sun4m_smp.c 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374
  1. /* sun4m_smp.c: Sparc SUN4M SMP support.
  2. *
  3. * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
  4. */
  5. #include <asm/head.h>
  6. #include <linux/kernel.h>
  7. #include <linux/sched.h>
  8. #include <linux/threads.h>
  9. #include <linux/smp.h>
  10. #include <linux/interrupt.h>
  11. #include <linux/kernel_stat.h>
  12. #include <linux/init.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/mm.h>
  15. #include <linux/swap.h>
  16. #include <linux/profile.h>
  17. #include <linux/delay.h>
  18. #include <asm/cacheflush.h>
  19. #include <asm/tlbflush.h>
  20. #include <asm/irq_regs.h>
  21. #include <asm/ptrace.h>
  22. #include <asm/atomic.h>
  23. #include <asm/irq.h>
  24. #include <asm/page.h>
  25. #include <asm/pgalloc.h>
  26. #include <asm/pgtable.h>
  27. #include <asm/oplib.h>
  28. #include <asm/cpudata.h>
  29. #include "irq.h"
  30. #define IRQ_CROSS_CALL 15
  31. extern ctxd_t *srmmu_ctx_table_phys;
  32. extern volatile unsigned long cpu_callin_map[NR_CPUS];
  33. extern unsigned char boot_cpu_id;
  34. extern cpumask_t smp_commenced_mask;
  35. extern int __smp4m_processor_id(void);
  36. /*#define SMP_DEBUG*/
  37. #ifdef SMP_DEBUG
  38. #define SMP_PRINTK(x) printk x
  39. #else
  40. #define SMP_PRINTK(x)
  41. #endif
  42. static inline unsigned long swap(volatile unsigned long *ptr, unsigned long val)
  43. {
  44. __asm__ __volatile__("swap [%1], %0\n\t" :
  45. "=&r" (val), "=&r" (ptr) :
  46. "0" (val), "1" (ptr));
  47. return val;
  48. }
  49. static void smp_setup_percpu_timer(void);
  50. extern void cpu_probe(void);
  51. void __cpuinit smp4m_callin(void)
  52. {
  53. int cpuid = hard_smp_processor_id();
  54. local_flush_cache_all();
  55. local_flush_tlb_all();
  56. /* Get our local ticker going. */
  57. smp_setup_percpu_timer();
  58. calibrate_delay();
  59. smp_store_cpu_info(cpuid);
  60. local_flush_cache_all();
  61. local_flush_tlb_all();
  62. /*
  63. * Unblock the master CPU _only_ when the scheduler state
  64. * of all secondary CPUs will be up-to-date, so after
  65. * the SMP initialization the master will be just allowed
  66. * to call the scheduler code.
  67. */
  68. /* Allow master to continue. */
  69. swap(&cpu_callin_map[cpuid], 1);
  70. /* XXX: What's up with all the flushes? */
  71. local_flush_cache_all();
  72. local_flush_tlb_all();
  73. cpu_probe();
  74. /* Fix idle thread fields. */
  75. __asm__ __volatile__("ld [%0], %%g6\n\t"
  76. : : "r" (&current_set[cpuid])
  77. : "memory" /* paranoid */);
  78. /* Attach to the address space of init_task. */
  79. atomic_inc(&init_mm.mm_count);
  80. current->active_mm = &init_mm;
  81. while (!cpu_isset(cpuid, smp_commenced_mask))
  82. mb();
  83. local_irq_enable();
  84. cpu_set(cpuid, cpu_online_map);
  85. }
  86. /*
  87. * Cycle through the processors asking the PROM to start each one.
  88. */
  89. extern struct linux_prom_registers smp_penguin_ctable;
  90. extern unsigned long trapbase_cpu1[];
  91. extern unsigned long trapbase_cpu2[];
  92. extern unsigned long trapbase_cpu3[];
  93. void __init smp4m_boot_cpus(void)
  94. {
  95. smp_setup_percpu_timer();
  96. local_flush_cache_all();
  97. }
  98. int __cpuinit smp4m_boot_one_cpu(int i)
  99. {
  100. extern unsigned long sun4m_cpu_startup;
  101. unsigned long *entry = &sun4m_cpu_startup;
  102. struct task_struct *p;
  103. int timeout;
  104. int cpu_node;
  105. cpu_find_by_mid(i, &cpu_node);
  106. /* Cook up an idler for this guy. */
  107. p = fork_idle(i);
  108. current_set[i] = task_thread_info(p);
  109. /* See trampoline.S for details... */
  110. entry += ((i-1) * 3);
  111. /*
  112. * Initialize the contexts table
  113. * Since the call to prom_startcpu() trashes the structure,
  114. * we need to re-initialize it for each cpu
  115. */
  116. smp_penguin_ctable.which_io = 0;
  117. smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys;
  118. smp_penguin_ctable.reg_size = 0;
  119. /* whirrr, whirrr, whirrrrrrrrr... */
  120. printk("Starting CPU %d at %p\n", i, entry);
  121. local_flush_cache_all();
  122. prom_startcpu(cpu_node,
  123. &smp_penguin_ctable, 0, (char *)entry);
  124. /* wheee... it's going... */
  125. for(timeout = 0; timeout < 10000; timeout++) {
  126. if(cpu_callin_map[i])
  127. break;
  128. udelay(200);
  129. }
  130. if (!(cpu_callin_map[i])) {
  131. printk("Processor %d is stuck.\n", i);
  132. return -ENODEV;
  133. }
  134. local_flush_cache_all();
  135. return 0;
  136. }
  137. void __init smp4m_smp_done(void)
  138. {
  139. int i, first;
  140. int *prev;
  141. /* setup cpu list for irq rotation */
  142. first = 0;
  143. prev = &first;
  144. for (i = 0; i < NR_CPUS; i++) {
  145. if (cpu_online(i)) {
  146. *prev = i;
  147. prev = &cpu_data(i).next;
  148. }
  149. }
  150. *prev = first;
  151. local_flush_cache_all();
  152. /* Free unneeded trap tables */
  153. if (!cpu_isset(1, cpu_present_map)) {
  154. ClearPageReserved(virt_to_page(trapbase_cpu1));
  155. init_page_count(virt_to_page(trapbase_cpu1));
  156. free_page((unsigned long)trapbase_cpu1);
  157. totalram_pages++;
  158. num_physpages++;
  159. }
  160. if (!cpu_isset(2, cpu_present_map)) {
  161. ClearPageReserved(virt_to_page(trapbase_cpu2));
  162. init_page_count(virt_to_page(trapbase_cpu2));
  163. free_page((unsigned long)trapbase_cpu2);
  164. totalram_pages++;
  165. num_physpages++;
  166. }
  167. if (!cpu_isset(3, cpu_present_map)) {
  168. ClearPageReserved(virt_to_page(trapbase_cpu3));
  169. init_page_count(virt_to_page(trapbase_cpu3));
  170. free_page((unsigned long)trapbase_cpu3);
  171. totalram_pages++;
  172. num_physpages++;
  173. }
  174. /* Ok, they are spinning and ready to go. */
  175. }
  176. /* At each hardware IRQ, we get this called to forward IRQ reception
  177. * to the next processor. The caller must disable the IRQ level being
  178. * serviced globally so that there are no double interrupts received.
  179. *
  180. * XXX See sparc64 irq.c.
  181. */
  182. void smp4m_irq_rotate(int cpu)
  183. {
  184. int next = cpu_data(cpu).next;
  185. if (next != cpu)
  186. set_irq_udt(next);
  187. }
  188. static struct smp_funcall {
  189. smpfunc_t func;
  190. unsigned long arg1;
  191. unsigned long arg2;
  192. unsigned long arg3;
  193. unsigned long arg4;
  194. unsigned long arg5;
  195. unsigned long processors_in[SUN4M_NCPUS]; /* Set when ipi entered. */
  196. unsigned long processors_out[SUN4M_NCPUS]; /* Set when ipi exited. */
  197. } ccall_info;
  198. static DEFINE_SPINLOCK(cross_call_lock);
  199. /* Cross calls must be serialized, at least currently. */
  200. static void smp4m_cross_call(smpfunc_t func, unsigned long arg1,
  201. unsigned long arg2, unsigned long arg3,
  202. unsigned long arg4, unsigned long arg5)
  203. {
  204. register int ncpus = SUN4M_NCPUS;
  205. unsigned long flags;
  206. spin_lock_irqsave(&cross_call_lock, flags);
  207. /* Init function glue. */
  208. ccall_info.func = func;
  209. ccall_info.arg1 = arg1;
  210. ccall_info.arg2 = arg2;
  211. ccall_info.arg3 = arg3;
  212. ccall_info.arg4 = arg4;
  213. ccall_info.arg5 = arg5;
  214. /* Init receive/complete mapping, plus fire the IPI's off. */
  215. {
  216. cpumask_t mask = cpu_online_map;
  217. register int i;
  218. cpu_clear(smp_processor_id(), mask);
  219. for(i = 0; i < ncpus; i++) {
  220. if (cpu_isset(i, mask)) {
  221. ccall_info.processors_in[i] = 0;
  222. ccall_info.processors_out[i] = 0;
  223. set_cpu_int(i, IRQ_CROSS_CALL);
  224. } else {
  225. ccall_info.processors_in[i] = 1;
  226. ccall_info.processors_out[i] = 1;
  227. }
  228. }
  229. }
  230. {
  231. register int i;
  232. i = 0;
  233. do {
  234. while(!ccall_info.processors_in[i])
  235. barrier();
  236. } while(++i < ncpus);
  237. i = 0;
  238. do {
  239. while(!ccall_info.processors_out[i])
  240. barrier();
  241. } while(++i < ncpus);
  242. }
  243. spin_unlock_irqrestore(&cross_call_lock, flags);
  244. }
  245. /* Running cross calls. */
  246. void smp4m_cross_call_irq(void)
  247. {
  248. int i = smp_processor_id();
  249. ccall_info.processors_in[i] = 1;
  250. ccall_info.func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3,
  251. ccall_info.arg4, ccall_info.arg5);
  252. ccall_info.processors_out[i] = 1;
  253. }
  254. void smp4m_percpu_timer_interrupt(struct pt_regs *regs)
  255. {
  256. struct pt_regs *old_regs;
  257. int cpu = smp_processor_id();
  258. old_regs = set_irq_regs(regs);
  259. clear_profile_irq(cpu);
  260. profile_tick(CPU_PROFILING);
  261. if(!--prof_counter(cpu)) {
  262. int user = user_mode(regs);
  263. irq_enter();
  264. update_process_times(user);
  265. irq_exit();
  266. prof_counter(cpu) = prof_multiplier(cpu);
  267. }
  268. set_irq_regs(old_regs);
  269. }
  270. extern unsigned int lvl14_resolution;
  271. static void __init smp_setup_percpu_timer(void)
  272. {
  273. int cpu = smp_processor_id();
  274. prof_counter(cpu) = prof_multiplier(cpu) = 1;
  275. load_profile_irq(cpu, lvl14_resolution);
  276. if(cpu == boot_cpu_id)
  277. enable_pil_irq(14);
  278. }
  279. static void __init smp4m_blackbox_id(unsigned *addr)
  280. {
  281. int rd = *addr & 0x3e000000;
  282. int rs1 = rd >> 11;
  283. addr[0] = 0x81580000 | rd; /* rd %tbr, reg */
  284. addr[1] = 0x8130200c | rd | rs1; /* srl reg, 0xc, reg */
  285. addr[2] = 0x80082003 | rd | rs1; /* and reg, 3, reg */
  286. }
  287. static void __init smp4m_blackbox_current(unsigned *addr)
  288. {
  289. int rd = *addr & 0x3e000000;
  290. int rs1 = rd >> 11;
  291. addr[0] = 0x81580000 | rd; /* rd %tbr, reg */
  292. addr[2] = 0x8130200a | rd | rs1; /* srl reg, 0xa, reg */
  293. addr[4] = 0x8008200c | rd | rs1; /* and reg, 0xc, reg */
  294. }
  295. void __init sun4m_init_smp(void)
  296. {
  297. BTFIXUPSET_BLACKBOX(hard_smp_processor_id, smp4m_blackbox_id);
  298. BTFIXUPSET_BLACKBOX(load_current, smp4m_blackbox_current);
  299. BTFIXUPSET_CALL(smp_cross_call, smp4m_cross_call, BTFIXUPCALL_NORM);
  300. BTFIXUPSET_CALL(__hard_smp_processor_id, __smp4m_processor_id, BTFIXUPCALL_NORM);
  301. }