sched.c 204 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/bootmem.h>
  70. #include <asm/tlb.h>
  71. #include <asm/irq_regs.h>
  72. /*
  73. * Scheduler clock - returns current time in nanosec units.
  74. * This is default implementation.
  75. * Architectures and sub-architectures can override this.
  76. */
  77. unsigned long long __attribute__((weak)) sched_clock(void)
  78. {
  79. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  80. }
  81. /*
  82. * Convert user-nice values [ -20 ... 0 ... 19 ]
  83. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  84. * and back.
  85. */
  86. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  87. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  88. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  89. /*
  90. * 'User priority' is the nice value converted to something we
  91. * can work with better when scaling various scheduler parameters,
  92. * it's a [ 0 ... 39 ] range.
  93. */
  94. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  95. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  96. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  97. /*
  98. * Helpers for converting nanosecond timing to jiffy resolution
  99. */
  100. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  101. #define NICE_0_LOAD SCHED_LOAD_SCALE
  102. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  103. /*
  104. * These are the 'tuning knobs' of the scheduler:
  105. *
  106. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  107. * Timeslices get refilled after they expire.
  108. */
  109. #define DEF_TIMESLICE (100 * HZ / 1000)
  110. /*
  111. * single value that denotes runtime == period, ie unlimited time.
  112. */
  113. #define RUNTIME_INF ((u64)~0ULL)
  114. #ifdef CONFIG_SMP
  115. /*
  116. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  117. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  118. */
  119. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  120. {
  121. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  122. }
  123. /*
  124. * Each time a sched group cpu_power is changed,
  125. * we must compute its reciprocal value
  126. */
  127. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  128. {
  129. sg->__cpu_power += val;
  130. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  131. }
  132. #endif
  133. static inline int rt_policy(int policy)
  134. {
  135. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  136. return 1;
  137. return 0;
  138. }
  139. static inline int task_has_rt_policy(struct task_struct *p)
  140. {
  141. return rt_policy(p->policy);
  142. }
  143. /*
  144. * This is the priority-queue data structure of the RT scheduling class:
  145. */
  146. struct rt_prio_array {
  147. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  148. struct list_head queue[MAX_RT_PRIO];
  149. };
  150. struct rt_bandwidth {
  151. ktime_t rt_period;
  152. u64 rt_runtime;
  153. spinlock_t rt_runtime_lock;
  154. struct hrtimer rt_period_timer;
  155. };
  156. static struct rt_bandwidth def_rt_bandwidth;
  157. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  158. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  159. {
  160. struct rt_bandwidth *rt_b =
  161. container_of(timer, struct rt_bandwidth, rt_period_timer);
  162. ktime_t now;
  163. int overrun;
  164. int idle = 0;
  165. for (;;) {
  166. now = hrtimer_cb_get_time(timer);
  167. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  168. if (!overrun)
  169. break;
  170. idle = do_sched_rt_period_timer(rt_b, overrun);
  171. }
  172. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  173. }
  174. static
  175. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  176. {
  177. rt_b->rt_period = ns_to_ktime(period);
  178. rt_b->rt_runtime = runtime;
  179. spin_lock_init(&rt_b->rt_runtime_lock);
  180. hrtimer_init(&rt_b->rt_period_timer,
  181. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  182. rt_b->rt_period_timer.function = sched_rt_period_timer;
  183. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  184. }
  185. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  186. {
  187. ktime_t now;
  188. if (rt_b->rt_runtime == RUNTIME_INF)
  189. return;
  190. if (hrtimer_active(&rt_b->rt_period_timer))
  191. return;
  192. spin_lock(&rt_b->rt_runtime_lock);
  193. for (;;) {
  194. if (hrtimer_active(&rt_b->rt_period_timer))
  195. break;
  196. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  197. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  198. hrtimer_start(&rt_b->rt_period_timer,
  199. rt_b->rt_period_timer.expires,
  200. HRTIMER_MODE_ABS);
  201. }
  202. spin_unlock(&rt_b->rt_runtime_lock);
  203. }
  204. #ifdef CONFIG_RT_GROUP_SCHED
  205. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  206. {
  207. hrtimer_cancel(&rt_b->rt_period_timer);
  208. }
  209. #endif
  210. #ifdef CONFIG_GROUP_SCHED
  211. #include <linux/cgroup.h>
  212. struct cfs_rq;
  213. static LIST_HEAD(task_groups);
  214. /* task group related information */
  215. struct task_group {
  216. #ifdef CONFIG_CGROUP_SCHED
  217. struct cgroup_subsys_state css;
  218. #endif
  219. #ifdef CONFIG_FAIR_GROUP_SCHED
  220. /* schedulable entities of this group on each cpu */
  221. struct sched_entity **se;
  222. /* runqueue "owned" by this group on each cpu */
  223. struct cfs_rq **cfs_rq;
  224. unsigned long shares;
  225. #endif
  226. #ifdef CONFIG_RT_GROUP_SCHED
  227. struct sched_rt_entity **rt_se;
  228. struct rt_rq **rt_rq;
  229. struct rt_bandwidth rt_bandwidth;
  230. #endif
  231. struct rcu_head rcu;
  232. struct list_head list;
  233. };
  234. #ifdef CONFIG_FAIR_GROUP_SCHED
  235. /* Default task group's sched entity on each cpu */
  236. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  237. /* Default task group's cfs_rq on each cpu */
  238. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  239. #endif
  240. #ifdef CONFIG_RT_GROUP_SCHED
  241. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  242. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  243. #endif
  244. /* task_group_lock serializes add/remove of task groups and also changes to
  245. * a task group's cpu shares.
  246. */
  247. static DEFINE_SPINLOCK(task_group_lock);
  248. /* doms_cur_mutex serializes access to doms_cur[] array */
  249. static DEFINE_MUTEX(doms_cur_mutex);
  250. #ifdef CONFIG_FAIR_GROUP_SCHED
  251. #ifdef CONFIG_USER_SCHED
  252. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  253. #else
  254. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  255. #endif
  256. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  257. #endif
  258. /* Default task group.
  259. * Every task in system belong to this group at bootup.
  260. */
  261. struct task_group init_task_group;
  262. /* return group to which a task belongs */
  263. static inline struct task_group *task_group(struct task_struct *p)
  264. {
  265. struct task_group *tg;
  266. #ifdef CONFIG_USER_SCHED
  267. tg = p->user->tg;
  268. #elif defined(CONFIG_CGROUP_SCHED)
  269. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  270. struct task_group, css);
  271. #else
  272. tg = &init_task_group;
  273. #endif
  274. return tg;
  275. }
  276. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  277. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  278. {
  279. #ifdef CONFIG_FAIR_GROUP_SCHED
  280. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  281. p->se.parent = task_group(p)->se[cpu];
  282. #endif
  283. #ifdef CONFIG_RT_GROUP_SCHED
  284. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  285. p->rt.parent = task_group(p)->rt_se[cpu];
  286. #endif
  287. }
  288. static inline void lock_doms_cur(void)
  289. {
  290. mutex_lock(&doms_cur_mutex);
  291. }
  292. static inline void unlock_doms_cur(void)
  293. {
  294. mutex_unlock(&doms_cur_mutex);
  295. }
  296. #else
  297. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  298. static inline void lock_doms_cur(void) { }
  299. static inline void unlock_doms_cur(void) { }
  300. #endif /* CONFIG_GROUP_SCHED */
  301. /* CFS-related fields in a runqueue */
  302. struct cfs_rq {
  303. struct load_weight load;
  304. unsigned long nr_running;
  305. u64 exec_clock;
  306. u64 min_vruntime;
  307. struct rb_root tasks_timeline;
  308. struct rb_node *rb_leftmost;
  309. struct rb_node *rb_load_balance_curr;
  310. /* 'curr' points to currently running entity on this cfs_rq.
  311. * It is set to NULL otherwise (i.e when none are currently running).
  312. */
  313. struct sched_entity *curr, *next;
  314. unsigned long nr_spread_over;
  315. #ifdef CONFIG_FAIR_GROUP_SCHED
  316. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  317. /*
  318. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  319. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  320. * (like users, containers etc.)
  321. *
  322. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  323. * list is used during load balance.
  324. */
  325. struct list_head leaf_cfs_rq_list;
  326. struct task_group *tg; /* group that "owns" this runqueue */
  327. #endif
  328. };
  329. /* Real-Time classes' related field in a runqueue: */
  330. struct rt_rq {
  331. struct rt_prio_array active;
  332. unsigned long rt_nr_running;
  333. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  334. int highest_prio; /* highest queued rt task prio */
  335. #endif
  336. #ifdef CONFIG_SMP
  337. unsigned long rt_nr_migratory;
  338. int overloaded;
  339. #endif
  340. int rt_throttled;
  341. u64 rt_time;
  342. u64 rt_runtime;
  343. spinlock_t rt_runtime_lock;
  344. #ifdef CONFIG_RT_GROUP_SCHED
  345. unsigned long rt_nr_boosted;
  346. struct rq *rq;
  347. struct list_head leaf_rt_rq_list;
  348. struct task_group *tg;
  349. struct sched_rt_entity *rt_se;
  350. #endif
  351. };
  352. #ifdef CONFIG_SMP
  353. /*
  354. * We add the notion of a root-domain which will be used to define per-domain
  355. * variables. Each exclusive cpuset essentially defines an island domain by
  356. * fully partitioning the member cpus from any other cpuset. Whenever a new
  357. * exclusive cpuset is created, we also create and attach a new root-domain
  358. * object.
  359. *
  360. */
  361. struct root_domain {
  362. atomic_t refcount;
  363. cpumask_t span;
  364. cpumask_t online;
  365. /*
  366. * The "RT overload" flag: it gets set if a CPU has more than
  367. * one runnable RT task.
  368. */
  369. cpumask_t rto_mask;
  370. atomic_t rto_count;
  371. };
  372. /*
  373. * By default the system creates a single root-domain with all cpus as
  374. * members (mimicking the global state we have today).
  375. */
  376. static struct root_domain def_root_domain;
  377. #endif
  378. /*
  379. * This is the main, per-CPU runqueue data structure.
  380. *
  381. * Locking rule: those places that want to lock multiple runqueues
  382. * (such as the load balancing or the thread migration code), lock
  383. * acquire operations must be ordered by ascending &runqueue.
  384. */
  385. struct rq {
  386. /* runqueue lock: */
  387. spinlock_t lock;
  388. /*
  389. * nr_running and cpu_load should be in the same cacheline because
  390. * remote CPUs use both these fields when doing load calculation.
  391. */
  392. unsigned long nr_running;
  393. #define CPU_LOAD_IDX_MAX 5
  394. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  395. unsigned char idle_at_tick;
  396. #ifdef CONFIG_NO_HZ
  397. unsigned long last_tick_seen;
  398. unsigned char in_nohz_recently;
  399. #endif
  400. /* capture load from *all* tasks on this cpu: */
  401. struct load_weight load;
  402. unsigned long nr_load_updates;
  403. u64 nr_switches;
  404. struct cfs_rq cfs;
  405. struct rt_rq rt;
  406. #ifdef CONFIG_FAIR_GROUP_SCHED
  407. /* list of leaf cfs_rq on this cpu: */
  408. struct list_head leaf_cfs_rq_list;
  409. #endif
  410. #ifdef CONFIG_RT_GROUP_SCHED
  411. struct list_head leaf_rt_rq_list;
  412. #endif
  413. /*
  414. * This is part of a global counter where only the total sum
  415. * over all CPUs matters. A task can increase this counter on
  416. * one CPU and if it got migrated afterwards it may decrease
  417. * it on another CPU. Always updated under the runqueue lock:
  418. */
  419. unsigned long nr_uninterruptible;
  420. struct task_struct *curr, *idle;
  421. unsigned long next_balance;
  422. struct mm_struct *prev_mm;
  423. u64 clock, prev_clock_raw;
  424. s64 clock_max_delta;
  425. unsigned int clock_warps, clock_overflows, clock_underflows;
  426. u64 idle_clock;
  427. unsigned int clock_deep_idle_events;
  428. u64 tick_timestamp;
  429. atomic_t nr_iowait;
  430. #ifdef CONFIG_SMP
  431. struct root_domain *rd;
  432. struct sched_domain *sd;
  433. /* For active balancing */
  434. int active_balance;
  435. int push_cpu;
  436. /* cpu of this runqueue: */
  437. int cpu;
  438. struct task_struct *migration_thread;
  439. struct list_head migration_queue;
  440. #endif
  441. #ifdef CONFIG_SCHED_HRTICK
  442. unsigned long hrtick_flags;
  443. ktime_t hrtick_expire;
  444. struct hrtimer hrtick_timer;
  445. #endif
  446. #ifdef CONFIG_SCHEDSTATS
  447. /* latency stats */
  448. struct sched_info rq_sched_info;
  449. /* sys_sched_yield() stats */
  450. unsigned int yld_exp_empty;
  451. unsigned int yld_act_empty;
  452. unsigned int yld_both_empty;
  453. unsigned int yld_count;
  454. /* schedule() stats */
  455. unsigned int sched_switch;
  456. unsigned int sched_count;
  457. unsigned int sched_goidle;
  458. /* try_to_wake_up() stats */
  459. unsigned int ttwu_count;
  460. unsigned int ttwu_local;
  461. /* BKL stats */
  462. unsigned int bkl_count;
  463. #endif
  464. struct lock_class_key rq_lock_key;
  465. };
  466. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  467. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  468. {
  469. rq->curr->sched_class->check_preempt_curr(rq, p);
  470. }
  471. static inline int cpu_of(struct rq *rq)
  472. {
  473. #ifdef CONFIG_SMP
  474. return rq->cpu;
  475. #else
  476. return 0;
  477. #endif
  478. }
  479. #ifdef CONFIG_NO_HZ
  480. static inline bool nohz_on(int cpu)
  481. {
  482. return tick_get_tick_sched(cpu)->nohz_mode != NOHZ_MODE_INACTIVE;
  483. }
  484. static inline u64 max_skipped_ticks(struct rq *rq)
  485. {
  486. return nohz_on(cpu_of(rq)) ? jiffies - rq->last_tick_seen + 2 : 1;
  487. }
  488. static inline void update_last_tick_seen(struct rq *rq)
  489. {
  490. rq->last_tick_seen = jiffies;
  491. }
  492. #else
  493. static inline u64 max_skipped_ticks(struct rq *rq)
  494. {
  495. return 1;
  496. }
  497. static inline void update_last_tick_seen(struct rq *rq)
  498. {
  499. }
  500. #endif
  501. /*
  502. * Update the per-runqueue clock, as finegrained as the platform can give
  503. * us, but without assuming monotonicity, etc.:
  504. */
  505. static void __update_rq_clock(struct rq *rq)
  506. {
  507. u64 prev_raw = rq->prev_clock_raw;
  508. u64 now = sched_clock();
  509. s64 delta = now - prev_raw;
  510. u64 clock = rq->clock;
  511. #ifdef CONFIG_SCHED_DEBUG
  512. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  513. #endif
  514. /*
  515. * Protect against sched_clock() occasionally going backwards:
  516. */
  517. if (unlikely(delta < 0)) {
  518. clock++;
  519. rq->clock_warps++;
  520. } else {
  521. /*
  522. * Catch too large forward jumps too:
  523. */
  524. u64 max_jump = max_skipped_ticks(rq) * TICK_NSEC;
  525. u64 max_time = rq->tick_timestamp + max_jump;
  526. if (unlikely(clock + delta > max_time)) {
  527. if (clock < max_time)
  528. clock = max_time;
  529. else
  530. clock++;
  531. rq->clock_overflows++;
  532. } else {
  533. if (unlikely(delta > rq->clock_max_delta))
  534. rq->clock_max_delta = delta;
  535. clock += delta;
  536. }
  537. }
  538. rq->prev_clock_raw = now;
  539. rq->clock = clock;
  540. }
  541. static void update_rq_clock(struct rq *rq)
  542. {
  543. if (likely(smp_processor_id() == cpu_of(rq)))
  544. __update_rq_clock(rq);
  545. }
  546. /*
  547. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  548. * See detach_destroy_domains: synchronize_sched for details.
  549. *
  550. * The domain tree of any CPU may only be accessed from within
  551. * preempt-disabled sections.
  552. */
  553. #define for_each_domain(cpu, __sd) \
  554. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  555. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  556. #define this_rq() (&__get_cpu_var(runqueues))
  557. #define task_rq(p) cpu_rq(task_cpu(p))
  558. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  559. /*
  560. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  561. */
  562. #ifdef CONFIG_SCHED_DEBUG
  563. # define const_debug __read_mostly
  564. #else
  565. # define const_debug static const
  566. #endif
  567. /*
  568. * Debugging: various feature bits
  569. */
  570. enum {
  571. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  572. SCHED_FEAT_WAKEUP_PREEMPT = 2,
  573. SCHED_FEAT_START_DEBIT = 4,
  574. SCHED_FEAT_AFFINE_WAKEUPS = 8,
  575. SCHED_FEAT_CACHE_HOT_BUDDY = 16,
  576. SCHED_FEAT_SYNC_WAKEUPS = 32,
  577. SCHED_FEAT_HRTICK = 64,
  578. SCHED_FEAT_DOUBLE_TICK = 128,
  579. };
  580. const_debug unsigned int sysctl_sched_features =
  581. SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
  582. SCHED_FEAT_WAKEUP_PREEMPT * 1 |
  583. SCHED_FEAT_START_DEBIT * 1 |
  584. SCHED_FEAT_AFFINE_WAKEUPS * 1 |
  585. SCHED_FEAT_CACHE_HOT_BUDDY * 1 |
  586. SCHED_FEAT_SYNC_WAKEUPS * 1 |
  587. SCHED_FEAT_HRTICK * 1 |
  588. SCHED_FEAT_DOUBLE_TICK * 0;
  589. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  590. /*
  591. * Number of tasks to iterate in a single balance run.
  592. * Limited because this is done with IRQs disabled.
  593. */
  594. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  595. /*
  596. * period over which we measure -rt task cpu usage in us.
  597. * default: 1s
  598. */
  599. unsigned int sysctl_sched_rt_period = 1000000;
  600. static __read_mostly int scheduler_running;
  601. /*
  602. * part of the period that we allow rt tasks to run in us.
  603. * default: 0.95s
  604. */
  605. int sysctl_sched_rt_runtime = 950000;
  606. static inline u64 global_rt_period(void)
  607. {
  608. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  609. }
  610. static inline u64 global_rt_runtime(void)
  611. {
  612. if (sysctl_sched_rt_period < 0)
  613. return RUNTIME_INF;
  614. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  615. }
  616. static const unsigned long long time_sync_thresh = 100000;
  617. static DEFINE_PER_CPU(unsigned long long, time_offset);
  618. static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
  619. /*
  620. * Global lock which we take every now and then to synchronize
  621. * the CPUs time. This method is not warp-safe, but it's good
  622. * enough to synchronize slowly diverging time sources and thus
  623. * it's good enough for tracing:
  624. */
  625. static DEFINE_SPINLOCK(time_sync_lock);
  626. static unsigned long long prev_global_time;
  627. static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
  628. {
  629. unsigned long flags;
  630. spin_lock_irqsave(&time_sync_lock, flags);
  631. if (time < prev_global_time) {
  632. per_cpu(time_offset, cpu) += prev_global_time - time;
  633. time = prev_global_time;
  634. } else {
  635. prev_global_time = time;
  636. }
  637. spin_unlock_irqrestore(&time_sync_lock, flags);
  638. return time;
  639. }
  640. static unsigned long long __cpu_clock(int cpu)
  641. {
  642. unsigned long long now;
  643. unsigned long flags;
  644. struct rq *rq;
  645. /*
  646. * Only call sched_clock() if the scheduler has already been
  647. * initialized (some code might call cpu_clock() very early):
  648. */
  649. if (unlikely(!scheduler_running))
  650. return 0;
  651. local_irq_save(flags);
  652. rq = cpu_rq(cpu);
  653. update_rq_clock(rq);
  654. now = rq->clock;
  655. local_irq_restore(flags);
  656. return now;
  657. }
  658. /*
  659. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  660. * clock constructed from sched_clock():
  661. */
  662. unsigned long long cpu_clock(int cpu)
  663. {
  664. unsigned long long prev_cpu_time, time, delta_time;
  665. prev_cpu_time = per_cpu(prev_cpu_time, cpu);
  666. time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
  667. delta_time = time-prev_cpu_time;
  668. if (unlikely(delta_time > time_sync_thresh))
  669. time = __sync_cpu_clock(time, cpu);
  670. return time;
  671. }
  672. EXPORT_SYMBOL_GPL(cpu_clock);
  673. #ifndef prepare_arch_switch
  674. # define prepare_arch_switch(next) do { } while (0)
  675. #endif
  676. #ifndef finish_arch_switch
  677. # define finish_arch_switch(prev) do { } while (0)
  678. #endif
  679. static inline int task_current(struct rq *rq, struct task_struct *p)
  680. {
  681. return rq->curr == p;
  682. }
  683. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  684. static inline int task_running(struct rq *rq, struct task_struct *p)
  685. {
  686. return task_current(rq, p);
  687. }
  688. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  689. {
  690. }
  691. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  692. {
  693. #ifdef CONFIG_DEBUG_SPINLOCK
  694. /* this is a valid case when another task releases the spinlock */
  695. rq->lock.owner = current;
  696. #endif
  697. /*
  698. * If we are tracking spinlock dependencies then we have to
  699. * fix up the runqueue lock - which gets 'carried over' from
  700. * prev into current:
  701. */
  702. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  703. spin_unlock_irq(&rq->lock);
  704. }
  705. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  706. static inline int task_running(struct rq *rq, struct task_struct *p)
  707. {
  708. #ifdef CONFIG_SMP
  709. return p->oncpu;
  710. #else
  711. return task_current(rq, p);
  712. #endif
  713. }
  714. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  715. {
  716. #ifdef CONFIG_SMP
  717. /*
  718. * We can optimise this out completely for !SMP, because the
  719. * SMP rebalancing from interrupt is the only thing that cares
  720. * here.
  721. */
  722. next->oncpu = 1;
  723. #endif
  724. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  725. spin_unlock_irq(&rq->lock);
  726. #else
  727. spin_unlock(&rq->lock);
  728. #endif
  729. }
  730. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  731. {
  732. #ifdef CONFIG_SMP
  733. /*
  734. * After ->oncpu is cleared, the task can be moved to a different CPU.
  735. * We must ensure this doesn't happen until the switch is completely
  736. * finished.
  737. */
  738. smp_wmb();
  739. prev->oncpu = 0;
  740. #endif
  741. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  742. local_irq_enable();
  743. #endif
  744. }
  745. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  746. /*
  747. * __task_rq_lock - lock the runqueue a given task resides on.
  748. * Must be called interrupts disabled.
  749. */
  750. static inline struct rq *__task_rq_lock(struct task_struct *p)
  751. __acquires(rq->lock)
  752. {
  753. for (;;) {
  754. struct rq *rq = task_rq(p);
  755. spin_lock(&rq->lock);
  756. if (likely(rq == task_rq(p)))
  757. return rq;
  758. spin_unlock(&rq->lock);
  759. }
  760. }
  761. /*
  762. * task_rq_lock - lock the runqueue a given task resides on and disable
  763. * interrupts. Note the ordering: we can safely lookup the task_rq without
  764. * explicitly disabling preemption.
  765. */
  766. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  767. __acquires(rq->lock)
  768. {
  769. struct rq *rq;
  770. for (;;) {
  771. local_irq_save(*flags);
  772. rq = task_rq(p);
  773. spin_lock(&rq->lock);
  774. if (likely(rq == task_rq(p)))
  775. return rq;
  776. spin_unlock_irqrestore(&rq->lock, *flags);
  777. }
  778. }
  779. static void __task_rq_unlock(struct rq *rq)
  780. __releases(rq->lock)
  781. {
  782. spin_unlock(&rq->lock);
  783. }
  784. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  785. __releases(rq->lock)
  786. {
  787. spin_unlock_irqrestore(&rq->lock, *flags);
  788. }
  789. /*
  790. * this_rq_lock - lock this runqueue and disable interrupts.
  791. */
  792. static struct rq *this_rq_lock(void)
  793. __acquires(rq->lock)
  794. {
  795. struct rq *rq;
  796. local_irq_disable();
  797. rq = this_rq();
  798. spin_lock(&rq->lock);
  799. return rq;
  800. }
  801. /*
  802. * We are going deep-idle (irqs are disabled):
  803. */
  804. void sched_clock_idle_sleep_event(void)
  805. {
  806. struct rq *rq = cpu_rq(smp_processor_id());
  807. spin_lock(&rq->lock);
  808. __update_rq_clock(rq);
  809. spin_unlock(&rq->lock);
  810. rq->clock_deep_idle_events++;
  811. }
  812. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  813. /*
  814. * We just idled delta nanoseconds (called with irqs disabled):
  815. */
  816. void sched_clock_idle_wakeup_event(u64 delta_ns)
  817. {
  818. struct rq *rq = cpu_rq(smp_processor_id());
  819. u64 now = sched_clock();
  820. rq->idle_clock += delta_ns;
  821. /*
  822. * Override the previous timestamp and ignore all
  823. * sched_clock() deltas that occured while we idled,
  824. * and use the PM-provided delta_ns to advance the
  825. * rq clock:
  826. */
  827. spin_lock(&rq->lock);
  828. rq->prev_clock_raw = now;
  829. rq->clock += delta_ns;
  830. spin_unlock(&rq->lock);
  831. touch_softlockup_watchdog();
  832. }
  833. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  834. static void __resched_task(struct task_struct *p, int tif_bit);
  835. static inline void resched_task(struct task_struct *p)
  836. {
  837. __resched_task(p, TIF_NEED_RESCHED);
  838. }
  839. #ifdef CONFIG_SCHED_HRTICK
  840. /*
  841. * Use HR-timers to deliver accurate preemption points.
  842. *
  843. * Its all a bit involved since we cannot program an hrt while holding the
  844. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  845. * reschedule event.
  846. *
  847. * When we get rescheduled we reprogram the hrtick_timer outside of the
  848. * rq->lock.
  849. */
  850. static inline void resched_hrt(struct task_struct *p)
  851. {
  852. __resched_task(p, TIF_HRTICK_RESCHED);
  853. }
  854. static inline void resched_rq(struct rq *rq)
  855. {
  856. unsigned long flags;
  857. spin_lock_irqsave(&rq->lock, flags);
  858. resched_task(rq->curr);
  859. spin_unlock_irqrestore(&rq->lock, flags);
  860. }
  861. enum {
  862. HRTICK_SET, /* re-programm hrtick_timer */
  863. HRTICK_RESET, /* not a new slice */
  864. };
  865. /*
  866. * Use hrtick when:
  867. * - enabled by features
  868. * - hrtimer is actually high res
  869. */
  870. static inline int hrtick_enabled(struct rq *rq)
  871. {
  872. if (!sched_feat(HRTICK))
  873. return 0;
  874. return hrtimer_is_hres_active(&rq->hrtick_timer);
  875. }
  876. /*
  877. * Called to set the hrtick timer state.
  878. *
  879. * called with rq->lock held and irqs disabled
  880. */
  881. static void hrtick_start(struct rq *rq, u64 delay, int reset)
  882. {
  883. assert_spin_locked(&rq->lock);
  884. /*
  885. * preempt at: now + delay
  886. */
  887. rq->hrtick_expire =
  888. ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
  889. /*
  890. * indicate we need to program the timer
  891. */
  892. __set_bit(HRTICK_SET, &rq->hrtick_flags);
  893. if (reset)
  894. __set_bit(HRTICK_RESET, &rq->hrtick_flags);
  895. /*
  896. * New slices are called from the schedule path and don't need a
  897. * forced reschedule.
  898. */
  899. if (reset)
  900. resched_hrt(rq->curr);
  901. }
  902. static void hrtick_clear(struct rq *rq)
  903. {
  904. if (hrtimer_active(&rq->hrtick_timer))
  905. hrtimer_cancel(&rq->hrtick_timer);
  906. }
  907. /*
  908. * Update the timer from the possible pending state.
  909. */
  910. static void hrtick_set(struct rq *rq)
  911. {
  912. ktime_t time;
  913. int set, reset;
  914. unsigned long flags;
  915. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  916. spin_lock_irqsave(&rq->lock, flags);
  917. set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
  918. reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
  919. time = rq->hrtick_expire;
  920. clear_thread_flag(TIF_HRTICK_RESCHED);
  921. spin_unlock_irqrestore(&rq->lock, flags);
  922. if (set) {
  923. hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
  924. if (reset && !hrtimer_active(&rq->hrtick_timer))
  925. resched_rq(rq);
  926. } else
  927. hrtick_clear(rq);
  928. }
  929. /*
  930. * High-resolution timer tick.
  931. * Runs from hardirq context with interrupts disabled.
  932. */
  933. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  934. {
  935. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  936. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  937. spin_lock(&rq->lock);
  938. __update_rq_clock(rq);
  939. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  940. spin_unlock(&rq->lock);
  941. return HRTIMER_NORESTART;
  942. }
  943. static inline void init_rq_hrtick(struct rq *rq)
  944. {
  945. rq->hrtick_flags = 0;
  946. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  947. rq->hrtick_timer.function = hrtick;
  948. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  949. }
  950. void hrtick_resched(void)
  951. {
  952. struct rq *rq;
  953. unsigned long flags;
  954. if (!test_thread_flag(TIF_HRTICK_RESCHED))
  955. return;
  956. local_irq_save(flags);
  957. rq = cpu_rq(smp_processor_id());
  958. hrtick_set(rq);
  959. local_irq_restore(flags);
  960. }
  961. #else
  962. static inline void hrtick_clear(struct rq *rq)
  963. {
  964. }
  965. static inline void hrtick_set(struct rq *rq)
  966. {
  967. }
  968. static inline void init_rq_hrtick(struct rq *rq)
  969. {
  970. }
  971. void hrtick_resched(void)
  972. {
  973. }
  974. #endif
  975. /*
  976. * resched_task - mark a task 'to be rescheduled now'.
  977. *
  978. * On UP this means the setting of the need_resched flag, on SMP it
  979. * might also involve a cross-CPU call to trigger the scheduler on
  980. * the target CPU.
  981. */
  982. #ifdef CONFIG_SMP
  983. #ifndef tsk_is_polling
  984. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  985. #endif
  986. static void __resched_task(struct task_struct *p, int tif_bit)
  987. {
  988. int cpu;
  989. assert_spin_locked(&task_rq(p)->lock);
  990. if (unlikely(test_tsk_thread_flag(p, tif_bit)))
  991. return;
  992. set_tsk_thread_flag(p, tif_bit);
  993. cpu = task_cpu(p);
  994. if (cpu == smp_processor_id())
  995. return;
  996. /* NEED_RESCHED must be visible before we test polling */
  997. smp_mb();
  998. if (!tsk_is_polling(p))
  999. smp_send_reschedule(cpu);
  1000. }
  1001. static void resched_cpu(int cpu)
  1002. {
  1003. struct rq *rq = cpu_rq(cpu);
  1004. unsigned long flags;
  1005. if (!spin_trylock_irqsave(&rq->lock, flags))
  1006. return;
  1007. resched_task(cpu_curr(cpu));
  1008. spin_unlock_irqrestore(&rq->lock, flags);
  1009. }
  1010. #ifdef CONFIG_NO_HZ
  1011. /*
  1012. * When add_timer_on() enqueues a timer into the timer wheel of an
  1013. * idle CPU then this timer might expire before the next timer event
  1014. * which is scheduled to wake up that CPU. In case of a completely
  1015. * idle system the next event might even be infinite time into the
  1016. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1017. * leaves the inner idle loop so the newly added timer is taken into
  1018. * account when the CPU goes back to idle and evaluates the timer
  1019. * wheel for the next timer event.
  1020. */
  1021. void wake_up_idle_cpu(int cpu)
  1022. {
  1023. struct rq *rq = cpu_rq(cpu);
  1024. if (cpu == smp_processor_id())
  1025. return;
  1026. /*
  1027. * This is safe, as this function is called with the timer
  1028. * wheel base lock of (cpu) held. When the CPU is on the way
  1029. * to idle and has not yet set rq->curr to idle then it will
  1030. * be serialized on the timer wheel base lock and take the new
  1031. * timer into account automatically.
  1032. */
  1033. if (rq->curr != rq->idle)
  1034. return;
  1035. /*
  1036. * We can set TIF_RESCHED on the idle task of the other CPU
  1037. * lockless. The worst case is that the other CPU runs the
  1038. * idle task through an additional NOOP schedule()
  1039. */
  1040. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1041. /* NEED_RESCHED must be visible before we test polling */
  1042. smp_mb();
  1043. if (!tsk_is_polling(rq->idle))
  1044. smp_send_reschedule(cpu);
  1045. }
  1046. #endif
  1047. #else
  1048. static void __resched_task(struct task_struct *p, int tif_bit)
  1049. {
  1050. assert_spin_locked(&task_rq(p)->lock);
  1051. set_tsk_thread_flag(p, tif_bit);
  1052. }
  1053. #endif
  1054. #if BITS_PER_LONG == 32
  1055. # define WMULT_CONST (~0UL)
  1056. #else
  1057. # define WMULT_CONST (1UL << 32)
  1058. #endif
  1059. #define WMULT_SHIFT 32
  1060. /*
  1061. * Shift right and round:
  1062. */
  1063. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1064. static unsigned long
  1065. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1066. struct load_weight *lw)
  1067. {
  1068. u64 tmp;
  1069. if (unlikely(!lw->inv_weight))
  1070. lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
  1071. tmp = (u64)delta_exec * weight;
  1072. /*
  1073. * Check whether we'd overflow the 64-bit multiplication:
  1074. */
  1075. if (unlikely(tmp > WMULT_CONST))
  1076. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1077. WMULT_SHIFT/2);
  1078. else
  1079. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1080. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1081. }
  1082. static inline unsigned long
  1083. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  1084. {
  1085. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  1086. }
  1087. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1088. {
  1089. lw->weight += inc;
  1090. lw->inv_weight = 0;
  1091. }
  1092. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1093. {
  1094. lw->weight -= dec;
  1095. lw->inv_weight = 0;
  1096. }
  1097. /*
  1098. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1099. * of tasks with abnormal "nice" values across CPUs the contribution that
  1100. * each task makes to its run queue's load is weighted according to its
  1101. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1102. * scaled version of the new time slice allocation that they receive on time
  1103. * slice expiry etc.
  1104. */
  1105. #define WEIGHT_IDLEPRIO 2
  1106. #define WMULT_IDLEPRIO (1 << 31)
  1107. /*
  1108. * Nice levels are multiplicative, with a gentle 10% change for every
  1109. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1110. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1111. * that remained on nice 0.
  1112. *
  1113. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1114. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1115. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1116. * If a task goes up by ~10% and another task goes down by ~10% then
  1117. * the relative distance between them is ~25%.)
  1118. */
  1119. static const int prio_to_weight[40] = {
  1120. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1121. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1122. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1123. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1124. /* 0 */ 1024, 820, 655, 526, 423,
  1125. /* 5 */ 335, 272, 215, 172, 137,
  1126. /* 10 */ 110, 87, 70, 56, 45,
  1127. /* 15 */ 36, 29, 23, 18, 15,
  1128. };
  1129. /*
  1130. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1131. *
  1132. * In cases where the weight does not change often, we can use the
  1133. * precalculated inverse to speed up arithmetics by turning divisions
  1134. * into multiplications:
  1135. */
  1136. static const u32 prio_to_wmult[40] = {
  1137. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1138. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1139. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1140. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1141. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1142. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1143. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1144. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1145. };
  1146. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1147. /*
  1148. * runqueue iterator, to support SMP load-balancing between different
  1149. * scheduling classes, without having to expose their internal data
  1150. * structures to the load-balancing proper:
  1151. */
  1152. struct rq_iterator {
  1153. void *arg;
  1154. struct task_struct *(*start)(void *);
  1155. struct task_struct *(*next)(void *);
  1156. };
  1157. #ifdef CONFIG_SMP
  1158. static unsigned long
  1159. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1160. unsigned long max_load_move, struct sched_domain *sd,
  1161. enum cpu_idle_type idle, int *all_pinned,
  1162. int *this_best_prio, struct rq_iterator *iterator);
  1163. static int
  1164. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1165. struct sched_domain *sd, enum cpu_idle_type idle,
  1166. struct rq_iterator *iterator);
  1167. #endif
  1168. #ifdef CONFIG_CGROUP_CPUACCT
  1169. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1170. #else
  1171. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1172. #endif
  1173. #ifdef CONFIG_SMP
  1174. static unsigned long source_load(int cpu, int type);
  1175. static unsigned long target_load(int cpu, int type);
  1176. static unsigned long cpu_avg_load_per_task(int cpu);
  1177. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1178. #endif /* CONFIG_SMP */
  1179. #include "sched_stats.h"
  1180. #include "sched_idletask.c"
  1181. #include "sched_fair.c"
  1182. #include "sched_rt.c"
  1183. #ifdef CONFIG_SCHED_DEBUG
  1184. # include "sched_debug.c"
  1185. #endif
  1186. #define sched_class_highest (&rt_sched_class)
  1187. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  1188. {
  1189. update_load_add(&rq->load, p->se.load.weight);
  1190. }
  1191. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  1192. {
  1193. update_load_sub(&rq->load, p->se.load.weight);
  1194. }
  1195. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  1196. {
  1197. rq->nr_running++;
  1198. inc_load(rq, p);
  1199. }
  1200. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  1201. {
  1202. rq->nr_running--;
  1203. dec_load(rq, p);
  1204. }
  1205. static void set_load_weight(struct task_struct *p)
  1206. {
  1207. if (task_has_rt_policy(p)) {
  1208. p->se.load.weight = prio_to_weight[0] * 2;
  1209. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1210. return;
  1211. }
  1212. /*
  1213. * SCHED_IDLE tasks get minimal weight:
  1214. */
  1215. if (p->policy == SCHED_IDLE) {
  1216. p->se.load.weight = WEIGHT_IDLEPRIO;
  1217. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1218. return;
  1219. }
  1220. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1221. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1222. }
  1223. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1224. {
  1225. sched_info_queued(p);
  1226. p->sched_class->enqueue_task(rq, p, wakeup);
  1227. p->se.on_rq = 1;
  1228. }
  1229. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1230. {
  1231. p->sched_class->dequeue_task(rq, p, sleep);
  1232. p->se.on_rq = 0;
  1233. }
  1234. /*
  1235. * __normal_prio - return the priority that is based on the static prio
  1236. */
  1237. static inline int __normal_prio(struct task_struct *p)
  1238. {
  1239. return p->static_prio;
  1240. }
  1241. /*
  1242. * Calculate the expected normal priority: i.e. priority
  1243. * without taking RT-inheritance into account. Might be
  1244. * boosted by interactivity modifiers. Changes upon fork,
  1245. * setprio syscalls, and whenever the interactivity
  1246. * estimator recalculates.
  1247. */
  1248. static inline int normal_prio(struct task_struct *p)
  1249. {
  1250. int prio;
  1251. if (task_has_rt_policy(p))
  1252. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1253. else
  1254. prio = __normal_prio(p);
  1255. return prio;
  1256. }
  1257. /*
  1258. * Calculate the current priority, i.e. the priority
  1259. * taken into account by the scheduler. This value might
  1260. * be boosted by RT tasks, or might be boosted by
  1261. * interactivity modifiers. Will be RT if the task got
  1262. * RT-boosted. If not then it returns p->normal_prio.
  1263. */
  1264. static int effective_prio(struct task_struct *p)
  1265. {
  1266. p->normal_prio = normal_prio(p);
  1267. /*
  1268. * If we are RT tasks or we were boosted to RT priority,
  1269. * keep the priority unchanged. Otherwise, update priority
  1270. * to the normal priority:
  1271. */
  1272. if (!rt_prio(p->prio))
  1273. return p->normal_prio;
  1274. return p->prio;
  1275. }
  1276. /*
  1277. * activate_task - move a task to the runqueue.
  1278. */
  1279. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1280. {
  1281. if (task_contributes_to_load(p))
  1282. rq->nr_uninterruptible--;
  1283. enqueue_task(rq, p, wakeup);
  1284. inc_nr_running(p, rq);
  1285. }
  1286. /*
  1287. * deactivate_task - remove a task from the runqueue.
  1288. */
  1289. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1290. {
  1291. if (task_contributes_to_load(p))
  1292. rq->nr_uninterruptible++;
  1293. dequeue_task(rq, p, sleep);
  1294. dec_nr_running(p, rq);
  1295. }
  1296. /**
  1297. * task_curr - is this task currently executing on a CPU?
  1298. * @p: the task in question.
  1299. */
  1300. inline int task_curr(const struct task_struct *p)
  1301. {
  1302. return cpu_curr(task_cpu(p)) == p;
  1303. }
  1304. /* Used instead of source_load when we know the type == 0 */
  1305. unsigned long weighted_cpuload(const int cpu)
  1306. {
  1307. return cpu_rq(cpu)->load.weight;
  1308. }
  1309. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1310. {
  1311. set_task_rq(p, cpu);
  1312. #ifdef CONFIG_SMP
  1313. /*
  1314. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1315. * successfuly executed on another CPU. We must ensure that updates of
  1316. * per-task data have been completed by this moment.
  1317. */
  1318. smp_wmb();
  1319. task_thread_info(p)->cpu = cpu;
  1320. #endif
  1321. }
  1322. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1323. const struct sched_class *prev_class,
  1324. int oldprio, int running)
  1325. {
  1326. if (prev_class != p->sched_class) {
  1327. if (prev_class->switched_from)
  1328. prev_class->switched_from(rq, p, running);
  1329. p->sched_class->switched_to(rq, p, running);
  1330. } else
  1331. p->sched_class->prio_changed(rq, p, oldprio, running);
  1332. }
  1333. #ifdef CONFIG_SMP
  1334. /*
  1335. * Is this task likely cache-hot:
  1336. */
  1337. static int
  1338. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1339. {
  1340. s64 delta;
  1341. /*
  1342. * Buddy candidates are cache hot:
  1343. */
  1344. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1345. return 1;
  1346. if (p->sched_class != &fair_sched_class)
  1347. return 0;
  1348. if (sysctl_sched_migration_cost == -1)
  1349. return 1;
  1350. if (sysctl_sched_migration_cost == 0)
  1351. return 0;
  1352. delta = now - p->se.exec_start;
  1353. return delta < (s64)sysctl_sched_migration_cost;
  1354. }
  1355. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1356. {
  1357. int old_cpu = task_cpu(p);
  1358. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1359. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1360. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1361. u64 clock_offset;
  1362. clock_offset = old_rq->clock - new_rq->clock;
  1363. #ifdef CONFIG_SCHEDSTATS
  1364. if (p->se.wait_start)
  1365. p->se.wait_start -= clock_offset;
  1366. if (p->se.sleep_start)
  1367. p->se.sleep_start -= clock_offset;
  1368. if (p->se.block_start)
  1369. p->se.block_start -= clock_offset;
  1370. if (old_cpu != new_cpu) {
  1371. schedstat_inc(p, se.nr_migrations);
  1372. if (task_hot(p, old_rq->clock, NULL))
  1373. schedstat_inc(p, se.nr_forced2_migrations);
  1374. }
  1375. #endif
  1376. p->se.vruntime -= old_cfsrq->min_vruntime -
  1377. new_cfsrq->min_vruntime;
  1378. __set_task_cpu(p, new_cpu);
  1379. }
  1380. struct migration_req {
  1381. struct list_head list;
  1382. struct task_struct *task;
  1383. int dest_cpu;
  1384. struct completion done;
  1385. };
  1386. /*
  1387. * The task's runqueue lock must be held.
  1388. * Returns true if you have to wait for migration thread.
  1389. */
  1390. static int
  1391. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1392. {
  1393. struct rq *rq = task_rq(p);
  1394. /*
  1395. * If the task is not on a runqueue (and not running), then
  1396. * it is sufficient to simply update the task's cpu field.
  1397. */
  1398. if (!p->se.on_rq && !task_running(rq, p)) {
  1399. set_task_cpu(p, dest_cpu);
  1400. return 0;
  1401. }
  1402. init_completion(&req->done);
  1403. req->task = p;
  1404. req->dest_cpu = dest_cpu;
  1405. list_add(&req->list, &rq->migration_queue);
  1406. return 1;
  1407. }
  1408. /*
  1409. * wait_task_inactive - wait for a thread to unschedule.
  1410. *
  1411. * The caller must ensure that the task *will* unschedule sometime soon,
  1412. * else this function might spin for a *long* time. This function can't
  1413. * be called with interrupts off, or it may introduce deadlock with
  1414. * smp_call_function() if an IPI is sent by the same process we are
  1415. * waiting to become inactive.
  1416. */
  1417. void wait_task_inactive(struct task_struct *p)
  1418. {
  1419. unsigned long flags;
  1420. int running, on_rq;
  1421. struct rq *rq;
  1422. for (;;) {
  1423. /*
  1424. * We do the initial early heuristics without holding
  1425. * any task-queue locks at all. We'll only try to get
  1426. * the runqueue lock when things look like they will
  1427. * work out!
  1428. */
  1429. rq = task_rq(p);
  1430. /*
  1431. * If the task is actively running on another CPU
  1432. * still, just relax and busy-wait without holding
  1433. * any locks.
  1434. *
  1435. * NOTE! Since we don't hold any locks, it's not
  1436. * even sure that "rq" stays as the right runqueue!
  1437. * But we don't care, since "task_running()" will
  1438. * return false if the runqueue has changed and p
  1439. * is actually now running somewhere else!
  1440. */
  1441. while (task_running(rq, p))
  1442. cpu_relax();
  1443. /*
  1444. * Ok, time to look more closely! We need the rq
  1445. * lock now, to be *sure*. If we're wrong, we'll
  1446. * just go back and repeat.
  1447. */
  1448. rq = task_rq_lock(p, &flags);
  1449. running = task_running(rq, p);
  1450. on_rq = p->se.on_rq;
  1451. task_rq_unlock(rq, &flags);
  1452. /*
  1453. * Was it really running after all now that we
  1454. * checked with the proper locks actually held?
  1455. *
  1456. * Oops. Go back and try again..
  1457. */
  1458. if (unlikely(running)) {
  1459. cpu_relax();
  1460. continue;
  1461. }
  1462. /*
  1463. * It's not enough that it's not actively running,
  1464. * it must be off the runqueue _entirely_, and not
  1465. * preempted!
  1466. *
  1467. * So if it wa still runnable (but just not actively
  1468. * running right now), it's preempted, and we should
  1469. * yield - it could be a while.
  1470. */
  1471. if (unlikely(on_rq)) {
  1472. schedule_timeout_uninterruptible(1);
  1473. continue;
  1474. }
  1475. /*
  1476. * Ahh, all good. It wasn't running, and it wasn't
  1477. * runnable, which means that it will never become
  1478. * running in the future either. We're all done!
  1479. */
  1480. break;
  1481. }
  1482. }
  1483. /***
  1484. * kick_process - kick a running thread to enter/exit the kernel
  1485. * @p: the to-be-kicked thread
  1486. *
  1487. * Cause a process which is running on another CPU to enter
  1488. * kernel-mode, without any delay. (to get signals handled.)
  1489. *
  1490. * NOTE: this function doesnt have to take the runqueue lock,
  1491. * because all it wants to ensure is that the remote task enters
  1492. * the kernel. If the IPI races and the task has been migrated
  1493. * to another CPU then no harm is done and the purpose has been
  1494. * achieved as well.
  1495. */
  1496. void kick_process(struct task_struct *p)
  1497. {
  1498. int cpu;
  1499. preempt_disable();
  1500. cpu = task_cpu(p);
  1501. if ((cpu != smp_processor_id()) && task_curr(p))
  1502. smp_send_reschedule(cpu);
  1503. preempt_enable();
  1504. }
  1505. /*
  1506. * Return a low guess at the load of a migration-source cpu weighted
  1507. * according to the scheduling class and "nice" value.
  1508. *
  1509. * We want to under-estimate the load of migration sources, to
  1510. * balance conservatively.
  1511. */
  1512. static unsigned long source_load(int cpu, int type)
  1513. {
  1514. struct rq *rq = cpu_rq(cpu);
  1515. unsigned long total = weighted_cpuload(cpu);
  1516. if (type == 0)
  1517. return total;
  1518. return min(rq->cpu_load[type-1], total);
  1519. }
  1520. /*
  1521. * Return a high guess at the load of a migration-target cpu weighted
  1522. * according to the scheduling class and "nice" value.
  1523. */
  1524. static unsigned long target_load(int cpu, int type)
  1525. {
  1526. struct rq *rq = cpu_rq(cpu);
  1527. unsigned long total = weighted_cpuload(cpu);
  1528. if (type == 0)
  1529. return total;
  1530. return max(rq->cpu_load[type-1], total);
  1531. }
  1532. /*
  1533. * Return the average load per task on the cpu's run queue
  1534. */
  1535. static unsigned long cpu_avg_load_per_task(int cpu)
  1536. {
  1537. struct rq *rq = cpu_rq(cpu);
  1538. unsigned long total = weighted_cpuload(cpu);
  1539. unsigned long n = rq->nr_running;
  1540. return n ? total / n : SCHED_LOAD_SCALE;
  1541. }
  1542. /*
  1543. * find_idlest_group finds and returns the least busy CPU group within the
  1544. * domain.
  1545. */
  1546. static struct sched_group *
  1547. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1548. {
  1549. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1550. unsigned long min_load = ULONG_MAX, this_load = 0;
  1551. int load_idx = sd->forkexec_idx;
  1552. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1553. do {
  1554. unsigned long load, avg_load;
  1555. int local_group;
  1556. int i;
  1557. /* Skip over this group if it has no CPUs allowed */
  1558. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1559. continue;
  1560. local_group = cpu_isset(this_cpu, group->cpumask);
  1561. /* Tally up the load of all CPUs in the group */
  1562. avg_load = 0;
  1563. for_each_cpu_mask(i, group->cpumask) {
  1564. /* Bias balancing toward cpus of our domain */
  1565. if (local_group)
  1566. load = source_load(i, load_idx);
  1567. else
  1568. load = target_load(i, load_idx);
  1569. avg_load += load;
  1570. }
  1571. /* Adjust by relative CPU power of the group */
  1572. avg_load = sg_div_cpu_power(group,
  1573. avg_load * SCHED_LOAD_SCALE);
  1574. if (local_group) {
  1575. this_load = avg_load;
  1576. this = group;
  1577. } else if (avg_load < min_load) {
  1578. min_load = avg_load;
  1579. idlest = group;
  1580. }
  1581. } while (group = group->next, group != sd->groups);
  1582. if (!idlest || 100*this_load < imbalance*min_load)
  1583. return NULL;
  1584. return idlest;
  1585. }
  1586. /*
  1587. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1588. */
  1589. static int
  1590. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1591. {
  1592. cpumask_t tmp;
  1593. unsigned long load, min_load = ULONG_MAX;
  1594. int idlest = -1;
  1595. int i;
  1596. /* Traverse only the allowed CPUs */
  1597. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1598. for_each_cpu_mask(i, tmp) {
  1599. load = weighted_cpuload(i);
  1600. if (load < min_load || (load == min_load && i == this_cpu)) {
  1601. min_load = load;
  1602. idlest = i;
  1603. }
  1604. }
  1605. return idlest;
  1606. }
  1607. /*
  1608. * sched_balance_self: balance the current task (running on cpu) in domains
  1609. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1610. * SD_BALANCE_EXEC.
  1611. *
  1612. * Balance, ie. select the least loaded group.
  1613. *
  1614. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1615. *
  1616. * preempt must be disabled.
  1617. */
  1618. static int sched_balance_self(int cpu, int flag)
  1619. {
  1620. struct task_struct *t = current;
  1621. struct sched_domain *tmp, *sd = NULL;
  1622. for_each_domain(cpu, tmp) {
  1623. /*
  1624. * If power savings logic is enabled for a domain, stop there.
  1625. */
  1626. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1627. break;
  1628. if (tmp->flags & flag)
  1629. sd = tmp;
  1630. }
  1631. while (sd) {
  1632. cpumask_t span;
  1633. struct sched_group *group;
  1634. int new_cpu, weight;
  1635. if (!(sd->flags & flag)) {
  1636. sd = sd->child;
  1637. continue;
  1638. }
  1639. span = sd->span;
  1640. group = find_idlest_group(sd, t, cpu);
  1641. if (!group) {
  1642. sd = sd->child;
  1643. continue;
  1644. }
  1645. new_cpu = find_idlest_cpu(group, t, cpu);
  1646. if (new_cpu == -1 || new_cpu == cpu) {
  1647. /* Now try balancing at a lower domain level of cpu */
  1648. sd = sd->child;
  1649. continue;
  1650. }
  1651. /* Now try balancing at a lower domain level of new_cpu */
  1652. cpu = new_cpu;
  1653. sd = NULL;
  1654. weight = cpus_weight(span);
  1655. for_each_domain(cpu, tmp) {
  1656. if (weight <= cpus_weight(tmp->span))
  1657. break;
  1658. if (tmp->flags & flag)
  1659. sd = tmp;
  1660. }
  1661. /* while loop will break here if sd == NULL */
  1662. }
  1663. return cpu;
  1664. }
  1665. #endif /* CONFIG_SMP */
  1666. /***
  1667. * try_to_wake_up - wake up a thread
  1668. * @p: the to-be-woken-up thread
  1669. * @state: the mask of task states that can be woken
  1670. * @sync: do a synchronous wakeup?
  1671. *
  1672. * Put it on the run-queue if it's not already there. The "current"
  1673. * thread is always on the run-queue (except when the actual
  1674. * re-schedule is in progress), and as such you're allowed to do
  1675. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1676. * runnable without the overhead of this.
  1677. *
  1678. * returns failure only if the task is already active.
  1679. */
  1680. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1681. {
  1682. int cpu, orig_cpu, this_cpu, success = 0;
  1683. unsigned long flags;
  1684. long old_state;
  1685. struct rq *rq;
  1686. if (!sched_feat(SYNC_WAKEUPS))
  1687. sync = 0;
  1688. smp_wmb();
  1689. rq = task_rq_lock(p, &flags);
  1690. old_state = p->state;
  1691. if (!(old_state & state))
  1692. goto out;
  1693. if (p->se.on_rq)
  1694. goto out_running;
  1695. cpu = task_cpu(p);
  1696. orig_cpu = cpu;
  1697. this_cpu = smp_processor_id();
  1698. #ifdef CONFIG_SMP
  1699. if (unlikely(task_running(rq, p)))
  1700. goto out_activate;
  1701. cpu = p->sched_class->select_task_rq(p, sync);
  1702. if (cpu != orig_cpu) {
  1703. set_task_cpu(p, cpu);
  1704. task_rq_unlock(rq, &flags);
  1705. /* might preempt at this point */
  1706. rq = task_rq_lock(p, &flags);
  1707. old_state = p->state;
  1708. if (!(old_state & state))
  1709. goto out;
  1710. if (p->se.on_rq)
  1711. goto out_running;
  1712. this_cpu = smp_processor_id();
  1713. cpu = task_cpu(p);
  1714. }
  1715. #ifdef CONFIG_SCHEDSTATS
  1716. schedstat_inc(rq, ttwu_count);
  1717. if (cpu == this_cpu)
  1718. schedstat_inc(rq, ttwu_local);
  1719. else {
  1720. struct sched_domain *sd;
  1721. for_each_domain(this_cpu, sd) {
  1722. if (cpu_isset(cpu, sd->span)) {
  1723. schedstat_inc(sd, ttwu_wake_remote);
  1724. break;
  1725. }
  1726. }
  1727. }
  1728. #endif
  1729. out_activate:
  1730. #endif /* CONFIG_SMP */
  1731. schedstat_inc(p, se.nr_wakeups);
  1732. if (sync)
  1733. schedstat_inc(p, se.nr_wakeups_sync);
  1734. if (orig_cpu != cpu)
  1735. schedstat_inc(p, se.nr_wakeups_migrate);
  1736. if (cpu == this_cpu)
  1737. schedstat_inc(p, se.nr_wakeups_local);
  1738. else
  1739. schedstat_inc(p, se.nr_wakeups_remote);
  1740. update_rq_clock(rq);
  1741. activate_task(rq, p, 1);
  1742. success = 1;
  1743. out_running:
  1744. check_preempt_curr(rq, p);
  1745. p->state = TASK_RUNNING;
  1746. #ifdef CONFIG_SMP
  1747. if (p->sched_class->task_wake_up)
  1748. p->sched_class->task_wake_up(rq, p);
  1749. #endif
  1750. out:
  1751. task_rq_unlock(rq, &flags);
  1752. return success;
  1753. }
  1754. int wake_up_process(struct task_struct *p)
  1755. {
  1756. return try_to_wake_up(p, TASK_ALL, 0);
  1757. }
  1758. EXPORT_SYMBOL(wake_up_process);
  1759. int wake_up_state(struct task_struct *p, unsigned int state)
  1760. {
  1761. return try_to_wake_up(p, state, 0);
  1762. }
  1763. /*
  1764. * Perform scheduler related setup for a newly forked process p.
  1765. * p is forked by current.
  1766. *
  1767. * __sched_fork() is basic setup used by init_idle() too:
  1768. */
  1769. static void __sched_fork(struct task_struct *p)
  1770. {
  1771. p->se.exec_start = 0;
  1772. p->se.sum_exec_runtime = 0;
  1773. p->se.prev_sum_exec_runtime = 0;
  1774. p->se.last_wakeup = 0;
  1775. p->se.avg_overlap = 0;
  1776. #ifdef CONFIG_SCHEDSTATS
  1777. p->se.wait_start = 0;
  1778. p->se.sum_sleep_runtime = 0;
  1779. p->se.sleep_start = 0;
  1780. p->se.block_start = 0;
  1781. p->se.sleep_max = 0;
  1782. p->se.block_max = 0;
  1783. p->se.exec_max = 0;
  1784. p->se.slice_max = 0;
  1785. p->se.wait_max = 0;
  1786. #endif
  1787. INIT_LIST_HEAD(&p->rt.run_list);
  1788. p->se.on_rq = 0;
  1789. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1790. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1791. #endif
  1792. /*
  1793. * We mark the process as running here, but have not actually
  1794. * inserted it onto the runqueue yet. This guarantees that
  1795. * nobody will actually run it, and a signal or other external
  1796. * event cannot wake it up and insert it on the runqueue either.
  1797. */
  1798. p->state = TASK_RUNNING;
  1799. }
  1800. /*
  1801. * fork()/clone()-time setup:
  1802. */
  1803. void sched_fork(struct task_struct *p, int clone_flags)
  1804. {
  1805. int cpu = get_cpu();
  1806. __sched_fork(p);
  1807. #ifdef CONFIG_SMP
  1808. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1809. #endif
  1810. set_task_cpu(p, cpu);
  1811. /*
  1812. * Make sure we do not leak PI boosting priority to the child:
  1813. */
  1814. p->prio = current->normal_prio;
  1815. if (!rt_prio(p->prio))
  1816. p->sched_class = &fair_sched_class;
  1817. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1818. if (likely(sched_info_on()))
  1819. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1820. #endif
  1821. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1822. p->oncpu = 0;
  1823. #endif
  1824. #ifdef CONFIG_PREEMPT
  1825. /* Want to start with kernel preemption disabled. */
  1826. task_thread_info(p)->preempt_count = 1;
  1827. #endif
  1828. put_cpu();
  1829. }
  1830. /*
  1831. * wake_up_new_task - wake up a newly created task for the first time.
  1832. *
  1833. * This function will do some initial scheduler statistics housekeeping
  1834. * that must be done for every newly created context, then puts the task
  1835. * on the runqueue and wakes it.
  1836. */
  1837. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1838. {
  1839. unsigned long flags;
  1840. struct rq *rq;
  1841. rq = task_rq_lock(p, &flags);
  1842. BUG_ON(p->state != TASK_RUNNING);
  1843. update_rq_clock(rq);
  1844. p->prio = effective_prio(p);
  1845. if (!p->sched_class->task_new || !current->se.on_rq) {
  1846. activate_task(rq, p, 0);
  1847. } else {
  1848. /*
  1849. * Let the scheduling class do new task startup
  1850. * management (if any):
  1851. */
  1852. p->sched_class->task_new(rq, p);
  1853. inc_nr_running(p, rq);
  1854. }
  1855. check_preempt_curr(rq, p);
  1856. #ifdef CONFIG_SMP
  1857. if (p->sched_class->task_wake_up)
  1858. p->sched_class->task_wake_up(rq, p);
  1859. #endif
  1860. task_rq_unlock(rq, &flags);
  1861. }
  1862. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1863. /**
  1864. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1865. * @notifier: notifier struct to register
  1866. */
  1867. void preempt_notifier_register(struct preempt_notifier *notifier)
  1868. {
  1869. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1870. }
  1871. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1872. /**
  1873. * preempt_notifier_unregister - no longer interested in preemption notifications
  1874. * @notifier: notifier struct to unregister
  1875. *
  1876. * This is safe to call from within a preemption notifier.
  1877. */
  1878. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1879. {
  1880. hlist_del(&notifier->link);
  1881. }
  1882. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1883. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1884. {
  1885. struct preempt_notifier *notifier;
  1886. struct hlist_node *node;
  1887. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1888. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1889. }
  1890. static void
  1891. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1892. struct task_struct *next)
  1893. {
  1894. struct preempt_notifier *notifier;
  1895. struct hlist_node *node;
  1896. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1897. notifier->ops->sched_out(notifier, next);
  1898. }
  1899. #else
  1900. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1901. {
  1902. }
  1903. static void
  1904. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1905. struct task_struct *next)
  1906. {
  1907. }
  1908. #endif
  1909. /**
  1910. * prepare_task_switch - prepare to switch tasks
  1911. * @rq: the runqueue preparing to switch
  1912. * @prev: the current task that is being switched out
  1913. * @next: the task we are going to switch to.
  1914. *
  1915. * This is called with the rq lock held and interrupts off. It must
  1916. * be paired with a subsequent finish_task_switch after the context
  1917. * switch.
  1918. *
  1919. * prepare_task_switch sets up locking and calls architecture specific
  1920. * hooks.
  1921. */
  1922. static inline void
  1923. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1924. struct task_struct *next)
  1925. {
  1926. fire_sched_out_preempt_notifiers(prev, next);
  1927. prepare_lock_switch(rq, next);
  1928. prepare_arch_switch(next);
  1929. }
  1930. /**
  1931. * finish_task_switch - clean up after a task-switch
  1932. * @rq: runqueue associated with task-switch
  1933. * @prev: the thread we just switched away from.
  1934. *
  1935. * finish_task_switch must be called after the context switch, paired
  1936. * with a prepare_task_switch call before the context switch.
  1937. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1938. * and do any other architecture-specific cleanup actions.
  1939. *
  1940. * Note that we may have delayed dropping an mm in context_switch(). If
  1941. * so, we finish that here outside of the runqueue lock. (Doing it
  1942. * with the lock held can cause deadlocks; see schedule() for
  1943. * details.)
  1944. */
  1945. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1946. __releases(rq->lock)
  1947. {
  1948. struct mm_struct *mm = rq->prev_mm;
  1949. long prev_state;
  1950. rq->prev_mm = NULL;
  1951. /*
  1952. * A task struct has one reference for the use as "current".
  1953. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1954. * schedule one last time. The schedule call will never return, and
  1955. * the scheduled task must drop that reference.
  1956. * The test for TASK_DEAD must occur while the runqueue locks are
  1957. * still held, otherwise prev could be scheduled on another cpu, die
  1958. * there before we look at prev->state, and then the reference would
  1959. * be dropped twice.
  1960. * Manfred Spraul <manfred@colorfullife.com>
  1961. */
  1962. prev_state = prev->state;
  1963. finish_arch_switch(prev);
  1964. finish_lock_switch(rq, prev);
  1965. #ifdef CONFIG_SMP
  1966. if (current->sched_class->post_schedule)
  1967. current->sched_class->post_schedule(rq);
  1968. #endif
  1969. fire_sched_in_preempt_notifiers(current);
  1970. if (mm)
  1971. mmdrop(mm);
  1972. if (unlikely(prev_state == TASK_DEAD)) {
  1973. /*
  1974. * Remove function-return probe instances associated with this
  1975. * task and put them back on the free list.
  1976. */
  1977. kprobe_flush_task(prev);
  1978. put_task_struct(prev);
  1979. }
  1980. }
  1981. /**
  1982. * schedule_tail - first thing a freshly forked thread must call.
  1983. * @prev: the thread we just switched away from.
  1984. */
  1985. asmlinkage void schedule_tail(struct task_struct *prev)
  1986. __releases(rq->lock)
  1987. {
  1988. struct rq *rq = this_rq();
  1989. finish_task_switch(rq, prev);
  1990. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1991. /* In this case, finish_task_switch does not reenable preemption */
  1992. preempt_enable();
  1993. #endif
  1994. if (current->set_child_tid)
  1995. put_user(task_pid_vnr(current), current->set_child_tid);
  1996. }
  1997. /*
  1998. * context_switch - switch to the new MM and the new
  1999. * thread's register state.
  2000. */
  2001. static inline void
  2002. context_switch(struct rq *rq, struct task_struct *prev,
  2003. struct task_struct *next)
  2004. {
  2005. struct mm_struct *mm, *oldmm;
  2006. prepare_task_switch(rq, prev, next);
  2007. mm = next->mm;
  2008. oldmm = prev->active_mm;
  2009. /*
  2010. * For paravirt, this is coupled with an exit in switch_to to
  2011. * combine the page table reload and the switch backend into
  2012. * one hypercall.
  2013. */
  2014. arch_enter_lazy_cpu_mode();
  2015. if (unlikely(!mm)) {
  2016. next->active_mm = oldmm;
  2017. atomic_inc(&oldmm->mm_count);
  2018. enter_lazy_tlb(oldmm, next);
  2019. } else
  2020. switch_mm(oldmm, mm, next);
  2021. if (unlikely(!prev->mm)) {
  2022. prev->active_mm = NULL;
  2023. rq->prev_mm = oldmm;
  2024. }
  2025. /*
  2026. * Since the runqueue lock will be released by the next
  2027. * task (which is an invalid locking op but in the case
  2028. * of the scheduler it's an obvious special-case), so we
  2029. * do an early lockdep release here:
  2030. */
  2031. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2032. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2033. #endif
  2034. /* Here we just switch the register state and the stack. */
  2035. switch_to(prev, next, prev);
  2036. barrier();
  2037. /*
  2038. * this_rq must be evaluated again because prev may have moved
  2039. * CPUs since it called schedule(), thus the 'rq' on its stack
  2040. * frame will be invalid.
  2041. */
  2042. finish_task_switch(this_rq(), prev);
  2043. }
  2044. /*
  2045. * nr_running, nr_uninterruptible and nr_context_switches:
  2046. *
  2047. * externally visible scheduler statistics: current number of runnable
  2048. * threads, current number of uninterruptible-sleeping threads, total
  2049. * number of context switches performed since bootup.
  2050. */
  2051. unsigned long nr_running(void)
  2052. {
  2053. unsigned long i, sum = 0;
  2054. for_each_online_cpu(i)
  2055. sum += cpu_rq(i)->nr_running;
  2056. return sum;
  2057. }
  2058. unsigned long nr_uninterruptible(void)
  2059. {
  2060. unsigned long i, sum = 0;
  2061. for_each_possible_cpu(i)
  2062. sum += cpu_rq(i)->nr_uninterruptible;
  2063. /*
  2064. * Since we read the counters lockless, it might be slightly
  2065. * inaccurate. Do not allow it to go below zero though:
  2066. */
  2067. if (unlikely((long)sum < 0))
  2068. sum = 0;
  2069. return sum;
  2070. }
  2071. unsigned long long nr_context_switches(void)
  2072. {
  2073. int i;
  2074. unsigned long long sum = 0;
  2075. for_each_possible_cpu(i)
  2076. sum += cpu_rq(i)->nr_switches;
  2077. return sum;
  2078. }
  2079. unsigned long nr_iowait(void)
  2080. {
  2081. unsigned long i, sum = 0;
  2082. for_each_possible_cpu(i)
  2083. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2084. return sum;
  2085. }
  2086. unsigned long nr_active(void)
  2087. {
  2088. unsigned long i, running = 0, uninterruptible = 0;
  2089. for_each_online_cpu(i) {
  2090. running += cpu_rq(i)->nr_running;
  2091. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2092. }
  2093. if (unlikely((long)uninterruptible < 0))
  2094. uninterruptible = 0;
  2095. return running + uninterruptible;
  2096. }
  2097. /*
  2098. * Update rq->cpu_load[] statistics. This function is usually called every
  2099. * scheduler tick (TICK_NSEC).
  2100. */
  2101. static void update_cpu_load(struct rq *this_rq)
  2102. {
  2103. unsigned long this_load = this_rq->load.weight;
  2104. int i, scale;
  2105. this_rq->nr_load_updates++;
  2106. /* Update our load: */
  2107. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2108. unsigned long old_load, new_load;
  2109. /* scale is effectively 1 << i now, and >> i divides by scale */
  2110. old_load = this_rq->cpu_load[i];
  2111. new_load = this_load;
  2112. /*
  2113. * Round up the averaging division if load is increasing. This
  2114. * prevents us from getting stuck on 9 if the load is 10, for
  2115. * example.
  2116. */
  2117. if (new_load > old_load)
  2118. new_load += scale-1;
  2119. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2120. }
  2121. }
  2122. #ifdef CONFIG_SMP
  2123. /*
  2124. * double_rq_lock - safely lock two runqueues
  2125. *
  2126. * Note this does not disable interrupts like task_rq_lock,
  2127. * you need to do so manually before calling.
  2128. */
  2129. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2130. __acquires(rq1->lock)
  2131. __acquires(rq2->lock)
  2132. {
  2133. BUG_ON(!irqs_disabled());
  2134. if (rq1 == rq2) {
  2135. spin_lock(&rq1->lock);
  2136. __acquire(rq2->lock); /* Fake it out ;) */
  2137. } else {
  2138. if (rq1 < rq2) {
  2139. spin_lock(&rq1->lock);
  2140. spin_lock(&rq2->lock);
  2141. } else {
  2142. spin_lock(&rq2->lock);
  2143. spin_lock(&rq1->lock);
  2144. }
  2145. }
  2146. update_rq_clock(rq1);
  2147. update_rq_clock(rq2);
  2148. }
  2149. /*
  2150. * double_rq_unlock - safely unlock two runqueues
  2151. *
  2152. * Note this does not restore interrupts like task_rq_unlock,
  2153. * you need to do so manually after calling.
  2154. */
  2155. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2156. __releases(rq1->lock)
  2157. __releases(rq2->lock)
  2158. {
  2159. spin_unlock(&rq1->lock);
  2160. if (rq1 != rq2)
  2161. spin_unlock(&rq2->lock);
  2162. else
  2163. __release(rq2->lock);
  2164. }
  2165. /*
  2166. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2167. */
  2168. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2169. __releases(this_rq->lock)
  2170. __acquires(busiest->lock)
  2171. __acquires(this_rq->lock)
  2172. {
  2173. int ret = 0;
  2174. if (unlikely(!irqs_disabled())) {
  2175. /* printk() doesn't work good under rq->lock */
  2176. spin_unlock(&this_rq->lock);
  2177. BUG_ON(1);
  2178. }
  2179. if (unlikely(!spin_trylock(&busiest->lock))) {
  2180. if (busiest < this_rq) {
  2181. spin_unlock(&this_rq->lock);
  2182. spin_lock(&busiest->lock);
  2183. spin_lock(&this_rq->lock);
  2184. ret = 1;
  2185. } else
  2186. spin_lock(&busiest->lock);
  2187. }
  2188. return ret;
  2189. }
  2190. /*
  2191. * If dest_cpu is allowed for this process, migrate the task to it.
  2192. * This is accomplished by forcing the cpu_allowed mask to only
  2193. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2194. * the cpu_allowed mask is restored.
  2195. */
  2196. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2197. {
  2198. struct migration_req req;
  2199. unsigned long flags;
  2200. struct rq *rq;
  2201. rq = task_rq_lock(p, &flags);
  2202. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2203. || unlikely(cpu_is_offline(dest_cpu)))
  2204. goto out;
  2205. /* force the process onto the specified CPU */
  2206. if (migrate_task(p, dest_cpu, &req)) {
  2207. /* Need to wait for migration thread (might exit: take ref). */
  2208. struct task_struct *mt = rq->migration_thread;
  2209. get_task_struct(mt);
  2210. task_rq_unlock(rq, &flags);
  2211. wake_up_process(mt);
  2212. put_task_struct(mt);
  2213. wait_for_completion(&req.done);
  2214. return;
  2215. }
  2216. out:
  2217. task_rq_unlock(rq, &flags);
  2218. }
  2219. /*
  2220. * sched_exec - execve() is a valuable balancing opportunity, because at
  2221. * this point the task has the smallest effective memory and cache footprint.
  2222. */
  2223. void sched_exec(void)
  2224. {
  2225. int new_cpu, this_cpu = get_cpu();
  2226. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2227. put_cpu();
  2228. if (new_cpu != this_cpu)
  2229. sched_migrate_task(current, new_cpu);
  2230. }
  2231. /*
  2232. * pull_task - move a task from a remote runqueue to the local runqueue.
  2233. * Both runqueues must be locked.
  2234. */
  2235. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2236. struct rq *this_rq, int this_cpu)
  2237. {
  2238. deactivate_task(src_rq, p, 0);
  2239. set_task_cpu(p, this_cpu);
  2240. activate_task(this_rq, p, 0);
  2241. /*
  2242. * Note that idle threads have a prio of MAX_PRIO, for this test
  2243. * to be always true for them.
  2244. */
  2245. check_preempt_curr(this_rq, p);
  2246. }
  2247. /*
  2248. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2249. */
  2250. static
  2251. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2252. struct sched_domain *sd, enum cpu_idle_type idle,
  2253. int *all_pinned)
  2254. {
  2255. /*
  2256. * We do not migrate tasks that are:
  2257. * 1) running (obviously), or
  2258. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2259. * 3) are cache-hot on their current CPU.
  2260. */
  2261. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2262. schedstat_inc(p, se.nr_failed_migrations_affine);
  2263. return 0;
  2264. }
  2265. *all_pinned = 0;
  2266. if (task_running(rq, p)) {
  2267. schedstat_inc(p, se.nr_failed_migrations_running);
  2268. return 0;
  2269. }
  2270. /*
  2271. * Aggressive migration if:
  2272. * 1) task is cache cold, or
  2273. * 2) too many balance attempts have failed.
  2274. */
  2275. if (!task_hot(p, rq->clock, sd) ||
  2276. sd->nr_balance_failed > sd->cache_nice_tries) {
  2277. #ifdef CONFIG_SCHEDSTATS
  2278. if (task_hot(p, rq->clock, sd)) {
  2279. schedstat_inc(sd, lb_hot_gained[idle]);
  2280. schedstat_inc(p, se.nr_forced_migrations);
  2281. }
  2282. #endif
  2283. return 1;
  2284. }
  2285. if (task_hot(p, rq->clock, sd)) {
  2286. schedstat_inc(p, se.nr_failed_migrations_hot);
  2287. return 0;
  2288. }
  2289. return 1;
  2290. }
  2291. static unsigned long
  2292. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2293. unsigned long max_load_move, struct sched_domain *sd,
  2294. enum cpu_idle_type idle, int *all_pinned,
  2295. int *this_best_prio, struct rq_iterator *iterator)
  2296. {
  2297. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  2298. struct task_struct *p;
  2299. long rem_load_move = max_load_move;
  2300. if (max_load_move == 0)
  2301. goto out;
  2302. pinned = 1;
  2303. /*
  2304. * Start the load-balancing iterator:
  2305. */
  2306. p = iterator->start(iterator->arg);
  2307. next:
  2308. if (!p || loops++ > sysctl_sched_nr_migrate)
  2309. goto out;
  2310. /*
  2311. * To help distribute high priority tasks across CPUs we don't
  2312. * skip a task if it will be the highest priority task (i.e. smallest
  2313. * prio value) on its new queue regardless of its load weight
  2314. */
  2315. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  2316. SCHED_LOAD_SCALE_FUZZ;
  2317. if ((skip_for_load && p->prio >= *this_best_prio) ||
  2318. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2319. p = iterator->next(iterator->arg);
  2320. goto next;
  2321. }
  2322. pull_task(busiest, p, this_rq, this_cpu);
  2323. pulled++;
  2324. rem_load_move -= p->se.load.weight;
  2325. /*
  2326. * We only want to steal up to the prescribed amount of weighted load.
  2327. */
  2328. if (rem_load_move > 0) {
  2329. if (p->prio < *this_best_prio)
  2330. *this_best_prio = p->prio;
  2331. p = iterator->next(iterator->arg);
  2332. goto next;
  2333. }
  2334. out:
  2335. /*
  2336. * Right now, this is one of only two places pull_task() is called,
  2337. * so we can safely collect pull_task() stats here rather than
  2338. * inside pull_task().
  2339. */
  2340. schedstat_add(sd, lb_gained[idle], pulled);
  2341. if (all_pinned)
  2342. *all_pinned = pinned;
  2343. return max_load_move - rem_load_move;
  2344. }
  2345. /*
  2346. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2347. * this_rq, as part of a balancing operation within domain "sd".
  2348. * Returns 1 if successful and 0 otherwise.
  2349. *
  2350. * Called with both runqueues locked.
  2351. */
  2352. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2353. unsigned long max_load_move,
  2354. struct sched_domain *sd, enum cpu_idle_type idle,
  2355. int *all_pinned)
  2356. {
  2357. const struct sched_class *class = sched_class_highest;
  2358. unsigned long total_load_moved = 0;
  2359. int this_best_prio = this_rq->curr->prio;
  2360. do {
  2361. total_load_moved +=
  2362. class->load_balance(this_rq, this_cpu, busiest,
  2363. max_load_move - total_load_moved,
  2364. sd, idle, all_pinned, &this_best_prio);
  2365. class = class->next;
  2366. } while (class && max_load_move > total_load_moved);
  2367. return total_load_moved > 0;
  2368. }
  2369. static int
  2370. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2371. struct sched_domain *sd, enum cpu_idle_type idle,
  2372. struct rq_iterator *iterator)
  2373. {
  2374. struct task_struct *p = iterator->start(iterator->arg);
  2375. int pinned = 0;
  2376. while (p) {
  2377. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2378. pull_task(busiest, p, this_rq, this_cpu);
  2379. /*
  2380. * Right now, this is only the second place pull_task()
  2381. * is called, so we can safely collect pull_task()
  2382. * stats here rather than inside pull_task().
  2383. */
  2384. schedstat_inc(sd, lb_gained[idle]);
  2385. return 1;
  2386. }
  2387. p = iterator->next(iterator->arg);
  2388. }
  2389. return 0;
  2390. }
  2391. /*
  2392. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2393. * part of active balancing operations within "domain".
  2394. * Returns 1 if successful and 0 otherwise.
  2395. *
  2396. * Called with both runqueues locked.
  2397. */
  2398. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2399. struct sched_domain *sd, enum cpu_idle_type idle)
  2400. {
  2401. const struct sched_class *class;
  2402. for (class = sched_class_highest; class; class = class->next)
  2403. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2404. return 1;
  2405. return 0;
  2406. }
  2407. /*
  2408. * find_busiest_group finds and returns the busiest CPU group within the
  2409. * domain. It calculates and returns the amount of weighted load which
  2410. * should be moved to restore balance via the imbalance parameter.
  2411. */
  2412. static struct sched_group *
  2413. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2414. unsigned long *imbalance, enum cpu_idle_type idle,
  2415. int *sd_idle, cpumask_t *cpus, int *balance)
  2416. {
  2417. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2418. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2419. unsigned long max_pull;
  2420. unsigned long busiest_load_per_task, busiest_nr_running;
  2421. unsigned long this_load_per_task, this_nr_running;
  2422. int load_idx, group_imb = 0;
  2423. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2424. int power_savings_balance = 1;
  2425. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2426. unsigned long min_nr_running = ULONG_MAX;
  2427. struct sched_group *group_min = NULL, *group_leader = NULL;
  2428. #endif
  2429. max_load = this_load = total_load = total_pwr = 0;
  2430. busiest_load_per_task = busiest_nr_running = 0;
  2431. this_load_per_task = this_nr_running = 0;
  2432. if (idle == CPU_NOT_IDLE)
  2433. load_idx = sd->busy_idx;
  2434. else if (idle == CPU_NEWLY_IDLE)
  2435. load_idx = sd->newidle_idx;
  2436. else
  2437. load_idx = sd->idle_idx;
  2438. do {
  2439. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2440. int local_group;
  2441. int i;
  2442. int __group_imb = 0;
  2443. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2444. unsigned long sum_nr_running, sum_weighted_load;
  2445. local_group = cpu_isset(this_cpu, group->cpumask);
  2446. if (local_group)
  2447. balance_cpu = first_cpu(group->cpumask);
  2448. /* Tally up the load of all CPUs in the group */
  2449. sum_weighted_load = sum_nr_running = avg_load = 0;
  2450. max_cpu_load = 0;
  2451. min_cpu_load = ~0UL;
  2452. for_each_cpu_mask(i, group->cpumask) {
  2453. struct rq *rq;
  2454. if (!cpu_isset(i, *cpus))
  2455. continue;
  2456. rq = cpu_rq(i);
  2457. if (*sd_idle && rq->nr_running)
  2458. *sd_idle = 0;
  2459. /* Bias balancing toward cpus of our domain */
  2460. if (local_group) {
  2461. if (idle_cpu(i) && !first_idle_cpu) {
  2462. first_idle_cpu = 1;
  2463. balance_cpu = i;
  2464. }
  2465. load = target_load(i, load_idx);
  2466. } else {
  2467. load = source_load(i, load_idx);
  2468. if (load > max_cpu_load)
  2469. max_cpu_load = load;
  2470. if (min_cpu_load > load)
  2471. min_cpu_load = load;
  2472. }
  2473. avg_load += load;
  2474. sum_nr_running += rq->nr_running;
  2475. sum_weighted_load += weighted_cpuload(i);
  2476. }
  2477. /*
  2478. * First idle cpu or the first cpu(busiest) in this sched group
  2479. * is eligible for doing load balancing at this and above
  2480. * domains. In the newly idle case, we will allow all the cpu's
  2481. * to do the newly idle load balance.
  2482. */
  2483. if (idle != CPU_NEWLY_IDLE && local_group &&
  2484. balance_cpu != this_cpu && balance) {
  2485. *balance = 0;
  2486. goto ret;
  2487. }
  2488. total_load += avg_load;
  2489. total_pwr += group->__cpu_power;
  2490. /* Adjust by relative CPU power of the group */
  2491. avg_load = sg_div_cpu_power(group,
  2492. avg_load * SCHED_LOAD_SCALE);
  2493. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2494. __group_imb = 1;
  2495. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2496. if (local_group) {
  2497. this_load = avg_load;
  2498. this = group;
  2499. this_nr_running = sum_nr_running;
  2500. this_load_per_task = sum_weighted_load;
  2501. } else if (avg_load > max_load &&
  2502. (sum_nr_running > group_capacity || __group_imb)) {
  2503. max_load = avg_load;
  2504. busiest = group;
  2505. busiest_nr_running = sum_nr_running;
  2506. busiest_load_per_task = sum_weighted_load;
  2507. group_imb = __group_imb;
  2508. }
  2509. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2510. /*
  2511. * Busy processors will not participate in power savings
  2512. * balance.
  2513. */
  2514. if (idle == CPU_NOT_IDLE ||
  2515. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2516. goto group_next;
  2517. /*
  2518. * If the local group is idle or completely loaded
  2519. * no need to do power savings balance at this domain
  2520. */
  2521. if (local_group && (this_nr_running >= group_capacity ||
  2522. !this_nr_running))
  2523. power_savings_balance = 0;
  2524. /*
  2525. * If a group is already running at full capacity or idle,
  2526. * don't include that group in power savings calculations
  2527. */
  2528. if (!power_savings_balance || sum_nr_running >= group_capacity
  2529. || !sum_nr_running)
  2530. goto group_next;
  2531. /*
  2532. * Calculate the group which has the least non-idle load.
  2533. * This is the group from where we need to pick up the load
  2534. * for saving power
  2535. */
  2536. if ((sum_nr_running < min_nr_running) ||
  2537. (sum_nr_running == min_nr_running &&
  2538. first_cpu(group->cpumask) <
  2539. first_cpu(group_min->cpumask))) {
  2540. group_min = group;
  2541. min_nr_running = sum_nr_running;
  2542. min_load_per_task = sum_weighted_load /
  2543. sum_nr_running;
  2544. }
  2545. /*
  2546. * Calculate the group which is almost near its
  2547. * capacity but still has some space to pick up some load
  2548. * from other group and save more power
  2549. */
  2550. if (sum_nr_running <= group_capacity - 1) {
  2551. if (sum_nr_running > leader_nr_running ||
  2552. (sum_nr_running == leader_nr_running &&
  2553. first_cpu(group->cpumask) >
  2554. first_cpu(group_leader->cpumask))) {
  2555. group_leader = group;
  2556. leader_nr_running = sum_nr_running;
  2557. }
  2558. }
  2559. group_next:
  2560. #endif
  2561. group = group->next;
  2562. } while (group != sd->groups);
  2563. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2564. goto out_balanced;
  2565. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2566. if (this_load >= avg_load ||
  2567. 100*max_load <= sd->imbalance_pct*this_load)
  2568. goto out_balanced;
  2569. busiest_load_per_task /= busiest_nr_running;
  2570. if (group_imb)
  2571. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2572. /*
  2573. * We're trying to get all the cpus to the average_load, so we don't
  2574. * want to push ourselves above the average load, nor do we wish to
  2575. * reduce the max loaded cpu below the average load, as either of these
  2576. * actions would just result in more rebalancing later, and ping-pong
  2577. * tasks around. Thus we look for the minimum possible imbalance.
  2578. * Negative imbalances (*we* are more loaded than anyone else) will
  2579. * be counted as no imbalance for these purposes -- we can't fix that
  2580. * by pulling tasks to us. Be careful of negative numbers as they'll
  2581. * appear as very large values with unsigned longs.
  2582. */
  2583. if (max_load <= busiest_load_per_task)
  2584. goto out_balanced;
  2585. /*
  2586. * In the presence of smp nice balancing, certain scenarios can have
  2587. * max load less than avg load(as we skip the groups at or below
  2588. * its cpu_power, while calculating max_load..)
  2589. */
  2590. if (max_load < avg_load) {
  2591. *imbalance = 0;
  2592. goto small_imbalance;
  2593. }
  2594. /* Don't want to pull so many tasks that a group would go idle */
  2595. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2596. /* How much load to actually move to equalise the imbalance */
  2597. *imbalance = min(max_pull * busiest->__cpu_power,
  2598. (avg_load - this_load) * this->__cpu_power)
  2599. / SCHED_LOAD_SCALE;
  2600. /*
  2601. * if *imbalance is less than the average load per runnable task
  2602. * there is no gaurantee that any tasks will be moved so we'll have
  2603. * a think about bumping its value to force at least one task to be
  2604. * moved
  2605. */
  2606. if (*imbalance < busiest_load_per_task) {
  2607. unsigned long tmp, pwr_now, pwr_move;
  2608. unsigned int imbn;
  2609. small_imbalance:
  2610. pwr_move = pwr_now = 0;
  2611. imbn = 2;
  2612. if (this_nr_running) {
  2613. this_load_per_task /= this_nr_running;
  2614. if (busiest_load_per_task > this_load_per_task)
  2615. imbn = 1;
  2616. } else
  2617. this_load_per_task = SCHED_LOAD_SCALE;
  2618. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2619. busiest_load_per_task * imbn) {
  2620. *imbalance = busiest_load_per_task;
  2621. return busiest;
  2622. }
  2623. /*
  2624. * OK, we don't have enough imbalance to justify moving tasks,
  2625. * however we may be able to increase total CPU power used by
  2626. * moving them.
  2627. */
  2628. pwr_now += busiest->__cpu_power *
  2629. min(busiest_load_per_task, max_load);
  2630. pwr_now += this->__cpu_power *
  2631. min(this_load_per_task, this_load);
  2632. pwr_now /= SCHED_LOAD_SCALE;
  2633. /* Amount of load we'd subtract */
  2634. tmp = sg_div_cpu_power(busiest,
  2635. busiest_load_per_task * SCHED_LOAD_SCALE);
  2636. if (max_load > tmp)
  2637. pwr_move += busiest->__cpu_power *
  2638. min(busiest_load_per_task, max_load - tmp);
  2639. /* Amount of load we'd add */
  2640. if (max_load * busiest->__cpu_power <
  2641. busiest_load_per_task * SCHED_LOAD_SCALE)
  2642. tmp = sg_div_cpu_power(this,
  2643. max_load * busiest->__cpu_power);
  2644. else
  2645. tmp = sg_div_cpu_power(this,
  2646. busiest_load_per_task * SCHED_LOAD_SCALE);
  2647. pwr_move += this->__cpu_power *
  2648. min(this_load_per_task, this_load + tmp);
  2649. pwr_move /= SCHED_LOAD_SCALE;
  2650. /* Move if we gain throughput */
  2651. if (pwr_move > pwr_now)
  2652. *imbalance = busiest_load_per_task;
  2653. }
  2654. return busiest;
  2655. out_balanced:
  2656. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2657. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2658. goto ret;
  2659. if (this == group_leader && group_leader != group_min) {
  2660. *imbalance = min_load_per_task;
  2661. return group_min;
  2662. }
  2663. #endif
  2664. ret:
  2665. *imbalance = 0;
  2666. return NULL;
  2667. }
  2668. /*
  2669. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2670. */
  2671. static struct rq *
  2672. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2673. unsigned long imbalance, cpumask_t *cpus)
  2674. {
  2675. struct rq *busiest = NULL, *rq;
  2676. unsigned long max_load = 0;
  2677. int i;
  2678. for_each_cpu_mask(i, group->cpumask) {
  2679. unsigned long wl;
  2680. if (!cpu_isset(i, *cpus))
  2681. continue;
  2682. rq = cpu_rq(i);
  2683. wl = weighted_cpuload(i);
  2684. if (rq->nr_running == 1 && wl > imbalance)
  2685. continue;
  2686. if (wl > max_load) {
  2687. max_load = wl;
  2688. busiest = rq;
  2689. }
  2690. }
  2691. return busiest;
  2692. }
  2693. /*
  2694. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2695. * so long as it is large enough.
  2696. */
  2697. #define MAX_PINNED_INTERVAL 512
  2698. /*
  2699. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2700. * tasks if there is an imbalance.
  2701. */
  2702. static int load_balance(int this_cpu, struct rq *this_rq,
  2703. struct sched_domain *sd, enum cpu_idle_type idle,
  2704. int *balance)
  2705. {
  2706. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2707. struct sched_group *group;
  2708. unsigned long imbalance;
  2709. struct rq *busiest;
  2710. cpumask_t cpus = CPU_MASK_ALL;
  2711. unsigned long flags;
  2712. /*
  2713. * When power savings policy is enabled for the parent domain, idle
  2714. * sibling can pick up load irrespective of busy siblings. In this case,
  2715. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2716. * portraying it as CPU_NOT_IDLE.
  2717. */
  2718. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2719. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2720. sd_idle = 1;
  2721. schedstat_inc(sd, lb_count[idle]);
  2722. redo:
  2723. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2724. &cpus, balance);
  2725. if (*balance == 0)
  2726. goto out_balanced;
  2727. if (!group) {
  2728. schedstat_inc(sd, lb_nobusyg[idle]);
  2729. goto out_balanced;
  2730. }
  2731. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2732. if (!busiest) {
  2733. schedstat_inc(sd, lb_nobusyq[idle]);
  2734. goto out_balanced;
  2735. }
  2736. BUG_ON(busiest == this_rq);
  2737. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2738. ld_moved = 0;
  2739. if (busiest->nr_running > 1) {
  2740. /*
  2741. * Attempt to move tasks. If find_busiest_group has found
  2742. * an imbalance but busiest->nr_running <= 1, the group is
  2743. * still unbalanced. ld_moved simply stays zero, so it is
  2744. * correctly treated as an imbalance.
  2745. */
  2746. local_irq_save(flags);
  2747. double_rq_lock(this_rq, busiest);
  2748. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2749. imbalance, sd, idle, &all_pinned);
  2750. double_rq_unlock(this_rq, busiest);
  2751. local_irq_restore(flags);
  2752. /*
  2753. * some other cpu did the load balance for us.
  2754. */
  2755. if (ld_moved && this_cpu != smp_processor_id())
  2756. resched_cpu(this_cpu);
  2757. /* All tasks on this runqueue were pinned by CPU affinity */
  2758. if (unlikely(all_pinned)) {
  2759. cpu_clear(cpu_of(busiest), cpus);
  2760. if (!cpus_empty(cpus))
  2761. goto redo;
  2762. goto out_balanced;
  2763. }
  2764. }
  2765. if (!ld_moved) {
  2766. schedstat_inc(sd, lb_failed[idle]);
  2767. sd->nr_balance_failed++;
  2768. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2769. spin_lock_irqsave(&busiest->lock, flags);
  2770. /* don't kick the migration_thread, if the curr
  2771. * task on busiest cpu can't be moved to this_cpu
  2772. */
  2773. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2774. spin_unlock_irqrestore(&busiest->lock, flags);
  2775. all_pinned = 1;
  2776. goto out_one_pinned;
  2777. }
  2778. if (!busiest->active_balance) {
  2779. busiest->active_balance = 1;
  2780. busiest->push_cpu = this_cpu;
  2781. active_balance = 1;
  2782. }
  2783. spin_unlock_irqrestore(&busiest->lock, flags);
  2784. if (active_balance)
  2785. wake_up_process(busiest->migration_thread);
  2786. /*
  2787. * We've kicked active balancing, reset the failure
  2788. * counter.
  2789. */
  2790. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2791. }
  2792. } else
  2793. sd->nr_balance_failed = 0;
  2794. if (likely(!active_balance)) {
  2795. /* We were unbalanced, so reset the balancing interval */
  2796. sd->balance_interval = sd->min_interval;
  2797. } else {
  2798. /*
  2799. * If we've begun active balancing, start to back off. This
  2800. * case may not be covered by the all_pinned logic if there
  2801. * is only 1 task on the busy runqueue (because we don't call
  2802. * move_tasks).
  2803. */
  2804. if (sd->balance_interval < sd->max_interval)
  2805. sd->balance_interval *= 2;
  2806. }
  2807. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2808. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2809. return -1;
  2810. return ld_moved;
  2811. out_balanced:
  2812. schedstat_inc(sd, lb_balanced[idle]);
  2813. sd->nr_balance_failed = 0;
  2814. out_one_pinned:
  2815. /* tune up the balancing interval */
  2816. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2817. (sd->balance_interval < sd->max_interval))
  2818. sd->balance_interval *= 2;
  2819. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2820. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2821. return -1;
  2822. return 0;
  2823. }
  2824. /*
  2825. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2826. * tasks if there is an imbalance.
  2827. *
  2828. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2829. * this_rq is locked.
  2830. */
  2831. static int
  2832. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2833. {
  2834. struct sched_group *group;
  2835. struct rq *busiest = NULL;
  2836. unsigned long imbalance;
  2837. int ld_moved = 0;
  2838. int sd_idle = 0;
  2839. int all_pinned = 0;
  2840. cpumask_t cpus = CPU_MASK_ALL;
  2841. /*
  2842. * When power savings policy is enabled for the parent domain, idle
  2843. * sibling can pick up load irrespective of busy siblings. In this case,
  2844. * let the state of idle sibling percolate up as IDLE, instead of
  2845. * portraying it as CPU_NOT_IDLE.
  2846. */
  2847. if (sd->flags & SD_SHARE_CPUPOWER &&
  2848. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2849. sd_idle = 1;
  2850. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2851. redo:
  2852. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2853. &sd_idle, &cpus, NULL);
  2854. if (!group) {
  2855. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2856. goto out_balanced;
  2857. }
  2858. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2859. &cpus);
  2860. if (!busiest) {
  2861. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2862. goto out_balanced;
  2863. }
  2864. BUG_ON(busiest == this_rq);
  2865. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2866. ld_moved = 0;
  2867. if (busiest->nr_running > 1) {
  2868. /* Attempt to move tasks */
  2869. double_lock_balance(this_rq, busiest);
  2870. /* this_rq->clock is already updated */
  2871. update_rq_clock(busiest);
  2872. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2873. imbalance, sd, CPU_NEWLY_IDLE,
  2874. &all_pinned);
  2875. spin_unlock(&busiest->lock);
  2876. if (unlikely(all_pinned)) {
  2877. cpu_clear(cpu_of(busiest), cpus);
  2878. if (!cpus_empty(cpus))
  2879. goto redo;
  2880. }
  2881. }
  2882. if (!ld_moved) {
  2883. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2884. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2885. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2886. return -1;
  2887. } else
  2888. sd->nr_balance_failed = 0;
  2889. return ld_moved;
  2890. out_balanced:
  2891. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2892. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2893. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2894. return -1;
  2895. sd->nr_balance_failed = 0;
  2896. return 0;
  2897. }
  2898. /*
  2899. * idle_balance is called by schedule() if this_cpu is about to become
  2900. * idle. Attempts to pull tasks from other CPUs.
  2901. */
  2902. static void idle_balance(int this_cpu, struct rq *this_rq)
  2903. {
  2904. struct sched_domain *sd;
  2905. int pulled_task = -1;
  2906. unsigned long next_balance = jiffies + HZ;
  2907. for_each_domain(this_cpu, sd) {
  2908. unsigned long interval;
  2909. if (!(sd->flags & SD_LOAD_BALANCE))
  2910. continue;
  2911. if (sd->flags & SD_BALANCE_NEWIDLE)
  2912. /* If we've pulled tasks over stop searching: */
  2913. pulled_task = load_balance_newidle(this_cpu,
  2914. this_rq, sd);
  2915. interval = msecs_to_jiffies(sd->balance_interval);
  2916. if (time_after(next_balance, sd->last_balance + interval))
  2917. next_balance = sd->last_balance + interval;
  2918. if (pulled_task)
  2919. break;
  2920. }
  2921. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2922. /*
  2923. * We are going idle. next_balance may be set based on
  2924. * a busy processor. So reset next_balance.
  2925. */
  2926. this_rq->next_balance = next_balance;
  2927. }
  2928. }
  2929. /*
  2930. * active_load_balance is run by migration threads. It pushes running tasks
  2931. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2932. * running on each physical CPU where possible, and avoids physical /
  2933. * logical imbalances.
  2934. *
  2935. * Called with busiest_rq locked.
  2936. */
  2937. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2938. {
  2939. int target_cpu = busiest_rq->push_cpu;
  2940. struct sched_domain *sd;
  2941. struct rq *target_rq;
  2942. /* Is there any task to move? */
  2943. if (busiest_rq->nr_running <= 1)
  2944. return;
  2945. target_rq = cpu_rq(target_cpu);
  2946. /*
  2947. * This condition is "impossible", if it occurs
  2948. * we need to fix it. Originally reported by
  2949. * Bjorn Helgaas on a 128-cpu setup.
  2950. */
  2951. BUG_ON(busiest_rq == target_rq);
  2952. /* move a task from busiest_rq to target_rq */
  2953. double_lock_balance(busiest_rq, target_rq);
  2954. update_rq_clock(busiest_rq);
  2955. update_rq_clock(target_rq);
  2956. /* Search for an sd spanning us and the target CPU. */
  2957. for_each_domain(target_cpu, sd) {
  2958. if ((sd->flags & SD_LOAD_BALANCE) &&
  2959. cpu_isset(busiest_cpu, sd->span))
  2960. break;
  2961. }
  2962. if (likely(sd)) {
  2963. schedstat_inc(sd, alb_count);
  2964. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2965. sd, CPU_IDLE))
  2966. schedstat_inc(sd, alb_pushed);
  2967. else
  2968. schedstat_inc(sd, alb_failed);
  2969. }
  2970. spin_unlock(&target_rq->lock);
  2971. }
  2972. #ifdef CONFIG_NO_HZ
  2973. static struct {
  2974. atomic_t load_balancer;
  2975. cpumask_t cpu_mask;
  2976. } nohz ____cacheline_aligned = {
  2977. .load_balancer = ATOMIC_INIT(-1),
  2978. .cpu_mask = CPU_MASK_NONE,
  2979. };
  2980. /*
  2981. * This routine will try to nominate the ilb (idle load balancing)
  2982. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2983. * load balancing on behalf of all those cpus. If all the cpus in the system
  2984. * go into this tickless mode, then there will be no ilb owner (as there is
  2985. * no need for one) and all the cpus will sleep till the next wakeup event
  2986. * arrives...
  2987. *
  2988. * For the ilb owner, tick is not stopped. And this tick will be used
  2989. * for idle load balancing. ilb owner will still be part of
  2990. * nohz.cpu_mask..
  2991. *
  2992. * While stopping the tick, this cpu will become the ilb owner if there
  2993. * is no other owner. And will be the owner till that cpu becomes busy
  2994. * or if all cpus in the system stop their ticks at which point
  2995. * there is no need for ilb owner.
  2996. *
  2997. * When the ilb owner becomes busy, it nominates another owner, during the
  2998. * next busy scheduler_tick()
  2999. */
  3000. int select_nohz_load_balancer(int stop_tick)
  3001. {
  3002. int cpu = smp_processor_id();
  3003. if (stop_tick) {
  3004. cpu_set(cpu, nohz.cpu_mask);
  3005. cpu_rq(cpu)->in_nohz_recently = 1;
  3006. /*
  3007. * If we are going offline and still the leader, give up!
  3008. */
  3009. if (cpu_is_offline(cpu) &&
  3010. atomic_read(&nohz.load_balancer) == cpu) {
  3011. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3012. BUG();
  3013. return 0;
  3014. }
  3015. /* time for ilb owner also to sleep */
  3016. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3017. if (atomic_read(&nohz.load_balancer) == cpu)
  3018. atomic_set(&nohz.load_balancer, -1);
  3019. return 0;
  3020. }
  3021. if (atomic_read(&nohz.load_balancer) == -1) {
  3022. /* make me the ilb owner */
  3023. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3024. return 1;
  3025. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3026. return 1;
  3027. } else {
  3028. if (!cpu_isset(cpu, nohz.cpu_mask))
  3029. return 0;
  3030. cpu_clear(cpu, nohz.cpu_mask);
  3031. if (atomic_read(&nohz.load_balancer) == cpu)
  3032. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3033. BUG();
  3034. }
  3035. return 0;
  3036. }
  3037. #endif
  3038. static DEFINE_SPINLOCK(balancing);
  3039. /*
  3040. * It checks each scheduling domain to see if it is due to be balanced,
  3041. * and initiates a balancing operation if so.
  3042. *
  3043. * Balancing parameters are set up in arch_init_sched_domains.
  3044. */
  3045. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3046. {
  3047. int balance = 1;
  3048. struct rq *rq = cpu_rq(cpu);
  3049. unsigned long interval;
  3050. struct sched_domain *sd;
  3051. /* Earliest time when we have to do rebalance again */
  3052. unsigned long next_balance = jiffies + 60*HZ;
  3053. int update_next_balance = 0;
  3054. for_each_domain(cpu, sd) {
  3055. if (!(sd->flags & SD_LOAD_BALANCE))
  3056. continue;
  3057. interval = sd->balance_interval;
  3058. if (idle != CPU_IDLE)
  3059. interval *= sd->busy_factor;
  3060. /* scale ms to jiffies */
  3061. interval = msecs_to_jiffies(interval);
  3062. if (unlikely(!interval))
  3063. interval = 1;
  3064. if (interval > HZ*NR_CPUS/10)
  3065. interval = HZ*NR_CPUS/10;
  3066. if (sd->flags & SD_SERIALIZE) {
  3067. if (!spin_trylock(&balancing))
  3068. goto out;
  3069. }
  3070. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3071. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3072. /*
  3073. * We've pulled tasks over so either we're no
  3074. * longer idle, or one of our SMT siblings is
  3075. * not idle.
  3076. */
  3077. idle = CPU_NOT_IDLE;
  3078. }
  3079. sd->last_balance = jiffies;
  3080. }
  3081. if (sd->flags & SD_SERIALIZE)
  3082. spin_unlock(&balancing);
  3083. out:
  3084. if (time_after(next_balance, sd->last_balance + interval)) {
  3085. next_balance = sd->last_balance + interval;
  3086. update_next_balance = 1;
  3087. }
  3088. /*
  3089. * Stop the load balance at this level. There is another
  3090. * CPU in our sched group which is doing load balancing more
  3091. * actively.
  3092. */
  3093. if (!balance)
  3094. break;
  3095. }
  3096. /*
  3097. * next_balance will be updated only when there is a need.
  3098. * When the cpu is attached to null domain for ex, it will not be
  3099. * updated.
  3100. */
  3101. if (likely(update_next_balance))
  3102. rq->next_balance = next_balance;
  3103. }
  3104. /*
  3105. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3106. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3107. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3108. */
  3109. static void run_rebalance_domains(struct softirq_action *h)
  3110. {
  3111. int this_cpu = smp_processor_id();
  3112. struct rq *this_rq = cpu_rq(this_cpu);
  3113. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3114. CPU_IDLE : CPU_NOT_IDLE;
  3115. rebalance_domains(this_cpu, idle);
  3116. #ifdef CONFIG_NO_HZ
  3117. /*
  3118. * If this cpu is the owner for idle load balancing, then do the
  3119. * balancing on behalf of the other idle cpus whose ticks are
  3120. * stopped.
  3121. */
  3122. if (this_rq->idle_at_tick &&
  3123. atomic_read(&nohz.load_balancer) == this_cpu) {
  3124. cpumask_t cpus = nohz.cpu_mask;
  3125. struct rq *rq;
  3126. int balance_cpu;
  3127. cpu_clear(this_cpu, cpus);
  3128. for_each_cpu_mask(balance_cpu, cpus) {
  3129. /*
  3130. * If this cpu gets work to do, stop the load balancing
  3131. * work being done for other cpus. Next load
  3132. * balancing owner will pick it up.
  3133. */
  3134. if (need_resched())
  3135. break;
  3136. rebalance_domains(balance_cpu, CPU_IDLE);
  3137. rq = cpu_rq(balance_cpu);
  3138. if (time_after(this_rq->next_balance, rq->next_balance))
  3139. this_rq->next_balance = rq->next_balance;
  3140. }
  3141. }
  3142. #endif
  3143. }
  3144. /*
  3145. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3146. *
  3147. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3148. * idle load balancing owner or decide to stop the periodic load balancing,
  3149. * if the whole system is idle.
  3150. */
  3151. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3152. {
  3153. #ifdef CONFIG_NO_HZ
  3154. /*
  3155. * If we were in the nohz mode recently and busy at the current
  3156. * scheduler tick, then check if we need to nominate new idle
  3157. * load balancer.
  3158. */
  3159. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3160. rq->in_nohz_recently = 0;
  3161. if (atomic_read(&nohz.load_balancer) == cpu) {
  3162. cpu_clear(cpu, nohz.cpu_mask);
  3163. atomic_set(&nohz.load_balancer, -1);
  3164. }
  3165. if (atomic_read(&nohz.load_balancer) == -1) {
  3166. /*
  3167. * simple selection for now: Nominate the
  3168. * first cpu in the nohz list to be the next
  3169. * ilb owner.
  3170. *
  3171. * TBD: Traverse the sched domains and nominate
  3172. * the nearest cpu in the nohz.cpu_mask.
  3173. */
  3174. int ilb = first_cpu(nohz.cpu_mask);
  3175. if (ilb < nr_cpu_ids)
  3176. resched_cpu(ilb);
  3177. }
  3178. }
  3179. /*
  3180. * If this cpu is idle and doing idle load balancing for all the
  3181. * cpus with ticks stopped, is it time for that to stop?
  3182. */
  3183. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3184. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3185. resched_cpu(cpu);
  3186. return;
  3187. }
  3188. /*
  3189. * If this cpu is idle and the idle load balancing is done by
  3190. * someone else, then no need raise the SCHED_SOFTIRQ
  3191. */
  3192. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3193. cpu_isset(cpu, nohz.cpu_mask))
  3194. return;
  3195. #endif
  3196. if (time_after_eq(jiffies, rq->next_balance))
  3197. raise_softirq(SCHED_SOFTIRQ);
  3198. }
  3199. #else /* CONFIG_SMP */
  3200. /*
  3201. * on UP we do not need to balance between CPUs:
  3202. */
  3203. static inline void idle_balance(int cpu, struct rq *rq)
  3204. {
  3205. }
  3206. #endif
  3207. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3208. EXPORT_PER_CPU_SYMBOL(kstat);
  3209. /*
  3210. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3211. * that have not yet been banked in case the task is currently running.
  3212. */
  3213. unsigned long long task_sched_runtime(struct task_struct *p)
  3214. {
  3215. unsigned long flags;
  3216. u64 ns, delta_exec;
  3217. struct rq *rq;
  3218. rq = task_rq_lock(p, &flags);
  3219. ns = p->se.sum_exec_runtime;
  3220. if (task_current(rq, p)) {
  3221. update_rq_clock(rq);
  3222. delta_exec = rq->clock - p->se.exec_start;
  3223. if ((s64)delta_exec > 0)
  3224. ns += delta_exec;
  3225. }
  3226. task_rq_unlock(rq, &flags);
  3227. return ns;
  3228. }
  3229. /*
  3230. * Account user cpu time to a process.
  3231. * @p: the process that the cpu time gets accounted to
  3232. * @cputime: the cpu time spent in user space since the last update
  3233. */
  3234. void account_user_time(struct task_struct *p, cputime_t cputime)
  3235. {
  3236. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3237. cputime64_t tmp;
  3238. p->utime = cputime_add(p->utime, cputime);
  3239. /* Add user time to cpustat. */
  3240. tmp = cputime_to_cputime64(cputime);
  3241. if (TASK_NICE(p) > 0)
  3242. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3243. else
  3244. cpustat->user = cputime64_add(cpustat->user, tmp);
  3245. }
  3246. /*
  3247. * Account guest cpu time to a process.
  3248. * @p: the process that the cpu time gets accounted to
  3249. * @cputime: the cpu time spent in virtual machine since the last update
  3250. */
  3251. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3252. {
  3253. cputime64_t tmp;
  3254. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3255. tmp = cputime_to_cputime64(cputime);
  3256. p->utime = cputime_add(p->utime, cputime);
  3257. p->gtime = cputime_add(p->gtime, cputime);
  3258. cpustat->user = cputime64_add(cpustat->user, tmp);
  3259. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3260. }
  3261. /*
  3262. * Account scaled user cpu time to a process.
  3263. * @p: the process that the cpu time gets accounted to
  3264. * @cputime: the cpu time spent in user space since the last update
  3265. */
  3266. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3267. {
  3268. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3269. }
  3270. /*
  3271. * Account system cpu time to a process.
  3272. * @p: the process that the cpu time gets accounted to
  3273. * @hardirq_offset: the offset to subtract from hardirq_count()
  3274. * @cputime: the cpu time spent in kernel space since the last update
  3275. */
  3276. void account_system_time(struct task_struct *p, int hardirq_offset,
  3277. cputime_t cputime)
  3278. {
  3279. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3280. struct rq *rq = this_rq();
  3281. cputime64_t tmp;
  3282. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
  3283. return account_guest_time(p, cputime);
  3284. p->stime = cputime_add(p->stime, cputime);
  3285. /* Add system time to cpustat. */
  3286. tmp = cputime_to_cputime64(cputime);
  3287. if (hardirq_count() - hardirq_offset)
  3288. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3289. else if (softirq_count())
  3290. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3291. else if (p != rq->idle)
  3292. cpustat->system = cputime64_add(cpustat->system, tmp);
  3293. else if (atomic_read(&rq->nr_iowait) > 0)
  3294. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3295. else
  3296. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3297. /* Account for system time used */
  3298. acct_update_integrals(p);
  3299. }
  3300. /*
  3301. * Account scaled system cpu time to a process.
  3302. * @p: the process that the cpu time gets accounted to
  3303. * @hardirq_offset: the offset to subtract from hardirq_count()
  3304. * @cputime: the cpu time spent in kernel space since the last update
  3305. */
  3306. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3307. {
  3308. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3309. }
  3310. /*
  3311. * Account for involuntary wait time.
  3312. * @p: the process from which the cpu time has been stolen
  3313. * @steal: the cpu time spent in involuntary wait
  3314. */
  3315. void account_steal_time(struct task_struct *p, cputime_t steal)
  3316. {
  3317. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3318. cputime64_t tmp = cputime_to_cputime64(steal);
  3319. struct rq *rq = this_rq();
  3320. if (p == rq->idle) {
  3321. p->stime = cputime_add(p->stime, steal);
  3322. if (atomic_read(&rq->nr_iowait) > 0)
  3323. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3324. else
  3325. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3326. } else
  3327. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3328. }
  3329. /*
  3330. * This function gets called by the timer code, with HZ frequency.
  3331. * We call it with interrupts disabled.
  3332. *
  3333. * It also gets called by the fork code, when changing the parent's
  3334. * timeslices.
  3335. */
  3336. void scheduler_tick(void)
  3337. {
  3338. int cpu = smp_processor_id();
  3339. struct rq *rq = cpu_rq(cpu);
  3340. struct task_struct *curr = rq->curr;
  3341. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  3342. spin_lock(&rq->lock);
  3343. __update_rq_clock(rq);
  3344. /*
  3345. * Let rq->clock advance by at least TICK_NSEC:
  3346. */
  3347. if (unlikely(rq->clock < next_tick)) {
  3348. rq->clock = next_tick;
  3349. rq->clock_underflows++;
  3350. }
  3351. rq->tick_timestamp = rq->clock;
  3352. update_last_tick_seen(rq);
  3353. update_cpu_load(rq);
  3354. curr->sched_class->task_tick(rq, curr, 0);
  3355. spin_unlock(&rq->lock);
  3356. #ifdef CONFIG_SMP
  3357. rq->idle_at_tick = idle_cpu(cpu);
  3358. trigger_load_balance(rq, cpu);
  3359. #endif
  3360. }
  3361. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3362. void __kprobes add_preempt_count(int val)
  3363. {
  3364. /*
  3365. * Underflow?
  3366. */
  3367. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3368. return;
  3369. preempt_count() += val;
  3370. /*
  3371. * Spinlock count overflowing soon?
  3372. */
  3373. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3374. PREEMPT_MASK - 10);
  3375. }
  3376. EXPORT_SYMBOL(add_preempt_count);
  3377. void __kprobes sub_preempt_count(int val)
  3378. {
  3379. /*
  3380. * Underflow?
  3381. */
  3382. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3383. return;
  3384. /*
  3385. * Is the spinlock portion underflowing?
  3386. */
  3387. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3388. !(preempt_count() & PREEMPT_MASK)))
  3389. return;
  3390. preempt_count() -= val;
  3391. }
  3392. EXPORT_SYMBOL(sub_preempt_count);
  3393. #endif
  3394. /*
  3395. * Print scheduling while atomic bug:
  3396. */
  3397. static noinline void __schedule_bug(struct task_struct *prev)
  3398. {
  3399. struct pt_regs *regs = get_irq_regs();
  3400. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3401. prev->comm, prev->pid, preempt_count());
  3402. debug_show_held_locks(prev);
  3403. if (irqs_disabled())
  3404. print_irqtrace_events(prev);
  3405. if (regs)
  3406. show_regs(regs);
  3407. else
  3408. dump_stack();
  3409. }
  3410. /*
  3411. * Various schedule()-time debugging checks and statistics:
  3412. */
  3413. static inline void schedule_debug(struct task_struct *prev)
  3414. {
  3415. /*
  3416. * Test if we are atomic. Since do_exit() needs to call into
  3417. * schedule() atomically, we ignore that path for now.
  3418. * Otherwise, whine if we are scheduling when we should not be.
  3419. */
  3420. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3421. __schedule_bug(prev);
  3422. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3423. schedstat_inc(this_rq(), sched_count);
  3424. #ifdef CONFIG_SCHEDSTATS
  3425. if (unlikely(prev->lock_depth >= 0)) {
  3426. schedstat_inc(this_rq(), bkl_count);
  3427. schedstat_inc(prev, sched_info.bkl_count);
  3428. }
  3429. #endif
  3430. }
  3431. /*
  3432. * Pick up the highest-prio task:
  3433. */
  3434. static inline struct task_struct *
  3435. pick_next_task(struct rq *rq, struct task_struct *prev)
  3436. {
  3437. const struct sched_class *class;
  3438. struct task_struct *p;
  3439. /*
  3440. * Optimization: we know that if all tasks are in
  3441. * the fair class we can call that function directly:
  3442. */
  3443. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3444. p = fair_sched_class.pick_next_task(rq);
  3445. if (likely(p))
  3446. return p;
  3447. }
  3448. class = sched_class_highest;
  3449. for ( ; ; ) {
  3450. p = class->pick_next_task(rq);
  3451. if (p)
  3452. return p;
  3453. /*
  3454. * Will never be NULL as the idle class always
  3455. * returns a non-NULL p:
  3456. */
  3457. class = class->next;
  3458. }
  3459. }
  3460. /*
  3461. * schedule() is the main scheduler function.
  3462. */
  3463. asmlinkage void __sched schedule(void)
  3464. {
  3465. struct task_struct *prev, *next;
  3466. unsigned long *switch_count;
  3467. struct rq *rq;
  3468. int cpu;
  3469. need_resched:
  3470. preempt_disable();
  3471. cpu = smp_processor_id();
  3472. rq = cpu_rq(cpu);
  3473. rcu_qsctr_inc(cpu);
  3474. prev = rq->curr;
  3475. switch_count = &prev->nivcsw;
  3476. release_kernel_lock(prev);
  3477. need_resched_nonpreemptible:
  3478. schedule_debug(prev);
  3479. hrtick_clear(rq);
  3480. /*
  3481. * Do the rq-clock update outside the rq lock:
  3482. */
  3483. local_irq_disable();
  3484. __update_rq_clock(rq);
  3485. spin_lock(&rq->lock);
  3486. clear_tsk_need_resched(prev);
  3487. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3488. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3489. signal_pending(prev))) {
  3490. prev->state = TASK_RUNNING;
  3491. } else {
  3492. deactivate_task(rq, prev, 1);
  3493. }
  3494. switch_count = &prev->nvcsw;
  3495. }
  3496. #ifdef CONFIG_SMP
  3497. if (prev->sched_class->pre_schedule)
  3498. prev->sched_class->pre_schedule(rq, prev);
  3499. #endif
  3500. if (unlikely(!rq->nr_running))
  3501. idle_balance(cpu, rq);
  3502. prev->sched_class->put_prev_task(rq, prev);
  3503. next = pick_next_task(rq, prev);
  3504. sched_info_switch(prev, next);
  3505. if (likely(prev != next)) {
  3506. rq->nr_switches++;
  3507. rq->curr = next;
  3508. ++*switch_count;
  3509. context_switch(rq, prev, next); /* unlocks the rq */
  3510. /*
  3511. * the context switch might have flipped the stack from under
  3512. * us, hence refresh the local variables.
  3513. */
  3514. cpu = smp_processor_id();
  3515. rq = cpu_rq(cpu);
  3516. } else
  3517. spin_unlock_irq(&rq->lock);
  3518. hrtick_set(rq);
  3519. if (unlikely(reacquire_kernel_lock(current) < 0))
  3520. goto need_resched_nonpreemptible;
  3521. preempt_enable_no_resched();
  3522. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3523. goto need_resched;
  3524. }
  3525. EXPORT_SYMBOL(schedule);
  3526. #ifdef CONFIG_PREEMPT
  3527. /*
  3528. * this is the entry point to schedule() from in-kernel preemption
  3529. * off of preempt_enable. Kernel preemptions off return from interrupt
  3530. * occur there and call schedule directly.
  3531. */
  3532. asmlinkage void __sched preempt_schedule(void)
  3533. {
  3534. struct thread_info *ti = current_thread_info();
  3535. struct task_struct *task = current;
  3536. int saved_lock_depth;
  3537. /*
  3538. * If there is a non-zero preempt_count or interrupts are disabled,
  3539. * we do not want to preempt the current task. Just return..
  3540. */
  3541. if (likely(ti->preempt_count || irqs_disabled()))
  3542. return;
  3543. do {
  3544. add_preempt_count(PREEMPT_ACTIVE);
  3545. /*
  3546. * We keep the big kernel semaphore locked, but we
  3547. * clear ->lock_depth so that schedule() doesnt
  3548. * auto-release the semaphore:
  3549. */
  3550. saved_lock_depth = task->lock_depth;
  3551. task->lock_depth = -1;
  3552. schedule();
  3553. task->lock_depth = saved_lock_depth;
  3554. sub_preempt_count(PREEMPT_ACTIVE);
  3555. /*
  3556. * Check again in case we missed a preemption opportunity
  3557. * between schedule and now.
  3558. */
  3559. barrier();
  3560. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3561. }
  3562. EXPORT_SYMBOL(preempt_schedule);
  3563. /*
  3564. * this is the entry point to schedule() from kernel preemption
  3565. * off of irq context.
  3566. * Note, that this is called and return with irqs disabled. This will
  3567. * protect us against recursive calling from irq.
  3568. */
  3569. asmlinkage void __sched preempt_schedule_irq(void)
  3570. {
  3571. struct thread_info *ti = current_thread_info();
  3572. struct task_struct *task = current;
  3573. int saved_lock_depth;
  3574. /* Catch callers which need to be fixed */
  3575. BUG_ON(ti->preempt_count || !irqs_disabled());
  3576. do {
  3577. add_preempt_count(PREEMPT_ACTIVE);
  3578. /*
  3579. * We keep the big kernel semaphore locked, but we
  3580. * clear ->lock_depth so that schedule() doesnt
  3581. * auto-release the semaphore:
  3582. */
  3583. saved_lock_depth = task->lock_depth;
  3584. task->lock_depth = -1;
  3585. local_irq_enable();
  3586. schedule();
  3587. local_irq_disable();
  3588. task->lock_depth = saved_lock_depth;
  3589. sub_preempt_count(PREEMPT_ACTIVE);
  3590. /*
  3591. * Check again in case we missed a preemption opportunity
  3592. * between schedule and now.
  3593. */
  3594. barrier();
  3595. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3596. }
  3597. #endif /* CONFIG_PREEMPT */
  3598. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3599. void *key)
  3600. {
  3601. return try_to_wake_up(curr->private, mode, sync);
  3602. }
  3603. EXPORT_SYMBOL(default_wake_function);
  3604. /*
  3605. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3606. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3607. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3608. *
  3609. * There are circumstances in which we can try to wake a task which has already
  3610. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3611. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3612. */
  3613. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3614. int nr_exclusive, int sync, void *key)
  3615. {
  3616. wait_queue_t *curr, *next;
  3617. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3618. unsigned flags = curr->flags;
  3619. if (curr->func(curr, mode, sync, key) &&
  3620. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3621. break;
  3622. }
  3623. }
  3624. /**
  3625. * __wake_up - wake up threads blocked on a waitqueue.
  3626. * @q: the waitqueue
  3627. * @mode: which threads
  3628. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3629. * @key: is directly passed to the wakeup function
  3630. */
  3631. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3632. int nr_exclusive, void *key)
  3633. {
  3634. unsigned long flags;
  3635. spin_lock_irqsave(&q->lock, flags);
  3636. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3637. spin_unlock_irqrestore(&q->lock, flags);
  3638. }
  3639. EXPORT_SYMBOL(__wake_up);
  3640. /*
  3641. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3642. */
  3643. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3644. {
  3645. __wake_up_common(q, mode, 1, 0, NULL);
  3646. }
  3647. /**
  3648. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3649. * @q: the waitqueue
  3650. * @mode: which threads
  3651. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3652. *
  3653. * The sync wakeup differs that the waker knows that it will schedule
  3654. * away soon, so while the target thread will be woken up, it will not
  3655. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3656. * with each other. This can prevent needless bouncing between CPUs.
  3657. *
  3658. * On UP it can prevent extra preemption.
  3659. */
  3660. void
  3661. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3662. {
  3663. unsigned long flags;
  3664. int sync = 1;
  3665. if (unlikely(!q))
  3666. return;
  3667. if (unlikely(!nr_exclusive))
  3668. sync = 0;
  3669. spin_lock_irqsave(&q->lock, flags);
  3670. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3671. spin_unlock_irqrestore(&q->lock, flags);
  3672. }
  3673. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3674. void complete(struct completion *x)
  3675. {
  3676. unsigned long flags;
  3677. spin_lock_irqsave(&x->wait.lock, flags);
  3678. x->done++;
  3679. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3680. spin_unlock_irqrestore(&x->wait.lock, flags);
  3681. }
  3682. EXPORT_SYMBOL(complete);
  3683. void complete_all(struct completion *x)
  3684. {
  3685. unsigned long flags;
  3686. spin_lock_irqsave(&x->wait.lock, flags);
  3687. x->done += UINT_MAX/2;
  3688. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3689. spin_unlock_irqrestore(&x->wait.lock, flags);
  3690. }
  3691. EXPORT_SYMBOL(complete_all);
  3692. static inline long __sched
  3693. do_wait_for_common(struct completion *x, long timeout, int state)
  3694. {
  3695. if (!x->done) {
  3696. DECLARE_WAITQUEUE(wait, current);
  3697. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3698. __add_wait_queue_tail(&x->wait, &wait);
  3699. do {
  3700. if ((state == TASK_INTERRUPTIBLE &&
  3701. signal_pending(current)) ||
  3702. (state == TASK_KILLABLE &&
  3703. fatal_signal_pending(current))) {
  3704. __remove_wait_queue(&x->wait, &wait);
  3705. return -ERESTARTSYS;
  3706. }
  3707. __set_current_state(state);
  3708. spin_unlock_irq(&x->wait.lock);
  3709. timeout = schedule_timeout(timeout);
  3710. spin_lock_irq(&x->wait.lock);
  3711. if (!timeout) {
  3712. __remove_wait_queue(&x->wait, &wait);
  3713. return timeout;
  3714. }
  3715. } while (!x->done);
  3716. __remove_wait_queue(&x->wait, &wait);
  3717. }
  3718. x->done--;
  3719. return timeout;
  3720. }
  3721. static long __sched
  3722. wait_for_common(struct completion *x, long timeout, int state)
  3723. {
  3724. might_sleep();
  3725. spin_lock_irq(&x->wait.lock);
  3726. timeout = do_wait_for_common(x, timeout, state);
  3727. spin_unlock_irq(&x->wait.lock);
  3728. return timeout;
  3729. }
  3730. void __sched wait_for_completion(struct completion *x)
  3731. {
  3732. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3733. }
  3734. EXPORT_SYMBOL(wait_for_completion);
  3735. unsigned long __sched
  3736. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3737. {
  3738. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3739. }
  3740. EXPORT_SYMBOL(wait_for_completion_timeout);
  3741. int __sched wait_for_completion_interruptible(struct completion *x)
  3742. {
  3743. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3744. if (t == -ERESTARTSYS)
  3745. return t;
  3746. return 0;
  3747. }
  3748. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3749. unsigned long __sched
  3750. wait_for_completion_interruptible_timeout(struct completion *x,
  3751. unsigned long timeout)
  3752. {
  3753. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3754. }
  3755. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3756. int __sched wait_for_completion_killable(struct completion *x)
  3757. {
  3758. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3759. if (t == -ERESTARTSYS)
  3760. return t;
  3761. return 0;
  3762. }
  3763. EXPORT_SYMBOL(wait_for_completion_killable);
  3764. static long __sched
  3765. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3766. {
  3767. unsigned long flags;
  3768. wait_queue_t wait;
  3769. init_waitqueue_entry(&wait, current);
  3770. __set_current_state(state);
  3771. spin_lock_irqsave(&q->lock, flags);
  3772. __add_wait_queue(q, &wait);
  3773. spin_unlock(&q->lock);
  3774. timeout = schedule_timeout(timeout);
  3775. spin_lock_irq(&q->lock);
  3776. __remove_wait_queue(q, &wait);
  3777. spin_unlock_irqrestore(&q->lock, flags);
  3778. return timeout;
  3779. }
  3780. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3781. {
  3782. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3783. }
  3784. EXPORT_SYMBOL(interruptible_sleep_on);
  3785. long __sched
  3786. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3787. {
  3788. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3789. }
  3790. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3791. void __sched sleep_on(wait_queue_head_t *q)
  3792. {
  3793. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3794. }
  3795. EXPORT_SYMBOL(sleep_on);
  3796. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3797. {
  3798. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3799. }
  3800. EXPORT_SYMBOL(sleep_on_timeout);
  3801. #ifdef CONFIG_RT_MUTEXES
  3802. /*
  3803. * rt_mutex_setprio - set the current priority of a task
  3804. * @p: task
  3805. * @prio: prio value (kernel-internal form)
  3806. *
  3807. * This function changes the 'effective' priority of a task. It does
  3808. * not touch ->normal_prio like __setscheduler().
  3809. *
  3810. * Used by the rt_mutex code to implement priority inheritance logic.
  3811. */
  3812. void rt_mutex_setprio(struct task_struct *p, int prio)
  3813. {
  3814. unsigned long flags;
  3815. int oldprio, on_rq, running;
  3816. struct rq *rq;
  3817. const struct sched_class *prev_class = p->sched_class;
  3818. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3819. rq = task_rq_lock(p, &flags);
  3820. update_rq_clock(rq);
  3821. oldprio = p->prio;
  3822. on_rq = p->se.on_rq;
  3823. running = task_current(rq, p);
  3824. if (on_rq)
  3825. dequeue_task(rq, p, 0);
  3826. if (running)
  3827. p->sched_class->put_prev_task(rq, p);
  3828. if (rt_prio(prio))
  3829. p->sched_class = &rt_sched_class;
  3830. else
  3831. p->sched_class = &fair_sched_class;
  3832. p->prio = prio;
  3833. if (running)
  3834. p->sched_class->set_curr_task(rq);
  3835. if (on_rq) {
  3836. enqueue_task(rq, p, 0);
  3837. check_class_changed(rq, p, prev_class, oldprio, running);
  3838. }
  3839. task_rq_unlock(rq, &flags);
  3840. }
  3841. #endif
  3842. void set_user_nice(struct task_struct *p, long nice)
  3843. {
  3844. int old_prio, delta, on_rq;
  3845. unsigned long flags;
  3846. struct rq *rq;
  3847. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3848. return;
  3849. /*
  3850. * We have to be careful, if called from sys_setpriority(),
  3851. * the task might be in the middle of scheduling on another CPU.
  3852. */
  3853. rq = task_rq_lock(p, &flags);
  3854. update_rq_clock(rq);
  3855. /*
  3856. * The RT priorities are set via sched_setscheduler(), but we still
  3857. * allow the 'normal' nice value to be set - but as expected
  3858. * it wont have any effect on scheduling until the task is
  3859. * SCHED_FIFO/SCHED_RR:
  3860. */
  3861. if (task_has_rt_policy(p)) {
  3862. p->static_prio = NICE_TO_PRIO(nice);
  3863. goto out_unlock;
  3864. }
  3865. on_rq = p->se.on_rq;
  3866. if (on_rq) {
  3867. dequeue_task(rq, p, 0);
  3868. dec_load(rq, p);
  3869. }
  3870. p->static_prio = NICE_TO_PRIO(nice);
  3871. set_load_weight(p);
  3872. old_prio = p->prio;
  3873. p->prio = effective_prio(p);
  3874. delta = p->prio - old_prio;
  3875. if (on_rq) {
  3876. enqueue_task(rq, p, 0);
  3877. inc_load(rq, p);
  3878. /*
  3879. * If the task increased its priority or is running and
  3880. * lowered its priority, then reschedule its CPU:
  3881. */
  3882. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3883. resched_task(rq->curr);
  3884. }
  3885. out_unlock:
  3886. task_rq_unlock(rq, &flags);
  3887. }
  3888. EXPORT_SYMBOL(set_user_nice);
  3889. /*
  3890. * can_nice - check if a task can reduce its nice value
  3891. * @p: task
  3892. * @nice: nice value
  3893. */
  3894. int can_nice(const struct task_struct *p, const int nice)
  3895. {
  3896. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3897. int nice_rlim = 20 - nice;
  3898. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3899. capable(CAP_SYS_NICE));
  3900. }
  3901. #ifdef __ARCH_WANT_SYS_NICE
  3902. /*
  3903. * sys_nice - change the priority of the current process.
  3904. * @increment: priority increment
  3905. *
  3906. * sys_setpriority is a more generic, but much slower function that
  3907. * does similar things.
  3908. */
  3909. asmlinkage long sys_nice(int increment)
  3910. {
  3911. long nice, retval;
  3912. /*
  3913. * Setpriority might change our priority at the same moment.
  3914. * We don't have to worry. Conceptually one call occurs first
  3915. * and we have a single winner.
  3916. */
  3917. if (increment < -40)
  3918. increment = -40;
  3919. if (increment > 40)
  3920. increment = 40;
  3921. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3922. if (nice < -20)
  3923. nice = -20;
  3924. if (nice > 19)
  3925. nice = 19;
  3926. if (increment < 0 && !can_nice(current, nice))
  3927. return -EPERM;
  3928. retval = security_task_setnice(current, nice);
  3929. if (retval)
  3930. return retval;
  3931. set_user_nice(current, nice);
  3932. return 0;
  3933. }
  3934. #endif
  3935. /**
  3936. * task_prio - return the priority value of a given task.
  3937. * @p: the task in question.
  3938. *
  3939. * This is the priority value as seen by users in /proc.
  3940. * RT tasks are offset by -200. Normal tasks are centered
  3941. * around 0, value goes from -16 to +15.
  3942. */
  3943. int task_prio(const struct task_struct *p)
  3944. {
  3945. return p->prio - MAX_RT_PRIO;
  3946. }
  3947. /**
  3948. * task_nice - return the nice value of a given task.
  3949. * @p: the task in question.
  3950. */
  3951. int task_nice(const struct task_struct *p)
  3952. {
  3953. return TASK_NICE(p);
  3954. }
  3955. EXPORT_SYMBOL(task_nice);
  3956. /**
  3957. * idle_cpu - is a given cpu idle currently?
  3958. * @cpu: the processor in question.
  3959. */
  3960. int idle_cpu(int cpu)
  3961. {
  3962. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3963. }
  3964. /**
  3965. * idle_task - return the idle task for a given cpu.
  3966. * @cpu: the processor in question.
  3967. */
  3968. struct task_struct *idle_task(int cpu)
  3969. {
  3970. return cpu_rq(cpu)->idle;
  3971. }
  3972. /**
  3973. * find_process_by_pid - find a process with a matching PID value.
  3974. * @pid: the pid in question.
  3975. */
  3976. static struct task_struct *find_process_by_pid(pid_t pid)
  3977. {
  3978. return pid ? find_task_by_vpid(pid) : current;
  3979. }
  3980. /* Actually do priority change: must hold rq lock. */
  3981. static void
  3982. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3983. {
  3984. BUG_ON(p->se.on_rq);
  3985. p->policy = policy;
  3986. switch (p->policy) {
  3987. case SCHED_NORMAL:
  3988. case SCHED_BATCH:
  3989. case SCHED_IDLE:
  3990. p->sched_class = &fair_sched_class;
  3991. break;
  3992. case SCHED_FIFO:
  3993. case SCHED_RR:
  3994. p->sched_class = &rt_sched_class;
  3995. break;
  3996. }
  3997. p->rt_priority = prio;
  3998. p->normal_prio = normal_prio(p);
  3999. /* we are holding p->pi_lock already */
  4000. p->prio = rt_mutex_getprio(p);
  4001. set_load_weight(p);
  4002. }
  4003. /**
  4004. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4005. * @p: the task in question.
  4006. * @policy: new policy.
  4007. * @param: structure containing the new RT priority.
  4008. *
  4009. * NOTE that the task may be already dead.
  4010. */
  4011. int sched_setscheduler(struct task_struct *p, int policy,
  4012. struct sched_param *param)
  4013. {
  4014. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4015. unsigned long flags;
  4016. const struct sched_class *prev_class = p->sched_class;
  4017. struct rq *rq;
  4018. /* may grab non-irq protected spin_locks */
  4019. BUG_ON(in_interrupt());
  4020. recheck:
  4021. /* double check policy once rq lock held */
  4022. if (policy < 0)
  4023. policy = oldpolicy = p->policy;
  4024. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4025. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4026. policy != SCHED_IDLE)
  4027. return -EINVAL;
  4028. /*
  4029. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4030. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4031. * SCHED_BATCH and SCHED_IDLE is 0.
  4032. */
  4033. if (param->sched_priority < 0 ||
  4034. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4035. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4036. return -EINVAL;
  4037. if (rt_policy(policy) != (param->sched_priority != 0))
  4038. return -EINVAL;
  4039. /*
  4040. * Allow unprivileged RT tasks to decrease priority:
  4041. */
  4042. if (!capable(CAP_SYS_NICE)) {
  4043. if (rt_policy(policy)) {
  4044. unsigned long rlim_rtprio;
  4045. if (!lock_task_sighand(p, &flags))
  4046. return -ESRCH;
  4047. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4048. unlock_task_sighand(p, &flags);
  4049. /* can't set/change the rt policy */
  4050. if (policy != p->policy && !rlim_rtprio)
  4051. return -EPERM;
  4052. /* can't increase priority */
  4053. if (param->sched_priority > p->rt_priority &&
  4054. param->sched_priority > rlim_rtprio)
  4055. return -EPERM;
  4056. }
  4057. /*
  4058. * Like positive nice levels, dont allow tasks to
  4059. * move out of SCHED_IDLE either:
  4060. */
  4061. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4062. return -EPERM;
  4063. /* can't change other user's priorities */
  4064. if ((current->euid != p->euid) &&
  4065. (current->euid != p->uid))
  4066. return -EPERM;
  4067. }
  4068. #ifdef CONFIG_RT_GROUP_SCHED
  4069. /*
  4070. * Do not allow realtime tasks into groups that have no runtime
  4071. * assigned.
  4072. */
  4073. if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
  4074. return -EPERM;
  4075. #endif
  4076. retval = security_task_setscheduler(p, policy, param);
  4077. if (retval)
  4078. return retval;
  4079. /*
  4080. * make sure no PI-waiters arrive (or leave) while we are
  4081. * changing the priority of the task:
  4082. */
  4083. spin_lock_irqsave(&p->pi_lock, flags);
  4084. /*
  4085. * To be able to change p->policy safely, the apropriate
  4086. * runqueue lock must be held.
  4087. */
  4088. rq = __task_rq_lock(p);
  4089. /* recheck policy now with rq lock held */
  4090. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4091. policy = oldpolicy = -1;
  4092. __task_rq_unlock(rq);
  4093. spin_unlock_irqrestore(&p->pi_lock, flags);
  4094. goto recheck;
  4095. }
  4096. update_rq_clock(rq);
  4097. on_rq = p->se.on_rq;
  4098. running = task_current(rq, p);
  4099. if (on_rq)
  4100. deactivate_task(rq, p, 0);
  4101. if (running)
  4102. p->sched_class->put_prev_task(rq, p);
  4103. oldprio = p->prio;
  4104. __setscheduler(rq, p, policy, param->sched_priority);
  4105. if (running)
  4106. p->sched_class->set_curr_task(rq);
  4107. if (on_rq) {
  4108. activate_task(rq, p, 0);
  4109. check_class_changed(rq, p, prev_class, oldprio, running);
  4110. }
  4111. __task_rq_unlock(rq);
  4112. spin_unlock_irqrestore(&p->pi_lock, flags);
  4113. rt_mutex_adjust_pi(p);
  4114. return 0;
  4115. }
  4116. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4117. static int
  4118. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4119. {
  4120. struct sched_param lparam;
  4121. struct task_struct *p;
  4122. int retval;
  4123. if (!param || pid < 0)
  4124. return -EINVAL;
  4125. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4126. return -EFAULT;
  4127. rcu_read_lock();
  4128. retval = -ESRCH;
  4129. p = find_process_by_pid(pid);
  4130. if (p != NULL)
  4131. retval = sched_setscheduler(p, policy, &lparam);
  4132. rcu_read_unlock();
  4133. return retval;
  4134. }
  4135. /**
  4136. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4137. * @pid: the pid in question.
  4138. * @policy: new policy.
  4139. * @param: structure containing the new RT priority.
  4140. */
  4141. asmlinkage long
  4142. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4143. {
  4144. /* negative values for policy are not valid */
  4145. if (policy < 0)
  4146. return -EINVAL;
  4147. return do_sched_setscheduler(pid, policy, param);
  4148. }
  4149. /**
  4150. * sys_sched_setparam - set/change the RT priority of a thread
  4151. * @pid: the pid in question.
  4152. * @param: structure containing the new RT priority.
  4153. */
  4154. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4155. {
  4156. return do_sched_setscheduler(pid, -1, param);
  4157. }
  4158. /**
  4159. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4160. * @pid: the pid in question.
  4161. */
  4162. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4163. {
  4164. struct task_struct *p;
  4165. int retval;
  4166. if (pid < 0)
  4167. return -EINVAL;
  4168. retval = -ESRCH;
  4169. read_lock(&tasklist_lock);
  4170. p = find_process_by_pid(pid);
  4171. if (p) {
  4172. retval = security_task_getscheduler(p);
  4173. if (!retval)
  4174. retval = p->policy;
  4175. }
  4176. read_unlock(&tasklist_lock);
  4177. return retval;
  4178. }
  4179. /**
  4180. * sys_sched_getscheduler - get the RT priority of a thread
  4181. * @pid: the pid in question.
  4182. * @param: structure containing the RT priority.
  4183. */
  4184. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4185. {
  4186. struct sched_param lp;
  4187. struct task_struct *p;
  4188. int retval;
  4189. if (!param || pid < 0)
  4190. return -EINVAL;
  4191. read_lock(&tasklist_lock);
  4192. p = find_process_by_pid(pid);
  4193. retval = -ESRCH;
  4194. if (!p)
  4195. goto out_unlock;
  4196. retval = security_task_getscheduler(p);
  4197. if (retval)
  4198. goto out_unlock;
  4199. lp.sched_priority = p->rt_priority;
  4200. read_unlock(&tasklist_lock);
  4201. /*
  4202. * This one might sleep, we cannot do it with a spinlock held ...
  4203. */
  4204. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4205. return retval;
  4206. out_unlock:
  4207. read_unlock(&tasklist_lock);
  4208. return retval;
  4209. }
  4210. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4211. {
  4212. cpumask_t cpus_allowed;
  4213. cpumask_t new_mask = *in_mask;
  4214. struct task_struct *p;
  4215. int retval;
  4216. get_online_cpus();
  4217. read_lock(&tasklist_lock);
  4218. p = find_process_by_pid(pid);
  4219. if (!p) {
  4220. read_unlock(&tasklist_lock);
  4221. put_online_cpus();
  4222. return -ESRCH;
  4223. }
  4224. /*
  4225. * It is not safe to call set_cpus_allowed with the
  4226. * tasklist_lock held. We will bump the task_struct's
  4227. * usage count and then drop tasklist_lock.
  4228. */
  4229. get_task_struct(p);
  4230. read_unlock(&tasklist_lock);
  4231. retval = -EPERM;
  4232. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4233. !capable(CAP_SYS_NICE))
  4234. goto out_unlock;
  4235. retval = security_task_setscheduler(p, 0, NULL);
  4236. if (retval)
  4237. goto out_unlock;
  4238. cpuset_cpus_allowed(p, &cpus_allowed);
  4239. cpus_and(new_mask, new_mask, cpus_allowed);
  4240. again:
  4241. retval = set_cpus_allowed(p, new_mask);
  4242. if (!retval) {
  4243. cpuset_cpus_allowed(p, &cpus_allowed);
  4244. if (!cpus_subset(new_mask, cpus_allowed)) {
  4245. /*
  4246. * We must have raced with a concurrent cpuset
  4247. * update. Just reset the cpus_allowed to the
  4248. * cpuset's cpus_allowed
  4249. */
  4250. new_mask = cpus_allowed;
  4251. goto again;
  4252. }
  4253. }
  4254. out_unlock:
  4255. put_task_struct(p);
  4256. put_online_cpus();
  4257. return retval;
  4258. }
  4259. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4260. cpumask_t *new_mask)
  4261. {
  4262. if (len < sizeof(cpumask_t)) {
  4263. memset(new_mask, 0, sizeof(cpumask_t));
  4264. } else if (len > sizeof(cpumask_t)) {
  4265. len = sizeof(cpumask_t);
  4266. }
  4267. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4268. }
  4269. /**
  4270. * sys_sched_setaffinity - set the cpu affinity of a process
  4271. * @pid: pid of the process
  4272. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4273. * @user_mask_ptr: user-space pointer to the new cpu mask
  4274. */
  4275. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4276. unsigned long __user *user_mask_ptr)
  4277. {
  4278. cpumask_t new_mask;
  4279. int retval;
  4280. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4281. if (retval)
  4282. return retval;
  4283. return sched_setaffinity(pid, &new_mask);
  4284. }
  4285. /*
  4286. * Represents all cpu's present in the system
  4287. * In systems capable of hotplug, this map could dynamically grow
  4288. * as new cpu's are detected in the system via any platform specific
  4289. * method, such as ACPI for e.g.
  4290. */
  4291. cpumask_t cpu_present_map __read_mostly;
  4292. EXPORT_SYMBOL(cpu_present_map);
  4293. #ifndef CONFIG_SMP
  4294. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  4295. EXPORT_SYMBOL(cpu_online_map);
  4296. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  4297. EXPORT_SYMBOL(cpu_possible_map);
  4298. #endif
  4299. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4300. {
  4301. struct task_struct *p;
  4302. int retval;
  4303. get_online_cpus();
  4304. read_lock(&tasklist_lock);
  4305. retval = -ESRCH;
  4306. p = find_process_by_pid(pid);
  4307. if (!p)
  4308. goto out_unlock;
  4309. retval = security_task_getscheduler(p);
  4310. if (retval)
  4311. goto out_unlock;
  4312. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4313. out_unlock:
  4314. read_unlock(&tasklist_lock);
  4315. put_online_cpus();
  4316. return retval;
  4317. }
  4318. /**
  4319. * sys_sched_getaffinity - get the cpu affinity of a process
  4320. * @pid: pid of the process
  4321. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4322. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4323. */
  4324. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4325. unsigned long __user *user_mask_ptr)
  4326. {
  4327. int ret;
  4328. cpumask_t mask;
  4329. if (len < sizeof(cpumask_t))
  4330. return -EINVAL;
  4331. ret = sched_getaffinity(pid, &mask);
  4332. if (ret < 0)
  4333. return ret;
  4334. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4335. return -EFAULT;
  4336. return sizeof(cpumask_t);
  4337. }
  4338. /**
  4339. * sys_sched_yield - yield the current processor to other threads.
  4340. *
  4341. * This function yields the current CPU to other tasks. If there are no
  4342. * other threads running on this CPU then this function will return.
  4343. */
  4344. asmlinkage long sys_sched_yield(void)
  4345. {
  4346. struct rq *rq = this_rq_lock();
  4347. schedstat_inc(rq, yld_count);
  4348. current->sched_class->yield_task(rq);
  4349. /*
  4350. * Since we are going to call schedule() anyway, there's
  4351. * no need to preempt or enable interrupts:
  4352. */
  4353. __release(rq->lock);
  4354. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4355. _raw_spin_unlock(&rq->lock);
  4356. preempt_enable_no_resched();
  4357. schedule();
  4358. return 0;
  4359. }
  4360. static void __cond_resched(void)
  4361. {
  4362. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4363. __might_sleep(__FILE__, __LINE__);
  4364. #endif
  4365. /*
  4366. * The BKS might be reacquired before we have dropped
  4367. * PREEMPT_ACTIVE, which could trigger a second
  4368. * cond_resched() call.
  4369. */
  4370. do {
  4371. add_preempt_count(PREEMPT_ACTIVE);
  4372. schedule();
  4373. sub_preempt_count(PREEMPT_ACTIVE);
  4374. } while (need_resched());
  4375. }
  4376. #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
  4377. int __sched _cond_resched(void)
  4378. {
  4379. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4380. system_state == SYSTEM_RUNNING) {
  4381. __cond_resched();
  4382. return 1;
  4383. }
  4384. return 0;
  4385. }
  4386. EXPORT_SYMBOL(_cond_resched);
  4387. #endif
  4388. /*
  4389. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4390. * call schedule, and on return reacquire the lock.
  4391. *
  4392. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4393. * operations here to prevent schedule() from being called twice (once via
  4394. * spin_unlock(), once by hand).
  4395. */
  4396. int cond_resched_lock(spinlock_t *lock)
  4397. {
  4398. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4399. int ret = 0;
  4400. if (spin_needbreak(lock) || resched) {
  4401. spin_unlock(lock);
  4402. if (resched && need_resched())
  4403. __cond_resched();
  4404. else
  4405. cpu_relax();
  4406. ret = 1;
  4407. spin_lock(lock);
  4408. }
  4409. return ret;
  4410. }
  4411. EXPORT_SYMBOL(cond_resched_lock);
  4412. int __sched cond_resched_softirq(void)
  4413. {
  4414. BUG_ON(!in_softirq());
  4415. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4416. local_bh_enable();
  4417. __cond_resched();
  4418. local_bh_disable();
  4419. return 1;
  4420. }
  4421. return 0;
  4422. }
  4423. EXPORT_SYMBOL(cond_resched_softirq);
  4424. /**
  4425. * yield - yield the current processor to other threads.
  4426. *
  4427. * This is a shortcut for kernel-space yielding - it marks the
  4428. * thread runnable and calls sys_sched_yield().
  4429. */
  4430. void __sched yield(void)
  4431. {
  4432. set_current_state(TASK_RUNNING);
  4433. sys_sched_yield();
  4434. }
  4435. EXPORT_SYMBOL(yield);
  4436. /*
  4437. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4438. * that process accounting knows that this is a task in IO wait state.
  4439. *
  4440. * But don't do that if it is a deliberate, throttling IO wait (this task
  4441. * has set its backing_dev_info: the queue against which it should throttle)
  4442. */
  4443. void __sched io_schedule(void)
  4444. {
  4445. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4446. delayacct_blkio_start();
  4447. atomic_inc(&rq->nr_iowait);
  4448. schedule();
  4449. atomic_dec(&rq->nr_iowait);
  4450. delayacct_blkio_end();
  4451. }
  4452. EXPORT_SYMBOL(io_schedule);
  4453. long __sched io_schedule_timeout(long timeout)
  4454. {
  4455. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4456. long ret;
  4457. delayacct_blkio_start();
  4458. atomic_inc(&rq->nr_iowait);
  4459. ret = schedule_timeout(timeout);
  4460. atomic_dec(&rq->nr_iowait);
  4461. delayacct_blkio_end();
  4462. return ret;
  4463. }
  4464. /**
  4465. * sys_sched_get_priority_max - return maximum RT priority.
  4466. * @policy: scheduling class.
  4467. *
  4468. * this syscall returns the maximum rt_priority that can be used
  4469. * by a given scheduling class.
  4470. */
  4471. asmlinkage long sys_sched_get_priority_max(int policy)
  4472. {
  4473. int ret = -EINVAL;
  4474. switch (policy) {
  4475. case SCHED_FIFO:
  4476. case SCHED_RR:
  4477. ret = MAX_USER_RT_PRIO-1;
  4478. break;
  4479. case SCHED_NORMAL:
  4480. case SCHED_BATCH:
  4481. case SCHED_IDLE:
  4482. ret = 0;
  4483. break;
  4484. }
  4485. return ret;
  4486. }
  4487. /**
  4488. * sys_sched_get_priority_min - return minimum RT priority.
  4489. * @policy: scheduling class.
  4490. *
  4491. * this syscall returns the minimum rt_priority that can be used
  4492. * by a given scheduling class.
  4493. */
  4494. asmlinkage long sys_sched_get_priority_min(int policy)
  4495. {
  4496. int ret = -EINVAL;
  4497. switch (policy) {
  4498. case SCHED_FIFO:
  4499. case SCHED_RR:
  4500. ret = 1;
  4501. break;
  4502. case SCHED_NORMAL:
  4503. case SCHED_BATCH:
  4504. case SCHED_IDLE:
  4505. ret = 0;
  4506. }
  4507. return ret;
  4508. }
  4509. /**
  4510. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4511. * @pid: pid of the process.
  4512. * @interval: userspace pointer to the timeslice value.
  4513. *
  4514. * this syscall writes the default timeslice value of a given process
  4515. * into the user-space timespec buffer. A value of '0' means infinity.
  4516. */
  4517. asmlinkage
  4518. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4519. {
  4520. struct task_struct *p;
  4521. unsigned int time_slice;
  4522. int retval;
  4523. struct timespec t;
  4524. if (pid < 0)
  4525. return -EINVAL;
  4526. retval = -ESRCH;
  4527. read_lock(&tasklist_lock);
  4528. p = find_process_by_pid(pid);
  4529. if (!p)
  4530. goto out_unlock;
  4531. retval = security_task_getscheduler(p);
  4532. if (retval)
  4533. goto out_unlock;
  4534. /*
  4535. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4536. * tasks that are on an otherwise idle runqueue:
  4537. */
  4538. time_slice = 0;
  4539. if (p->policy == SCHED_RR) {
  4540. time_slice = DEF_TIMESLICE;
  4541. } else if (p->policy != SCHED_FIFO) {
  4542. struct sched_entity *se = &p->se;
  4543. unsigned long flags;
  4544. struct rq *rq;
  4545. rq = task_rq_lock(p, &flags);
  4546. if (rq->cfs.load.weight)
  4547. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4548. task_rq_unlock(rq, &flags);
  4549. }
  4550. read_unlock(&tasklist_lock);
  4551. jiffies_to_timespec(time_slice, &t);
  4552. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4553. return retval;
  4554. out_unlock:
  4555. read_unlock(&tasklist_lock);
  4556. return retval;
  4557. }
  4558. static const char stat_nam[] = "RSDTtZX";
  4559. void sched_show_task(struct task_struct *p)
  4560. {
  4561. unsigned long free = 0;
  4562. unsigned state;
  4563. state = p->state ? __ffs(p->state) + 1 : 0;
  4564. printk(KERN_INFO "%-13.13s %c", p->comm,
  4565. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4566. #if BITS_PER_LONG == 32
  4567. if (state == TASK_RUNNING)
  4568. printk(KERN_CONT " running ");
  4569. else
  4570. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4571. #else
  4572. if (state == TASK_RUNNING)
  4573. printk(KERN_CONT " running task ");
  4574. else
  4575. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4576. #endif
  4577. #ifdef CONFIG_DEBUG_STACK_USAGE
  4578. {
  4579. unsigned long *n = end_of_stack(p);
  4580. while (!*n)
  4581. n++;
  4582. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4583. }
  4584. #endif
  4585. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4586. task_pid_nr(p), task_pid_nr(p->real_parent));
  4587. show_stack(p, NULL);
  4588. }
  4589. void show_state_filter(unsigned long state_filter)
  4590. {
  4591. struct task_struct *g, *p;
  4592. #if BITS_PER_LONG == 32
  4593. printk(KERN_INFO
  4594. " task PC stack pid father\n");
  4595. #else
  4596. printk(KERN_INFO
  4597. " task PC stack pid father\n");
  4598. #endif
  4599. read_lock(&tasklist_lock);
  4600. do_each_thread(g, p) {
  4601. /*
  4602. * reset the NMI-timeout, listing all files on a slow
  4603. * console might take alot of time:
  4604. */
  4605. touch_nmi_watchdog();
  4606. if (!state_filter || (p->state & state_filter))
  4607. sched_show_task(p);
  4608. } while_each_thread(g, p);
  4609. touch_all_softlockup_watchdogs();
  4610. #ifdef CONFIG_SCHED_DEBUG
  4611. sysrq_sched_debug_show();
  4612. #endif
  4613. read_unlock(&tasklist_lock);
  4614. /*
  4615. * Only show locks if all tasks are dumped:
  4616. */
  4617. if (state_filter == -1)
  4618. debug_show_all_locks();
  4619. }
  4620. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4621. {
  4622. idle->sched_class = &idle_sched_class;
  4623. }
  4624. /**
  4625. * init_idle - set up an idle thread for a given CPU
  4626. * @idle: task in question
  4627. * @cpu: cpu the idle task belongs to
  4628. *
  4629. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4630. * flag, to make booting more robust.
  4631. */
  4632. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4633. {
  4634. struct rq *rq = cpu_rq(cpu);
  4635. unsigned long flags;
  4636. __sched_fork(idle);
  4637. idle->se.exec_start = sched_clock();
  4638. idle->prio = idle->normal_prio = MAX_PRIO;
  4639. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4640. __set_task_cpu(idle, cpu);
  4641. spin_lock_irqsave(&rq->lock, flags);
  4642. rq->curr = rq->idle = idle;
  4643. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4644. idle->oncpu = 1;
  4645. #endif
  4646. spin_unlock_irqrestore(&rq->lock, flags);
  4647. /* Set the preempt count _outside_ the spinlocks! */
  4648. task_thread_info(idle)->preempt_count = 0;
  4649. /*
  4650. * The idle tasks have their own, simple scheduling class:
  4651. */
  4652. idle->sched_class = &idle_sched_class;
  4653. }
  4654. /*
  4655. * In a system that switches off the HZ timer nohz_cpu_mask
  4656. * indicates which cpus entered this state. This is used
  4657. * in the rcu update to wait only for active cpus. For system
  4658. * which do not switch off the HZ timer nohz_cpu_mask should
  4659. * always be CPU_MASK_NONE.
  4660. */
  4661. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4662. /*
  4663. * Increase the granularity value when there are more CPUs,
  4664. * because with more CPUs the 'effective latency' as visible
  4665. * to users decreases. But the relationship is not linear,
  4666. * so pick a second-best guess by going with the log2 of the
  4667. * number of CPUs.
  4668. *
  4669. * This idea comes from the SD scheduler of Con Kolivas:
  4670. */
  4671. static inline void sched_init_granularity(void)
  4672. {
  4673. unsigned int factor = 1 + ilog2(num_online_cpus());
  4674. const unsigned long limit = 200000000;
  4675. sysctl_sched_min_granularity *= factor;
  4676. if (sysctl_sched_min_granularity > limit)
  4677. sysctl_sched_min_granularity = limit;
  4678. sysctl_sched_latency *= factor;
  4679. if (sysctl_sched_latency > limit)
  4680. sysctl_sched_latency = limit;
  4681. sysctl_sched_wakeup_granularity *= factor;
  4682. }
  4683. #ifdef CONFIG_SMP
  4684. /*
  4685. * This is how migration works:
  4686. *
  4687. * 1) we queue a struct migration_req structure in the source CPU's
  4688. * runqueue and wake up that CPU's migration thread.
  4689. * 2) we down() the locked semaphore => thread blocks.
  4690. * 3) migration thread wakes up (implicitly it forces the migrated
  4691. * thread off the CPU)
  4692. * 4) it gets the migration request and checks whether the migrated
  4693. * task is still in the wrong runqueue.
  4694. * 5) if it's in the wrong runqueue then the migration thread removes
  4695. * it and puts it into the right queue.
  4696. * 6) migration thread up()s the semaphore.
  4697. * 7) we wake up and the migration is done.
  4698. */
  4699. /*
  4700. * Change a given task's CPU affinity. Migrate the thread to a
  4701. * proper CPU and schedule it away if the CPU it's executing on
  4702. * is removed from the allowed bitmask.
  4703. *
  4704. * NOTE: the caller must have a valid reference to the task, the
  4705. * task must not exit() & deallocate itself prematurely. The
  4706. * call is not atomic; no spinlocks may be held.
  4707. */
  4708. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4709. {
  4710. struct migration_req req;
  4711. unsigned long flags;
  4712. struct rq *rq;
  4713. int ret = 0;
  4714. rq = task_rq_lock(p, &flags);
  4715. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4716. ret = -EINVAL;
  4717. goto out;
  4718. }
  4719. if (p->sched_class->set_cpus_allowed)
  4720. p->sched_class->set_cpus_allowed(p, &new_mask);
  4721. else {
  4722. p->cpus_allowed = new_mask;
  4723. p->rt.nr_cpus_allowed = cpus_weight(new_mask);
  4724. }
  4725. /* Can the task run on the task's current CPU? If so, we're done */
  4726. if (cpu_isset(task_cpu(p), new_mask))
  4727. goto out;
  4728. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4729. /* Need help from migration thread: drop lock and wait. */
  4730. task_rq_unlock(rq, &flags);
  4731. wake_up_process(rq->migration_thread);
  4732. wait_for_completion(&req.done);
  4733. tlb_migrate_finish(p->mm);
  4734. return 0;
  4735. }
  4736. out:
  4737. task_rq_unlock(rq, &flags);
  4738. return ret;
  4739. }
  4740. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4741. /*
  4742. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4743. * this because either it can't run here any more (set_cpus_allowed()
  4744. * away from this CPU, or CPU going down), or because we're
  4745. * attempting to rebalance this task on exec (sched_exec).
  4746. *
  4747. * So we race with normal scheduler movements, but that's OK, as long
  4748. * as the task is no longer on this CPU.
  4749. *
  4750. * Returns non-zero if task was successfully migrated.
  4751. */
  4752. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4753. {
  4754. struct rq *rq_dest, *rq_src;
  4755. int ret = 0, on_rq;
  4756. if (unlikely(cpu_is_offline(dest_cpu)))
  4757. return ret;
  4758. rq_src = cpu_rq(src_cpu);
  4759. rq_dest = cpu_rq(dest_cpu);
  4760. double_rq_lock(rq_src, rq_dest);
  4761. /* Already moved. */
  4762. if (task_cpu(p) != src_cpu)
  4763. goto out;
  4764. /* Affinity changed (again). */
  4765. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4766. goto out;
  4767. on_rq = p->se.on_rq;
  4768. if (on_rq)
  4769. deactivate_task(rq_src, p, 0);
  4770. set_task_cpu(p, dest_cpu);
  4771. if (on_rq) {
  4772. activate_task(rq_dest, p, 0);
  4773. check_preempt_curr(rq_dest, p);
  4774. }
  4775. ret = 1;
  4776. out:
  4777. double_rq_unlock(rq_src, rq_dest);
  4778. return ret;
  4779. }
  4780. /*
  4781. * migration_thread - this is a highprio system thread that performs
  4782. * thread migration by bumping thread off CPU then 'pushing' onto
  4783. * another runqueue.
  4784. */
  4785. static int migration_thread(void *data)
  4786. {
  4787. int cpu = (long)data;
  4788. struct rq *rq;
  4789. rq = cpu_rq(cpu);
  4790. BUG_ON(rq->migration_thread != current);
  4791. set_current_state(TASK_INTERRUPTIBLE);
  4792. while (!kthread_should_stop()) {
  4793. struct migration_req *req;
  4794. struct list_head *head;
  4795. spin_lock_irq(&rq->lock);
  4796. if (cpu_is_offline(cpu)) {
  4797. spin_unlock_irq(&rq->lock);
  4798. goto wait_to_die;
  4799. }
  4800. if (rq->active_balance) {
  4801. active_load_balance(rq, cpu);
  4802. rq->active_balance = 0;
  4803. }
  4804. head = &rq->migration_queue;
  4805. if (list_empty(head)) {
  4806. spin_unlock_irq(&rq->lock);
  4807. schedule();
  4808. set_current_state(TASK_INTERRUPTIBLE);
  4809. continue;
  4810. }
  4811. req = list_entry(head->next, struct migration_req, list);
  4812. list_del_init(head->next);
  4813. spin_unlock(&rq->lock);
  4814. __migrate_task(req->task, cpu, req->dest_cpu);
  4815. local_irq_enable();
  4816. complete(&req->done);
  4817. }
  4818. __set_current_state(TASK_RUNNING);
  4819. return 0;
  4820. wait_to_die:
  4821. /* Wait for kthread_stop */
  4822. set_current_state(TASK_INTERRUPTIBLE);
  4823. while (!kthread_should_stop()) {
  4824. schedule();
  4825. set_current_state(TASK_INTERRUPTIBLE);
  4826. }
  4827. __set_current_state(TASK_RUNNING);
  4828. return 0;
  4829. }
  4830. #ifdef CONFIG_HOTPLUG_CPU
  4831. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4832. {
  4833. int ret;
  4834. local_irq_disable();
  4835. ret = __migrate_task(p, src_cpu, dest_cpu);
  4836. local_irq_enable();
  4837. return ret;
  4838. }
  4839. /*
  4840. * Figure out where task on dead CPU should go, use force if necessary.
  4841. * NOTE: interrupts should be disabled by the caller
  4842. */
  4843. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4844. {
  4845. unsigned long flags;
  4846. cpumask_t mask;
  4847. struct rq *rq;
  4848. int dest_cpu;
  4849. do {
  4850. /* On same node? */
  4851. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4852. cpus_and(mask, mask, p->cpus_allowed);
  4853. dest_cpu = any_online_cpu(mask);
  4854. /* On any allowed CPU? */
  4855. if (dest_cpu >= nr_cpu_ids)
  4856. dest_cpu = any_online_cpu(p->cpus_allowed);
  4857. /* No more Mr. Nice Guy. */
  4858. if (dest_cpu >= nr_cpu_ids) {
  4859. cpumask_t cpus_allowed;
  4860. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  4861. /*
  4862. * Try to stay on the same cpuset, where the
  4863. * current cpuset may be a subset of all cpus.
  4864. * The cpuset_cpus_allowed_locked() variant of
  4865. * cpuset_cpus_allowed() will not block. It must be
  4866. * called within calls to cpuset_lock/cpuset_unlock.
  4867. */
  4868. rq = task_rq_lock(p, &flags);
  4869. p->cpus_allowed = cpus_allowed;
  4870. dest_cpu = any_online_cpu(p->cpus_allowed);
  4871. task_rq_unlock(rq, &flags);
  4872. /*
  4873. * Don't tell them about moving exiting tasks or
  4874. * kernel threads (both mm NULL), since they never
  4875. * leave kernel.
  4876. */
  4877. if (p->mm && printk_ratelimit()) {
  4878. printk(KERN_INFO "process %d (%s) no "
  4879. "longer affine to cpu%d\n",
  4880. task_pid_nr(p), p->comm, dead_cpu);
  4881. }
  4882. }
  4883. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4884. }
  4885. /*
  4886. * While a dead CPU has no uninterruptible tasks queued at this point,
  4887. * it might still have a nonzero ->nr_uninterruptible counter, because
  4888. * for performance reasons the counter is not stricly tracking tasks to
  4889. * their home CPUs. So we just add the counter to another CPU's counter,
  4890. * to keep the global sum constant after CPU-down:
  4891. */
  4892. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4893. {
  4894. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4895. unsigned long flags;
  4896. local_irq_save(flags);
  4897. double_rq_lock(rq_src, rq_dest);
  4898. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4899. rq_src->nr_uninterruptible = 0;
  4900. double_rq_unlock(rq_src, rq_dest);
  4901. local_irq_restore(flags);
  4902. }
  4903. /* Run through task list and migrate tasks from the dead cpu. */
  4904. static void migrate_live_tasks(int src_cpu)
  4905. {
  4906. struct task_struct *p, *t;
  4907. read_lock(&tasklist_lock);
  4908. do_each_thread(t, p) {
  4909. if (p == current)
  4910. continue;
  4911. if (task_cpu(p) == src_cpu)
  4912. move_task_off_dead_cpu(src_cpu, p);
  4913. } while_each_thread(t, p);
  4914. read_unlock(&tasklist_lock);
  4915. }
  4916. /*
  4917. * Schedules idle task to be the next runnable task on current CPU.
  4918. * It does so by boosting its priority to highest possible.
  4919. * Used by CPU offline code.
  4920. */
  4921. void sched_idle_next(void)
  4922. {
  4923. int this_cpu = smp_processor_id();
  4924. struct rq *rq = cpu_rq(this_cpu);
  4925. struct task_struct *p = rq->idle;
  4926. unsigned long flags;
  4927. /* cpu has to be offline */
  4928. BUG_ON(cpu_online(this_cpu));
  4929. /*
  4930. * Strictly not necessary since rest of the CPUs are stopped by now
  4931. * and interrupts disabled on the current cpu.
  4932. */
  4933. spin_lock_irqsave(&rq->lock, flags);
  4934. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4935. update_rq_clock(rq);
  4936. activate_task(rq, p, 0);
  4937. spin_unlock_irqrestore(&rq->lock, flags);
  4938. }
  4939. /*
  4940. * Ensures that the idle task is using init_mm right before its cpu goes
  4941. * offline.
  4942. */
  4943. void idle_task_exit(void)
  4944. {
  4945. struct mm_struct *mm = current->active_mm;
  4946. BUG_ON(cpu_online(smp_processor_id()));
  4947. if (mm != &init_mm)
  4948. switch_mm(mm, &init_mm, current);
  4949. mmdrop(mm);
  4950. }
  4951. /* called under rq->lock with disabled interrupts */
  4952. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4953. {
  4954. struct rq *rq = cpu_rq(dead_cpu);
  4955. /* Must be exiting, otherwise would be on tasklist. */
  4956. BUG_ON(!p->exit_state);
  4957. /* Cannot have done final schedule yet: would have vanished. */
  4958. BUG_ON(p->state == TASK_DEAD);
  4959. get_task_struct(p);
  4960. /*
  4961. * Drop lock around migration; if someone else moves it,
  4962. * that's OK. No task can be added to this CPU, so iteration is
  4963. * fine.
  4964. */
  4965. spin_unlock_irq(&rq->lock);
  4966. move_task_off_dead_cpu(dead_cpu, p);
  4967. spin_lock_irq(&rq->lock);
  4968. put_task_struct(p);
  4969. }
  4970. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4971. static void migrate_dead_tasks(unsigned int dead_cpu)
  4972. {
  4973. struct rq *rq = cpu_rq(dead_cpu);
  4974. struct task_struct *next;
  4975. for ( ; ; ) {
  4976. if (!rq->nr_running)
  4977. break;
  4978. update_rq_clock(rq);
  4979. next = pick_next_task(rq, rq->curr);
  4980. if (!next)
  4981. break;
  4982. migrate_dead(dead_cpu, next);
  4983. }
  4984. }
  4985. #endif /* CONFIG_HOTPLUG_CPU */
  4986. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4987. static struct ctl_table sd_ctl_dir[] = {
  4988. {
  4989. .procname = "sched_domain",
  4990. .mode = 0555,
  4991. },
  4992. {0, },
  4993. };
  4994. static struct ctl_table sd_ctl_root[] = {
  4995. {
  4996. .ctl_name = CTL_KERN,
  4997. .procname = "kernel",
  4998. .mode = 0555,
  4999. .child = sd_ctl_dir,
  5000. },
  5001. {0, },
  5002. };
  5003. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5004. {
  5005. struct ctl_table *entry =
  5006. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5007. return entry;
  5008. }
  5009. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5010. {
  5011. struct ctl_table *entry;
  5012. /*
  5013. * In the intermediate directories, both the child directory and
  5014. * procname are dynamically allocated and could fail but the mode
  5015. * will always be set. In the lowest directory the names are
  5016. * static strings and all have proc handlers.
  5017. */
  5018. for (entry = *tablep; entry->mode; entry++) {
  5019. if (entry->child)
  5020. sd_free_ctl_entry(&entry->child);
  5021. if (entry->proc_handler == NULL)
  5022. kfree(entry->procname);
  5023. }
  5024. kfree(*tablep);
  5025. *tablep = NULL;
  5026. }
  5027. static void
  5028. set_table_entry(struct ctl_table *entry,
  5029. const char *procname, void *data, int maxlen,
  5030. mode_t mode, proc_handler *proc_handler)
  5031. {
  5032. entry->procname = procname;
  5033. entry->data = data;
  5034. entry->maxlen = maxlen;
  5035. entry->mode = mode;
  5036. entry->proc_handler = proc_handler;
  5037. }
  5038. static struct ctl_table *
  5039. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5040. {
  5041. struct ctl_table *table = sd_alloc_ctl_entry(12);
  5042. if (table == NULL)
  5043. return NULL;
  5044. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5045. sizeof(long), 0644, proc_doulongvec_minmax);
  5046. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5047. sizeof(long), 0644, proc_doulongvec_minmax);
  5048. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5049. sizeof(int), 0644, proc_dointvec_minmax);
  5050. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5051. sizeof(int), 0644, proc_dointvec_minmax);
  5052. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5053. sizeof(int), 0644, proc_dointvec_minmax);
  5054. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5055. sizeof(int), 0644, proc_dointvec_minmax);
  5056. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5057. sizeof(int), 0644, proc_dointvec_minmax);
  5058. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5059. sizeof(int), 0644, proc_dointvec_minmax);
  5060. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5061. sizeof(int), 0644, proc_dointvec_minmax);
  5062. set_table_entry(&table[9], "cache_nice_tries",
  5063. &sd->cache_nice_tries,
  5064. sizeof(int), 0644, proc_dointvec_minmax);
  5065. set_table_entry(&table[10], "flags", &sd->flags,
  5066. sizeof(int), 0644, proc_dointvec_minmax);
  5067. /* &table[11] is terminator */
  5068. return table;
  5069. }
  5070. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5071. {
  5072. struct ctl_table *entry, *table;
  5073. struct sched_domain *sd;
  5074. int domain_num = 0, i;
  5075. char buf[32];
  5076. for_each_domain(cpu, sd)
  5077. domain_num++;
  5078. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5079. if (table == NULL)
  5080. return NULL;
  5081. i = 0;
  5082. for_each_domain(cpu, sd) {
  5083. snprintf(buf, 32, "domain%d", i);
  5084. entry->procname = kstrdup(buf, GFP_KERNEL);
  5085. entry->mode = 0555;
  5086. entry->child = sd_alloc_ctl_domain_table(sd);
  5087. entry++;
  5088. i++;
  5089. }
  5090. return table;
  5091. }
  5092. static struct ctl_table_header *sd_sysctl_header;
  5093. static void register_sched_domain_sysctl(void)
  5094. {
  5095. int i, cpu_num = num_online_cpus();
  5096. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5097. char buf[32];
  5098. WARN_ON(sd_ctl_dir[0].child);
  5099. sd_ctl_dir[0].child = entry;
  5100. if (entry == NULL)
  5101. return;
  5102. for_each_online_cpu(i) {
  5103. snprintf(buf, 32, "cpu%d", i);
  5104. entry->procname = kstrdup(buf, GFP_KERNEL);
  5105. entry->mode = 0555;
  5106. entry->child = sd_alloc_ctl_cpu_table(i);
  5107. entry++;
  5108. }
  5109. WARN_ON(sd_sysctl_header);
  5110. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5111. }
  5112. /* may be called multiple times per register */
  5113. static void unregister_sched_domain_sysctl(void)
  5114. {
  5115. if (sd_sysctl_header)
  5116. unregister_sysctl_table(sd_sysctl_header);
  5117. sd_sysctl_header = NULL;
  5118. if (sd_ctl_dir[0].child)
  5119. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5120. }
  5121. #else
  5122. static void register_sched_domain_sysctl(void)
  5123. {
  5124. }
  5125. static void unregister_sched_domain_sysctl(void)
  5126. {
  5127. }
  5128. #endif
  5129. /*
  5130. * migration_call - callback that gets triggered when a CPU is added.
  5131. * Here we can start up the necessary migration thread for the new CPU.
  5132. */
  5133. static int __cpuinit
  5134. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5135. {
  5136. struct task_struct *p;
  5137. int cpu = (long)hcpu;
  5138. unsigned long flags;
  5139. struct rq *rq;
  5140. switch (action) {
  5141. case CPU_UP_PREPARE:
  5142. case CPU_UP_PREPARE_FROZEN:
  5143. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5144. if (IS_ERR(p))
  5145. return NOTIFY_BAD;
  5146. kthread_bind(p, cpu);
  5147. /* Must be high prio: stop_machine expects to yield to it. */
  5148. rq = task_rq_lock(p, &flags);
  5149. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5150. task_rq_unlock(rq, &flags);
  5151. cpu_rq(cpu)->migration_thread = p;
  5152. break;
  5153. case CPU_ONLINE:
  5154. case CPU_ONLINE_FROZEN:
  5155. /* Strictly unnecessary, as first user will wake it. */
  5156. wake_up_process(cpu_rq(cpu)->migration_thread);
  5157. /* Update our root-domain */
  5158. rq = cpu_rq(cpu);
  5159. spin_lock_irqsave(&rq->lock, flags);
  5160. if (rq->rd) {
  5161. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5162. cpu_set(cpu, rq->rd->online);
  5163. }
  5164. spin_unlock_irqrestore(&rq->lock, flags);
  5165. break;
  5166. #ifdef CONFIG_HOTPLUG_CPU
  5167. case CPU_UP_CANCELED:
  5168. case CPU_UP_CANCELED_FROZEN:
  5169. if (!cpu_rq(cpu)->migration_thread)
  5170. break;
  5171. /* Unbind it from offline cpu so it can run. Fall thru. */
  5172. kthread_bind(cpu_rq(cpu)->migration_thread,
  5173. any_online_cpu(cpu_online_map));
  5174. kthread_stop(cpu_rq(cpu)->migration_thread);
  5175. cpu_rq(cpu)->migration_thread = NULL;
  5176. break;
  5177. case CPU_DEAD:
  5178. case CPU_DEAD_FROZEN:
  5179. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5180. migrate_live_tasks(cpu);
  5181. rq = cpu_rq(cpu);
  5182. kthread_stop(rq->migration_thread);
  5183. rq->migration_thread = NULL;
  5184. /* Idle task back to normal (off runqueue, low prio) */
  5185. spin_lock_irq(&rq->lock);
  5186. update_rq_clock(rq);
  5187. deactivate_task(rq, rq->idle, 0);
  5188. rq->idle->static_prio = MAX_PRIO;
  5189. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5190. rq->idle->sched_class = &idle_sched_class;
  5191. migrate_dead_tasks(cpu);
  5192. spin_unlock_irq(&rq->lock);
  5193. cpuset_unlock();
  5194. migrate_nr_uninterruptible(rq);
  5195. BUG_ON(rq->nr_running != 0);
  5196. /*
  5197. * No need to migrate the tasks: it was best-effort if
  5198. * they didn't take sched_hotcpu_mutex. Just wake up
  5199. * the requestors.
  5200. */
  5201. spin_lock_irq(&rq->lock);
  5202. while (!list_empty(&rq->migration_queue)) {
  5203. struct migration_req *req;
  5204. req = list_entry(rq->migration_queue.next,
  5205. struct migration_req, list);
  5206. list_del_init(&req->list);
  5207. complete(&req->done);
  5208. }
  5209. spin_unlock_irq(&rq->lock);
  5210. break;
  5211. case CPU_DYING:
  5212. case CPU_DYING_FROZEN:
  5213. /* Update our root-domain */
  5214. rq = cpu_rq(cpu);
  5215. spin_lock_irqsave(&rq->lock, flags);
  5216. if (rq->rd) {
  5217. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5218. cpu_clear(cpu, rq->rd->online);
  5219. }
  5220. spin_unlock_irqrestore(&rq->lock, flags);
  5221. break;
  5222. #endif
  5223. }
  5224. return NOTIFY_OK;
  5225. }
  5226. /* Register at highest priority so that task migration (migrate_all_tasks)
  5227. * happens before everything else.
  5228. */
  5229. static struct notifier_block __cpuinitdata migration_notifier = {
  5230. .notifier_call = migration_call,
  5231. .priority = 10
  5232. };
  5233. void __init migration_init(void)
  5234. {
  5235. void *cpu = (void *)(long)smp_processor_id();
  5236. int err;
  5237. /* Start one for the boot CPU: */
  5238. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5239. BUG_ON(err == NOTIFY_BAD);
  5240. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5241. register_cpu_notifier(&migration_notifier);
  5242. }
  5243. #endif
  5244. #ifdef CONFIG_SMP
  5245. /* Number of possible processor ids */
  5246. int nr_cpu_ids __read_mostly = NR_CPUS;
  5247. EXPORT_SYMBOL(nr_cpu_ids);
  5248. #ifdef CONFIG_SCHED_DEBUG
  5249. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
  5250. {
  5251. struct sched_group *group = sd->groups;
  5252. cpumask_t groupmask;
  5253. char str[256];
  5254. cpulist_scnprintf(str, sizeof(str), sd->span);
  5255. cpus_clear(groupmask);
  5256. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5257. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5258. printk("does not load-balance\n");
  5259. if (sd->parent)
  5260. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5261. " has parent");
  5262. return -1;
  5263. }
  5264. printk(KERN_CONT "span %s\n", str);
  5265. if (!cpu_isset(cpu, sd->span)) {
  5266. printk(KERN_ERR "ERROR: domain->span does not contain "
  5267. "CPU%d\n", cpu);
  5268. }
  5269. if (!cpu_isset(cpu, group->cpumask)) {
  5270. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5271. " CPU%d\n", cpu);
  5272. }
  5273. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5274. do {
  5275. if (!group) {
  5276. printk("\n");
  5277. printk(KERN_ERR "ERROR: group is NULL\n");
  5278. break;
  5279. }
  5280. if (!group->__cpu_power) {
  5281. printk(KERN_CONT "\n");
  5282. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5283. "set\n");
  5284. break;
  5285. }
  5286. if (!cpus_weight(group->cpumask)) {
  5287. printk(KERN_CONT "\n");
  5288. printk(KERN_ERR "ERROR: empty group\n");
  5289. break;
  5290. }
  5291. if (cpus_intersects(groupmask, group->cpumask)) {
  5292. printk(KERN_CONT "\n");
  5293. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5294. break;
  5295. }
  5296. cpus_or(groupmask, groupmask, group->cpumask);
  5297. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5298. printk(KERN_CONT " %s", str);
  5299. group = group->next;
  5300. } while (group != sd->groups);
  5301. printk(KERN_CONT "\n");
  5302. if (!cpus_equal(sd->span, groupmask))
  5303. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5304. if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
  5305. printk(KERN_ERR "ERROR: parent span is not a superset "
  5306. "of domain->span\n");
  5307. return 0;
  5308. }
  5309. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5310. {
  5311. int level = 0;
  5312. if (!sd) {
  5313. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5314. return;
  5315. }
  5316. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5317. for (;;) {
  5318. if (sched_domain_debug_one(sd, cpu, level))
  5319. break;
  5320. level++;
  5321. sd = sd->parent;
  5322. if (!sd)
  5323. break;
  5324. }
  5325. }
  5326. #else
  5327. # define sched_domain_debug(sd, cpu) do { } while (0)
  5328. #endif
  5329. static int sd_degenerate(struct sched_domain *sd)
  5330. {
  5331. if (cpus_weight(sd->span) == 1)
  5332. return 1;
  5333. /* Following flags need at least 2 groups */
  5334. if (sd->flags & (SD_LOAD_BALANCE |
  5335. SD_BALANCE_NEWIDLE |
  5336. SD_BALANCE_FORK |
  5337. SD_BALANCE_EXEC |
  5338. SD_SHARE_CPUPOWER |
  5339. SD_SHARE_PKG_RESOURCES)) {
  5340. if (sd->groups != sd->groups->next)
  5341. return 0;
  5342. }
  5343. /* Following flags don't use groups */
  5344. if (sd->flags & (SD_WAKE_IDLE |
  5345. SD_WAKE_AFFINE |
  5346. SD_WAKE_BALANCE))
  5347. return 0;
  5348. return 1;
  5349. }
  5350. static int
  5351. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5352. {
  5353. unsigned long cflags = sd->flags, pflags = parent->flags;
  5354. if (sd_degenerate(parent))
  5355. return 1;
  5356. if (!cpus_equal(sd->span, parent->span))
  5357. return 0;
  5358. /* Does parent contain flags not in child? */
  5359. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5360. if (cflags & SD_WAKE_AFFINE)
  5361. pflags &= ~SD_WAKE_BALANCE;
  5362. /* Flags needing groups don't count if only 1 group in parent */
  5363. if (parent->groups == parent->groups->next) {
  5364. pflags &= ~(SD_LOAD_BALANCE |
  5365. SD_BALANCE_NEWIDLE |
  5366. SD_BALANCE_FORK |
  5367. SD_BALANCE_EXEC |
  5368. SD_SHARE_CPUPOWER |
  5369. SD_SHARE_PKG_RESOURCES);
  5370. }
  5371. if (~cflags & pflags)
  5372. return 0;
  5373. return 1;
  5374. }
  5375. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5376. {
  5377. unsigned long flags;
  5378. const struct sched_class *class;
  5379. spin_lock_irqsave(&rq->lock, flags);
  5380. if (rq->rd) {
  5381. struct root_domain *old_rd = rq->rd;
  5382. for (class = sched_class_highest; class; class = class->next) {
  5383. if (class->leave_domain)
  5384. class->leave_domain(rq);
  5385. }
  5386. cpu_clear(rq->cpu, old_rd->span);
  5387. cpu_clear(rq->cpu, old_rd->online);
  5388. if (atomic_dec_and_test(&old_rd->refcount))
  5389. kfree(old_rd);
  5390. }
  5391. atomic_inc(&rd->refcount);
  5392. rq->rd = rd;
  5393. cpu_set(rq->cpu, rd->span);
  5394. if (cpu_isset(rq->cpu, cpu_online_map))
  5395. cpu_set(rq->cpu, rd->online);
  5396. for (class = sched_class_highest; class; class = class->next) {
  5397. if (class->join_domain)
  5398. class->join_domain(rq);
  5399. }
  5400. spin_unlock_irqrestore(&rq->lock, flags);
  5401. }
  5402. static void init_rootdomain(struct root_domain *rd)
  5403. {
  5404. memset(rd, 0, sizeof(*rd));
  5405. cpus_clear(rd->span);
  5406. cpus_clear(rd->online);
  5407. }
  5408. static void init_defrootdomain(void)
  5409. {
  5410. init_rootdomain(&def_root_domain);
  5411. atomic_set(&def_root_domain.refcount, 1);
  5412. }
  5413. static struct root_domain *alloc_rootdomain(void)
  5414. {
  5415. struct root_domain *rd;
  5416. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5417. if (!rd)
  5418. return NULL;
  5419. init_rootdomain(rd);
  5420. return rd;
  5421. }
  5422. /*
  5423. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5424. * hold the hotplug lock.
  5425. */
  5426. static void
  5427. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5428. {
  5429. struct rq *rq = cpu_rq(cpu);
  5430. struct sched_domain *tmp;
  5431. /* Remove the sched domains which do not contribute to scheduling. */
  5432. for (tmp = sd; tmp; tmp = tmp->parent) {
  5433. struct sched_domain *parent = tmp->parent;
  5434. if (!parent)
  5435. break;
  5436. if (sd_parent_degenerate(tmp, parent)) {
  5437. tmp->parent = parent->parent;
  5438. if (parent->parent)
  5439. parent->parent->child = tmp;
  5440. }
  5441. }
  5442. if (sd && sd_degenerate(sd)) {
  5443. sd = sd->parent;
  5444. if (sd)
  5445. sd->child = NULL;
  5446. }
  5447. sched_domain_debug(sd, cpu);
  5448. rq_attach_root(rq, rd);
  5449. rcu_assign_pointer(rq->sd, sd);
  5450. }
  5451. /* cpus with isolated domains */
  5452. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5453. /* Setup the mask of cpus configured for isolated domains */
  5454. static int __init isolated_cpu_setup(char *str)
  5455. {
  5456. int ints[NR_CPUS], i;
  5457. str = get_options(str, ARRAY_SIZE(ints), ints);
  5458. cpus_clear(cpu_isolated_map);
  5459. for (i = 1; i <= ints[0]; i++)
  5460. if (ints[i] < NR_CPUS)
  5461. cpu_set(ints[i], cpu_isolated_map);
  5462. return 1;
  5463. }
  5464. __setup("isolcpus=", isolated_cpu_setup);
  5465. /*
  5466. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5467. * to a function which identifies what group(along with sched group) a CPU
  5468. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5469. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5470. *
  5471. * init_sched_build_groups will build a circular linked list of the groups
  5472. * covered by the given span, and will set each group's ->cpumask correctly,
  5473. * and ->cpu_power to 0.
  5474. */
  5475. static void
  5476. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  5477. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5478. struct sched_group **sg))
  5479. {
  5480. struct sched_group *first = NULL, *last = NULL;
  5481. cpumask_t covered = CPU_MASK_NONE;
  5482. int i;
  5483. for_each_cpu_mask(i, span) {
  5484. struct sched_group *sg;
  5485. int group = group_fn(i, cpu_map, &sg);
  5486. int j;
  5487. if (cpu_isset(i, covered))
  5488. continue;
  5489. sg->cpumask = CPU_MASK_NONE;
  5490. sg->__cpu_power = 0;
  5491. for_each_cpu_mask(j, span) {
  5492. if (group_fn(j, cpu_map, NULL) != group)
  5493. continue;
  5494. cpu_set(j, covered);
  5495. cpu_set(j, sg->cpumask);
  5496. }
  5497. if (!first)
  5498. first = sg;
  5499. if (last)
  5500. last->next = sg;
  5501. last = sg;
  5502. }
  5503. last->next = first;
  5504. }
  5505. #define SD_NODES_PER_DOMAIN 16
  5506. #ifdef CONFIG_NUMA
  5507. /**
  5508. * find_next_best_node - find the next node to include in a sched_domain
  5509. * @node: node whose sched_domain we're building
  5510. * @used_nodes: nodes already in the sched_domain
  5511. *
  5512. * Find the next node to include in a given scheduling domain. Simply
  5513. * finds the closest node not already in the @used_nodes map.
  5514. *
  5515. * Should use nodemask_t.
  5516. */
  5517. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5518. {
  5519. int i, n, val, min_val, best_node = 0;
  5520. min_val = INT_MAX;
  5521. for (i = 0; i < MAX_NUMNODES; i++) {
  5522. /* Start at @node */
  5523. n = (node + i) % MAX_NUMNODES;
  5524. if (!nr_cpus_node(n))
  5525. continue;
  5526. /* Skip already used nodes */
  5527. if (node_isset(n, *used_nodes))
  5528. continue;
  5529. /* Simple min distance search */
  5530. val = node_distance(node, n);
  5531. if (val < min_val) {
  5532. min_val = val;
  5533. best_node = n;
  5534. }
  5535. }
  5536. node_set(best_node, *used_nodes);
  5537. return best_node;
  5538. }
  5539. /**
  5540. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5541. * @node: node whose cpumask we're constructing
  5542. *
  5543. * Given a node, construct a good cpumask for its sched_domain to span. It
  5544. * should be one that prevents unnecessary balancing, but also spreads tasks
  5545. * out optimally.
  5546. */
  5547. static cpumask_t sched_domain_node_span(int node)
  5548. {
  5549. nodemask_t used_nodes;
  5550. cpumask_t span;
  5551. node_to_cpumask_ptr(nodemask, node);
  5552. int i;
  5553. cpus_clear(span);
  5554. nodes_clear(used_nodes);
  5555. cpus_or(span, span, *nodemask);
  5556. node_set(node, used_nodes);
  5557. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5558. int next_node = find_next_best_node(node, &used_nodes);
  5559. node_to_cpumask_ptr_next(nodemask, next_node);
  5560. cpus_or(span, span, *nodemask);
  5561. }
  5562. return span;
  5563. }
  5564. #endif
  5565. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5566. /*
  5567. * SMT sched-domains:
  5568. */
  5569. #ifdef CONFIG_SCHED_SMT
  5570. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5571. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5572. static int
  5573. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5574. {
  5575. if (sg)
  5576. *sg = &per_cpu(sched_group_cpus, cpu);
  5577. return cpu;
  5578. }
  5579. #endif
  5580. /*
  5581. * multi-core sched-domains:
  5582. */
  5583. #ifdef CONFIG_SCHED_MC
  5584. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5585. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5586. #endif
  5587. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5588. static int
  5589. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5590. {
  5591. int group;
  5592. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5593. cpus_and(mask, mask, *cpu_map);
  5594. group = first_cpu(mask);
  5595. if (sg)
  5596. *sg = &per_cpu(sched_group_core, group);
  5597. return group;
  5598. }
  5599. #elif defined(CONFIG_SCHED_MC)
  5600. static int
  5601. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5602. {
  5603. if (sg)
  5604. *sg = &per_cpu(sched_group_core, cpu);
  5605. return cpu;
  5606. }
  5607. #endif
  5608. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5609. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5610. static int
  5611. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5612. {
  5613. int group;
  5614. #ifdef CONFIG_SCHED_MC
  5615. cpumask_t mask = cpu_coregroup_map(cpu);
  5616. cpus_and(mask, mask, *cpu_map);
  5617. group = first_cpu(mask);
  5618. #elif defined(CONFIG_SCHED_SMT)
  5619. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5620. cpus_and(mask, mask, *cpu_map);
  5621. group = first_cpu(mask);
  5622. #else
  5623. group = cpu;
  5624. #endif
  5625. if (sg)
  5626. *sg = &per_cpu(sched_group_phys, group);
  5627. return group;
  5628. }
  5629. #ifdef CONFIG_NUMA
  5630. /*
  5631. * The init_sched_build_groups can't handle what we want to do with node
  5632. * groups, so roll our own. Now each node has its own list of groups which
  5633. * gets dynamically allocated.
  5634. */
  5635. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5636. static struct sched_group ***sched_group_nodes_bycpu;
  5637. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5638. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5639. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5640. struct sched_group **sg)
  5641. {
  5642. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5643. int group;
  5644. cpus_and(nodemask, nodemask, *cpu_map);
  5645. group = first_cpu(nodemask);
  5646. if (sg)
  5647. *sg = &per_cpu(sched_group_allnodes, group);
  5648. return group;
  5649. }
  5650. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5651. {
  5652. struct sched_group *sg = group_head;
  5653. int j;
  5654. if (!sg)
  5655. return;
  5656. do {
  5657. for_each_cpu_mask(j, sg->cpumask) {
  5658. struct sched_domain *sd;
  5659. sd = &per_cpu(phys_domains, j);
  5660. if (j != first_cpu(sd->groups->cpumask)) {
  5661. /*
  5662. * Only add "power" once for each
  5663. * physical package.
  5664. */
  5665. continue;
  5666. }
  5667. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5668. }
  5669. sg = sg->next;
  5670. } while (sg != group_head);
  5671. }
  5672. #endif
  5673. #ifdef CONFIG_NUMA
  5674. /* Free memory allocated for various sched_group structures */
  5675. static void free_sched_groups(const cpumask_t *cpu_map)
  5676. {
  5677. int cpu, i;
  5678. for_each_cpu_mask(cpu, *cpu_map) {
  5679. struct sched_group **sched_group_nodes
  5680. = sched_group_nodes_bycpu[cpu];
  5681. if (!sched_group_nodes)
  5682. continue;
  5683. for (i = 0; i < MAX_NUMNODES; i++) {
  5684. cpumask_t nodemask = node_to_cpumask(i);
  5685. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5686. cpus_and(nodemask, nodemask, *cpu_map);
  5687. if (cpus_empty(nodemask))
  5688. continue;
  5689. if (sg == NULL)
  5690. continue;
  5691. sg = sg->next;
  5692. next_sg:
  5693. oldsg = sg;
  5694. sg = sg->next;
  5695. kfree(oldsg);
  5696. if (oldsg != sched_group_nodes[i])
  5697. goto next_sg;
  5698. }
  5699. kfree(sched_group_nodes);
  5700. sched_group_nodes_bycpu[cpu] = NULL;
  5701. }
  5702. }
  5703. #else
  5704. static void free_sched_groups(const cpumask_t *cpu_map)
  5705. {
  5706. }
  5707. #endif
  5708. /*
  5709. * Initialize sched groups cpu_power.
  5710. *
  5711. * cpu_power indicates the capacity of sched group, which is used while
  5712. * distributing the load between different sched groups in a sched domain.
  5713. * Typically cpu_power for all the groups in a sched domain will be same unless
  5714. * there are asymmetries in the topology. If there are asymmetries, group
  5715. * having more cpu_power will pickup more load compared to the group having
  5716. * less cpu_power.
  5717. *
  5718. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5719. * the maximum number of tasks a group can handle in the presence of other idle
  5720. * or lightly loaded groups in the same sched domain.
  5721. */
  5722. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5723. {
  5724. struct sched_domain *child;
  5725. struct sched_group *group;
  5726. WARN_ON(!sd || !sd->groups);
  5727. if (cpu != first_cpu(sd->groups->cpumask))
  5728. return;
  5729. child = sd->child;
  5730. sd->groups->__cpu_power = 0;
  5731. /*
  5732. * For perf policy, if the groups in child domain share resources
  5733. * (for example cores sharing some portions of the cache hierarchy
  5734. * or SMT), then set this domain groups cpu_power such that each group
  5735. * can handle only one task, when there are other idle groups in the
  5736. * same sched domain.
  5737. */
  5738. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5739. (child->flags &
  5740. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5741. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5742. return;
  5743. }
  5744. /*
  5745. * add cpu_power of each child group to this groups cpu_power
  5746. */
  5747. group = child->groups;
  5748. do {
  5749. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5750. group = group->next;
  5751. } while (group != child->groups);
  5752. }
  5753. /*
  5754. * Build sched domains for a given set of cpus and attach the sched domains
  5755. * to the individual cpus
  5756. */
  5757. static int build_sched_domains(const cpumask_t *cpu_map)
  5758. {
  5759. int i;
  5760. struct root_domain *rd;
  5761. #ifdef CONFIG_NUMA
  5762. struct sched_group **sched_group_nodes = NULL;
  5763. int sd_allnodes = 0;
  5764. /*
  5765. * Allocate the per-node list of sched groups
  5766. */
  5767. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5768. GFP_KERNEL);
  5769. if (!sched_group_nodes) {
  5770. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5771. return -ENOMEM;
  5772. }
  5773. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5774. #endif
  5775. rd = alloc_rootdomain();
  5776. if (!rd) {
  5777. printk(KERN_WARNING "Cannot alloc root domain\n");
  5778. return -ENOMEM;
  5779. }
  5780. /*
  5781. * Set up domains for cpus specified by the cpu_map.
  5782. */
  5783. for_each_cpu_mask(i, *cpu_map) {
  5784. struct sched_domain *sd = NULL, *p;
  5785. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5786. cpus_and(nodemask, nodemask, *cpu_map);
  5787. #ifdef CONFIG_NUMA
  5788. if (cpus_weight(*cpu_map) >
  5789. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5790. sd = &per_cpu(allnodes_domains, i);
  5791. *sd = SD_ALLNODES_INIT;
  5792. sd->span = *cpu_map;
  5793. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5794. p = sd;
  5795. sd_allnodes = 1;
  5796. } else
  5797. p = NULL;
  5798. sd = &per_cpu(node_domains, i);
  5799. *sd = SD_NODE_INIT;
  5800. sd->span = sched_domain_node_span(cpu_to_node(i));
  5801. sd->parent = p;
  5802. if (p)
  5803. p->child = sd;
  5804. cpus_and(sd->span, sd->span, *cpu_map);
  5805. #endif
  5806. p = sd;
  5807. sd = &per_cpu(phys_domains, i);
  5808. *sd = SD_CPU_INIT;
  5809. sd->span = nodemask;
  5810. sd->parent = p;
  5811. if (p)
  5812. p->child = sd;
  5813. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5814. #ifdef CONFIG_SCHED_MC
  5815. p = sd;
  5816. sd = &per_cpu(core_domains, i);
  5817. *sd = SD_MC_INIT;
  5818. sd->span = cpu_coregroup_map(i);
  5819. cpus_and(sd->span, sd->span, *cpu_map);
  5820. sd->parent = p;
  5821. p->child = sd;
  5822. cpu_to_core_group(i, cpu_map, &sd->groups);
  5823. #endif
  5824. #ifdef CONFIG_SCHED_SMT
  5825. p = sd;
  5826. sd = &per_cpu(cpu_domains, i);
  5827. *sd = SD_SIBLING_INIT;
  5828. sd->span = per_cpu(cpu_sibling_map, i);
  5829. cpus_and(sd->span, sd->span, *cpu_map);
  5830. sd->parent = p;
  5831. p->child = sd;
  5832. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5833. #endif
  5834. }
  5835. #ifdef CONFIG_SCHED_SMT
  5836. /* Set up CPU (sibling) groups */
  5837. for_each_cpu_mask(i, *cpu_map) {
  5838. cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
  5839. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5840. if (i != first_cpu(this_sibling_map))
  5841. continue;
  5842. init_sched_build_groups(this_sibling_map, cpu_map,
  5843. &cpu_to_cpu_group);
  5844. }
  5845. #endif
  5846. #ifdef CONFIG_SCHED_MC
  5847. /* Set up multi-core groups */
  5848. for_each_cpu_mask(i, *cpu_map) {
  5849. cpumask_t this_core_map = cpu_coregroup_map(i);
  5850. cpus_and(this_core_map, this_core_map, *cpu_map);
  5851. if (i != first_cpu(this_core_map))
  5852. continue;
  5853. init_sched_build_groups(this_core_map, cpu_map,
  5854. &cpu_to_core_group);
  5855. }
  5856. #endif
  5857. /* Set up physical groups */
  5858. for (i = 0; i < MAX_NUMNODES; i++) {
  5859. cpumask_t nodemask = node_to_cpumask(i);
  5860. cpus_and(nodemask, nodemask, *cpu_map);
  5861. if (cpus_empty(nodemask))
  5862. continue;
  5863. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5864. }
  5865. #ifdef CONFIG_NUMA
  5866. /* Set up node groups */
  5867. if (sd_allnodes)
  5868. init_sched_build_groups(*cpu_map, cpu_map,
  5869. &cpu_to_allnodes_group);
  5870. for (i = 0; i < MAX_NUMNODES; i++) {
  5871. /* Set up node groups */
  5872. struct sched_group *sg, *prev;
  5873. cpumask_t nodemask = node_to_cpumask(i);
  5874. cpumask_t domainspan;
  5875. cpumask_t covered = CPU_MASK_NONE;
  5876. int j;
  5877. cpus_and(nodemask, nodemask, *cpu_map);
  5878. if (cpus_empty(nodemask)) {
  5879. sched_group_nodes[i] = NULL;
  5880. continue;
  5881. }
  5882. domainspan = sched_domain_node_span(i);
  5883. cpus_and(domainspan, domainspan, *cpu_map);
  5884. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5885. if (!sg) {
  5886. printk(KERN_WARNING "Can not alloc domain group for "
  5887. "node %d\n", i);
  5888. goto error;
  5889. }
  5890. sched_group_nodes[i] = sg;
  5891. for_each_cpu_mask(j, nodemask) {
  5892. struct sched_domain *sd;
  5893. sd = &per_cpu(node_domains, j);
  5894. sd->groups = sg;
  5895. }
  5896. sg->__cpu_power = 0;
  5897. sg->cpumask = nodemask;
  5898. sg->next = sg;
  5899. cpus_or(covered, covered, nodemask);
  5900. prev = sg;
  5901. for (j = 0; j < MAX_NUMNODES; j++) {
  5902. cpumask_t tmp, notcovered;
  5903. int n = (i + j) % MAX_NUMNODES;
  5904. node_to_cpumask_ptr(pnodemask, n);
  5905. cpus_complement(notcovered, covered);
  5906. cpus_and(tmp, notcovered, *cpu_map);
  5907. cpus_and(tmp, tmp, domainspan);
  5908. if (cpus_empty(tmp))
  5909. break;
  5910. cpus_and(tmp, tmp, *pnodemask);
  5911. if (cpus_empty(tmp))
  5912. continue;
  5913. sg = kmalloc_node(sizeof(struct sched_group),
  5914. GFP_KERNEL, i);
  5915. if (!sg) {
  5916. printk(KERN_WARNING
  5917. "Can not alloc domain group for node %d\n", j);
  5918. goto error;
  5919. }
  5920. sg->__cpu_power = 0;
  5921. sg->cpumask = tmp;
  5922. sg->next = prev->next;
  5923. cpus_or(covered, covered, tmp);
  5924. prev->next = sg;
  5925. prev = sg;
  5926. }
  5927. }
  5928. #endif
  5929. /* Calculate CPU power for physical packages and nodes */
  5930. #ifdef CONFIG_SCHED_SMT
  5931. for_each_cpu_mask(i, *cpu_map) {
  5932. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5933. init_sched_groups_power(i, sd);
  5934. }
  5935. #endif
  5936. #ifdef CONFIG_SCHED_MC
  5937. for_each_cpu_mask(i, *cpu_map) {
  5938. struct sched_domain *sd = &per_cpu(core_domains, i);
  5939. init_sched_groups_power(i, sd);
  5940. }
  5941. #endif
  5942. for_each_cpu_mask(i, *cpu_map) {
  5943. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5944. init_sched_groups_power(i, sd);
  5945. }
  5946. #ifdef CONFIG_NUMA
  5947. for (i = 0; i < MAX_NUMNODES; i++)
  5948. init_numa_sched_groups_power(sched_group_nodes[i]);
  5949. if (sd_allnodes) {
  5950. struct sched_group *sg;
  5951. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5952. init_numa_sched_groups_power(sg);
  5953. }
  5954. #endif
  5955. /* Attach the domains */
  5956. for_each_cpu_mask(i, *cpu_map) {
  5957. struct sched_domain *sd;
  5958. #ifdef CONFIG_SCHED_SMT
  5959. sd = &per_cpu(cpu_domains, i);
  5960. #elif defined(CONFIG_SCHED_MC)
  5961. sd = &per_cpu(core_domains, i);
  5962. #else
  5963. sd = &per_cpu(phys_domains, i);
  5964. #endif
  5965. cpu_attach_domain(sd, rd, i);
  5966. }
  5967. return 0;
  5968. #ifdef CONFIG_NUMA
  5969. error:
  5970. free_sched_groups(cpu_map);
  5971. return -ENOMEM;
  5972. #endif
  5973. }
  5974. static cpumask_t *doms_cur; /* current sched domains */
  5975. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5976. /*
  5977. * Special case: If a kmalloc of a doms_cur partition (array of
  5978. * cpumask_t) fails, then fallback to a single sched domain,
  5979. * as determined by the single cpumask_t fallback_doms.
  5980. */
  5981. static cpumask_t fallback_doms;
  5982. void __attribute__((weak)) arch_update_cpu_topology(void)
  5983. {
  5984. }
  5985. /*
  5986. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5987. * For now this just excludes isolated cpus, but could be used to
  5988. * exclude other special cases in the future.
  5989. */
  5990. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5991. {
  5992. int err;
  5993. arch_update_cpu_topology();
  5994. ndoms_cur = 1;
  5995. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5996. if (!doms_cur)
  5997. doms_cur = &fallback_doms;
  5998. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  5999. err = build_sched_domains(doms_cur);
  6000. register_sched_domain_sysctl();
  6001. return err;
  6002. }
  6003. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  6004. {
  6005. free_sched_groups(cpu_map);
  6006. }
  6007. /*
  6008. * Detach sched domains from a group of cpus specified in cpu_map
  6009. * These cpus will now be attached to the NULL domain
  6010. */
  6011. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6012. {
  6013. int i;
  6014. unregister_sched_domain_sysctl();
  6015. for_each_cpu_mask(i, *cpu_map)
  6016. cpu_attach_domain(NULL, &def_root_domain, i);
  6017. synchronize_sched();
  6018. arch_destroy_sched_domains(cpu_map);
  6019. }
  6020. /*
  6021. * Partition sched domains as specified by the 'ndoms_new'
  6022. * cpumasks in the array doms_new[] of cpumasks. This compares
  6023. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6024. * It destroys each deleted domain and builds each new domain.
  6025. *
  6026. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6027. * The masks don't intersect (don't overlap.) We should setup one
  6028. * sched domain for each mask. CPUs not in any of the cpumasks will
  6029. * not be load balanced. If the same cpumask appears both in the
  6030. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6031. * it as it is.
  6032. *
  6033. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6034. * ownership of it and will kfree it when done with it. If the caller
  6035. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6036. * and partition_sched_domains() will fallback to the single partition
  6037. * 'fallback_doms'.
  6038. *
  6039. * Call with hotplug lock held
  6040. */
  6041. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
  6042. {
  6043. int i, j;
  6044. lock_doms_cur();
  6045. /* always unregister in case we don't destroy any domains */
  6046. unregister_sched_domain_sysctl();
  6047. if (doms_new == NULL) {
  6048. ndoms_new = 1;
  6049. doms_new = &fallback_doms;
  6050. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6051. }
  6052. /* Destroy deleted domains */
  6053. for (i = 0; i < ndoms_cur; i++) {
  6054. for (j = 0; j < ndoms_new; j++) {
  6055. if (cpus_equal(doms_cur[i], doms_new[j]))
  6056. goto match1;
  6057. }
  6058. /* no match - a current sched domain not in new doms_new[] */
  6059. detach_destroy_domains(doms_cur + i);
  6060. match1:
  6061. ;
  6062. }
  6063. /* Build new domains */
  6064. for (i = 0; i < ndoms_new; i++) {
  6065. for (j = 0; j < ndoms_cur; j++) {
  6066. if (cpus_equal(doms_new[i], doms_cur[j]))
  6067. goto match2;
  6068. }
  6069. /* no match - add a new doms_new */
  6070. build_sched_domains(doms_new + i);
  6071. match2:
  6072. ;
  6073. }
  6074. /* Remember the new sched domains */
  6075. if (doms_cur != &fallback_doms)
  6076. kfree(doms_cur);
  6077. doms_cur = doms_new;
  6078. ndoms_cur = ndoms_new;
  6079. register_sched_domain_sysctl();
  6080. unlock_doms_cur();
  6081. }
  6082. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6083. int arch_reinit_sched_domains(void)
  6084. {
  6085. int err;
  6086. get_online_cpus();
  6087. detach_destroy_domains(&cpu_online_map);
  6088. err = arch_init_sched_domains(&cpu_online_map);
  6089. put_online_cpus();
  6090. return err;
  6091. }
  6092. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6093. {
  6094. int ret;
  6095. if (buf[0] != '0' && buf[0] != '1')
  6096. return -EINVAL;
  6097. if (smt)
  6098. sched_smt_power_savings = (buf[0] == '1');
  6099. else
  6100. sched_mc_power_savings = (buf[0] == '1');
  6101. ret = arch_reinit_sched_domains();
  6102. return ret ? ret : count;
  6103. }
  6104. #ifdef CONFIG_SCHED_MC
  6105. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  6106. {
  6107. return sprintf(page, "%u\n", sched_mc_power_savings);
  6108. }
  6109. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  6110. const char *buf, size_t count)
  6111. {
  6112. return sched_power_savings_store(buf, count, 0);
  6113. }
  6114. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  6115. sched_mc_power_savings_store);
  6116. #endif
  6117. #ifdef CONFIG_SCHED_SMT
  6118. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  6119. {
  6120. return sprintf(page, "%u\n", sched_smt_power_savings);
  6121. }
  6122. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  6123. const char *buf, size_t count)
  6124. {
  6125. return sched_power_savings_store(buf, count, 1);
  6126. }
  6127. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  6128. sched_smt_power_savings_store);
  6129. #endif
  6130. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6131. {
  6132. int err = 0;
  6133. #ifdef CONFIG_SCHED_SMT
  6134. if (smt_capable())
  6135. err = sysfs_create_file(&cls->kset.kobj,
  6136. &attr_sched_smt_power_savings.attr);
  6137. #endif
  6138. #ifdef CONFIG_SCHED_MC
  6139. if (!err && mc_capable())
  6140. err = sysfs_create_file(&cls->kset.kobj,
  6141. &attr_sched_mc_power_savings.attr);
  6142. #endif
  6143. return err;
  6144. }
  6145. #endif
  6146. /*
  6147. * Force a reinitialization of the sched domains hierarchy. The domains
  6148. * and groups cannot be updated in place without racing with the balancing
  6149. * code, so we temporarily attach all running cpus to the NULL domain
  6150. * which will prevent rebalancing while the sched domains are recalculated.
  6151. */
  6152. static int update_sched_domains(struct notifier_block *nfb,
  6153. unsigned long action, void *hcpu)
  6154. {
  6155. switch (action) {
  6156. case CPU_UP_PREPARE:
  6157. case CPU_UP_PREPARE_FROZEN:
  6158. case CPU_DOWN_PREPARE:
  6159. case CPU_DOWN_PREPARE_FROZEN:
  6160. detach_destroy_domains(&cpu_online_map);
  6161. return NOTIFY_OK;
  6162. case CPU_UP_CANCELED:
  6163. case CPU_UP_CANCELED_FROZEN:
  6164. case CPU_DOWN_FAILED:
  6165. case CPU_DOWN_FAILED_FROZEN:
  6166. case CPU_ONLINE:
  6167. case CPU_ONLINE_FROZEN:
  6168. case CPU_DEAD:
  6169. case CPU_DEAD_FROZEN:
  6170. /*
  6171. * Fall through and re-initialise the domains.
  6172. */
  6173. break;
  6174. default:
  6175. return NOTIFY_DONE;
  6176. }
  6177. /* The hotplug lock is already held by cpu_up/cpu_down */
  6178. arch_init_sched_domains(&cpu_online_map);
  6179. return NOTIFY_OK;
  6180. }
  6181. void __init sched_init_smp(void)
  6182. {
  6183. cpumask_t non_isolated_cpus;
  6184. #if defined(CONFIG_NUMA)
  6185. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6186. GFP_KERNEL);
  6187. BUG_ON(sched_group_nodes_bycpu == NULL);
  6188. #endif
  6189. get_online_cpus();
  6190. arch_init_sched_domains(&cpu_online_map);
  6191. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6192. if (cpus_empty(non_isolated_cpus))
  6193. cpu_set(smp_processor_id(), non_isolated_cpus);
  6194. put_online_cpus();
  6195. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6196. hotcpu_notifier(update_sched_domains, 0);
  6197. /* Move init over to a non-isolated CPU */
  6198. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  6199. BUG();
  6200. sched_init_granularity();
  6201. }
  6202. #else
  6203. void __init sched_init_smp(void)
  6204. {
  6205. #if defined(CONFIG_NUMA)
  6206. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6207. GFP_KERNEL);
  6208. BUG_ON(sched_group_nodes_bycpu == NULL);
  6209. #endif
  6210. sched_init_granularity();
  6211. }
  6212. #endif /* CONFIG_SMP */
  6213. int in_sched_functions(unsigned long addr)
  6214. {
  6215. return in_lock_functions(addr) ||
  6216. (addr >= (unsigned long)__sched_text_start
  6217. && addr < (unsigned long)__sched_text_end);
  6218. }
  6219. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6220. {
  6221. cfs_rq->tasks_timeline = RB_ROOT;
  6222. #ifdef CONFIG_FAIR_GROUP_SCHED
  6223. cfs_rq->rq = rq;
  6224. #endif
  6225. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6226. }
  6227. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6228. {
  6229. struct rt_prio_array *array;
  6230. int i;
  6231. array = &rt_rq->active;
  6232. for (i = 0; i < MAX_RT_PRIO; i++) {
  6233. INIT_LIST_HEAD(array->queue + i);
  6234. __clear_bit(i, array->bitmap);
  6235. }
  6236. /* delimiter for bitsearch: */
  6237. __set_bit(MAX_RT_PRIO, array->bitmap);
  6238. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6239. rt_rq->highest_prio = MAX_RT_PRIO;
  6240. #endif
  6241. #ifdef CONFIG_SMP
  6242. rt_rq->rt_nr_migratory = 0;
  6243. rt_rq->overloaded = 0;
  6244. #endif
  6245. rt_rq->rt_time = 0;
  6246. rt_rq->rt_throttled = 0;
  6247. rt_rq->rt_runtime = 0;
  6248. spin_lock_init(&rt_rq->rt_runtime_lock);
  6249. #ifdef CONFIG_RT_GROUP_SCHED
  6250. rt_rq->rt_nr_boosted = 0;
  6251. rt_rq->rq = rq;
  6252. #endif
  6253. }
  6254. #ifdef CONFIG_FAIR_GROUP_SCHED
  6255. static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
  6256. struct cfs_rq *cfs_rq, struct sched_entity *se,
  6257. int cpu, int add)
  6258. {
  6259. tg->cfs_rq[cpu] = cfs_rq;
  6260. init_cfs_rq(cfs_rq, rq);
  6261. cfs_rq->tg = tg;
  6262. if (add)
  6263. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6264. tg->se[cpu] = se;
  6265. se->cfs_rq = &rq->cfs;
  6266. se->my_q = cfs_rq;
  6267. se->load.weight = tg->shares;
  6268. se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
  6269. se->parent = NULL;
  6270. }
  6271. #endif
  6272. #ifdef CONFIG_RT_GROUP_SCHED
  6273. static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
  6274. struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
  6275. int cpu, int add)
  6276. {
  6277. tg->rt_rq[cpu] = rt_rq;
  6278. init_rt_rq(rt_rq, rq);
  6279. rt_rq->tg = tg;
  6280. rt_rq->rt_se = rt_se;
  6281. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6282. if (add)
  6283. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6284. tg->rt_se[cpu] = rt_se;
  6285. rt_se->rt_rq = &rq->rt;
  6286. rt_se->my_q = rt_rq;
  6287. rt_se->parent = NULL;
  6288. INIT_LIST_HEAD(&rt_se->run_list);
  6289. }
  6290. #endif
  6291. void __init sched_init(void)
  6292. {
  6293. int highest_cpu = 0;
  6294. int i, j;
  6295. unsigned long alloc_size = 0, ptr;
  6296. #ifdef CONFIG_FAIR_GROUP_SCHED
  6297. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6298. #endif
  6299. #ifdef CONFIG_RT_GROUP_SCHED
  6300. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6301. #endif
  6302. /*
  6303. * As sched_init() is called before page_alloc is setup,
  6304. * we use alloc_bootmem().
  6305. */
  6306. if (alloc_size) {
  6307. ptr = (unsigned long)alloc_bootmem_low(alloc_size);
  6308. #ifdef CONFIG_FAIR_GROUP_SCHED
  6309. init_task_group.se = (struct sched_entity **)ptr;
  6310. ptr += nr_cpu_ids * sizeof(void **);
  6311. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6312. ptr += nr_cpu_ids * sizeof(void **);
  6313. #endif
  6314. #ifdef CONFIG_RT_GROUP_SCHED
  6315. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6316. ptr += nr_cpu_ids * sizeof(void **);
  6317. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6318. #endif
  6319. }
  6320. #ifdef CONFIG_SMP
  6321. init_defrootdomain();
  6322. #endif
  6323. init_rt_bandwidth(&def_rt_bandwidth,
  6324. global_rt_period(), global_rt_runtime());
  6325. #ifdef CONFIG_RT_GROUP_SCHED
  6326. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6327. global_rt_period(), global_rt_runtime());
  6328. #endif
  6329. #ifdef CONFIG_GROUP_SCHED
  6330. list_add(&init_task_group.list, &task_groups);
  6331. #endif
  6332. for_each_possible_cpu(i) {
  6333. struct rq *rq;
  6334. rq = cpu_rq(i);
  6335. spin_lock_init(&rq->lock);
  6336. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6337. rq->nr_running = 0;
  6338. rq->clock = 1;
  6339. update_last_tick_seen(rq);
  6340. init_cfs_rq(&rq->cfs, rq);
  6341. init_rt_rq(&rq->rt, rq);
  6342. #ifdef CONFIG_FAIR_GROUP_SCHED
  6343. init_task_group.shares = init_task_group_load;
  6344. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6345. init_tg_cfs_entry(rq, &init_task_group,
  6346. &per_cpu(init_cfs_rq, i),
  6347. &per_cpu(init_sched_entity, i), i, 1);
  6348. #endif
  6349. #ifdef CONFIG_RT_GROUP_SCHED
  6350. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6351. init_tg_rt_entry(rq, &init_task_group,
  6352. &per_cpu(init_rt_rq, i),
  6353. &per_cpu(init_sched_rt_entity, i), i, 1);
  6354. #else
  6355. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6356. #endif
  6357. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6358. rq->cpu_load[j] = 0;
  6359. #ifdef CONFIG_SMP
  6360. rq->sd = NULL;
  6361. rq->rd = NULL;
  6362. rq->active_balance = 0;
  6363. rq->next_balance = jiffies;
  6364. rq->push_cpu = 0;
  6365. rq->cpu = i;
  6366. rq->migration_thread = NULL;
  6367. INIT_LIST_HEAD(&rq->migration_queue);
  6368. rq_attach_root(rq, &def_root_domain);
  6369. #endif
  6370. init_rq_hrtick(rq);
  6371. atomic_set(&rq->nr_iowait, 0);
  6372. highest_cpu = i;
  6373. }
  6374. set_load_weight(&init_task);
  6375. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6376. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6377. #endif
  6378. #ifdef CONFIG_SMP
  6379. nr_cpu_ids = highest_cpu + 1;
  6380. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  6381. #endif
  6382. #ifdef CONFIG_RT_MUTEXES
  6383. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6384. #endif
  6385. /*
  6386. * The boot idle thread does lazy MMU switching as well:
  6387. */
  6388. atomic_inc(&init_mm.mm_count);
  6389. enter_lazy_tlb(&init_mm, current);
  6390. /*
  6391. * Make us the idle thread. Technically, schedule() should not be
  6392. * called from this thread, however somewhere below it might be,
  6393. * but because we are the idle thread, we just pick up running again
  6394. * when this runqueue becomes "idle".
  6395. */
  6396. init_idle(current, smp_processor_id());
  6397. /*
  6398. * During early bootup we pretend to be a normal task:
  6399. */
  6400. current->sched_class = &fair_sched_class;
  6401. scheduler_running = 1;
  6402. }
  6403. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6404. void __might_sleep(char *file, int line)
  6405. {
  6406. #ifdef in_atomic
  6407. static unsigned long prev_jiffy; /* ratelimiting */
  6408. if ((in_atomic() || irqs_disabled()) &&
  6409. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6410. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6411. return;
  6412. prev_jiffy = jiffies;
  6413. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6414. " context at %s:%d\n", file, line);
  6415. printk("in_atomic():%d, irqs_disabled():%d\n",
  6416. in_atomic(), irqs_disabled());
  6417. debug_show_held_locks(current);
  6418. if (irqs_disabled())
  6419. print_irqtrace_events(current);
  6420. dump_stack();
  6421. }
  6422. #endif
  6423. }
  6424. EXPORT_SYMBOL(__might_sleep);
  6425. #endif
  6426. #ifdef CONFIG_MAGIC_SYSRQ
  6427. static void normalize_task(struct rq *rq, struct task_struct *p)
  6428. {
  6429. int on_rq;
  6430. update_rq_clock(rq);
  6431. on_rq = p->se.on_rq;
  6432. if (on_rq)
  6433. deactivate_task(rq, p, 0);
  6434. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6435. if (on_rq) {
  6436. activate_task(rq, p, 0);
  6437. resched_task(rq->curr);
  6438. }
  6439. }
  6440. void normalize_rt_tasks(void)
  6441. {
  6442. struct task_struct *g, *p;
  6443. unsigned long flags;
  6444. struct rq *rq;
  6445. read_lock_irqsave(&tasklist_lock, flags);
  6446. do_each_thread(g, p) {
  6447. /*
  6448. * Only normalize user tasks:
  6449. */
  6450. if (!p->mm)
  6451. continue;
  6452. p->se.exec_start = 0;
  6453. #ifdef CONFIG_SCHEDSTATS
  6454. p->se.wait_start = 0;
  6455. p->se.sleep_start = 0;
  6456. p->se.block_start = 0;
  6457. #endif
  6458. task_rq(p)->clock = 0;
  6459. if (!rt_task(p)) {
  6460. /*
  6461. * Renice negative nice level userspace
  6462. * tasks back to 0:
  6463. */
  6464. if (TASK_NICE(p) < 0 && p->mm)
  6465. set_user_nice(p, 0);
  6466. continue;
  6467. }
  6468. spin_lock(&p->pi_lock);
  6469. rq = __task_rq_lock(p);
  6470. normalize_task(rq, p);
  6471. __task_rq_unlock(rq);
  6472. spin_unlock(&p->pi_lock);
  6473. } while_each_thread(g, p);
  6474. read_unlock_irqrestore(&tasklist_lock, flags);
  6475. }
  6476. #endif /* CONFIG_MAGIC_SYSRQ */
  6477. #ifdef CONFIG_IA64
  6478. /*
  6479. * These functions are only useful for the IA64 MCA handling.
  6480. *
  6481. * They can only be called when the whole system has been
  6482. * stopped - every CPU needs to be quiescent, and no scheduling
  6483. * activity can take place. Using them for anything else would
  6484. * be a serious bug, and as a result, they aren't even visible
  6485. * under any other configuration.
  6486. */
  6487. /**
  6488. * curr_task - return the current task for a given cpu.
  6489. * @cpu: the processor in question.
  6490. *
  6491. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6492. */
  6493. struct task_struct *curr_task(int cpu)
  6494. {
  6495. return cpu_curr(cpu);
  6496. }
  6497. /**
  6498. * set_curr_task - set the current task for a given cpu.
  6499. * @cpu: the processor in question.
  6500. * @p: the task pointer to set.
  6501. *
  6502. * Description: This function must only be used when non-maskable interrupts
  6503. * are serviced on a separate stack. It allows the architecture to switch the
  6504. * notion of the current task on a cpu in a non-blocking manner. This function
  6505. * must be called with all CPU's synchronized, and interrupts disabled, the
  6506. * and caller must save the original value of the current task (see
  6507. * curr_task() above) and restore that value before reenabling interrupts and
  6508. * re-starting the system.
  6509. *
  6510. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6511. */
  6512. void set_curr_task(int cpu, struct task_struct *p)
  6513. {
  6514. cpu_curr(cpu) = p;
  6515. }
  6516. #endif
  6517. #ifdef CONFIG_FAIR_GROUP_SCHED
  6518. static void free_fair_sched_group(struct task_group *tg)
  6519. {
  6520. int i;
  6521. for_each_possible_cpu(i) {
  6522. if (tg->cfs_rq)
  6523. kfree(tg->cfs_rq[i]);
  6524. if (tg->se)
  6525. kfree(tg->se[i]);
  6526. }
  6527. kfree(tg->cfs_rq);
  6528. kfree(tg->se);
  6529. }
  6530. static int alloc_fair_sched_group(struct task_group *tg)
  6531. {
  6532. struct cfs_rq *cfs_rq;
  6533. struct sched_entity *se;
  6534. struct rq *rq;
  6535. int i;
  6536. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6537. if (!tg->cfs_rq)
  6538. goto err;
  6539. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6540. if (!tg->se)
  6541. goto err;
  6542. tg->shares = NICE_0_LOAD;
  6543. for_each_possible_cpu(i) {
  6544. rq = cpu_rq(i);
  6545. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  6546. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6547. if (!cfs_rq)
  6548. goto err;
  6549. se = kmalloc_node(sizeof(struct sched_entity),
  6550. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6551. if (!se)
  6552. goto err;
  6553. init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
  6554. }
  6555. return 1;
  6556. err:
  6557. return 0;
  6558. }
  6559. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6560. {
  6561. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6562. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6563. }
  6564. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6565. {
  6566. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6567. }
  6568. #else
  6569. static inline void free_fair_sched_group(struct task_group *tg)
  6570. {
  6571. }
  6572. static inline int alloc_fair_sched_group(struct task_group *tg)
  6573. {
  6574. return 1;
  6575. }
  6576. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6577. {
  6578. }
  6579. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6580. {
  6581. }
  6582. #endif
  6583. #ifdef CONFIG_RT_GROUP_SCHED
  6584. static void free_rt_sched_group(struct task_group *tg)
  6585. {
  6586. int i;
  6587. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6588. for_each_possible_cpu(i) {
  6589. if (tg->rt_rq)
  6590. kfree(tg->rt_rq[i]);
  6591. if (tg->rt_se)
  6592. kfree(tg->rt_se[i]);
  6593. }
  6594. kfree(tg->rt_rq);
  6595. kfree(tg->rt_se);
  6596. }
  6597. static int alloc_rt_sched_group(struct task_group *tg)
  6598. {
  6599. struct rt_rq *rt_rq;
  6600. struct sched_rt_entity *rt_se;
  6601. struct rq *rq;
  6602. int i;
  6603. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6604. if (!tg->rt_rq)
  6605. goto err;
  6606. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6607. if (!tg->rt_se)
  6608. goto err;
  6609. init_rt_bandwidth(&tg->rt_bandwidth,
  6610. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6611. for_each_possible_cpu(i) {
  6612. rq = cpu_rq(i);
  6613. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  6614. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6615. if (!rt_rq)
  6616. goto err;
  6617. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  6618. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6619. if (!rt_se)
  6620. goto err;
  6621. init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
  6622. }
  6623. return 1;
  6624. err:
  6625. return 0;
  6626. }
  6627. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6628. {
  6629. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  6630. &cpu_rq(cpu)->leaf_rt_rq_list);
  6631. }
  6632. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6633. {
  6634. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  6635. }
  6636. #else
  6637. static inline void free_rt_sched_group(struct task_group *tg)
  6638. {
  6639. }
  6640. static inline int alloc_rt_sched_group(struct task_group *tg)
  6641. {
  6642. return 1;
  6643. }
  6644. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6645. {
  6646. }
  6647. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6648. {
  6649. }
  6650. #endif
  6651. #ifdef CONFIG_GROUP_SCHED
  6652. static void free_sched_group(struct task_group *tg)
  6653. {
  6654. free_fair_sched_group(tg);
  6655. free_rt_sched_group(tg);
  6656. kfree(tg);
  6657. }
  6658. /* allocate runqueue etc for a new task group */
  6659. struct task_group *sched_create_group(void)
  6660. {
  6661. struct task_group *tg;
  6662. unsigned long flags;
  6663. int i;
  6664. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6665. if (!tg)
  6666. return ERR_PTR(-ENOMEM);
  6667. if (!alloc_fair_sched_group(tg))
  6668. goto err;
  6669. if (!alloc_rt_sched_group(tg))
  6670. goto err;
  6671. spin_lock_irqsave(&task_group_lock, flags);
  6672. for_each_possible_cpu(i) {
  6673. register_fair_sched_group(tg, i);
  6674. register_rt_sched_group(tg, i);
  6675. }
  6676. list_add_rcu(&tg->list, &task_groups);
  6677. spin_unlock_irqrestore(&task_group_lock, flags);
  6678. return tg;
  6679. err:
  6680. free_sched_group(tg);
  6681. return ERR_PTR(-ENOMEM);
  6682. }
  6683. /* rcu callback to free various structures associated with a task group */
  6684. static void free_sched_group_rcu(struct rcu_head *rhp)
  6685. {
  6686. /* now it should be safe to free those cfs_rqs */
  6687. free_sched_group(container_of(rhp, struct task_group, rcu));
  6688. }
  6689. /* Destroy runqueue etc associated with a task group */
  6690. void sched_destroy_group(struct task_group *tg)
  6691. {
  6692. unsigned long flags;
  6693. int i;
  6694. spin_lock_irqsave(&task_group_lock, flags);
  6695. for_each_possible_cpu(i) {
  6696. unregister_fair_sched_group(tg, i);
  6697. unregister_rt_sched_group(tg, i);
  6698. }
  6699. list_del_rcu(&tg->list);
  6700. spin_unlock_irqrestore(&task_group_lock, flags);
  6701. /* wait for possible concurrent references to cfs_rqs complete */
  6702. call_rcu(&tg->rcu, free_sched_group_rcu);
  6703. }
  6704. /* change task's runqueue when it moves between groups.
  6705. * The caller of this function should have put the task in its new group
  6706. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6707. * reflect its new group.
  6708. */
  6709. void sched_move_task(struct task_struct *tsk)
  6710. {
  6711. int on_rq, running;
  6712. unsigned long flags;
  6713. struct rq *rq;
  6714. rq = task_rq_lock(tsk, &flags);
  6715. update_rq_clock(rq);
  6716. running = task_current(rq, tsk);
  6717. on_rq = tsk->se.on_rq;
  6718. if (on_rq)
  6719. dequeue_task(rq, tsk, 0);
  6720. if (unlikely(running))
  6721. tsk->sched_class->put_prev_task(rq, tsk);
  6722. set_task_rq(tsk, task_cpu(tsk));
  6723. #ifdef CONFIG_FAIR_GROUP_SCHED
  6724. if (tsk->sched_class->moved_group)
  6725. tsk->sched_class->moved_group(tsk);
  6726. #endif
  6727. if (unlikely(running))
  6728. tsk->sched_class->set_curr_task(rq);
  6729. if (on_rq)
  6730. enqueue_task(rq, tsk, 0);
  6731. task_rq_unlock(rq, &flags);
  6732. }
  6733. #endif
  6734. #ifdef CONFIG_FAIR_GROUP_SCHED
  6735. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6736. {
  6737. struct cfs_rq *cfs_rq = se->cfs_rq;
  6738. struct rq *rq = cfs_rq->rq;
  6739. int on_rq;
  6740. spin_lock_irq(&rq->lock);
  6741. on_rq = se->on_rq;
  6742. if (on_rq)
  6743. dequeue_entity(cfs_rq, se, 0);
  6744. se->load.weight = shares;
  6745. se->load.inv_weight = div64_64((1ULL<<32), shares);
  6746. if (on_rq)
  6747. enqueue_entity(cfs_rq, se, 0);
  6748. spin_unlock_irq(&rq->lock);
  6749. }
  6750. static DEFINE_MUTEX(shares_mutex);
  6751. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6752. {
  6753. int i;
  6754. unsigned long flags;
  6755. /*
  6756. * A weight of 0 or 1 can cause arithmetics problems.
  6757. * (The default weight is 1024 - so there's no practical
  6758. * limitation from this.)
  6759. */
  6760. if (shares < 2)
  6761. shares = 2;
  6762. mutex_lock(&shares_mutex);
  6763. if (tg->shares == shares)
  6764. goto done;
  6765. spin_lock_irqsave(&task_group_lock, flags);
  6766. for_each_possible_cpu(i)
  6767. unregister_fair_sched_group(tg, i);
  6768. spin_unlock_irqrestore(&task_group_lock, flags);
  6769. /* wait for any ongoing reference to this group to finish */
  6770. synchronize_sched();
  6771. /*
  6772. * Now we are free to modify the group's share on each cpu
  6773. * w/o tripping rebalance_share or load_balance_fair.
  6774. */
  6775. tg->shares = shares;
  6776. for_each_possible_cpu(i)
  6777. set_se_shares(tg->se[i], shares);
  6778. /*
  6779. * Enable load balance activity on this group, by inserting it back on
  6780. * each cpu's rq->leaf_cfs_rq_list.
  6781. */
  6782. spin_lock_irqsave(&task_group_lock, flags);
  6783. for_each_possible_cpu(i)
  6784. register_fair_sched_group(tg, i);
  6785. spin_unlock_irqrestore(&task_group_lock, flags);
  6786. done:
  6787. mutex_unlock(&shares_mutex);
  6788. return 0;
  6789. }
  6790. unsigned long sched_group_shares(struct task_group *tg)
  6791. {
  6792. return tg->shares;
  6793. }
  6794. #endif
  6795. #ifdef CONFIG_RT_GROUP_SCHED
  6796. /*
  6797. * Ensure that the real time constraints are schedulable.
  6798. */
  6799. static DEFINE_MUTEX(rt_constraints_mutex);
  6800. static unsigned long to_ratio(u64 period, u64 runtime)
  6801. {
  6802. if (runtime == RUNTIME_INF)
  6803. return 1ULL << 16;
  6804. return div64_64(runtime << 16, period);
  6805. }
  6806. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6807. {
  6808. struct task_group *tgi;
  6809. unsigned long total = 0;
  6810. unsigned long global_ratio =
  6811. to_ratio(global_rt_period(), global_rt_runtime());
  6812. rcu_read_lock();
  6813. list_for_each_entry_rcu(tgi, &task_groups, list) {
  6814. if (tgi == tg)
  6815. continue;
  6816. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  6817. tgi->rt_bandwidth.rt_runtime);
  6818. }
  6819. rcu_read_unlock();
  6820. return total + to_ratio(period, runtime) < global_ratio;
  6821. }
  6822. /* Must be called with tasklist_lock held */
  6823. static inline int tg_has_rt_tasks(struct task_group *tg)
  6824. {
  6825. struct task_struct *g, *p;
  6826. do_each_thread(g, p) {
  6827. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  6828. return 1;
  6829. } while_each_thread(g, p);
  6830. return 0;
  6831. }
  6832. static int tg_set_bandwidth(struct task_group *tg,
  6833. u64 rt_period, u64 rt_runtime)
  6834. {
  6835. int i, err = 0;
  6836. mutex_lock(&rt_constraints_mutex);
  6837. read_lock(&tasklist_lock);
  6838. if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
  6839. err = -EBUSY;
  6840. goto unlock;
  6841. }
  6842. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  6843. err = -EINVAL;
  6844. goto unlock;
  6845. }
  6846. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6847. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6848. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6849. for_each_possible_cpu(i) {
  6850. struct rt_rq *rt_rq = tg->rt_rq[i];
  6851. spin_lock(&rt_rq->rt_runtime_lock);
  6852. rt_rq->rt_runtime = rt_runtime;
  6853. spin_unlock(&rt_rq->rt_runtime_lock);
  6854. }
  6855. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6856. unlock:
  6857. read_unlock(&tasklist_lock);
  6858. mutex_unlock(&rt_constraints_mutex);
  6859. return err;
  6860. }
  6861. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6862. {
  6863. u64 rt_runtime, rt_period;
  6864. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6865. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6866. if (rt_runtime_us < 0)
  6867. rt_runtime = RUNTIME_INF;
  6868. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  6869. }
  6870. long sched_group_rt_runtime(struct task_group *tg)
  6871. {
  6872. u64 rt_runtime_us;
  6873. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6874. return -1;
  6875. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6876. do_div(rt_runtime_us, NSEC_PER_USEC);
  6877. return rt_runtime_us;
  6878. }
  6879. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6880. {
  6881. u64 rt_runtime, rt_period;
  6882. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6883. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6884. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  6885. }
  6886. long sched_group_rt_period(struct task_group *tg)
  6887. {
  6888. u64 rt_period_us;
  6889. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6890. do_div(rt_period_us, NSEC_PER_USEC);
  6891. return rt_period_us;
  6892. }
  6893. static int sched_rt_global_constraints(void)
  6894. {
  6895. int ret = 0;
  6896. mutex_lock(&rt_constraints_mutex);
  6897. if (!__rt_schedulable(NULL, 1, 0))
  6898. ret = -EINVAL;
  6899. mutex_unlock(&rt_constraints_mutex);
  6900. return ret;
  6901. }
  6902. #else
  6903. static int sched_rt_global_constraints(void)
  6904. {
  6905. unsigned long flags;
  6906. int i;
  6907. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6908. for_each_possible_cpu(i) {
  6909. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6910. spin_lock(&rt_rq->rt_runtime_lock);
  6911. rt_rq->rt_runtime = global_rt_runtime();
  6912. spin_unlock(&rt_rq->rt_runtime_lock);
  6913. }
  6914. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6915. return 0;
  6916. }
  6917. #endif
  6918. int sched_rt_handler(struct ctl_table *table, int write,
  6919. struct file *filp, void __user *buffer, size_t *lenp,
  6920. loff_t *ppos)
  6921. {
  6922. int ret;
  6923. int old_period, old_runtime;
  6924. static DEFINE_MUTEX(mutex);
  6925. mutex_lock(&mutex);
  6926. old_period = sysctl_sched_rt_period;
  6927. old_runtime = sysctl_sched_rt_runtime;
  6928. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  6929. if (!ret && write) {
  6930. ret = sched_rt_global_constraints();
  6931. if (ret) {
  6932. sysctl_sched_rt_period = old_period;
  6933. sysctl_sched_rt_runtime = old_runtime;
  6934. } else {
  6935. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6936. def_rt_bandwidth.rt_period =
  6937. ns_to_ktime(global_rt_period());
  6938. }
  6939. }
  6940. mutex_unlock(&mutex);
  6941. return ret;
  6942. }
  6943. #ifdef CONFIG_CGROUP_SCHED
  6944. /* return corresponding task_group object of a cgroup */
  6945. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6946. {
  6947. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6948. struct task_group, css);
  6949. }
  6950. static struct cgroup_subsys_state *
  6951. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6952. {
  6953. struct task_group *tg;
  6954. if (!cgrp->parent) {
  6955. /* This is early initialization for the top cgroup */
  6956. init_task_group.css.cgroup = cgrp;
  6957. return &init_task_group.css;
  6958. }
  6959. /* we support only 1-level deep hierarchical scheduler atm */
  6960. if (cgrp->parent->parent)
  6961. return ERR_PTR(-EINVAL);
  6962. tg = sched_create_group();
  6963. if (IS_ERR(tg))
  6964. return ERR_PTR(-ENOMEM);
  6965. /* Bind the cgroup to task_group object we just created */
  6966. tg->css.cgroup = cgrp;
  6967. return &tg->css;
  6968. }
  6969. static void
  6970. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6971. {
  6972. struct task_group *tg = cgroup_tg(cgrp);
  6973. sched_destroy_group(tg);
  6974. }
  6975. static int
  6976. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6977. struct task_struct *tsk)
  6978. {
  6979. #ifdef CONFIG_RT_GROUP_SCHED
  6980. /* Don't accept realtime tasks when there is no way for them to run */
  6981. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  6982. return -EINVAL;
  6983. #else
  6984. /* We don't support RT-tasks being in separate groups */
  6985. if (tsk->sched_class != &fair_sched_class)
  6986. return -EINVAL;
  6987. #endif
  6988. return 0;
  6989. }
  6990. static void
  6991. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6992. struct cgroup *old_cont, struct task_struct *tsk)
  6993. {
  6994. sched_move_task(tsk);
  6995. }
  6996. #ifdef CONFIG_FAIR_GROUP_SCHED
  6997. static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6998. u64 shareval)
  6999. {
  7000. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7001. }
  7002. static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7003. {
  7004. struct task_group *tg = cgroup_tg(cgrp);
  7005. return (u64) tg->shares;
  7006. }
  7007. #endif
  7008. #ifdef CONFIG_RT_GROUP_SCHED
  7009. static ssize_t cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7010. struct file *file,
  7011. const char __user *userbuf,
  7012. size_t nbytes, loff_t *unused_ppos)
  7013. {
  7014. char buffer[64];
  7015. int retval = 0;
  7016. s64 val;
  7017. char *end;
  7018. if (!nbytes)
  7019. return -EINVAL;
  7020. if (nbytes >= sizeof(buffer))
  7021. return -E2BIG;
  7022. if (copy_from_user(buffer, userbuf, nbytes))
  7023. return -EFAULT;
  7024. buffer[nbytes] = 0; /* nul-terminate */
  7025. /* strip newline if necessary */
  7026. if (nbytes && (buffer[nbytes-1] == '\n'))
  7027. buffer[nbytes-1] = 0;
  7028. val = simple_strtoll(buffer, &end, 0);
  7029. if (*end)
  7030. return -EINVAL;
  7031. /* Pass to subsystem */
  7032. retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7033. if (!retval)
  7034. retval = nbytes;
  7035. return retval;
  7036. }
  7037. static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
  7038. struct file *file,
  7039. char __user *buf, size_t nbytes,
  7040. loff_t *ppos)
  7041. {
  7042. char tmp[64];
  7043. long val = sched_group_rt_runtime(cgroup_tg(cgrp));
  7044. int len = sprintf(tmp, "%ld\n", val);
  7045. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  7046. }
  7047. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7048. u64 rt_period_us)
  7049. {
  7050. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7051. }
  7052. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7053. {
  7054. return sched_group_rt_period(cgroup_tg(cgrp));
  7055. }
  7056. #endif
  7057. static struct cftype cpu_files[] = {
  7058. #ifdef CONFIG_FAIR_GROUP_SCHED
  7059. {
  7060. .name = "shares",
  7061. .read_uint = cpu_shares_read_uint,
  7062. .write_uint = cpu_shares_write_uint,
  7063. },
  7064. #endif
  7065. #ifdef CONFIG_RT_GROUP_SCHED
  7066. {
  7067. .name = "rt_runtime_us",
  7068. .read = cpu_rt_runtime_read,
  7069. .write = cpu_rt_runtime_write,
  7070. },
  7071. {
  7072. .name = "rt_period_us",
  7073. .read_uint = cpu_rt_period_read_uint,
  7074. .write_uint = cpu_rt_period_write_uint,
  7075. },
  7076. #endif
  7077. };
  7078. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7079. {
  7080. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7081. }
  7082. struct cgroup_subsys cpu_cgroup_subsys = {
  7083. .name = "cpu",
  7084. .create = cpu_cgroup_create,
  7085. .destroy = cpu_cgroup_destroy,
  7086. .can_attach = cpu_cgroup_can_attach,
  7087. .attach = cpu_cgroup_attach,
  7088. .populate = cpu_cgroup_populate,
  7089. .subsys_id = cpu_cgroup_subsys_id,
  7090. .early_init = 1,
  7091. };
  7092. #endif /* CONFIG_CGROUP_SCHED */
  7093. #ifdef CONFIG_CGROUP_CPUACCT
  7094. /*
  7095. * CPU accounting code for task groups.
  7096. *
  7097. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7098. * (balbir@in.ibm.com).
  7099. */
  7100. /* track cpu usage of a group of tasks */
  7101. struct cpuacct {
  7102. struct cgroup_subsys_state css;
  7103. /* cpuusage holds pointer to a u64-type object on every cpu */
  7104. u64 *cpuusage;
  7105. };
  7106. struct cgroup_subsys cpuacct_subsys;
  7107. /* return cpu accounting group corresponding to this container */
  7108. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7109. {
  7110. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7111. struct cpuacct, css);
  7112. }
  7113. /* return cpu accounting group to which this task belongs */
  7114. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7115. {
  7116. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7117. struct cpuacct, css);
  7118. }
  7119. /* create a new cpu accounting group */
  7120. static struct cgroup_subsys_state *cpuacct_create(
  7121. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7122. {
  7123. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7124. if (!ca)
  7125. return ERR_PTR(-ENOMEM);
  7126. ca->cpuusage = alloc_percpu(u64);
  7127. if (!ca->cpuusage) {
  7128. kfree(ca);
  7129. return ERR_PTR(-ENOMEM);
  7130. }
  7131. return &ca->css;
  7132. }
  7133. /* destroy an existing cpu accounting group */
  7134. static void
  7135. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7136. {
  7137. struct cpuacct *ca = cgroup_ca(cgrp);
  7138. free_percpu(ca->cpuusage);
  7139. kfree(ca);
  7140. }
  7141. /* return total cpu usage (in nanoseconds) of a group */
  7142. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7143. {
  7144. struct cpuacct *ca = cgroup_ca(cgrp);
  7145. u64 totalcpuusage = 0;
  7146. int i;
  7147. for_each_possible_cpu(i) {
  7148. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7149. /*
  7150. * Take rq->lock to make 64-bit addition safe on 32-bit
  7151. * platforms.
  7152. */
  7153. spin_lock_irq(&cpu_rq(i)->lock);
  7154. totalcpuusage += *cpuusage;
  7155. spin_unlock_irq(&cpu_rq(i)->lock);
  7156. }
  7157. return totalcpuusage;
  7158. }
  7159. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7160. u64 reset)
  7161. {
  7162. struct cpuacct *ca = cgroup_ca(cgrp);
  7163. int err = 0;
  7164. int i;
  7165. if (reset) {
  7166. err = -EINVAL;
  7167. goto out;
  7168. }
  7169. for_each_possible_cpu(i) {
  7170. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7171. spin_lock_irq(&cpu_rq(i)->lock);
  7172. *cpuusage = 0;
  7173. spin_unlock_irq(&cpu_rq(i)->lock);
  7174. }
  7175. out:
  7176. return err;
  7177. }
  7178. static struct cftype files[] = {
  7179. {
  7180. .name = "usage",
  7181. .read_uint = cpuusage_read,
  7182. .write_uint = cpuusage_write,
  7183. },
  7184. };
  7185. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7186. {
  7187. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7188. }
  7189. /*
  7190. * charge this task's execution time to its accounting group.
  7191. *
  7192. * called with rq->lock held.
  7193. */
  7194. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7195. {
  7196. struct cpuacct *ca;
  7197. if (!cpuacct_subsys.active)
  7198. return;
  7199. ca = task_ca(tsk);
  7200. if (ca) {
  7201. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7202. *cpuusage += cputime;
  7203. }
  7204. }
  7205. struct cgroup_subsys cpuacct_subsys = {
  7206. .name = "cpuacct",
  7207. .create = cpuacct_create,
  7208. .destroy = cpuacct_destroy,
  7209. .populate = cpuacct_populate,
  7210. .subsys_id = cpuacct_subsys_id,
  7211. };
  7212. #endif /* CONFIG_CGROUP_CPUACCT */