slab.c 102 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same intializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/config.h>
  89. #include <linux/slab.h>
  90. #include <linux/mm.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/cpuset.h>
  97. #include <linux/seq_file.h>
  98. #include <linux/notifier.h>
  99. #include <linux/kallsyms.h>
  100. #include <linux/cpu.h>
  101. #include <linux/sysctl.h>
  102. #include <linux/module.h>
  103. #include <linux/rcupdate.h>
  104. #include <linux/string.h>
  105. #include <linux/nodemask.h>
  106. #include <linux/mempolicy.h>
  107. #include <linux/mutex.h>
  108. #include <asm/uaccess.h>
  109. #include <asm/cacheflush.h>
  110. #include <asm/tlbflush.h>
  111. #include <asm/page.h>
  112. /*
  113. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
  114. * SLAB_RED_ZONE & SLAB_POISON.
  115. * 0 for faster, smaller code (especially in the critical paths).
  116. *
  117. * STATS - 1 to collect stats for /proc/slabinfo.
  118. * 0 for faster, smaller code (especially in the critical paths).
  119. *
  120. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  121. */
  122. #ifdef CONFIG_DEBUG_SLAB
  123. #define DEBUG 1
  124. #define STATS 1
  125. #define FORCED_DEBUG 1
  126. #else
  127. #define DEBUG 0
  128. #define STATS 0
  129. #define FORCED_DEBUG 0
  130. #endif
  131. /* Shouldn't this be in a header file somewhere? */
  132. #define BYTES_PER_WORD sizeof(void *)
  133. #ifndef cache_line_size
  134. #define cache_line_size() L1_CACHE_BYTES
  135. #endif
  136. #ifndef ARCH_KMALLOC_MINALIGN
  137. /*
  138. * Enforce a minimum alignment for the kmalloc caches.
  139. * Usually, the kmalloc caches are cache_line_size() aligned, except when
  140. * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
  141. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  142. * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
  143. * Note that this flag disables some debug features.
  144. */
  145. #define ARCH_KMALLOC_MINALIGN 0
  146. #endif
  147. #ifndef ARCH_SLAB_MINALIGN
  148. /*
  149. * Enforce a minimum alignment for all caches.
  150. * Intended for archs that get misalignment faults even for BYTES_PER_WORD
  151. * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
  152. * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
  153. * some debug features.
  154. */
  155. #define ARCH_SLAB_MINALIGN 0
  156. #endif
  157. #ifndef ARCH_KMALLOC_FLAGS
  158. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  159. #endif
  160. /* Legal flag mask for kmem_cache_create(). */
  161. #if DEBUG
  162. # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
  163. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  164. SLAB_CACHE_DMA | \
  165. SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
  166. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  167. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  168. #else
  169. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  170. SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
  171. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  172. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  173. #endif
  174. /*
  175. * kmem_bufctl_t:
  176. *
  177. * Bufctl's are used for linking objs within a slab
  178. * linked offsets.
  179. *
  180. * This implementation relies on "struct page" for locating the cache &
  181. * slab an object belongs to.
  182. * This allows the bufctl structure to be small (one int), but limits
  183. * the number of objects a slab (not a cache) can contain when off-slab
  184. * bufctls are used. The limit is the size of the largest general cache
  185. * that does not use off-slab slabs.
  186. * For 32bit archs with 4 kB pages, is this 56.
  187. * This is not serious, as it is only for large objects, when it is unwise
  188. * to have too many per slab.
  189. * Note: This limit can be raised by introducing a general cache whose size
  190. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  191. */
  192. typedef unsigned int kmem_bufctl_t;
  193. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  194. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  195. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
  196. /* Max number of objs-per-slab for caches which use off-slab slabs.
  197. * Needed to avoid a possible looping condition in cache_grow().
  198. */
  199. static unsigned long offslab_limit;
  200. /*
  201. * struct slab
  202. *
  203. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  204. * for a slab, or allocated from an general cache.
  205. * Slabs are chained into three list: fully used, partial, fully free slabs.
  206. */
  207. struct slab {
  208. struct list_head list;
  209. unsigned long colouroff;
  210. void *s_mem; /* including colour offset */
  211. unsigned int inuse; /* num of objs active in slab */
  212. kmem_bufctl_t free;
  213. unsigned short nodeid;
  214. };
  215. /*
  216. * struct slab_rcu
  217. *
  218. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  219. * arrange for kmem_freepages to be called via RCU. This is useful if
  220. * we need to approach a kernel structure obliquely, from its address
  221. * obtained without the usual locking. We can lock the structure to
  222. * stabilize it and check it's still at the given address, only if we
  223. * can be sure that the memory has not been meanwhile reused for some
  224. * other kind of object (which our subsystem's lock might corrupt).
  225. *
  226. * rcu_read_lock before reading the address, then rcu_read_unlock after
  227. * taking the spinlock within the structure expected at that address.
  228. *
  229. * We assume struct slab_rcu can overlay struct slab when destroying.
  230. */
  231. struct slab_rcu {
  232. struct rcu_head head;
  233. struct kmem_cache *cachep;
  234. void *addr;
  235. };
  236. /*
  237. * struct array_cache
  238. *
  239. * Purpose:
  240. * - LIFO ordering, to hand out cache-warm objects from _alloc
  241. * - reduce the number of linked list operations
  242. * - reduce spinlock operations
  243. *
  244. * The limit is stored in the per-cpu structure to reduce the data cache
  245. * footprint.
  246. *
  247. */
  248. struct array_cache {
  249. unsigned int avail;
  250. unsigned int limit;
  251. unsigned int batchcount;
  252. unsigned int touched;
  253. spinlock_t lock;
  254. void *entry[0]; /*
  255. * Must have this definition in here for the proper
  256. * alignment of array_cache. Also simplifies accessing
  257. * the entries.
  258. * [0] is for gcc 2.95. It should really be [].
  259. */
  260. };
  261. /*
  262. * bootstrap: The caches do not work without cpuarrays anymore, but the
  263. * cpuarrays are allocated from the generic caches...
  264. */
  265. #define BOOT_CPUCACHE_ENTRIES 1
  266. struct arraycache_init {
  267. struct array_cache cache;
  268. void *entries[BOOT_CPUCACHE_ENTRIES];
  269. };
  270. /*
  271. * The slab lists for all objects.
  272. */
  273. struct kmem_list3 {
  274. struct list_head slabs_partial; /* partial list first, better asm code */
  275. struct list_head slabs_full;
  276. struct list_head slabs_free;
  277. unsigned long free_objects;
  278. unsigned int free_limit;
  279. unsigned int colour_next; /* Per-node cache coloring */
  280. spinlock_t list_lock;
  281. struct array_cache *shared; /* shared per node */
  282. struct array_cache **alien; /* on other nodes */
  283. unsigned long next_reap; /* updated without locking */
  284. int free_touched; /* updated without locking */
  285. };
  286. /*
  287. * Need this for bootstrapping a per node allocator.
  288. */
  289. #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
  290. struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  291. #define CACHE_CACHE 0
  292. #define SIZE_AC 1
  293. #define SIZE_L3 (1 + MAX_NUMNODES)
  294. /*
  295. * This function must be completely optimized away if a constant is passed to
  296. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  297. */
  298. static __always_inline int index_of(const size_t size)
  299. {
  300. extern void __bad_size(void);
  301. if (__builtin_constant_p(size)) {
  302. int i = 0;
  303. #define CACHE(x) \
  304. if (size <=x) \
  305. return i; \
  306. else \
  307. i++;
  308. #include "linux/kmalloc_sizes.h"
  309. #undef CACHE
  310. __bad_size();
  311. } else
  312. __bad_size();
  313. return 0;
  314. }
  315. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  316. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  317. static void kmem_list3_init(struct kmem_list3 *parent)
  318. {
  319. INIT_LIST_HEAD(&parent->slabs_full);
  320. INIT_LIST_HEAD(&parent->slabs_partial);
  321. INIT_LIST_HEAD(&parent->slabs_free);
  322. parent->shared = NULL;
  323. parent->alien = NULL;
  324. parent->colour_next = 0;
  325. spin_lock_init(&parent->list_lock);
  326. parent->free_objects = 0;
  327. parent->free_touched = 0;
  328. }
  329. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  330. do { \
  331. INIT_LIST_HEAD(listp); \
  332. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  333. } while (0)
  334. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  335. do { \
  336. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  337. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  338. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  339. } while (0)
  340. /*
  341. * struct kmem_cache
  342. *
  343. * manages a cache.
  344. */
  345. struct kmem_cache {
  346. /* 1) per-cpu data, touched during every alloc/free */
  347. struct array_cache *array[NR_CPUS];
  348. /* 2) Cache tunables. Protected by cache_chain_mutex */
  349. unsigned int batchcount;
  350. unsigned int limit;
  351. unsigned int shared;
  352. unsigned int buffer_size;
  353. /* 3) touched by every alloc & free from the backend */
  354. struct kmem_list3 *nodelists[MAX_NUMNODES];
  355. unsigned int flags; /* constant flags */
  356. unsigned int num; /* # of objs per slab */
  357. /* 4) cache_grow/shrink */
  358. /* order of pgs per slab (2^n) */
  359. unsigned int gfporder;
  360. /* force GFP flags, e.g. GFP_DMA */
  361. gfp_t gfpflags;
  362. size_t colour; /* cache colouring range */
  363. unsigned int colour_off; /* colour offset */
  364. struct kmem_cache *slabp_cache;
  365. unsigned int slab_size;
  366. unsigned int dflags; /* dynamic flags */
  367. /* constructor func */
  368. void (*ctor) (void *, struct kmem_cache *, unsigned long);
  369. /* de-constructor func */
  370. void (*dtor) (void *, struct kmem_cache *, unsigned long);
  371. /* 5) cache creation/removal */
  372. const char *name;
  373. struct list_head next;
  374. /* 6) statistics */
  375. #if STATS
  376. unsigned long num_active;
  377. unsigned long num_allocations;
  378. unsigned long high_mark;
  379. unsigned long grown;
  380. unsigned long reaped;
  381. unsigned long errors;
  382. unsigned long max_freeable;
  383. unsigned long node_allocs;
  384. unsigned long node_frees;
  385. atomic_t allochit;
  386. atomic_t allocmiss;
  387. atomic_t freehit;
  388. atomic_t freemiss;
  389. #endif
  390. #if DEBUG
  391. /*
  392. * If debugging is enabled, then the allocator can add additional
  393. * fields and/or padding to every object. buffer_size contains the total
  394. * object size including these internal fields, the following two
  395. * variables contain the offset to the user object and its size.
  396. */
  397. int obj_offset;
  398. int obj_size;
  399. #endif
  400. };
  401. #define CFLGS_OFF_SLAB (0x80000000UL)
  402. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  403. #define BATCHREFILL_LIMIT 16
  404. /*
  405. * Optimization question: fewer reaps means less probability for unnessary
  406. * cpucache drain/refill cycles.
  407. *
  408. * OTOH the cpuarrays can contain lots of objects,
  409. * which could lock up otherwise freeable slabs.
  410. */
  411. #define REAPTIMEOUT_CPUC (2*HZ)
  412. #define REAPTIMEOUT_LIST3 (4*HZ)
  413. #if STATS
  414. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  415. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  416. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  417. #define STATS_INC_GROWN(x) ((x)->grown++)
  418. #define STATS_INC_REAPED(x) ((x)->reaped++)
  419. #define STATS_SET_HIGH(x) \
  420. do { \
  421. if ((x)->num_active > (x)->high_mark) \
  422. (x)->high_mark = (x)->num_active; \
  423. } while (0)
  424. #define STATS_INC_ERR(x) ((x)->errors++)
  425. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  426. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  427. #define STATS_SET_FREEABLE(x, i) \
  428. do { \
  429. if ((x)->max_freeable < i) \
  430. (x)->max_freeable = i; \
  431. } while (0)
  432. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  433. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  434. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  435. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  436. #else
  437. #define STATS_INC_ACTIVE(x) do { } while (0)
  438. #define STATS_DEC_ACTIVE(x) do { } while (0)
  439. #define STATS_INC_ALLOCED(x) do { } while (0)
  440. #define STATS_INC_GROWN(x) do { } while (0)
  441. #define STATS_INC_REAPED(x) do { } while (0)
  442. #define STATS_SET_HIGH(x) do { } while (0)
  443. #define STATS_INC_ERR(x) do { } while (0)
  444. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  445. #define STATS_INC_NODEFREES(x) do { } while (0)
  446. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  447. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  448. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  449. #define STATS_INC_FREEHIT(x) do { } while (0)
  450. #define STATS_INC_FREEMISS(x) do { } while (0)
  451. #endif
  452. #if DEBUG
  453. /*
  454. * Magic nums for obj red zoning.
  455. * Placed in the first word before and the first word after an obj.
  456. */
  457. #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
  458. #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
  459. /* ...and for poisoning */
  460. #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
  461. #define POISON_FREE 0x6b /* for use-after-free poisoning */
  462. #define POISON_END 0xa5 /* end-byte of poisoning */
  463. /*
  464. * memory layout of objects:
  465. * 0 : objp
  466. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  467. * the end of an object is aligned with the end of the real
  468. * allocation. Catches writes behind the end of the allocation.
  469. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  470. * redzone word.
  471. * cachep->obj_offset: The real object.
  472. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  473. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  474. * [BYTES_PER_WORD long]
  475. */
  476. static int obj_offset(struct kmem_cache *cachep)
  477. {
  478. return cachep->obj_offset;
  479. }
  480. static int obj_size(struct kmem_cache *cachep)
  481. {
  482. return cachep->obj_size;
  483. }
  484. static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  485. {
  486. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  487. return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
  488. }
  489. static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  490. {
  491. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  492. if (cachep->flags & SLAB_STORE_USER)
  493. return (unsigned long *)(objp + cachep->buffer_size -
  494. 2 * BYTES_PER_WORD);
  495. return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
  496. }
  497. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  498. {
  499. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  500. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  501. }
  502. #else
  503. #define obj_offset(x) 0
  504. #define obj_size(cachep) (cachep->buffer_size)
  505. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  506. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  507. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  508. #endif
  509. /*
  510. * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
  511. * order.
  512. */
  513. #if defined(CONFIG_LARGE_ALLOCS)
  514. #define MAX_OBJ_ORDER 13 /* up to 32Mb */
  515. #define MAX_GFP_ORDER 13 /* up to 32Mb */
  516. #elif defined(CONFIG_MMU)
  517. #define MAX_OBJ_ORDER 5 /* 32 pages */
  518. #define MAX_GFP_ORDER 5 /* 32 pages */
  519. #else
  520. #define MAX_OBJ_ORDER 8 /* up to 1Mb */
  521. #define MAX_GFP_ORDER 8 /* up to 1Mb */
  522. #endif
  523. /*
  524. * Do not go above this order unless 0 objects fit into the slab.
  525. */
  526. #define BREAK_GFP_ORDER_HI 1
  527. #define BREAK_GFP_ORDER_LO 0
  528. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  529. /*
  530. * Functions for storing/retrieving the cachep and or slab from the page
  531. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  532. * these are used to find the cache which an obj belongs to.
  533. */
  534. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  535. {
  536. page->lru.next = (struct list_head *)cache;
  537. }
  538. static inline struct kmem_cache *page_get_cache(struct page *page)
  539. {
  540. if (unlikely(PageCompound(page)))
  541. page = (struct page *)page_private(page);
  542. return (struct kmem_cache *)page->lru.next;
  543. }
  544. static inline void page_set_slab(struct page *page, struct slab *slab)
  545. {
  546. page->lru.prev = (struct list_head *)slab;
  547. }
  548. static inline struct slab *page_get_slab(struct page *page)
  549. {
  550. if (unlikely(PageCompound(page)))
  551. page = (struct page *)page_private(page);
  552. return (struct slab *)page->lru.prev;
  553. }
  554. static inline struct kmem_cache *virt_to_cache(const void *obj)
  555. {
  556. struct page *page = virt_to_page(obj);
  557. return page_get_cache(page);
  558. }
  559. static inline struct slab *virt_to_slab(const void *obj)
  560. {
  561. struct page *page = virt_to_page(obj);
  562. return page_get_slab(page);
  563. }
  564. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  565. unsigned int idx)
  566. {
  567. return slab->s_mem + cache->buffer_size * idx;
  568. }
  569. static inline unsigned int obj_to_index(struct kmem_cache *cache,
  570. struct slab *slab, void *obj)
  571. {
  572. return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
  573. }
  574. /*
  575. * These are the default caches for kmalloc. Custom caches can have other sizes.
  576. */
  577. struct cache_sizes malloc_sizes[] = {
  578. #define CACHE(x) { .cs_size = (x) },
  579. #include <linux/kmalloc_sizes.h>
  580. CACHE(ULONG_MAX)
  581. #undef CACHE
  582. };
  583. EXPORT_SYMBOL(malloc_sizes);
  584. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  585. struct cache_names {
  586. char *name;
  587. char *name_dma;
  588. };
  589. static struct cache_names __initdata cache_names[] = {
  590. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  591. #include <linux/kmalloc_sizes.h>
  592. {NULL,}
  593. #undef CACHE
  594. };
  595. static struct arraycache_init initarray_cache __initdata =
  596. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  597. static struct arraycache_init initarray_generic =
  598. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  599. /* internal cache of cache description objs */
  600. static struct kmem_cache cache_cache = {
  601. .batchcount = 1,
  602. .limit = BOOT_CPUCACHE_ENTRIES,
  603. .shared = 1,
  604. .buffer_size = sizeof(struct kmem_cache),
  605. .name = "kmem_cache",
  606. #if DEBUG
  607. .obj_size = sizeof(struct kmem_cache),
  608. #endif
  609. };
  610. /* Guard access to the cache-chain. */
  611. static DEFINE_MUTEX(cache_chain_mutex);
  612. static struct list_head cache_chain;
  613. /*
  614. * vm_enough_memory() looks at this to determine how many slab-allocated pages
  615. * are possibly freeable under pressure
  616. *
  617. * SLAB_RECLAIM_ACCOUNT turns this on per-slab
  618. */
  619. atomic_t slab_reclaim_pages;
  620. /*
  621. * chicken and egg problem: delay the per-cpu array allocation
  622. * until the general caches are up.
  623. */
  624. static enum {
  625. NONE,
  626. PARTIAL_AC,
  627. PARTIAL_L3,
  628. FULL
  629. } g_cpucache_up;
  630. static DEFINE_PER_CPU(struct work_struct, reap_work);
  631. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  632. int node);
  633. static void enable_cpucache(struct kmem_cache *cachep);
  634. static void cache_reap(void *unused);
  635. static int __node_shrink(struct kmem_cache *cachep, int node);
  636. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  637. {
  638. return cachep->array[smp_processor_id()];
  639. }
  640. static inline struct kmem_cache *__find_general_cachep(size_t size,
  641. gfp_t gfpflags)
  642. {
  643. struct cache_sizes *csizep = malloc_sizes;
  644. #if DEBUG
  645. /* This happens if someone tries to call
  646. * kmem_cache_create(), or __kmalloc(), before
  647. * the generic caches are initialized.
  648. */
  649. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  650. #endif
  651. while (size > csizep->cs_size)
  652. csizep++;
  653. /*
  654. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  655. * has cs_{dma,}cachep==NULL. Thus no special case
  656. * for large kmalloc calls required.
  657. */
  658. if (unlikely(gfpflags & GFP_DMA))
  659. return csizep->cs_dmacachep;
  660. return csizep->cs_cachep;
  661. }
  662. struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  663. {
  664. return __find_general_cachep(size, gfpflags);
  665. }
  666. EXPORT_SYMBOL(kmem_find_general_cachep);
  667. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  668. {
  669. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  670. }
  671. /*
  672. * Calculate the number of objects and left-over bytes for a given buffer size.
  673. */
  674. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  675. size_t align, int flags, size_t *left_over,
  676. unsigned int *num)
  677. {
  678. int nr_objs;
  679. size_t mgmt_size;
  680. size_t slab_size = PAGE_SIZE << gfporder;
  681. /*
  682. * The slab management structure can be either off the slab or
  683. * on it. For the latter case, the memory allocated for a
  684. * slab is used for:
  685. *
  686. * - The struct slab
  687. * - One kmem_bufctl_t for each object
  688. * - Padding to respect alignment of @align
  689. * - @buffer_size bytes for each object
  690. *
  691. * If the slab management structure is off the slab, then the
  692. * alignment will already be calculated into the size. Because
  693. * the slabs are all pages aligned, the objects will be at the
  694. * correct alignment when allocated.
  695. */
  696. if (flags & CFLGS_OFF_SLAB) {
  697. mgmt_size = 0;
  698. nr_objs = slab_size / buffer_size;
  699. if (nr_objs > SLAB_LIMIT)
  700. nr_objs = SLAB_LIMIT;
  701. } else {
  702. /*
  703. * Ignore padding for the initial guess. The padding
  704. * is at most @align-1 bytes, and @buffer_size is at
  705. * least @align. In the worst case, this result will
  706. * be one greater than the number of objects that fit
  707. * into the memory allocation when taking the padding
  708. * into account.
  709. */
  710. nr_objs = (slab_size - sizeof(struct slab)) /
  711. (buffer_size + sizeof(kmem_bufctl_t));
  712. /*
  713. * This calculated number will be either the right
  714. * amount, or one greater than what we want.
  715. */
  716. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  717. > slab_size)
  718. nr_objs--;
  719. if (nr_objs > SLAB_LIMIT)
  720. nr_objs = SLAB_LIMIT;
  721. mgmt_size = slab_mgmt_size(nr_objs, align);
  722. }
  723. *num = nr_objs;
  724. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  725. }
  726. #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
  727. static void __slab_error(const char *function, struct kmem_cache *cachep,
  728. char *msg)
  729. {
  730. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  731. function, cachep->name, msg);
  732. dump_stack();
  733. }
  734. #ifdef CONFIG_NUMA
  735. /*
  736. * Special reaping functions for NUMA systems called from cache_reap().
  737. * These take care of doing round robin flushing of alien caches (containing
  738. * objects freed on different nodes from which they were allocated) and the
  739. * flushing of remote pcps by calling drain_node_pages.
  740. */
  741. static DEFINE_PER_CPU(unsigned long, reap_node);
  742. static void init_reap_node(int cpu)
  743. {
  744. int node;
  745. node = next_node(cpu_to_node(cpu), node_online_map);
  746. if (node == MAX_NUMNODES)
  747. node = first_node(node_online_map);
  748. __get_cpu_var(reap_node) = node;
  749. }
  750. static void next_reap_node(void)
  751. {
  752. int node = __get_cpu_var(reap_node);
  753. /*
  754. * Also drain per cpu pages on remote zones
  755. */
  756. if (node != numa_node_id())
  757. drain_node_pages(node);
  758. node = next_node(node, node_online_map);
  759. if (unlikely(node >= MAX_NUMNODES))
  760. node = first_node(node_online_map);
  761. __get_cpu_var(reap_node) = node;
  762. }
  763. #else
  764. #define init_reap_node(cpu) do { } while (0)
  765. #define next_reap_node(void) do { } while (0)
  766. #endif
  767. /*
  768. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  769. * via the workqueue/eventd.
  770. * Add the CPU number into the expiration time to minimize the possibility of
  771. * the CPUs getting into lockstep and contending for the global cache chain
  772. * lock.
  773. */
  774. static void __devinit start_cpu_timer(int cpu)
  775. {
  776. struct work_struct *reap_work = &per_cpu(reap_work, cpu);
  777. /*
  778. * When this gets called from do_initcalls via cpucache_init(),
  779. * init_workqueues() has already run, so keventd will be setup
  780. * at that time.
  781. */
  782. if (keventd_up() && reap_work->func == NULL) {
  783. init_reap_node(cpu);
  784. INIT_WORK(reap_work, cache_reap, NULL);
  785. schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
  786. }
  787. }
  788. static struct array_cache *alloc_arraycache(int node, int entries,
  789. int batchcount)
  790. {
  791. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  792. struct array_cache *nc = NULL;
  793. nc = kmalloc_node(memsize, GFP_KERNEL, node);
  794. if (nc) {
  795. nc->avail = 0;
  796. nc->limit = entries;
  797. nc->batchcount = batchcount;
  798. nc->touched = 0;
  799. spin_lock_init(&nc->lock);
  800. }
  801. return nc;
  802. }
  803. #ifdef CONFIG_NUMA
  804. static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
  805. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  806. static struct array_cache **alloc_alien_cache(int node, int limit)
  807. {
  808. struct array_cache **ac_ptr;
  809. int memsize = sizeof(void *) * MAX_NUMNODES;
  810. int i;
  811. if (limit > 1)
  812. limit = 12;
  813. ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
  814. if (ac_ptr) {
  815. for_each_node(i) {
  816. if (i == node || !node_online(i)) {
  817. ac_ptr[i] = NULL;
  818. continue;
  819. }
  820. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
  821. if (!ac_ptr[i]) {
  822. for (i--; i <= 0; i--)
  823. kfree(ac_ptr[i]);
  824. kfree(ac_ptr);
  825. return NULL;
  826. }
  827. }
  828. }
  829. return ac_ptr;
  830. }
  831. static void free_alien_cache(struct array_cache **ac_ptr)
  832. {
  833. int i;
  834. if (!ac_ptr)
  835. return;
  836. for_each_node(i)
  837. kfree(ac_ptr[i]);
  838. kfree(ac_ptr);
  839. }
  840. static void __drain_alien_cache(struct kmem_cache *cachep,
  841. struct array_cache *ac, int node)
  842. {
  843. struct kmem_list3 *rl3 = cachep->nodelists[node];
  844. if (ac->avail) {
  845. spin_lock(&rl3->list_lock);
  846. free_block(cachep, ac->entry, ac->avail, node);
  847. ac->avail = 0;
  848. spin_unlock(&rl3->list_lock);
  849. }
  850. }
  851. /*
  852. * Called from cache_reap() to regularly drain alien caches round robin.
  853. */
  854. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  855. {
  856. int node = __get_cpu_var(reap_node);
  857. if (l3->alien) {
  858. struct array_cache *ac = l3->alien[node];
  859. if (ac && ac->avail) {
  860. spin_lock_irq(&ac->lock);
  861. __drain_alien_cache(cachep, ac, node);
  862. spin_unlock_irq(&ac->lock);
  863. }
  864. }
  865. }
  866. static void drain_alien_cache(struct kmem_cache *cachep,
  867. struct array_cache **alien)
  868. {
  869. int i = 0;
  870. struct array_cache *ac;
  871. unsigned long flags;
  872. for_each_online_node(i) {
  873. ac = alien[i];
  874. if (ac) {
  875. spin_lock_irqsave(&ac->lock, flags);
  876. __drain_alien_cache(cachep, ac, i);
  877. spin_unlock_irqrestore(&ac->lock, flags);
  878. }
  879. }
  880. }
  881. #else
  882. #define drain_alien_cache(cachep, alien) do { } while (0)
  883. #define reap_alien(cachep, l3) do { } while (0)
  884. static inline struct array_cache **alloc_alien_cache(int node, int limit)
  885. {
  886. return (struct array_cache **) 0x01020304ul;
  887. }
  888. static inline void free_alien_cache(struct array_cache **ac_ptr)
  889. {
  890. }
  891. #endif
  892. static int __devinit cpuup_callback(struct notifier_block *nfb,
  893. unsigned long action, void *hcpu)
  894. {
  895. long cpu = (long)hcpu;
  896. struct kmem_cache *cachep;
  897. struct kmem_list3 *l3 = NULL;
  898. int node = cpu_to_node(cpu);
  899. int memsize = sizeof(struct kmem_list3);
  900. switch (action) {
  901. case CPU_UP_PREPARE:
  902. mutex_lock(&cache_chain_mutex);
  903. /*
  904. * We need to do this right in the beginning since
  905. * alloc_arraycache's are going to use this list.
  906. * kmalloc_node allows us to add the slab to the right
  907. * kmem_list3 and not this cpu's kmem_list3
  908. */
  909. list_for_each_entry(cachep, &cache_chain, next) {
  910. /*
  911. * Set up the size64 kmemlist for cpu before we can
  912. * begin anything. Make sure some other cpu on this
  913. * node has not already allocated this
  914. */
  915. if (!cachep->nodelists[node]) {
  916. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  917. if (!l3)
  918. goto bad;
  919. kmem_list3_init(l3);
  920. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  921. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  922. /*
  923. * The l3s don't come and go as CPUs come and
  924. * go. cache_chain_mutex is sufficient
  925. * protection here.
  926. */
  927. cachep->nodelists[node] = l3;
  928. }
  929. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  930. cachep->nodelists[node]->free_limit =
  931. (1 + nr_cpus_node(node)) *
  932. cachep->batchcount + cachep->num;
  933. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  934. }
  935. /*
  936. * Now we can go ahead with allocating the shared arrays and
  937. * array caches
  938. */
  939. list_for_each_entry(cachep, &cache_chain, next) {
  940. struct array_cache *nc;
  941. struct array_cache *shared;
  942. struct array_cache **alien;
  943. nc = alloc_arraycache(node, cachep->limit,
  944. cachep->batchcount);
  945. if (!nc)
  946. goto bad;
  947. shared = alloc_arraycache(node,
  948. cachep->shared * cachep->batchcount,
  949. 0xbaadf00d);
  950. if (!shared)
  951. goto bad;
  952. alien = alloc_alien_cache(node, cachep->limit);
  953. if (!alien)
  954. goto bad;
  955. cachep->array[cpu] = nc;
  956. l3 = cachep->nodelists[node];
  957. BUG_ON(!l3);
  958. spin_lock_irq(&l3->list_lock);
  959. if (!l3->shared) {
  960. /*
  961. * We are serialised from CPU_DEAD or
  962. * CPU_UP_CANCELLED by the cpucontrol lock
  963. */
  964. l3->shared = shared;
  965. shared = NULL;
  966. }
  967. #ifdef CONFIG_NUMA
  968. if (!l3->alien) {
  969. l3->alien = alien;
  970. alien = NULL;
  971. }
  972. #endif
  973. spin_unlock_irq(&l3->list_lock);
  974. kfree(shared);
  975. free_alien_cache(alien);
  976. }
  977. mutex_unlock(&cache_chain_mutex);
  978. break;
  979. case CPU_ONLINE:
  980. start_cpu_timer(cpu);
  981. break;
  982. #ifdef CONFIG_HOTPLUG_CPU
  983. case CPU_DEAD:
  984. /*
  985. * Even if all the cpus of a node are down, we don't free the
  986. * kmem_list3 of any cache. This to avoid a race between
  987. * cpu_down, and a kmalloc allocation from another cpu for
  988. * memory from the node of the cpu going down. The list3
  989. * structure is usually allocated from kmem_cache_create() and
  990. * gets destroyed at kmem_cache_destroy().
  991. */
  992. /* fall thru */
  993. case CPU_UP_CANCELED:
  994. mutex_lock(&cache_chain_mutex);
  995. list_for_each_entry(cachep, &cache_chain, next) {
  996. struct array_cache *nc;
  997. struct array_cache *shared;
  998. struct array_cache **alien;
  999. cpumask_t mask;
  1000. mask = node_to_cpumask(node);
  1001. /* cpu is dead; no one can alloc from it. */
  1002. nc = cachep->array[cpu];
  1003. cachep->array[cpu] = NULL;
  1004. l3 = cachep->nodelists[node];
  1005. if (!l3)
  1006. goto free_array_cache;
  1007. spin_lock_irq(&l3->list_lock);
  1008. /* Free limit for this kmem_list3 */
  1009. l3->free_limit -= cachep->batchcount;
  1010. if (nc)
  1011. free_block(cachep, nc->entry, nc->avail, node);
  1012. if (!cpus_empty(mask)) {
  1013. spin_unlock_irq(&l3->list_lock);
  1014. goto free_array_cache;
  1015. }
  1016. shared = l3->shared;
  1017. if (shared) {
  1018. free_block(cachep, l3->shared->entry,
  1019. l3->shared->avail, node);
  1020. l3->shared = NULL;
  1021. }
  1022. alien = l3->alien;
  1023. l3->alien = NULL;
  1024. spin_unlock_irq(&l3->list_lock);
  1025. kfree(shared);
  1026. if (alien) {
  1027. drain_alien_cache(cachep, alien);
  1028. free_alien_cache(alien);
  1029. }
  1030. free_array_cache:
  1031. kfree(nc);
  1032. }
  1033. /*
  1034. * In the previous loop, all the objects were freed to
  1035. * the respective cache's slabs, now we can go ahead and
  1036. * shrink each nodelist to its limit.
  1037. */
  1038. list_for_each_entry(cachep, &cache_chain, next) {
  1039. l3 = cachep->nodelists[node];
  1040. if (!l3)
  1041. continue;
  1042. spin_lock_irq(&l3->list_lock);
  1043. /* free slabs belonging to this node */
  1044. __node_shrink(cachep, node);
  1045. spin_unlock_irq(&l3->list_lock);
  1046. }
  1047. mutex_unlock(&cache_chain_mutex);
  1048. break;
  1049. #endif
  1050. }
  1051. return NOTIFY_OK;
  1052. bad:
  1053. mutex_unlock(&cache_chain_mutex);
  1054. return NOTIFY_BAD;
  1055. }
  1056. static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
  1057. /*
  1058. * swap the static kmem_list3 with kmalloced memory
  1059. */
  1060. static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1061. int nodeid)
  1062. {
  1063. struct kmem_list3 *ptr;
  1064. BUG_ON(cachep->nodelists[nodeid] != list);
  1065. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
  1066. BUG_ON(!ptr);
  1067. local_irq_disable();
  1068. memcpy(ptr, list, sizeof(struct kmem_list3));
  1069. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1070. cachep->nodelists[nodeid] = ptr;
  1071. local_irq_enable();
  1072. }
  1073. /*
  1074. * Initialisation. Called after the page allocator have been initialised and
  1075. * before smp_init().
  1076. */
  1077. void __init kmem_cache_init(void)
  1078. {
  1079. size_t left_over;
  1080. struct cache_sizes *sizes;
  1081. struct cache_names *names;
  1082. int i;
  1083. int order;
  1084. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1085. kmem_list3_init(&initkmem_list3[i]);
  1086. if (i < MAX_NUMNODES)
  1087. cache_cache.nodelists[i] = NULL;
  1088. }
  1089. /*
  1090. * Fragmentation resistance on low memory - only use bigger
  1091. * page orders on machines with more than 32MB of memory.
  1092. */
  1093. if (num_physpages > (32 << 20) >> PAGE_SHIFT)
  1094. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1095. /* Bootstrap is tricky, because several objects are allocated
  1096. * from caches that do not exist yet:
  1097. * 1) initialize the cache_cache cache: it contains the struct
  1098. * kmem_cache structures of all caches, except cache_cache itself:
  1099. * cache_cache is statically allocated.
  1100. * Initially an __init data area is used for the head array and the
  1101. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1102. * array at the end of the bootstrap.
  1103. * 2) Create the first kmalloc cache.
  1104. * The struct kmem_cache for the new cache is allocated normally.
  1105. * An __init data area is used for the head array.
  1106. * 3) Create the remaining kmalloc caches, with minimally sized
  1107. * head arrays.
  1108. * 4) Replace the __init data head arrays for cache_cache and the first
  1109. * kmalloc cache with kmalloc allocated arrays.
  1110. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1111. * the other cache's with kmalloc allocated memory.
  1112. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1113. */
  1114. /* 1) create the cache_cache */
  1115. INIT_LIST_HEAD(&cache_chain);
  1116. list_add(&cache_cache.next, &cache_chain);
  1117. cache_cache.colour_off = cache_line_size();
  1118. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1119. cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
  1120. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1121. cache_line_size());
  1122. for (order = 0; order < MAX_ORDER; order++) {
  1123. cache_estimate(order, cache_cache.buffer_size,
  1124. cache_line_size(), 0, &left_over, &cache_cache.num);
  1125. if (cache_cache.num)
  1126. break;
  1127. }
  1128. if (!cache_cache.num)
  1129. BUG();
  1130. cache_cache.gfporder = order;
  1131. cache_cache.colour = left_over / cache_cache.colour_off;
  1132. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1133. sizeof(struct slab), cache_line_size());
  1134. /* 2+3) create the kmalloc caches */
  1135. sizes = malloc_sizes;
  1136. names = cache_names;
  1137. /*
  1138. * Initialize the caches that provide memory for the array cache and the
  1139. * kmem_list3 structures first. Without this, further allocations will
  1140. * bug.
  1141. */
  1142. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1143. sizes[INDEX_AC].cs_size,
  1144. ARCH_KMALLOC_MINALIGN,
  1145. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1146. NULL, NULL);
  1147. if (INDEX_AC != INDEX_L3) {
  1148. sizes[INDEX_L3].cs_cachep =
  1149. kmem_cache_create(names[INDEX_L3].name,
  1150. sizes[INDEX_L3].cs_size,
  1151. ARCH_KMALLOC_MINALIGN,
  1152. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1153. NULL, NULL);
  1154. }
  1155. while (sizes->cs_size != ULONG_MAX) {
  1156. /*
  1157. * For performance, all the general caches are L1 aligned.
  1158. * This should be particularly beneficial on SMP boxes, as it
  1159. * eliminates "false sharing".
  1160. * Note for systems short on memory removing the alignment will
  1161. * allow tighter packing of the smaller caches.
  1162. */
  1163. if (!sizes->cs_cachep) {
  1164. sizes->cs_cachep = kmem_cache_create(names->name,
  1165. sizes->cs_size,
  1166. ARCH_KMALLOC_MINALIGN,
  1167. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1168. NULL, NULL);
  1169. }
  1170. /* Inc off-slab bufctl limit until the ceiling is hit. */
  1171. if (!(OFF_SLAB(sizes->cs_cachep))) {
  1172. offslab_limit = sizes->cs_size - sizeof(struct slab);
  1173. offslab_limit /= sizeof(kmem_bufctl_t);
  1174. }
  1175. sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
  1176. sizes->cs_size,
  1177. ARCH_KMALLOC_MINALIGN,
  1178. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1179. SLAB_PANIC,
  1180. NULL, NULL);
  1181. sizes++;
  1182. names++;
  1183. }
  1184. /* 4) Replace the bootstrap head arrays */
  1185. {
  1186. void *ptr;
  1187. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1188. local_irq_disable();
  1189. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1190. memcpy(ptr, cpu_cache_get(&cache_cache),
  1191. sizeof(struct arraycache_init));
  1192. cache_cache.array[smp_processor_id()] = ptr;
  1193. local_irq_enable();
  1194. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1195. local_irq_disable();
  1196. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1197. != &initarray_generic.cache);
  1198. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1199. sizeof(struct arraycache_init));
  1200. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1201. ptr;
  1202. local_irq_enable();
  1203. }
  1204. /* 5) Replace the bootstrap kmem_list3's */
  1205. {
  1206. int node;
  1207. /* Replace the static kmem_list3 structures for the boot cpu */
  1208. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
  1209. numa_node_id());
  1210. for_each_online_node(node) {
  1211. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1212. &initkmem_list3[SIZE_AC + node], node);
  1213. if (INDEX_AC != INDEX_L3) {
  1214. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1215. &initkmem_list3[SIZE_L3 + node],
  1216. node);
  1217. }
  1218. }
  1219. }
  1220. /* 6) resize the head arrays to their final sizes */
  1221. {
  1222. struct kmem_cache *cachep;
  1223. mutex_lock(&cache_chain_mutex);
  1224. list_for_each_entry(cachep, &cache_chain, next)
  1225. enable_cpucache(cachep);
  1226. mutex_unlock(&cache_chain_mutex);
  1227. }
  1228. /* Done! */
  1229. g_cpucache_up = FULL;
  1230. /*
  1231. * Register a cpu startup notifier callback that initializes
  1232. * cpu_cache_get for all new cpus
  1233. */
  1234. register_cpu_notifier(&cpucache_notifier);
  1235. /*
  1236. * The reap timers are started later, with a module init call: That part
  1237. * of the kernel is not yet operational.
  1238. */
  1239. }
  1240. static int __init cpucache_init(void)
  1241. {
  1242. int cpu;
  1243. /*
  1244. * Register the timers that return unneeded pages to the page allocator
  1245. */
  1246. for_each_online_cpu(cpu)
  1247. start_cpu_timer(cpu);
  1248. return 0;
  1249. }
  1250. __initcall(cpucache_init);
  1251. /*
  1252. * Interface to system's page allocator. No need to hold the cache-lock.
  1253. *
  1254. * If we requested dmaable memory, we will get it. Even if we
  1255. * did not request dmaable memory, we might get it, but that
  1256. * would be relatively rare and ignorable.
  1257. */
  1258. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1259. {
  1260. struct page *page;
  1261. void *addr;
  1262. int i;
  1263. flags |= cachep->gfpflags;
  1264. page = alloc_pages_node(nodeid, flags, cachep->gfporder);
  1265. if (!page)
  1266. return NULL;
  1267. addr = page_address(page);
  1268. i = (1 << cachep->gfporder);
  1269. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1270. atomic_add(i, &slab_reclaim_pages);
  1271. add_page_state(nr_slab, i);
  1272. while (i--) {
  1273. __SetPageSlab(page);
  1274. page++;
  1275. }
  1276. return addr;
  1277. }
  1278. /*
  1279. * Interface to system's page release.
  1280. */
  1281. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1282. {
  1283. unsigned long i = (1 << cachep->gfporder);
  1284. struct page *page = virt_to_page(addr);
  1285. const unsigned long nr_freed = i;
  1286. while (i--) {
  1287. BUG_ON(!PageSlab(page));
  1288. __ClearPageSlab(page);
  1289. page++;
  1290. }
  1291. sub_page_state(nr_slab, nr_freed);
  1292. if (current->reclaim_state)
  1293. current->reclaim_state->reclaimed_slab += nr_freed;
  1294. free_pages((unsigned long)addr, cachep->gfporder);
  1295. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1296. atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
  1297. }
  1298. static void kmem_rcu_free(struct rcu_head *head)
  1299. {
  1300. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1301. struct kmem_cache *cachep = slab_rcu->cachep;
  1302. kmem_freepages(cachep, slab_rcu->addr);
  1303. if (OFF_SLAB(cachep))
  1304. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1305. }
  1306. #if DEBUG
  1307. #ifdef CONFIG_DEBUG_PAGEALLOC
  1308. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1309. unsigned long caller)
  1310. {
  1311. int size = obj_size(cachep);
  1312. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1313. if (size < 5 * sizeof(unsigned long))
  1314. return;
  1315. *addr++ = 0x12345678;
  1316. *addr++ = caller;
  1317. *addr++ = smp_processor_id();
  1318. size -= 3 * sizeof(unsigned long);
  1319. {
  1320. unsigned long *sptr = &caller;
  1321. unsigned long svalue;
  1322. while (!kstack_end(sptr)) {
  1323. svalue = *sptr++;
  1324. if (kernel_text_address(svalue)) {
  1325. *addr++ = svalue;
  1326. size -= sizeof(unsigned long);
  1327. if (size <= sizeof(unsigned long))
  1328. break;
  1329. }
  1330. }
  1331. }
  1332. *addr++ = 0x87654321;
  1333. }
  1334. #endif
  1335. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1336. {
  1337. int size = obj_size(cachep);
  1338. addr = &((char *)addr)[obj_offset(cachep)];
  1339. memset(addr, val, size);
  1340. *(unsigned char *)(addr + size - 1) = POISON_END;
  1341. }
  1342. static void dump_line(char *data, int offset, int limit)
  1343. {
  1344. int i;
  1345. printk(KERN_ERR "%03x:", offset);
  1346. for (i = 0; i < limit; i++)
  1347. printk(" %02x", (unsigned char)data[offset + i]);
  1348. printk("\n");
  1349. }
  1350. #endif
  1351. #if DEBUG
  1352. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1353. {
  1354. int i, size;
  1355. char *realobj;
  1356. if (cachep->flags & SLAB_RED_ZONE) {
  1357. printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
  1358. *dbg_redzone1(cachep, objp),
  1359. *dbg_redzone2(cachep, objp));
  1360. }
  1361. if (cachep->flags & SLAB_STORE_USER) {
  1362. printk(KERN_ERR "Last user: [<%p>]",
  1363. *dbg_userword(cachep, objp));
  1364. print_symbol("(%s)",
  1365. (unsigned long)*dbg_userword(cachep, objp));
  1366. printk("\n");
  1367. }
  1368. realobj = (char *)objp + obj_offset(cachep);
  1369. size = obj_size(cachep);
  1370. for (i = 0; i < size && lines; i += 16, lines--) {
  1371. int limit;
  1372. limit = 16;
  1373. if (i + limit > size)
  1374. limit = size - i;
  1375. dump_line(realobj, i, limit);
  1376. }
  1377. }
  1378. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1379. {
  1380. char *realobj;
  1381. int size, i;
  1382. int lines = 0;
  1383. realobj = (char *)objp + obj_offset(cachep);
  1384. size = obj_size(cachep);
  1385. for (i = 0; i < size; i++) {
  1386. char exp = POISON_FREE;
  1387. if (i == size - 1)
  1388. exp = POISON_END;
  1389. if (realobj[i] != exp) {
  1390. int limit;
  1391. /* Mismatch ! */
  1392. /* Print header */
  1393. if (lines == 0) {
  1394. printk(KERN_ERR
  1395. "Slab corruption: start=%p, len=%d\n",
  1396. realobj, size);
  1397. print_objinfo(cachep, objp, 0);
  1398. }
  1399. /* Hexdump the affected line */
  1400. i = (i / 16) * 16;
  1401. limit = 16;
  1402. if (i + limit > size)
  1403. limit = size - i;
  1404. dump_line(realobj, i, limit);
  1405. i += 16;
  1406. lines++;
  1407. /* Limit to 5 lines */
  1408. if (lines > 5)
  1409. break;
  1410. }
  1411. }
  1412. if (lines != 0) {
  1413. /* Print some data about the neighboring objects, if they
  1414. * exist:
  1415. */
  1416. struct slab *slabp = virt_to_slab(objp);
  1417. unsigned int objnr;
  1418. objnr = obj_to_index(cachep, slabp, objp);
  1419. if (objnr) {
  1420. objp = index_to_obj(cachep, slabp, objnr - 1);
  1421. realobj = (char *)objp + obj_offset(cachep);
  1422. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1423. realobj, size);
  1424. print_objinfo(cachep, objp, 2);
  1425. }
  1426. if (objnr + 1 < cachep->num) {
  1427. objp = index_to_obj(cachep, slabp, objnr + 1);
  1428. realobj = (char *)objp + obj_offset(cachep);
  1429. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1430. realobj, size);
  1431. print_objinfo(cachep, objp, 2);
  1432. }
  1433. }
  1434. }
  1435. #endif
  1436. #if DEBUG
  1437. /**
  1438. * slab_destroy_objs - destroy a slab and its objects
  1439. * @cachep: cache pointer being destroyed
  1440. * @slabp: slab pointer being destroyed
  1441. *
  1442. * Call the registered destructor for each object in a slab that is being
  1443. * destroyed.
  1444. */
  1445. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1446. {
  1447. int i;
  1448. for (i = 0; i < cachep->num; i++) {
  1449. void *objp = index_to_obj(cachep, slabp, i);
  1450. if (cachep->flags & SLAB_POISON) {
  1451. #ifdef CONFIG_DEBUG_PAGEALLOC
  1452. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1453. OFF_SLAB(cachep))
  1454. kernel_map_pages(virt_to_page(objp),
  1455. cachep->buffer_size / PAGE_SIZE, 1);
  1456. else
  1457. check_poison_obj(cachep, objp);
  1458. #else
  1459. check_poison_obj(cachep, objp);
  1460. #endif
  1461. }
  1462. if (cachep->flags & SLAB_RED_ZONE) {
  1463. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1464. slab_error(cachep, "start of a freed object "
  1465. "was overwritten");
  1466. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1467. slab_error(cachep, "end of a freed object "
  1468. "was overwritten");
  1469. }
  1470. if (cachep->dtor && !(cachep->flags & SLAB_POISON))
  1471. (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
  1472. }
  1473. }
  1474. #else
  1475. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1476. {
  1477. if (cachep->dtor) {
  1478. int i;
  1479. for (i = 0; i < cachep->num; i++) {
  1480. void *objp = index_to_obj(cachep, slabp, i);
  1481. (cachep->dtor) (objp, cachep, 0);
  1482. }
  1483. }
  1484. }
  1485. #endif
  1486. /**
  1487. * slab_destroy - destroy and release all objects in a slab
  1488. * @cachep: cache pointer being destroyed
  1489. * @slabp: slab pointer being destroyed
  1490. *
  1491. * Destroy all the objs in a slab, and release the mem back to the system.
  1492. * Before calling the slab must have been unlinked from the cache. The
  1493. * cache-lock is not held/needed.
  1494. */
  1495. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1496. {
  1497. void *addr = slabp->s_mem - slabp->colouroff;
  1498. slab_destroy_objs(cachep, slabp);
  1499. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1500. struct slab_rcu *slab_rcu;
  1501. slab_rcu = (struct slab_rcu *)slabp;
  1502. slab_rcu->cachep = cachep;
  1503. slab_rcu->addr = addr;
  1504. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1505. } else {
  1506. kmem_freepages(cachep, addr);
  1507. if (OFF_SLAB(cachep))
  1508. kmem_cache_free(cachep->slabp_cache, slabp);
  1509. }
  1510. }
  1511. /*
  1512. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1513. * size of kmem_list3.
  1514. */
  1515. static void set_up_list3s(struct kmem_cache *cachep, int index)
  1516. {
  1517. int node;
  1518. for_each_online_node(node) {
  1519. cachep->nodelists[node] = &initkmem_list3[index + node];
  1520. cachep->nodelists[node]->next_reap = jiffies +
  1521. REAPTIMEOUT_LIST3 +
  1522. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1523. }
  1524. }
  1525. /**
  1526. * calculate_slab_order - calculate size (page order) of slabs
  1527. * @cachep: pointer to the cache that is being created
  1528. * @size: size of objects to be created in this cache.
  1529. * @align: required alignment for the objects.
  1530. * @flags: slab allocation flags
  1531. *
  1532. * Also calculates the number of objects per slab.
  1533. *
  1534. * This could be made much more intelligent. For now, try to avoid using
  1535. * high order pages for slabs. When the gfp() functions are more friendly
  1536. * towards high-order requests, this should be changed.
  1537. */
  1538. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1539. size_t size, size_t align, unsigned long flags)
  1540. {
  1541. size_t left_over = 0;
  1542. int gfporder;
  1543. for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
  1544. unsigned int num;
  1545. size_t remainder;
  1546. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1547. if (!num)
  1548. continue;
  1549. /* More than offslab_limit objects will cause problems */
  1550. if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
  1551. break;
  1552. /* Found something acceptable - save it away */
  1553. cachep->num = num;
  1554. cachep->gfporder = gfporder;
  1555. left_over = remainder;
  1556. /*
  1557. * A VFS-reclaimable slab tends to have most allocations
  1558. * as GFP_NOFS and we really don't want to have to be allocating
  1559. * higher-order pages when we are unable to shrink dcache.
  1560. */
  1561. if (flags & SLAB_RECLAIM_ACCOUNT)
  1562. break;
  1563. /*
  1564. * Large number of objects is good, but very large slabs are
  1565. * currently bad for the gfp()s.
  1566. */
  1567. if (gfporder >= slab_break_gfp_order)
  1568. break;
  1569. /*
  1570. * Acceptable internal fragmentation?
  1571. */
  1572. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1573. break;
  1574. }
  1575. return left_over;
  1576. }
  1577. static void setup_cpu_cache(struct kmem_cache *cachep)
  1578. {
  1579. if (g_cpucache_up == FULL) {
  1580. enable_cpucache(cachep);
  1581. return;
  1582. }
  1583. if (g_cpucache_up == NONE) {
  1584. /*
  1585. * Note: the first kmem_cache_create must create the cache
  1586. * that's used by kmalloc(24), otherwise the creation of
  1587. * further caches will BUG().
  1588. */
  1589. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1590. /*
  1591. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1592. * the first cache, then we need to set up all its list3s,
  1593. * otherwise the creation of further caches will BUG().
  1594. */
  1595. set_up_list3s(cachep, SIZE_AC);
  1596. if (INDEX_AC == INDEX_L3)
  1597. g_cpucache_up = PARTIAL_L3;
  1598. else
  1599. g_cpucache_up = PARTIAL_AC;
  1600. } else {
  1601. cachep->array[smp_processor_id()] =
  1602. kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1603. if (g_cpucache_up == PARTIAL_AC) {
  1604. set_up_list3s(cachep, SIZE_L3);
  1605. g_cpucache_up = PARTIAL_L3;
  1606. } else {
  1607. int node;
  1608. for_each_online_node(node) {
  1609. cachep->nodelists[node] =
  1610. kmalloc_node(sizeof(struct kmem_list3),
  1611. GFP_KERNEL, node);
  1612. BUG_ON(!cachep->nodelists[node]);
  1613. kmem_list3_init(cachep->nodelists[node]);
  1614. }
  1615. }
  1616. }
  1617. cachep->nodelists[numa_node_id()]->next_reap =
  1618. jiffies + REAPTIMEOUT_LIST3 +
  1619. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1620. cpu_cache_get(cachep)->avail = 0;
  1621. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1622. cpu_cache_get(cachep)->batchcount = 1;
  1623. cpu_cache_get(cachep)->touched = 0;
  1624. cachep->batchcount = 1;
  1625. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1626. }
  1627. /**
  1628. * kmem_cache_create - Create a cache.
  1629. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1630. * @size: The size of objects to be created in this cache.
  1631. * @align: The required alignment for the objects.
  1632. * @flags: SLAB flags
  1633. * @ctor: A constructor for the objects.
  1634. * @dtor: A destructor for the objects.
  1635. *
  1636. * Returns a ptr to the cache on success, NULL on failure.
  1637. * Cannot be called within a int, but can be interrupted.
  1638. * The @ctor is run when new pages are allocated by the cache
  1639. * and the @dtor is run before the pages are handed back.
  1640. *
  1641. * @name must be valid until the cache is destroyed. This implies that
  1642. * the module calling this has to destroy the cache before getting unloaded.
  1643. *
  1644. * The flags are
  1645. *
  1646. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1647. * to catch references to uninitialised memory.
  1648. *
  1649. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1650. * for buffer overruns.
  1651. *
  1652. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1653. * cacheline. This can be beneficial if you're counting cycles as closely
  1654. * as davem.
  1655. */
  1656. struct kmem_cache *
  1657. kmem_cache_create (const char *name, size_t size, size_t align,
  1658. unsigned long flags,
  1659. void (*ctor)(void*, struct kmem_cache *, unsigned long),
  1660. void (*dtor)(void*, struct kmem_cache *, unsigned long))
  1661. {
  1662. size_t left_over, slab_size, ralign;
  1663. struct kmem_cache *cachep = NULL;
  1664. struct list_head *p;
  1665. /*
  1666. * Sanity checks... these are all serious usage bugs.
  1667. */
  1668. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1669. (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
  1670. printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
  1671. name);
  1672. BUG();
  1673. }
  1674. /*
  1675. * Prevent CPUs from coming and going.
  1676. * lock_cpu_hotplug() nests outside cache_chain_mutex
  1677. */
  1678. lock_cpu_hotplug();
  1679. mutex_lock(&cache_chain_mutex);
  1680. list_for_each(p, &cache_chain) {
  1681. struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
  1682. mm_segment_t old_fs = get_fs();
  1683. char tmp;
  1684. int res;
  1685. /*
  1686. * This happens when the module gets unloaded and doesn't
  1687. * destroy its slab cache and no-one else reuses the vmalloc
  1688. * area of the module. Print a warning.
  1689. */
  1690. set_fs(KERNEL_DS);
  1691. res = __get_user(tmp, pc->name);
  1692. set_fs(old_fs);
  1693. if (res) {
  1694. printk("SLAB: cache with size %d has lost its name\n",
  1695. pc->buffer_size);
  1696. continue;
  1697. }
  1698. if (!strcmp(pc->name, name)) {
  1699. printk("kmem_cache_create: duplicate cache %s\n", name);
  1700. dump_stack();
  1701. goto oops;
  1702. }
  1703. }
  1704. #if DEBUG
  1705. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1706. if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
  1707. /* No constructor, but inital state check requested */
  1708. printk(KERN_ERR "%s: No con, but init state check "
  1709. "requested - %s\n", __FUNCTION__, name);
  1710. flags &= ~SLAB_DEBUG_INITIAL;
  1711. }
  1712. #if FORCED_DEBUG
  1713. /*
  1714. * Enable redzoning and last user accounting, except for caches with
  1715. * large objects, if the increased size would increase the object size
  1716. * above the next power of two: caches with object sizes just above a
  1717. * power of two have a significant amount of internal fragmentation.
  1718. */
  1719. if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
  1720. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1721. if (!(flags & SLAB_DESTROY_BY_RCU))
  1722. flags |= SLAB_POISON;
  1723. #endif
  1724. if (flags & SLAB_DESTROY_BY_RCU)
  1725. BUG_ON(flags & SLAB_POISON);
  1726. #endif
  1727. if (flags & SLAB_DESTROY_BY_RCU)
  1728. BUG_ON(dtor);
  1729. /*
  1730. * Always checks flags, a caller might be expecting debug support which
  1731. * isn't available.
  1732. */
  1733. if (flags & ~CREATE_MASK)
  1734. BUG();
  1735. /*
  1736. * Check that size is in terms of words. This is needed to avoid
  1737. * unaligned accesses for some archs when redzoning is used, and makes
  1738. * sure any on-slab bufctl's are also correctly aligned.
  1739. */
  1740. if (size & (BYTES_PER_WORD - 1)) {
  1741. size += (BYTES_PER_WORD - 1);
  1742. size &= ~(BYTES_PER_WORD - 1);
  1743. }
  1744. /* calculate the final buffer alignment: */
  1745. /* 1) arch recommendation: can be overridden for debug */
  1746. if (flags & SLAB_HWCACHE_ALIGN) {
  1747. /*
  1748. * Default alignment: as specified by the arch code. Except if
  1749. * an object is really small, then squeeze multiple objects into
  1750. * one cacheline.
  1751. */
  1752. ralign = cache_line_size();
  1753. while (size <= ralign / 2)
  1754. ralign /= 2;
  1755. } else {
  1756. ralign = BYTES_PER_WORD;
  1757. }
  1758. /* 2) arch mandated alignment: disables debug if necessary */
  1759. if (ralign < ARCH_SLAB_MINALIGN) {
  1760. ralign = ARCH_SLAB_MINALIGN;
  1761. if (ralign > BYTES_PER_WORD)
  1762. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1763. }
  1764. /* 3) caller mandated alignment: disables debug if necessary */
  1765. if (ralign < align) {
  1766. ralign = align;
  1767. if (ralign > BYTES_PER_WORD)
  1768. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1769. }
  1770. /*
  1771. * 4) Store it. Note that the debug code below can reduce
  1772. * the alignment to BYTES_PER_WORD.
  1773. */
  1774. align = ralign;
  1775. /* Get cache's description obj. */
  1776. cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
  1777. if (!cachep)
  1778. goto oops;
  1779. memset(cachep, 0, sizeof(struct kmem_cache));
  1780. #if DEBUG
  1781. cachep->obj_size = size;
  1782. if (flags & SLAB_RED_ZONE) {
  1783. /* redzoning only works with word aligned caches */
  1784. align = BYTES_PER_WORD;
  1785. /* add space for red zone words */
  1786. cachep->obj_offset += BYTES_PER_WORD;
  1787. size += 2 * BYTES_PER_WORD;
  1788. }
  1789. if (flags & SLAB_STORE_USER) {
  1790. /* user store requires word alignment and
  1791. * one word storage behind the end of the real
  1792. * object.
  1793. */
  1794. align = BYTES_PER_WORD;
  1795. size += BYTES_PER_WORD;
  1796. }
  1797. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  1798. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  1799. && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
  1800. cachep->obj_offset += PAGE_SIZE - size;
  1801. size = PAGE_SIZE;
  1802. }
  1803. #endif
  1804. #endif
  1805. /* Determine if the slab management is 'on' or 'off' slab. */
  1806. if (size >= (PAGE_SIZE >> 3))
  1807. /*
  1808. * Size is large, assume best to place the slab management obj
  1809. * off-slab (should allow better packing of objs).
  1810. */
  1811. flags |= CFLGS_OFF_SLAB;
  1812. size = ALIGN(size, align);
  1813. left_over = calculate_slab_order(cachep, size, align, flags);
  1814. if (!cachep->num) {
  1815. printk("kmem_cache_create: couldn't create cache %s.\n", name);
  1816. kmem_cache_free(&cache_cache, cachep);
  1817. cachep = NULL;
  1818. goto oops;
  1819. }
  1820. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  1821. + sizeof(struct slab), align);
  1822. /*
  1823. * If the slab has been placed off-slab, and we have enough space then
  1824. * move it on-slab. This is at the expense of any extra colouring.
  1825. */
  1826. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  1827. flags &= ~CFLGS_OFF_SLAB;
  1828. left_over -= slab_size;
  1829. }
  1830. if (flags & CFLGS_OFF_SLAB) {
  1831. /* really off slab. No need for manual alignment */
  1832. slab_size =
  1833. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  1834. }
  1835. cachep->colour_off = cache_line_size();
  1836. /* Offset must be a multiple of the alignment. */
  1837. if (cachep->colour_off < align)
  1838. cachep->colour_off = align;
  1839. cachep->colour = left_over / cachep->colour_off;
  1840. cachep->slab_size = slab_size;
  1841. cachep->flags = flags;
  1842. cachep->gfpflags = 0;
  1843. if (flags & SLAB_CACHE_DMA)
  1844. cachep->gfpflags |= GFP_DMA;
  1845. cachep->buffer_size = size;
  1846. if (flags & CFLGS_OFF_SLAB)
  1847. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  1848. cachep->ctor = ctor;
  1849. cachep->dtor = dtor;
  1850. cachep->name = name;
  1851. setup_cpu_cache(cachep);
  1852. /* cache setup completed, link it into the list */
  1853. list_add(&cachep->next, &cache_chain);
  1854. oops:
  1855. if (!cachep && (flags & SLAB_PANIC))
  1856. panic("kmem_cache_create(): failed to create slab `%s'\n",
  1857. name);
  1858. mutex_unlock(&cache_chain_mutex);
  1859. unlock_cpu_hotplug();
  1860. return cachep;
  1861. }
  1862. EXPORT_SYMBOL(kmem_cache_create);
  1863. #if DEBUG
  1864. static void check_irq_off(void)
  1865. {
  1866. BUG_ON(!irqs_disabled());
  1867. }
  1868. static void check_irq_on(void)
  1869. {
  1870. BUG_ON(irqs_disabled());
  1871. }
  1872. static void check_spinlock_acquired(struct kmem_cache *cachep)
  1873. {
  1874. #ifdef CONFIG_SMP
  1875. check_irq_off();
  1876. assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
  1877. #endif
  1878. }
  1879. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  1880. {
  1881. #ifdef CONFIG_SMP
  1882. check_irq_off();
  1883. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  1884. #endif
  1885. }
  1886. #else
  1887. #define check_irq_off() do { } while(0)
  1888. #define check_irq_on() do { } while(0)
  1889. #define check_spinlock_acquired(x) do { } while(0)
  1890. #define check_spinlock_acquired_node(x, y) do { } while(0)
  1891. #endif
  1892. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  1893. struct array_cache *ac,
  1894. int force, int node);
  1895. static void do_drain(void *arg)
  1896. {
  1897. struct kmem_cache *cachep = arg;
  1898. struct array_cache *ac;
  1899. int node = numa_node_id();
  1900. check_irq_off();
  1901. ac = cpu_cache_get(cachep);
  1902. spin_lock(&cachep->nodelists[node]->list_lock);
  1903. free_block(cachep, ac->entry, ac->avail, node);
  1904. spin_unlock(&cachep->nodelists[node]->list_lock);
  1905. ac->avail = 0;
  1906. }
  1907. static void drain_cpu_caches(struct kmem_cache *cachep)
  1908. {
  1909. struct kmem_list3 *l3;
  1910. int node;
  1911. on_each_cpu(do_drain, cachep, 1, 1);
  1912. check_irq_on();
  1913. for_each_online_node(node) {
  1914. l3 = cachep->nodelists[node];
  1915. if (l3) {
  1916. drain_array(cachep, l3, l3->shared, 1, node);
  1917. if (l3->alien)
  1918. drain_alien_cache(cachep, l3->alien);
  1919. }
  1920. }
  1921. }
  1922. static int __node_shrink(struct kmem_cache *cachep, int node)
  1923. {
  1924. struct slab *slabp;
  1925. struct kmem_list3 *l3 = cachep->nodelists[node];
  1926. int ret;
  1927. for (;;) {
  1928. struct list_head *p;
  1929. p = l3->slabs_free.prev;
  1930. if (p == &l3->slabs_free)
  1931. break;
  1932. slabp = list_entry(l3->slabs_free.prev, struct slab, list);
  1933. #if DEBUG
  1934. if (slabp->inuse)
  1935. BUG();
  1936. #endif
  1937. list_del(&slabp->list);
  1938. l3->free_objects -= cachep->num;
  1939. spin_unlock_irq(&l3->list_lock);
  1940. slab_destroy(cachep, slabp);
  1941. spin_lock_irq(&l3->list_lock);
  1942. }
  1943. ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
  1944. return ret;
  1945. }
  1946. static int __cache_shrink(struct kmem_cache *cachep)
  1947. {
  1948. int ret = 0, i = 0;
  1949. struct kmem_list3 *l3;
  1950. drain_cpu_caches(cachep);
  1951. check_irq_on();
  1952. for_each_online_node(i) {
  1953. l3 = cachep->nodelists[i];
  1954. if (l3) {
  1955. spin_lock_irq(&l3->list_lock);
  1956. ret += __node_shrink(cachep, i);
  1957. spin_unlock_irq(&l3->list_lock);
  1958. }
  1959. }
  1960. return (ret ? 1 : 0);
  1961. }
  1962. /**
  1963. * kmem_cache_shrink - Shrink a cache.
  1964. * @cachep: The cache to shrink.
  1965. *
  1966. * Releases as many slabs as possible for a cache.
  1967. * To help debugging, a zero exit status indicates all slabs were released.
  1968. */
  1969. int kmem_cache_shrink(struct kmem_cache *cachep)
  1970. {
  1971. if (!cachep || in_interrupt())
  1972. BUG();
  1973. return __cache_shrink(cachep);
  1974. }
  1975. EXPORT_SYMBOL(kmem_cache_shrink);
  1976. /**
  1977. * kmem_cache_destroy - delete a cache
  1978. * @cachep: the cache to destroy
  1979. *
  1980. * Remove a struct kmem_cache object from the slab cache.
  1981. * Returns 0 on success.
  1982. *
  1983. * It is expected this function will be called by a module when it is
  1984. * unloaded. This will remove the cache completely, and avoid a duplicate
  1985. * cache being allocated each time a module is loaded and unloaded, if the
  1986. * module doesn't have persistent in-kernel storage across loads and unloads.
  1987. *
  1988. * The cache must be empty before calling this function.
  1989. *
  1990. * The caller must guarantee that noone will allocate memory from the cache
  1991. * during the kmem_cache_destroy().
  1992. */
  1993. int kmem_cache_destroy(struct kmem_cache *cachep)
  1994. {
  1995. int i;
  1996. struct kmem_list3 *l3;
  1997. if (!cachep || in_interrupt())
  1998. BUG();
  1999. /* Don't let CPUs to come and go */
  2000. lock_cpu_hotplug();
  2001. /* Find the cache in the chain of caches. */
  2002. mutex_lock(&cache_chain_mutex);
  2003. /*
  2004. * the chain is never empty, cache_cache is never destroyed
  2005. */
  2006. list_del(&cachep->next);
  2007. mutex_unlock(&cache_chain_mutex);
  2008. if (__cache_shrink(cachep)) {
  2009. slab_error(cachep, "Can't free all objects");
  2010. mutex_lock(&cache_chain_mutex);
  2011. list_add(&cachep->next, &cache_chain);
  2012. mutex_unlock(&cache_chain_mutex);
  2013. unlock_cpu_hotplug();
  2014. return 1;
  2015. }
  2016. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2017. synchronize_rcu();
  2018. for_each_online_cpu(i)
  2019. kfree(cachep->array[i]);
  2020. /* NUMA: free the list3 structures */
  2021. for_each_online_node(i) {
  2022. l3 = cachep->nodelists[i];
  2023. if (l3) {
  2024. kfree(l3->shared);
  2025. free_alien_cache(l3->alien);
  2026. kfree(l3);
  2027. }
  2028. }
  2029. kmem_cache_free(&cache_cache, cachep);
  2030. unlock_cpu_hotplug();
  2031. return 0;
  2032. }
  2033. EXPORT_SYMBOL(kmem_cache_destroy);
  2034. /* Get the memory for a slab management obj. */
  2035. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2036. int colour_off, gfp_t local_flags)
  2037. {
  2038. struct slab *slabp;
  2039. if (OFF_SLAB(cachep)) {
  2040. /* Slab management obj is off-slab. */
  2041. slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
  2042. if (!slabp)
  2043. return NULL;
  2044. } else {
  2045. slabp = objp + colour_off;
  2046. colour_off += cachep->slab_size;
  2047. }
  2048. slabp->inuse = 0;
  2049. slabp->colouroff = colour_off;
  2050. slabp->s_mem = objp + colour_off;
  2051. return slabp;
  2052. }
  2053. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2054. {
  2055. return (kmem_bufctl_t *) (slabp + 1);
  2056. }
  2057. static void cache_init_objs(struct kmem_cache *cachep,
  2058. struct slab *slabp, unsigned long ctor_flags)
  2059. {
  2060. int i;
  2061. for (i = 0; i < cachep->num; i++) {
  2062. void *objp = index_to_obj(cachep, slabp, i);
  2063. #if DEBUG
  2064. /* need to poison the objs? */
  2065. if (cachep->flags & SLAB_POISON)
  2066. poison_obj(cachep, objp, POISON_FREE);
  2067. if (cachep->flags & SLAB_STORE_USER)
  2068. *dbg_userword(cachep, objp) = NULL;
  2069. if (cachep->flags & SLAB_RED_ZONE) {
  2070. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2071. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2072. }
  2073. /*
  2074. * Constructors are not allowed to allocate memory from the same
  2075. * cache which they are a constructor for. Otherwise, deadlock.
  2076. * They must also be threaded.
  2077. */
  2078. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2079. cachep->ctor(objp + obj_offset(cachep), cachep,
  2080. ctor_flags);
  2081. if (cachep->flags & SLAB_RED_ZONE) {
  2082. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2083. slab_error(cachep, "constructor overwrote the"
  2084. " end of an object");
  2085. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2086. slab_error(cachep, "constructor overwrote the"
  2087. " start of an object");
  2088. }
  2089. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2090. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2091. kernel_map_pages(virt_to_page(objp),
  2092. cachep->buffer_size / PAGE_SIZE, 0);
  2093. #else
  2094. if (cachep->ctor)
  2095. cachep->ctor(objp, cachep, ctor_flags);
  2096. #endif
  2097. slab_bufctl(slabp)[i] = i + 1;
  2098. }
  2099. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2100. slabp->free = 0;
  2101. }
  2102. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2103. {
  2104. if (flags & SLAB_DMA)
  2105. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2106. else
  2107. BUG_ON(cachep->gfpflags & GFP_DMA);
  2108. }
  2109. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2110. int nodeid)
  2111. {
  2112. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2113. kmem_bufctl_t next;
  2114. slabp->inuse++;
  2115. next = slab_bufctl(slabp)[slabp->free];
  2116. #if DEBUG
  2117. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2118. WARN_ON(slabp->nodeid != nodeid);
  2119. #endif
  2120. slabp->free = next;
  2121. return objp;
  2122. }
  2123. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2124. void *objp, int nodeid)
  2125. {
  2126. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2127. #if DEBUG
  2128. /* Verify that the slab belongs to the intended node */
  2129. WARN_ON(slabp->nodeid != nodeid);
  2130. if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
  2131. printk(KERN_ERR "slab: double free detected in cache "
  2132. "'%s', objp %p\n", cachep->name, objp);
  2133. BUG();
  2134. }
  2135. #endif
  2136. slab_bufctl(slabp)[objnr] = slabp->free;
  2137. slabp->free = objnr;
  2138. slabp->inuse--;
  2139. }
  2140. static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
  2141. void *objp)
  2142. {
  2143. int i;
  2144. struct page *page;
  2145. /* Nasty!!!!!! I hope this is OK. */
  2146. page = virt_to_page(objp);
  2147. i = 1;
  2148. if (likely(!PageCompound(page)))
  2149. i <<= cachep->gfporder;
  2150. do {
  2151. page_set_cache(page, cachep);
  2152. page_set_slab(page, slabp);
  2153. page++;
  2154. } while (--i);
  2155. }
  2156. /*
  2157. * Grow (by 1) the number of slabs within a cache. This is called by
  2158. * kmem_cache_alloc() when there are no active objs left in a cache.
  2159. */
  2160. static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  2161. {
  2162. struct slab *slabp;
  2163. void *objp;
  2164. size_t offset;
  2165. gfp_t local_flags;
  2166. unsigned long ctor_flags;
  2167. struct kmem_list3 *l3;
  2168. /*
  2169. * Be lazy and only check for valid flags here, keeping it out of the
  2170. * critical path in kmem_cache_alloc().
  2171. */
  2172. if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
  2173. BUG();
  2174. if (flags & SLAB_NO_GROW)
  2175. return 0;
  2176. ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2177. local_flags = (flags & SLAB_LEVEL_MASK);
  2178. if (!(local_flags & __GFP_WAIT))
  2179. /*
  2180. * Not allowed to sleep. Need to tell a constructor about
  2181. * this - it might need to know...
  2182. */
  2183. ctor_flags |= SLAB_CTOR_ATOMIC;
  2184. /* Take the l3 list lock to change the colour_next on this node */
  2185. check_irq_off();
  2186. l3 = cachep->nodelists[nodeid];
  2187. spin_lock(&l3->list_lock);
  2188. /* Get colour for the slab, and cal the next value. */
  2189. offset = l3->colour_next;
  2190. l3->colour_next++;
  2191. if (l3->colour_next >= cachep->colour)
  2192. l3->colour_next = 0;
  2193. spin_unlock(&l3->list_lock);
  2194. offset *= cachep->colour_off;
  2195. if (local_flags & __GFP_WAIT)
  2196. local_irq_enable();
  2197. /*
  2198. * The test for missing atomic flag is performed here, rather than
  2199. * the more obvious place, simply to reduce the critical path length
  2200. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2201. * will eventually be caught here (where it matters).
  2202. */
  2203. kmem_flagcheck(cachep, flags);
  2204. /*
  2205. * Get mem for the objs. Attempt to allocate a physical page from
  2206. * 'nodeid'.
  2207. */
  2208. objp = kmem_getpages(cachep, flags, nodeid);
  2209. if (!objp)
  2210. goto failed;
  2211. /* Get slab management. */
  2212. slabp = alloc_slabmgmt(cachep, objp, offset, local_flags);
  2213. if (!slabp)
  2214. goto opps1;
  2215. slabp->nodeid = nodeid;
  2216. set_slab_attr(cachep, slabp, objp);
  2217. cache_init_objs(cachep, slabp, ctor_flags);
  2218. if (local_flags & __GFP_WAIT)
  2219. local_irq_disable();
  2220. check_irq_off();
  2221. spin_lock(&l3->list_lock);
  2222. /* Make slab active. */
  2223. list_add_tail(&slabp->list, &(l3->slabs_free));
  2224. STATS_INC_GROWN(cachep);
  2225. l3->free_objects += cachep->num;
  2226. spin_unlock(&l3->list_lock);
  2227. return 1;
  2228. opps1:
  2229. kmem_freepages(cachep, objp);
  2230. failed:
  2231. if (local_flags & __GFP_WAIT)
  2232. local_irq_disable();
  2233. return 0;
  2234. }
  2235. #if DEBUG
  2236. /*
  2237. * Perform extra freeing checks:
  2238. * - detect bad pointers.
  2239. * - POISON/RED_ZONE checking
  2240. * - destructor calls, for caches with POISON+dtor
  2241. */
  2242. static void kfree_debugcheck(const void *objp)
  2243. {
  2244. struct page *page;
  2245. if (!virt_addr_valid(objp)) {
  2246. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2247. (unsigned long)objp);
  2248. BUG();
  2249. }
  2250. page = virt_to_page(objp);
  2251. if (!PageSlab(page)) {
  2252. printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
  2253. (unsigned long)objp);
  2254. BUG();
  2255. }
  2256. }
  2257. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2258. void *caller)
  2259. {
  2260. struct page *page;
  2261. unsigned int objnr;
  2262. struct slab *slabp;
  2263. objp -= obj_offset(cachep);
  2264. kfree_debugcheck(objp);
  2265. page = virt_to_page(objp);
  2266. if (page_get_cache(page) != cachep) {
  2267. printk(KERN_ERR "mismatch in kmem_cache_free: expected "
  2268. "cache %p, got %p\n",
  2269. page_get_cache(page), cachep);
  2270. printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
  2271. printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
  2272. page_get_cache(page)->name);
  2273. WARN_ON(1);
  2274. }
  2275. slabp = page_get_slab(page);
  2276. if (cachep->flags & SLAB_RED_ZONE) {
  2277. if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
  2278. *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
  2279. slab_error(cachep, "double free, or memory outside"
  2280. " object was overwritten");
  2281. printk(KERN_ERR "%p: redzone 1:0x%lx, "
  2282. "redzone 2:0x%lx.\n",
  2283. objp, *dbg_redzone1(cachep, objp),
  2284. *dbg_redzone2(cachep, objp));
  2285. }
  2286. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2287. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2288. }
  2289. if (cachep->flags & SLAB_STORE_USER)
  2290. *dbg_userword(cachep, objp) = caller;
  2291. objnr = obj_to_index(cachep, slabp, objp);
  2292. BUG_ON(objnr >= cachep->num);
  2293. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2294. if (cachep->flags & SLAB_DEBUG_INITIAL) {
  2295. /*
  2296. * Need to call the slab's constructor so the caller can
  2297. * perform a verify of its state (debugging). Called without
  2298. * the cache-lock held.
  2299. */
  2300. cachep->ctor(objp + obj_offset(cachep),
  2301. cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
  2302. }
  2303. if (cachep->flags & SLAB_POISON && cachep->dtor) {
  2304. /* we want to cache poison the object,
  2305. * call the destruction callback
  2306. */
  2307. cachep->dtor(objp + obj_offset(cachep), cachep, 0);
  2308. }
  2309. if (cachep->flags & SLAB_POISON) {
  2310. #ifdef CONFIG_DEBUG_PAGEALLOC
  2311. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2312. store_stackinfo(cachep, objp, (unsigned long)caller);
  2313. kernel_map_pages(virt_to_page(objp),
  2314. cachep->buffer_size / PAGE_SIZE, 0);
  2315. } else {
  2316. poison_obj(cachep, objp, POISON_FREE);
  2317. }
  2318. #else
  2319. poison_obj(cachep, objp, POISON_FREE);
  2320. #endif
  2321. }
  2322. return objp;
  2323. }
  2324. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2325. {
  2326. kmem_bufctl_t i;
  2327. int entries = 0;
  2328. /* Check slab's freelist to see if this obj is there. */
  2329. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2330. entries++;
  2331. if (entries > cachep->num || i >= cachep->num)
  2332. goto bad;
  2333. }
  2334. if (entries != cachep->num - slabp->inuse) {
  2335. bad:
  2336. printk(KERN_ERR "slab: Internal list corruption detected in "
  2337. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2338. cachep->name, cachep->num, slabp, slabp->inuse);
  2339. for (i = 0;
  2340. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2341. i++) {
  2342. if (i % 16 == 0)
  2343. printk("\n%03x:", i);
  2344. printk(" %02x", ((unsigned char *)slabp)[i]);
  2345. }
  2346. printk("\n");
  2347. BUG();
  2348. }
  2349. }
  2350. #else
  2351. #define kfree_debugcheck(x) do { } while(0)
  2352. #define cache_free_debugcheck(x,objp,z) (objp)
  2353. #define check_slabp(x,y) do { } while(0)
  2354. #endif
  2355. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2356. {
  2357. int batchcount;
  2358. struct kmem_list3 *l3;
  2359. struct array_cache *ac;
  2360. check_irq_off();
  2361. ac = cpu_cache_get(cachep);
  2362. retry:
  2363. batchcount = ac->batchcount;
  2364. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2365. /*
  2366. * If there was little recent activity on this cache, then
  2367. * perform only a partial refill. Otherwise we could generate
  2368. * refill bouncing.
  2369. */
  2370. batchcount = BATCHREFILL_LIMIT;
  2371. }
  2372. l3 = cachep->nodelists[numa_node_id()];
  2373. BUG_ON(ac->avail > 0 || !l3);
  2374. spin_lock(&l3->list_lock);
  2375. if (l3->shared) {
  2376. struct array_cache *shared_array = l3->shared;
  2377. if (shared_array->avail) {
  2378. if (batchcount > shared_array->avail)
  2379. batchcount = shared_array->avail;
  2380. shared_array->avail -= batchcount;
  2381. ac->avail = batchcount;
  2382. memcpy(ac->entry,
  2383. &(shared_array->entry[shared_array->avail]),
  2384. sizeof(void *) * batchcount);
  2385. shared_array->touched = 1;
  2386. goto alloc_done;
  2387. }
  2388. }
  2389. while (batchcount > 0) {
  2390. struct list_head *entry;
  2391. struct slab *slabp;
  2392. /* Get slab alloc is to come from. */
  2393. entry = l3->slabs_partial.next;
  2394. if (entry == &l3->slabs_partial) {
  2395. l3->free_touched = 1;
  2396. entry = l3->slabs_free.next;
  2397. if (entry == &l3->slabs_free)
  2398. goto must_grow;
  2399. }
  2400. slabp = list_entry(entry, struct slab, list);
  2401. check_slabp(cachep, slabp);
  2402. check_spinlock_acquired(cachep);
  2403. while (slabp->inuse < cachep->num && batchcount--) {
  2404. STATS_INC_ALLOCED(cachep);
  2405. STATS_INC_ACTIVE(cachep);
  2406. STATS_SET_HIGH(cachep);
  2407. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2408. numa_node_id());
  2409. }
  2410. check_slabp(cachep, slabp);
  2411. /* move slabp to correct slabp list: */
  2412. list_del(&slabp->list);
  2413. if (slabp->free == BUFCTL_END)
  2414. list_add(&slabp->list, &l3->slabs_full);
  2415. else
  2416. list_add(&slabp->list, &l3->slabs_partial);
  2417. }
  2418. must_grow:
  2419. l3->free_objects -= ac->avail;
  2420. alloc_done:
  2421. spin_unlock(&l3->list_lock);
  2422. if (unlikely(!ac->avail)) {
  2423. int x;
  2424. x = cache_grow(cachep, flags, numa_node_id());
  2425. /* cache_grow can reenable interrupts, then ac could change. */
  2426. ac = cpu_cache_get(cachep);
  2427. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2428. return NULL;
  2429. if (!ac->avail) /* objects refilled by interrupt? */
  2430. goto retry;
  2431. }
  2432. ac->touched = 1;
  2433. return ac->entry[--ac->avail];
  2434. }
  2435. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2436. gfp_t flags)
  2437. {
  2438. might_sleep_if(flags & __GFP_WAIT);
  2439. #if DEBUG
  2440. kmem_flagcheck(cachep, flags);
  2441. #endif
  2442. }
  2443. #if DEBUG
  2444. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2445. gfp_t flags, void *objp, void *caller)
  2446. {
  2447. if (!objp)
  2448. return objp;
  2449. if (cachep->flags & SLAB_POISON) {
  2450. #ifdef CONFIG_DEBUG_PAGEALLOC
  2451. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2452. kernel_map_pages(virt_to_page(objp),
  2453. cachep->buffer_size / PAGE_SIZE, 1);
  2454. else
  2455. check_poison_obj(cachep, objp);
  2456. #else
  2457. check_poison_obj(cachep, objp);
  2458. #endif
  2459. poison_obj(cachep, objp, POISON_INUSE);
  2460. }
  2461. if (cachep->flags & SLAB_STORE_USER)
  2462. *dbg_userword(cachep, objp) = caller;
  2463. if (cachep->flags & SLAB_RED_ZONE) {
  2464. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2465. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2466. slab_error(cachep, "double free, or memory outside"
  2467. " object was overwritten");
  2468. printk(KERN_ERR
  2469. "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
  2470. objp, *dbg_redzone1(cachep, objp),
  2471. *dbg_redzone2(cachep, objp));
  2472. }
  2473. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2474. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2475. }
  2476. objp += obj_offset(cachep);
  2477. if (cachep->ctor && cachep->flags & SLAB_POISON) {
  2478. unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2479. if (!(flags & __GFP_WAIT))
  2480. ctor_flags |= SLAB_CTOR_ATOMIC;
  2481. cachep->ctor(objp, cachep, ctor_flags);
  2482. }
  2483. return objp;
  2484. }
  2485. #else
  2486. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2487. #endif
  2488. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2489. {
  2490. void *objp;
  2491. struct array_cache *ac;
  2492. #ifdef CONFIG_NUMA
  2493. if (unlikely(current->flags & (PF_SPREAD_PAGE | PF_SPREAD_SLAB |
  2494. PF_MEMPOLICY))) {
  2495. objp = alternate_node_alloc(cachep, flags);
  2496. if (objp != NULL)
  2497. return objp;
  2498. }
  2499. #endif
  2500. check_irq_off();
  2501. ac = cpu_cache_get(cachep);
  2502. if (likely(ac->avail)) {
  2503. STATS_INC_ALLOCHIT(cachep);
  2504. ac->touched = 1;
  2505. objp = ac->entry[--ac->avail];
  2506. } else {
  2507. STATS_INC_ALLOCMISS(cachep);
  2508. objp = cache_alloc_refill(cachep, flags);
  2509. }
  2510. return objp;
  2511. }
  2512. static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
  2513. gfp_t flags, void *caller)
  2514. {
  2515. unsigned long save_flags;
  2516. void *objp;
  2517. cache_alloc_debugcheck_before(cachep, flags);
  2518. local_irq_save(save_flags);
  2519. objp = ____cache_alloc(cachep, flags);
  2520. local_irq_restore(save_flags);
  2521. objp = cache_alloc_debugcheck_after(cachep, flags, objp,
  2522. caller);
  2523. prefetchw(objp);
  2524. return objp;
  2525. }
  2526. #ifdef CONFIG_NUMA
  2527. /*
  2528. * Try allocating on another node if PF_SPREAD_PAGE|PF_SPREAD_SLAB|PF_MEMPOLICY.
  2529. *
  2530. * If we are in_interrupt, then process context, including cpusets and
  2531. * mempolicy, may not apply and should not be used for allocation policy.
  2532. */
  2533. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2534. {
  2535. int nid_alloc, nid_here;
  2536. if (in_interrupt())
  2537. return NULL;
  2538. nid_alloc = nid_here = numa_node_id();
  2539. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2540. nid_alloc = cpuset_mem_spread_node();
  2541. else if (current->mempolicy)
  2542. nid_alloc = slab_node(current->mempolicy);
  2543. if (nid_alloc != nid_here)
  2544. return __cache_alloc_node(cachep, flags, nid_alloc);
  2545. return NULL;
  2546. }
  2547. /*
  2548. * A interface to enable slab creation on nodeid
  2549. */
  2550. static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2551. int nodeid)
  2552. {
  2553. struct list_head *entry;
  2554. struct slab *slabp;
  2555. struct kmem_list3 *l3;
  2556. void *obj;
  2557. int x;
  2558. l3 = cachep->nodelists[nodeid];
  2559. BUG_ON(!l3);
  2560. retry:
  2561. check_irq_off();
  2562. spin_lock(&l3->list_lock);
  2563. entry = l3->slabs_partial.next;
  2564. if (entry == &l3->slabs_partial) {
  2565. l3->free_touched = 1;
  2566. entry = l3->slabs_free.next;
  2567. if (entry == &l3->slabs_free)
  2568. goto must_grow;
  2569. }
  2570. slabp = list_entry(entry, struct slab, list);
  2571. check_spinlock_acquired_node(cachep, nodeid);
  2572. check_slabp(cachep, slabp);
  2573. STATS_INC_NODEALLOCS(cachep);
  2574. STATS_INC_ACTIVE(cachep);
  2575. STATS_SET_HIGH(cachep);
  2576. BUG_ON(slabp->inuse == cachep->num);
  2577. obj = slab_get_obj(cachep, slabp, nodeid);
  2578. check_slabp(cachep, slabp);
  2579. l3->free_objects--;
  2580. /* move slabp to correct slabp list: */
  2581. list_del(&slabp->list);
  2582. if (slabp->free == BUFCTL_END)
  2583. list_add(&slabp->list, &l3->slabs_full);
  2584. else
  2585. list_add(&slabp->list, &l3->slabs_partial);
  2586. spin_unlock(&l3->list_lock);
  2587. goto done;
  2588. must_grow:
  2589. spin_unlock(&l3->list_lock);
  2590. x = cache_grow(cachep, flags, nodeid);
  2591. if (!x)
  2592. return NULL;
  2593. goto retry;
  2594. done:
  2595. return obj;
  2596. }
  2597. #endif
  2598. /*
  2599. * Caller needs to acquire correct kmem_list's list_lock
  2600. */
  2601. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  2602. int node)
  2603. {
  2604. int i;
  2605. struct kmem_list3 *l3;
  2606. for (i = 0; i < nr_objects; i++) {
  2607. void *objp = objpp[i];
  2608. struct slab *slabp;
  2609. slabp = virt_to_slab(objp);
  2610. l3 = cachep->nodelists[node];
  2611. list_del(&slabp->list);
  2612. check_spinlock_acquired_node(cachep, node);
  2613. check_slabp(cachep, slabp);
  2614. slab_put_obj(cachep, slabp, objp, node);
  2615. STATS_DEC_ACTIVE(cachep);
  2616. l3->free_objects++;
  2617. check_slabp(cachep, slabp);
  2618. /* fixup slab chains */
  2619. if (slabp->inuse == 0) {
  2620. if (l3->free_objects > l3->free_limit) {
  2621. l3->free_objects -= cachep->num;
  2622. slab_destroy(cachep, slabp);
  2623. } else {
  2624. list_add(&slabp->list, &l3->slabs_free);
  2625. }
  2626. } else {
  2627. /* Unconditionally move a slab to the end of the
  2628. * partial list on free - maximum time for the
  2629. * other objects to be freed, too.
  2630. */
  2631. list_add_tail(&slabp->list, &l3->slabs_partial);
  2632. }
  2633. }
  2634. }
  2635. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  2636. {
  2637. int batchcount;
  2638. struct kmem_list3 *l3;
  2639. int node = numa_node_id();
  2640. batchcount = ac->batchcount;
  2641. #if DEBUG
  2642. BUG_ON(!batchcount || batchcount > ac->avail);
  2643. #endif
  2644. check_irq_off();
  2645. l3 = cachep->nodelists[node];
  2646. spin_lock(&l3->list_lock);
  2647. if (l3->shared) {
  2648. struct array_cache *shared_array = l3->shared;
  2649. int max = shared_array->limit - shared_array->avail;
  2650. if (max) {
  2651. if (batchcount > max)
  2652. batchcount = max;
  2653. memcpy(&(shared_array->entry[shared_array->avail]),
  2654. ac->entry, sizeof(void *) * batchcount);
  2655. shared_array->avail += batchcount;
  2656. goto free_done;
  2657. }
  2658. }
  2659. free_block(cachep, ac->entry, batchcount, node);
  2660. free_done:
  2661. #if STATS
  2662. {
  2663. int i = 0;
  2664. struct list_head *p;
  2665. p = l3->slabs_free.next;
  2666. while (p != &(l3->slabs_free)) {
  2667. struct slab *slabp;
  2668. slabp = list_entry(p, struct slab, list);
  2669. BUG_ON(slabp->inuse);
  2670. i++;
  2671. p = p->next;
  2672. }
  2673. STATS_SET_FREEABLE(cachep, i);
  2674. }
  2675. #endif
  2676. spin_unlock(&l3->list_lock);
  2677. ac->avail -= batchcount;
  2678. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  2679. }
  2680. /*
  2681. * Release an obj back to its cache. If the obj has a constructed state, it must
  2682. * be in this state _before_ it is released. Called with disabled ints.
  2683. */
  2684. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  2685. {
  2686. struct array_cache *ac = cpu_cache_get(cachep);
  2687. check_irq_off();
  2688. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  2689. /* Make sure we are not freeing a object from another
  2690. * node to the array cache on this cpu.
  2691. */
  2692. #ifdef CONFIG_NUMA
  2693. {
  2694. struct slab *slabp;
  2695. slabp = virt_to_slab(objp);
  2696. if (unlikely(slabp->nodeid != numa_node_id())) {
  2697. struct array_cache *alien = NULL;
  2698. int nodeid = slabp->nodeid;
  2699. struct kmem_list3 *l3;
  2700. l3 = cachep->nodelists[numa_node_id()];
  2701. STATS_INC_NODEFREES(cachep);
  2702. if (l3->alien && l3->alien[nodeid]) {
  2703. alien = l3->alien[nodeid];
  2704. spin_lock(&alien->lock);
  2705. if (unlikely(alien->avail == alien->limit))
  2706. __drain_alien_cache(cachep,
  2707. alien, nodeid);
  2708. alien->entry[alien->avail++] = objp;
  2709. spin_unlock(&alien->lock);
  2710. } else {
  2711. spin_lock(&(cachep->nodelists[nodeid])->
  2712. list_lock);
  2713. free_block(cachep, &objp, 1, nodeid);
  2714. spin_unlock(&(cachep->nodelists[nodeid])->
  2715. list_lock);
  2716. }
  2717. return;
  2718. }
  2719. }
  2720. #endif
  2721. if (likely(ac->avail < ac->limit)) {
  2722. STATS_INC_FREEHIT(cachep);
  2723. ac->entry[ac->avail++] = objp;
  2724. return;
  2725. } else {
  2726. STATS_INC_FREEMISS(cachep);
  2727. cache_flusharray(cachep, ac);
  2728. ac->entry[ac->avail++] = objp;
  2729. }
  2730. }
  2731. /**
  2732. * kmem_cache_alloc - Allocate an object
  2733. * @cachep: The cache to allocate from.
  2734. * @flags: See kmalloc().
  2735. *
  2736. * Allocate an object from this cache. The flags are only relevant
  2737. * if the cache has no available objects.
  2738. */
  2739. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2740. {
  2741. return __cache_alloc(cachep, flags, __builtin_return_address(0));
  2742. }
  2743. EXPORT_SYMBOL(kmem_cache_alloc);
  2744. /**
  2745. * kmem_ptr_validate - check if an untrusted pointer might
  2746. * be a slab entry.
  2747. * @cachep: the cache we're checking against
  2748. * @ptr: pointer to validate
  2749. *
  2750. * This verifies that the untrusted pointer looks sane:
  2751. * it is _not_ a guarantee that the pointer is actually
  2752. * part of the slab cache in question, but it at least
  2753. * validates that the pointer can be dereferenced and
  2754. * looks half-way sane.
  2755. *
  2756. * Currently only used for dentry validation.
  2757. */
  2758. int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
  2759. {
  2760. unsigned long addr = (unsigned long)ptr;
  2761. unsigned long min_addr = PAGE_OFFSET;
  2762. unsigned long align_mask = BYTES_PER_WORD - 1;
  2763. unsigned long size = cachep->buffer_size;
  2764. struct page *page;
  2765. if (unlikely(addr < min_addr))
  2766. goto out;
  2767. if (unlikely(addr > (unsigned long)high_memory - size))
  2768. goto out;
  2769. if (unlikely(addr & align_mask))
  2770. goto out;
  2771. if (unlikely(!kern_addr_valid(addr)))
  2772. goto out;
  2773. if (unlikely(!kern_addr_valid(addr + size - 1)))
  2774. goto out;
  2775. page = virt_to_page(ptr);
  2776. if (unlikely(!PageSlab(page)))
  2777. goto out;
  2778. if (unlikely(page_get_cache(page) != cachep))
  2779. goto out;
  2780. return 1;
  2781. out:
  2782. return 0;
  2783. }
  2784. #ifdef CONFIG_NUMA
  2785. /**
  2786. * kmem_cache_alloc_node - Allocate an object on the specified node
  2787. * @cachep: The cache to allocate from.
  2788. * @flags: See kmalloc().
  2789. * @nodeid: node number of the target node.
  2790. *
  2791. * Identical to kmem_cache_alloc, except that this function is slow
  2792. * and can sleep. And it will allocate memory on the given node, which
  2793. * can improve the performance for cpu bound structures.
  2794. * New and improved: it will now make sure that the object gets
  2795. * put on the correct node list so that there is no false sharing.
  2796. */
  2797. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  2798. {
  2799. unsigned long save_flags;
  2800. void *ptr;
  2801. cache_alloc_debugcheck_before(cachep, flags);
  2802. local_irq_save(save_flags);
  2803. if (nodeid == -1 || nodeid == numa_node_id() ||
  2804. !cachep->nodelists[nodeid])
  2805. ptr = ____cache_alloc(cachep, flags);
  2806. else
  2807. ptr = __cache_alloc_node(cachep, flags, nodeid);
  2808. local_irq_restore(save_flags);
  2809. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
  2810. __builtin_return_address(0));
  2811. return ptr;
  2812. }
  2813. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2814. void *kmalloc_node(size_t size, gfp_t flags, int node)
  2815. {
  2816. struct kmem_cache *cachep;
  2817. cachep = kmem_find_general_cachep(size, flags);
  2818. if (unlikely(cachep == NULL))
  2819. return NULL;
  2820. return kmem_cache_alloc_node(cachep, flags, node);
  2821. }
  2822. EXPORT_SYMBOL(kmalloc_node);
  2823. #endif
  2824. /**
  2825. * kmalloc - allocate memory
  2826. * @size: how many bytes of memory are required.
  2827. * @flags: the type of memory to allocate.
  2828. * @caller: function caller for debug tracking of the caller
  2829. *
  2830. * kmalloc is the normal method of allocating memory
  2831. * in the kernel.
  2832. *
  2833. * The @flags argument may be one of:
  2834. *
  2835. * %GFP_USER - Allocate memory on behalf of user. May sleep.
  2836. *
  2837. * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
  2838. *
  2839. * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
  2840. *
  2841. * Additionally, the %GFP_DMA flag may be set to indicate the memory
  2842. * must be suitable for DMA. This can mean different things on different
  2843. * platforms. For example, on i386, it means that the memory must come
  2844. * from the first 16MB.
  2845. */
  2846. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  2847. void *caller)
  2848. {
  2849. struct kmem_cache *cachep;
  2850. /* If you want to save a few bytes .text space: replace
  2851. * __ with kmem_.
  2852. * Then kmalloc uses the uninlined functions instead of the inline
  2853. * functions.
  2854. */
  2855. cachep = __find_general_cachep(size, flags);
  2856. if (unlikely(cachep == NULL))
  2857. return NULL;
  2858. return __cache_alloc(cachep, flags, caller);
  2859. }
  2860. #ifndef CONFIG_DEBUG_SLAB
  2861. void *__kmalloc(size_t size, gfp_t flags)
  2862. {
  2863. return __do_kmalloc(size, flags, NULL);
  2864. }
  2865. EXPORT_SYMBOL(__kmalloc);
  2866. #else
  2867. void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
  2868. {
  2869. return __do_kmalloc(size, flags, caller);
  2870. }
  2871. EXPORT_SYMBOL(__kmalloc_track_caller);
  2872. #endif
  2873. #ifdef CONFIG_SMP
  2874. /**
  2875. * __alloc_percpu - allocate one copy of the object for every present
  2876. * cpu in the system, zeroing them.
  2877. * Objects should be dereferenced using the per_cpu_ptr macro only.
  2878. *
  2879. * @size: how many bytes of memory are required.
  2880. */
  2881. void *__alloc_percpu(size_t size)
  2882. {
  2883. int i;
  2884. struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
  2885. if (!pdata)
  2886. return NULL;
  2887. /*
  2888. * Cannot use for_each_online_cpu since a cpu may come online
  2889. * and we have no way of figuring out how to fix the array
  2890. * that we have allocated then....
  2891. */
  2892. for_each_cpu(i) {
  2893. int node = cpu_to_node(i);
  2894. if (node_online(node))
  2895. pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
  2896. else
  2897. pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
  2898. if (!pdata->ptrs[i])
  2899. goto unwind_oom;
  2900. memset(pdata->ptrs[i], 0, size);
  2901. }
  2902. /* Catch derefs w/o wrappers */
  2903. return (void *)(~(unsigned long)pdata);
  2904. unwind_oom:
  2905. while (--i >= 0) {
  2906. if (!cpu_possible(i))
  2907. continue;
  2908. kfree(pdata->ptrs[i]);
  2909. }
  2910. kfree(pdata);
  2911. return NULL;
  2912. }
  2913. EXPORT_SYMBOL(__alloc_percpu);
  2914. #endif
  2915. /**
  2916. * kmem_cache_free - Deallocate an object
  2917. * @cachep: The cache the allocation was from.
  2918. * @objp: The previously allocated object.
  2919. *
  2920. * Free an object which was previously allocated from this
  2921. * cache.
  2922. */
  2923. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  2924. {
  2925. unsigned long flags;
  2926. local_irq_save(flags);
  2927. __cache_free(cachep, objp);
  2928. local_irq_restore(flags);
  2929. }
  2930. EXPORT_SYMBOL(kmem_cache_free);
  2931. /**
  2932. * kfree - free previously allocated memory
  2933. * @objp: pointer returned by kmalloc.
  2934. *
  2935. * If @objp is NULL, no operation is performed.
  2936. *
  2937. * Don't free memory not originally allocated by kmalloc()
  2938. * or you will run into trouble.
  2939. */
  2940. void kfree(const void *objp)
  2941. {
  2942. struct kmem_cache *c;
  2943. unsigned long flags;
  2944. if (unlikely(!objp))
  2945. return;
  2946. local_irq_save(flags);
  2947. kfree_debugcheck(objp);
  2948. c = virt_to_cache(objp);
  2949. mutex_debug_check_no_locks_freed(objp, obj_size(c));
  2950. __cache_free(c, (void *)objp);
  2951. local_irq_restore(flags);
  2952. }
  2953. EXPORT_SYMBOL(kfree);
  2954. #ifdef CONFIG_SMP
  2955. /**
  2956. * free_percpu - free previously allocated percpu memory
  2957. * @objp: pointer returned by alloc_percpu.
  2958. *
  2959. * Don't free memory not originally allocated by alloc_percpu()
  2960. * The complemented objp is to check for that.
  2961. */
  2962. void free_percpu(const void *objp)
  2963. {
  2964. int i;
  2965. struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
  2966. /*
  2967. * We allocate for all cpus so we cannot use for online cpu here.
  2968. */
  2969. for_each_cpu(i)
  2970. kfree(p->ptrs[i]);
  2971. kfree(p);
  2972. }
  2973. EXPORT_SYMBOL(free_percpu);
  2974. #endif
  2975. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  2976. {
  2977. return obj_size(cachep);
  2978. }
  2979. EXPORT_SYMBOL(kmem_cache_size);
  2980. const char *kmem_cache_name(struct kmem_cache *cachep)
  2981. {
  2982. return cachep->name;
  2983. }
  2984. EXPORT_SYMBOL_GPL(kmem_cache_name);
  2985. /*
  2986. * This initializes kmem_list3 for all nodes.
  2987. */
  2988. static int alloc_kmemlist(struct kmem_cache *cachep)
  2989. {
  2990. int node;
  2991. struct kmem_list3 *l3;
  2992. int err = 0;
  2993. for_each_online_node(node) {
  2994. struct array_cache *nc = NULL, *new;
  2995. struct array_cache **new_alien = NULL;
  2996. #ifdef CONFIG_NUMA
  2997. new_alien = alloc_alien_cache(node, cachep->limit);
  2998. if (!new_alien)
  2999. goto fail;
  3000. #endif
  3001. new = alloc_arraycache(node, cachep->shared*cachep->batchcount,
  3002. 0xbaadf00d);
  3003. if (!new)
  3004. goto fail;
  3005. l3 = cachep->nodelists[node];
  3006. if (l3) {
  3007. spin_lock_irq(&l3->list_lock);
  3008. nc = cachep->nodelists[node]->shared;
  3009. if (nc)
  3010. free_block(cachep, nc->entry, nc->avail, node);
  3011. l3->shared = new;
  3012. if (!cachep->nodelists[node]->alien) {
  3013. l3->alien = new_alien;
  3014. new_alien = NULL;
  3015. }
  3016. l3->free_limit = (1 + nr_cpus_node(node)) *
  3017. cachep->batchcount + cachep->num;
  3018. spin_unlock_irq(&l3->list_lock);
  3019. kfree(nc);
  3020. free_alien_cache(new_alien);
  3021. continue;
  3022. }
  3023. l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
  3024. if (!l3)
  3025. goto fail;
  3026. kmem_list3_init(l3);
  3027. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3028. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3029. l3->shared = new;
  3030. l3->alien = new_alien;
  3031. l3->free_limit = (1 + nr_cpus_node(node)) *
  3032. cachep->batchcount + cachep->num;
  3033. cachep->nodelists[node] = l3;
  3034. }
  3035. return err;
  3036. fail:
  3037. err = -ENOMEM;
  3038. return err;
  3039. }
  3040. struct ccupdate_struct {
  3041. struct kmem_cache *cachep;
  3042. struct array_cache *new[NR_CPUS];
  3043. };
  3044. static void do_ccupdate_local(void *info)
  3045. {
  3046. struct ccupdate_struct *new = info;
  3047. struct array_cache *old;
  3048. check_irq_off();
  3049. old = cpu_cache_get(new->cachep);
  3050. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3051. new->new[smp_processor_id()] = old;
  3052. }
  3053. /* Always called with the cache_chain_mutex held */
  3054. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3055. int batchcount, int shared)
  3056. {
  3057. struct ccupdate_struct new;
  3058. int i, err;
  3059. memset(&new.new, 0, sizeof(new.new));
  3060. for_each_online_cpu(i) {
  3061. new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
  3062. batchcount);
  3063. if (!new.new[i]) {
  3064. for (i--; i >= 0; i--)
  3065. kfree(new.new[i]);
  3066. return -ENOMEM;
  3067. }
  3068. }
  3069. new.cachep = cachep;
  3070. on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
  3071. check_irq_on();
  3072. cachep->batchcount = batchcount;
  3073. cachep->limit = limit;
  3074. cachep->shared = shared;
  3075. for_each_online_cpu(i) {
  3076. struct array_cache *ccold = new.new[i];
  3077. if (!ccold)
  3078. continue;
  3079. spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3080. free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
  3081. spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3082. kfree(ccold);
  3083. }
  3084. err = alloc_kmemlist(cachep);
  3085. if (err) {
  3086. printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
  3087. cachep->name, -err);
  3088. BUG();
  3089. }
  3090. return 0;
  3091. }
  3092. /* Called with cache_chain_mutex held always */
  3093. static void enable_cpucache(struct kmem_cache *cachep)
  3094. {
  3095. int err;
  3096. int limit, shared;
  3097. /*
  3098. * The head array serves three purposes:
  3099. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3100. * - reduce the number of spinlock operations.
  3101. * - reduce the number of linked list operations on the slab and
  3102. * bufctl chains: array operations are cheaper.
  3103. * The numbers are guessed, we should auto-tune as described by
  3104. * Bonwick.
  3105. */
  3106. if (cachep->buffer_size > 131072)
  3107. limit = 1;
  3108. else if (cachep->buffer_size > PAGE_SIZE)
  3109. limit = 8;
  3110. else if (cachep->buffer_size > 1024)
  3111. limit = 24;
  3112. else if (cachep->buffer_size > 256)
  3113. limit = 54;
  3114. else
  3115. limit = 120;
  3116. /*
  3117. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3118. * allocation behaviour: Most allocs on one cpu, most free operations
  3119. * on another cpu. For these cases, an efficient object passing between
  3120. * cpus is necessary. This is provided by a shared array. The array
  3121. * replaces Bonwick's magazine layer.
  3122. * On uniprocessor, it's functionally equivalent (but less efficient)
  3123. * to a larger limit. Thus disabled by default.
  3124. */
  3125. shared = 0;
  3126. #ifdef CONFIG_SMP
  3127. if (cachep->buffer_size <= PAGE_SIZE)
  3128. shared = 8;
  3129. #endif
  3130. #if DEBUG
  3131. /*
  3132. * With debugging enabled, large batchcount lead to excessively long
  3133. * periods with disabled local interrupts. Limit the batchcount
  3134. */
  3135. if (limit > 32)
  3136. limit = 32;
  3137. #endif
  3138. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
  3139. if (err)
  3140. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3141. cachep->name, -err);
  3142. }
  3143. /*
  3144. * Drain an array if it contains any elements taking the l3 lock only if
  3145. * necessary. Note that the l3 listlock also protects the array_cache
  3146. * if drain_array() is used on the shared array.
  3147. */
  3148. void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  3149. struct array_cache *ac, int force, int node)
  3150. {
  3151. int tofree;
  3152. if (!ac || !ac->avail)
  3153. return;
  3154. if (ac->touched && !force) {
  3155. ac->touched = 0;
  3156. } else {
  3157. spin_lock_irq(&l3->list_lock);
  3158. if (ac->avail) {
  3159. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3160. if (tofree > ac->avail)
  3161. tofree = (ac->avail + 1) / 2;
  3162. free_block(cachep, ac->entry, tofree, node);
  3163. ac->avail -= tofree;
  3164. memmove(ac->entry, &(ac->entry[tofree]),
  3165. sizeof(void *) * ac->avail);
  3166. }
  3167. spin_unlock_irq(&l3->list_lock);
  3168. }
  3169. }
  3170. /**
  3171. * cache_reap - Reclaim memory from caches.
  3172. * @unused: unused parameter
  3173. *
  3174. * Called from workqueue/eventd every few seconds.
  3175. * Purpose:
  3176. * - clear the per-cpu caches for this CPU.
  3177. * - return freeable pages to the main free memory pool.
  3178. *
  3179. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3180. * again on the next iteration.
  3181. */
  3182. static void cache_reap(void *unused)
  3183. {
  3184. struct list_head *walk;
  3185. struct kmem_list3 *l3;
  3186. int node = numa_node_id();
  3187. if (!mutex_trylock(&cache_chain_mutex)) {
  3188. /* Give up. Setup the next iteration. */
  3189. schedule_delayed_work(&__get_cpu_var(reap_work),
  3190. REAPTIMEOUT_CPUC);
  3191. return;
  3192. }
  3193. list_for_each(walk, &cache_chain) {
  3194. struct kmem_cache *searchp;
  3195. struct list_head *p;
  3196. int tofree;
  3197. struct slab *slabp;
  3198. searchp = list_entry(walk, struct kmem_cache, next);
  3199. check_irq_on();
  3200. /*
  3201. * We only take the l3 lock if absolutely necessary and we
  3202. * have established with reasonable certainty that
  3203. * we can do some work if the lock was obtained.
  3204. */
  3205. l3 = searchp->nodelists[node];
  3206. reap_alien(searchp, l3);
  3207. drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
  3208. /*
  3209. * These are racy checks but it does not matter
  3210. * if we skip one check or scan twice.
  3211. */
  3212. if (time_after(l3->next_reap, jiffies))
  3213. goto next;
  3214. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3215. drain_array(searchp, l3, l3->shared, 0, node);
  3216. if (l3->free_touched) {
  3217. l3->free_touched = 0;
  3218. goto next;
  3219. }
  3220. tofree = (l3->free_limit + 5 * searchp->num - 1) /
  3221. (5 * searchp->num);
  3222. do {
  3223. /*
  3224. * Do not lock if there are no free blocks.
  3225. */
  3226. if (list_empty(&l3->slabs_free))
  3227. break;
  3228. spin_lock_irq(&l3->list_lock);
  3229. p = l3->slabs_free.next;
  3230. if (p == &(l3->slabs_free)) {
  3231. spin_unlock_irq(&l3->list_lock);
  3232. break;
  3233. }
  3234. slabp = list_entry(p, struct slab, list);
  3235. BUG_ON(slabp->inuse);
  3236. list_del(&slabp->list);
  3237. STATS_INC_REAPED(searchp);
  3238. /*
  3239. * Safe to drop the lock. The slab is no longer linked
  3240. * to the cache. searchp cannot disappear, we hold
  3241. * cache_chain_lock
  3242. */
  3243. l3->free_objects -= searchp->num;
  3244. spin_unlock_irq(&l3->list_lock);
  3245. slab_destroy(searchp, slabp);
  3246. } while (--tofree > 0);
  3247. next:
  3248. cond_resched();
  3249. }
  3250. check_irq_on();
  3251. mutex_unlock(&cache_chain_mutex);
  3252. next_reap_node();
  3253. /* Set up the next iteration */
  3254. schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
  3255. }
  3256. #ifdef CONFIG_PROC_FS
  3257. static void print_slabinfo_header(struct seq_file *m)
  3258. {
  3259. /*
  3260. * Output format version, so at least we can change it
  3261. * without _too_ many complaints.
  3262. */
  3263. #if STATS
  3264. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3265. #else
  3266. seq_puts(m, "slabinfo - version: 2.1\n");
  3267. #endif
  3268. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3269. "<objperslab> <pagesperslab>");
  3270. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3271. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3272. #if STATS
  3273. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3274. "<error> <maxfreeable> <nodeallocs> <remotefrees>");
  3275. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3276. #endif
  3277. seq_putc(m, '\n');
  3278. }
  3279. static void *s_start(struct seq_file *m, loff_t *pos)
  3280. {
  3281. loff_t n = *pos;
  3282. struct list_head *p;
  3283. mutex_lock(&cache_chain_mutex);
  3284. if (!n)
  3285. print_slabinfo_header(m);
  3286. p = cache_chain.next;
  3287. while (n--) {
  3288. p = p->next;
  3289. if (p == &cache_chain)
  3290. return NULL;
  3291. }
  3292. return list_entry(p, struct kmem_cache, next);
  3293. }
  3294. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3295. {
  3296. struct kmem_cache *cachep = p;
  3297. ++*pos;
  3298. return cachep->next.next == &cache_chain ?
  3299. NULL : list_entry(cachep->next.next, struct kmem_cache, next);
  3300. }
  3301. static void s_stop(struct seq_file *m, void *p)
  3302. {
  3303. mutex_unlock(&cache_chain_mutex);
  3304. }
  3305. static int s_show(struct seq_file *m, void *p)
  3306. {
  3307. struct kmem_cache *cachep = p;
  3308. struct list_head *q;
  3309. struct slab *slabp;
  3310. unsigned long active_objs;
  3311. unsigned long num_objs;
  3312. unsigned long active_slabs = 0;
  3313. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3314. const char *name;
  3315. char *error = NULL;
  3316. int node;
  3317. struct kmem_list3 *l3;
  3318. active_objs = 0;
  3319. num_slabs = 0;
  3320. for_each_online_node(node) {
  3321. l3 = cachep->nodelists[node];
  3322. if (!l3)
  3323. continue;
  3324. check_irq_on();
  3325. spin_lock_irq(&l3->list_lock);
  3326. list_for_each(q, &l3->slabs_full) {
  3327. slabp = list_entry(q, struct slab, list);
  3328. if (slabp->inuse != cachep->num && !error)
  3329. error = "slabs_full accounting error";
  3330. active_objs += cachep->num;
  3331. active_slabs++;
  3332. }
  3333. list_for_each(q, &l3->slabs_partial) {
  3334. slabp = list_entry(q, struct slab, list);
  3335. if (slabp->inuse == cachep->num && !error)
  3336. error = "slabs_partial inuse accounting error";
  3337. if (!slabp->inuse && !error)
  3338. error = "slabs_partial/inuse accounting error";
  3339. active_objs += slabp->inuse;
  3340. active_slabs++;
  3341. }
  3342. list_for_each(q, &l3->slabs_free) {
  3343. slabp = list_entry(q, struct slab, list);
  3344. if (slabp->inuse && !error)
  3345. error = "slabs_free/inuse accounting error";
  3346. num_slabs++;
  3347. }
  3348. free_objects += l3->free_objects;
  3349. if (l3->shared)
  3350. shared_avail += l3->shared->avail;
  3351. spin_unlock_irq(&l3->list_lock);
  3352. }
  3353. num_slabs += active_slabs;
  3354. num_objs = num_slabs * cachep->num;
  3355. if (num_objs - active_objs != free_objects && !error)
  3356. error = "free_objects accounting error";
  3357. name = cachep->name;
  3358. if (error)
  3359. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3360. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3361. name, active_objs, num_objs, cachep->buffer_size,
  3362. cachep->num, (1 << cachep->gfporder));
  3363. seq_printf(m, " : tunables %4u %4u %4u",
  3364. cachep->limit, cachep->batchcount, cachep->shared);
  3365. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3366. active_slabs, num_slabs, shared_avail);
  3367. #if STATS
  3368. { /* list3 stats */
  3369. unsigned long high = cachep->high_mark;
  3370. unsigned long allocs = cachep->num_allocations;
  3371. unsigned long grown = cachep->grown;
  3372. unsigned long reaped = cachep->reaped;
  3373. unsigned long errors = cachep->errors;
  3374. unsigned long max_freeable = cachep->max_freeable;
  3375. unsigned long node_allocs = cachep->node_allocs;
  3376. unsigned long node_frees = cachep->node_frees;
  3377. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
  3378. %4lu %4lu %4lu %4lu", allocs, high, grown,
  3379. reaped, errors, max_freeable, node_allocs,
  3380. node_frees);
  3381. }
  3382. /* cpu stats */
  3383. {
  3384. unsigned long allochit = atomic_read(&cachep->allochit);
  3385. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3386. unsigned long freehit = atomic_read(&cachep->freehit);
  3387. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3388. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3389. allochit, allocmiss, freehit, freemiss);
  3390. }
  3391. #endif
  3392. seq_putc(m, '\n');
  3393. return 0;
  3394. }
  3395. /*
  3396. * slabinfo_op - iterator that generates /proc/slabinfo
  3397. *
  3398. * Output layout:
  3399. * cache-name
  3400. * num-active-objs
  3401. * total-objs
  3402. * object size
  3403. * num-active-slabs
  3404. * total-slabs
  3405. * num-pages-per-slab
  3406. * + further values on SMP and with statistics enabled
  3407. */
  3408. struct seq_operations slabinfo_op = {
  3409. .start = s_start,
  3410. .next = s_next,
  3411. .stop = s_stop,
  3412. .show = s_show,
  3413. };
  3414. #define MAX_SLABINFO_WRITE 128
  3415. /**
  3416. * slabinfo_write - Tuning for the slab allocator
  3417. * @file: unused
  3418. * @buffer: user buffer
  3419. * @count: data length
  3420. * @ppos: unused
  3421. */
  3422. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3423. size_t count, loff_t *ppos)
  3424. {
  3425. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3426. int limit, batchcount, shared, res;
  3427. struct list_head *p;
  3428. if (count > MAX_SLABINFO_WRITE)
  3429. return -EINVAL;
  3430. if (copy_from_user(&kbuf, buffer, count))
  3431. return -EFAULT;
  3432. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3433. tmp = strchr(kbuf, ' ');
  3434. if (!tmp)
  3435. return -EINVAL;
  3436. *tmp = '\0';
  3437. tmp++;
  3438. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3439. return -EINVAL;
  3440. /* Find the cache in the chain of caches. */
  3441. mutex_lock(&cache_chain_mutex);
  3442. res = -EINVAL;
  3443. list_for_each(p, &cache_chain) {
  3444. struct kmem_cache *cachep;
  3445. cachep = list_entry(p, struct kmem_cache, next);
  3446. if (!strcmp(cachep->name, kbuf)) {
  3447. if (limit < 1 || batchcount < 1 ||
  3448. batchcount > limit || shared < 0) {
  3449. res = 0;
  3450. } else {
  3451. res = do_tune_cpucache(cachep, limit,
  3452. batchcount, shared);
  3453. }
  3454. break;
  3455. }
  3456. }
  3457. mutex_unlock(&cache_chain_mutex);
  3458. if (res >= 0)
  3459. res = count;
  3460. return res;
  3461. }
  3462. #endif
  3463. /**
  3464. * ksize - get the actual amount of memory allocated for a given object
  3465. * @objp: Pointer to the object
  3466. *
  3467. * kmalloc may internally round up allocations and return more memory
  3468. * than requested. ksize() can be used to determine the actual amount of
  3469. * memory allocated. The caller may use this additional memory, even though
  3470. * a smaller amount of memory was initially specified with the kmalloc call.
  3471. * The caller must guarantee that objp points to a valid object previously
  3472. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  3473. * must not be freed during the duration of the call.
  3474. */
  3475. unsigned int ksize(const void *objp)
  3476. {
  3477. if (unlikely(objp == NULL))
  3478. return 0;
  3479. return obj_size(virt_to_cache(objp));
  3480. }