  3927. " plane %d, cursor: %d\n",
  3928. plane_wm, cursor_wm);
  3929. enabled |= 2;
  3930. }
  3931. /* IVB has 3 pipes */
  3932. if (IS_IVYBRIDGE(dev) &&
  3933. g4x_compute_wm0(dev, 2,
  3934. &sandybridge_display_wm_info, latency,
  3935. &sandybridge_cursor_wm_info, latency,
  3936. &plane_wm, &cursor_wm)) {
  3937. I915_WRITE(WM0_PIPEC_IVB,
  3938. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  3939. DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
  3940. " plane %d, cursor: %d\n",
  3941. plane_wm, cursor_wm);
  3942. enabled |= 3;
  3943. }
  3944. /*
  3945. * Calculate and update the self-refresh watermark only when one
  3946. * display plane is used.
  3947. *
  3948. * SNB support 3 levels of watermark.
  3949. *
  3950. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  3951. * and disabled in the descending order
  3952. *
  3953. */
  3954. I915_WRITE(WM3_LP_ILK, 0);
  3955. I915_WRITE(WM2_LP_ILK, 0);
  3956. I915_WRITE(WM1_LP_ILK, 0);
  3957. if (!single_plane_enabled(enabled) ||
  3958. dev_priv->sprite_scaling_enabled)
  3959. return;
  3960. enabled = ffs(enabled) - 1;
  3961. /* WM1 */
  3962. if (!ironlake_compute_srwm(dev, 1, enabled,
  3963. SNB_READ_WM1_LATENCY() * 500,
  3964. &sandybridge_display_srwm_info,
  3965. &sandybridge_cursor_srwm_info,
  3966. &fbc_wm, &plane_wm, &cursor_wm))
  3967. return;
  3968. I915_WRITE(WM1_LP_ILK,
  3969. WM1_LP_SR_EN |
  3970. (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3971. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3972. (plane_wm << WM1_LP_SR_SHIFT) |
  3973. cursor_wm);
  3974. /* WM2 */
  3975. if (!ironlake_compute_srwm(dev, 2, enabled,
  3976. SNB_READ_WM2_LATENCY() * 500,
  3977. &sandybridge_display_srwm_info,
  3978. &sandybridge_cursor_srwm_info,
  3979. &fbc_wm, &plane_wm, &cursor_wm))
  3980. return;
  3981. I915_WRITE(WM2_LP_ILK,
  3982. WM2_LP_EN |
  3983. (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3984. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3985. (plane_wm << WM1_LP_SR_SHIFT) |
  3986. cursor_wm);
  3987. /* WM3 */
  3988. if (!ironlake_compute_srwm(dev, 3, enabled,
  3989. SNB_READ_WM3_LATENCY() * 500,
  3990. &sandybridge_display_srwm_info,
  3991. &sandybridge_cursor_srwm_info,
  3992. &fbc_wm, &plane_wm, &cursor_wm))
  3993. return;
  3994. I915_WRITE(WM3_LP_ILK,
  3995. WM3_LP_EN |
  3996. (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3997. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3998. (plane_wm << WM1_LP_SR_SHIFT) |
  3999. cursor_wm);
  4000. }
  4001. static bool
  4002. sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
  4003. uint32_t sprite_width, int pixel_size,
  4004. const struct intel_watermark_params *display,
  4005. int display_latency_ns, int *sprite_wm)
  4006. {
  4007. struct drm_crtc *crtc;
  4008. int clock;
  4009. int entries, tlb_miss;
  4010. crtc = intel_get_crtc_for_plane(dev, plane);
  4011. if (crtc->fb == NULL || !crtc->enabled) {
  4012. *sprite_wm = display->guard_size;
  4013. return false;
  4014. }
  4015. clock = crtc->mode.clock;
  4016. /* Use the small buffer method to calculate the sprite watermark */
  4017. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  4018. tlb_miss = display->fifo_size*display->cacheline_size -
  4019. sprite_width * 8;
  4020. if (tlb_miss > 0)
  4021. entries += tlb_miss;
  4022. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  4023. *sprite_wm = entries + display->guard_size;
  4024. if (*sprite_wm > (int)display->max_wm)
  4025. *sprite_wm = display->max_wm;
  4026. return true;
  4027. }
  4028. static bool
  4029. sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
  4030. uint32_t sprite_width, int pixel_size,
  4031. const struct intel_watermark_params *display,
  4032. int latency_ns, int *sprite_wm)
  4033. {
  4034. struct drm_crtc *crtc;
  4035. unsigned long line_time_us;
  4036. int clock;
  4037. int line_count, line_size;
  4038. int small, large;
  4039. int entries;
  4040. if (!latency_ns) {
  4041. *sprite_wm = 0;
  4042. return false;
  4043. }
  4044. crtc = intel_get_crtc_for_plane(dev, plane);
  4045. clock = crtc->mode.clock;
  4046. line_time_us = (sprite_width * 1000) / clock;
  4047. line_count = (latency_ns / line_time_us + 1000) / 1000;
  4048. line_size = sprite_width * pixel_size;
  4049. /* Use the minimum of the small and large buffer method for primary */
  4050. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  4051. large = line_count * line_size;
  4052. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  4053. *sprite_wm = entries + display->guard_size;
  4054. return *sprite_wm > 0x3ff ? false : true;
  4055. }
  4056. static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
  4057. uint32_t sprite_width, int pixel_size)
  4058. {
  4059. struct drm_i915_private *dev_priv = dev->dev_private;
  4060. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  4061. int sprite_wm, reg;
  4062. int ret;
  4063. switch (pipe) {
  4064. case 0:
  4065. reg = WM0_PIPEA_ILK;
  4066. break;
  4067. case 1:
  4068. reg = WM0_PIPEB_ILK;
  4069. break;
  4070. case 2:
  4071. reg = WM0_PIPEC_IVB;
  4072. break;
  4073. default:
  4074. return; /* bad pipe */
  4075. }
  4076. ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
  4077. &sandybridge_display_wm_info,
  4078. latency, &sprite_wm);
  4079. if (!ret) {
  4080. DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
  4081. pipe);
  4082. return;
  4083. }
  4084. I915_WRITE(reg, I915_READ(reg) | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
  4085. DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
  4086. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  4087. pixel_size,
  4088. &sandybridge_display_srwm_info,
  4089. SNB_READ_WM1_LATENCY() * 500,
  4090. &sprite_wm);
  4091. if (!ret) {
  4092. DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
  4093. pipe);
  4094. return;
  4095. }
  4096. I915_WRITE(WM1S_LP_ILK, sprite_wm);
  4097. /* Only IVB has two more LP watermarks for sprite */
  4098. if (!IS_IVYBRIDGE(dev))
  4099. return;
  4100. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  4101. pixel_size,
  4102. &sandybridge_display_srwm_info,
  4103. SNB_READ_WM2_LATENCY() * 500,
  4104. &sprite_wm);
  4105. if (!ret) {
  4106. DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
  4107. pipe);
  4108. return;
  4109. }
  4110. I915_WRITE(WM2S_LP_IVB, sprite_wm);
  4111. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  4112. pixel_size,
  4113. &sandybridge_display_srwm_info,
  4114. SNB_READ_WM3_LATENCY() * 500,
  4115. &sprite_wm);
  4116. if (!ret) {
  4117. DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
  4118. pipe);
  4119. return;
  4120. }
  4121. I915_WRITE(WM3S_LP_IVB, sprite_wm);
  4122. }
  4123. /**
  4124. * intel_update_watermarks - update FIFO watermark values based on current modes
  4125. *
  4126. * Calculate watermark values for the various WM regs based on current mode
  4127. * and plane configuration.
  4128. *
  4129. * There are several cases to deal with here:
  4130. * - normal (i.e. non-self-refresh)
  4131. * - self-refresh (SR) mode
  4132. * - lines are large relative to FIFO size (buffer can hold up to 2)
  4133. * - lines are small relative to FIFO size (buffer can hold more than 2
  4134. * lines), so need to account for TLB latency
  4135. *
  4136. * The normal calculation is:
  4137. * watermark = dotclock * bytes per pixel * latency
  4138. * where latency is platform & configuration dependent (we assume pessimal
  4139. * values here).
  4140. *
  4141. * The SR calculation is:
  4142. * watermark = (trunc(latency/line time)+1) * surface width *
  4143. * bytes per pixel
  4144. * where
  4145. * line time = htotal / dotclock
  4146. * surface width = hdisplay for normal plane and 64 for cursor
  4147. * and latency is assumed to be high, as above.
  4148. *
  4149. * The final value programmed to the register should always be rounded up,
  4150. * and include an extra 2 entries to account for clock crossings.
  4151. *
  4152. * We don't use the sprite, so we can ignore that. And on Crestline we have
  4153. * to set the non-SR watermarks to 8.
  4154. */
  4155. static void intel_update_watermarks(struct drm_device *dev)
  4156. {
  4157. struct drm_i915_private *dev_priv = dev->dev_private;
  4158. if (dev_priv->display.update_wm)
  4159. dev_priv->display.update_wm(dev);
  4160. }
  4161. void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
  4162. uint32_t sprite_width, int pixel_size)
  4163. {
  4164. struct drm_i915_private *dev_priv = dev->dev_private;
  4165. if (dev_priv->display.update_sprite_wm)
  4166. dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
  4167. pixel_size);
  4168. }
  4169. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  4170. {
  4171. if (i915_panel_use_ssc >= 0)
  4172. return i915_panel_use_ssc != 0;
  4173. return dev_priv->lvds_use_ssc
  4174. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  4175. }
  4176. /**
  4177. * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
  4178. * @crtc: CRTC structure
  4179. * @mode: requested mode
  4180. *
  4181. * A pipe may be connected to one or more outputs. Based on the depth of the
  4182. * attached framebuffer, choose a good color depth to use on the pipe.
  4183. *
  4184. * If possible, match the pipe depth to the fb depth. In some cases, this
  4185. * isn't ideal, because the connected output supports a lesser or restricted
  4186. * set of depths. Resolve that here:
  4187. * LVDS typically supports only 6bpc, so clamp down in that case
  4188. * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
  4189. * Displays may support a restricted set as well, check EDID and clamp as
  4190. * appropriate.
  4191. * DP may want to dither down to 6bpc to fit larger modes
  4192. *
  4193. * RETURNS:
  4194. * Dithering requirement (i.e. false if display bpc and pipe bpc match,
  4195. * true if they don't match).
  4196. */
  4197. static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
  4198. unsigned int *pipe_bpp,
  4199. struct drm_display_mode *mode)
  4200. {
  4201. struct drm_device *dev = crtc->dev;
  4202. struct drm_i915_private *dev_priv = dev->dev_private;
  4203. struct drm_encoder *encoder;
  4204. struct drm_connector *connector;
  4205. unsigned int display_bpc = UINT_MAX, bpc;
  4206. /* Walk the encoders & connectors on this crtc, get min bpc */
  4207. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  4208. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  4209. if (encoder->crtc != crtc)
  4210. continue;
  4211. if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
  4212. unsigned int lvds_bpc;
  4213. if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
  4214. LVDS_A3_POWER_UP)
  4215. lvds_bpc = 8;
  4216. else
  4217. lvds_bpc = 6;
  4218. if (lvds_bpc < display_bpc) {
  4219. DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
  4220. display_bpc = lvds_bpc;
  4221. }
  4222. continue;
  4223. }
  4224. if (intel_encoder->type == INTEL_OUTPUT_EDP) {
  4225. /* Use VBT settings if we have an eDP panel */
  4226. unsigned int edp_bpc = dev_priv->edp.bpp / 3;
  4227. if (edp_bpc < display_bpc) {
  4228. DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
  4229. display_bpc = edp_bpc;
  4230. }
  4231. continue;
  4232. }
  4233. /* Not one of the known troublemakers, check the EDID */
  4234. list_for_each_entry(connector, &dev->mode_config.connector_list,
  4235. head) {
  4236. if (connector->encoder != encoder)
  4237. continue;
  4238. /* Don't use an invalid EDID bpc value */
  4239. if (connector->display_info.bpc &&
  4240. connector->display_info.bpc < display_bpc) {
  4241. DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
  4242. display_bpc = connector->display_info.bpc;
  4243. }
  4244. }
  4245. /*
  4246. * HDMI is either 12 or 8, so if the display lets 10bpc sneak
  4247. * through, clamp it down. (Note: >12bpc will be caught below.)
  4248. */
  4249. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  4250. if (display_bpc > 8 && display_bpc < 12) {
  4251. DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
  4252. display_bpc = 12;
  4253. } else {
  4254. DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
  4255. display_bpc = 8;
  4256. }
  4257. }
  4258. }
  4259. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  4260. DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
  4261. display_bpc = 6;
  4262. }
  4263. /*
  4264. * We could just drive the pipe at the highest bpc all the time and
  4265. * enable dithering as needed, but that costs bandwidth. So choose
  4266. * the minimum value that expresses the full color range of the fb but
  4267. * also stays within the max display bpc discovered above.
  4268. */
  4269. switch (crtc->fb->depth) {
  4270. case 8:
  4271. bpc = 8; /* since we go through a colormap */
  4272. break;
  4273. case 15:
  4274. case 16:
  4275. bpc = 6; /* min is 18bpp */
  4276. break;
  4277. case 24:
  4278. bpc = 8;
  4279. break;
  4280. case 30:
  4281. bpc = 10;
  4282. break;
  4283. case 48:
  4284. bpc = 12;
  4285. break;
  4286. default:
  4287. DRM_DEBUG("unsupported depth, assuming 24 bits\n");
  4288. bpc = min((unsigned int)8, display_bpc);
  4289. break;
  4290. }
  4291. display_bpc = min(display_bpc, bpc);
  4292. DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
  4293. bpc, display_bpc);
  4294. *pipe_bpp = display_bpc * 3;
  4295. return display_bpc != bpc;
  4296. }
  4297. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  4298. {
  4299. struct drm_device *dev = crtc->dev;
  4300. struct drm_i915_private *dev_priv = dev->dev_private;
  4301. int refclk;
  4302. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  4303. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4304. refclk = dev_priv->lvds_ssc_freq * 1000;
  4305. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4306. refclk / 1000);
  4307. } else if (!IS_GEN2(dev)) {
  4308. refclk = 96000;
  4309. } else {
  4310. refclk = 48000;
  4311. }
  4312. return refclk;
  4313. }
  4314. static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
  4315. intel_clock_t *clock)
  4316. {
  4317. /* SDVO TV has fixed PLL values depend on its clock range,
  4318. this mirrors vbios setting. */
  4319. if (adjusted_mode->clock >= 100000
  4320. && adjusted_mode->clock < 140500) {
  4321. clock->p1 = 2;
  4322. clock->p2 = 10;
  4323. clock->n = 3;
  4324. clock->m1 = 16;
  4325. clock->m2 = 8;
  4326. } else if (adjusted_mode->clock >= 140500
  4327. && adjusted_mode->clock <= 200000) {
  4328. clock->p1 = 1;
  4329. clock->p2 = 10;
  4330. clock->n = 6;
  4331. clock->m1 = 12;
  4332. clock->m2 = 8;
  4333. }
  4334. }
  4335. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4336. struct drm_display_mode *mode,
  4337. struct drm_display_mode *adjusted_mode,
  4338. int x, int y,
  4339. struct drm_framebuffer *old_fb)
  4340. {
  4341. struct drm_device *dev = crtc->dev;
  4342. struct drm_i915_private *dev_priv = dev->dev_private;
  4343. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4344. int pipe = intel_crtc->pipe;
  4345. int plane = intel_crtc->plane;
  4346. int refclk, num_connectors = 0;
  4347. intel_clock_t clock, reduced_clock;
  4348. u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
  4349. bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
  4350. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  4351. struct drm_mode_config *mode_config = &dev->mode_config;
  4352. struct intel_encoder *encoder;
  4353. const intel_limit_t *limit;
  4354. int ret;
  4355. u32 temp;
  4356. u32 lvds_sync = 0;
  4357. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4358. if (encoder->base.crtc != crtc)
  4359. continue;
  4360. switch (encoder->type) {
  4361. case INTEL_OUTPUT_LVDS:
  4362. is_lvds = true;
  4363. break;
  4364. case INTEL_OUTPUT_SDVO:
  4365. case INTEL_OUTPUT_HDMI:
  4366. is_sdvo = true;
  4367. if (encoder->needs_tv_clock)
  4368. is_tv = true;
  4369. break;
  4370. case INTEL_OUTPUT_DVO:
  4371. is_dvo = true;
  4372. break;
  4373. case INTEL_OUTPUT_TVOUT:
  4374. is_tv = true;
  4375. break;
  4376. case INTEL_OUTPUT_ANALOG:
  4377. is_crt = true;
  4378. break;
  4379. case INTEL_OUTPUT_DISPLAYPORT:
  4380. is_dp = true;
  4381. break;
  4382. }
  4383. num_connectors++;
  4384. }
  4385. refclk = i9xx_get_refclk(crtc, num_connectors);
  4386. /*
  4387. * Returns a set of divisors for the desired target clock with the given
  4388. * refclk, or FALSE. The returned values represent the clock equation:
  4389. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4390. */
  4391. limit = intel_limit(crtc, refclk);
  4392. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4393. &clock);
  4394. if (!ok) {
  4395. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4396. return -EINVAL;
  4397. }
  4398. /* Ensure that the cursor is valid for the new mode before changing... */
  4399. intel_crtc_update_cursor(crtc, true);
  4400. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4401. /*
  4402. * Ensure we match the reduced clock's P to the target clock.
  4403. * If the clocks don't match, we can't switch the display clock
  4404. * by using the FP0/FP1. In such case we will disable the LVDS
  4405. * downclock feature.
  4406. */
  4407. has_reduced_clock = limit->find_pll(limit, crtc,
  4408. dev_priv->lvds_downclock,
  4409. refclk,
  4410. &clock,
  4411. &reduced_clock);
  4412. }
  4413. if (is_sdvo && is_tv)
  4414. i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
  4415. if (IS_PINEVIEW(dev)) {
  4416. fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
  4417. if (has_reduced_clock)
  4418. fp2 = (1 << reduced_clock.n) << 16 |
  4419. reduced_clock.m1 << 8 | reduced_clock.m2;
  4420. } else {
  4421. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4422. if (has_reduced_clock)
  4423. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  4424. reduced_clock.m2;
  4425. }
  4426. dpll = DPLL_VGA_MODE_DIS;
  4427. if (!IS_GEN2(dev)) {
  4428. if (is_lvds)
  4429. dpll |= DPLLB_MODE_LVDS;
  4430. else
  4431. dpll |= DPLLB_MODE_DAC_SERIAL;
  4432. if (is_sdvo) {
  4433. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4434. if (pixel_multiplier > 1) {
  4435. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4436. dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  4437. }
  4438. dpll |= DPLL_DVO_HIGH_SPEED;
  4439. }
  4440. if (is_dp)
  4441. dpll |= DPLL_DVO_HIGH_SPEED;
  4442. /* compute bitmask from p1 value */
  4443. if (IS_PINEVIEW(dev))
  4444. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  4445. else {
  4446. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4447. if (IS_G4X(dev) && has_reduced_clock)
  4448. dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4449. }
  4450. switch (clock.p2) {
  4451. case 5:
  4452. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4453. break;
  4454. case 7:
  4455. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4456. break;
  4457. case 10:
  4458. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4459. break;
  4460. case 14:
  4461. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4462. break;
  4463. }
  4464. if (INTEL_INFO(dev)->gen >= 4)
  4465. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  4466. } else {
  4467. if (is_lvds) {
  4468. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4469. } else {
  4470. if (clock.p1 == 2)
  4471. dpll |= PLL_P1_DIVIDE_BY_TWO;
  4472. else
  4473. dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4474. if (clock.p2 == 4)
  4475. dpll |= PLL_P2_DIVIDE_BY_4;
  4476. }
  4477. }
  4478. if (is_sdvo && is_tv)
  4479. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4480. else if (is_tv)
  4481. /* XXX: just matching BIOS for now */
  4482. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4483. dpll |= 3;
  4484. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4485. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4486. else
  4487. dpll |= PLL_REF_INPUT_DREFCLK;
  4488. /* setup pipeconf */
  4489. pipeconf = I915_READ(PIPECONF(pipe));
  4490. /* Set up the display plane register */
  4491. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4492. /* Ironlake's plane is forced to pipe, bit 24 is to
  4493. enable color space conversion */
  4494. if (pipe == 0)
  4495. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4496. else
  4497. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4498. if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4499. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4500. * core speed.
  4501. *
  4502. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4503. * pipe == 0 check?
  4504. */
  4505. if (mode->clock >
  4506. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4507. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4508. else
  4509. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  4510. }
  4511. /* default to 8bpc */
  4512. pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
  4513. if (is_dp) {
  4514. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  4515. pipeconf |= PIPECONF_BPP_6 |
  4516. PIPECONF_DITHER_EN |
  4517. PIPECONF_DITHER_TYPE_SP;
  4518. }
  4519. }
  4520. dpll |= DPLL_VCO_ENABLE;
  4521. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  4522. drm_mode_debug_printmodeline(mode);
  4523. I915_WRITE(FP0(pipe), fp);
  4524. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  4525. POSTING_READ(DPLL(pipe));
  4526. udelay(150);
  4527. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  4528. * This is an exception to the general rule that mode_set doesn't turn
  4529. * things on.
  4530. */
  4531. if (is_lvds) {
  4532. temp = I915_READ(LVDS);
  4533. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4534. if (pipe == 1) {
  4535. temp |= LVDS_PIPEB_SELECT;
  4536. } else {
  4537. temp &= ~LVDS_PIPEB_SELECT;
  4538. }
  4539. /* set the corresponsding LVDS_BORDER bit */
  4540. temp |= dev_priv->lvds_border_bits;
  4541. /* Set the B0-B3 data pairs corresponding to whether we're going to
  4542. * set the DPLLs for dual-channel mode or not.
  4543. */
  4544. if (clock.p2 == 7)
  4545. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4546. else
  4547. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  4548. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  4549. * appropriately here, but we need to look more thoroughly into how
  4550. * panels behave in the two modes.
  4551. */
  4552. /* set the dithering flag on LVDS as needed */
  4553. if (INTEL_INFO(dev)->gen >= 4) {
  4554. if (dev_priv->lvds_dither)
  4555. temp |= LVDS_ENABLE_DITHER;
  4556. else
  4557. temp &= ~LVDS_ENABLE_DITHER;
  4558. }
  4559. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4560. lvds_sync |= LVDS_HSYNC_POLARITY;
  4561. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4562. lvds_sync |= LVDS_VSYNC_POLARITY;
  4563. if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
  4564. != lvds_sync) {
  4565. char flags[2] = "-+";
  4566. DRM_INFO("Changing LVDS panel from "
  4567. "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
  4568. flags[!(temp & LVDS_HSYNC_POLARITY)],
  4569. flags[!(temp & LVDS_VSYNC_POLARITY)],
  4570. flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
  4571. flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
  4572. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4573. temp |= lvds_sync;
  4574. }
  4575. I915_WRITE(LVDS, temp);
  4576. }
  4577. if (is_dp) {
  4578. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4579. }
  4580. I915_WRITE(DPLL(pipe), dpll);
  4581. /* Wait for the clocks to stabilize. */
  4582. POSTING_READ(DPLL(pipe));
  4583. udelay(150);
  4584. if (INTEL_INFO(dev)->gen >= 4) {
  4585. temp = 0;
  4586. if (is_sdvo) {
  4587. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  4588. if (temp > 1)
  4589. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  4590. else
  4591. temp = 0;
  4592. }
  4593. I915_WRITE(DPLL_MD(pipe), temp);
  4594. } else {
  4595. /* The pixel multiplier can only be updated once the
  4596. * DPLL is enabled and the clocks are stable.
  4597. *
  4598. * So write it again.
  4599. */
  4600. I915_WRITE(DPLL(pipe), dpll);
  4601. }
  4602. intel_crtc->lowfreq_avail = false;
  4603. if (is_lvds && has_reduced_clock && i915_powersave) {
  4604. I915_WRITE(FP1(pipe), fp2);
  4605. intel_crtc->lowfreq_avail = true;
  4606. if (HAS_PIPE_CXSR(dev)) {
  4607. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4608. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4609. }
  4610. } else {
  4611. I915_WRITE(FP1(pipe), fp);
  4612. if (HAS_PIPE_CXSR(dev)) {
  4613. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4614. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4615. }
  4616. }
  4617. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  4618. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4619. /* the chip adds 2 halflines automatically */
  4620. adjusted_mode->crtc_vdisplay -= 1;
  4621. adjusted_mode->crtc_vtotal -= 1;
  4622. adjusted_mode->crtc_vblank_start -= 1;
  4623. adjusted_mode->crtc_vblank_end -= 1;
  4624. adjusted_mode->crtc_vsync_end -= 1;
  4625. adjusted_mode->crtc_vsync_start -= 1;
  4626. } else
  4627. pipeconf &= ~PIPECONF_INTERLACE_MASK; /* progressive */
  4628. I915_WRITE(HTOTAL(pipe),
  4629. (adjusted_mode->crtc_hdisplay - 1) |
  4630. ((adjusted_mode->crtc_htotal - 1) << 16));
  4631. I915_WRITE(HBLANK(pipe),
  4632. (adjusted_mode->crtc_hblank_start - 1) |
  4633. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  4634. I915_WRITE(HSYNC(pipe),
  4635. (adjusted_mode->crtc_hsync_start - 1) |
  4636. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  4637. I915_WRITE(VTOTAL(pipe),
  4638. (adjusted_mode->crtc_vdisplay - 1) |
  4639. ((adjusted_mode->crtc_vtotal - 1) << 16));
  4640. I915_WRITE(VBLANK(pipe),
  4641. (adjusted_mode->crtc_vblank_start - 1) |
  4642. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  4643. I915_WRITE(VSYNC(pipe),
  4644. (adjusted_mode->crtc_vsync_start - 1) |
  4645. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  4646. /* pipesrc and dspsize control the size that is scaled from,
  4647. * which should always be the user's requested size.
  4648. */
  4649. I915_WRITE(DSPSIZE(plane),
  4650. ((mode->vdisplay - 1) << 16) |
  4651. (mode->hdisplay - 1));
  4652. I915_WRITE(DSPPOS(plane), 0);
  4653. I915_WRITE(PIPESRC(pipe),
  4654. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  4655. I915_WRITE(PIPECONF(pipe), pipeconf);
  4656. POSTING_READ(PIPECONF(pipe));
  4657. intel_enable_pipe(dev_priv, pipe, false);
  4658. intel_wait_for_vblank(dev, pipe);
  4659. I915_WRITE(DSPCNTR(plane), dspcntr);
  4660. POSTING_READ(DSPCNTR(plane));
  4661. intel_enable_plane(dev_priv, plane, pipe);
  4662. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  4663. intel_update_watermarks(dev);
  4664. return ret;
  4665. }
  4666. /*
  4667. * Initialize reference clocks when the driver loads
  4668. */
  4669. void ironlake_init_pch_refclk(struct drm_device *dev)
  4670. {
  4671. struct drm_i915_private *dev_priv = dev->dev_private;
  4672. struct drm_mode_config *mode_config = &dev->mode_config;
  4673. struct intel_encoder *encoder;
  4674. u32 temp;
  4675. bool has_lvds = false;
  4676. bool has_cpu_edp = false;
  4677. bool has_pch_edp = false;
  4678. bool has_panel = false;
  4679. bool has_ck505 = false;
  4680. bool can_ssc = false;
  4681. /* We need to take the global config into account */
  4682. list_for_each_entry(encoder, &mode_config->encoder_list,
  4683. base.head) {
  4684. switch (encoder->type) {
  4685. case INTEL_OUTPUT_LVDS:
  4686. has_panel = true;
  4687. has_lvds = true;
  4688. break;
  4689. case INTEL_OUTPUT_EDP:
  4690. has_panel = true;
  4691. if (intel_encoder_is_pch_edp(&encoder->base))
  4692. has_pch_edp = true;
  4693. else
  4694. has_cpu_edp = true;
  4695. break;
  4696. }
  4697. }
  4698. if (HAS_PCH_IBX(dev)) {
  4699. has_ck505 = dev_priv->display_clock_mode;
  4700. can_ssc = has_ck505;
  4701. } else {
  4702. has_ck505 = false;
  4703. can_ssc = true;
  4704. }
  4705. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
  4706. has_panel, has_lvds, has_pch_edp, has_cpu_edp,
  4707. has_ck505);
  4708. /* Ironlake: try to setup display ref clock before DPLL
  4709. * enabling. This is only under driver's control after
  4710. * PCH B stepping, previous chipset stepping should be
  4711. * ignoring this setting.
  4712. */
  4713. temp = I915_READ(PCH_DREF_CONTROL);
  4714. /* Always enable nonspread source */
  4715. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  4716. if (has_ck505)
  4717. temp |= DREF_NONSPREAD_CK505_ENABLE;
  4718. else
  4719. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  4720. if (has_panel) {
  4721. temp &= ~DREF_SSC_SOURCE_MASK;
  4722. temp |= DREF_SSC_SOURCE_ENABLE;
  4723. /* SSC must be turned on before enabling the CPU output */
  4724. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4725. DRM_DEBUG_KMS("Using SSC on panel\n");
  4726. temp |= DREF_SSC1_ENABLE;
  4727. }
  4728. /* Get SSC going before enabling the outputs */
  4729. I915_WRITE(PCH_DREF_CONTROL, temp);
  4730. POSTING_READ(PCH_DREF_CONTROL);
  4731. udelay(200);
  4732. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4733. /* Enable CPU source on CPU attached eDP */
  4734. if (has_cpu_edp) {
  4735. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4736. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4737. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4738. }
  4739. else
  4740. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4741. } else
  4742. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4743. I915_WRITE(PCH_DREF_CONTROL, temp);
  4744. POSTING_READ(PCH_DREF_CONTROL);
  4745. udelay(200);
  4746. } else {
  4747. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4748. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4749. /* Turn off CPU output */
  4750. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4751. I915_WRITE(PCH_DREF_CONTROL, temp);
  4752. POSTING_READ(PCH_DREF_CONTROL);
  4753. udelay(200);
  4754. /* Turn off the SSC source */
  4755. temp &= ~DREF_SSC_SOURCE_MASK;
  4756. temp |= DREF_SSC_SOURCE_DISABLE;
  4757. /* Turn off SSC1 */
  4758. temp &= ~ DREF_SSC1_ENABLE;
  4759. I915_WRITE(PCH_DREF_CONTROL, temp);
  4760. POSTING_READ(PCH_DREF_CONTROL);
  4761. udelay(200);
  4762. }
  4763. }
  4764. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4765. {
  4766. struct drm_device *dev = crtc->dev;
  4767. struct drm_i915_private *dev_priv = dev->dev_private;
  4768. struct intel_encoder *encoder;
  4769. struct drm_mode_config *mode_config = &dev->mode_config;
  4770. struct intel_encoder *edp_encoder = NULL;
  4771. int num_connectors = 0;
  4772. bool is_lvds = false;
  4773. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4774. if (encoder->base.crtc != crtc)
  4775. continue;
  4776. switch (encoder->type) {
  4777. case INTEL_OUTPUT_LVDS:
  4778. is_lvds = true;
  4779. break;
  4780. case INTEL_OUTPUT_EDP:
  4781. edp_encoder = encoder;
  4782. break;
  4783. }
  4784. num_connectors++;
  4785. }
  4786. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4787. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4788. dev_priv->lvds_ssc_freq);
  4789. return dev_priv->lvds_ssc_freq * 1000;
  4790. }
  4791. return 120000;
  4792. }
  4793. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4794. struct drm_display_mode *mode,
  4795. struct drm_display_mode *adjusted_mode,
  4796. int x, int y,
  4797. struct drm_framebuffer *old_fb)
  4798. {
  4799. struct drm_device *dev = crtc->dev;
  4800. struct drm_i915_private *dev_priv = dev->dev_private;
  4801. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4802. int pipe = intel_crtc->pipe;
  4803. int plane = intel_crtc->plane;
  4804. int refclk, num_connectors = 0;
  4805. intel_clock_t clock, reduced_clock;
  4806. u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
  4807. bool ok, has_reduced_clock = false, is_sdvo = false;
  4808. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  4809. struct intel_encoder *has_edp_encoder = NULL;
  4810. struct drm_mode_config *mode_config = &dev->mode_config;
  4811. struct intel_encoder *encoder;
  4812. const intel_limit_t *limit;
  4813. int ret;
  4814. struct fdi_m_n m_n = {0};
  4815. u32 temp;
  4816. u32 lvds_sync = 0;
  4817. int target_clock, pixel_multiplier, lane, link_bw, factor;
  4818. unsigned int pipe_bpp;
  4819. bool dither;
  4820. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4821. if (encoder->base.crtc != crtc)
  4822. continue;
  4823. switch (encoder->type) {
  4824. case INTEL_OUTPUT_LVDS:
  4825. is_lvds = true;
  4826. break;
  4827. case INTEL_OUTPUT_SDVO:
  4828. case INTEL_OUTPUT_HDMI:
  4829. is_sdvo = true;
  4830. if (encoder->needs_tv_clock)
  4831. is_tv = true;
  4832. break;
  4833. case INTEL_OUTPUT_TVOUT:
  4834. is_tv = true;
  4835. break;
  4836. case INTEL_OUTPUT_ANALOG:
  4837. is_crt = true;
  4838. break;
  4839. case INTEL_OUTPUT_DISPLAYPORT:
  4840. is_dp = true;
  4841. break;
  4842. case INTEL_OUTPUT_EDP:
  4843. has_edp_encoder = encoder;
  4844. break;
  4845. }
  4846. num_connectors++;
  4847. }
  4848. refclk = ironlake_get_refclk(crtc);
  4849. /*
  4850. * Returns a set of divisors for the desired target clock with the given
  4851. * refclk, or FALSE. The returned values represent the clock equation:
  4852. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4853. */
  4854. limit = intel_limit(crtc, refclk);
  4855. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4856. &clock);
  4857. if (!ok) {
  4858. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4859. return -EINVAL;
  4860. }
  4861. /* Ensure that the cursor is valid for the new mode before changing... */
  4862. intel_crtc_update_cursor(crtc, true);
  4863. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4864. /*
  4865. * Ensure we match the reduced clock's P to the target clock.
  4866. * If the clocks don't match, we can't switch the display clock
  4867. * by using the FP0/FP1. In such case we will disable the LVDS
  4868. * downclock feature.
  4869. */
  4870. has_reduced_clock = limit->find_pll(limit, crtc,
  4871. dev_priv->lvds_downclock,
  4872. refclk,
  4873. &clock,
  4874. &reduced_clock);
  4875. }
  4876. /* SDVO TV has fixed PLL values depend on its clock range,
  4877. this mirrors vbios setting. */
  4878. if (is_sdvo && is_tv) {
  4879. if (adjusted_mode->clock >= 100000
  4880. && adjusted_mode->clock < 140500) {
  4881. clock.p1 = 2;
  4882. clock.p2 = 10;
  4883. clock.n = 3;
  4884. clock.m1 = 16;
  4885. clock.m2 = 8;
  4886. } else if (adjusted_mode->clock >= 140500
  4887. && adjusted_mode->clock <= 200000) {
  4888. clock.p1 = 1;
  4889. clock.p2 = 10;
  4890. clock.n = 6;
  4891. clock.m1 = 12;
  4892. clock.m2 = 8;
  4893. }
  4894. }
  4895. /* FDI link */
  4896. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4897. lane = 0;
  4898. /* CPU eDP doesn't require FDI link, so just set DP M/N
  4899. according to current link config */
  4900. if (has_edp_encoder &&
  4901. !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  4902. target_clock = mode->clock;
  4903. intel_edp_link_config(has_edp_encoder,
  4904. &lane, &link_bw);
  4905. } else {
  4906. /* [e]DP over FDI requires target mode clock
  4907. instead of link clock */
  4908. if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
  4909. target_clock = mode->clock;
  4910. else
  4911. target_clock = adjusted_mode->clock;
  4912. /* FDI is a binary signal running at ~2.7GHz, encoding
  4913. * each output octet as 10 bits. The actual frequency
  4914. * is stored as a divider into a 100MHz clock, and the
  4915. * mode pixel clock is stored in units of 1KHz.
  4916. * Hence the bw of each lane in terms of the mode signal
  4917. * is:
  4918. */
  4919. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  4920. }
  4921. /* determine panel color depth */
  4922. temp = I915_READ(PIPECONF(pipe));
  4923. temp &= ~PIPE_BPC_MASK;
  4924. dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
  4925. switch (pipe_bpp) {
  4926. case 18:
  4927. temp |= PIPE_6BPC;
  4928. break;
  4929. case 24:
  4930. temp |= PIPE_8BPC;
  4931. break;
  4932. case 30:
  4933. temp |= PIPE_10BPC;
  4934. break;
  4935. case 36:
  4936. temp |= PIPE_12BPC;
  4937. break;
  4938. default:
  4939. WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
  4940. pipe_bpp);
  4941. temp |= PIPE_8BPC;
  4942. pipe_bpp = 24;
  4943. break;
  4944. }
  4945. intel_crtc->bpp = pipe_bpp;
  4946. I915_WRITE(PIPECONF(pipe), temp);
  4947. if (!lane) {
  4948. /*
  4949. * Account for spread spectrum to avoid
  4950. * oversubscribing the link. Max center spread
  4951. * is 2.5%; use 5% for safety's sake.
  4952. */
  4953. u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
  4954. lane = bps / (link_bw * 8) + 1;
  4955. }
  4956. intel_crtc->fdi_lanes = lane;
  4957. if (pixel_multiplier > 1)
  4958. link_bw *= pixel_multiplier;
  4959. ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
  4960. &m_n);
  4961. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4962. if (has_reduced_clock)
  4963. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  4964. reduced_clock.m2;
  4965. /* Enable autotuning of the PLL clock (if permissible) */
  4966. factor = 21;
  4967. if (is_lvds) {
  4968. if ((intel_panel_use_ssc(dev_priv) &&
  4969. dev_priv->lvds_ssc_freq == 100) ||
  4970. (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
  4971. factor = 25;
  4972. } else if (is_sdvo && is_tv)
  4973. factor = 20;
  4974. if (clock.m < factor * clock.n)
  4975. fp |= FP_CB_TUNE;
  4976. dpll = 0;
  4977. if (is_lvds)
  4978. dpll |= DPLLB_MODE_LVDS;
  4979. else
  4980. dpll |= DPLLB_MODE_DAC_SERIAL;
  4981. if (is_sdvo) {
  4982. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4983. if (pixel_multiplier > 1) {
  4984. dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4985. }
  4986. dpll |= DPLL_DVO_HIGH_SPEED;
  4987. }
  4988. if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
  4989. dpll |= DPLL_DVO_HIGH_SPEED;
  4990. /* compute bitmask from p1 value */
  4991. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4992. /* also FPA1 */
  4993. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4994. switch (clock.p2) {
  4995. case 5:
  4996. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4997. break;
  4998. case 7:
  4999. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  5000. break;
  5001. case 10:
  5002. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  5003. break;
  5004. case 14:
  5005. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  5006. break;
  5007. }
  5008. if (is_sdvo && is_tv)
  5009. dpll |= PLL_REF_INPUT_TVCLKINBC;
  5010. else if (is_tv)
  5011. /* XXX: just matching BIOS for now */
  5012. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  5013. dpll |= 3;
  5014. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  5015. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  5016. else
  5017. dpll |= PLL_REF_INPUT_DREFCLK;
  5018. /* setup pipeconf */
  5019. pipeconf = I915_READ(PIPECONF(pipe));
  5020. /* Set up the display plane register */
  5021. dspcntr = DISPPLANE_GAMMA_ENABLE;
  5022. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  5023. drm_mode_debug_printmodeline(mode);
  5024. /* PCH eDP needs FDI, but CPU eDP does not */
  5025. if (!intel_crtc->no_pll) {
  5026. if (!has_edp_encoder ||
  5027. intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  5028. I915_WRITE(PCH_FP0(pipe), fp);
  5029. I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  5030. POSTING_READ(PCH_DPLL(pipe));
  5031. udelay(150);
  5032. }
  5033. } else {
  5034. if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
  5035. fp == I915_READ(PCH_FP0(0))) {
  5036. intel_crtc->use_pll_a = true;
  5037. DRM_DEBUG_KMS("using pipe a dpll\n");
  5038. } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
  5039. fp == I915_READ(PCH_FP0(1))) {
  5040. intel_crtc->use_pll_a = false;
  5041. DRM_DEBUG_KMS("using pipe b dpll\n");
  5042. } else {
  5043. DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
  5044. return -EINVAL;
  5045. }
  5046. }
  5047. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  5048. * This is an exception to the general rule that mode_set doesn't turn
  5049. * things on.
  5050. */
  5051. if (is_lvds) {
  5052. temp = I915_READ(PCH_LVDS);
  5053. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  5054. if (HAS_PCH_CPT(dev))
  5055. temp |= PORT_TRANS_SEL_CPT(pipe);
  5056. else if (pipe == 1)
  5057. temp |= LVDS_PIPEB_SELECT;
  5058. else
  5059. temp &= ~LVDS_PIPEB_SELECT;
  5060. /* set the corresponsding LVDS_BORDER bit */
  5061. temp |= dev_priv->lvds_border_bits;
  5062. /* Set the B0-B3 data pairs corresponding to whether we're going to
  5063. * set the DPLLs for dual-channel mode or not.
  5064. */
  5065. if (clock.p2 == 7)
  5066. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  5067. else
  5068. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  5069. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  5070. * appropriately here, but we need to look more thoroughly into how
  5071. * panels behave in the two modes.
  5072. */
  5073. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  5074. lvds_sync |= LVDS_HSYNC_POLARITY;
  5075. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  5076. lvds_sync |= LVDS_VSYNC_POLARITY;
  5077. if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
  5078. != lvds_sync) {
  5079. char flags[2] = "-+";
  5080. DRM_INFO("Changing LVDS panel from "
  5081. "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
  5082. flags[!(temp & LVDS_HSYNC_POLARITY)],
  5083. flags[!(temp & LVDS_VSYNC_POLARITY)],
  5084. flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
  5085. flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
  5086. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  5087. temp |= lvds_sync;
  5088. }
  5089. I915_WRITE(PCH_LVDS, temp);
  5090. }
  5091. pipeconf &= ~PIPECONF_DITHER_EN;
  5092. pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
  5093. if ((is_lvds && dev_priv->lvds_dither) || dither) {
  5094. pipeconf |= PIPECONF_DITHER_EN;
  5095. pipeconf |= PIPECONF_DITHER_TYPE_SP;
  5096. }
  5097. if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  5098. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  5099. } else {
  5100. /* For non-DP output, clear any trans DP clock recovery setting.*/
  5101. I915_WRITE(TRANSDATA_M1(pipe), 0);
  5102. I915_WRITE(TRANSDATA_N1(pipe), 0);
  5103. I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  5104. I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  5105. }
  5106. if (!intel_crtc->no_pll &&
  5107. (!has_edp_encoder ||
  5108. intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
  5109. I915_WRITE(PCH_DPLL(pipe), dpll);
  5110. /* Wait for the clocks to stabilize. */
  5111. POSTING_READ(PCH_DPLL(pipe));
  5112. udelay(150);
  5113. /* The pixel multiplier can only be updated once the
  5114. * DPLL is enabled and the clocks are stable.
  5115. *
  5116. * So write it again.
  5117. */
  5118. I915_WRITE(PCH_DPLL(pipe), dpll);
  5119. }
  5120. intel_crtc->lowfreq_avail = false;
  5121. if (!intel_crtc->no_pll) {
  5122. if (is_lvds && has_reduced_clock && i915_powersave) {
  5123. I915_WRITE(PCH_FP1(pipe), fp2);
  5124. intel_crtc->lowfreq_avail = true;
  5125. if (HAS_PIPE_CXSR(dev)) {
  5126. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  5127. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  5128. }
  5129. } else {
  5130. I915_WRITE(PCH_FP1(pipe), fp);
  5131. if (HAS_PIPE_CXSR(dev)) {
  5132. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  5133. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  5134. }
  5135. }
  5136. }
  5137. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  5138. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  5139. /* the chip adds 2 halflines automatically */
  5140. adjusted_mode->crtc_vdisplay -= 1;
  5141. adjusted_mode->crtc_vtotal -= 1;
  5142. adjusted_mode->crtc_vblank_start -= 1;
  5143. adjusted_mode->crtc_vblank_end -= 1;
  5144. adjusted_mode->crtc_vsync_end -= 1;
  5145. adjusted_mode->crtc_vsync_start -= 1;
  5146. } else
  5147. pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
  5148. I915_WRITE(HTOTAL(pipe),
  5149. (adjusted_mode->crtc_hdisplay - 1) |
  5150. ((adjusted_mode->crtc_htotal - 1) << 16));
  5151. I915_WRITE(HBLANK(pipe),
  5152. (adjusted_mode->crtc_hblank_start - 1) |
  5153. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  5154. I915_WRITE(HSYNC(pipe),
  5155. (adjusted_mode->crtc_hsync_start - 1) |
  5156. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  5157. I915_WRITE(VTOTAL(pipe),
  5158. (adjusted_mode->crtc_vdisplay - 1) |
  5159. ((adjusted_mode->crtc_vtotal - 1) << 16));
  5160. I915_WRITE(VBLANK(pipe),
  5161. (adjusted_mode->crtc_vblank_start - 1) |
  5162. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  5163. I915_WRITE(VSYNC(pipe),
  5164. (adjusted_mode->crtc_vsync_start - 1) |
  5165. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  5166. /* pipesrc controls the size that is scaled from, which should
  5167. * always be the user's requested size.
  5168. */
  5169. I915_WRITE(PIPESRC(pipe),
  5170. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  5171. I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
  5172. I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
  5173. I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
  5174. I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
  5175. if (has_edp_encoder &&
  5176. !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  5177. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  5178. }
  5179. I915_WRITE(PIPECONF(pipe), pipeconf);
  5180. POSTING_READ(PIPECONF(pipe));
  5181. intel_wait_for_vblank(dev, pipe);
  5182. if (IS_GEN5(dev)) {
  5183. /* enable address swizzle for tiling buffer */
  5184. temp = I915_READ(DISP_ARB_CTL);
  5185. I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
  5186. }
  5187. I915_WRITE(DSPCNTR(plane), dspcntr);
  5188. POSTING_READ(DSPCNTR(plane));
  5189. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  5190. intel_update_watermarks(dev);
  5191. return ret;
  5192. }
  5193. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5194. struct drm_display_mode *mode,
  5195. struct drm_display_mode *adjusted_mode,
  5196. int x, int y,
  5197. struct drm_framebuffer *old_fb)
  5198. {
  5199. struct drm_device *dev = crtc->dev;
  5200. struct drm_i915_private *dev_priv = dev->dev_private;
  5201. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5202. int pipe = intel_crtc->pipe;
  5203. int ret;
  5204. drm_vblank_pre_modeset(dev, pipe);
  5205. ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
  5206. x, y, old_fb);
  5207. drm_vblank_post_modeset(dev, pipe);
  5208. if (ret)
  5209. intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
  5210. else
  5211. intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
  5212. return ret;
  5213. }
  5214. static bool intel_eld_uptodate(struct drm_connector *connector,
  5215. int reg_eldv, uint32_t bits_eldv,
  5216. int reg_elda, uint32_t bits_elda,
  5217. int reg_edid)
  5218. {
  5219. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5220. uint8_t *eld = connector->eld;
  5221. uint32_t i;
  5222. i = I915_READ(reg_eldv);
  5223. i &= bits_eldv;
  5224. if (!eld[0])
  5225. return !i;
  5226. if (!i)
  5227. return false;
  5228. i = I915_READ(reg_elda);
  5229. i &= ~bits_elda;
  5230. I915_WRITE(reg_elda, i);
  5231. for (i = 0; i < eld[2]; i++)
  5232. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5233. return false;
  5234. return true;
  5235. }
  5236. static void g4x_write_eld(struct drm_connector *connector,
  5237. struct drm_crtc *crtc)
  5238. {
  5239. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5240. uint8_t *eld = connector->eld;
  5241. uint32_t eldv;
  5242. uint32_t len;
  5243. uint32_t i;
  5244. i = I915_READ(G4X_AUD_VID_DID);
  5245. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5246. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5247. else
  5248. eldv = G4X_ELDV_DEVCTG;
  5249. if (intel_eld_uptodate(connector,
  5250. G4X_AUD_CNTL_ST, eldv,
  5251. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5252. G4X_HDMIW_HDMIEDID))
  5253. return;
  5254. i = I915_READ(G4X_AUD_CNTL_ST);
  5255. i &= ~(eldv | G4X_ELD_ADDR);
  5256. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5257. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5258. if (!eld[0])
  5259. return;
  5260. len = min_t(uint8_t, eld[2], len);
  5261. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5262. for (i = 0; i < len; i++)
  5263. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5264. i = I915_READ(G4X_AUD_CNTL_ST);
  5265. i |= eldv;
  5266. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5267. }
  5268. static void ironlake_write_eld(struct drm_connector *connector,
  5269. struct drm_crtc *crtc)
  5270. {
  5271. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5272. uint8_t *eld = connector->eld;
  5273. uint32_t eldv;
  5274. uint32_t i;
  5275. int len;
  5276. int hdmiw_hdmiedid;
  5277. int aud_cntl_st;
  5278. int aud_cntrl_st2;
  5279. if (HAS_PCH_IBX(connector->dev)) {
  5280. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
  5281. aud_cntl_st = IBX_AUD_CNTL_ST_A;
  5282. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5283. } else {
  5284. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
  5285. aud_cntl_st = CPT_AUD_CNTL_ST_A;
  5286. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5287. }
  5288. i = to_intel_crtc(crtc)->pipe;
  5289. hdmiw_hdmiedid += i * 0x100;
  5290. aud_cntl_st += i * 0x100;
  5291. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
  5292. i = I915_READ(aud_cntl_st);
  5293. i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
  5294. if (!i) {
  5295. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5296. /* operate blindly on all ports */
  5297. eldv = IBX_ELD_VALIDB;
  5298. eldv |= IBX_ELD_VALIDB << 4;
  5299. eldv |= IBX_ELD_VALIDB << 8;
  5300. } else {
  5301. DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
  5302. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5303. }
  5304. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5305. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5306. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5307. }
  5308. if (intel_eld_uptodate(connector,
  5309. aud_cntrl_st2, eldv,
  5310. aud_cntl_st, IBX_ELD_ADDRESS,
  5311. hdmiw_hdmiedid))
  5312. return;
  5313. i = I915_READ(aud_cntrl_st2);
  5314. i &= ~eldv;
  5315. I915_WRITE(aud_cntrl_st2, i);
  5316. if (!eld[0])
  5317. return;
  5318. i = I915_READ(aud_cntl_st);
  5319. i &= ~IBX_ELD_ADDRESS;
  5320. I915_WRITE(aud_cntl_st, i);
  5321. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5322. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5323. for (i = 0; i < len; i++)
  5324. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5325. i = I915_READ(aud_cntrl_st2);
  5326. i |= eldv;
  5327. I915_WRITE(aud_cntrl_st2, i);
  5328. }
  5329. void intel_write_eld(struct drm_encoder *encoder,
  5330. struct drm_display_mode *mode)
  5331. {
  5332. struct drm_crtc *crtc = encoder->crtc;
  5333. struct drm_connector *connector;
  5334. struct drm_device *dev = encoder->dev;
  5335. struct drm_i915_private *dev_priv = dev->dev_private;
  5336. connector = drm_select_eld(encoder, mode);
  5337. if (!connector)
  5338. return;
  5339. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5340. connector->base.id,
  5341. drm_get_connector_name(connector),
  5342. connector->encoder->base.id,
  5343. drm_get_encoder_name(connector->encoder));
  5344. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5345. if (dev_priv->display.write_eld)
  5346. dev_priv->display.write_eld(connector, crtc);
  5347. }
  5348. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5349. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5350. {
  5351. struct drm_device *dev = crtc->dev;
  5352. struct drm_i915_private *dev_priv = dev->dev_private;
  5353. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5354. int palreg = PALETTE(intel_crtc->pipe);
  5355. int i;
  5356. /* The clocks have to be on to load the palette. */
  5357. if (!crtc->enabled)
  5358. return;
  5359. /* use legacy palette for Ironlake */
  5360. if (HAS_PCH_SPLIT(dev))
  5361. palreg = LGC_PALETTE(intel_crtc->pipe);
  5362. for (i = 0; i < 256; i++) {
  5363. I915_WRITE(palreg + 4 * i,
  5364. (intel_crtc->lut_r[i] << 16) |
  5365. (intel_crtc->lut_g[i] << 8) |
  5366. intel_crtc->lut_b[i]);
  5367. }
  5368. }
  5369. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5370. {
  5371. struct drm_device *dev = crtc->dev;
  5372. struct drm_i915_private *dev_priv = dev->dev_private;
  5373. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5374. bool visible = base != 0;
  5375. u32 cntl;
  5376. if (intel_crtc->cursor_visible == visible)
  5377. return;
  5378. cntl = I915_READ(_CURACNTR);
  5379. if (visible) {
  5380. /* On these chipsets we can only modify the base whilst
  5381. * the cursor is disabled.
  5382. */
  5383. I915_WRITE(_CURABASE, base);
  5384. cntl &= ~(CURSOR_FORMAT_MASK);
  5385. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5386. cntl |= CURSOR_ENABLE |
  5387. CURSOR_GAMMA_ENABLE |
  5388. CURSOR_FORMAT_ARGB;
  5389. } else
  5390. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5391. I915_WRITE(_CURACNTR, cntl);
  5392. intel_crtc->cursor_visible = visible;
  5393. }
  5394. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5395. {
  5396. struct drm_device *dev = crtc->dev;
  5397. struct drm_i915_private *dev_priv = dev->dev_private;
  5398. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5399. int pipe = intel_crtc->pipe;
  5400. bool visible = base != 0;
  5401. if (intel_crtc->cursor_visible != visible) {
  5402. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5403. if (base) {
  5404. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5405. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5406. cntl |= pipe << 28; /* Connect to correct pipe */
  5407. } else {
  5408. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5409. cntl |= CURSOR_MODE_DISABLE;
  5410. }
  5411. I915_WRITE(CURCNTR(pipe), cntl);
  5412. intel_crtc->cursor_visible = visible;
  5413. }
  5414. /* and commit changes on next vblank */
  5415. I915_WRITE(CURBASE(pipe), base);
  5416. }
  5417. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5418. {
  5419. struct drm_device *dev = crtc->dev;
  5420. struct drm_i915_private *dev_priv = dev->dev_private;
  5421. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5422. int pipe = intel_crtc->pipe;
  5423. bool visible = base != 0;
  5424. if (intel_crtc->cursor_visible != visible) {
  5425. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5426. if (base) {
  5427. cntl &= ~CURSOR_MODE;
  5428. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5429. } else {
  5430. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5431. cntl |= CURSOR_MODE_DISABLE;
  5432. }
  5433. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5434. intel_crtc->cursor_visible = visible;
  5435. }
  5436. /* and commit changes on next vblank */
  5437. I915_WRITE(CURBASE_IVB(pipe), base);
  5438. }
  5439. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5440. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5441. bool on)
  5442. {
  5443. struct drm_device *dev = crtc->dev;
  5444. struct drm_i915_private *dev_priv = dev->dev_private;
  5445. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5446. int pipe = intel_crtc->pipe;
  5447. int x = intel_crtc->cursor_x;
  5448. int y = intel_crtc->cursor_y;
  5449. u32 base, pos;
  5450. bool visible;
  5451. pos = 0;
  5452. if (on && crtc->enabled && crtc->fb) {
  5453. base = intel_crtc->cursor_addr;
  5454. if (x > (int) crtc->fb->width)
  5455. base = 0;
  5456. if (y > (int) crtc->fb->height)
  5457. base = 0;
  5458. } else
  5459. base = 0;
  5460. if (x < 0) {
  5461. if (x + intel_crtc->cursor_width < 0)
  5462. base = 0;
  5463. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5464. x = -x;
  5465. }
  5466. pos |= x << CURSOR_X_SHIFT;
  5467. if (y < 0) {
  5468. if (y + intel_crtc->cursor_height < 0)
  5469. base = 0;
  5470. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5471. y = -y;
  5472. }
  5473. pos |= y << CURSOR_Y_SHIFT;
  5474. visible = base != 0;
  5475. if (!visible && !intel_crtc->cursor_visible)
  5476. return;
  5477. if (IS_IVYBRIDGE(dev)) {
  5478. I915_WRITE(CURPOS_IVB(pipe), pos);
  5479. ivb_update_cursor(crtc, base);
  5480. } else {
  5481. I915_WRITE(CURPOS(pipe), pos);
  5482. if (IS_845G(dev) || IS_I865G(dev))
  5483. i845_update_cursor(crtc, base);
  5484. else
  5485. i9xx_update_cursor(crtc, base);
  5486. }
  5487. if (visible)
  5488. intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
  5489. }
  5490. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5491. struct drm_file *file,
  5492. uint32_t handle,
  5493. uint32_t width, uint32_t height)
  5494. {
  5495. struct drm_device *dev = crtc->dev;
  5496. struct drm_i915_private *dev_priv = dev->dev_private;
  5497. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5498. struct drm_i915_gem_object *obj;
  5499. uint32_t addr;
  5500. int ret;
  5501. DRM_DEBUG_KMS("\n");
  5502. /* if we want to turn off the cursor ignore width and height */
  5503. if (!handle) {
  5504. DRM_DEBUG_KMS("cursor off\n");
  5505. addr = 0;
  5506. obj = NULL;
  5507. mutex_lock(&dev->struct_mutex);
  5508. goto finish;
  5509. }
  5510. /* Currently we only support 64x64 cursors */
  5511. if (width != 64 || height != 64) {
  5512. DRM_ERROR("we currently only support 64x64 cursors\n");
  5513. return -EINVAL;
  5514. }
  5515. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5516. if (&obj->base == NULL)
  5517. return -ENOENT;
  5518. if (obj->base.size < width * height * 4) {
  5519. DRM_ERROR("buffer is to small\n");
  5520. ret = -ENOMEM;
  5521. goto fail;
  5522. }
  5523. /* we only need to pin inside GTT if cursor is non-phy */
  5524. mutex_lock(&dev->struct_mutex);
  5525. if (!dev_priv->info->cursor_needs_physical) {
  5526. if (obj->tiling_mode) {
  5527. DRM_ERROR("cursor cannot be tiled\n");
  5528. ret = -EINVAL;
  5529. goto fail_locked;
  5530. }
  5531. ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
  5532. if (ret) {
  5533. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5534. goto fail_locked;
  5535. }
  5536. ret = i915_gem_object_put_fence(obj);
  5537. if (ret) {
  5538. DRM_ERROR("failed to release fence for cursor");
  5539. goto fail_unpin;
  5540. }
  5541. addr = obj->gtt_offset;
  5542. } else {
  5543. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5544. ret = i915_gem_attach_phys_object(dev, obj,
  5545. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5546. align);
  5547. if (ret) {
  5548. DRM_ERROR("failed to attach phys object\n");
  5549. goto fail_locked;
  5550. }
  5551. addr = obj->phys_obj->handle->busaddr;
  5552. }
  5553. if (IS_GEN2(dev))
  5554. I915_WRITE(CURSIZE, (height << 12) | width);
  5555. finish:
  5556. if (intel_crtc->cursor_bo) {
  5557. if (dev_priv->info->cursor_needs_physical) {
  5558. if (intel_crtc->cursor_bo != obj)
  5559. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5560. } else
  5561. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5562. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5563. }
  5564. mutex_unlock(&dev->struct_mutex);
  5565. intel_crtc->cursor_addr = addr;
  5566. intel_crtc->cursor_bo = obj;
  5567. intel_crtc->cursor_width = width;
  5568. intel_crtc->cursor_height = height;
  5569. intel_crtc_update_cursor(crtc, true);
  5570. return 0;
  5571. fail_unpin:
  5572. i915_gem_object_unpin(obj);
  5573. fail_locked:
  5574. mutex_unlock(&dev->struct_mutex);
  5575. fail:
  5576. drm_gem_object_unreference_unlocked(&obj->base);
  5577. return ret;
  5578. }
  5579. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5580. {
  5581. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5582. intel_crtc->cursor_x = x;
  5583. intel_crtc->cursor_y = y;
  5584. intel_crtc_update_cursor(crtc, true);
  5585. return 0;
  5586. }
  5587. /** Sets the color ramps on behalf of RandR */
  5588. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5589. u16 blue, int regno)
  5590. {
  5591. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5592. intel_crtc->lut_r[regno] = red >> 8;
  5593. intel_crtc->lut_g[regno] = green >> 8;
  5594. intel_crtc->lut_b[regno] = blue >> 8;
  5595. }
  5596. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5597. u16 *blue, int regno)
  5598. {
  5599. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5600. *red = intel_crtc->lut_r[regno] << 8;
  5601. *green = intel_crtc->lut_g[regno] << 8;
  5602. *blue = intel_crtc->lut_b[regno] << 8;
  5603. }
  5604. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5605. u16 *blue, uint32_t start, uint32_t size)
  5606. {
  5607. int end = (start + size > 256) ? 256 : start + size, i;
  5608. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5609. for (i = start; i < end; i++) {
  5610. intel_crtc->lut_r[i] = red[i] >> 8;
  5611. intel_crtc->lut_g[i] = green[i] >> 8;
  5612. intel_crtc->lut_b[i] = blue[i] >> 8;
  5613. }
  5614. intel_crtc_load_lut(crtc);
  5615. }
  5616. /**
  5617. * Get a pipe with a simple mode set on it for doing load-based monitor
  5618. * detection.
  5619. *
  5620. * It will be up to the load-detect code to adjust the pipe as appropriate for
  5621. * its requirements. The pipe will be connected to no other encoders.
  5622. *
  5623. * Currently this code will only succeed if there is a pipe with no encoders
  5624. * configured for it. In the future, it could choose to temporarily disable
  5625. * some outputs to free up a pipe for its use.
  5626. *
  5627. * \return crtc, or NULL if no pipes are available.
  5628. */
  5629. /* VESA 640x480x72Hz mode to set on the pipe */
  5630. static struct drm_display_mode load_detect_mode = {
  5631. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5632. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5633. };
  5634. static struct drm_framebuffer *
  5635. intel_framebuffer_create(struct drm_device *dev,
  5636. struct drm_mode_fb_cmd2 *mode_cmd,
  5637. struct drm_i915_gem_object *obj)
  5638. {
  5639. struct intel_framebuffer *intel_fb;
  5640. int ret;
  5641. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5642. if (!intel_fb) {
  5643. drm_gem_object_unreference_unlocked(&obj->base);
  5644. return ERR_PTR(-ENOMEM);
  5645. }
  5646. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5647. if (ret) {
  5648. drm_gem_object_unreference_unlocked(&obj->base);
  5649. kfree(intel_fb);
  5650. return ERR_PTR(ret);
  5651. }
  5652. return &intel_fb->base;
  5653. }
  5654. static u32
  5655. intel_framebuffer_pitch_for_width(int width, int bpp)
  5656. {
  5657. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5658. return ALIGN(pitch, 64);
  5659. }
  5660. static u32
  5661. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5662. {
  5663. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5664. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5665. }
  5666. static struct drm_framebuffer *
  5667. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5668. struct drm_display_mode *mode,
  5669. int depth, int bpp)
  5670. {
  5671. struct drm_i915_gem_object *obj;
  5672. struct drm_mode_fb_cmd2 mode_cmd;
  5673. obj = i915_gem_alloc_object(dev,
  5674. intel_framebuffer_size_for_mode(mode, bpp));
  5675. if (obj == NULL)
  5676. return ERR_PTR(-ENOMEM);
  5677. mode_cmd.width = mode->hdisplay;
  5678. mode_cmd.height = mode->vdisplay;
  5679. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5680. bpp);
  5681. mode_cmd.pixel_format = 0;
  5682. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5683. }
  5684. static struct drm_framebuffer *
  5685. mode_fits_in_fbdev(struct drm_device *dev,
  5686. struct drm_display_mode *mode)
  5687. {
  5688. struct drm_i915_private *dev_priv = dev->dev_private;
  5689. struct drm_i915_gem_object *obj;
  5690. struct drm_framebuffer *fb;
  5691. if (dev_priv->fbdev == NULL)
  5692. return NULL;
  5693. obj = dev_priv->fbdev->ifb.obj;
  5694. if (obj == NULL)
  5695. return NULL;
  5696. fb = &dev_priv->fbdev->ifb.base;
  5697. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5698. fb->bits_per_pixel))
  5699. return NULL;
  5700. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5701. return NULL;
  5702. return fb;
  5703. }
  5704. bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
  5705. struct drm_connector *connector,
  5706. struct drm_display_mode *mode,
  5707. struct intel_load_detect_pipe *old)
  5708. {
  5709. struct intel_crtc *intel_crtc;
  5710. struct drm_crtc *possible_crtc;
  5711. struct drm_encoder *encoder = &intel_encoder->base;
  5712. struct drm_crtc *crtc = NULL;
  5713. struct drm_device *dev = encoder->dev;
  5714. struct drm_framebuffer *old_fb;
  5715. int i = -1;
  5716. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5717. connector->base.id, drm_get_connector_name(connector),
  5718. encoder->base.id, drm_get_encoder_name(encoder));
  5719. /*
  5720. * Algorithm gets a little messy:
  5721. *
  5722. * - if the connector already has an assigned crtc, use it (but make
  5723. * sure it's on first)
  5724. *
  5725. * - try to find the first unused crtc that can drive this connector,
  5726. * and use that if we find one
  5727. */
  5728. /* See if we already have a CRTC for this connector */
  5729. if (encoder->crtc) {
  5730. crtc = encoder->crtc;
  5731. intel_crtc = to_intel_crtc(crtc);
  5732. old->dpms_mode = intel_crtc->dpms_mode;
  5733. old->load_detect_temp = false;
  5734. /* Make sure the crtc and connector are running */
  5735. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  5736. struct drm_encoder_helper_funcs *encoder_funcs;
  5737. struct drm_crtc_helper_funcs *crtc_funcs;
  5738. crtc_funcs = crtc->helper_private;
  5739. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  5740. encoder_funcs = encoder->helper_private;
  5741. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  5742. }
  5743. return true;
  5744. }
  5745. /* Find an unused one (if possible) */
  5746. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5747. i++;
  5748. if (!(encoder->possible_crtcs & (1 << i)))
  5749. continue;
  5750. if (!possible_crtc->enabled) {
  5751. crtc = possible_crtc;
  5752. break;
  5753. }
  5754. }
  5755. /*
  5756. * If we didn't find an unused CRTC, don't use any.
  5757. */
  5758. if (!crtc) {
  5759. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5760. return false;
  5761. }
  5762. encoder->crtc = crtc;
  5763. connector->encoder = encoder;
  5764. intel_crtc = to_intel_crtc(crtc);
  5765. old->dpms_mode = intel_crtc->dpms_mode;
  5766. old->load_detect_temp = true;
  5767. old->release_fb = NULL;
  5768. if (!mode)
  5769. mode = &load_detect_mode;
  5770. old_fb = crtc->fb;
  5771. /* We need a framebuffer large enough to accommodate all accesses
  5772. * that the plane may generate whilst we perform load detection.
  5773. * We can not rely on the fbcon either being present (we get called
  5774. * during its initialisation to detect all boot displays, or it may
  5775. * not even exist) or that it is large enough to satisfy the
  5776. * requested mode.
  5777. */
  5778. crtc->fb = mode_fits_in_fbdev(dev, mode);
  5779. if (crtc->fb == NULL) {
  5780. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5781. crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5782. old->release_fb = crtc->fb;
  5783. } else
  5784. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5785. if (IS_ERR(crtc->fb)) {
  5786. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5787. crtc->fb = old_fb;
  5788. return false;
  5789. }
  5790. if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
  5791. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5792. if (old->release_fb)
  5793. old->release_fb->funcs->destroy(old->release_fb);
  5794. crtc->fb = old_fb;
  5795. return false;
  5796. }
  5797. /* let the connector get through one full cycle before testing */
  5798. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5799. return true;
  5800. }
  5801. void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
  5802. struct drm_connector *connector,
  5803. struct intel_load_detect_pipe *old)
  5804. {
  5805. struct drm_encoder *encoder = &intel_encoder->base;
  5806. struct drm_device *dev = encoder->dev;
  5807. struct drm_crtc *crtc = encoder->crtc;
  5808. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  5809. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  5810. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5811. connector->base.id, drm_get_connector_name(connector),
  5812. encoder->base.id, drm_get_encoder_name(encoder));
  5813. if (old->load_detect_temp) {
  5814. connector->encoder = NULL;
  5815. drm_helper_disable_unused_functions(dev);
  5816. if (old->release_fb)
  5817. old->release_fb->funcs->destroy(old->release_fb);
  5818. return;
  5819. }
  5820. /* Switch crtc and encoder back off if necessary */
  5821. if (old->dpms_mode != DRM_MODE_DPMS_ON) {
  5822. encoder_funcs->dpms(encoder, old->dpms_mode);
  5823. crtc_funcs->dpms(crtc, old->dpms_mode);
  5824. }
  5825. }
  5826. /* Returns the clock of the currently programmed mode of the given pipe. */
  5827. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5828. {
  5829. struct drm_i915_private *dev_priv = dev->dev_private;
  5830. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5831. int pipe = intel_crtc->pipe;
  5832. u32 dpll = I915_READ(DPLL(pipe));
  5833. u32 fp;
  5834. intel_clock_t clock;
  5835. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5836. fp = I915_READ(FP0(pipe));
  5837. else
  5838. fp = I915_READ(FP1(pipe));
  5839. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5840. if (IS_PINEVIEW(dev)) {
  5841. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5842. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5843. } else {
  5844. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5845. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5846. }
  5847. if (!IS_GEN2(dev)) {
  5848. if (IS_PINEVIEW(dev))
  5849. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5850. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5851. else
  5852. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5853. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5854. switch (dpll & DPLL_MODE_MASK) {
  5855. case DPLLB_MODE_DAC_SERIAL:
  5856. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5857. 5 : 10;
  5858. break;
  5859. case DPLLB_MODE_LVDS:
  5860. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5861. 7 : 14;
  5862. break;
  5863. default:
  5864. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5865. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5866. return 0;
  5867. }
  5868. /* XXX: Handle the 100Mhz refclk */
  5869. intel_clock(dev, 96000, &clock);
  5870. } else {
  5871. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5872. if (is_lvds) {
  5873. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5874. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5875. clock.p2 = 14;
  5876. if ((dpll & PLL_REF_INPUT_MASK) ==
  5877. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5878. /* XXX: might not be 66MHz */
  5879. intel_clock(dev, 66000, &clock);
  5880. } else
  5881. intel_clock(dev, 48000, &clock);
  5882. } else {
  5883. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5884. clock.p1 = 2;
  5885. else {
  5886. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5887. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5888. }
  5889. if (dpll & PLL_P2_DIVIDE_BY_4)
  5890. clock.p2 = 4;
  5891. else
  5892. clock.p2 = 2;
  5893. intel_clock(dev, 48000, &clock);
  5894. }
  5895. }
  5896. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5897. * i830PllIsValid() because it relies on the xf86_config connector
  5898. * configuration being accurate, which it isn't necessarily.
  5899. */
  5900. return clock.dot;
  5901. }
  5902. /** Returns the currently programmed mode of the given pipe. */
  5903. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5904. struct drm_crtc *crtc)
  5905. {
  5906. struct drm_i915_private *dev_priv = dev->dev_private;
  5907. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5908. int pipe = intel_crtc->pipe;
  5909. struct drm_display_mode *mode;
  5910. int htot = I915_READ(HTOTAL(pipe));
  5911. int hsync = I915_READ(HSYNC(pipe));
  5912. int vtot = I915_READ(VTOTAL(pipe));
  5913. int vsync = I915_READ(VSYNC(pipe));
  5914. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5915. if (!mode)
  5916. return NULL;
  5917. mode->clock = intel_crtc_clock_get(dev, crtc);
  5918. mode->hdisplay = (htot & 0xffff) + 1;
  5919. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5920. mode->hsync_start = (hsync & 0xffff) + 1;
  5921. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5922. mode->vdisplay = (vtot & 0xffff) + 1;
  5923. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5924. mode->vsync_start = (vsync & 0xffff) + 1;
  5925. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5926. drm_mode_set_name(mode);
  5927. drm_mode_set_crtcinfo(mode, 0);
  5928. return mode;
  5929. }
  5930. #define GPU_IDLE_TIMEOUT 500 /* ms */
  5931. /* When this timer fires, we've been idle for awhile */
  5932. static void intel_gpu_idle_timer(unsigned long arg)
  5933. {
  5934. struct drm_device *dev = (struct drm_device *)arg;
  5935. drm_i915_private_t *dev_priv = dev->dev_private;
  5936. if (!list_empty(&dev_priv->mm.active_list)) {
  5937. /* Still processing requests, so just re-arm the timer. */
  5938. mod_timer(&dev_priv->idle_timer, jiffies +
  5939. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  5940. return;
  5941. }
  5942. dev_priv->busy = false;
  5943. queue_work(dev_priv->wq, &dev_priv->idle_work);
  5944. }
  5945. #define CRTC_IDLE_TIMEOUT 1000 /* ms */
  5946. static void intel_crtc_idle_timer(unsigned long arg)
  5947. {
  5948. struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
  5949. struct drm_crtc *crtc = &intel_crtc->base;
  5950. drm_i915_private_t *dev_priv = crtc->dev->dev_private;
  5951. struct intel_framebuffer *intel_fb;
  5952. intel_fb = to_intel_framebuffer(crtc->fb);
  5953. if (intel_fb && intel_fb->obj->active) {
  5954. /* The framebuffer is still being accessed by the GPU. */
  5955. mod_timer(&intel_crtc->idle_timer, jiffies +
  5956. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  5957. return;
  5958. }
  5959. intel_crtc->busy = false;
  5960. queue_work(dev_priv->wq, &dev_priv->idle_work);
  5961. }
  5962. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5963. {
  5964. struct drm_device *dev = crtc->dev;
  5965. drm_i915_private_t *dev_priv = dev->dev_private;
  5966. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5967. int pipe = intel_crtc->pipe;
  5968. int dpll_reg = DPLL(pipe);
  5969. int dpll;
  5970. if (HAS_PCH_SPLIT(dev))
  5971. return;
  5972. if (!dev_priv->lvds_downclock_avail)
  5973. return;
  5974. dpll = I915_READ(dpll_reg);
  5975. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5976. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5977. /* Unlock panel regs */
  5978. I915_WRITE(PP_CONTROL,
  5979. I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
  5980. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5981. I915_WRITE(dpll_reg, dpll);
  5982. intel_wait_for_vblank(dev, pipe);
  5983. dpll = I915_READ(dpll_reg);
  5984. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5985. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5986. /* ...and lock them again */
  5987. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
  5988. }
  5989. /* Schedule downclock */
  5990. mod_timer(&intel_crtc->idle_timer, jiffies +
  5991. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  5992. }
  5993. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5994. {
  5995. struct drm_device *dev = crtc->dev;
  5996. drm_i915_private_t *dev_priv = dev->dev_private;
  5997. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5998. int pipe = intel_crtc->pipe;
  5999. int dpll_reg = DPLL(pipe);
  6000. int dpll = I915_READ(dpll_reg);
  6001. if (HAS_PCH_SPLIT(dev))
  6002. return;
  6003. if (!dev_priv->lvds_downclock_avail)
  6004. return;
  6005. /*
  6006. * Since this is called by a timer, we should never get here in
  6007. * the manual case.
  6008. */
  6009. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  6010. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  6011. /* Unlock panel regs */
  6012. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
  6013. PANEL_UNLOCK_REGS);
  6014. dpll |= DISPLAY_RATE_SELECT_FPA1;
  6015. I915_WRITE(dpll_reg, dpll);
  6016. intel_wait_for_vblank(dev, pipe);
  6017. dpll = I915_READ(dpll_reg);
  6018. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  6019. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  6020. /* ...and lock them again */
  6021. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
  6022. }
  6023. }
  6024. /**
  6025. * intel_idle_update - adjust clocks for idleness
  6026. * @work: work struct
  6027. *
  6028. * Either the GPU or display (or both) went idle. Check the busy status
  6029. * here and adjust the CRTC and GPU clocks as necessary.
  6030. */
  6031. static void intel_idle_update(struct work_struct *work)
  6032. {
  6033. drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
  6034. idle_work);
  6035. struct drm_device *dev = dev_priv->dev;
  6036. struct drm_crtc *crtc;
  6037. struct intel_crtc *intel_crtc;
  6038. if (!i915_powersave)
  6039. return;
  6040. mutex_lock(&dev->struct_mutex);
  6041. i915_update_gfx_val(dev_priv);
  6042. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6043. /* Skip inactive CRTCs */
  6044. if (!crtc->fb)
  6045. continue;
  6046. intel_crtc = to_intel_crtc(crtc);
  6047. if (!intel_crtc->busy)
  6048. intel_decrease_pllclock(crtc);
  6049. }
  6050. mutex_unlock(&dev->struct_mutex);
  6051. }
  6052. /**
  6053. * intel_mark_busy - mark the GPU and possibly the display busy
  6054. * @dev: drm device
  6055. * @obj: object we're operating on
  6056. *
  6057. * Callers can use this function to indicate that the GPU is busy processing
  6058. * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
  6059. * buffer), we'll also mark the display as busy, so we know to increase its
  6060. * clock frequency.
  6061. */
  6062. void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
  6063. {
  6064. drm_i915_private_t *dev_priv = dev->dev_private;
  6065. struct drm_crtc *crtc = NULL;
  6066. struct intel_framebuffer *intel_fb;
  6067. struct intel_crtc *intel_crtc;
  6068. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  6069. return;
  6070. if (!dev_priv->busy)
  6071. dev_priv->busy = true;
  6072. else
  6073. mod_timer(&dev_priv->idle_timer, jiffies +
  6074. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  6075. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6076. if (!crtc->fb)
  6077. continue;
  6078. intel_crtc = to_intel_crtc(crtc);
  6079. intel_fb = to_intel_framebuffer(crtc->fb);
  6080. if (intel_fb->obj == obj) {
  6081. if (!intel_crtc->busy) {
  6082. /* Non-busy -> busy, upclock */
  6083. intel_increase_pllclock(crtc);
  6084. intel_crtc->busy = true;
  6085. } else {
  6086. /* Busy -> busy, put off timer */
  6087. mod_timer(&intel_crtc->idle_timer, jiffies +
  6088. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  6089. }
  6090. }
  6091. }
  6092. }
  6093. static void intel_crtc_destroy(struct drm_crtc *crtc)
  6094. {
  6095. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6096. struct drm_device *dev = crtc->dev;
  6097. struct intel_unpin_work *work;
  6098. unsigned long flags;
  6099. spin_lock_irqsave(&dev->event_lock, flags);
  6100. work = intel_crtc->unpin_work;
  6101. intel_crtc->unpin_work = NULL;
  6102. spin_unlock_irqrestore(&dev->event_lock, flags);
  6103. if (work) {
  6104. cancel_work_sync(&work->work);
  6105. kfree(work);
  6106. }
  6107. drm_crtc_cleanup(crtc);
  6108. kfree(intel_crtc);
  6109. }
  6110. static void intel_unpin_work_fn(struct work_struct *__work)
  6111. {
  6112. struct intel_unpin_work *work =
  6113. container_of(__work, struct intel_unpin_work, work);
  6114. mutex_lock(&work->dev->struct_mutex);
  6115. i915_gem_object_unpin(work->old_fb_obj);
  6116. drm_gem_object_unreference(&work->pending_flip_obj->base);
  6117. drm_gem_object_unreference(&work->old_fb_obj->base);
  6118. intel_update_fbc(work->dev);
  6119. mutex_unlock(&work->dev->struct_mutex);
  6120. kfree(work);
  6121. }
  6122. static void do_intel_finish_page_flip(struct drm_device *dev,
  6123. struct drm_crtc *crtc)
  6124. {
  6125. drm_i915_private_t *dev_priv = dev->dev_private;
  6126. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6127. struct intel_unpin_work *work;
  6128. struct drm_i915_gem_object *obj;
  6129. struct drm_pending_vblank_event *e;
  6130. struct timeval tnow, tvbl;
  6131. unsigned long flags;
  6132. /* Ignore early vblank irqs */
  6133. if (intel_crtc == NULL)
  6134. return;
  6135. do_gettimeofday(&tnow);
  6136. spin_lock_irqsave(&dev->event_lock, flags);
  6137. work = intel_crtc->unpin_work;
  6138. if (work == NULL || !work->pending) {
  6139. spin_unlock_irqrestore(&dev->event_lock, flags);
  6140. return;
  6141. }
  6142. intel_crtc->unpin_work = NULL;
  6143. if (work->event) {
  6144. e = work->event;
  6145. e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
  6146. /* Called before vblank count and timestamps have
  6147. * been updated for the vblank interval of flip
  6148. * completion? Need to increment vblank count and
  6149. * add one videorefresh duration to returned timestamp
  6150. * to account for this. We assume this happened if we
  6151. * get called over 0.9 frame durations after the last
  6152. * timestamped vblank.
  6153. *
  6154. * This calculation can not be used with vrefresh rates
  6155. * below 5Hz (10Hz to be on the safe side) without
  6156. * promoting to 64 integers.
  6157. */
  6158. if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
  6159. 9 * crtc->framedur_ns) {
  6160. e->event.sequence++;
  6161. tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
  6162. crtc->framedur_ns);
  6163. }
  6164. e->event.tv_sec = tvbl.tv_sec;
  6165. e->event.tv_usec = tvbl.tv_usec;
  6166. list_add_tail(&e->base.link,
  6167. &e->base.file_priv->event_list);
  6168. wake_up_interruptible(&e->base.file_priv->event_wait);
  6169. }
  6170. drm_vblank_put(dev, intel_crtc->pipe);
  6171. spin_unlock_irqrestore(&dev->event_lock, flags);
  6172. obj = work->old_fb_obj;
  6173. atomic_clear_mask(1 << intel_crtc->plane,
  6174. &obj->pending_flip.counter);
  6175. if (atomic_read(&obj->pending_flip) == 0)
  6176. wake_up(&dev_priv->pending_flip_queue);
  6177. schedule_work(&work->work);
  6178. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6179. }
  6180. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6181. {
  6182. drm_i915_private_t *dev_priv = dev->dev_private;
  6183. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6184. do_intel_finish_page_flip(dev, crtc);
  6185. }
  6186. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6187. {
  6188. drm_i915_private_t *dev_priv = dev->dev_private;
  6189. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6190. do_intel_finish_page_flip(dev, crtc);
  6191. }
  6192. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6193. {
  6194. drm_i915_private_t *dev_priv = dev->dev_private;
  6195. struct intel_crtc *intel_crtc =
  6196. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6197. unsigned long flags;
  6198. spin_lock_irqsave(&dev->event_lock, flags);
  6199. if (intel_crtc->unpin_work) {
  6200. if ((++intel_crtc->unpin_work->pending) > 1)
  6201. DRM_ERROR("Prepared flip multiple times\n");
  6202. } else {
  6203. DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
  6204. }
  6205. spin_unlock_irqrestore(&dev->event_lock, flags);
  6206. }
  6207. static int intel_gen2_queue_flip(struct drm_device *dev,
  6208. struct drm_crtc *crtc,
  6209. struct drm_framebuffer *fb,
  6210. struct drm_i915_gem_object *obj)
  6211. {
  6212. struct drm_i915_private *dev_priv = dev->dev_private;
  6213. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6214. unsigned long offset;
  6215. u32 flip_mask;
  6216. int ret;
  6217. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6218. if (ret)
  6219. goto out;
  6220. /* Offset into the new buffer for cases of shared fbs between CRTCs */
  6221. offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
  6222. ret = BEGIN_LP_RING(6);
  6223. if (ret)
  6224. goto out;
  6225. /* Can't queue multiple flips, so wait for the previous
  6226. * one to finish before executing the next.
  6227. */
  6228. if (intel_crtc->plane)
  6229. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6230. else
  6231. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6232. OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
  6233. OUT_RING(MI_NOOP);
  6234. OUT_RING(MI_DISPLAY_FLIP |
  6235. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6236. OUT_RING(fb->pitches[0]);
  6237. OUT_RING(obj->gtt_offset + offset);
  6238. OUT_RING(MI_NOOP);
  6239. ADVANCE_LP_RING();
  6240. out:
  6241. return ret;
  6242. }
  6243. static int intel_gen3_queue_flip(struct drm_device *dev,
  6244. struct drm_crtc *crtc,
  6245. struct drm_framebuffer *fb,
  6246. struct drm_i915_gem_object *obj)
  6247. {
  6248. struct drm_i915_private *dev_priv = dev->dev_private;
  6249. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6250. unsigned long offset;
  6251. u32 flip_mask;
  6252. int ret;
  6253. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6254. if (ret)
  6255. goto out;
  6256. /* Offset into the new buffer for cases of shared fbs between CRTCs */
  6257. offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
  6258. ret = BEGIN_LP_RING(6);
  6259. if (ret)
  6260. goto out;
  6261. if (intel_crtc->plane)
  6262. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6263. else
  6264. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6265. OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
  6266. OUT_RING(MI_NOOP);
  6267. OUT_RING(MI_DISPLAY_FLIP_I915 |
  6268. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6269. OUT_RING(fb->pitches[0]);
  6270. OUT_RING(obj->gtt_offset + offset);
  6271. OUT_RING(MI_NOOP);
  6272. ADVANCE_LP_RING();
  6273. out:
  6274. return ret;
  6275. }
  6276. static int intel_gen4_queue_flip(struct drm_device *dev,
  6277. struct drm_crtc *crtc,
  6278. struct drm_framebuffer *fb,
  6279. struct drm_i915_gem_object *obj)
  6280. {
  6281. struct drm_i915_private *dev_priv = dev->dev_private;
  6282. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6283. uint32_t pf, pipesrc;
  6284. int ret;
  6285. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6286. if (ret)
  6287. goto out;
  6288. ret = BEGIN_LP_RING(4);
  6289. if (ret)
  6290. goto out;
  6291. /* i965+ uses the linear or tiled offsets from the
  6292. * Display Registers (which do not change across a page-flip)
  6293. * so we need only reprogram the base address.
  6294. */
  6295. OUT_RING(MI_DISPLAY_FLIP |
  6296. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6297. OUT_RING(fb->pitches[0]);
  6298. OUT_RING(obj->gtt_offset | obj->tiling_mode);
  6299. /* XXX Enabling the panel-fitter across page-flip is so far
  6300. * untested on non-native modes, so ignore it for now.
  6301. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6302. */
  6303. pf = 0;
  6304. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6305. OUT_RING(pf | pipesrc);
  6306. ADVANCE_LP_RING();
  6307. out:
  6308. return ret;
  6309. }
  6310. static int intel_gen6_queue_flip(struct drm_device *dev,
  6311. struct drm_crtc *crtc,
  6312. struct drm_framebuffer *fb,
  6313. struct drm_i915_gem_object *obj)
  6314. {
  6315. struct drm_i915_private *dev_priv = dev->dev_private;
  6316. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6317. uint32_t pf, pipesrc;
  6318. int ret;
  6319. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6320. if (ret)
  6321. goto out;
  6322. ret = BEGIN_LP_RING(4);
  6323. if (ret)
  6324. goto out;
  6325. OUT_RING(MI_DISPLAY_FLIP |
  6326. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6327. OUT_RING(fb->pitches[0] | obj->tiling_mode);
  6328. OUT_RING(obj->gtt_offset);
  6329. pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6330. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6331. OUT_RING(pf | pipesrc);
  6332. ADVANCE_LP_RING();
  6333. out:
  6334. return ret;
  6335. }
  6336. /*
  6337. * On gen7 we currently use the blit ring because (in early silicon at least)
  6338. * the render ring doesn't give us interrpts for page flip completion, which
  6339. * means clients will hang after the first flip is queued. Fortunately the
  6340. * blit ring generates interrupts properly, so use it instead.
  6341. */
  6342. static int intel_gen7_queue_flip(struct drm_device *dev,
  6343. struct drm_crtc *crtc,
  6344. struct drm_framebuffer *fb,
  6345. struct drm_i915_gem_object *obj)
  6346. {
  6347. struct drm_i915_private *dev_priv = dev->dev_private;
  6348. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6349. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6350. int ret;
  6351. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6352. if (ret)
  6353. goto out;
  6354. ret = intel_ring_begin(ring, 4);
  6355. if (ret)
  6356. goto out;
  6357. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
  6358. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6359. intel_ring_emit(ring, (obj->gtt_offset));
  6360. intel_ring_emit(ring, (MI_NOOP));
  6361. intel_ring_advance(ring);
  6362. out:
  6363. return ret;
  6364. }
  6365. static int intel_default_queue_flip(struct drm_device *dev,
  6366. struct drm_crtc *crtc,
  6367. struct drm_framebuffer *fb,
  6368. struct drm_i915_gem_object *obj)
  6369. {
  6370. return -ENODEV;
  6371. }
  6372. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6373. struct drm_framebuffer *fb,
  6374. struct drm_pending_vblank_event *event)
  6375. {
  6376. struct drm_device *dev = crtc->dev;
  6377. struct drm_i915_private *dev_priv = dev->dev_private;
  6378. struct intel_framebuffer *intel_fb;
  6379. struct drm_i915_gem_object *obj;
  6380. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6381. struct intel_unpin_work *work;
  6382. unsigned long flags;
  6383. int ret;
  6384. work = kzalloc(sizeof *work, GFP_KERNEL);
  6385. if (work == NULL)
  6386. return -ENOMEM;
  6387. work->event = event;
  6388. work->dev = crtc->dev;
  6389. intel_fb = to_intel_framebuffer(crtc->fb);
  6390. work->old_fb_obj = intel_fb->obj;
  6391. INIT_WORK(&work->work, intel_unpin_work_fn);
  6392. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6393. if (ret)
  6394. goto free_work;
  6395. /* We borrow the event spin lock for protecting unpin_work */
  6396. spin_lock_irqsave(&dev->event_lock, flags);
  6397. if (intel_crtc->unpin_work) {
  6398. spin_unlock_irqrestore(&dev->event_lock, flags);
  6399. kfree(work);
  6400. drm_vblank_put(dev, intel_crtc->pipe);
  6401. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6402. return -EBUSY;
  6403. }
  6404. intel_crtc->unpin_work = work;
  6405. spin_unlock_irqrestore(&dev->event_lock, flags);
  6406. intel_fb = to_intel_framebuffer(fb);
  6407. obj = intel_fb->obj;
  6408. mutex_lock(&dev->struct_mutex);
  6409. /* Reference the objects for the scheduled work. */
  6410. drm_gem_object_reference(&work->old_fb_obj->base);
  6411. drm_gem_object_reference(&obj->base);
  6412. crtc->fb = fb;
  6413. work->pending_flip_obj = obj;
  6414. work->enable_stall_check = true;
  6415. /* Block clients from rendering to the new back buffer until
  6416. * the flip occurs and the object is no longer visible.
  6417. */
  6418. atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  6419. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6420. if (ret)
  6421. goto cleanup_pending;
  6422. intel_disable_fbc(dev);
  6423. mutex_unlock(&dev->struct_mutex);
  6424. trace_i915_flip_request(intel_crtc->plane, obj);
  6425. return 0;
  6426. cleanup_pending:
  6427. atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  6428. drm_gem_object_unreference(&work->old_fb_obj->base);
  6429. drm_gem_object_unreference(&obj->base);
  6430. mutex_unlock(&dev->struct_mutex);
  6431. spin_lock_irqsave(&dev->event_lock, flags);
  6432. intel_crtc->unpin_work = NULL;
  6433. spin_unlock_irqrestore(&dev->event_lock, flags);
  6434. drm_vblank_put(dev, intel_crtc->pipe);
  6435. free_work:
  6436. kfree(work);
  6437. return ret;
  6438. }
  6439. static void intel_sanitize_modesetting(struct drm_device *dev,
  6440. int pipe, int plane)
  6441. {
  6442. struct drm_i915_private *dev_priv = dev->dev_private;
  6443. u32 reg, val;
  6444. if (HAS_PCH_SPLIT(dev))
  6445. return;
  6446. /* Who knows what state these registers were left in by the BIOS or
  6447. * grub?
  6448. *
  6449. * If we leave the registers in a conflicting state (e.g. with the
  6450. * display plane reading from the other pipe than the one we intend
  6451. * to use) then when we attempt to teardown the active mode, we will
  6452. * not disable the pipes and planes in the correct order -- leaving
  6453. * a plane reading from a disabled pipe and possibly leading to
  6454. * undefined behaviour.
  6455. */
  6456. reg = DSPCNTR(plane);
  6457. val = I915_READ(reg);
  6458. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  6459. return;
  6460. if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
  6461. return;
  6462. /* This display plane is active and attached to the other CPU pipe. */
  6463. pipe = !pipe;
  6464. /* Disable the plane and wait for it to stop reading from the pipe. */
  6465. intel_disable_plane(dev_priv, plane, pipe);
  6466. intel_disable_pipe(dev_priv, pipe);
  6467. }
  6468. static void intel_crtc_reset(struct drm_crtc *crtc)
  6469. {
  6470. struct drm_device *dev = crtc->dev;
  6471. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6472. /* Reset flags back to the 'unknown' status so that they
  6473. * will be correctly set on the initial modeset.
  6474. */
  6475. intel_crtc->dpms_mode = -1;
  6476. /* We need to fix up any BIOS configuration that conflicts with
  6477. * our expectations.
  6478. */
  6479. intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
  6480. }
  6481. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6482. .dpms = intel_crtc_dpms,
  6483. .mode_fixup = intel_crtc_mode_fixup,
  6484. .mode_set = intel_crtc_mode_set,
  6485. .mode_set_base = intel_pipe_set_base,
  6486. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6487. .load_lut = intel_crtc_load_lut,
  6488. .disable = intel_crtc_disable,
  6489. };
  6490. static const struct drm_crtc_funcs intel_crtc_funcs = {
  6491. .reset = intel_crtc_reset,
  6492. .cursor_set = intel_crtc_cursor_set,
  6493. .cursor_move = intel_crtc_cursor_move,
  6494. .gamma_set = intel_crtc_gamma_set,
  6495. .set_config = drm_crtc_helper_set_config,
  6496. .destroy = intel_crtc_destroy,
  6497. .page_flip = intel_crtc_page_flip,
  6498. };
  6499. static void intel_crtc_init(struct drm_device *dev, int pipe)
  6500. {
  6501. drm_i915_private_t *dev_priv = dev->dev_private;
  6502. struct intel_crtc *intel_crtc;
  6503. int i;
  6504. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  6505. if (intel_crtc == NULL)
  6506. return;
  6507. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  6508. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  6509. for (i = 0; i < 256; i++) {
  6510. intel_crtc->lut_r[i] = i;
  6511. intel_crtc->lut_g[i] = i;
  6512. intel_crtc->lut_b[i] = i;
  6513. }
  6514. /* Swap pipes & planes for FBC on pre-965 */
  6515. intel_crtc->pipe = pipe;
  6516. intel_crtc->plane = pipe;
  6517. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  6518. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  6519. intel_crtc->plane = !pipe;
  6520. }
  6521. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  6522. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  6523. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  6524. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  6525. intel_crtc_reset(&intel_crtc->base);
  6526. intel_crtc->active = true; /* force the pipe off on setup_init_config */
  6527. intel_crtc->bpp = 24; /* default for pre-Ironlake */
  6528. if (HAS_PCH_SPLIT(dev)) {
  6529. if (pipe == 2 && IS_IVYBRIDGE(dev))
  6530. intel_crtc->no_pll = true;
  6531. intel_helper_funcs.prepare = ironlake_crtc_prepare;
  6532. intel_helper_funcs.commit = ironlake_crtc_commit;
  6533. } else {
  6534. intel_helper_funcs.prepare = i9xx_crtc_prepare;
  6535. intel_helper_funcs.commit = i9xx_crtc_commit;
  6536. }
  6537. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  6538. intel_crtc->busy = false;
  6539. setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
  6540. (unsigned long)intel_crtc);
  6541. }
  6542. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  6543. struct drm_file *file)
  6544. {
  6545. drm_i915_private_t *dev_priv = dev->dev_private;
  6546. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  6547. struct drm_mode_object *drmmode_obj;
  6548. struct intel_crtc *crtc;
  6549. if (!dev_priv) {
  6550. DRM_ERROR("called with no initialization\n");
  6551. return -EINVAL;
  6552. }
  6553. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  6554. DRM_MODE_OBJECT_CRTC);
  6555. if (!drmmode_obj) {
  6556. DRM_ERROR("no such CRTC id\n");
  6557. return -EINVAL;
  6558. }
  6559. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  6560. pipe_from_crtc_id->pipe = crtc->pipe;
  6561. return 0;
  6562. }
  6563. static int intel_encoder_clones(struct drm_device *dev, int type_mask)
  6564. {
  6565. struct intel_encoder *encoder;
  6566. int index_mask = 0;
  6567. int entry = 0;
  6568. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6569. if (type_mask & encoder->clone_mask)
  6570. index_mask |= (1 << entry);
  6571. entry++;
  6572. }
  6573. return index_mask;
  6574. }
  6575. static bool has_edp_a(struct drm_device *dev)
  6576. {
  6577. struct drm_i915_private *dev_priv = dev->dev_private;
  6578. if (!IS_MOBILE(dev))
  6579. return false;
  6580. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  6581. return false;
  6582. if (IS_GEN5(dev) &&
  6583. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  6584. return false;
  6585. return true;
  6586. }
  6587. static void intel_setup_outputs(struct drm_device *dev)
  6588. {
  6589. struct drm_i915_private *dev_priv = dev->dev_private;
  6590. struct intel_encoder *encoder;
  6591. bool dpd_is_edp = false;
  6592. bool has_lvds = false;
  6593. if (IS_MOBILE(dev) && !IS_I830(dev))
  6594. has_lvds = intel_lvds_init(dev);
  6595. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  6596. /* disable the panel fitter on everything but LVDS */
  6597. I915_WRITE(PFIT_CONTROL, 0);
  6598. }
  6599. if (HAS_PCH_SPLIT(dev)) {
  6600. dpd_is_edp = intel_dpd_is_edp(dev);
  6601. if (has_edp_a(dev))
  6602. intel_dp_init(dev, DP_A);
  6603. if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  6604. intel_dp_init(dev, PCH_DP_D);
  6605. }
  6606. intel_crt_init(dev);
  6607. if (HAS_PCH_SPLIT(dev)) {
  6608. int found;
  6609. if (I915_READ(HDMIB) & PORT_DETECTED) {
  6610. /* PCH SDVOB multiplex with HDMIB */
  6611. found = intel_sdvo_init(dev, PCH_SDVOB);
  6612. if (!found)
  6613. intel_hdmi_init(dev, HDMIB);
  6614. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  6615. intel_dp_init(dev, PCH_DP_B);
  6616. }
  6617. if (I915_READ(HDMIC) & PORT_DETECTED)
  6618. intel_hdmi_init(dev, HDMIC);
  6619. if (I915_READ(HDMID) & PORT_DETECTED)
  6620. intel_hdmi_init(dev, HDMID);
  6621. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  6622. intel_dp_init(dev, PCH_DP_C);
  6623. if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  6624. intel_dp_init(dev, PCH_DP_D);
  6625. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  6626. bool found = false;
  6627. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6628. DRM_DEBUG_KMS("probing SDVOB\n");
  6629. found = intel_sdvo_init(dev, SDVOB);
  6630. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  6631. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  6632. intel_hdmi_init(dev, SDVOB);
  6633. }
  6634. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  6635. DRM_DEBUG_KMS("probing DP_B\n");
  6636. intel_dp_init(dev, DP_B);
  6637. }
  6638. }
  6639. /* Before G4X SDVOC doesn't have its own detect register */
  6640. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6641. DRM_DEBUG_KMS("probing SDVOC\n");
  6642. found = intel_sdvo_init(dev, SDVOC);
  6643. }
  6644. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  6645. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  6646. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  6647. intel_hdmi_init(dev, SDVOC);
  6648. }
  6649. if (SUPPORTS_INTEGRATED_DP(dev)) {
  6650. DRM_DEBUG_KMS("probing DP_C\n");
  6651. intel_dp_init(dev, DP_C);
  6652. }
  6653. }
  6654. if (SUPPORTS_INTEGRATED_DP(dev) &&
  6655. (I915_READ(DP_D) & DP_DETECTED)) {
  6656. DRM_DEBUG_KMS("probing DP_D\n");
  6657. intel_dp_init(dev, DP_D);
  6658. }
  6659. } else if (IS_GEN2(dev))
  6660. intel_dvo_init(dev);
  6661. if (SUPPORTS_TV(dev))
  6662. intel_tv_init(dev);
  6663. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6664. encoder->base.possible_crtcs = encoder->crtc_mask;
  6665. encoder->base.possible_clones =
  6666. intel_encoder_clones(dev, encoder->clone_mask);
  6667. }
  6668. /* disable all the possible outputs/crtcs before entering KMS mode */
  6669. drm_helper_disable_unused_functions(dev);
  6670. if (HAS_PCH_SPLIT(dev))
  6671. ironlake_init_pch_refclk(dev);
  6672. }
  6673. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  6674. {
  6675. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  6676. drm_framebuffer_cleanup(fb);
  6677. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  6678. kfree(intel_fb);
  6679. }
  6680. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  6681. struct drm_file *file,
  6682. unsigned int *handle)
  6683. {
  6684. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  6685. struct drm_i915_gem_object *obj = intel_fb->obj;
  6686. return drm_gem_handle_create(file, &obj->base, handle);
  6687. }
  6688. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  6689. .destroy = intel_user_framebuffer_destroy,
  6690. .create_handle = intel_user_framebuffer_create_handle,
  6691. };
  6692. int intel_framebuffer_init(struct drm_device *dev,
  6693. struct intel_framebuffer *intel_fb,
  6694. struct drm_mode_fb_cmd2 *mode_cmd,
  6695. struct drm_i915_gem_object *obj)
  6696. {
  6697. int ret;
  6698. if (obj->tiling_mode == I915_TILING_Y)
  6699. return -EINVAL;
  6700. if (mode_cmd->pitches[0] & 63)
  6701. return -EINVAL;
  6702. switch (mode_cmd->pixel_format) {
  6703. case DRM_FORMAT_RGB332:
  6704. case DRM_FORMAT_RGB565:
  6705. case DRM_FORMAT_XRGB8888:
  6706. case DRM_FORMAT_ARGB8888:
  6707. case DRM_FORMAT_XRGB2101010:
  6708. case DRM_FORMAT_ARGB2101010:
  6709. /* RGB formats are common across chipsets */
  6710. break;
  6711. case DRM_FORMAT_YUYV:
  6712. case DRM_FORMAT_UYVY:
  6713. case DRM_FORMAT_YVYU:
  6714. case DRM_FORMAT_VYUY:
  6715. break;
  6716. default:
  6717. DRM_ERROR("unsupported pixel format\n");
  6718. return -EINVAL;
  6719. }
  6720. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  6721. if (ret) {
  6722. DRM_ERROR("framebuffer init failed %d\n", ret);
  6723. return ret;
  6724. }
  6725. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  6726. intel_fb->obj = obj;
  6727. return 0;
  6728. }
  6729. static struct drm_framebuffer *
  6730. intel_user_framebuffer_create(struct drm_device *dev,
  6731. struct drm_file *filp,
  6732. struct drm_mode_fb_cmd2 *mode_cmd)
  6733. {
  6734. struct drm_i915_gem_object *obj;
  6735. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  6736. mode_cmd->handles[0]));
  6737. if (&obj->base == NULL)
  6738. return ERR_PTR(-ENOENT);
  6739. return intel_framebuffer_create(dev, mode_cmd, obj);
  6740. }
  6741. static const struct drm_mode_config_funcs intel_mode_funcs = {
  6742. .fb_create = intel_user_framebuffer_create,
  6743. .output_poll_changed = intel_fb_output_poll_changed,
  6744. };
  6745. static struct drm_i915_gem_object *
  6746. intel_alloc_context_page(struct drm_device *dev)
  6747. {
  6748. struct drm_i915_gem_object *ctx;
  6749. int ret;
  6750. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  6751. ctx = i915_gem_alloc_object(dev, 4096);
  6752. if (!ctx) {
  6753. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  6754. return NULL;
  6755. }
  6756. ret = i915_gem_object_pin(ctx, 4096, true);
  6757. if (ret) {
  6758. DRM_ERROR("failed to pin power context: %d\n", ret);
  6759. goto err_unref;
  6760. }
  6761. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  6762. if (ret) {
  6763. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  6764. goto err_unpin;
  6765. }
  6766. return ctx;
  6767. err_unpin:
  6768. i915_gem_object_unpin(ctx);
  6769. err_unref:
  6770. drm_gem_object_unreference(&ctx->base);
  6771. mutex_unlock(&dev->struct_mutex);
  6772. return NULL;
  6773. }
  6774. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  6775. {
  6776. struct drm_i915_private *dev_priv = dev->dev_private;
  6777. u16 rgvswctl;
  6778. rgvswctl = I915_READ16(MEMSWCTL);
  6779. if (rgvswctl & MEMCTL_CMD_STS) {
  6780. DRM_DEBUG("gpu busy, RCS change rejected\n");
  6781. return false; /* still busy with another command */
  6782. }
  6783. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  6784. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  6785. I915_WRITE16(MEMSWCTL, rgvswctl);
  6786. POSTING_READ16(MEMSWCTL);
  6787. rgvswctl |= MEMCTL_CMD_STS;
  6788. I915_WRITE16(MEMSWCTL, rgvswctl);
  6789. return true;
  6790. }
  6791. void ironlake_enable_drps(struct drm_device *dev)
  6792. {
  6793. struct drm_i915_private *dev_priv = dev->dev_private;
  6794. u32 rgvmodectl = I915_READ(MEMMODECTL);
  6795. u8 fmax, fmin, fstart, vstart;
  6796. /* Enable temp reporting */
  6797. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  6798. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  6799. /* 100ms RC evaluation intervals */
  6800. I915_WRITE(RCUPEI, 100000);
  6801. I915_WRITE(RCDNEI, 100000);
  6802. /* Set max/min thresholds to 90ms and 80ms respectively */
  6803. I915_WRITE(RCBMAXAVG, 90000);
  6804. I915_WRITE(RCBMINAVG, 80000);
  6805. I915_WRITE(MEMIHYST, 1);
  6806. /* Set up min, max, and cur for interrupt handling */
  6807. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  6808. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  6809. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  6810. MEMMODE_FSTART_SHIFT;
  6811. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  6812. PXVFREQ_PX_SHIFT;
  6813. dev_priv->fmax = fmax; /* IPS callback will increase this */
  6814. dev_priv->fstart = fstart;
  6815. dev_priv->max_delay = fstart;
  6816. dev_priv->min_delay = fmin;
  6817. dev_priv->cur_delay = fstart;
  6818. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  6819. fmax, fmin, fstart);
  6820. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  6821. /*
  6822. * Interrupts will be enabled in ironlake_irq_postinstall
  6823. */
  6824. I915_WRITE(VIDSTART, vstart);
  6825. POSTING_READ(VIDSTART);
  6826. rgvmodectl |= MEMMODE_SWMODE_EN;
  6827. I915_WRITE(MEMMODECTL, rgvmodectl);
  6828. if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  6829. DRM_ERROR("stuck trying to change perf mode\n");
  6830. msleep(1);
  6831. ironlake_set_drps(dev, fstart);
  6832. dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  6833. I915_READ(0x112e0);
  6834. dev_priv->last_time1 = jiffies_to_msecs(jiffies);
  6835. dev_priv->last_count2 = I915_READ(0x112f4);
  6836. getrawmonotonic(&dev_priv->last_time2);
  6837. }
  6838. void ironlake_disable_drps(struct drm_device *dev)
  6839. {
  6840. struct drm_i915_private *dev_priv = dev->dev_private;
  6841. u16 rgvswctl = I915_READ16(MEMSWCTL);
  6842. /* Ack interrupts, disable EFC interrupt */
  6843. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  6844. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  6845. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  6846. I915_WRITE(DEIIR, DE_PCU_EVENT);
  6847. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  6848. /* Go back to the starting frequency */
  6849. ironlake_set_drps(dev, dev_priv->fstart);
  6850. msleep(1);
  6851. rgvswctl |= MEMCTL_CMD_STS;
  6852. I915_WRITE(MEMSWCTL, rgvswctl);
  6853. msleep(1);
  6854. }
  6855. void gen6_set_rps(struct drm_device *dev, u8 val)
  6856. {
  6857. struct drm_i915_private *dev_priv = dev->dev_private;
  6858. u32 swreq;
  6859. swreq = (val & 0x3ff) << 25;
  6860. I915_WRITE(GEN6_RPNSWREQ, swreq);
  6861. }
  6862. void gen6_disable_rps(struct drm_device *dev)
  6863. {
  6864. struct drm_i915_private *dev_priv = dev->dev_private;
  6865. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  6866. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  6867. I915_WRITE(GEN6_PMIER, 0);
  6868. /* Complete PM interrupt masking here doesn't race with the rps work
  6869. * item again unmasking PM interrupts because that is using a different
  6870. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  6871. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  6872. spin_lock_irq(&dev_priv->rps_lock);
  6873. dev_priv->pm_iir = 0;
  6874. spin_unlock_irq(&dev_priv->rps_lock);
  6875. I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
  6876. }
  6877. static unsigned long intel_pxfreq(u32 vidfreq)
  6878. {
  6879. unsigned long freq;
  6880. int div = (vidfreq & 0x3f0000) >> 16;
  6881. int post = (vidfreq & 0x3000) >> 12;
  6882. int pre = (vidfreq & 0x7);
  6883. if (!pre)
  6884. return 0;
  6885. freq = ((div * 133333) / ((1<<post) * pre));
  6886. return freq;
  6887. }
  6888. void intel_init_emon(struct drm_device *dev)
  6889. {
  6890. struct drm_i915_private *dev_priv = dev->dev_private;
  6891. u32 lcfuse;
  6892. u8 pxw[16];
  6893. int i;
  6894. /* Disable to program */
  6895. I915_WRITE(ECR, 0);
  6896. POSTING_READ(ECR);
  6897. /* Program energy weights for various events */
  6898. I915_WRITE(SDEW, 0x15040d00);
  6899. I915_WRITE(CSIEW0, 0x007f0000);
  6900. I915_WRITE(CSIEW1, 0x1e220004);
  6901. I915_WRITE(CSIEW2, 0x04000004);
  6902. for (i = 0; i < 5; i++)
  6903. I915_WRITE(PEW + (i * 4), 0);
  6904. for (i = 0; i < 3; i++)
  6905. I915_WRITE(DEW + (i * 4), 0);
  6906. /* Program P-state weights to account for frequency power adjustment */
  6907. for (i = 0; i < 16; i++) {
  6908. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  6909. unsigned long freq = intel_pxfreq(pxvidfreq);
  6910. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  6911. PXVFREQ_PX_SHIFT;
  6912. unsigned long val;
  6913. val = vid * vid;
  6914. val *= (freq / 1000);
  6915. val *= 255;
  6916. val /= (127*127*900);
  6917. if (val > 0xff)
  6918. DRM_ERROR("bad pxval: %ld\n", val);
  6919. pxw[i] = val;
  6920. }
  6921. /* Render standby states get 0 weight */
  6922. pxw[14] = 0;
  6923. pxw[15] = 0;
  6924. for (i = 0; i < 4; i++) {
  6925. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  6926. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  6927. I915_WRITE(PXW + (i * 4), val);
  6928. }
  6929. /* Adjust magic regs to magic values (more experimental results) */
  6930. I915_WRITE(OGW0, 0);
  6931. I915_WRITE(OGW1, 0);
  6932. I915_WRITE(EG0, 0x00007f00);
  6933. I915_WRITE(EG1, 0x0000000e);
  6934. I915_WRITE(EG2, 0x000e0000);
  6935. I915_WRITE(EG3, 0x68000300);
  6936. I915_WRITE(EG4, 0x42000000);
  6937. I915_WRITE(EG5, 0x00140031);
  6938. I915_WRITE(EG6, 0);
  6939. I915_WRITE(EG7, 0);
  6940. for (i = 0; i < 8; i++)
  6941. I915_WRITE(PXWL + (i * 4), 0);
  6942. /* Enable PMON + select events */
  6943. I915_WRITE(ECR, 0x80000019);
  6944. lcfuse = I915_READ(LCFUSE02);
  6945. dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
  6946. }
  6947. static bool intel_enable_rc6(struct drm_device *dev)
  6948. {
  6949. /*
  6950. * Respect the kernel parameter if it is set
  6951. */
  6952. if (i915_enable_rc6 >= 0)
  6953. return i915_enable_rc6;
  6954. /*
  6955. * Disable RC6 on Ironlake
  6956. */
  6957. if (INTEL_INFO(dev)->gen == 5)
  6958. return 0;
  6959. /*
  6960. * Enable rc6 on Sandybridge if DMA remapping is disabled
  6961. */
  6962. if (INTEL_INFO(dev)->gen == 6) {
  6963. DRM_DEBUG_DRIVER("Sandybridge: intel_iommu_enabled %s -- RC6 %sabled\n",
  6964. intel_iommu_enabled ? "true" : "false",
  6965. !intel_iommu_enabled ? "en" : "dis");
  6966. return !intel_iommu_enabled;
  6967. }
  6968. DRM_DEBUG_DRIVER("RC6 enabled\n");
  6969. return 1;
  6970. }
  6971. void gen6_enable_rps(struct drm_i915_private *dev_priv)
  6972. {
  6973. u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  6974. u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  6975. u32 pcu_mbox, rc6_mask = 0;
  6976. int cur_freq, min_freq, max_freq;
  6977. int i;
  6978. /* Here begins a magic sequence of register writes to enable
  6979. * auto-downclocking.
  6980. *
  6981. * Perhaps there might be some value in exposing these to
  6982. * userspace...
  6983. */
  6984. I915_WRITE(GEN6_RC_STATE, 0);
  6985. mutex_lock(&dev_priv->dev->struct_mutex);
  6986. gen6_gt_force_wake_get(dev_priv);
  6987. /* disable the counters and set deterministic thresholds */
  6988. I915_WRITE(GEN6_RC_CONTROL, 0);
  6989. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  6990. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  6991. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  6992. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  6993. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  6994. for (i = 0; i < I915_NUM_RINGS; i++)
  6995. I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
  6996. I915_WRITE(GEN6_RC_SLEEP, 0);
  6997. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  6998. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  6999. I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
  7000. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  7001. if (intel_enable_rc6(dev_priv->dev))
  7002. rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
  7003. GEN6_RC_CTL_RC6_ENABLE;
  7004. I915_WRITE(GEN6_RC_CONTROL,
  7005. rc6_mask |
  7006. GEN6_RC_CTL_EI_MODE(1) |
  7007. GEN6_RC_CTL_HW_ENABLE);
  7008. I915_WRITE(GEN6_RPNSWREQ,
  7009. GEN6_FREQUENCY(10) |
  7010. GEN6_OFFSET(0) |
  7011. GEN6_AGGRESSIVE_TURBO);
  7012. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  7013. GEN6_FREQUENCY(12));
  7014. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  7015. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  7016. 18 << 24 |
  7017. 6 << 16);
  7018. I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
  7019. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
  7020. I915_WRITE(GEN6_RP_UP_EI, 100000);
  7021. I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
  7022. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  7023. I915_WRITE(GEN6_RP_CONTROL,
  7024. GEN6_RP_MEDIA_TURBO |
  7025. GEN6_RP_MEDIA_HW_MODE |
  7026. GEN6_RP_MEDIA_IS_GFX |
  7027. GEN6_RP_ENABLE |
  7028. GEN6_RP_UP_BUSY_AVG |
  7029. GEN6_RP_DOWN_IDLE_CONT);
  7030. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7031. 500))
  7032. DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
  7033. I915_WRITE(GEN6_PCODE_DATA, 0);
  7034. I915_WRITE(GEN6_PCODE_MAILBOX,
  7035. GEN6_PCODE_READY |
  7036. GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
  7037. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7038. 500))
  7039. DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
  7040. min_freq = (rp_state_cap & 0xff0000) >> 16;
  7041. max_freq = rp_state_cap & 0xff;
  7042. cur_freq = (gt_perf_status & 0xff00) >> 8;
  7043. /* Check for overclock support */
  7044. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7045. 500))
  7046. DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
  7047. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
  7048. pcu_mbox = I915_READ(GEN6_PCODE_DATA);
  7049. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7050. 500))
  7051. DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
  7052. if (pcu_mbox & (1<<31)) { /* OC supported */
  7053. max_freq = pcu_mbox & 0xff;
  7054. DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
  7055. }
  7056. /* In units of 100MHz */
  7057. dev_priv->max_delay = max_freq;
  7058. dev_priv->min_delay = min_freq;
  7059. dev_priv->cur_delay = cur_freq;
  7060. /* requires MSI enabled */
  7061. I915_WRITE(GEN6_PMIER,
  7062. GEN6_PM_MBOX_EVENT |
  7063. GEN6_PM_THERMAL_EVENT |
  7064. GEN6_PM_RP_DOWN_TIMEOUT |
  7065. GEN6_PM_RP_UP_THRESHOLD |
  7066. GEN6_PM_RP_DOWN_THRESHOLD |
  7067. GEN6_PM_RP_UP_EI_EXPIRED |
  7068. GEN6_PM_RP_DOWN_EI_EXPIRED);
  7069. spin_lock_irq(&dev_priv->rps_lock);
  7070. WARN_ON(dev_priv->pm_iir != 0);
  7071. I915_WRITE(GEN6_PMIMR, 0);
  7072. spin_unlock_irq(&dev_priv->rps_lock);
  7073. /* enable all PM interrupts */
  7074. I915_WRITE(GEN6_PMINTRMSK, 0);
  7075. gen6_gt_force_wake_put(dev_priv);
  7076. mutex_unlock(&dev_priv->dev->struct_mutex);
  7077. }
  7078. void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
  7079. {
  7080. int min_freq = 15;
  7081. int gpu_freq, ia_freq, max_ia_freq;
  7082. int scaling_factor = 180;
  7083. max_ia_freq = cpufreq_quick_get_max(0);
  7084. /*
  7085. * Default to measured freq if none found, PCU will ensure we don't go
  7086. * over
  7087. */
  7088. if (!max_ia_freq)
  7089. max_ia_freq = tsc_khz;
  7090. /* Convert from kHz to MHz */
  7091. max_ia_freq /= 1000;
  7092. mutex_lock(&dev_priv->dev->struct_mutex);
  7093. /*
  7094. * For each potential GPU frequency, load a ring frequency we'd like
  7095. * to use for memory access. We do this by specifying the IA frequency
  7096. * the PCU should use as a reference to determine the ring frequency.
  7097. */
  7098. for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
  7099. gpu_freq--) {
  7100. int diff = dev_priv->max_delay - gpu_freq;
  7101. /*
  7102. * For GPU frequencies less than 750MHz, just use the lowest
  7103. * ring freq.
  7104. */
  7105. if (gpu_freq < min_freq)
  7106. ia_freq = 800;
  7107. else
  7108. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  7109. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  7110. I915_WRITE(GEN6_PCODE_DATA,
  7111. (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
  7112. gpu_freq);
  7113. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
  7114. GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
  7115. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
  7116. GEN6_PCODE_READY) == 0, 10)) {
  7117. DRM_ERROR("pcode write of freq table timed out\n");
  7118. continue;
  7119. }
  7120. }
  7121. mutex_unlock(&dev_priv->dev->struct_mutex);
  7122. }
  7123. static void ironlake_init_clock_gating(struct drm_device *dev)
  7124. {
  7125. struct drm_i915_private *dev_priv = dev->dev_private;
  7126. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  7127. /* Required for FBC */
  7128. dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
  7129. DPFCRUNIT_CLOCK_GATE_DISABLE |
  7130. DPFDUNIT_CLOCK_GATE_DISABLE;
  7131. /* Required for CxSR */
  7132. dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
  7133. I915_WRITE(PCH_3DCGDIS0,
  7134. MARIUNIT_CLOCK_GATE_DISABLE |
  7135. SVSMUNIT_CLOCK_GATE_DISABLE);
  7136. I915_WRITE(PCH_3DCGDIS1,
  7137. VFMUNIT_CLOCK_GATE_DISABLE);
  7138. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  7139. /*
  7140. * According to the spec the following bits should be set in
  7141. * order to enable memory self-refresh
  7142. * The bit 22/21 of 0x42004
  7143. * The bit 5 of 0x42020
  7144. * The bit 15 of 0x45000
  7145. */
  7146. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7147. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  7148. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  7149. I915_WRITE(ILK_DSPCLK_GATE,
  7150. (I915_READ(ILK_DSPCLK_GATE) |
  7151. ILK_DPARB_CLK_GATE));
  7152. I915_WRITE(DISP_ARB_CTL,
  7153. (I915_READ(DISP_ARB_CTL) |
  7154. DISP_FBC_WM_DIS));
  7155. I915_WRITE(WM3_LP_ILK, 0);
  7156. I915_WRITE(WM2_LP_ILK, 0);
  7157. I915_WRITE(WM1_LP_ILK, 0);
  7158. /*
  7159. * Based on the document from hardware guys the following bits
  7160. * should be set unconditionally in order to enable FBC.
  7161. * The bit 22 of 0x42000
  7162. * The bit 22 of 0x42004
  7163. * The bit 7,8,9 of 0x42020.
  7164. */
  7165. if (IS_IRONLAKE_M(dev)) {
  7166. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  7167. I915_READ(ILK_DISPLAY_CHICKEN1) |
  7168. ILK_FBCQ_DIS);
  7169. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7170. I915_READ(ILK_DISPLAY_CHICKEN2) |
  7171. ILK_DPARB_GATE);
  7172. I915_WRITE(ILK_DSPCLK_GATE,
  7173. I915_READ(ILK_DSPCLK_GATE) |
  7174. ILK_DPFC_DIS1 |
  7175. ILK_DPFC_DIS2 |
  7176. ILK_CLK_FBC);
  7177. }
  7178. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7179. I915_READ(ILK_DISPLAY_CHICKEN2) |
  7180. ILK_ELPIN_409_SELECT);
  7181. I915_WRITE(_3D_CHICKEN2,
  7182. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  7183. _3D_CHICKEN2_WM_READ_PIPELINED);
  7184. }
  7185. static void gen6_init_clock_gating(struct drm_device *dev)
  7186. {
  7187. struct drm_i915_private *dev_priv = dev->dev_private;
  7188. int pipe;
  7189. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  7190. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  7191. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7192. I915_READ(ILK_DISPLAY_CHICKEN2) |
  7193. ILK_ELPIN_409_SELECT);
  7194. I915_WRITE(WM3_LP_ILK, 0);
  7195. I915_WRITE(WM2_LP_ILK, 0);
  7196. I915_WRITE(WM1_LP_ILK, 0);
  7197. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  7198. * gating disable must be set. Failure to set it results in
  7199. * flickering pixels due to Z write ordering failures after
  7200. * some amount of runtime in the Mesa "fire" demo, and Unigine
  7201. * Sanctuary and Tropics, and apparently anything else with
  7202. * alpha test or pixel discard.
  7203. *
  7204. * According to the spec, bit 11 (RCCUNIT) must also be set,
  7205. * but we didn't debug actual testcases to find it out.
  7206. */
  7207. I915_WRITE(GEN6_UCGCTL2,
  7208. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  7209. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  7210. /*
  7211. * According to the spec the following bits should be
  7212. * set in order to enable memory self-refresh and fbc:
  7213. * The bit21 and bit22 of 0x42000
  7214. * The bit21 and bit22 of 0x42004
  7215. * The bit5 and bit7 of 0x42020
  7216. * The bit14 of 0x70180
  7217. * The bit14 of 0x71180
  7218. */
  7219. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  7220. I915_READ(ILK_DISPLAY_CHICKEN1) |
  7221. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  7222. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7223. I915_READ(ILK_DISPLAY_CHICKEN2) |
  7224. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  7225. I915_WRITE(ILK_DSPCLK_GATE,
  7226. I915_READ(ILK_DSPCLK_GATE) |
  7227. ILK_DPARB_CLK_GATE |
  7228. ILK_DPFD_CLK_GATE);
  7229. for_each_pipe(pipe) {
  7230. I915_WRITE(DSPCNTR(pipe),
  7231. I915_READ(DSPCNTR(pipe)) |
  7232. DISPPLANE_TRICKLE_FEED_DISABLE);
  7233. intel_flush_display_plane(dev_priv, pipe);
  7234. }
  7235. }
  7236. static void ivybridge_init_clock_gating(struct drm_device *dev)
  7237. {
  7238. struct drm_i915_private *dev_priv = dev->dev_private;
  7239. int pipe;
  7240. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  7241. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  7242. I915_WRITE(WM3_LP_ILK, 0);
  7243. I915_WRITE(WM2_LP_ILK, 0);
  7244. I915_WRITE(WM1_LP_ILK, 0);
  7245. I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
  7246. I915_WRITE(IVB_CHICKEN3,
  7247. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  7248. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  7249. for_each_pipe(pipe) {
  7250. I915_WRITE(DSPCNTR(pipe),
  7251. I915_READ(DSPCNTR(pipe)) |
  7252. DISPPLANE_TRICKLE_FEED_DISABLE);
  7253. intel_flush_display_plane(dev_priv, pipe);
  7254. }
  7255. }
  7256. static void g4x_init_clock_gating(struct drm_device *dev)
  7257. {
  7258. struct drm_i915_private *dev_priv = dev->dev_private;
  7259. uint32_t dspclk_gate;
  7260. I915_WRITE(RENCLK_GATE_D1, 0);
  7261. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  7262. GS_UNIT_CLOCK_GATE_DISABLE |
  7263. CL_UNIT_CLOCK_GATE_DISABLE);
  7264. I915_WRITE(RAMCLK_GATE_D, 0);
  7265. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  7266. OVRUNIT_CLOCK_GATE_DISABLE |
  7267. OVCUNIT_CLOCK_GATE_DISABLE;
  7268. if (IS_GM45(dev))
  7269. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  7270. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  7271. }
  7272. static void crestline_init_clock_gating(struct drm_device *dev)
  7273. {
  7274. struct drm_i915_private *dev_priv = dev->dev_private;
  7275. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  7276. I915_WRITE(RENCLK_GATE_D2, 0);
  7277. I915_WRITE(DSPCLK_GATE_D, 0);
  7278. I915_WRITE(RAMCLK_GATE_D, 0);
  7279. I915_WRITE16(DEUC, 0);
  7280. }
  7281. static void broadwater_init_clock_gating(struct drm_device *dev)
  7282. {
  7283. struct drm_i915_private *dev_priv = dev->dev_private;
  7284. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  7285. I965_RCC_CLOCK_GATE_DISABLE |
  7286. I965_RCPB_CLOCK_GATE_DISABLE |
  7287. I965_ISC_CLOCK_GATE_DISABLE |
  7288. I965_FBC_CLOCK_GATE_DISABLE);
  7289. I915_WRITE(RENCLK_GATE_D2, 0);
  7290. }
  7291. static void gen3_init_clock_gating(struct drm_device *dev)
  7292. {
  7293. struct drm_i915_private *dev_priv = dev->dev_private;
  7294. u32 dstate = I915_READ(D_STATE);
  7295. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  7296. DSTATE_DOT_CLOCK_GATING;
  7297. I915_WRITE(D_STATE, dstate);
  7298. }
  7299. static void i85x_init_clock_gating(struct drm_device *dev)
  7300. {
  7301. struct drm_i915_private *dev_priv = dev->dev_private;
  7302. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  7303. }
  7304. static void i830_init_clock_gating(struct drm_device *dev)
  7305. {
  7306. struct drm_i915_private *dev_priv = dev->dev_private;
  7307. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  7308. }
  7309. static void ibx_init_clock_gating(struct drm_device *dev)
  7310. {
  7311. struct drm_i915_private *dev_priv = dev->dev_private;
  7312. /*
  7313. * On Ibex Peak and Cougar Point, we need to disable clock
  7314. * gating for the panel power sequencer or it will fail to
  7315. * start up when no ports are active.
  7316. */
  7317. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  7318. }
  7319. static void cpt_init_clock_gating(struct drm_device *dev)
  7320. {
  7321. struct drm_i915_private *dev_priv = dev->dev_private;
  7322. int pipe;
  7323. /*
  7324. * On Ibex Peak and Cougar Point, we need to disable clock
  7325. * gating for the panel power sequencer or it will fail to
  7326. * start up when no ports are active.
  7327. */
  7328. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  7329. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  7330. DPLS_EDP_PPS_FIX_DIS);
  7331. /* Without this, mode sets may fail silently on FDI */
  7332. for_each_pipe(pipe)
  7333. I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
  7334. }
  7335. static void ironlake_teardown_rc6(struct drm_device *dev)
  7336. {
  7337. struct drm_i915_private *dev_priv = dev->dev_private;
  7338. if (dev_priv->renderctx) {
  7339. i915_gem_object_unpin(dev_priv->renderctx);
  7340. drm_gem_object_unreference(&dev_priv->renderctx->base);
  7341. dev_priv->renderctx = NULL;
  7342. }
  7343. if (dev_priv->pwrctx) {
  7344. i915_gem_object_unpin(dev_priv->pwrctx);
  7345. drm_gem_object_unreference(&dev_priv->pwrctx->base);
  7346. dev_priv->pwrctx = NULL;
  7347. }
  7348. }
  7349. static void ironlake_disable_rc6(struct drm_device *dev)
  7350. {
  7351. struct drm_i915_private *dev_priv = dev->dev_private;
  7352. if (I915_READ(PWRCTXA)) {
  7353. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  7354. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  7355. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  7356. 50);
  7357. I915_WRITE(PWRCTXA, 0);
  7358. POSTING_READ(PWRCTXA);
  7359. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  7360. POSTING_READ(RSTDBYCTL);
  7361. }
  7362. ironlake_teardown_rc6(dev);
  7363. }
  7364. static int ironlake_setup_rc6(struct drm_device *dev)
  7365. {
  7366. struct drm_i915_private *dev_priv = dev->dev_private;
  7367. if (dev_priv->renderctx == NULL)
  7368. dev_priv->renderctx = intel_alloc_context_page(dev);
  7369. if (!dev_priv->renderctx)
  7370. return -ENOMEM;
  7371. if (dev_priv->pwrctx == NULL)
  7372. dev_priv->pwrctx = intel_alloc_context_page(dev);
  7373. if (!dev_priv->pwrctx) {
  7374. ironlake_teardown_rc6(dev);
  7375. return -ENOMEM;
  7376. }
  7377. return 0;
  7378. }
  7379. void ironlake_enable_rc6(struct drm_device *dev)
  7380. {
  7381. struct drm_i915_private *dev_priv = dev->dev_private;
  7382. int ret;
  7383. /* rc6 disabled by default due to repeated reports of hanging during
  7384. * boot and resume.
  7385. */
  7386. if (!intel_enable_rc6(dev))
  7387. return;
  7388. mutex_lock(&dev->struct_mutex);
  7389. ret = ironlake_setup_rc6(dev);
  7390. if (ret) {
  7391. mutex_unlock(&dev->struct_mutex);
  7392. return;
  7393. }
  7394. /*
  7395. * GPU can automatically power down the render unit if given a page
  7396. * to save state.
  7397. */
  7398. ret = BEGIN_LP_RING(6);
  7399. if (ret) {
  7400. ironlake_teardown_rc6(dev);
  7401. mutex_unlock(&dev->struct_mutex);
  7402. return;
  7403. }
  7404. OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  7405. OUT_RING(MI_SET_CONTEXT);
  7406. OUT_RING(dev_priv->renderctx->gtt_offset |
  7407. MI_MM_SPACE_GTT |
  7408. MI_SAVE_EXT_STATE_EN |
  7409. MI_RESTORE_EXT_STATE_EN |
  7410. MI_RESTORE_INHIBIT);
  7411. OUT_RING(MI_SUSPEND_FLUSH);
  7412. OUT_RING(MI_NOOP);
  7413. OUT_RING(MI_FLUSH);
  7414. ADVANCE_LP_RING();
  7415. /*
  7416. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  7417. * does an implicit flush, combined with MI_FLUSH above, it should be
  7418. * safe to assume that renderctx is valid
  7419. */
  7420. ret = intel_wait_ring_idle(LP_RING(dev_priv));
  7421. if (ret) {
  7422. DRM_ERROR("failed to enable ironlake power power savings\n");
  7423. ironlake_teardown_rc6(dev);
  7424. mutex_unlock(&dev->struct_mutex);
  7425. return;
  7426. }
  7427. I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
  7428. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  7429. mutex_unlock(&dev->struct_mutex);
  7430. }
  7431. void intel_init_clock_gating(struct drm_device *dev)
  7432. {
  7433. struct drm_i915_private *dev_priv = dev->dev_private;
  7434. dev_priv->display.init_clock_gating(dev);
  7435. if (dev_priv->display.init_pch_clock_gating)
  7436. dev_priv->display.init_pch_clock_gating(dev);
  7437. }
  7438. /* Set up chip specific display functions */
  7439. static void intel_init_display(struct drm_device *dev)
  7440. {
  7441. struct drm_i915_private *dev_priv = dev->dev_private;
  7442. /* We always want a DPMS function */
  7443. if (HAS_PCH_SPLIT(dev)) {
  7444. dev_priv->display.dpms = ironlake_crtc_dpms;
  7445. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7446. dev_priv->display.update_plane = ironlake_update_plane;
  7447. } else {
  7448. dev_priv->display.dpms = i9xx_crtc_dpms;
  7449. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7450. dev_priv->display.update_plane = i9xx_update_plane;
  7451. }
  7452. if (I915_HAS_FBC(dev)) {
  7453. if (HAS_PCH_SPLIT(dev)) {
  7454. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  7455. dev_priv->display.enable_fbc = ironlake_enable_fbc;
  7456. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  7457. } else if (IS_GM45(dev)) {
  7458. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  7459. dev_priv->display.enable_fbc = g4x_enable_fbc;
  7460. dev_priv->display.disable_fbc = g4x_disable_fbc;
  7461. } else if (IS_CRESTLINE(dev)) {
  7462. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  7463. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  7464. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  7465. }
  7466. /* 855GM needs testing */
  7467. }
  7468. /* Returns the core display clock speed */
  7469. if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7470. dev_priv->display.get_display_clock_speed =
  7471. i945_get_display_clock_speed;
  7472. else if (IS_I915G(dev))
  7473. dev_priv->display.get_display_clock_speed =
  7474. i915_get_display_clock_speed;
  7475. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7476. dev_priv->display.get_display_clock_speed =
  7477. i9xx_misc_get_display_clock_speed;
  7478. else if (IS_I915GM(dev))
  7479. dev_priv->display.get_display_clock_speed =
  7480. i915gm_get_display_clock_speed;
  7481. else if (IS_I865G(dev))
  7482. dev_priv->display.get_display_clock_speed =
  7483. i865_get_display_clock_speed;
  7484. else if (IS_I85X(dev))
  7485. dev_priv->display.get_display_clock_speed =
  7486. i855_get_display_clock_speed;
  7487. else /* 852, 830 */
  7488. dev_priv->display.get_display_clock_speed =
  7489. i830_get_display_clock_speed;
  7490. /* For FIFO watermark updates */
  7491. if (HAS_PCH_SPLIT(dev)) {
  7492. dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
  7493. dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
  7494. /* IVB configs may use multi-threaded forcewake */
  7495. if (IS_IVYBRIDGE(dev)) {
  7496. u32 ecobus;
  7497. /* A small trick here - if the bios hasn't configured MT forcewake,
  7498. * and if the device is in RC6, then force_wake_mt_get will not wake
  7499. * the device and the ECOBUS read will return zero. Which will be
  7500. * (correctly) interpreted by the test below as MT forcewake being
  7501. * disabled.
  7502. */
  7503. mutex_lock(&dev->struct_mutex);
  7504. __gen6_gt_force_wake_mt_get(dev_priv);
  7505. ecobus = I915_READ_NOTRACE(ECOBUS);
  7506. __gen6_gt_force_wake_mt_put(dev_priv);
  7507. mutex_unlock(&dev->struct_mutex);
  7508. if (ecobus & FORCEWAKE_MT_ENABLE) {
  7509. DRM_DEBUG_KMS("Using MT version of forcewake\n");
  7510. dev_priv->display.force_wake_get =
  7511. __gen6_gt_force_wake_mt_get;
  7512. dev_priv->display.force_wake_put =
  7513. __gen6_gt_force_wake_mt_put;
  7514. }
  7515. }
  7516. if (HAS_PCH_IBX(dev))
  7517. dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
  7518. else if (HAS_PCH_CPT(dev))
  7519. dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
  7520. if (IS_GEN5(dev)) {
  7521. if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
  7522. dev_priv->display.update_wm = ironlake_update_wm;
  7523. else {
  7524. DRM_DEBUG_KMS("Failed to get proper latency. "
  7525. "Disable CxSR\n");
  7526. dev_priv->display.update_wm = NULL;
  7527. }
  7528. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7529. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  7530. dev_priv->display.write_eld = ironlake_write_eld;
  7531. } else if (IS_GEN6(dev)) {
  7532. if (SNB_READ_WM0_LATENCY()) {
  7533. dev_priv->display.update_wm = sandybridge_update_wm;
  7534. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  7535. } else {
  7536. DRM_DEBUG_KMS("Failed to read display plane latency. "
  7537. "Disable CxSR\n");
  7538. dev_priv->display.update_wm = NULL;
  7539. }
  7540. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7541. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  7542. dev_priv->display.write_eld = ironlake_write_eld;
  7543. } else if (IS_IVYBRIDGE(dev)) {
  7544. /* FIXME: detect B0+ stepping and use auto training */
  7545. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7546. if (SNB_READ_WM0_LATENCY()) {
  7547. dev_priv->display.update_wm = sandybridge_update_wm;
  7548. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  7549. } else {
  7550. DRM_DEBUG_KMS("Failed to read display plane latency. "
  7551. "Disable CxSR\n");
  7552. dev_priv->display.update_wm = NULL;
  7553. }
  7554. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  7555. dev_priv->display.write_eld = ironlake_write_eld;
  7556. } else
  7557. dev_priv->display.update_wm = NULL;
  7558. } else if (IS_PINEVIEW(dev)) {
  7559. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  7560. dev_priv->is_ddr3,
  7561. dev_priv->fsb_freq,
  7562. dev_priv->mem_freq)) {
  7563. DRM_INFO("failed to find known CxSR latency "
  7564. "(found ddr%s fsb freq %d, mem freq %d), "
  7565. "disabling CxSR\n",
  7566. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  7567. dev_priv->fsb_freq, dev_priv->mem_freq);
  7568. /* Disable CxSR and never update its watermark again */
  7569. pineview_disable_cxsr(dev);
  7570. dev_priv->display.update_wm = NULL;
  7571. } else
  7572. dev_priv->display.update_wm = pineview_update_wm;
  7573. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  7574. } else if (IS_G4X(dev)) {
  7575. dev_priv->display.write_eld = g4x_write_eld;
  7576. dev_priv->display.update_wm = g4x_update_wm;
  7577. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  7578. } else if (IS_GEN4(dev)) {
  7579. dev_priv->display.update_wm = i965_update_wm;
  7580. if (IS_CRESTLINE(dev))
  7581. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  7582. else if (IS_BROADWATER(dev))
  7583. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  7584. } else if (IS_GEN3(dev)) {
  7585. dev_priv->display.update_wm = i9xx_update_wm;
  7586. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  7587. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  7588. } else if (IS_I865G(dev)) {
  7589. dev_priv->display.update_wm = i830_update_wm;
  7590. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  7591. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  7592. } else if (IS_I85X(dev)) {
  7593. dev_priv->display.update_wm = i9xx_update_wm;
  7594. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  7595. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  7596. } else {
  7597. dev_priv->display.update_wm = i830_update_wm;
  7598. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  7599. if (IS_845G(dev))
  7600. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  7601. else
  7602. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  7603. }
  7604. /* Default just returns -ENODEV to indicate unsupported */
  7605. dev_priv->display.queue_flip = intel_default_queue_flip;
  7606. switch (INTEL_INFO(dev)->gen) {
  7607. case 2:
  7608. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7609. break;
  7610. case 3:
  7611. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7612. break;
  7613. case 4:
  7614. case 5:
  7615. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7616. break;
  7617. case 6:
  7618. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7619. break;
  7620. case 7:
  7621. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7622. break;
  7623. }
  7624. }
  7625. /*
  7626. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7627. * resume, or other times. This quirk makes sure that's the case for
  7628. * affected systems.
  7629. */
  7630. static void quirk_pipea_force(struct drm_device *dev)
  7631. {
  7632. struct drm_i915_private *dev_priv = dev->dev_private;
  7633. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7634. DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
  7635. }
  7636. /*
  7637. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7638. */
  7639. static void quirk_ssc_force_disable(struct drm_device *dev)
  7640. {
  7641. struct drm_i915_private *dev_priv = dev->dev_private;
  7642. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7643. }
  7644. struct intel_quirk {
  7645. int device;
  7646. int subsystem_vendor;
  7647. int subsystem_device;
  7648. void (*hook)(struct drm_device *dev);
  7649. };
  7650. struct intel_quirk intel_quirks[] = {
  7651. /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
  7652. { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
  7653. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7654. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7655. /* Thinkpad R31 needs pipe A force quirk */
  7656. { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
  7657. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7658. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7659. /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
  7660. { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
  7661. /* ThinkPad X40 needs pipe A force quirk */
  7662. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7663. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7664. /* 855 & before need to leave pipe A & dpll A up */
  7665. { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7666. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7667. /* Lenovo U160 cannot use SSC on LVDS */
  7668. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7669. /* Sony Vaio Y cannot use SSC on LVDS */
  7670. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7671. };
  7672. static void intel_init_quirks(struct drm_device *dev)
  7673. {
  7674. struct pci_dev *d = dev->pdev;
  7675. int i;
  7676. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7677. struct intel_quirk *q = &intel_quirks[i];
  7678. if (d->device == q->device &&
  7679. (d->subsystem_vendor == q->subsystem_vendor ||
  7680. q->subsystem_vendor == PCI_ANY_ID) &&
  7681. (d->subsystem_device == q->subsystem_device ||
  7682. q->subsystem_device == PCI_ANY_ID))
  7683. q->hook(dev);
  7684. }
  7685. }
  7686. /* Disable the VGA plane that we never use */
  7687. static void i915_disable_vga(struct drm_device *dev)
  7688. {
  7689. struct drm_i915_private *dev_priv = dev->dev_private;
  7690. u8 sr1;
  7691. u32 vga_reg;
  7692. if (HAS_PCH_SPLIT(dev))
  7693. vga_reg = CPU_VGACNTRL;
  7694. else
  7695. vga_reg = VGACNTRL;
  7696. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7697. outb(1, VGA_SR_INDEX);
  7698. sr1 = inb(VGA_SR_DATA);
  7699. outb(sr1 | 1<<5, VGA_SR_DATA);
  7700. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7701. udelay(300);
  7702. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7703. POSTING_READ(vga_reg);
  7704. }
  7705. void intel_modeset_init(struct drm_device *dev)
  7706. {
  7707. struct drm_i915_private *dev_priv = dev->dev_private;
  7708. int i, ret;
  7709. drm_mode_config_init(dev);
  7710. dev->mode_config.min_width = 0;
  7711. dev->mode_config.min_height = 0;
  7712. dev->mode_config.funcs = (void *)&intel_mode_funcs;
  7713. intel_init_quirks(dev);
  7714. intel_init_display(dev);
  7715. if (IS_GEN2(dev)) {
  7716. dev->mode_config.max_width = 2048;
  7717. dev->mode_config.max_height = 2048;
  7718. } else if (IS_GEN3(dev)) {
  7719. dev->mode_config.max_width = 4096;
  7720. dev->mode_config.max_height = 4096;
  7721. } else {
  7722. dev->mode_config.max_width = 8192;
  7723. dev->mode_config.max_height = 8192;
  7724. }
  7725. dev->mode_config.fb_base = dev->agp->base;
  7726. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7727. dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
  7728. for (i = 0; i < dev_priv->num_pipe; i++) {
  7729. intel_crtc_init(dev, i);
  7730. if (HAS_PCH_SPLIT(dev)) {
  7731. ret = intel_plane_init(dev, i);
  7732. if (ret)
  7733. DRM_ERROR("plane %d init failed: %d\n",
  7734. i, ret);
  7735. }
  7736. }
  7737. /* Just disable it once at startup */
  7738. i915_disable_vga(dev);
  7739. intel_setup_outputs(dev);
  7740. intel_init_clock_gating(dev);
  7741. if (IS_IRONLAKE_M(dev)) {
  7742. ironlake_enable_drps(dev);
  7743. intel_init_emon(dev);
  7744. }
  7745. if (IS_GEN6(dev) || IS_GEN7(dev)) {
  7746. gen6_enable_rps(dev_priv);
  7747. gen6_update_ring_freq(dev_priv);
  7748. }
  7749. INIT_WORK(&dev_priv->idle_work, intel_idle_update);
  7750. setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
  7751. (unsigned long)dev);
  7752. }
  7753. void intel_modeset_gem_init(struct drm_device *dev)
  7754. {
  7755. if (IS_IRONLAKE_M(dev))
  7756. ironlake_enable_rc6(dev);
  7757. intel_setup_overlay(dev);
  7758. }
  7759. void intel_modeset_cleanup(struct drm_device *dev)
  7760. {
  7761. struct drm_i915_private *dev_priv = dev->dev_private;
  7762. struct drm_crtc *crtc;
  7763. struct intel_crtc *intel_crtc;
  7764. drm_kms_helper_poll_fini(dev);
  7765. mutex_lock(&dev->struct_mutex);
  7766. intel_unregister_dsm_handler();
  7767. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  7768. /* Skip inactive CRTCs */
  7769. if (!crtc->fb)
  7770. continue;
  7771. intel_crtc = to_intel_crtc(crtc);
  7772. intel_increase_pllclock(crtc);
  7773. }
  7774. intel_disable_fbc(dev);
  7775. if (IS_IRONLAKE_M(dev))
  7776. ironlake_disable_drps(dev);
  7777. if (IS_GEN6(dev) || IS_GEN7(dev))
  7778. gen6_disable_rps(dev);
  7779. if (IS_IRONLAKE_M(dev))
  7780. ironlake_disable_rc6(dev);
  7781. mutex_unlock(&dev->struct_mutex);
  7782. /* Disable the irq before mode object teardown, for the irq might
  7783. * enqueue unpin/hotplug work. */
  7784. drm_irq_uninstall(dev);
  7785. cancel_work_sync(&dev_priv->hotplug_work);
  7786. cancel_work_sync(&dev_priv->rps_work);
  7787. /* flush any delayed tasks or pending work */
  7788. flush_scheduled_work();
  7789. /* Shut off idle work before the crtcs get freed. */
  7790. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  7791. intel_crtc = to_intel_crtc(crtc);
  7792. del_timer_sync(&intel_crtc->idle_timer);
  7793. }
  7794. del_timer_sync(&dev_priv->idle_timer);
  7795. cancel_work_sync(&dev_priv->idle_work);
  7796. drm_mode_config_cleanup(dev);
  7797. }
  7798. /*
  7799. * Return which encoder is currently attached for connector.
  7800. */
  7801. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  7802. {
  7803. return &intel_attached_encoder(connector)->base;
  7804. }
  7805. void intel_connector_attach_encoder(struct intel_connector *connector,
  7806. struct intel_encoder *encoder)
  7807. {
  7808. connector->encoder = encoder;
  7809. drm_mode_connector_attach_encoder(&connector->base,
  7810. &encoder->base);
  7811. }
  7812. /*
  7813. * set vga decode state - true == enable VGA decode
  7814. */
  7815. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  7816. {
  7817. struct drm_i915_private *dev_priv = dev->dev_private;
  7818. u16 gmch_ctrl;
  7819. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  7820. if (state)
  7821. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  7822. else
  7823. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  7824. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  7825. return 0;
  7826. }
  7827. #ifdef CONFIG_DEBUG_FS
  7828. #include <linux/seq_file.h>
  7829. struct intel_display_error_state {
  7830. struct intel_cursor_error_state {
  7831. u32 control;
  7832. u32 position;
  7833. u32 base;
  7834. u32 size;
  7835. } cursor[2];
  7836. struct intel_pipe_error_state {
  7837. u32 conf;
  7838. u32 source;
  7839. u32 htotal;
  7840. u32 hblank;
  7841. u32 hsync;
  7842. u32 vtotal;
  7843. u32 vblank;
  7844. u32 vsync;
  7845. } pipe[2];
  7846. struct intel_plane_error_state {
  7847. u32 control;
  7848. u32 stride;
  7849. u32 size;
  7850. u32 pos;
  7851. u32 addr;
  7852. u32 surface;
  7853. u32 tile_offset;
  7854. } plane[2];
  7855. };
  7856. struct intel_display_error_state *
  7857. intel_display_capture_error_state(struct drm_device *dev)
  7858. {
  7859. drm_i915_private_t *dev_priv = dev->dev_private;
  7860. struct intel_display_error_state *error;
  7861. int i;
  7862. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  7863. if (error == NULL)
  7864. return NULL;
  7865. for (i = 0; i < 2; i++) {
  7866. error->cursor[i].control = I915_READ(CURCNTR(i));
  7867. error->cursor[i].position = I915_READ(CURPOS(i));
  7868. error->cursor[i].base = I915_READ(CURBASE(i));
  7869. error->plane[i].control = I915_READ(DSPCNTR(i));
  7870. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  7871. error->plane[i].size = I915_READ(DSPSIZE(i));
  7872. error->plane[i].pos = I915_READ(DSPPOS(i));
  7873. error->plane[i].addr = I915_READ(DSPADDR(i));
  7874. if (INTEL_INFO(dev)->gen >= 4) {
  7875. error->plane[i].surface = I915_READ(DSPSURF(i));
  7876. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  7877. }
  7878. error->pipe[i].conf = I915_READ(PIPECONF(i));
  7879. error->pipe[i].source = I915_READ(PIPESRC(i));
  7880. error->pipe[i].htotal = I915_READ(HTOTAL(i));
  7881. error->pipe[i].hblank = I915_READ(HBLANK(i));
  7882. error->pipe[i].hsync = I915_READ(HSYNC(i));
  7883. error->pipe[i].vtotal = I915_READ(VTOTAL(i));
  7884. error->pipe[i].vblank = I915_READ(VBLANK(i));
  7885. error->pipe[i].vsync = I915_READ(VSYNC(i));
  7886. }
  7887. return error;
  7888. }
  7889. void
  7890. intel_display_print_error_state(struct seq_file *m,
  7891. struct drm_device *dev,
  7892. struct intel_display_error_state *error)
  7893. {
  7894. int i;
  7895. for (i = 0; i < 2; i++) {
  7896. seq_printf(m, "Pipe [%d]:\n", i);
  7897. seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  7898. seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
  7899. seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  7900. seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  7901. seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  7902. seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  7903. seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  7904. seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  7905. seq_printf(m, "Plane [%d]:\n", i);
  7906. seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
  7907. seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  7908. seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
  7909. seq_printf(m, " POS: %08x\n", error->plane[i].pos);
  7910. seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  7911. if (INTEL_INFO(dev)->gen >= 4) {
  7912. seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
  7913. seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  7914. }
  7915. seq_printf(m, "Cursor [%d]:\n", i);
  7916. seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  7917. seq_printf(m, " POS: %08x\n", error->cursor[i].position);
  7918. seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
  7919. }
  7920. }
  7921. #endif