md.c 151 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/kernel.h>
  28. #include <linux/kthread.h>
  29. #include <linux/linkage.h>
  30. #include <linux/raid/md.h>
  31. #include <linux/raid/bitmap.h>
  32. #include <linux/sysctl.h>
  33. #include <linux/buffer_head.h> /* for invalidate_bdev */
  34. #include <linux/poll.h>
  35. #include <linux/mutex.h>
  36. #include <linux/ctype.h>
  37. #include <linux/freezer.h>
  38. #include <linux/init.h>
  39. #include <linux/file.h>
  40. #ifdef CONFIG_KMOD
  41. #include <linux/kmod.h>
  42. #endif
  43. #include <asm/unaligned.h>
  44. #define MAJOR_NR MD_MAJOR
  45. #define MD_DRIVER
  46. /* 63 partitions with the alternate major number (mdp) */
  47. #define MdpMinorShift 6
  48. #define DEBUG 0
  49. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  50. #ifndef MODULE
  51. static void autostart_arrays (int part);
  52. #endif
  53. static LIST_HEAD(pers_list);
  54. static DEFINE_SPINLOCK(pers_lock);
  55. static void md_print_devices(void);
  56. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  57. /*
  58. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  59. * is 1000 KB/sec, so the extra system load does not show up that much.
  60. * Increase it if you want to have more _guaranteed_ speed. Note that
  61. * the RAID driver will use the maximum available bandwidth if the IO
  62. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  63. * speed limit - in case reconstruction slows down your system despite
  64. * idle IO detection.
  65. *
  66. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  67. * or /sys/block/mdX/md/sync_speed_{min,max}
  68. */
  69. static int sysctl_speed_limit_min = 1000;
  70. static int sysctl_speed_limit_max = 200000;
  71. static inline int speed_min(mddev_t *mddev)
  72. {
  73. return mddev->sync_speed_min ?
  74. mddev->sync_speed_min : sysctl_speed_limit_min;
  75. }
  76. static inline int speed_max(mddev_t *mddev)
  77. {
  78. return mddev->sync_speed_max ?
  79. mddev->sync_speed_max : sysctl_speed_limit_max;
  80. }
  81. static struct ctl_table_header *raid_table_header;
  82. static ctl_table raid_table[] = {
  83. {
  84. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  85. .procname = "speed_limit_min",
  86. .data = &sysctl_speed_limit_min,
  87. .maxlen = sizeof(int),
  88. .mode = S_IRUGO|S_IWUSR,
  89. .proc_handler = &proc_dointvec,
  90. },
  91. {
  92. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  93. .procname = "speed_limit_max",
  94. .data = &sysctl_speed_limit_max,
  95. .maxlen = sizeof(int),
  96. .mode = S_IRUGO|S_IWUSR,
  97. .proc_handler = &proc_dointvec,
  98. },
  99. { .ctl_name = 0 }
  100. };
  101. static ctl_table raid_dir_table[] = {
  102. {
  103. .ctl_name = DEV_RAID,
  104. .procname = "raid",
  105. .maxlen = 0,
  106. .mode = S_IRUGO|S_IXUGO,
  107. .child = raid_table,
  108. },
  109. { .ctl_name = 0 }
  110. };
  111. static ctl_table raid_root_table[] = {
  112. {
  113. .ctl_name = CTL_DEV,
  114. .procname = "dev",
  115. .maxlen = 0,
  116. .mode = 0555,
  117. .child = raid_dir_table,
  118. },
  119. { .ctl_name = 0 }
  120. };
  121. static struct block_device_operations md_fops;
  122. static int start_readonly;
  123. /*
  124. * We have a system wide 'event count' that is incremented
  125. * on any 'interesting' event, and readers of /proc/mdstat
  126. * can use 'poll' or 'select' to find out when the event
  127. * count increases.
  128. *
  129. * Events are:
  130. * start array, stop array, error, add device, remove device,
  131. * start build, activate spare
  132. */
  133. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  134. static atomic_t md_event_count;
  135. void md_new_event(mddev_t *mddev)
  136. {
  137. atomic_inc(&md_event_count);
  138. wake_up(&md_event_waiters);
  139. sysfs_notify(&mddev->kobj, NULL, "sync_action");
  140. }
  141. EXPORT_SYMBOL_GPL(md_new_event);
  142. /* Alternate version that can be called from interrupts
  143. * when calling sysfs_notify isn't needed.
  144. */
  145. static void md_new_event_inintr(mddev_t *mddev)
  146. {
  147. atomic_inc(&md_event_count);
  148. wake_up(&md_event_waiters);
  149. }
  150. /*
  151. * Enables to iterate over all existing md arrays
  152. * all_mddevs_lock protects this list.
  153. */
  154. static LIST_HEAD(all_mddevs);
  155. static DEFINE_SPINLOCK(all_mddevs_lock);
  156. /*
  157. * iterates through all used mddevs in the system.
  158. * We take care to grab the all_mddevs_lock whenever navigating
  159. * the list, and to always hold a refcount when unlocked.
  160. * Any code which breaks out of this loop while own
  161. * a reference to the current mddev and must mddev_put it.
  162. */
  163. #define ITERATE_MDDEV(mddev,tmp) \
  164. \
  165. for (({ spin_lock(&all_mddevs_lock); \
  166. tmp = all_mddevs.next; \
  167. mddev = NULL;}); \
  168. ({ if (tmp != &all_mddevs) \
  169. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  170. spin_unlock(&all_mddevs_lock); \
  171. if (mddev) mddev_put(mddev); \
  172. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  173. tmp != &all_mddevs;}); \
  174. ({ spin_lock(&all_mddevs_lock); \
  175. tmp = tmp->next;}) \
  176. )
  177. static int md_fail_request (struct request_queue *q, struct bio *bio)
  178. {
  179. bio_io_error(bio);
  180. return 0;
  181. }
  182. static inline mddev_t *mddev_get(mddev_t *mddev)
  183. {
  184. atomic_inc(&mddev->active);
  185. return mddev;
  186. }
  187. static void mddev_put(mddev_t *mddev)
  188. {
  189. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  190. return;
  191. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  192. list_del(&mddev->all_mddevs);
  193. spin_unlock(&all_mddevs_lock);
  194. blk_cleanup_queue(mddev->queue);
  195. kobject_put(&mddev->kobj);
  196. } else
  197. spin_unlock(&all_mddevs_lock);
  198. }
  199. static mddev_t * mddev_find(dev_t unit)
  200. {
  201. mddev_t *mddev, *new = NULL;
  202. retry:
  203. spin_lock(&all_mddevs_lock);
  204. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  205. if (mddev->unit == unit) {
  206. mddev_get(mddev);
  207. spin_unlock(&all_mddevs_lock);
  208. kfree(new);
  209. return mddev;
  210. }
  211. if (new) {
  212. list_add(&new->all_mddevs, &all_mddevs);
  213. spin_unlock(&all_mddevs_lock);
  214. return new;
  215. }
  216. spin_unlock(&all_mddevs_lock);
  217. new = kzalloc(sizeof(*new), GFP_KERNEL);
  218. if (!new)
  219. return NULL;
  220. new->unit = unit;
  221. if (MAJOR(unit) == MD_MAJOR)
  222. new->md_minor = MINOR(unit);
  223. else
  224. new->md_minor = MINOR(unit) >> MdpMinorShift;
  225. mutex_init(&new->reconfig_mutex);
  226. INIT_LIST_HEAD(&new->disks);
  227. INIT_LIST_HEAD(&new->all_mddevs);
  228. init_timer(&new->safemode_timer);
  229. atomic_set(&new->active, 1);
  230. spin_lock_init(&new->write_lock);
  231. init_waitqueue_head(&new->sb_wait);
  232. new->reshape_position = MaxSector;
  233. new->resync_max = MaxSector;
  234. new->queue = blk_alloc_queue(GFP_KERNEL);
  235. if (!new->queue) {
  236. kfree(new);
  237. return NULL;
  238. }
  239. set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
  240. blk_queue_make_request(new->queue, md_fail_request);
  241. goto retry;
  242. }
  243. static inline int mddev_lock(mddev_t * mddev)
  244. {
  245. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  246. }
  247. static inline int mddev_trylock(mddev_t * mddev)
  248. {
  249. return mutex_trylock(&mddev->reconfig_mutex);
  250. }
  251. static inline void mddev_unlock(mddev_t * mddev)
  252. {
  253. mutex_unlock(&mddev->reconfig_mutex);
  254. md_wakeup_thread(mddev->thread);
  255. }
  256. static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  257. {
  258. mdk_rdev_t * rdev;
  259. struct list_head *tmp;
  260. ITERATE_RDEV(mddev,rdev,tmp) {
  261. if (rdev->desc_nr == nr)
  262. return rdev;
  263. }
  264. return NULL;
  265. }
  266. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  267. {
  268. struct list_head *tmp;
  269. mdk_rdev_t *rdev;
  270. ITERATE_RDEV(mddev,rdev,tmp) {
  271. if (rdev->bdev->bd_dev == dev)
  272. return rdev;
  273. }
  274. return NULL;
  275. }
  276. static struct mdk_personality *find_pers(int level, char *clevel)
  277. {
  278. struct mdk_personality *pers;
  279. list_for_each_entry(pers, &pers_list, list) {
  280. if (level != LEVEL_NONE && pers->level == level)
  281. return pers;
  282. if (strcmp(pers->name, clevel)==0)
  283. return pers;
  284. }
  285. return NULL;
  286. }
  287. static inline sector_t calc_dev_sboffset(struct block_device *bdev)
  288. {
  289. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  290. return MD_NEW_SIZE_BLOCKS(size);
  291. }
  292. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  293. {
  294. sector_t size;
  295. size = rdev->sb_offset;
  296. if (chunk_size)
  297. size &= ~((sector_t)chunk_size/1024 - 1);
  298. return size;
  299. }
  300. static int alloc_disk_sb(mdk_rdev_t * rdev)
  301. {
  302. if (rdev->sb_page)
  303. MD_BUG();
  304. rdev->sb_page = alloc_page(GFP_KERNEL);
  305. if (!rdev->sb_page) {
  306. printk(KERN_ALERT "md: out of memory.\n");
  307. return -EINVAL;
  308. }
  309. return 0;
  310. }
  311. static void free_disk_sb(mdk_rdev_t * rdev)
  312. {
  313. if (rdev->sb_page) {
  314. put_page(rdev->sb_page);
  315. rdev->sb_loaded = 0;
  316. rdev->sb_page = NULL;
  317. rdev->sb_offset = 0;
  318. rdev->size = 0;
  319. }
  320. }
  321. static void super_written(struct bio *bio, int error)
  322. {
  323. mdk_rdev_t *rdev = bio->bi_private;
  324. mddev_t *mddev = rdev->mddev;
  325. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  326. printk("md: super_written gets error=%d, uptodate=%d\n",
  327. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  328. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  329. md_error(mddev, rdev);
  330. }
  331. if (atomic_dec_and_test(&mddev->pending_writes))
  332. wake_up(&mddev->sb_wait);
  333. bio_put(bio);
  334. }
  335. static void super_written_barrier(struct bio *bio, int error)
  336. {
  337. struct bio *bio2 = bio->bi_private;
  338. mdk_rdev_t *rdev = bio2->bi_private;
  339. mddev_t *mddev = rdev->mddev;
  340. if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  341. error == -EOPNOTSUPP) {
  342. unsigned long flags;
  343. /* barriers don't appear to be supported :-( */
  344. set_bit(BarriersNotsupp, &rdev->flags);
  345. mddev->barriers_work = 0;
  346. spin_lock_irqsave(&mddev->write_lock, flags);
  347. bio2->bi_next = mddev->biolist;
  348. mddev->biolist = bio2;
  349. spin_unlock_irqrestore(&mddev->write_lock, flags);
  350. wake_up(&mddev->sb_wait);
  351. bio_put(bio);
  352. } else {
  353. bio_put(bio2);
  354. bio->bi_private = rdev;
  355. super_written(bio, error);
  356. }
  357. }
  358. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  359. sector_t sector, int size, struct page *page)
  360. {
  361. /* write first size bytes of page to sector of rdev
  362. * Increment mddev->pending_writes before returning
  363. * and decrement it on completion, waking up sb_wait
  364. * if zero is reached.
  365. * If an error occurred, call md_error
  366. *
  367. * As we might need to resubmit the request if BIO_RW_BARRIER
  368. * causes ENOTSUPP, we allocate a spare bio...
  369. */
  370. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  371. int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
  372. bio->bi_bdev = rdev->bdev;
  373. bio->bi_sector = sector;
  374. bio_add_page(bio, page, size, 0);
  375. bio->bi_private = rdev;
  376. bio->bi_end_io = super_written;
  377. bio->bi_rw = rw;
  378. atomic_inc(&mddev->pending_writes);
  379. if (!test_bit(BarriersNotsupp, &rdev->flags)) {
  380. struct bio *rbio;
  381. rw |= (1<<BIO_RW_BARRIER);
  382. rbio = bio_clone(bio, GFP_NOIO);
  383. rbio->bi_private = bio;
  384. rbio->bi_end_io = super_written_barrier;
  385. submit_bio(rw, rbio);
  386. } else
  387. submit_bio(rw, bio);
  388. }
  389. void md_super_wait(mddev_t *mddev)
  390. {
  391. /* wait for all superblock writes that were scheduled to complete.
  392. * if any had to be retried (due to BARRIER problems), retry them
  393. */
  394. DEFINE_WAIT(wq);
  395. for(;;) {
  396. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  397. if (atomic_read(&mddev->pending_writes)==0)
  398. break;
  399. while (mddev->biolist) {
  400. struct bio *bio;
  401. spin_lock_irq(&mddev->write_lock);
  402. bio = mddev->biolist;
  403. mddev->biolist = bio->bi_next ;
  404. bio->bi_next = NULL;
  405. spin_unlock_irq(&mddev->write_lock);
  406. submit_bio(bio->bi_rw, bio);
  407. }
  408. schedule();
  409. }
  410. finish_wait(&mddev->sb_wait, &wq);
  411. }
  412. static void bi_complete(struct bio *bio, int error)
  413. {
  414. complete((struct completion*)bio->bi_private);
  415. }
  416. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  417. struct page *page, int rw)
  418. {
  419. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  420. struct completion event;
  421. int ret;
  422. rw |= (1 << BIO_RW_SYNC);
  423. bio->bi_bdev = bdev;
  424. bio->bi_sector = sector;
  425. bio_add_page(bio, page, size, 0);
  426. init_completion(&event);
  427. bio->bi_private = &event;
  428. bio->bi_end_io = bi_complete;
  429. submit_bio(rw, bio);
  430. wait_for_completion(&event);
  431. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  432. bio_put(bio);
  433. return ret;
  434. }
  435. EXPORT_SYMBOL_GPL(sync_page_io);
  436. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  437. {
  438. char b[BDEVNAME_SIZE];
  439. if (!rdev->sb_page) {
  440. MD_BUG();
  441. return -EINVAL;
  442. }
  443. if (rdev->sb_loaded)
  444. return 0;
  445. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
  446. goto fail;
  447. rdev->sb_loaded = 1;
  448. return 0;
  449. fail:
  450. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  451. bdevname(rdev->bdev,b));
  452. return -EINVAL;
  453. }
  454. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  455. {
  456. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  457. (sb1->set_uuid1 == sb2->set_uuid1) &&
  458. (sb1->set_uuid2 == sb2->set_uuid2) &&
  459. (sb1->set_uuid3 == sb2->set_uuid3))
  460. return 1;
  461. return 0;
  462. }
  463. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  464. {
  465. int ret;
  466. mdp_super_t *tmp1, *tmp2;
  467. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  468. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  469. if (!tmp1 || !tmp2) {
  470. ret = 0;
  471. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  472. goto abort;
  473. }
  474. *tmp1 = *sb1;
  475. *tmp2 = *sb2;
  476. /*
  477. * nr_disks is not constant
  478. */
  479. tmp1->nr_disks = 0;
  480. tmp2->nr_disks = 0;
  481. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  482. ret = 0;
  483. else
  484. ret = 1;
  485. abort:
  486. kfree(tmp1);
  487. kfree(tmp2);
  488. return ret;
  489. }
  490. static u32 md_csum_fold(u32 csum)
  491. {
  492. csum = (csum & 0xffff) + (csum >> 16);
  493. return (csum & 0xffff) + (csum >> 16);
  494. }
  495. static unsigned int calc_sb_csum(mdp_super_t * sb)
  496. {
  497. u64 newcsum = 0;
  498. u32 *sb32 = (u32*)sb;
  499. int i;
  500. unsigned int disk_csum, csum;
  501. disk_csum = sb->sb_csum;
  502. sb->sb_csum = 0;
  503. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  504. newcsum += sb32[i];
  505. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  506. #ifdef CONFIG_ALPHA
  507. /* This used to use csum_partial, which was wrong for several
  508. * reasons including that different results are returned on
  509. * different architectures. It isn't critical that we get exactly
  510. * the same return value as before (we always csum_fold before
  511. * testing, and that removes any differences). However as we
  512. * know that csum_partial always returned a 16bit value on
  513. * alphas, do a fold to maximise conformity to previous behaviour.
  514. */
  515. sb->sb_csum = md_csum_fold(disk_csum);
  516. #else
  517. sb->sb_csum = disk_csum;
  518. #endif
  519. return csum;
  520. }
  521. /*
  522. * Handle superblock details.
  523. * We want to be able to handle multiple superblock formats
  524. * so we have a common interface to them all, and an array of
  525. * different handlers.
  526. * We rely on user-space to write the initial superblock, and support
  527. * reading and updating of superblocks.
  528. * Interface methods are:
  529. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  530. * loads and validates a superblock on dev.
  531. * if refdev != NULL, compare superblocks on both devices
  532. * Return:
  533. * 0 - dev has a superblock that is compatible with refdev
  534. * 1 - dev has a superblock that is compatible and newer than refdev
  535. * so dev should be used as the refdev in future
  536. * -EINVAL superblock incompatible or invalid
  537. * -othererror e.g. -EIO
  538. *
  539. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  540. * Verify that dev is acceptable into mddev.
  541. * The first time, mddev->raid_disks will be 0, and data from
  542. * dev should be merged in. Subsequent calls check that dev
  543. * is new enough. Return 0 or -EINVAL
  544. *
  545. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  546. * Update the superblock for rdev with data in mddev
  547. * This does not write to disc.
  548. *
  549. */
  550. struct super_type {
  551. char *name;
  552. struct module *owner;
  553. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  554. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  555. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  556. };
  557. /*
  558. * load_super for 0.90.0
  559. */
  560. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  561. {
  562. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  563. mdp_super_t *sb;
  564. int ret;
  565. sector_t sb_offset;
  566. /*
  567. * Calculate the position of the superblock,
  568. * it's at the end of the disk.
  569. *
  570. * It also happens to be a multiple of 4Kb.
  571. */
  572. sb_offset = calc_dev_sboffset(rdev->bdev);
  573. rdev->sb_offset = sb_offset;
  574. ret = read_disk_sb(rdev, MD_SB_BYTES);
  575. if (ret) return ret;
  576. ret = -EINVAL;
  577. bdevname(rdev->bdev, b);
  578. sb = (mdp_super_t*)page_address(rdev->sb_page);
  579. if (sb->md_magic != MD_SB_MAGIC) {
  580. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  581. b);
  582. goto abort;
  583. }
  584. if (sb->major_version != 0 ||
  585. sb->minor_version < 90 ||
  586. sb->minor_version > 91) {
  587. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  588. sb->major_version, sb->minor_version,
  589. b);
  590. goto abort;
  591. }
  592. if (sb->raid_disks <= 0)
  593. goto abort;
  594. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  595. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  596. b);
  597. goto abort;
  598. }
  599. rdev->preferred_minor = sb->md_minor;
  600. rdev->data_offset = 0;
  601. rdev->sb_size = MD_SB_BYTES;
  602. if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
  603. if (sb->level != 1 && sb->level != 4
  604. && sb->level != 5 && sb->level != 6
  605. && sb->level != 10) {
  606. /* FIXME use a better test */
  607. printk(KERN_WARNING
  608. "md: bitmaps not supported for this level.\n");
  609. goto abort;
  610. }
  611. }
  612. if (sb->level == LEVEL_MULTIPATH)
  613. rdev->desc_nr = -1;
  614. else
  615. rdev->desc_nr = sb->this_disk.number;
  616. if (refdev == 0)
  617. ret = 1;
  618. else {
  619. __u64 ev1, ev2;
  620. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  621. if (!uuid_equal(refsb, sb)) {
  622. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  623. b, bdevname(refdev->bdev,b2));
  624. goto abort;
  625. }
  626. if (!sb_equal(refsb, sb)) {
  627. printk(KERN_WARNING "md: %s has same UUID"
  628. " but different superblock to %s\n",
  629. b, bdevname(refdev->bdev, b2));
  630. goto abort;
  631. }
  632. ev1 = md_event(sb);
  633. ev2 = md_event(refsb);
  634. if (ev1 > ev2)
  635. ret = 1;
  636. else
  637. ret = 0;
  638. }
  639. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  640. if (rdev->size < sb->size && sb->level > 1)
  641. /* "this cannot possibly happen" ... */
  642. ret = -EINVAL;
  643. abort:
  644. return ret;
  645. }
  646. /*
  647. * validate_super for 0.90.0
  648. */
  649. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  650. {
  651. mdp_disk_t *desc;
  652. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  653. __u64 ev1 = md_event(sb);
  654. rdev->raid_disk = -1;
  655. clear_bit(Faulty, &rdev->flags);
  656. clear_bit(In_sync, &rdev->flags);
  657. clear_bit(WriteMostly, &rdev->flags);
  658. clear_bit(BarriersNotsupp, &rdev->flags);
  659. if (mddev->raid_disks == 0) {
  660. mddev->major_version = 0;
  661. mddev->minor_version = sb->minor_version;
  662. mddev->patch_version = sb->patch_version;
  663. mddev->external = 0;
  664. mddev->chunk_size = sb->chunk_size;
  665. mddev->ctime = sb->ctime;
  666. mddev->utime = sb->utime;
  667. mddev->level = sb->level;
  668. mddev->clevel[0] = 0;
  669. mddev->layout = sb->layout;
  670. mddev->raid_disks = sb->raid_disks;
  671. mddev->size = sb->size;
  672. mddev->events = ev1;
  673. mddev->bitmap_offset = 0;
  674. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  675. if (mddev->minor_version >= 91) {
  676. mddev->reshape_position = sb->reshape_position;
  677. mddev->delta_disks = sb->delta_disks;
  678. mddev->new_level = sb->new_level;
  679. mddev->new_layout = sb->new_layout;
  680. mddev->new_chunk = sb->new_chunk;
  681. } else {
  682. mddev->reshape_position = MaxSector;
  683. mddev->delta_disks = 0;
  684. mddev->new_level = mddev->level;
  685. mddev->new_layout = mddev->layout;
  686. mddev->new_chunk = mddev->chunk_size;
  687. }
  688. if (sb->state & (1<<MD_SB_CLEAN))
  689. mddev->recovery_cp = MaxSector;
  690. else {
  691. if (sb->events_hi == sb->cp_events_hi &&
  692. sb->events_lo == sb->cp_events_lo) {
  693. mddev->recovery_cp = sb->recovery_cp;
  694. } else
  695. mddev->recovery_cp = 0;
  696. }
  697. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  698. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  699. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  700. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  701. mddev->max_disks = MD_SB_DISKS;
  702. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  703. mddev->bitmap_file == NULL)
  704. mddev->bitmap_offset = mddev->default_bitmap_offset;
  705. } else if (mddev->pers == NULL) {
  706. /* Insist on good event counter while assembling */
  707. ++ev1;
  708. if (ev1 < mddev->events)
  709. return -EINVAL;
  710. } else if (mddev->bitmap) {
  711. /* if adding to array with a bitmap, then we can accept an
  712. * older device ... but not too old.
  713. */
  714. if (ev1 < mddev->bitmap->events_cleared)
  715. return 0;
  716. } else {
  717. if (ev1 < mddev->events)
  718. /* just a hot-add of a new device, leave raid_disk at -1 */
  719. return 0;
  720. }
  721. if (mddev->level != LEVEL_MULTIPATH) {
  722. desc = sb->disks + rdev->desc_nr;
  723. if (desc->state & (1<<MD_DISK_FAULTY))
  724. set_bit(Faulty, &rdev->flags);
  725. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  726. desc->raid_disk < mddev->raid_disks */) {
  727. set_bit(In_sync, &rdev->flags);
  728. rdev->raid_disk = desc->raid_disk;
  729. }
  730. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  731. set_bit(WriteMostly, &rdev->flags);
  732. } else /* MULTIPATH are always insync */
  733. set_bit(In_sync, &rdev->flags);
  734. return 0;
  735. }
  736. /*
  737. * sync_super for 0.90.0
  738. */
  739. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  740. {
  741. mdp_super_t *sb;
  742. struct list_head *tmp;
  743. mdk_rdev_t *rdev2;
  744. int next_spare = mddev->raid_disks;
  745. /* make rdev->sb match mddev data..
  746. *
  747. * 1/ zero out disks
  748. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  749. * 3/ any empty disks < next_spare become removed
  750. *
  751. * disks[0] gets initialised to REMOVED because
  752. * we cannot be sure from other fields if it has
  753. * been initialised or not.
  754. */
  755. int i;
  756. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  757. rdev->sb_size = MD_SB_BYTES;
  758. sb = (mdp_super_t*)page_address(rdev->sb_page);
  759. memset(sb, 0, sizeof(*sb));
  760. sb->md_magic = MD_SB_MAGIC;
  761. sb->major_version = mddev->major_version;
  762. sb->patch_version = mddev->patch_version;
  763. sb->gvalid_words = 0; /* ignored */
  764. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  765. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  766. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  767. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  768. sb->ctime = mddev->ctime;
  769. sb->level = mddev->level;
  770. sb->size = mddev->size;
  771. sb->raid_disks = mddev->raid_disks;
  772. sb->md_minor = mddev->md_minor;
  773. sb->not_persistent = 0;
  774. sb->utime = mddev->utime;
  775. sb->state = 0;
  776. sb->events_hi = (mddev->events>>32);
  777. sb->events_lo = (u32)mddev->events;
  778. if (mddev->reshape_position == MaxSector)
  779. sb->minor_version = 90;
  780. else {
  781. sb->minor_version = 91;
  782. sb->reshape_position = mddev->reshape_position;
  783. sb->new_level = mddev->new_level;
  784. sb->delta_disks = mddev->delta_disks;
  785. sb->new_layout = mddev->new_layout;
  786. sb->new_chunk = mddev->new_chunk;
  787. }
  788. mddev->minor_version = sb->minor_version;
  789. if (mddev->in_sync)
  790. {
  791. sb->recovery_cp = mddev->recovery_cp;
  792. sb->cp_events_hi = (mddev->events>>32);
  793. sb->cp_events_lo = (u32)mddev->events;
  794. if (mddev->recovery_cp == MaxSector)
  795. sb->state = (1<< MD_SB_CLEAN);
  796. } else
  797. sb->recovery_cp = 0;
  798. sb->layout = mddev->layout;
  799. sb->chunk_size = mddev->chunk_size;
  800. if (mddev->bitmap && mddev->bitmap_file == NULL)
  801. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  802. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  803. ITERATE_RDEV(mddev,rdev2,tmp) {
  804. mdp_disk_t *d;
  805. int desc_nr;
  806. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  807. && !test_bit(Faulty, &rdev2->flags))
  808. desc_nr = rdev2->raid_disk;
  809. else
  810. desc_nr = next_spare++;
  811. rdev2->desc_nr = desc_nr;
  812. d = &sb->disks[rdev2->desc_nr];
  813. nr_disks++;
  814. d->number = rdev2->desc_nr;
  815. d->major = MAJOR(rdev2->bdev->bd_dev);
  816. d->minor = MINOR(rdev2->bdev->bd_dev);
  817. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  818. && !test_bit(Faulty, &rdev2->flags))
  819. d->raid_disk = rdev2->raid_disk;
  820. else
  821. d->raid_disk = rdev2->desc_nr; /* compatibility */
  822. if (test_bit(Faulty, &rdev2->flags))
  823. d->state = (1<<MD_DISK_FAULTY);
  824. else if (test_bit(In_sync, &rdev2->flags)) {
  825. d->state = (1<<MD_DISK_ACTIVE);
  826. d->state |= (1<<MD_DISK_SYNC);
  827. active++;
  828. working++;
  829. } else {
  830. d->state = 0;
  831. spare++;
  832. working++;
  833. }
  834. if (test_bit(WriteMostly, &rdev2->flags))
  835. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  836. }
  837. /* now set the "removed" and "faulty" bits on any missing devices */
  838. for (i=0 ; i < mddev->raid_disks ; i++) {
  839. mdp_disk_t *d = &sb->disks[i];
  840. if (d->state == 0 && d->number == 0) {
  841. d->number = i;
  842. d->raid_disk = i;
  843. d->state = (1<<MD_DISK_REMOVED);
  844. d->state |= (1<<MD_DISK_FAULTY);
  845. failed++;
  846. }
  847. }
  848. sb->nr_disks = nr_disks;
  849. sb->active_disks = active;
  850. sb->working_disks = working;
  851. sb->failed_disks = failed;
  852. sb->spare_disks = spare;
  853. sb->this_disk = sb->disks[rdev->desc_nr];
  854. sb->sb_csum = calc_sb_csum(sb);
  855. }
  856. /*
  857. * version 1 superblock
  858. */
  859. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  860. {
  861. __le32 disk_csum;
  862. u32 csum;
  863. unsigned long long newcsum;
  864. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  865. __le32 *isuper = (__le32*)sb;
  866. int i;
  867. disk_csum = sb->sb_csum;
  868. sb->sb_csum = 0;
  869. newcsum = 0;
  870. for (i=0; size>=4; size -= 4 )
  871. newcsum += le32_to_cpu(*isuper++);
  872. if (size == 2)
  873. newcsum += le16_to_cpu(*(__le16*) isuper);
  874. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  875. sb->sb_csum = disk_csum;
  876. return cpu_to_le32(csum);
  877. }
  878. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  879. {
  880. struct mdp_superblock_1 *sb;
  881. int ret;
  882. sector_t sb_offset;
  883. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  884. int bmask;
  885. /*
  886. * Calculate the position of the superblock.
  887. * It is always aligned to a 4K boundary and
  888. * depeding on minor_version, it can be:
  889. * 0: At least 8K, but less than 12K, from end of device
  890. * 1: At start of device
  891. * 2: 4K from start of device.
  892. */
  893. switch(minor_version) {
  894. case 0:
  895. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  896. sb_offset -= 8*2;
  897. sb_offset &= ~(sector_t)(4*2-1);
  898. /* convert from sectors to K */
  899. sb_offset /= 2;
  900. break;
  901. case 1:
  902. sb_offset = 0;
  903. break;
  904. case 2:
  905. sb_offset = 4;
  906. break;
  907. default:
  908. return -EINVAL;
  909. }
  910. rdev->sb_offset = sb_offset;
  911. /* superblock is rarely larger than 1K, but it can be larger,
  912. * and it is safe to read 4k, so we do that
  913. */
  914. ret = read_disk_sb(rdev, 4096);
  915. if (ret) return ret;
  916. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  917. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  918. sb->major_version != cpu_to_le32(1) ||
  919. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  920. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  921. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  922. return -EINVAL;
  923. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  924. printk("md: invalid superblock checksum on %s\n",
  925. bdevname(rdev->bdev,b));
  926. return -EINVAL;
  927. }
  928. if (le64_to_cpu(sb->data_size) < 10) {
  929. printk("md: data_size too small on %s\n",
  930. bdevname(rdev->bdev,b));
  931. return -EINVAL;
  932. }
  933. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
  934. if (sb->level != cpu_to_le32(1) &&
  935. sb->level != cpu_to_le32(4) &&
  936. sb->level != cpu_to_le32(5) &&
  937. sb->level != cpu_to_le32(6) &&
  938. sb->level != cpu_to_le32(10)) {
  939. printk(KERN_WARNING
  940. "md: bitmaps not supported for this level.\n");
  941. return -EINVAL;
  942. }
  943. }
  944. rdev->preferred_minor = 0xffff;
  945. rdev->data_offset = le64_to_cpu(sb->data_offset);
  946. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  947. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  948. bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
  949. if (rdev->sb_size & bmask)
  950. rdev-> sb_size = (rdev->sb_size | bmask)+1;
  951. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  952. rdev->desc_nr = -1;
  953. else
  954. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  955. if (refdev == 0)
  956. ret = 1;
  957. else {
  958. __u64 ev1, ev2;
  959. struct mdp_superblock_1 *refsb =
  960. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  961. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  962. sb->level != refsb->level ||
  963. sb->layout != refsb->layout ||
  964. sb->chunksize != refsb->chunksize) {
  965. printk(KERN_WARNING "md: %s has strangely different"
  966. " superblock to %s\n",
  967. bdevname(rdev->bdev,b),
  968. bdevname(refdev->bdev,b2));
  969. return -EINVAL;
  970. }
  971. ev1 = le64_to_cpu(sb->events);
  972. ev2 = le64_to_cpu(refsb->events);
  973. if (ev1 > ev2)
  974. ret = 1;
  975. else
  976. ret = 0;
  977. }
  978. if (minor_version)
  979. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  980. else
  981. rdev->size = rdev->sb_offset;
  982. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  983. return -EINVAL;
  984. rdev->size = le64_to_cpu(sb->data_size)/2;
  985. if (le32_to_cpu(sb->chunksize))
  986. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  987. if (le64_to_cpu(sb->size) > rdev->size*2)
  988. return -EINVAL;
  989. return ret;
  990. }
  991. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  992. {
  993. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  994. __u64 ev1 = le64_to_cpu(sb->events);
  995. rdev->raid_disk = -1;
  996. clear_bit(Faulty, &rdev->flags);
  997. clear_bit(In_sync, &rdev->flags);
  998. clear_bit(WriteMostly, &rdev->flags);
  999. clear_bit(BarriersNotsupp, &rdev->flags);
  1000. if (mddev->raid_disks == 0) {
  1001. mddev->major_version = 1;
  1002. mddev->patch_version = 0;
  1003. mddev->external = 0;
  1004. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  1005. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1006. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1007. mddev->level = le32_to_cpu(sb->level);
  1008. mddev->clevel[0] = 0;
  1009. mddev->layout = le32_to_cpu(sb->layout);
  1010. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1011. mddev->size = le64_to_cpu(sb->size)/2;
  1012. mddev->events = ev1;
  1013. mddev->bitmap_offset = 0;
  1014. mddev->default_bitmap_offset = 1024 >> 9;
  1015. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1016. memcpy(mddev->uuid, sb->set_uuid, 16);
  1017. mddev->max_disks = (4096-256)/2;
  1018. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1019. mddev->bitmap_file == NULL )
  1020. mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
  1021. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1022. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1023. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1024. mddev->new_level = le32_to_cpu(sb->new_level);
  1025. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1026. mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
  1027. } else {
  1028. mddev->reshape_position = MaxSector;
  1029. mddev->delta_disks = 0;
  1030. mddev->new_level = mddev->level;
  1031. mddev->new_layout = mddev->layout;
  1032. mddev->new_chunk = mddev->chunk_size;
  1033. }
  1034. } else if (mddev->pers == NULL) {
  1035. /* Insist of good event counter while assembling */
  1036. ++ev1;
  1037. if (ev1 < mddev->events)
  1038. return -EINVAL;
  1039. } else if (mddev->bitmap) {
  1040. /* If adding to array with a bitmap, then we can accept an
  1041. * older device, but not too old.
  1042. */
  1043. if (ev1 < mddev->bitmap->events_cleared)
  1044. return 0;
  1045. } else {
  1046. if (ev1 < mddev->events)
  1047. /* just a hot-add of a new device, leave raid_disk at -1 */
  1048. return 0;
  1049. }
  1050. if (mddev->level != LEVEL_MULTIPATH) {
  1051. int role;
  1052. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1053. switch(role) {
  1054. case 0xffff: /* spare */
  1055. break;
  1056. case 0xfffe: /* faulty */
  1057. set_bit(Faulty, &rdev->flags);
  1058. break;
  1059. default:
  1060. if ((le32_to_cpu(sb->feature_map) &
  1061. MD_FEATURE_RECOVERY_OFFSET))
  1062. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1063. else
  1064. set_bit(In_sync, &rdev->flags);
  1065. rdev->raid_disk = role;
  1066. break;
  1067. }
  1068. if (sb->devflags & WriteMostly1)
  1069. set_bit(WriteMostly, &rdev->flags);
  1070. } else /* MULTIPATH are always insync */
  1071. set_bit(In_sync, &rdev->flags);
  1072. return 0;
  1073. }
  1074. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  1075. {
  1076. struct mdp_superblock_1 *sb;
  1077. struct list_head *tmp;
  1078. mdk_rdev_t *rdev2;
  1079. int max_dev, i;
  1080. /* make rdev->sb match mddev and rdev data. */
  1081. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  1082. sb->feature_map = 0;
  1083. sb->pad0 = 0;
  1084. sb->recovery_offset = cpu_to_le64(0);
  1085. memset(sb->pad1, 0, sizeof(sb->pad1));
  1086. memset(sb->pad2, 0, sizeof(sb->pad2));
  1087. memset(sb->pad3, 0, sizeof(sb->pad3));
  1088. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1089. sb->events = cpu_to_le64(mddev->events);
  1090. if (mddev->in_sync)
  1091. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1092. else
  1093. sb->resync_offset = cpu_to_le64(0);
  1094. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1095. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1096. sb->size = cpu_to_le64(mddev->size<<1);
  1097. if (mddev->bitmap && mddev->bitmap_file == NULL) {
  1098. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
  1099. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1100. }
  1101. if (rdev->raid_disk >= 0 &&
  1102. !test_bit(In_sync, &rdev->flags) &&
  1103. rdev->recovery_offset > 0) {
  1104. sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1105. sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
  1106. }
  1107. if (mddev->reshape_position != MaxSector) {
  1108. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1109. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1110. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1111. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1112. sb->new_level = cpu_to_le32(mddev->new_level);
  1113. sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
  1114. }
  1115. max_dev = 0;
  1116. ITERATE_RDEV(mddev,rdev2,tmp)
  1117. if (rdev2->desc_nr+1 > max_dev)
  1118. max_dev = rdev2->desc_nr+1;
  1119. if (max_dev > le32_to_cpu(sb->max_dev))
  1120. sb->max_dev = cpu_to_le32(max_dev);
  1121. for (i=0; i<max_dev;i++)
  1122. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1123. ITERATE_RDEV(mddev,rdev2,tmp) {
  1124. i = rdev2->desc_nr;
  1125. if (test_bit(Faulty, &rdev2->flags))
  1126. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1127. else if (test_bit(In_sync, &rdev2->flags))
  1128. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1129. else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
  1130. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1131. else
  1132. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1133. }
  1134. sb->sb_csum = calc_sb_1_csum(sb);
  1135. }
  1136. static struct super_type super_types[] = {
  1137. [0] = {
  1138. .name = "0.90.0",
  1139. .owner = THIS_MODULE,
  1140. .load_super = super_90_load,
  1141. .validate_super = super_90_validate,
  1142. .sync_super = super_90_sync,
  1143. },
  1144. [1] = {
  1145. .name = "md-1",
  1146. .owner = THIS_MODULE,
  1147. .load_super = super_1_load,
  1148. .validate_super = super_1_validate,
  1149. .sync_super = super_1_sync,
  1150. },
  1151. };
  1152. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  1153. {
  1154. struct list_head *tmp, *tmp2;
  1155. mdk_rdev_t *rdev, *rdev2;
  1156. ITERATE_RDEV(mddev1,rdev,tmp)
  1157. ITERATE_RDEV(mddev2, rdev2, tmp2)
  1158. if (rdev->bdev->bd_contains ==
  1159. rdev2->bdev->bd_contains)
  1160. return 1;
  1161. return 0;
  1162. }
  1163. static LIST_HEAD(pending_raid_disks);
  1164. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  1165. {
  1166. char b[BDEVNAME_SIZE];
  1167. struct kobject *ko;
  1168. char *s;
  1169. int err;
  1170. if (rdev->mddev) {
  1171. MD_BUG();
  1172. return -EINVAL;
  1173. }
  1174. /* make sure rdev->size exceeds mddev->size */
  1175. if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
  1176. if (mddev->pers) {
  1177. /* Cannot change size, so fail
  1178. * If mddev->level <= 0, then we don't care
  1179. * about aligning sizes (e.g. linear)
  1180. */
  1181. if (mddev->level > 0)
  1182. return -ENOSPC;
  1183. } else
  1184. mddev->size = rdev->size;
  1185. }
  1186. /* Verify rdev->desc_nr is unique.
  1187. * If it is -1, assign a free number, else
  1188. * check number is not in use
  1189. */
  1190. if (rdev->desc_nr < 0) {
  1191. int choice = 0;
  1192. if (mddev->pers) choice = mddev->raid_disks;
  1193. while (find_rdev_nr(mddev, choice))
  1194. choice++;
  1195. rdev->desc_nr = choice;
  1196. } else {
  1197. if (find_rdev_nr(mddev, rdev->desc_nr))
  1198. return -EBUSY;
  1199. }
  1200. bdevname(rdev->bdev,b);
  1201. while ( (s=strchr(b, '/')) != NULL)
  1202. *s = '!';
  1203. rdev->mddev = mddev;
  1204. printk(KERN_INFO "md: bind<%s>\n", b);
  1205. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1206. goto fail;
  1207. if (rdev->bdev->bd_part)
  1208. ko = &rdev->bdev->bd_part->dev.kobj;
  1209. else
  1210. ko = &rdev->bdev->bd_disk->dev.kobj;
  1211. if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
  1212. kobject_del(&rdev->kobj);
  1213. goto fail;
  1214. }
  1215. list_add(&rdev->same_set, &mddev->disks);
  1216. bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
  1217. return 0;
  1218. fail:
  1219. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1220. b, mdname(mddev));
  1221. return err;
  1222. }
  1223. static void delayed_delete(struct work_struct *ws)
  1224. {
  1225. mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
  1226. kobject_del(&rdev->kobj);
  1227. }
  1228. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  1229. {
  1230. char b[BDEVNAME_SIZE];
  1231. if (!rdev->mddev) {
  1232. MD_BUG();
  1233. return;
  1234. }
  1235. bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
  1236. list_del_init(&rdev->same_set);
  1237. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1238. rdev->mddev = NULL;
  1239. sysfs_remove_link(&rdev->kobj, "block");
  1240. /* We need to delay this, otherwise we can deadlock when
  1241. * writing to 'remove' to "dev/state"
  1242. */
  1243. INIT_WORK(&rdev->del_work, delayed_delete);
  1244. schedule_work(&rdev->del_work);
  1245. }
  1246. /*
  1247. * prevent the device from being mounted, repartitioned or
  1248. * otherwise reused by a RAID array (or any other kernel
  1249. * subsystem), by bd_claiming the device.
  1250. */
  1251. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
  1252. {
  1253. int err = 0;
  1254. struct block_device *bdev;
  1255. char b[BDEVNAME_SIZE];
  1256. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  1257. if (IS_ERR(bdev)) {
  1258. printk(KERN_ERR "md: could not open %s.\n",
  1259. __bdevname(dev, b));
  1260. return PTR_ERR(bdev);
  1261. }
  1262. err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
  1263. if (err) {
  1264. printk(KERN_ERR "md: could not bd_claim %s.\n",
  1265. bdevname(bdev, b));
  1266. blkdev_put(bdev);
  1267. return err;
  1268. }
  1269. if (!shared)
  1270. set_bit(AllReserved, &rdev->flags);
  1271. rdev->bdev = bdev;
  1272. return err;
  1273. }
  1274. static void unlock_rdev(mdk_rdev_t *rdev)
  1275. {
  1276. struct block_device *bdev = rdev->bdev;
  1277. rdev->bdev = NULL;
  1278. if (!bdev)
  1279. MD_BUG();
  1280. bd_release(bdev);
  1281. blkdev_put(bdev);
  1282. }
  1283. void md_autodetect_dev(dev_t dev);
  1284. static void export_rdev(mdk_rdev_t * rdev)
  1285. {
  1286. char b[BDEVNAME_SIZE];
  1287. printk(KERN_INFO "md: export_rdev(%s)\n",
  1288. bdevname(rdev->bdev,b));
  1289. if (rdev->mddev)
  1290. MD_BUG();
  1291. free_disk_sb(rdev);
  1292. list_del_init(&rdev->same_set);
  1293. #ifndef MODULE
  1294. md_autodetect_dev(rdev->bdev->bd_dev);
  1295. #endif
  1296. unlock_rdev(rdev);
  1297. kobject_put(&rdev->kobj);
  1298. }
  1299. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1300. {
  1301. unbind_rdev_from_array(rdev);
  1302. export_rdev(rdev);
  1303. }
  1304. static void export_array(mddev_t *mddev)
  1305. {
  1306. struct list_head *tmp;
  1307. mdk_rdev_t *rdev;
  1308. ITERATE_RDEV(mddev,rdev,tmp) {
  1309. if (!rdev->mddev) {
  1310. MD_BUG();
  1311. continue;
  1312. }
  1313. kick_rdev_from_array(rdev);
  1314. }
  1315. if (!list_empty(&mddev->disks))
  1316. MD_BUG();
  1317. mddev->raid_disks = 0;
  1318. mddev->major_version = 0;
  1319. }
  1320. static void print_desc(mdp_disk_t *desc)
  1321. {
  1322. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1323. desc->major,desc->minor,desc->raid_disk,desc->state);
  1324. }
  1325. static void print_sb(mdp_super_t *sb)
  1326. {
  1327. int i;
  1328. printk(KERN_INFO
  1329. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1330. sb->major_version, sb->minor_version, sb->patch_version,
  1331. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1332. sb->ctime);
  1333. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1334. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1335. sb->md_minor, sb->layout, sb->chunk_size);
  1336. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1337. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1338. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1339. sb->failed_disks, sb->spare_disks,
  1340. sb->sb_csum, (unsigned long)sb->events_lo);
  1341. printk(KERN_INFO);
  1342. for (i = 0; i < MD_SB_DISKS; i++) {
  1343. mdp_disk_t *desc;
  1344. desc = sb->disks + i;
  1345. if (desc->number || desc->major || desc->minor ||
  1346. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1347. printk(" D %2d: ", i);
  1348. print_desc(desc);
  1349. }
  1350. }
  1351. printk(KERN_INFO "md: THIS: ");
  1352. print_desc(&sb->this_disk);
  1353. }
  1354. static void print_rdev(mdk_rdev_t *rdev)
  1355. {
  1356. char b[BDEVNAME_SIZE];
  1357. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1358. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1359. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  1360. rdev->desc_nr);
  1361. if (rdev->sb_loaded) {
  1362. printk(KERN_INFO "md: rdev superblock:\n");
  1363. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1364. } else
  1365. printk(KERN_INFO "md: no rdev superblock!\n");
  1366. }
  1367. static void md_print_devices(void)
  1368. {
  1369. struct list_head *tmp, *tmp2;
  1370. mdk_rdev_t *rdev;
  1371. mddev_t *mddev;
  1372. char b[BDEVNAME_SIZE];
  1373. printk("\n");
  1374. printk("md: **********************************\n");
  1375. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1376. printk("md: **********************************\n");
  1377. ITERATE_MDDEV(mddev,tmp) {
  1378. if (mddev->bitmap)
  1379. bitmap_print_sb(mddev->bitmap);
  1380. else
  1381. printk("%s: ", mdname(mddev));
  1382. ITERATE_RDEV(mddev,rdev,tmp2)
  1383. printk("<%s>", bdevname(rdev->bdev,b));
  1384. printk("\n");
  1385. ITERATE_RDEV(mddev,rdev,tmp2)
  1386. print_rdev(rdev);
  1387. }
  1388. printk("md: **********************************\n");
  1389. printk("\n");
  1390. }
  1391. static void sync_sbs(mddev_t * mddev, int nospares)
  1392. {
  1393. /* Update each superblock (in-memory image), but
  1394. * if we are allowed to, skip spares which already
  1395. * have the right event counter, or have one earlier
  1396. * (which would mean they aren't being marked as dirty
  1397. * with the rest of the array)
  1398. */
  1399. mdk_rdev_t *rdev;
  1400. struct list_head *tmp;
  1401. ITERATE_RDEV(mddev,rdev,tmp) {
  1402. if (rdev->sb_events == mddev->events ||
  1403. (nospares &&
  1404. rdev->raid_disk < 0 &&
  1405. (rdev->sb_events&1)==0 &&
  1406. rdev->sb_events+1 == mddev->events)) {
  1407. /* Don't update this superblock */
  1408. rdev->sb_loaded = 2;
  1409. } else {
  1410. super_types[mddev->major_version].
  1411. sync_super(mddev, rdev);
  1412. rdev->sb_loaded = 1;
  1413. }
  1414. }
  1415. }
  1416. static void md_update_sb(mddev_t * mddev, int force_change)
  1417. {
  1418. struct list_head *tmp;
  1419. mdk_rdev_t *rdev;
  1420. int sync_req;
  1421. int nospares = 0;
  1422. repeat:
  1423. spin_lock_irq(&mddev->write_lock);
  1424. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  1425. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  1426. force_change = 1;
  1427. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  1428. /* just a clean<-> dirty transition, possibly leave spares alone,
  1429. * though if events isn't the right even/odd, we will have to do
  1430. * spares after all
  1431. */
  1432. nospares = 1;
  1433. if (force_change)
  1434. nospares = 0;
  1435. if (mddev->degraded)
  1436. /* If the array is degraded, then skipping spares is both
  1437. * dangerous and fairly pointless.
  1438. * Dangerous because a device that was removed from the array
  1439. * might have a event_count that still looks up-to-date,
  1440. * so it can be re-added without a resync.
  1441. * Pointless because if there are any spares to skip,
  1442. * then a recovery will happen and soon that array won't
  1443. * be degraded any more and the spare can go back to sleep then.
  1444. */
  1445. nospares = 0;
  1446. sync_req = mddev->in_sync;
  1447. mddev->utime = get_seconds();
  1448. /* If this is just a dirty<->clean transition, and the array is clean
  1449. * and 'events' is odd, we can roll back to the previous clean state */
  1450. if (nospares
  1451. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  1452. && (mddev->events & 1)
  1453. && mddev->events != 1)
  1454. mddev->events--;
  1455. else {
  1456. /* otherwise we have to go forward and ... */
  1457. mddev->events ++;
  1458. if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
  1459. /* .. if the array isn't clean, insist on an odd 'events' */
  1460. if ((mddev->events&1)==0) {
  1461. mddev->events++;
  1462. nospares = 0;
  1463. }
  1464. } else {
  1465. /* otherwise insist on an even 'events' (for clean states) */
  1466. if ((mddev->events&1)) {
  1467. mddev->events++;
  1468. nospares = 0;
  1469. }
  1470. }
  1471. }
  1472. if (!mddev->events) {
  1473. /*
  1474. * oops, this 64-bit counter should never wrap.
  1475. * Either we are in around ~1 trillion A.C., assuming
  1476. * 1 reboot per second, or we have a bug:
  1477. */
  1478. MD_BUG();
  1479. mddev->events --;
  1480. }
  1481. /*
  1482. * do not write anything to disk if using
  1483. * nonpersistent superblocks
  1484. */
  1485. if (!mddev->persistent) {
  1486. if (!mddev->external)
  1487. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1488. spin_unlock_irq(&mddev->write_lock);
  1489. wake_up(&mddev->sb_wait);
  1490. return;
  1491. }
  1492. sync_sbs(mddev, nospares);
  1493. spin_unlock_irq(&mddev->write_lock);
  1494. dprintk(KERN_INFO
  1495. "md: updating %s RAID superblock on device (in sync %d)\n",
  1496. mdname(mddev),mddev->in_sync);
  1497. bitmap_update_sb(mddev->bitmap);
  1498. ITERATE_RDEV(mddev,rdev,tmp) {
  1499. char b[BDEVNAME_SIZE];
  1500. dprintk(KERN_INFO "md: ");
  1501. if (rdev->sb_loaded != 1)
  1502. continue; /* no noise on spare devices */
  1503. if (test_bit(Faulty, &rdev->flags))
  1504. dprintk("(skipping faulty ");
  1505. dprintk("%s ", bdevname(rdev->bdev,b));
  1506. if (!test_bit(Faulty, &rdev->flags)) {
  1507. md_super_write(mddev,rdev,
  1508. rdev->sb_offset<<1, rdev->sb_size,
  1509. rdev->sb_page);
  1510. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1511. bdevname(rdev->bdev,b),
  1512. (unsigned long long)rdev->sb_offset);
  1513. rdev->sb_events = mddev->events;
  1514. } else
  1515. dprintk(")\n");
  1516. if (mddev->level == LEVEL_MULTIPATH)
  1517. /* only need to write one superblock... */
  1518. break;
  1519. }
  1520. md_super_wait(mddev);
  1521. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  1522. spin_lock_irq(&mddev->write_lock);
  1523. if (mddev->in_sync != sync_req ||
  1524. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  1525. /* have to write it out again */
  1526. spin_unlock_irq(&mddev->write_lock);
  1527. goto repeat;
  1528. }
  1529. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1530. spin_unlock_irq(&mddev->write_lock);
  1531. wake_up(&mddev->sb_wait);
  1532. }
  1533. /* words written to sysfs files may, or my not, be \n terminated.
  1534. * We want to accept with case. For this we use cmd_match.
  1535. */
  1536. static int cmd_match(const char *cmd, const char *str)
  1537. {
  1538. /* See if cmd, written into a sysfs file, matches
  1539. * str. They must either be the same, or cmd can
  1540. * have a trailing newline
  1541. */
  1542. while (*cmd && *str && *cmd == *str) {
  1543. cmd++;
  1544. str++;
  1545. }
  1546. if (*cmd == '\n')
  1547. cmd++;
  1548. if (*str || *cmd)
  1549. return 0;
  1550. return 1;
  1551. }
  1552. struct rdev_sysfs_entry {
  1553. struct attribute attr;
  1554. ssize_t (*show)(mdk_rdev_t *, char *);
  1555. ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
  1556. };
  1557. static ssize_t
  1558. state_show(mdk_rdev_t *rdev, char *page)
  1559. {
  1560. char *sep = "";
  1561. int len=0;
  1562. if (test_bit(Faulty, &rdev->flags)) {
  1563. len+= sprintf(page+len, "%sfaulty",sep);
  1564. sep = ",";
  1565. }
  1566. if (test_bit(In_sync, &rdev->flags)) {
  1567. len += sprintf(page+len, "%sin_sync",sep);
  1568. sep = ",";
  1569. }
  1570. if (test_bit(WriteMostly, &rdev->flags)) {
  1571. len += sprintf(page+len, "%swrite_mostly",sep);
  1572. sep = ",";
  1573. }
  1574. if (!test_bit(Faulty, &rdev->flags) &&
  1575. !test_bit(In_sync, &rdev->flags)) {
  1576. len += sprintf(page+len, "%sspare", sep);
  1577. sep = ",";
  1578. }
  1579. return len+sprintf(page+len, "\n");
  1580. }
  1581. static ssize_t
  1582. state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1583. {
  1584. /* can write
  1585. * faulty - simulates and error
  1586. * remove - disconnects the device
  1587. * writemostly - sets write_mostly
  1588. * -writemostly - clears write_mostly
  1589. */
  1590. int err = -EINVAL;
  1591. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  1592. md_error(rdev->mddev, rdev);
  1593. err = 0;
  1594. } else if (cmd_match(buf, "remove")) {
  1595. if (rdev->raid_disk >= 0)
  1596. err = -EBUSY;
  1597. else {
  1598. mddev_t *mddev = rdev->mddev;
  1599. kick_rdev_from_array(rdev);
  1600. if (mddev->pers)
  1601. md_update_sb(mddev, 1);
  1602. md_new_event(mddev);
  1603. err = 0;
  1604. }
  1605. } else if (cmd_match(buf, "writemostly")) {
  1606. set_bit(WriteMostly, &rdev->flags);
  1607. err = 0;
  1608. } else if (cmd_match(buf, "-writemostly")) {
  1609. clear_bit(WriteMostly, &rdev->flags);
  1610. err = 0;
  1611. }
  1612. return err ? err : len;
  1613. }
  1614. static struct rdev_sysfs_entry rdev_state =
  1615. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  1616. static ssize_t
  1617. super_show(mdk_rdev_t *rdev, char *page)
  1618. {
  1619. if (rdev->sb_loaded && rdev->sb_size) {
  1620. memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
  1621. return rdev->sb_size;
  1622. } else
  1623. return 0;
  1624. }
  1625. static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
  1626. static ssize_t
  1627. errors_show(mdk_rdev_t *rdev, char *page)
  1628. {
  1629. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  1630. }
  1631. static ssize_t
  1632. errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1633. {
  1634. char *e;
  1635. unsigned long n = simple_strtoul(buf, &e, 10);
  1636. if (*buf && (*e == 0 || *e == '\n')) {
  1637. atomic_set(&rdev->corrected_errors, n);
  1638. return len;
  1639. }
  1640. return -EINVAL;
  1641. }
  1642. static struct rdev_sysfs_entry rdev_errors =
  1643. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  1644. static ssize_t
  1645. slot_show(mdk_rdev_t *rdev, char *page)
  1646. {
  1647. if (rdev->raid_disk < 0)
  1648. return sprintf(page, "none\n");
  1649. else
  1650. return sprintf(page, "%d\n", rdev->raid_disk);
  1651. }
  1652. static ssize_t
  1653. slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1654. {
  1655. char *e;
  1656. int err;
  1657. char nm[20];
  1658. int slot = simple_strtoul(buf, &e, 10);
  1659. if (strncmp(buf, "none", 4)==0)
  1660. slot = -1;
  1661. else if (e==buf || (*e && *e!= '\n'))
  1662. return -EINVAL;
  1663. if (rdev->mddev->pers) {
  1664. /* Setting 'slot' on an active array requires also
  1665. * updating the 'rd%d' link, and communicating
  1666. * with the personality with ->hot_*_disk.
  1667. * For now we only support removing
  1668. * failed/spare devices. This normally happens automatically,
  1669. * but not when the metadata is externally managed.
  1670. */
  1671. if (slot != -1)
  1672. return -EBUSY;
  1673. if (rdev->raid_disk == -1)
  1674. return -EEXIST;
  1675. /* personality does all needed checks */
  1676. if (rdev->mddev->pers->hot_add_disk == NULL)
  1677. return -EINVAL;
  1678. err = rdev->mddev->pers->
  1679. hot_remove_disk(rdev->mddev, rdev->raid_disk);
  1680. if (err)
  1681. return err;
  1682. sprintf(nm, "rd%d", rdev->raid_disk);
  1683. sysfs_remove_link(&rdev->mddev->kobj, nm);
  1684. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  1685. md_wakeup_thread(rdev->mddev->thread);
  1686. } else {
  1687. if (slot >= rdev->mddev->raid_disks)
  1688. return -ENOSPC;
  1689. rdev->raid_disk = slot;
  1690. /* assume it is working */
  1691. clear_bit(Faulty, &rdev->flags);
  1692. clear_bit(WriteMostly, &rdev->flags);
  1693. set_bit(In_sync, &rdev->flags);
  1694. }
  1695. return len;
  1696. }
  1697. static struct rdev_sysfs_entry rdev_slot =
  1698. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  1699. static ssize_t
  1700. offset_show(mdk_rdev_t *rdev, char *page)
  1701. {
  1702. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  1703. }
  1704. static ssize_t
  1705. offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1706. {
  1707. char *e;
  1708. unsigned long long offset = simple_strtoull(buf, &e, 10);
  1709. if (e==buf || (*e && *e != '\n'))
  1710. return -EINVAL;
  1711. if (rdev->mddev->pers)
  1712. return -EBUSY;
  1713. if (rdev->size && rdev->mddev->external)
  1714. /* Must set offset before size, so overlap checks
  1715. * can be sane */
  1716. return -EBUSY;
  1717. rdev->data_offset = offset;
  1718. return len;
  1719. }
  1720. static struct rdev_sysfs_entry rdev_offset =
  1721. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  1722. static ssize_t
  1723. rdev_size_show(mdk_rdev_t *rdev, char *page)
  1724. {
  1725. return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
  1726. }
  1727. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  1728. {
  1729. /* check if two start/length pairs overlap */
  1730. if (s1+l1 <= s2)
  1731. return 0;
  1732. if (s2+l2 <= s1)
  1733. return 0;
  1734. return 1;
  1735. }
  1736. static ssize_t
  1737. rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1738. {
  1739. char *e;
  1740. unsigned long long size = simple_strtoull(buf, &e, 10);
  1741. unsigned long long oldsize = rdev->size;
  1742. if (e==buf || (*e && *e != '\n'))
  1743. return -EINVAL;
  1744. if (rdev->mddev->pers)
  1745. return -EBUSY;
  1746. rdev->size = size;
  1747. if (size > oldsize && rdev->mddev->external) {
  1748. /* need to check that all other rdevs with the same ->bdev
  1749. * do not overlap. We need to unlock the mddev to avoid
  1750. * a deadlock. We have already changed rdev->size, and if
  1751. * we have to change it back, we will have the lock again.
  1752. */
  1753. mddev_t *mddev;
  1754. int overlap = 0;
  1755. struct list_head *tmp, *tmp2;
  1756. mddev_unlock(rdev->mddev);
  1757. ITERATE_MDDEV(mddev, tmp) {
  1758. mdk_rdev_t *rdev2;
  1759. mddev_lock(mddev);
  1760. ITERATE_RDEV(mddev, rdev2, tmp2)
  1761. if (test_bit(AllReserved, &rdev2->flags) ||
  1762. (rdev->bdev == rdev2->bdev &&
  1763. rdev != rdev2 &&
  1764. overlaps(rdev->data_offset, rdev->size,
  1765. rdev2->data_offset, rdev2->size))) {
  1766. overlap = 1;
  1767. break;
  1768. }
  1769. mddev_unlock(mddev);
  1770. if (overlap) {
  1771. mddev_put(mddev);
  1772. break;
  1773. }
  1774. }
  1775. mddev_lock(rdev->mddev);
  1776. if (overlap) {
  1777. /* Someone else could have slipped in a size
  1778. * change here, but doing so is just silly.
  1779. * We put oldsize back because we *know* it is
  1780. * safe, and trust userspace not to race with
  1781. * itself
  1782. */
  1783. rdev->size = oldsize;
  1784. return -EBUSY;
  1785. }
  1786. }
  1787. if (size < rdev->mddev->size || rdev->mddev->size == 0)
  1788. rdev->mddev->size = size;
  1789. return len;
  1790. }
  1791. static struct rdev_sysfs_entry rdev_size =
  1792. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  1793. static struct attribute *rdev_default_attrs[] = {
  1794. &rdev_state.attr,
  1795. &rdev_super.attr,
  1796. &rdev_errors.attr,
  1797. &rdev_slot.attr,
  1798. &rdev_offset.attr,
  1799. &rdev_size.attr,
  1800. NULL,
  1801. };
  1802. static ssize_t
  1803. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  1804. {
  1805. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1806. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1807. if (!entry->show)
  1808. return -EIO;
  1809. return entry->show(rdev, page);
  1810. }
  1811. static ssize_t
  1812. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  1813. const char *page, size_t length)
  1814. {
  1815. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1816. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1817. if (!entry->store)
  1818. return -EIO;
  1819. if (!capable(CAP_SYS_ADMIN))
  1820. return -EACCES;
  1821. return entry->store(rdev, page, length);
  1822. }
  1823. static void rdev_free(struct kobject *ko)
  1824. {
  1825. mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
  1826. kfree(rdev);
  1827. }
  1828. static struct sysfs_ops rdev_sysfs_ops = {
  1829. .show = rdev_attr_show,
  1830. .store = rdev_attr_store,
  1831. };
  1832. static struct kobj_type rdev_ktype = {
  1833. .release = rdev_free,
  1834. .sysfs_ops = &rdev_sysfs_ops,
  1835. .default_attrs = rdev_default_attrs,
  1836. };
  1837. /*
  1838. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1839. *
  1840. * mark the device faulty if:
  1841. *
  1842. * - the device is nonexistent (zero size)
  1843. * - the device has no valid superblock
  1844. *
  1845. * a faulty rdev _never_ has rdev->sb set.
  1846. */
  1847. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1848. {
  1849. char b[BDEVNAME_SIZE];
  1850. int err;
  1851. mdk_rdev_t *rdev;
  1852. sector_t size;
  1853. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  1854. if (!rdev) {
  1855. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1856. return ERR_PTR(-ENOMEM);
  1857. }
  1858. if ((err = alloc_disk_sb(rdev)))
  1859. goto abort_free;
  1860. err = lock_rdev(rdev, newdev, super_format == -2);
  1861. if (err)
  1862. goto abort_free;
  1863. kobject_init(&rdev->kobj, &rdev_ktype);
  1864. rdev->desc_nr = -1;
  1865. rdev->saved_raid_disk = -1;
  1866. rdev->raid_disk = -1;
  1867. rdev->flags = 0;
  1868. rdev->data_offset = 0;
  1869. rdev->sb_events = 0;
  1870. atomic_set(&rdev->nr_pending, 0);
  1871. atomic_set(&rdev->read_errors, 0);
  1872. atomic_set(&rdev->corrected_errors, 0);
  1873. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1874. if (!size) {
  1875. printk(KERN_WARNING
  1876. "md: %s has zero or unknown size, marking faulty!\n",
  1877. bdevname(rdev->bdev,b));
  1878. err = -EINVAL;
  1879. goto abort_free;
  1880. }
  1881. if (super_format >= 0) {
  1882. err = super_types[super_format].
  1883. load_super(rdev, NULL, super_minor);
  1884. if (err == -EINVAL) {
  1885. printk(KERN_WARNING
  1886. "md: %s does not have a valid v%d.%d "
  1887. "superblock, not importing!\n",
  1888. bdevname(rdev->bdev,b),
  1889. super_format, super_minor);
  1890. goto abort_free;
  1891. }
  1892. if (err < 0) {
  1893. printk(KERN_WARNING
  1894. "md: could not read %s's sb, not importing!\n",
  1895. bdevname(rdev->bdev,b));
  1896. goto abort_free;
  1897. }
  1898. }
  1899. INIT_LIST_HEAD(&rdev->same_set);
  1900. return rdev;
  1901. abort_free:
  1902. if (rdev->sb_page) {
  1903. if (rdev->bdev)
  1904. unlock_rdev(rdev);
  1905. free_disk_sb(rdev);
  1906. }
  1907. kfree(rdev);
  1908. return ERR_PTR(err);
  1909. }
  1910. /*
  1911. * Check a full RAID array for plausibility
  1912. */
  1913. static void analyze_sbs(mddev_t * mddev)
  1914. {
  1915. int i;
  1916. struct list_head *tmp;
  1917. mdk_rdev_t *rdev, *freshest;
  1918. char b[BDEVNAME_SIZE];
  1919. freshest = NULL;
  1920. ITERATE_RDEV(mddev,rdev,tmp)
  1921. switch (super_types[mddev->major_version].
  1922. load_super(rdev, freshest, mddev->minor_version)) {
  1923. case 1:
  1924. freshest = rdev;
  1925. break;
  1926. case 0:
  1927. break;
  1928. default:
  1929. printk( KERN_ERR \
  1930. "md: fatal superblock inconsistency in %s"
  1931. " -- removing from array\n",
  1932. bdevname(rdev->bdev,b));
  1933. kick_rdev_from_array(rdev);
  1934. }
  1935. super_types[mddev->major_version].
  1936. validate_super(mddev, freshest);
  1937. i = 0;
  1938. ITERATE_RDEV(mddev,rdev,tmp) {
  1939. if (rdev != freshest)
  1940. if (super_types[mddev->major_version].
  1941. validate_super(mddev, rdev)) {
  1942. printk(KERN_WARNING "md: kicking non-fresh %s"
  1943. " from array!\n",
  1944. bdevname(rdev->bdev,b));
  1945. kick_rdev_from_array(rdev);
  1946. continue;
  1947. }
  1948. if (mddev->level == LEVEL_MULTIPATH) {
  1949. rdev->desc_nr = i++;
  1950. rdev->raid_disk = rdev->desc_nr;
  1951. set_bit(In_sync, &rdev->flags);
  1952. } else if (rdev->raid_disk >= mddev->raid_disks) {
  1953. rdev->raid_disk = -1;
  1954. clear_bit(In_sync, &rdev->flags);
  1955. }
  1956. }
  1957. if (mddev->recovery_cp != MaxSector &&
  1958. mddev->level >= 1)
  1959. printk(KERN_ERR "md: %s: raid array is not clean"
  1960. " -- starting background reconstruction\n",
  1961. mdname(mddev));
  1962. }
  1963. static ssize_t
  1964. safe_delay_show(mddev_t *mddev, char *page)
  1965. {
  1966. int msec = (mddev->safemode_delay*1000)/HZ;
  1967. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  1968. }
  1969. static ssize_t
  1970. safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
  1971. {
  1972. int scale=1;
  1973. int dot=0;
  1974. int i;
  1975. unsigned long msec;
  1976. char buf[30];
  1977. char *e;
  1978. /* remove a period, and count digits after it */
  1979. if (len >= sizeof(buf))
  1980. return -EINVAL;
  1981. strlcpy(buf, cbuf, len);
  1982. buf[len] = 0;
  1983. for (i=0; i<len; i++) {
  1984. if (dot) {
  1985. if (isdigit(buf[i])) {
  1986. buf[i-1] = buf[i];
  1987. scale *= 10;
  1988. }
  1989. buf[i] = 0;
  1990. } else if (buf[i] == '.') {
  1991. dot=1;
  1992. buf[i] = 0;
  1993. }
  1994. }
  1995. msec = simple_strtoul(buf, &e, 10);
  1996. if (e == buf || (*e && *e != '\n'))
  1997. return -EINVAL;
  1998. msec = (msec * 1000) / scale;
  1999. if (msec == 0)
  2000. mddev->safemode_delay = 0;
  2001. else {
  2002. mddev->safemode_delay = (msec*HZ)/1000;
  2003. if (mddev->safemode_delay == 0)
  2004. mddev->safemode_delay = 1;
  2005. }
  2006. return len;
  2007. }
  2008. static struct md_sysfs_entry md_safe_delay =
  2009. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  2010. static ssize_t
  2011. level_show(mddev_t *mddev, char *page)
  2012. {
  2013. struct mdk_personality *p = mddev->pers;
  2014. if (p)
  2015. return sprintf(page, "%s\n", p->name);
  2016. else if (mddev->clevel[0])
  2017. return sprintf(page, "%s\n", mddev->clevel);
  2018. else if (mddev->level != LEVEL_NONE)
  2019. return sprintf(page, "%d\n", mddev->level);
  2020. else
  2021. return 0;
  2022. }
  2023. static ssize_t
  2024. level_store(mddev_t *mddev, const char *buf, size_t len)
  2025. {
  2026. int rv = len;
  2027. if (mddev->pers)
  2028. return -EBUSY;
  2029. if (len == 0)
  2030. return 0;
  2031. if (len >= sizeof(mddev->clevel))
  2032. return -ENOSPC;
  2033. strncpy(mddev->clevel, buf, len);
  2034. if (mddev->clevel[len-1] == '\n')
  2035. len--;
  2036. mddev->clevel[len] = 0;
  2037. mddev->level = LEVEL_NONE;
  2038. return rv;
  2039. }
  2040. static struct md_sysfs_entry md_level =
  2041. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  2042. static ssize_t
  2043. layout_show(mddev_t *mddev, char *page)
  2044. {
  2045. /* just a number, not meaningful for all levels */
  2046. if (mddev->reshape_position != MaxSector &&
  2047. mddev->layout != mddev->new_layout)
  2048. return sprintf(page, "%d (%d)\n",
  2049. mddev->new_layout, mddev->layout);
  2050. return sprintf(page, "%d\n", mddev->layout);
  2051. }
  2052. static ssize_t
  2053. layout_store(mddev_t *mddev, const char *buf, size_t len)
  2054. {
  2055. char *e;
  2056. unsigned long n = simple_strtoul(buf, &e, 10);
  2057. if (!*buf || (*e && *e != '\n'))
  2058. return -EINVAL;
  2059. if (mddev->pers)
  2060. return -EBUSY;
  2061. if (mddev->reshape_position != MaxSector)
  2062. mddev->new_layout = n;
  2063. else
  2064. mddev->layout = n;
  2065. return len;
  2066. }
  2067. static struct md_sysfs_entry md_layout =
  2068. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  2069. static ssize_t
  2070. raid_disks_show(mddev_t *mddev, char *page)
  2071. {
  2072. if (mddev->raid_disks == 0)
  2073. return 0;
  2074. if (mddev->reshape_position != MaxSector &&
  2075. mddev->delta_disks != 0)
  2076. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  2077. mddev->raid_disks - mddev->delta_disks);
  2078. return sprintf(page, "%d\n", mddev->raid_disks);
  2079. }
  2080. static int update_raid_disks(mddev_t *mddev, int raid_disks);
  2081. static ssize_t
  2082. raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
  2083. {
  2084. char *e;
  2085. int rv = 0;
  2086. unsigned long n = simple_strtoul(buf, &e, 10);
  2087. if (!*buf || (*e && *e != '\n'))
  2088. return -EINVAL;
  2089. if (mddev->pers)
  2090. rv = update_raid_disks(mddev, n);
  2091. else if (mddev->reshape_position != MaxSector) {
  2092. int olddisks = mddev->raid_disks - mddev->delta_disks;
  2093. mddev->delta_disks = n - olddisks;
  2094. mddev->raid_disks = n;
  2095. } else
  2096. mddev->raid_disks = n;
  2097. return rv ? rv : len;
  2098. }
  2099. static struct md_sysfs_entry md_raid_disks =
  2100. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  2101. static ssize_t
  2102. chunk_size_show(mddev_t *mddev, char *page)
  2103. {
  2104. if (mddev->reshape_position != MaxSector &&
  2105. mddev->chunk_size != mddev->new_chunk)
  2106. return sprintf(page, "%d (%d)\n", mddev->new_chunk,
  2107. mddev->chunk_size);
  2108. return sprintf(page, "%d\n", mddev->chunk_size);
  2109. }
  2110. static ssize_t
  2111. chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
  2112. {
  2113. /* can only set chunk_size if array is not yet active */
  2114. char *e;
  2115. unsigned long n = simple_strtoul(buf, &e, 10);
  2116. if (!*buf || (*e && *e != '\n'))
  2117. return -EINVAL;
  2118. if (mddev->pers)
  2119. return -EBUSY;
  2120. else if (mddev->reshape_position != MaxSector)
  2121. mddev->new_chunk = n;
  2122. else
  2123. mddev->chunk_size = n;
  2124. return len;
  2125. }
  2126. static struct md_sysfs_entry md_chunk_size =
  2127. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  2128. static ssize_t
  2129. resync_start_show(mddev_t *mddev, char *page)
  2130. {
  2131. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  2132. }
  2133. static ssize_t
  2134. resync_start_store(mddev_t *mddev, const char *buf, size_t len)
  2135. {
  2136. /* can only set chunk_size if array is not yet active */
  2137. char *e;
  2138. unsigned long long n = simple_strtoull(buf, &e, 10);
  2139. if (mddev->pers)
  2140. return -EBUSY;
  2141. if (!*buf || (*e && *e != '\n'))
  2142. return -EINVAL;
  2143. mddev->recovery_cp = n;
  2144. return len;
  2145. }
  2146. static struct md_sysfs_entry md_resync_start =
  2147. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  2148. /*
  2149. * The array state can be:
  2150. *
  2151. * clear
  2152. * No devices, no size, no level
  2153. * Equivalent to STOP_ARRAY ioctl
  2154. * inactive
  2155. * May have some settings, but array is not active
  2156. * all IO results in error
  2157. * When written, doesn't tear down array, but just stops it
  2158. * suspended (not supported yet)
  2159. * All IO requests will block. The array can be reconfigured.
  2160. * Writing this, if accepted, will block until array is quiessent
  2161. * readonly
  2162. * no resync can happen. no superblocks get written.
  2163. * write requests fail
  2164. * read-auto
  2165. * like readonly, but behaves like 'clean' on a write request.
  2166. *
  2167. * clean - no pending writes, but otherwise active.
  2168. * When written to inactive array, starts without resync
  2169. * If a write request arrives then
  2170. * if metadata is known, mark 'dirty' and switch to 'active'.
  2171. * if not known, block and switch to write-pending
  2172. * If written to an active array that has pending writes, then fails.
  2173. * active
  2174. * fully active: IO and resync can be happening.
  2175. * When written to inactive array, starts with resync
  2176. *
  2177. * write-pending
  2178. * clean, but writes are blocked waiting for 'active' to be written.
  2179. *
  2180. * active-idle
  2181. * like active, but no writes have been seen for a while (100msec).
  2182. *
  2183. */
  2184. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  2185. write_pending, active_idle, bad_word};
  2186. static char *array_states[] = {
  2187. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  2188. "write-pending", "active-idle", NULL };
  2189. static int match_word(const char *word, char **list)
  2190. {
  2191. int n;
  2192. for (n=0; list[n]; n++)
  2193. if (cmd_match(word, list[n]))
  2194. break;
  2195. return n;
  2196. }
  2197. static ssize_t
  2198. array_state_show(mddev_t *mddev, char *page)
  2199. {
  2200. enum array_state st = inactive;
  2201. if (mddev->pers)
  2202. switch(mddev->ro) {
  2203. case 1:
  2204. st = readonly;
  2205. break;
  2206. case 2:
  2207. st = read_auto;
  2208. break;
  2209. case 0:
  2210. if (mddev->in_sync)
  2211. st = clean;
  2212. else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2213. st = write_pending;
  2214. else if (mddev->safemode)
  2215. st = active_idle;
  2216. else
  2217. st = active;
  2218. }
  2219. else {
  2220. if (list_empty(&mddev->disks) &&
  2221. mddev->raid_disks == 0 &&
  2222. mddev->size == 0)
  2223. st = clear;
  2224. else
  2225. st = inactive;
  2226. }
  2227. return sprintf(page, "%s\n", array_states[st]);
  2228. }
  2229. static int do_md_stop(mddev_t * mddev, int ro);
  2230. static int do_md_run(mddev_t * mddev);
  2231. static int restart_array(mddev_t *mddev);
  2232. static ssize_t
  2233. array_state_store(mddev_t *mddev, const char *buf, size_t len)
  2234. {
  2235. int err = -EINVAL;
  2236. enum array_state st = match_word(buf, array_states);
  2237. switch(st) {
  2238. case bad_word:
  2239. break;
  2240. case clear:
  2241. /* stopping an active array */
  2242. if (atomic_read(&mddev->active) > 1)
  2243. return -EBUSY;
  2244. err = do_md_stop(mddev, 0);
  2245. break;
  2246. case inactive:
  2247. /* stopping an active array */
  2248. if (mddev->pers) {
  2249. if (atomic_read(&mddev->active) > 1)
  2250. return -EBUSY;
  2251. err = do_md_stop(mddev, 2);
  2252. } else
  2253. err = 0; /* already inactive */
  2254. break;
  2255. case suspended:
  2256. break; /* not supported yet */
  2257. case readonly:
  2258. if (mddev->pers)
  2259. err = do_md_stop(mddev, 1);
  2260. else {
  2261. mddev->ro = 1;
  2262. err = do_md_run(mddev);
  2263. }
  2264. break;
  2265. case read_auto:
  2266. /* stopping an active array */
  2267. if (mddev->pers) {
  2268. err = do_md_stop(mddev, 1);
  2269. if (err == 0)
  2270. mddev->ro = 2; /* FIXME mark devices writable */
  2271. } else {
  2272. mddev->ro = 2;
  2273. err = do_md_run(mddev);
  2274. }
  2275. break;
  2276. case clean:
  2277. if (mddev->pers) {
  2278. restart_array(mddev);
  2279. spin_lock_irq(&mddev->write_lock);
  2280. if (atomic_read(&mddev->writes_pending) == 0) {
  2281. if (mddev->in_sync == 0) {
  2282. mddev->in_sync = 1;
  2283. if (mddev->persistent)
  2284. set_bit(MD_CHANGE_CLEAN,
  2285. &mddev->flags);
  2286. }
  2287. err = 0;
  2288. } else
  2289. err = -EBUSY;
  2290. spin_unlock_irq(&mddev->write_lock);
  2291. } else {
  2292. mddev->ro = 0;
  2293. mddev->recovery_cp = MaxSector;
  2294. err = do_md_run(mddev);
  2295. }
  2296. break;
  2297. case active:
  2298. if (mddev->pers) {
  2299. restart_array(mddev);
  2300. if (mddev->external)
  2301. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2302. wake_up(&mddev->sb_wait);
  2303. err = 0;
  2304. } else {
  2305. mddev->ro = 0;
  2306. err = do_md_run(mddev);
  2307. }
  2308. break;
  2309. case write_pending:
  2310. case active_idle:
  2311. /* these cannot be set */
  2312. break;
  2313. }
  2314. if (err)
  2315. return err;
  2316. else
  2317. return len;
  2318. }
  2319. static struct md_sysfs_entry md_array_state =
  2320. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  2321. static ssize_t
  2322. null_show(mddev_t *mddev, char *page)
  2323. {
  2324. return -EINVAL;
  2325. }
  2326. static ssize_t
  2327. new_dev_store(mddev_t *mddev, const char *buf, size_t len)
  2328. {
  2329. /* buf must be %d:%d\n? giving major and minor numbers */
  2330. /* The new device is added to the array.
  2331. * If the array has a persistent superblock, we read the
  2332. * superblock to initialise info and check validity.
  2333. * Otherwise, only checking done is that in bind_rdev_to_array,
  2334. * which mainly checks size.
  2335. */
  2336. char *e;
  2337. int major = simple_strtoul(buf, &e, 10);
  2338. int minor;
  2339. dev_t dev;
  2340. mdk_rdev_t *rdev;
  2341. int err;
  2342. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  2343. return -EINVAL;
  2344. minor = simple_strtoul(e+1, &e, 10);
  2345. if (*e && *e != '\n')
  2346. return -EINVAL;
  2347. dev = MKDEV(major, minor);
  2348. if (major != MAJOR(dev) ||
  2349. minor != MINOR(dev))
  2350. return -EOVERFLOW;
  2351. if (mddev->persistent) {
  2352. rdev = md_import_device(dev, mddev->major_version,
  2353. mddev->minor_version);
  2354. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  2355. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  2356. mdk_rdev_t, same_set);
  2357. err = super_types[mddev->major_version]
  2358. .load_super(rdev, rdev0, mddev->minor_version);
  2359. if (err < 0)
  2360. goto out;
  2361. }
  2362. } else if (mddev->external)
  2363. rdev = md_import_device(dev, -2, -1);
  2364. else
  2365. rdev = md_import_device(dev, -1, -1);
  2366. if (IS_ERR(rdev))
  2367. return PTR_ERR(rdev);
  2368. err = bind_rdev_to_array(rdev, mddev);
  2369. out:
  2370. if (err)
  2371. export_rdev(rdev);
  2372. return err ? err : len;
  2373. }
  2374. static struct md_sysfs_entry md_new_device =
  2375. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  2376. static ssize_t
  2377. bitmap_store(mddev_t *mddev, const char *buf, size_t len)
  2378. {
  2379. char *end;
  2380. unsigned long chunk, end_chunk;
  2381. if (!mddev->bitmap)
  2382. goto out;
  2383. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  2384. while (*buf) {
  2385. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  2386. if (buf == end) break;
  2387. if (*end == '-') { /* range */
  2388. buf = end + 1;
  2389. end_chunk = simple_strtoul(buf, &end, 0);
  2390. if (buf == end) break;
  2391. }
  2392. if (*end && !isspace(*end)) break;
  2393. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  2394. buf = end;
  2395. while (isspace(*buf)) buf++;
  2396. }
  2397. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  2398. out:
  2399. return len;
  2400. }
  2401. static struct md_sysfs_entry md_bitmap =
  2402. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  2403. static ssize_t
  2404. size_show(mddev_t *mddev, char *page)
  2405. {
  2406. return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
  2407. }
  2408. static int update_size(mddev_t *mddev, unsigned long size);
  2409. static ssize_t
  2410. size_store(mddev_t *mddev, const char *buf, size_t len)
  2411. {
  2412. /* If array is inactive, we can reduce the component size, but
  2413. * not increase it (except from 0).
  2414. * If array is active, we can try an on-line resize
  2415. */
  2416. char *e;
  2417. int err = 0;
  2418. unsigned long long size = simple_strtoull(buf, &e, 10);
  2419. if (!*buf || *buf == '\n' ||
  2420. (*e && *e != '\n'))
  2421. return -EINVAL;
  2422. if (mddev->pers) {
  2423. err = update_size(mddev, size);
  2424. md_update_sb(mddev, 1);
  2425. } else {
  2426. if (mddev->size == 0 ||
  2427. mddev->size > size)
  2428. mddev->size = size;
  2429. else
  2430. err = -ENOSPC;
  2431. }
  2432. return err ? err : len;
  2433. }
  2434. static struct md_sysfs_entry md_size =
  2435. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  2436. /* Metdata version.
  2437. * This is one of
  2438. * 'none' for arrays with no metadata (good luck...)
  2439. * 'external' for arrays with externally managed metadata,
  2440. * or N.M for internally known formats
  2441. */
  2442. static ssize_t
  2443. metadata_show(mddev_t *mddev, char *page)
  2444. {
  2445. if (mddev->persistent)
  2446. return sprintf(page, "%d.%d\n",
  2447. mddev->major_version, mddev->minor_version);
  2448. else if (mddev->external)
  2449. return sprintf(page, "external:%s\n", mddev->metadata_type);
  2450. else
  2451. return sprintf(page, "none\n");
  2452. }
  2453. static ssize_t
  2454. metadata_store(mddev_t *mddev, const char *buf, size_t len)
  2455. {
  2456. int major, minor;
  2457. char *e;
  2458. if (!list_empty(&mddev->disks))
  2459. return -EBUSY;
  2460. if (cmd_match(buf, "none")) {
  2461. mddev->persistent = 0;
  2462. mddev->external = 0;
  2463. mddev->major_version = 0;
  2464. mddev->minor_version = 90;
  2465. return len;
  2466. }
  2467. if (strncmp(buf, "external:", 9) == 0) {
  2468. int namelen = len-9;
  2469. if (namelen >= sizeof(mddev->metadata_type))
  2470. namelen = sizeof(mddev->metadata_type)-1;
  2471. strncpy(mddev->metadata_type, buf+9, namelen);
  2472. mddev->metadata_type[namelen] = 0;
  2473. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  2474. mddev->metadata_type[--namelen] = 0;
  2475. mddev->persistent = 0;
  2476. mddev->external = 1;
  2477. mddev->major_version = 0;
  2478. mddev->minor_version = 90;
  2479. return len;
  2480. }
  2481. major = simple_strtoul(buf, &e, 10);
  2482. if (e==buf || *e != '.')
  2483. return -EINVAL;
  2484. buf = e+1;
  2485. minor = simple_strtoul(buf, &e, 10);
  2486. if (e==buf || (*e && *e != '\n') )
  2487. return -EINVAL;
  2488. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  2489. return -ENOENT;
  2490. mddev->major_version = major;
  2491. mddev->minor_version = minor;
  2492. mddev->persistent = 1;
  2493. mddev->external = 0;
  2494. return len;
  2495. }
  2496. static struct md_sysfs_entry md_metadata =
  2497. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  2498. static ssize_t
  2499. action_show(mddev_t *mddev, char *page)
  2500. {
  2501. char *type = "idle";
  2502. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2503. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  2504. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  2505. type = "reshape";
  2506. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  2507. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  2508. type = "resync";
  2509. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  2510. type = "check";
  2511. else
  2512. type = "repair";
  2513. } else
  2514. type = "recover";
  2515. }
  2516. return sprintf(page, "%s\n", type);
  2517. }
  2518. static ssize_t
  2519. action_store(mddev_t *mddev, const char *page, size_t len)
  2520. {
  2521. if (!mddev->pers || !mddev->pers->sync_request)
  2522. return -EINVAL;
  2523. if (cmd_match(page, "idle")) {
  2524. if (mddev->sync_thread) {
  2525. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2526. md_unregister_thread(mddev->sync_thread);
  2527. mddev->sync_thread = NULL;
  2528. mddev->recovery = 0;
  2529. }
  2530. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2531. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  2532. return -EBUSY;
  2533. else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
  2534. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2535. else if (cmd_match(page, "reshape")) {
  2536. int err;
  2537. if (mddev->pers->start_reshape == NULL)
  2538. return -EINVAL;
  2539. err = mddev->pers->start_reshape(mddev);
  2540. if (err)
  2541. return err;
  2542. } else {
  2543. if (cmd_match(page, "check"))
  2544. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  2545. else if (!cmd_match(page, "repair"))
  2546. return -EINVAL;
  2547. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  2548. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  2549. }
  2550. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2551. md_wakeup_thread(mddev->thread);
  2552. return len;
  2553. }
  2554. static ssize_t
  2555. mismatch_cnt_show(mddev_t *mddev, char *page)
  2556. {
  2557. return sprintf(page, "%llu\n",
  2558. (unsigned long long) mddev->resync_mismatches);
  2559. }
  2560. static struct md_sysfs_entry md_scan_mode =
  2561. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  2562. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  2563. static ssize_t
  2564. sync_min_show(mddev_t *mddev, char *page)
  2565. {
  2566. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  2567. mddev->sync_speed_min ? "local": "system");
  2568. }
  2569. static ssize_t
  2570. sync_min_store(mddev_t *mddev, const char *buf, size_t len)
  2571. {
  2572. int min;
  2573. char *e;
  2574. if (strncmp(buf, "system", 6)==0) {
  2575. mddev->sync_speed_min = 0;
  2576. return len;
  2577. }
  2578. min = simple_strtoul(buf, &e, 10);
  2579. if (buf == e || (*e && *e != '\n') || min <= 0)
  2580. return -EINVAL;
  2581. mddev->sync_speed_min = min;
  2582. return len;
  2583. }
  2584. static struct md_sysfs_entry md_sync_min =
  2585. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  2586. static ssize_t
  2587. sync_max_show(mddev_t *mddev, char *page)
  2588. {
  2589. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  2590. mddev->sync_speed_max ? "local": "system");
  2591. }
  2592. static ssize_t
  2593. sync_max_store(mddev_t *mddev, const char *buf, size_t len)
  2594. {
  2595. int max;
  2596. char *e;
  2597. if (strncmp(buf, "system", 6)==0) {
  2598. mddev->sync_speed_max = 0;
  2599. return len;
  2600. }
  2601. max = simple_strtoul(buf, &e, 10);
  2602. if (buf == e || (*e && *e != '\n') || max <= 0)
  2603. return -EINVAL;
  2604. mddev->sync_speed_max = max;
  2605. return len;
  2606. }
  2607. static struct md_sysfs_entry md_sync_max =
  2608. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  2609. static ssize_t
  2610. degraded_show(mddev_t *mddev, char *page)
  2611. {
  2612. return sprintf(page, "%d\n", mddev->degraded);
  2613. }
  2614. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  2615. static ssize_t
  2616. sync_speed_show(mddev_t *mddev, char *page)
  2617. {
  2618. unsigned long resync, dt, db;
  2619. resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
  2620. dt = ((jiffies - mddev->resync_mark) / HZ);
  2621. if (!dt) dt++;
  2622. db = resync - (mddev->resync_mark_cnt);
  2623. return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
  2624. }
  2625. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  2626. static ssize_t
  2627. sync_completed_show(mddev_t *mddev, char *page)
  2628. {
  2629. unsigned long max_blocks, resync;
  2630. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2631. max_blocks = mddev->resync_max_sectors;
  2632. else
  2633. max_blocks = mddev->size << 1;
  2634. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
  2635. return sprintf(page, "%lu / %lu\n", resync, max_blocks);
  2636. }
  2637. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  2638. static ssize_t
  2639. max_sync_show(mddev_t *mddev, char *page)
  2640. {
  2641. if (mddev->resync_max == MaxSector)
  2642. return sprintf(page, "max\n");
  2643. else
  2644. return sprintf(page, "%llu\n",
  2645. (unsigned long long)mddev->resync_max);
  2646. }
  2647. static ssize_t
  2648. max_sync_store(mddev_t *mddev, const char *buf, size_t len)
  2649. {
  2650. if (strncmp(buf, "max", 3) == 0)
  2651. mddev->resync_max = MaxSector;
  2652. else {
  2653. char *ep;
  2654. unsigned long long max = simple_strtoull(buf, &ep, 10);
  2655. if (ep == buf || (*ep != 0 && *ep != '\n'))
  2656. return -EINVAL;
  2657. if (max < mddev->resync_max &&
  2658. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2659. return -EBUSY;
  2660. /* Must be a multiple of chunk_size */
  2661. if (mddev->chunk_size) {
  2662. if (max & (sector_t)((mddev->chunk_size>>9)-1))
  2663. return -EINVAL;
  2664. }
  2665. mddev->resync_max = max;
  2666. }
  2667. wake_up(&mddev->recovery_wait);
  2668. return len;
  2669. }
  2670. static struct md_sysfs_entry md_max_sync =
  2671. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  2672. static ssize_t
  2673. suspend_lo_show(mddev_t *mddev, char *page)
  2674. {
  2675. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  2676. }
  2677. static ssize_t
  2678. suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
  2679. {
  2680. char *e;
  2681. unsigned long long new = simple_strtoull(buf, &e, 10);
  2682. if (mddev->pers->quiesce == NULL)
  2683. return -EINVAL;
  2684. if (buf == e || (*e && *e != '\n'))
  2685. return -EINVAL;
  2686. if (new >= mddev->suspend_hi ||
  2687. (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
  2688. mddev->suspend_lo = new;
  2689. mddev->pers->quiesce(mddev, 2);
  2690. return len;
  2691. } else
  2692. return -EINVAL;
  2693. }
  2694. static struct md_sysfs_entry md_suspend_lo =
  2695. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  2696. static ssize_t
  2697. suspend_hi_show(mddev_t *mddev, char *page)
  2698. {
  2699. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  2700. }
  2701. static ssize_t
  2702. suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
  2703. {
  2704. char *e;
  2705. unsigned long long new = simple_strtoull(buf, &e, 10);
  2706. if (mddev->pers->quiesce == NULL)
  2707. return -EINVAL;
  2708. if (buf == e || (*e && *e != '\n'))
  2709. return -EINVAL;
  2710. if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
  2711. (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
  2712. mddev->suspend_hi = new;
  2713. mddev->pers->quiesce(mddev, 1);
  2714. mddev->pers->quiesce(mddev, 0);
  2715. return len;
  2716. } else
  2717. return -EINVAL;
  2718. }
  2719. static struct md_sysfs_entry md_suspend_hi =
  2720. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  2721. static ssize_t
  2722. reshape_position_show(mddev_t *mddev, char *page)
  2723. {
  2724. if (mddev->reshape_position != MaxSector)
  2725. return sprintf(page, "%llu\n",
  2726. (unsigned long long)mddev->reshape_position);
  2727. strcpy(page, "none\n");
  2728. return 5;
  2729. }
  2730. static ssize_t
  2731. reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
  2732. {
  2733. char *e;
  2734. unsigned long long new = simple_strtoull(buf, &e, 10);
  2735. if (mddev->pers)
  2736. return -EBUSY;
  2737. if (buf == e || (*e && *e != '\n'))
  2738. return -EINVAL;
  2739. mddev->reshape_position = new;
  2740. mddev->delta_disks = 0;
  2741. mddev->new_level = mddev->level;
  2742. mddev->new_layout = mddev->layout;
  2743. mddev->new_chunk = mddev->chunk_size;
  2744. return len;
  2745. }
  2746. static struct md_sysfs_entry md_reshape_position =
  2747. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  2748. reshape_position_store);
  2749. static struct attribute *md_default_attrs[] = {
  2750. &md_level.attr,
  2751. &md_layout.attr,
  2752. &md_raid_disks.attr,
  2753. &md_chunk_size.attr,
  2754. &md_size.attr,
  2755. &md_resync_start.attr,
  2756. &md_metadata.attr,
  2757. &md_new_device.attr,
  2758. &md_safe_delay.attr,
  2759. &md_array_state.attr,
  2760. &md_reshape_position.attr,
  2761. NULL,
  2762. };
  2763. static struct attribute *md_redundancy_attrs[] = {
  2764. &md_scan_mode.attr,
  2765. &md_mismatches.attr,
  2766. &md_sync_min.attr,
  2767. &md_sync_max.attr,
  2768. &md_sync_speed.attr,
  2769. &md_sync_completed.attr,
  2770. &md_max_sync.attr,
  2771. &md_suspend_lo.attr,
  2772. &md_suspend_hi.attr,
  2773. &md_bitmap.attr,
  2774. &md_degraded.attr,
  2775. NULL,
  2776. };
  2777. static struct attribute_group md_redundancy_group = {
  2778. .name = NULL,
  2779. .attrs = md_redundancy_attrs,
  2780. };
  2781. static ssize_t
  2782. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2783. {
  2784. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  2785. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  2786. ssize_t rv;
  2787. if (!entry->show)
  2788. return -EIO;
  2789. rv = mddev_lock(mddev);
  2790. if (!rv) {
  2791. rv = entry->show(mddev, page);
  2792. mddev_unlock(mddev);
  2793. }
  2794. return rv;
  2795. }
  2796. static ssize_t
  2797. md_attr_store(struct kobject *kobj, struct attribute *attr,
  2798. const char *page, size_t length)
  2799. {
  2800. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  2801. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  2802. ssize_t rv;
  2803. if (!entry->store)
  2804. return -EIO;
  2805. if (!capable(CAP_SYS_ADMIN))
  2806. return -EACCES;
  2807. rv = mddev_lock(mddev);
  2808. if (!rv) {
  2809. rv = entry->store(mddev, page, length);
  2810. mddev_unlock(mddev);
  2811. }
  2812. return rv;
  2813. }
  2814. static void md_free(struct kobject *ko)
  2815. {
  2816. mddev_t *mddev = container_of(ko, mddev_t, kobj);
  2817. kfree(mddev);
  2818. }
  2819. static struct sysfs_ops md_sysfs_ops = {
  2820. .show = md_attr_show,
  2821. .store = md_attr_store,
  2822. };
  2823. static struct kobj_type md_ktype = {
  2824. .release = md_free,
  2825. .sysfs_ops = &md_sysfs_ops,
  2826. .default_attrs = md_default_attrs,
  2827. };
  2828. int mdp_major = 0;
  2829. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  2830. {
  2831. static DEFINE_MUTEX(disks_mutex);
  2832. mddev_t *mddev = mddev_find(dev);
  2833. struct gendisk *disk;
  2834. int partitioned = (MAJOR(dev) != MD_MAJOR);
  2835. int shift = partitioned ? MdpMinorShift : 0;
  2836. int unit = MINOR(dev) >> shift;
  2837. int error;
  2838. if (!mddev)
  2839. return NULL;
  2840. mutex_lock(&disks_mutex);
  2841. if (mddev->gendisk) {
  2842. mutex_unlock(&disks_mutex);
  2843. mddev_put(mddev);
  2844. return NULL;
  2845. }
  2846. disk = alloc_disk(1 << shift);
  2847. if (!disk) {
  2848. mutex_unlock(&disks_mutex);
  2849. mddev_put(mddev);
  2850. return NULL;
  2851. }
  2852. disk->major = MAJOR(dev);
  2853. disk->first_minor = unit << shift;
  2854. if (partitioned)
  2855. sprintf(disk->disk_name, "md_d%d", unit);
  2856. else
  2857. sprintf(disk->disk_name, "md%d", unit);
  2858. disk->fops = &md_fops;
  2859. disk->private_data = mddev;
  2860. disk->queue = mddev->queue;
  2861. add_disk(disk);
  2862. mddev->gendisk = disk;
  2863. mutex_unlock(&disks_mutex);
  2864. error = kobject_init_and_add(&mddev->kobj, &md_ktype, &disk->dev.kobj,
  2865. "%s", "md");
  2866. if (error)
  2867. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  2868. disk->disk_name);
  2869. else
  2870. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  2871. return NULL;
  2872. }
  2873. static void md_safemode_timeout(unsigned long data)
  2874. {
  2875. mddev_t *mddev = (mddev_t *) data;
  2876. mddev->safemode = 1;
  2877. md_wakeup_thread(mddev->thread);
  2878. }
  2879. static int start_dirty_degraded;
  2880. static int do_md_run(mddev_t * mddev)
  2881. {
  2882. int err;
  2883. int chunk_size;
  2884. struct list_head *tmp;
  2885. mdk_rdev_t *rdev;
  2886. struct gendisk *disk;
  2887. struct mdk_personality *pers;
  2888. char b[BDEVNAME_SIZE];
  2889. if (list_empty(&mddev->disks))
  2890. /* cannot run an array with no devices.. */
  2891. return -EINVAL;
  2892. if (mddev->pers)
  2893. return -EBUSY;
  2894. /*
  2895. * Analyze all RAID superblock(s)
  2896. */
  2897. if (!mddev->raid_disks) {
  2898. if (!mddev->persistent)
  2899. return -EINVAL;
  2900. analyze_sbs(mddev);
  2901. }
  2902. chunk_size = mddev->chunk_size;
  2903. if (chunk_size) {
  2904. if (chunk_size > MAX_CHUNK_SIZE) {
  2905. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  2906. chunk_size, MAX_CHUNK_SIZE);
  2907. return -EINVAL;
  2908. }
  2909. /*
  2910. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  2911. */
  2912. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  2913. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  2914. return -EINVAL;
  2915. }
  2916. if (chunk_size < PAGE_SIZE) {
  2917. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  2918. chunk_size, PAGE_SIZE);
  2919. return -EINVAL;
  2920. }
  2921. /* devices must have minimum size of one chunk */
  2922. ITERATE_RDEV(mddev,rdev,tmp) {
  2923. if (test_bit(Faulty, &rdev->flags))
  2924. continue;
  2925. if (rdev->size < chunk_size / 1024) {
  2926. printk(KERN_WARNING
  2927. "md: Dev %s smaller than chunk_size:"
  2928. " %lluk < %dk\n",
  2929. bdevname(rdev->bdev,b),
  2930. (unsigned long long)rdev->size,
  2931. chunk_size / 1024);
  2932. return -EINVAL;
  2933. }
  2934. }
  2935. }
  2936. #ifdef CONFIG_KMOD
  2937. if (mddev->level != LEVEL_NONE)
  2938. request_module("md-level-%d", mddev->level);
  2939. else if (mddev->clevel[0])
  2940. request_module("md-%s", mddev->clevel);
  2941. #endif
  2942. /*
  2943. * Drop all container device buffers, from now on
  2944. * the only valid external interface is through the md
  2945. * device.
  2946. */
  2947. ITERATE_RDEV(mddev,rdev,tmp) {
  2948. if (test_bit(Faulty, &rdev->flags))
  2949. continue;
  2950. sync_blockdev(rdev->bdev);
  2951. invalidate_bdev(rdev->bdev);
  2952. /* perform some consistency tests on the device.
  2953. * We don't want the data to overlap the metadata,
  2954. * Internal Bitmap issues has handled elsewhere.
  2955. */
  2956. if (rdev->data_offset < rdev->sb_offset) {
  2957. if (mddev->size &&
  2958. rdev->data_offset + mddev->size*2
  2959. > rdev->sb_offset*2) {
  2960. printk("md: %s: data overlaps metadata\n",
  2961. mdname(mddev));
  2962. return -EINVAL;
  2963. }
  2964. } else {
  2965. if (rdev->sb_offset*2 + rdev->sb_size/512
  2966. > rdev->data_offset) {
  2967. printk("md: %s: metadata overlaps data\n",
  2968. mdname(mddev));
  2969. return -EINVAL;
  2970. }
  2971. }
  2972. }
  2973. md_probe(mddev->unit, NULL, NULL);
  2974. disk = mddev->gendisk;
  2975. if (!disk)
  2976. return -ENOMEM;
  2977. spin_lock(&pers_lock);
  2978. pers = find_pers(mddev->level, mddev->clevel);
  2979. if (!pers || !try_module_get(pers->owner)) {
  2980. spin_unlock(&pers_lock);
  2981. if (mddev->level != LEVEL_NONE)
  2982. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  2983. mddev->level);
  2984. else
  2985. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  2986. mddev->clevel);
  2987. return -EINVAL;
  2988. }
  2989. mddev->pers = pers;
  2990. spin_unlock(&pers_lock);
  2991. mddev->level = pers->level;
  2992. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  2993. if (mddev->reshape_position != MaxSector &&
  2994. pers->start_reshape == NULL) {
  2995. /* This personality cannot handle reshaping... */
  2996. mddev->pers = NULL;
  2997. module_put(pers->owner);
  2998. return -EINVAL;
  2999. }
  3000. if (pers->sync_request) {
  3001. /* Warn if this is a potentially silly
  3002. * configuration.
  3003. */
  3004. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  3005. mdk_rdev_t *rdev2;
  3006. struct list_head *tmp2;
  3007. int warned = 0;
  3008. ITERATE_RDEV(mddev, rdev, tmp) {
  3009. ITERATE_RDEV(mddev, rdev2, tmp2) {
  3010. if (rdev < rdev2 &&
  3011. rdev->bdev->bd_contains ==
  3012. rdev2->bdev->bd_contains) {
  3013. printk(KERN_WARNING
  3014. "%s: WARNING: %s appears to be"
  3015. " on the same physical disk as"
  3016. " %s.\n",
  3017. mdname(mddev),
  3018. bdevname(rdev->bdev,b),
  3019. bdevname(rdev2->bdev,b2));
  3020. warned = 1;
  3021. }
  3022. }
  3023. }
  3024. if (warned)
  3025. printk(KERN_WARNING
  3026. "True protection against single-disk"
  3027. " failure might be compromised.\n");
  3028. }
  3029. mddev->recovery = 0;
  3030. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  3031. mddev->barriers_work = 1;
  3032. mddev->ok_start_degraded = start_dirty_degraded;
  3033. if (start_readonly)
  3034. mddev->ro = 2; /* read-only, but switch on first write */
  3035. err = mddev->pers->run(mddev);
  3036. if (!err && mddev->pers->sync_request) {
  3037. err = bitmap_create(mddev);
  3038. if (err) {
  3039. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  3040. mdname(mddev), err);
  3041. mddev->pers->stop(mddev);
  3042. }
  3043. }
  3044. if (err) {
  3045. printk(KERN_ERR "md: pers->run() failed ...\n");
  3046. module_put(mddev->pers->owner);
  3047. mddev->pers = NULL;
  3048. bitmap_destroy(mddev);
  3049. return err;
  3050. }
  3051. if (mddev->pers->sync_request) {
  3052. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3053. printk(KERN_WARNING
  3054. "md: cannot register extra attributes for %s\n",
  3055. mdname(mddev));
  3056. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  3057. mddev->ro = 0;
  3058. atomic_set(&mddev->writes_pending,0);
  3059. mddev->safemode = 0;
  3060. mddev->safemode_timer.function = md_safemode_timeout;
  3061. mddev->safemode_timer.data = (unsigned long) mddev;
  3062. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  3063. mddev->in_sync = 1;
  3064. ITERATE_RDEV(mddev,rdev,tmp)
  3065. if (rdev->raid_disk >= 0) {
  3066. char nm[20];
  3067. sprintf(nm, "rd%d", rdev->raid_disk);
  3068. if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
  3069. printk("md: cannot register %s for %s\n",
  3070. nm, mdname(mddev));
  3071. }
  3072. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3073. if (mddev->flags)
  3074. md_update_sb(mddev, 0);
  3075. set_capacity(disk, mddev->array_size<<1);
  3076. /* If we call blk_queue_make_request here, it will
  3077. * re-initialise max_sectors etc which may have been
  3078. * refined inside -> run. So just set the bits we need to set.
  3079. * Most initialisation happended when we called
  3080. * blk_queue_make_request(..., md_fail_request)
  3081. * earlier.
  3082. */
  3083. mddev->queue->queuedata = mddev;
  3084. mddev->queue->make_request_fn = mddev->pers->make_request;
  3085. /* If there is a partially-recovered drive we need to
  3086. * start recovery here. If we leave it to md_check_recovery,
  3087. * it will remove the drives and not do the right thing
  3088. */
  3089. if (mddev->degraded && !mddev->sync_thread) {
  3090. struct list_head *rtmp;
  3091. int spares = 0;
  3092. ITERATE_RDEV(mddev,rdev,rtmp)
  3093. if (rdev->raid_disk >= 0 &&
  3094. !test_bit(In_sync, &rdev->flags) &&
  3095. !test_bit(Faulty, &rdev->flags))
  3096. /* complete an interrupted recovery */
  3097. spares++;
  3098. if (spares && mddev->pers->sync_request) {
  3099. mddev->recovery = 0;
  3100. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3101. mddev->sync_thread = md_register_thread(md_do_sync,
  3102. mddev,
  3103. "%s_resync");
  3104. if (!mddev->sync_thread) {
  3105. printk(KERN_ERR "%s: could not start resync"
  3106. " thread...\n",
  3107. mdname(mddev));
  3108. /* leave the spares where they are, it shouldn't hurt */
  3109. mddev->recovery = 0;
  3110. }
  3111. }
  3112. }
  3113. md_wakeup_thread(mddev->thread);
  3114. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  3115. mddev->changed = 1;
  3116. md_new_event(mddev);
  3117. kobject_uevent(&mddev->gendisk->dev.kobj, KOBJ_CHANGE);
  3118. return 0;
  3119. }
  3120. static int restart_array(mddev_t *mddev)
  3121. {
  3122. struct gendisk *disk = mddev->gendisk;
  3123. int err;
  3124. /*
  3125. * Complain if it has no devices
  3126. */
  3127. err = -ENXIO;
  3128. if (list_empty(&mddev->disks))
  3129. goto out;
  3130. if (mddev->pers) {
  3131. err = -EBUSY;
  3132. if (!mddev->ro)
  3133. goto out;
  3134. mddev->safemode = 0;
  3135. mddev->ro = 0;
  3136. set_disk_ro(disk, 0);
  3137. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  3138. mdname(mddev));
  3139. /*
  3140. * Kick recovery or resync if necessary
  3141. */
  3142. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3143. md_wakeup_thread(mddev->thread);
  3144. md_wakeup_thread(mddev->sync_thread);
  3145. err = 0;
  3146. } else
  3147. err = -EINVAL;
  3148. out:
  3149. return err;
  3150. }
  3151. /* similar to deny_write_access, but accounts for our holding a reference
  3152. * to the file ourselves */
  3153. static int deny_bitmap_write_access(struct file * file)
  3154. {
  3155. struct inode *inode = file->f_mapping->host;
  3156. spin_lock(&inode->i_lock);
  3157. if (atomic_read(&inode->i_writecount) > 1) {
  3158. spin_unlock(&inode->i_lock);
  3159. return -ETXTBSY;
  3160. }
  3161. atomic_set(&inode->i_writecount, -1);
  3162. spin_unlock(&inode->i_lock);
  3163. return 0;
  3164. }
  3165. static void restore_bitmap_write_access(struct file *file)
  3166. {
  3167. struct inode *inode = file->f_mapping->host;
  3168. spin_lock(&inode->i_lock);
  3169. atomic_set(&inode->i_writecount, 1);
  3170. spin_unlock(&inode->i_lock);
  3171. }
  3172. /* mode:
  3173. * 0 - completely stop and dis-assemble array
  3174. * 1 - switch to readonly
  3175. * 2 - stop but do not disassemble array
  3176. */
  3177. static int do_md_stop(mddev_t * mddev, int mode)
  3178. {
  3179. int err = 0;
  3180. struct gendisk *disk = mddev->gendisk;
  3181. if (mddev->pers) {
  3182. if (atomic_read(&mddev->active)>2) {
  3183. printk("md: %s still in use.\n",mdname(mddev));
  3184. return -EBUSY;
  3185. }
  3186. if (mddev->sync_thread) {
  3187. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3188. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3189. md_unregister_thread(mddev->sync_thread);
  3190. mddev->sync_thread = NULL;
  3191. }
  3192. del_timer_sync(&mddev->safemode_timer);
  3193. invalidate_partition(disk, 0);
  3194. switch(mode) {
  3195. case 1: /* readonly */
  3196. err = -ENXIO;
  3197. if (mddev->ro==1)
  3198. goto out;
  3199. mddev->ro = 1;
  3200. break;
  3201. case 0: /* disassemble */
  3202. case 2: /* stop */
  3203. bitmap_flush(mddev);
  3204. md_super_wait(mddev);
  3205. if (mddev->ro)
  3206. set_disk_ro(disk, 0);
  3207. blk_queue_make_request(mddev->queue, md_fail_request);
  3208. mddev->pers->stop(mddev);
  3209. mddev->queue->merge_bvec_fn = NULL;
  3210. mddev->queue->unplug_fn = NULL;
  3211. mddev->queue->backing_dev_info.congested_fn = NULL;
  3212. if (mddev->pers->sync_request)
  3213. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  3214. module_put(mddev->pers->owner);
  3215. mddev->pers = NULL;
  3216. set_capacity(disk, 0);
  3217. mddev->changed = 1;
  3218. if (mddev->ro)
  3219. mddev->ro = 0;
  3220. }
  3221. if (!mddev->in_sync || mddev->flags) {
  3222. /* mark array as shutdown cleanly */
  3223. mddev->in_sync = 1;
  3224. md_update_sb(mddev, 1);
  3225. }
  3226. if (mode == 1)
  3227. set_disk_ro(disk, 1);
  3228. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3229. }
  3230. /*
  3231. * Free resources if final stop
  3232. */
  3233. if (mode == 0) {
  3234. mdk_rdev_t *rdev;
  3235. struct list_head *tmp;
  3236. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  3237. bitmap_destroy(mddev);
  3238. if (mddev->bitmap_file) {
  3239. restore_bitmap_write_access(mddev->bitmap_file);
  3240. fput(mddev->bitmap_file);
  3241. mddev->bitmap_file = NULL;
  3242. }
  3243. mddev->bitmap_offset = 0;
  3244. ITERATE_RDEV(mddev,rdev,tmp)
  3245. if (rdev->raid_disk >= 0) {
  3246. char nm[20];
  3247. sprintf(nm, "rd%d", rdev->raid_disk);
  3248. sysfs_remove_link(&mddev->kobj, nm);
  3249. }
  3250. /* make sure all delayed_delete calls have finished */
  3251. flush_scheduled_work();
  3252. export_array(mddev);
  3253. mddev->array_size = 0;
  3254. mddev->size = 0;
  3255. mddev->raid_disks = 0;
  3256. mddev->recovery_cp = 0;
  3257. mddev->resync_max = MaxSector;
  3258. mddev->reshape_position = MaxSector;
  3259. mddev->external = 0;
  3260. mddev->persistent = 0;
  3261. } else if (mddev->pers)
  3262. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  3263. mdname(mddev));
  3264. err = 0;
  3265. md_new_event(mddev);
  3266. out:
  3267. return err;
  3268. }
  3269. #ifndef MODULE
  3270. static void autorun_array(mddev_t *mddev)
  3271. {
  3272. mdk_rdev_t *rdev;
  3273. struct list_head *tmp;
  3274. int err;
  3275. if (list_empty(&mddev->disks))
  3276. return;
  3277. printk(KERN_INFO "md: running: ");
  3278. ITERATE_RDEV(mddev,rdev,tmp) {
  3279. char b[BDEVNAME_SIZE];
  3280. printk("<%s>", bdevname(rdev->bdev,b));
  3281. }
  3282. printk("\n");
  3283. err = do_md_run (mddev);
  3284. if (err) {
  3285. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  3286. do_md_stop (mddev, 0);
  3287. }
  3288. }
  3289. /*
  3290. * lets try to run arrays based on all disks that have arrived
  3291. * until now. (those are in pending_raid_disks)
  3292. *
  3293. * the method: pick the first pending disk, collect all disks with
  3294. * the same UUID, remove all from the pending list and put them into
  3295. * the 'same_array' list. Then order this list based on superblock
  3296. * update time (freshest comes first), kick out 'old' disks and
  3297. * compare superblocks. If everything's fine then run it.
  3298. *
  3299. * If "unit" is allocated, then bump its reference count
  3300. */
  3301. static void autorun_devices(int part)
  3302. {
  3303. struct list_head *tmp;
  3304. mdk_rdev_t *rdev0, *rdev;
  3305. mddev_t *mddev;
  3306. char b[BDEVNAME_SIZE];
  3307. printk(KERN_INFO "md: autorun ...\n");
  3308. while (!list_empty(&pending_raid_disks)) {
  3309. int unit;
  3310. dev_t dev;
  3311. LIST_HEAD(candidates);
  3312. rdev0 = list_entry(pending_raid_disks.next,
  3313. mdk_rdev_t, same_set);
  3314. printk(KERN_INFO "md: considering %s ...\n",
  3315. bdevname(rdev0->bdev,b));
  3316. INIT_LIST_HEAD(&candidates);
  3317. ITERATE_RDEV_PENDING(rdev,tmp)
  3318. if (super_90_load(rdev, rdev0, 0) >= 0) {
  3319. printk(KERN_INFO "md: adding %s ...\n",
  3320. bdevname(rdev->bdev,b));
  3321. list_move(&rdev->same_set, &candidates);
  3322. }
  3323. /*
  3324. * now we have a set of devices, with all of them having
  3325. * mostly sane superblocks. It's time to allocate the
  3326. * mddev.
  3327. */
  3328. if (part) {
  3329. dev = MKDEV(mdp_major,
  3330. rdev0->preferred_minor << MdpMinorShift);
  3331. unit = MINOR(dev) >> MdpMinorShift;
  3332. } else {
  3333. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  3334. unit = MINOR(dev);
  3335. }
  3336. if (rdev0->preferred_minor != unit) {
  3337. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  3338. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  3339. break;
  3340. }
  3341. md_probe(dev, NULL, NULL);
  3342. mddev = mddev_find(dev);
  3343. if (!mddev) {
  3344. printk(KERN_ERR
  3345. "md: cannot allocate memory for md drive.\n");
  3346. break;
  3347. }
  3348. if (mddev_lock(mddev))
  3349. printk(KERN_WARNING "md: %s locked, cannot run\n",
  3350. mdname(mddev));
  3351. else if (mddev->raid_disks || mddev->major_version
  3352. || !list_empty(&mddev->disks)) {
  3353. printk(KERN_WARNING
  3354. "md: %s already running, cannot run %s\n",
  3355. mdname(mddev), bdevname(rdev0->bdev,b));
  3356. mddev_unlock(mddev);
  3357. } else {
  3358. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  3359. mddev->persistent = 1;
  3360. ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
  3361. list_del_init(&rdev->same_set);
  3362. if (bind_rdev_to_array(rdev, mddev))
  3363. export_rdev(rdev);
  3364. }
  3365. autorun_array(mddev);
  3366. mddev_unlock(mddev);
  3367. }
  3368. /* on success, candidates will be empty, on error
  3369. * it won't...
  3370. */
  3371. ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
  3372. export_rdev(rdev);
  3373. mddev_put(mddev);
  3374. }
  3375. printk(KERN_INFO "md: ... autorun DONE.\n");
  3376. }
  3377. #endif /* !MODULE */
  3378. static int get_version(void __user * arg)
  3379. {
  3380. mdu_version_t ver;
  3381. ver.major = MD_MAJOR_VERSION;
  3382. ver.minor = MD_MINOR_VERSION;
  3383. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  3384. if (copy_to_user(arg, &ver, sizeof(ver)))
  3385. return -EFAULT;
  3386. return 0;
  3387. }
  3388. static int get_array_info(mddev_t * mddev, void __user * arg)
  3389. {
  3390. mdu_array_info_t info;
  3391. int nr,working,active,failed,spare;
  3392. mdk_rdev_t *rdev;
  3393. struct list_head *tmp;
  3394. nr=working=active=failed=spare=0;
  3395. ITERATE_RDEV(mddev,rdev,tmp) {
  3396. nr++;
  3397. if (test_bit(Faulty, &rdev->flags))
  3398. failed++;
  3399. else {
  3400. working++;
  3401. if (test_bit(In_sync, &rdev->flags))
  3402. active++;
  3403. else
  3404. spare++;
  3405. }
  3406. }
  3407. info.major_version = mddev->major_version;
  3408. info.minor_version = mddev->minor_version;
  3409. info.patch_version = MD_PATCHLEVEL_VERSION;
  3410. info.ctime = mddev->ctime;
  3411. info.level = mddev->level;
  3412. info.size = mddev->size;
  3413. if (info.size != mddev->size) /* overflow */
  3414. info.size = -1;
  3415. info.nr_disks = nr;
  3416. info.raid_disks = mddev->raid_disks;
  3417. info.md_minor = mddev->md_minor;
  3418. info.not_persistent= !mddev->persistent;
  3419. info.utime = mddev->utime;
  3420. info.state = 0;
  3421. if (mddev->in_sync)
  3422. info.state = (1<<MD_SB_CLEAN);
  3423. if (mddev->bitmap && mddev->bitmap_offset)
  3424. info.state = (1<<MD_SB_BITMAP_PRESENT);
  3425. info.active_disks = active;
  3426. info.working_disks = working;
  3427. info.failed_disks = failed;
  3428. info.spare_disks = spare;
  3429. info.layout = mddev->layout;
  3430. info.chunk_size = mddev->chunk_size;
  3431. if (copy_to_user(arg, &info, sizeof(info)))
  3432. return -EFAULT;
  3433. return 0;
  3434. }
  3435. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  3436. {
  3437. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  3438. char *ptr, *buf = NULL;
  3439. int err = -ENOMEM;
  3440. md_allow_write(mddev);
  3441. file = kmalloc(sizeof(*file), GFP_KERNEL);
  3442. if (!file)
  3443. goto out;
  3444. /* bitmap disabled, zero the first byte and copy out */
  3445. if (!mddev->bitmap || !mddev->bitmap->file) {
  3446. file->pathname[0] = '\0';
  3447. goto copy_out;
  3448. }
  3449. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  3450. if (!buf)
  3451. goto out;
  3452. ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
  3453. if (!ptr)
  3454. goto out;
  3455. strcpy(file->pathname, ptr);
  3456. copy_out:
  3457. err = 0;
  3458. if (copy_to_user(arg, file, sizeof(*file)))
  3459. err = -EFAULT;
  3460. out:
  3461. kfree(buf);
  3462. kfree(file);
  3463. return err;
  3464. }
  3465. static int get_disk_info(mddev_t * mddev, void __user * arg)
  3466. {
  3467. mdu_disk_info_t info;
  3468. unsigned int nr;
  3469. mdk_rdev_t *rdev;
  3470. if (copy_from_user(&info, arg, sizeof(info)))
  3471. return -EFAULT;
  3472. nr = info.number;
  3473. rdev = find_rdev_nr(mddev, nr);
  3474. if (rdev) {
  3475. info.major = MAJOR(rdev->bdev->bd_dev);
  3476. info.minor = MINOR(rdev->bdev->bd_dev);
  3477. info.raid_disk = rdev->raid_disk;
  3478. info.state = 0;
  3479. if (test_bit(Faulty, &rdev->flags))
  3480. info.state |= (1<<MD_DISK_FAULTY);
  3481. else if (test_bit(In_sync, &rdev->flags)) {
  3482. info.state |= (1<<MD_DISK_ACTIVE);
  3483. info.state |= (1<<MD_DISK_SYNC);
  3484. }
  3485. if (test_bit(WriteMostly, &rdev->flags))
  3486. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  3487. } else {
  3488. info.major = info.minor = 0;
  3489. info.raid_disk = -1;
  3490. info.state = (1<<MD_DISK_REMOVED);
  3491. }
  3492. if (copy_to_user(arg, &info, sizeof(info)))
  3493. return -EFAULT;
  3494. return 0;
  3495. }
  3496. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  3497. {
  3498. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  3499. mdk_rdev_t *rdev;
  3500. dev_t dev = MKDEV(info->major,info->minor);
  3501. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  3502. return -EOVERFLOW;
  3503. if (!mddev->raid_disks) {
  3504. int err;
  3505. /* expecting a device which has a superblock */
  3506. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  3507. if (IS_ERR(rdev)) {
  3508. printk(KERN_WARNING
  3509. "md: md_import_device returned %ld\n",
  3510. PTR_ERR(rdev));
  3511. return PTR_ERR(rdev);
  3512. }
  3513. if (!list_empty(&mddev->disks)) {
  3514. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  3515. mdk_rdev_t, same_set);
  3516. int err = super_types[mddev->major_version]
  3517. .load_super(rdev, rdev0, mddev->minor_version);
  3518. if (err < 0) {
  3519. printk(KERN_WARNING
  3520. "md: %s has different UUID to %s\n",
  3521. bdevname(rdev->bdev,b),
  3522. bdevname(rdev0->bdev,b2));
  3523. export_rdev(rdev);
  3524. return -EINVAL;
  3525. }
  3526. }
  3527. err = bind_rdev_to_array(rdev, mddev);
  3528. if (err)
  3529. export_rdev(rdev);
  3530. return err;
  3531. }
  3532. /*
  3533. * add_new_disk can be used once the array is assembled
  3534. * to add "hot spares". They must already have a superblock
  3535. * written
  3536. */
  3537. if (mddev->pers) {
  3538. int err;
  3539. if (!mddev->pers->hot_add_disk) {
  3540. printk(KERN_WARNING
  3541. "%s: personality does not support diskops!\n",
  3542. mdname(mddev));
  3543. return -EINVAL;
  3544. }
  3545. if (mddev->persistent)
  3546. rdev = md_import_device(dev, mddev->major_version,
  3547. mddev->minor_version);
  3548. else
  3549. rdev = md_import_device(dev, -1, -1);
  3550. if (IS_ERR(rdev)) {
  3551. printk(KERN_WARNING
  3552. "md: md_import_device returned %ld\n",
  3553. PTR_ERR(rdev));
  3554. return PTR_ERR(rdev);
  3555. }
  3556. /* set save_raid_disk if appropriate */
  3557. if (!mddev->persistent) {
  3558. if (info->state & (1<<MD_DISK_SYNC) &&
  3559. info->raid_disk < mddev->raid_disks)
  3560. rdev->raid_disk = info->raid_disk;
  3561. else
  3562. rdev->raid_disk = -1;
  3563. } else
  3564. super_types[mddev->major_version].
  3565. validate_super(mddev, rdev);
  3566. rdev->saved_raid_disk = rdev->raid_disk;
  3567. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  3568. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  3569. set_bit(WriteMostly, &rdev->flags);
  3570. rdev->raid_disk = -1;
  3571. err = bind_rdev_to_array(rdev, mddev);
  3572. if (!err && !mddev->pers->hot_remove_disk) {
  3573. /* If there is hot_add_disk but no hot_remove_disk
  3574. * then added disks for geometry changes,
  3575. * and should be added immediately.
  3576. */
  3577. super_types[mddev->major_version].
  3578. validate_super(mddev, rdev);
  3579. err = mddev->pers->hot_add_disk(mddev, rdev);
  3580. if (err)
  3581. unbind_rdev_from_array(rdev);
  3582. }
  3583. if (err)
  3584. export_rdev(rdev);
  3585. md_update_sb(mddev, 1);
  3586. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3587. md_wakeup_thread(mddev->thread);
  3588. return err;
  3589. }
  3590. /* otherwise, add_new_disk is only allowed
  3591. * for major_version==0 superblocks
  3592. */
  3593. if (mddev->major_version != 0) {
  3594. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  3595. mdname(mddev));
  3596. return -EINVAL;
  3597. }
  3598. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  3599. int err;
  3600. rdev = md_import_device (dev, -1, 0);
  3601. if (IS_ERR(rdev)) {
  3602. printk(KERN_WARNING
  3603. "md: error, md_import_device() returned %ld\n",
  3604. PTR_ERR(rdev));
  3605. return PTR_ERR(rdev);
  3606. }
  3607. rdev->desc_nr = info->number;
  3608. if (info->raid_disk < mddev->raid_disks)
  3609. rdev->raid_disk = info->raid_disk;
  3610. else
  3611. rdev->raid_disk = -1;
  3612. if (rdev->raid_disk < mddev->raid_disks)
  3613. if (info->state & (1<<MD_DISK_SYNC))
  3614. set_bit(In_sync, &rdev->flags);
  3615. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  3616. set_bit(WriteMostly, &rdev->flags);
  3617. if (!mddev->persistent) {
  3618. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  3619. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  3620. } else
  3621. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  3622. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  3623. err = bind_rdev_to_array(rdev, mddev);
  3624. if (err) {
  3625. export_rdev(rdev);
  3626. return err;
  3627. }
  3628. }
  3629. return 0;
  3630. }
  3631. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  3632. {
  3633. char b[BDEVNAME_SIZE];
  3634. mdk_rdev_t *rdev;
  3635. if (!mddev->pers)
  3636. return -ENODEV;
  3637. rdev = find_rdev(mddev, dev);
  3638. if (!rdev)
  3639. return -ENXIO;
  3640. if (rdev->raid_disk >= 0)
  3641. goto busy;
  3642. kick_rdev_from_array(rdev);
  3643. md_update_sb(mddev, 1);
  3644. md_new_event(mddev);
  3645. return 0;
  3646. busy:
  3647. printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
  3648. bdevname(rdev->bdev,b), mdname(mddev));
  3649. return -EBUSY;
  3650. }
  3651. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  3652. {
  3653. char b[BDEVNAME_SIZE];
  3654. int err;
  3655. unsigned int size;
  3656. mdk_rdev_t *rdev;
  3657. if (!mddev->pers)
  3658. return -ENODEV;
  3659. if (mddev->major_version != 0) {
  3660. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  3661. " version-0 superblocks.\n",
  3662. mdname(mddev));
  3663. return -EINVAL;
  3664. }
  3665. if (!mddev->pers->hot_add_disk) {
  3666. printk(KERN_WARNING
  3667. "%s: personality does not support diskops!\n",
  3668. mdname(mddev));
  3669. return -EINVAL;
  3670. }
  3671. rdev = md_import_device (dev, -1, 0);
  3672. if (IS_ERR(rdev)) {
  3673. printk(KERN_WARNING
  3674. "md: error, md_import_device() returned %ld\n",
  3675. PTR_ERR(rdev));
  3676. return -EINVAL;
  3677. }
  3678. if (mddev->persistent)
  3679. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  3680. else
  3681. rdev->sb_offset =
  3682. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  3683. size = calc_dev_size(rdev, mddev->chunk_size);
  3684. rdev->size = size;
  3685. if (test_bit(Faulty, &rdev->flags)) {
  3686. printk(KERN_WARNING
  3687. "md: can not hot-add faulty %s disk to %s!\n",
  3688. bdevname(rdev->bdev,b), mdname(mddev));
  3689. err = -EINVAL;
  3690. goto abort_export;
  3691. }
  3692. clear_bit(In_sync, &rdev->flags);
  3693. rdev->desc_nr = -1;
  3694. rdev->saved_raid_disk = -1;
  3695. err = bind_rdev_to_array(rdev, mddev);
  3696. if (err)
  3697. goto abort_export;
  3698. /*
  3699. * The rest should better be atomic, we can have disk failures
  3700. * noticed in interrupt contexts ...
  3701. */
  3702. if (rdev->desc_nr == mddev->max_disks) {
  3703. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  3704. mdname(mddev));
  3705. err = -EBUSY;
  3706. goto abort_unbind_export;
  3707. }
  3708. rdev->raid_disk = -1;
  3709. md_update_sb(mddev, 1);
  3710. /*
  3711. * Kick recovery, maybe this spare has to be added to the
  3712. * array immediately.
  3713. */
  3714. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3715. md_wakeup_thread(mddev->thread);
  3716. md_new_event(mddev);
  3717. return 0;
  3718. abort_unbind_export:
  3719. unbind_rdev_from_array(rdev);
  3720. abort_export:
  3721. export_rdev(rdev);
  3722. return err;
  3723. }
  3724. static int set_bitmap_file(mddev_t *mddev, int fd)
  3725. {
  3726. int err;
  3727. if (mddev->pers) {
  3728. if (!mddev->pers->quiesce)
  3729. return -EBUSY;
  3730. if (mddev->recovery || mddev->sync_thread)
  3731. return -EBUSY;
  3732. /* we should be able to change the bitmap.. */
  3733. }
  3734. if (fd >= 0) {
  3735. if (mddev->bitmap)
  3736. return -EEXIST; /* cannot add when bitmap is present */
  3737. mddev->bitmap_file = fget(fd);
  3738. if (mddev->bitmap_file == NULL) {
  3739. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  3740. mdname(mddev));
  3741. return -EBADF;
  3742. }
  3743. err = deny_bitmap_write_access(mddev->bitmap_file);
  3744. if (err) {
  3745. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  3746. mdname(mddev));
  3747. fput(mddev->bitmap_file);
  3748. mddev->bitmap_file = NULL;
  3749. return err;
  3750. }
  3751. mddev->bitmap_offset = 0; /* file overrides offset */
  3752. } else if (mddev->bitmap == NULL)
  3753. return -ENOENT; /* cannot remove what isn't there */
  3754. err = 0;
  3755. if (mddev->pers) {
  3756. mddev->pers->quiesce(mddev, 1);
  3757. if (fd >= 0)
  3758. err = bitmap_create(mddev);
  3759. if (fd < 0 || err) {
  3760. bitmap_destroy(mddev);
  3761. fd = -1; /* make sure to put the file */
  3762. }
  3763. mddev->pers->quiesce(mddev, 0);
  3764. }
  3765. if (fd < 0) {
  3766. if (mddev->bitmap_file) {
  3767. restore_bitmap_write_access(mddev->bitmap_file);
  3768. fput(mddev->bitmap_file);
  3769. }
  3770. mddev->bitmap_file = NULL;
  3771. }
  3772. return err;
  3773. }
  3774. /*
  3775. * set_array_info is used two different ways
  3776. * The original usage is when creating a new array.
  3777. * In this usage, raid_disks is > 0 and it together with
  3778. * level, size, not_persistent,layout,chunksize determine the
  3779. * shape of the array.
  3780. * This will always create an array with a type-0.90.0 superblock.
  3781. * The newer usage is when assembling an array.
  3782. * In this case raid_disks will be 0, and the major_version field is
  3783. * use to determine which style super-blocks are to be found on the devices.
  3784. * The minor and patch _version numbers are also kept incase the
  3785. * super_block handler wishes to interpret them.
  3786. */
  3787. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  3788. {
  3789. if (info->raid_disks == 0) {
  3790. /* just setting version number for superblock loading */
  3791. if (info->major_version < 0 ||
  3792. info->major_version >= ARRAY_SIZE(super_types) ||
  3793. super_types[info->major_version].name == NULL) {
  3794. /* maybe try to auto-load a module? */
  3795. printk(KERN_INFO
  3796. "md: superblock version %d not known\n",
  3797. info->major_version);
  3798. return -EINVAL;
  3799. }
  3800. mddev->major_version = info->major_version;
  3801. mddev->minor_version = info->minor_version;
  3802. mddev->patch_version = info->patch_version;
  3803. mddev->persistent = !info->not_persistent;
  3804. return 0;
  3805. }
  3806. mddev->major_version = MD_MAJOR_VERSION;
  3807. mddev->minor_version = MD_MINOR_VERSION;
  3808. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  3809. mddev->ctime = get_seconds();
  3810. mddev->level = info->level;
  3811. mddev->clevel[0] = 0;
  3812. mddev->size = info->size;
  3813. mddev->raid_disks = info->raid_disks;
  3814. /* don't set md_minor, it is determined by which /dev/md* was
  3815. * openned
  3816. */
  3817. if (info->state & (1<<MD_SB_CLEAN))
  3818. mddev->recovery_cp = MaxSector;
  3819. else
  3820. mddev->recovery_cp = 0;
  3821. mddev->persistent = ! info->not_persistent;
  3822. mddev->external = 0;
  3823. mddev->layout = info->layout;
  3824. mddev->chunk_size = info->chunk_size;
  3825. mddev->max_disks = MD_SB_DISKS;
  3826. if (mddev->persistent)
  3827. mddev->flags = 0;
  3828. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3829. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  3830. mddev->bitmap_offset = 0;
  3831. mddev->reshape_position = MaxSector;
  3832. /*
  3833. * Generate a 128 bit UUID
  3834. */
  3835. get_random_bytes(mddev->uuid, 16);
  3836. mddev->new_level = mddev->level;
  3837. mddev->new_chunk = mddev->chunk_size;
  3838. mddev->new_layout = mddev->layout;
  3839. mddev->delta_disks = 0;
  3840. return 0;
  3841. }
  3842. static int update_size(mddev_t *mddev, unsigned long size)
  3843. {
  3844. mdk_rdev_t * rdev;
  3845. int rv;
  3846. struct list_head *tmp;
  3847. int fit = (size == 0);
  3848. if (mddev->pers->resize == NULL)
  3849. return -EINVAL;
  3850. /* The "size" is the amount of each device that is used.
  3851. * This can only make sense for arrays with redundancy.
  3852. * linear and raid0 always use whatever space is available
  3853. * We can only consider changing the size if no resync
  3854. * or reconstruction is happening, and if the new size
  3855. * is acceptable. It must fit before the sb_offset or,
  3856. * if that is <data_offset, it must fit before the
  3857. * size of each device.
  3858. * If size is zero, we find the largest size that fits.
  3859. */
  3860. if (mddev->sync_thread)
  3861. return -EBUSY;
  3862. ITERATE_RDEV(mddev,rdev,tmp) {
  3863. sector_t avail;
  3864. avail = rdev->size * 2;
  3865. if (fit && (size == 0 || size > avail/2))
  3866. size = avail/2;
  3867. if (avail < ((sector_t)size << 1))
  3868. return -ENOSPC;
  3869. }
  3870. rv = mddev->pers->resize(mddev, (sector_t)size *2);
  3871. if (!rv) {
  3872. struct block_device *bdev;
  3873. bdev = bdget_disk(mddev->gendisk, 0);
  3874. if (bdev) {
  3875. mutex_lock(&bdev->bd_inode->i_mutex);
  3876. i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
  3877. mutex_unlock(&bdev->bd_inode->i_mutex);
  3878. bdput(bdev);
  3879. }
  3880. }
  3881. return rv;
  3882. }
  3883. static int update_raid_disks(mddev_t *mddev, int raid_disks)
  3884. {
  3885. int rv;
  3886. /* change the number of raid disks */
  3887. if (mddev->pers->check_reshape == NULL)
  3888. return -EINVAL;
  3889. if (raid_disks <= 0 ||
  3890. raid_disks >= mddev->max_disks)
  3891. return -EINVAL;
  3892. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  3893. return -EBUSY;
  3894. mddev->delta_disks = raid_disks - mddev->raid_disks;
  3895. rv = mddev->pers->check_reshape(mddev);
  3896. return rv;
  3897. }
  3898. /*
  3899. * update_array_info is used to change the configuration of an
  3900. * on-line array.
  3901. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  3902. * fields in the info are checked against the array.
  3903. * Any differences that cannot be handled will cause an error.
  3904. * Normally, only one change can be managed at a time.
  3905. */
  3906. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  3907. {
  3908. int rv = 0;
  3909. int cnt = 0;
  3910. int state = 0;
  3911. /* calculate expected state,ignoring low bits */
  3912. if (mddev->bitmap && mddev->bitmap_offset)
  3913. state |= (1 << MD_SB_BITMAP_PRESENT);
  3914. if (mddev->major_version != info->major_version ||
  3915. mddev->minor_version != info->minor_version ||
  3916. /* mddev->patch_version != info->patch_version || */
  3917. mddev->ctime != info->ctime ||
  3918. mddev->level != info->level ||
  3919. /* mddev->layout != info->layout || */
  3920. !mddev->persistent != info->not_persistent||
  3921. mddev->chunk_size != info->chunk_size ||
  3922. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  3923. ((state^info->state) & 0xfffffe00)
  3924. )
  3925. return -EINVAL;
  3926. /* Check there is only one change */
  3927. if (info->size >= 0 && mddev->size != info->size) cnt++;
  3928. if (mddev->raid_disks != info->raid_disks) cnt++;
  3929. if (mddev->layout != info->layout) cnt++;
  3930. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
  3931. if (cnt == 0) return 0;
  3932. if (cnt > 1) return -EINVAL;
  3933. if (mddev->layout != info->layout) {
  3934. /* Change layout
  3935. * we don't need to do anything at the md level, the
  3936. * personality will take care of it all.
  3937. */
  3938. if (mddev->pers->reconfig == NULL)
  3939. return -EINVAL;
  3940. else
  3941. return mddev->pers->reconfig(mddev, info->layout, -1);
  3942. }
  3943. if (info->size >= 0 && mddev->size != info->size)
  3944. rv = update_size(mddev, info->size);
  3945. if (mddev->raid_disks != info->raid_disks)
  3946. rv = update_raid_disks(mddev, info->raid_disks);
  3947. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  3948. if (mddev->pers->quiesce == NULL)
  3949. return -EINVAL;
  3950. if (mddev->recovery || mddev->sync_thread)
  3951. return -EBUSY;
  3952. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  3953. /* add the bitmap */
  3954. if (mddev->bitmap)
  3955. return -EEXIST;
  3956. if (mddev->default_bitmap_offset == 0)
  3957. return -EINVAL;
  3958. mddev->bitmap_offset = mddev->default_bitmap_offset;
  3959. mddev->pers->quiesce(mddev, 1);
  3960. rv = bitmap_create(mddev);
  3961. if (rv)
  3962. bitmap_destroy(mddev);
  3963. mddev->pers->quiesce(mddev, 0);
  3964. } else {
  3965. /* remove the bitmap */
  3966. if (!mddev->bitmap)
  3967. return -ENOENT;
  3968. if (mddev->bitmap->file)
  3969. return -EINVAL;
  3970. mddev->pers->quiesce(mddev, 1);
  3971. bitmap_destroy(mddev);
  3972. mddev->pers->quiesce(mddev, 0);
  3973. mddev->bitmap_offset = 0;
  3974. }
  3975. }
  3976. md_update_sb(mddev, 1);
  3977. return rv;
  3978. }
  3979. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  3980. {
  3981. mdk_rdev_t *rdev;
  3982. if (mddev->pers == NULL)
  3983. return -ENODEV;
  3984. rdev = find_rdev(mddev, dev);
  3985. if (!rdev)
  3986. return -ENODEV;
  3987. md_error(mddev, rdev);
  3988. return 0;
  3989. }
  3990. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  3991. {
  3992. mddev_t *mddev = bdev->bd_disk->private_data;
  3993. geo->heads = 2;
  3994. geo->sectors = 4;
  3995. geo->cylinders = get_capacity(mddev->gendisk) / 8;
  3996. return 0;
  3997. }
  3998. static int md_ioctl(struct inode *inode, struct file *file,
  3999. unsigned int cmd, unsigned long arg)
  4000. {
  4001. int err = 0;
  4002. void __user *argp = (void __user *)arg;
  4003. mddev_t *mddev = NULL;
  4004. if (!capable(CAP_SYS_ADMIN))
  4005. return -EACCES;
  4006. /*
  4007. * Commands dealing with the RAID driver but not any
  4008. * particular array:
  4009. */
  4010. switch (cmd)
  4011. {
  4012. case RAID_VERSION:
  4013. err = get_version(argp);
  4014. goto done;
  4015. case PRINT_RAID_DEBUG:
  4016. err = 0;
  4017. md_print_devices();
  4018. goto done;
  4019. #ifndef MODULE
  4020. case RAID_AUTORUN:
  4021. err = 0;
  4022. autostart_arrays(arg);
  4023. goto done;
  4024. #endif
  4025. default:;
  4026. }
  4027. /*
  4028. * Commands creating/starting a new array:
  4029. */
  4030. mddev = inode->i_bdev->bd_disk->private_data;
  4031. if (!mddev) {
  4032. BUG();
  4033. goto abort;
  4034. }
  4035. err = mddev_lock(mddev);
  4036. if (err) {
  4037. printk(KERN_INFO
  4038. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  4039. err, cmd);
  4040. goto abort;
  4041. }
  4042. switch (cmd)
  4043. {
  4044. case SET_ARRAY_INFO:
  4045. {
  4046. mdu_array_info_t info;
  4047. if (!arg)
  4048. memset(&info, 0, sizeof(info));
  4049. else if (copy_from_user(&info, argp, sizeof(info))) {
  4050. err = -EFAULT;
  4051. goto abort_unlock;
  4052. }
  4053. if (mddev->pers) {
  4054. err = update_array_info(mddev, &info);
  4055. if (err) {
  4056. printk(KERN_WARNING "md: couldn't update"
  4057. " array info. %d\n", err);
  4058. goto abort_unlock;
  4059. }
  4060. goto done_unlock;
  4061. }
  4062. if (!list_empty(&mddev->disks)) {
  4063. printk(KERN_WARNING
  4064. "md: array %s already has disks!\n",
  4065. mdname(mddev));
  4066. err = -EBUSY;
  4067. goto abort_unlock;
  4068. }
  4069. if (mddev->raid_disks) {
  4070. printk(KERN_WARNING
  4071. "md: array %s already initialised!\n",
  4072. mdname(mddev));
  4073. err = -EBUSY;
  4074. goto abort_unlock;
  4075. }
  4076. err = set_array_info(mddev, &info);
  4077. if (err) {
  4078. printk(KERN_WARNING "md: couldn't set"
  4079. " array info. %d\n", err);
  4080. goto abort_unlock;
  4081. }
  4082. }
  4083. goto done_unlock;
  4084. default:;
  4085. }
  4086. /*
  4087. * Commands querying/configuring an existing array:
  4088. */
  4089. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  4090. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  4091. if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  4092. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  4093. && cmd != GET_BITMAP_FILE) {
  4094. err = -ENODEV;
  4095. goto abort_unlock;
  4096. }
  4097. /*
  4098. * Commands even a read-only array can execute:
  4099. */
  4100. switch (cmd)
  4101. {
  4102. case GET_ARRAY_INFO:
  4103. err = get_array_info(mddev, argp);
  4104. goto done_unlock;
  4105. case GET_BITMAP_FILE:
  4106. err = get_bitmap_file(mddev, argp);
  4107. goto done_unlock;
  4108. case GET_DISK_INFO:
  4109. err = get_disk_info(mddev, argp);
  4110. goto done_unlock;
  4111. case RESTART_ARRAY_RW:
  4112. err = restart_array(mddev);
  4113. goto done_unlock;
  4114. case STOP_ARRAY:
  4115. err = do_md_stop (mddev, 0);
  4116. goto done_unlock;
  4117. case STOP_ARRAY_RO:
  4118. err = do_md_stop (mddev, 1);
  4119. goto done_unlock;
  4120. /*
  4121. * We have a problem here : there is no easy way to give a CHS
  4122. * virtual geometry. We currently pretend that we have a 2 heads
  4123. * 4 sectors (with a BIG number of cylinders...). This drives
  4124. * dosfs just mad... ;-)
  4125. */
  4126. }
  4127. /*
  4128. * The remaining ioctls are changing the state of the
  4129. * superblock, so we do not allow them on read-only arrays.
  4130. * However non-MD ioctls (e.g. get-size) will still come through
  4131. * here and hit the 'default' below, so only disallow
  4132. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  4133. */
  4134. if (_IOC_TYPE(cmd) == MD_MAJOR &&
  4135. mddev->ro && mddev->pers) {
  4136. if (mddev->ro == 2) {
  4137. mddev->ro = 0;
  4138. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4139. md_wakeup_thread(mddev->thread);
  4140. } else {
  4141. err = -EROFS;
  4142. goto abort_unlock;
  4143. }
  4144. }
  4145. switch (cmd)
  4146. {
  4147. case ADD_NEW_DISK:
  4148. {
  4149. mdu_disk_info_t info;
  4150. if (copy_from_user(&info, argp, sizeof(info)))
  4151. err = -EFAULT;
  4152. else
  4153. err = add_new_disk(mddev, &info);
  4154. goto done_unlock;
  4155. }
  4156. case HOT_REMOVE_DISK:
  4157. err = hot_remove_disk(mddev, new_decode_dev(arg));
  4158. goto done_unlock;
  4159. case HOT_ADD_DISK:
  4160. err = hot_add_disk(mddev, new_decode_dev(arg));
  4161. goto done_unlock;
  4162. case SET_DISK_FAULTY:
  4163. err = set_disk_faulty(mddev, new_decode_dev(arg));
  4164. goto done_unlock;
  4165. case RUN_ARRAY:
  4166. err = do_md_run (mddev);
  4167. goto done_unlock;
  4168. case SET_BITMAP_FILE:
  4169. err = set_bitmap_file(mddev, (int)arg);
  4170. goto done_unlock;
  4171. default:
  4172. err = -EINVAL;
  4173. goto abort_unlock;
  4174. }
  4175. done_unlock:
  4176. abort_unlock:
  4177. mddev_unlock(mddev);
  4178. return err;
  4179. done:
  4180. if (err)
  4181. MD_BUG();
  4182. abort:
  4183. return err;
  4184. }
  4185. static int md_open(struct inode *inode, struct file *file)
  4186. {
  4187. /*
  4188. * Succeed if we can lock the mddev, which confirms that
  4189. * it isn't being stopped right now.
  4190. */
  4191. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  4192. int err;
  4193. if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
  4194. goto out;
  4195. err = 0;
  4196. mddev_get(mddev);
  4197. mddev_unlock(mddev);
  4198. check_disk_change(inode->i_bdev);
  4199. out:
  4200. return err;
  4201. }
  4202. static int md_release(struct inode *inode, struct file * file)
  4203. {
  4204. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  4205. BUG_ON(!mddev);
  4206. mddev_put(mddev);
  4207. return 0;
  4208. }
  4209. static int md_media_changed(struct gendisk *disk)
  4210. {
  4211. mddev_t *mddev = disk->private_data;
  4212. return mddev->changed;
  4213. }
  4214. static int md_revalidate(struct gendisk *disk)
  4215. {
  4216. mddev_t *mddev = disk->private_data;
  4217. mddev->changed = 0;
  4218. return 0;
  4219. }
  4220. static struct block_device_operations md_fops =
  4221. {
  4222. .owner = THIS_MODULE,
  4223. .open = md_open,
  4224. .release = md_release,
  4225. .ioctl = md_ioctl,
  4226. .getgeo = md_getgeo,
  4227. .media_changed = md_media_changed,
  4228. .revalidate_disk= md_revalidate,
  4229. };
  4230. static int md_thread(void * arg)
  4231. {
  4232. mdk_thread_t *thread = arg;
  4233. /*
  4234. * md_thread is a 'system-thread', it's priority should be very
  4235. * high. We avoid resource deadlocks individually in each
  4236. * raid personality. (RAID5 does preallocation) We also use RR and
  4237. * the very same RT priority as kswapd, thus we will never get
  4238. * into a priority inversion deadlock.
  4239. *
  4240. * we definitely have to have equal or higher priority than
  4241. * bdflush, otherwise bdflush will deadlock if there are too
  4242. * many dirty RAID5 blocks.
  4243. */
  4244. allow_signal(SIGKILL);
  4245. while (!kthread_should_stop()) {
  4246. /* We need to wait INTERRUPTIBLE so that
  4247. * we don't add to the load-average.
  4248. * That means we need to be sure no signals are
  4249. * pending
  4250. */
  4251. if (signal_pending(current))
  4252. flush_signals(current);
  4253. wait_event_interruptible_timeout
  4254. (thread->wqueue,
  4255. test_bit(THREAD_WAKEUP, &thread->flags)
  4256. || kthread_should_stop(),
  4257. thread->timeout);
  4258. clear_bit(THREAD_WAKEUP, &thread->flags);
  4259. thread->run(thread->mddev);
  4260. }
  4261. return 0;
  4262. }
  4263. void md_wakeup_thread(mdk_thread_t *thread)
  4264. {
  4265. if (thread) {
  4266. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  4267. set_bit(THREAD_WAKEUP, &thread->flags);
  4268. wake_up(&thread->wqueue);
  4269. }
  4270. }
  4271. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  4272. const char *name)
  4273. {
  4274. mdk_thread_t *thread;
  4275. thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  4276. if (!thread)
  4277. return NULL;
  4278. init_waitqueue_head(&thread->wqueue);
  4279. thread->run = run;
  4280. thread->mddev = mddev;
  4281. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  4282. thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
  4283. if (IS_ERR(thread->tsk)) {
  4284. kfree(thread);
  4285. return NULL;
  4286. }
  4287. return thread;
  4288. }
  4289. void md_unregister_thread(mdk_thread_t *thread)
  4290. {
  4291. dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  4292. kthread_stop(thread->tsk);
  4293. kfree(thread);
  4294. }
  4295. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  4296. {
  4297. if (!mddev) {
  4298. MD_BUG();
  4299. return;
  4300. }
  4301. if (!rdev || test_bit(Faulty, &rdev->flags))
  4302. return;
  4303. /*
  4304. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  4305. mdname(mddev),
  4306. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  4307. __builtin_return_address(0),__builtin_return_address(1),
  4308. __builtin_return_address(2),__builtin_return_address(3));
  4309. */
  4310. if (!mddev->pers)
  4311. return;
  4312. if (!mddev->pers->error_handler)
  4313. return;
  4314. mddev->pers->error_handler(mddev,rdev);
  4315. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4316. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4317. md_wakeup_thread(mddev->thread);
  4318. md_new_event_inintr(mddev);
  4319. }
  4320. /* seq_file implementation /proc/mdstat */
  4321. static void status_unused(struct seq_file *seq)
  4322. {
  4323. int i = 0;
  4324. mdk_rdev_t *rdev;
  4325. struct list_head *tmp;
  4326. seq_printf(seq, "unused devices: ");
  4327. ITERATE_RDEV_PENDING(rdev,tmp) {
  4328. char b[BDEVNAME_SIZE];
  4329. i++;
  4330. seq_printf(seq, "%s ",
  4331. bdevname(rdev->bdev,b));
  4332. }
  4333. if (!i)
  4334. seq_printf(seq, "<none>");
  4335. seq_printf(seq, "\n");
  4336. }
  4337. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  4338. {
  4339. sector_t max_blocks, resync, res;
  4340. unsigned long dt, db, rt;
  4341. int scale;
  4342. unsigned int per_milli;
  4343. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  4344. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  4345. max_blocks = mddev->resync_max_sectors >> 1;
  4346. else
  4347. max_blocks = mddev->size;
  4348. /*
  4349. * Should not happen.
  4350. */
  4351. if (!max_blocks) {
  4352. MD_BUG();
  4353. return;
  4354. }
  4355. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  4356. * in a sector_t, and (max_blocks>>scale) will fit in a
  4357. * u32, as those are the requirements for sector_div.
  4358. * Thus 'scale' must be at least 10
  4359. */
  4360. scale = 10;
  4361. if (sizeof(sector_t) > sizeof(unsigned long)) {
  4362. while ( max_blocks/2 > (1ULL<<(scale+32)))
  4363. scale++;
  4364. }
  4365. res = (resync>>scale)*1000;
  4366. sector_div(res, (u32)((max_blocks>>scale)+1));
  4367. per_milli = res;
  4368. {
  4369. int i, x = per_milli/50, y = 20-x;
  4370. seq_printf(seq, "[");
  4371. for (i = 0; i < x; i++)
  4372. seq_printf(seq, "=");
  4373. seq_printf(seq, ">");
  4374. for (i = 0; i < y; i++)
  4375. seq_printf(seq, ".");
  4376. seq_printf(seq, "] ");
  4377. }
  4378. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  4379. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  4380. "reshape" :
  4381. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  4382. "check" :
  4383. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  4384. "resync" : "recovery"))),
  4385. per_milli/10, per_milli % 10,
  4386. (unsigned long long) resync,
  4387. (unsigned long long) max_blocks);
  4388. /*
  4389. * We do not want to overflow, so the order of operands and
  4390. * the * 100 / 100 trick are important. We do a +1 to be
  4391. * safe against division by zero. We only estimate anyway.
  4392. *
  4393. * dt: time from mark until now
  4394. * db: blocks written from mark until now
  4395. * rt: remaining time
  4396. */
  4397. dt = ((jiffies - mddev->resync_mark) / HZ);
  4398. if (!dt) dt++;
  4399. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  4400. - mddev->resync_mark_cnt;
  4401. rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
  4402. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  4403. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  4404. }
  4405. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  4406. {
  4407. struct list_head *tmp;
  4408. loff_t l = *pos;
  4409. mddev_t *mddev;
  4410. if (l >= 0x10000)
  4411. return NULL;
  4412. if (!l--)
  4413. /* header */
  4414. return (void*)1;
  4415. spin_lock(&all_mddevs_lock);
  4416. list_for_each(tmp,&all_mddevs)
  4417. if (!l--) {
  4418. mddev = list_entry(tmp, mddev_t, all_mddevs);
  4419. mddev_get(mddev);
  4420. spin_unlock(&all_mddevs_lock);
  4421. return mddev;
  4422. }
  4423. spin_unlock(&all_mddevs_lock);
  4424. if (!l--)
  4425. return (void*)2;/* tail */
  4426. return NULL;
  4427. }
  4428. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  4429. {
  4430. struct list_head *tmp;
  4431. mddev_t *next_mddev, *mddev = v;
  4432. ++*pos;
  4433. if (v == (void*)2)
  4434. return NULL;
  4435. spin_lock(&all_mddevs_lock);
  4436. if (v == (void*)1)
  4437. tmp = all_mddevs.next;
  4438. else
  4439. tmp = mddev->all_mddevs.next;
  4440. if (tmp != &all_mddevs)
  4441. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  4442. else {
  4443. next_mddev = (void*)2;
  4444. *pos = 0x10000;
  4445. }
  4446. spin_unlock(&all_mddevs_lock);
  4447. if (v != (void*)1)
  4448. mddev_put(mddev);
  4449. return next_mddev;
  4450. }
  4451. static void md_seq_stop(struct seq_file *seq, void *v)
  4452. {
  4453. mddev_t *mddev = v;
  4454. if (mddev && v != (void*)1 && v != (void*)2)
  4455. mddev_put(mddev);
  4456. }
  4457. struct mdstat_info {
  4458. int event;
  4459. };
  4460. static int md_seq_show(struct seq_file *seq, void *v)
  4461. {
  4462. mddev_t *mddev = v;
  4463. sector_t size;
  4464. struct list_head *tmp2;
  4465. mdk_rdev_t *rdev;
  4466. struct mdstat_info *mi = seq->private;
  4467. struct bitmap *bitmap;
  4468. if (v == (void*)1) {
  4469. struct mdk_personality *pers;
  4470. seq_printf(seq, "Personalities : ");
  4471. spin_lock(&pers_lock);
  4472. list_for_each_entry(pers, &pers_list, list)
  4473. seq_printf(seq, "[%s] ", pers->name);
  4474. spin_unlock(&pers_lock);
  4475. seq_printf(seq, "\n");
  4476. mi->event = atomic_read(&md_event_count);
  4477. return 0;
  4478. }
  4479. if (v == (void*)2) {
  4480. status_unused(seq);
  4481. return 0;
  4482. }
  4483. if (mddev_lock(mddev) < 0)
  4484. return -EINTR;
  4485. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  4486. seq_printf(seq, "%s : %sactive", mdname(mddev),
  4487. mddev->pers ? "" : "in");
  4488. if (mddev->pers) {
  4489. if (mddev->ro==1)
  4490. seq_printf(seq, " (read-only)");
  4491. if (mddev->ro==2)
  4492. seq_printf(seq, "(auto-read-only)");
  4493. seq_printf(seq, " %s", mddev->pers->name);
  4494. }
  4495. size = 0;
  4496. ITERATE_RDEV(mddev,rdev,tmp2) {
  4497. char b[BDEVNAME_SIZE];
  4498. seq_printf(seq, " %s[%d]",
  4499. bdevname(rdev->bdev,b), rdev->desc_nr);
  4500. if (test_bit(WriteMostly, &rdev->flags))
  4501. seq_printf(seq, "(W)");
  4502. if (test_bit(Faulty, &rdev->flags)) {
  4503. seq_printf(seq, "(F)");
  4504. continue;
  4505. } else if (rdev->raid_disk < 0)
  4506. seq_printf(seq, "(S)"); /* spare */
  4507. size += rdev->size;
  4508. }
  4509. if (!list_empty(&mddev->disks)) {
  4510. if (mddev->pers)
  4511. seq_printf(seq, "\n %llu blocks",
  4512. (unsigned long long)mddev->array_size);
  4513. else
  4514. seq_printf(seq, "\n %llu blocks",
  4515. (unsigned long long)size);
  4516. }
  4517. if (mddev->persistent) {
  4518. if (mddev->major_version != 0 ||
  4519. mddev->minor_version != 90) {
  4520. seq_printf(seq," super %d.%d",
  4521. mddev->major_version,
  4522. mddev->minor_version);
  4523. }
  4524. } else if (mddev->external)
  4525. seq_printf(seq, " super external:%s",
  4526. mddev->metadata_type);
  4527. else
  4528. seq_printf(seq, " super non-persistent");
  4529. if (mddev->pers) {
  4530. mddev->pers->status (seq, mddev);
  4531. seq_printf(seq, "\n ");
  4532. if (mddev->pers->sync_request) {
  4533. if (mddev->curr_resync > 2) {
  4534. status_resync (seq, mddev);
  4535. seq_printf(seq, "\n ");
  4536. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  4537. seq_printf(seq, "\tresync=DELAYED\n ");
  4538. else if (mddev->recovery_cp < MaxSector)
  4539. seq_printf(seq, "\tresync=PENDING\n ");
  4540. }
  4541. } else
  4542. seq_printf(seq, "\n ");
  4543. if ((bitmap = mddev->bitmap)) {
  4544. unsigned long chunk_kb;
  4545. unsigned long flags;
  4546. spin_lock_irqsave(&bitmap->lock, flags);
  4547. chunk_kb = bitmap->chunksize >> 10;
  4548. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  4549. "%lu%s chunk",
  4550. bitmap->pages - bitmap->missing_pages,
  4551. bitmap->pages,
  4552. (bitmap->pages - bitmap->missing_pages)
  4553. << (PAGE_SHIFT - 10),
  4554. chunk_kb ? chunk_kb : bitmap->chunksize,
  4555. chunk_kb ? "KB" : "B");
  4556. if (bitmap->file) {
  4557. seq_printf(seq, ", file: ");
  4558. seq_path(seq, bitmap->file->f_path.mnt,
  4559. bitmap->file->f_path.dentry," \t\n");
  4560. }
  4561. seq_printf(seq, "\n");
  4562. spin_unlock_irqrestore(&bitmap->lock, flags);
  4563. }
  4564. seq_printf(seq, "\n");
  4565. }
  4566. mddev_unlock(mddev);
  4567. return 0;
  4568. }
  4569. static struct seq_operations md_seq_ops = {
  4570. .start = md_seq_start,
  4571. .next = md_seq_next,
  4572. .stop = md_seq_stop,
  4573. .show = md_seq_show,
  4574. };
  4575. static int md_seq_open(struct inode *inode, struct file *file)
  4576. {
  4577. int error;
  4578. struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
  4579. if (mi == NULL)
  4580. return -ENOMEM;
  4581. error = seq_open(file, &md_seq_ops);
  4582. if (error)
  4583. kfree(mi);
  4584. else {
  4585. struct seq_file *p = file->private_data;
  4586. p->private = mi;
  4587. mi->event = atomic_read(&md_event_count);
  4588. }
  4589. return error;
  4590. }
  4591. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  4592. {
  4593. struct seq_file *m = filp->private_data;
  4594. struct mdstat_info *mi = m->private;
  4595. int mask;
  4596. poll_wait(filp, &md_event_waiters, wait);
  4597. /* always allow read */
  4598. mask = POLLIN | POLLRDNORM;
  4599. if (mi->event != atomic_read(&md_event_count))
  4600. mask |= POLLERR | POLLPRI;
  4601. return mask;
  4602. }
  4603. static const struct file_operations md_seq_fops = {
  4604. .owner = THIS_MODULE,
  4605. .open = md_seq_open,
  4606. .read = seq_read,
  4607. .llseek = seq_lseek,
  4608. .release = seq_release_private,
  4609. .poll = mdstat_poll,
  4610. };
  4611. int register_md_personality(struct mdk_personality *p)
  4612. {
  4613. spin_lock(&pers_lock);
  4614. list_add_tail(&p->list, &pers_list);
  4615. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  4616. spin_unlock(&pers_lock);
  4617. return 0;
  4618. }
  4619. int unregister_md_personality(struct mdk_personality *p)
  4620. {
  4621. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  4622. spin_lock(&pers_lock);
  4623. list_del_init(&p->list);
  4624. spin_unlock(&pers_lock);
  4625. return 0;
  4626. }
  4627. static int is_mddev_idle(mddev_t *mddev)
  4628. {
  4629. mdk_rdev_t * rdev;
  4630. struct list_head *tmp;
  4631. int idle;
  4632. long curr_events;
  4633. idle = 1;
  4634. ITERATE_RDEV(mddev,rdev,tmp) {
  4635. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  4636. curr_events = disk_stat_read(disk, sectors[0]) +
  4637. disk_stat_read(disk, sectors[1]) -
  4638. atomic_read(&disk->sync_io);
  4639. /* sync IO will cause sync_io to increase before the disk_stats
  4640. * as sync_io is counted when a request starts, and
  4641. * disk_stats is counted when it completes.
  4642. * So resync activity will cause curr_events to be smaller than
  4643. * when there was no such activity.
  4644. * non-sync IO will cause disk_stat to increase without
  4645. * increasing sync_io so curr_events will (eventually)
  4646. * be larger than it was before. Once it becomes
  4647. * substantially larger, the test below will cause
  4648. * the array to appear non-idle, and resync will slow
  4649. * down.
  4650. * If there is a lot of outstanding resync activity when
  4651. * we set last_event to curr_events, then all that activity
  4652. * completing might cause the array to appear non-idle
  4653. * and resync will be slowed down even though there might
  4654. * not have been non-resync activity. This will only
  4655. * happen once though. 'last_events' will soon reflect
  4656. * the state where there is little or no outstanding
  4657. * resync requests, and further resync activity will
  4658. * always make curr_events less than last_events.
  4659. *
  4660. */
  4661. if (curr_events - rdev->last_events > 4096) {
  4662. rdev->last_events = curr_events;
  4663. idle = 0;
  4664. }
  4665. }
  4666. return idle;
  4667. }
  4668. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  4669. {
  4670. /* another "blocks" (512byte) blocks have been synced */
  4671. atomic_sub(blocks, &mddev->recovery_active);
  4672. wake_up(&mddev->recovery_wait);
  4673. if (!ok) {
  4674. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4675. md_wakeup_thread(mddev->thread);
  4676. // stop recovery, signal do_sync ....
  4677. }
  4678. }
  4679. /* md_write_start(mddev, bi)
  4680. * If we need to update some array metadata (e.g. 'active' flag
  4681. * in superblock) before writing, schedule a superblock update
  4682. * and wait for it to complete.
  4683. */
  4684. void md_write_start(mddev_t *mddev, struct bio *bi)
  4685. {
  4686. if (bio_data_dir(bi) != WRITE)
  4687. return;
  4688. BUG_ON(mddev->ro == 1);
  4689. if (mddev->ro == 2) {
  4690. /* need to switch to read/write */
  4691. mddev->ro = 0;
  4692. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4693. md_wakeup_thread(mddev->thread);
  4694. }
  4695. atomic_inc(&mddev->writes_pending);
  4696. if (mddev->in_sync) {
  4697. spin_lock_irq(&mddev->write_lock);
  4698. if (mddev->in_sync) {
  4699. mddev->in_sync = 0;
  4700. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  4701. md_wakeup_thread(mddev->thread);
  4702. }
  4703. spin_unlock_irq(&mddev->write_lock);
  4704. }
  4705. wait_event(mddev->sb_wait, mddev->flags==0);
  4706. }
  4707. void md_write_end(mddev_t *mddev)
  4708. {
  4709. if (atomic_dec_and_test(&mddev->writes_pending)) {
  4710. if (mddev->safemode == 2)
  4711. md_wakeup_thread(mddev->thread);
  4712. else if (mddev->safemode_delay)
  4713. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  4714. }
  4715. }
  4716. /* md_allow_write(mddev)
  4717. * Calling this ensures that the array is marked 'active' so that writes
  4718. * may proceed without blocking. It is important to call this before
  4719. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  4720. * Must be called with mddev_lock held.
  4721. */
  4722. void md_allow_write(mddev_t *mddev)
  4723. {
  4724. if (!mddev->pers)
  4725. return;
  4726. if (mddev->ro)
  4727. return;
  4728. spin_lock_irq(&mddev->write_lock);
  4729. if (mddev->in_sync) {
  4730. mddev->in_sync = 0;
  4731. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  4732. if (mddev->safemode_delay &&
  4733. mddev->safemode == 0)
  4734. mddev->safemode = 1;
  4735. spin_unlock_irq(&mddev->write_lock);
  4736. md_update_sb(mddev, 0);
  4737. } else
  4738. spin_unlock_irq(&mddev->write_lock);
  4739. }
  4740. EXPORT_SYMBOL_GPL(md_allow_write);
  4741. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  4742. #define SYNC_MARKS 10
  4743. #define SYNC_MARK_STEP (3*HZ)
  4744. void md_do_sync(mddev_t *mddev)
  4745. {
  4746. mddev_t *mddev2;
  4747. unsigned int currspeed = 0,
  4748. window;
  4749. sector_t max_sectors,j, io_sectors;
  4750. unsigned long mark[SYNC_MARKS];
  4751. sector_t mark_cnt[SYNC_MARKS];
  4752. int last_mark,m;
  4753. struct list_head *tmp;
  4754. sector_t last_check;
  4755. int skipped = 0;
  4756. struct list_head *rtmp;
  4757. mdk_rdev_t *rdev;
  4758. char *desc;
  4759. /* just incase thread restarts... */
  4760. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  4761. return;
  4762. if (mddev->ro) /* never try to sync a read-only array */
  4763. return;
  4764. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4765. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  4766. desc = "data-check";
  4767. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  4768. desc = "requested-resync";
  4769. else
  4770. desc = "resync";
  4771. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  4772. desc = "reshape";
  4773. else
  4774. desc = "recovery";
  4775. /* we overload curr_resync somewhat here.
  4776. * 0 == not engaged in resync at all
  4777. * 2 == checking that there is no conflict with another sync
  4778. * 1 == like 2, but have yielded to allow conflicting resync to
  4779. * commense
  4780. * other == active in resync - this many blocks
  4781. *
  4782. * Before starting a resync we must have set curr_resync to
  4783. * 2, and then checked that every "conflicting" array has curr_resync
  4784. * less than ours. When we find one that is the same or higher
  4785. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  4786. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  4787. * This will mean we have to start checking from the beginning again.
  4788. *
  4789. */
  4790. do {
  4791. mddev->curr_resync = 2;
  4792. try_again:
  4793. if (kthread_should_stop()) {
  4794. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4795. goto skip;
  4796. }
  4797. ITERATE_MDDEV(mddev2,tmp) {
  4798. if (mddev2 == mddev)
  4799. continue;
  4800. if (mddev2->curr_resync &&
  4801. match_mddev_units(mddev,mddev2)) {
  4802. DEFINE_WAIT(wq);
  4803. if (mddev < mddev2 && mddev->curr_resync == 2) {
  4804. /* arbitrarily yield */
  4805. mddev->curr_resync = 1;
  4806. wake_up(&resync_wait);
  4807. }
  4808. if (mddev > mddev2 && mddev->curr_resync == 1)
  4809. /* no need to wait here, we can wait the next
  4810. * time 'round when curr_resync == 2
  4811. */
  4812. continue;
  4813. prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
  4814. if (!kthread_should_stop() &&
  4815. mddev2->curr_resync >= mddev->curr_resync) {
  4816. printk(KERN_INFO "md: delaying %s of %s"
  4817. " until %s has finished (they"
  4818. " share one or more physical units)\n",
  4819. desc, mdname(mddev), mdname(mddev2));
  4820. mddev_put(mddev2);
  4821. schedule();
  4822. finish_wait(&resync_wait, &wq);
  4823. goto try_again;
  4824. }
  4825. finish_wait(&resync_wait, &wq);
  4826. }
  4827. }
  4828. } while (mddev->curr_resync < 2);
  4829. j = 0;
  4830. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4831. /* resync follows the size requested by the personality,
  4832. * which defaults to physical size, but can be virtual size
  4833. */
  4834. max_sectors = mddev->resync_max_sectors;
  4835. mddev->resync_mismatches = 0;
  4836. /* we don't use the checkpoint if there's a bitmap */
  4837. if (!mddev->bitmap &&
  4838. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  4839. j = mddev->recovery_cp;
  4840. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  4841. max_sectors = mddev->size << 1;
  4842. else {
  4843. /* recovery follows the physical size of devices */
  4844. max_sectors = mddev->size << 1;
  4845. j = MaxSector;
  4846. ITERATE_RDEV(mddev,rdev,rtmp)
  4847. if (rdev->raid_disk >= 0 &&
  4848. !test_bit(Faulty, &rdev->flags) &&
  4849. !test_bit(In_sync, &rdev->flags) &&
  4850. rdev->recovery_offset < j)
  4851. j = rdev->recovery_offset;
  4852. }
  4853. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  4854. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  4855. " %d KB/sec/disk.\n", speed_min(mddev));
  4856. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  4857. "(but not more than %d KB/sec) for %s.\n",
  4858. speed_max(mddev), desc);
  4859. is_mddev_idle(mddev); /* this also initializes IO event counters */
  4860. io_sectors = 0;
  4861. for (m = 0; m < SYNC_MARKS; m++) {
  4862. mark[m] = jiffies;
  4863. mark_cnt[m] = io_sectors;
  4864. }
  4865. last_mark = 0;
  4866. mddev->resync_mark = mark[last_mark];
  4867. mddev->resync_mark_cnt = mark_cnt[last_mark];
  4868. /*
  4869. * Tune reconstruction:
  4870. */
  4871. window = 32*(PAGE_SIZE/512);
  4872. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  4873. window/2,(unsigned long long) max_sectors/2);
  4874. atomic_set(&mddev->recovery_active, 0);
  4875. init_waitqueue_head(&mddev->recovery_wait);
  4876. last_check = 0;
  4877. if (j>2) {
  4878. printk(KERN_INFO
  4879. "md: resuming %s of %s from checkpoint.\n",
  4880. desc, mdname(mddev));
  4881. mddev->curr_resync = j;
  4882. }
  4883. while (j < max_sectors) {
  4884. sector_t sectors;
  4885. skipped = 0;
  4886. if (j >= mddev->resync_max) {
  4887. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  4888. wait_event(mddev->recovery_wait,
  4889. mddev->resync_max > j
  4890. || kthread_should_stop());
  4891. }
  4892. if (kthread_should_stop())
  4893. goto interrupted;
  4894. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  4895. currspeed < speed_min(mddev));
  4896. if (sectors == 0) {
  4897. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4898. goto out;
  4899. }
  4900. if (!skipped) { /* actual IO requested */
  4901. io_sectors += sectors;
  4902. atomic_add(sectors, &mddev->recovery_active);
  4903. }
  4904. j += sectors;
  4905. if (j>1) mddev->curr_resync = j;
  4906. mddev->curr_mark_cnt = io_sectors;
  4907. if (last_check == 0)
  4908. /* this is the earliers that rebuilt will be
  4909. * visible in /proc/mdstat
  4910. */
  4911. md_new_event(mddev);
  4912. if (last_check + window > io_sectors || j == max_sectors)
  4913. continue;
  4914. last_check = io_sectors;
  4915. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  4916. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  4917. break;
  4918. repeat:
  4919. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  4920. /* step marks */
  4921. int next = (last_mark+1) % SYNC_MARKS;
  4922. mddev->resync_mark = mark[next];
  4923. mddev->resync_mark_cnt = mark_cnt[next];
  4924. mark[next] = jiffies;
  4925. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  4926. last_mark = next;
  4927. }
  4928. if (kthread_should_stop())
  4929. goto interrupted;
  4930. /*
  4931. * this loop exits only if either when we are slower than
  4932. * the 'hard' speed limit, or the system was IO-idle for
  4933. * a jiffy.
  4934. * the system might be non-idle CPU-wise, but we only care
  4935. * about not overloading the IO subsystem. (things like an
  4936. * e2fsck being done on the RAID array should execute fast)
  4937. */
  4938. blk_unplug(mddev->queue);
  4939. cond_resched();
  4940. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  4941. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  4942. if (currspeed > speed_min(mddev)) {
  4943. if ((currspeed > speed_max(mddev)) ||
  4944. !is_mddev_idle(mddev)) {
  4945. msleep(500);
  4946. goto repeat;
  4947. }
  4948. }
  4949. }
  4950. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  4951. /*
  4952. * this also signals 'finished resyncing' to md_stop
  4953. */
  4954. out:
  4955. blk_unplug(mddev->queue);
  4956. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  4957. /* tell personality that we are finished */
  4958. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  4959. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  4960. !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  4961. mddev->curr_resync > 2) {
  4962. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4963. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  4964. if (mddev->curr_resync >= mddev->recovery_cp) {
  4965. printk(KERN_INFO
  4966. "md: checkpointing %s of %s.\n",
  4967. desc, mdname(mddev));
  4968. mddev->recovery_cp = mddev->curr_resync;
  4969. }
  4970. } else
  4971. mddev->recovery_cp = MaxSector;
  4972. } else {
  4973. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  4974. mddev->curr_resync = MaxSector;
  4975. ITERATE_RDEV(mddev,rdev,rtmp)
  4976. if (rdev->raid_disk >= 0 &&
  4977. !test_bit(Faulty, &rdev->flags) &&
  4978. !test_bit(In_sync, &rdev->flags) &&
  4979. rdev->recovery_offset < mddev->curr_resync)
  4980. rdev->recovery_offset = mddev->curr_resync;
  4981. }
  4982. }
  4983. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  4984. skip:
  4985. mddev->curr_resync = 0;
  4986. mddev->resync_max = MaxSector;
  4987. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  4988. wake_up(&resync_wait);
  4989. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  4990. md_wakeup_thread(mddev->thread);
  4991. return;
  4992. interrupted:
  4993. /*
  4994. * got a signal, exit.
  4995. */
  4996. printk(KERN_INFO
  4997. "md: md_do_sync() got signal ... exiting\n");
  4998. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4999. goto out;
  5000. }
  5001. EXPORT_SYMBOL_GPL(md_do_sync);
  5002. static int remove_and_add_spares(mddev_t *mddev)
  5003. {
  5004. mdk_rdev_t *rdev;
  5005. struct list_head *rtmp;
  5006. int spares = 0;
  5007. ITERATE_RDEV(mddev,rdev,rtmp)
  5008. if (rdev->raid_disk >= 0 &&
  5009. !mddev->external &&
  5010. (test_bit(Faulty, &rdev->flags) ||
  5011. ! test_bit(In_sync, &rdev->flags)) &&
  5012. atomic_read(&rdev->nr_pending)==0) {
  5013. if (mddev->pers->hot_remove_disk(
  5014. mddev, rdev->raid_disk)==0) {
  5015. char nm[20];
  5016. sprintf(nm,"rd%d", rdev->raid_disk);
  5017. sysfs_remove_link(&mddev->kobj, nm);
  5018. rdev->raid_disk = -1;
  5019. }
  5020. }
  5021. if (mddev->degraded) {
  5022. ITERATE_RDEV(mddev,rdev,rtmp)
  5023. if (rdev->raid_disk < 0
  5024. && !test_bit(Faulty, &rdev->flags)) {
  5025. rdev->recovery_offset = 0;
  5026. if (mddev->pers->hot_add_disk(mddev,rdev)) {
  5027. char nm[20];
  5028. sprintf(nm, "rd%d", rdev->raid_disk);
  5029. if (sysfs_create_link(&mddev->kobj,
  5030. &rdev->kobj, nm))
  5031. printk(KERN_WARNING
  5032. "md: cannot register "
  5033. "%s for %s\n",
  5034. nm, mdname(mddev));
  5035. spares++;
  5036. md_new_event(mddev);
  5037. } else
  5038. break;
  5039. }
  5040. }
  5041. return spares;
  5042. }
  5043. /*
  5044. * This routine is regularly called by all per-raid-array threads to
  5045. * deal with generic issues like resync and super-block update.
  5046. * Raid personalities that don't have a thread (linear/raid0) do not
  5047. * need this as they never do any recovery or update the superblock.
  5048. *
  5049. * It does not do any resync itself, but rather "forks" off other threads
  5050. * to do that as needed.
  5051. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  5052. * "->recovery" and create a thread at ->sync_thread.
  5053. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  5054. * and wakeups up this thread which will reap the thread and finish up.
  5055. * This thread also removes any faulty devices (with nr_pending == 0).
  5056. *
  5057. * The overall approach is:
  5058. * 1/ if the superblock needs updating, update it.
  5059. * 2/ If a recovery thread is running, don't do anything else.
  5060. * 3/ If recovery has finished, clean up, possibly marking spares active.
  5061. * 4/ If there are any faulty devices, remove them.
  5062. * 5/ If array is degraded, try to add spares devices
  5063. * 6/ If array has spares or is not in-sync, start a resync thread.
  5064. */
  5065. void md_check_recovery(mddev_t *mddev)
  5066. {
  5067. mdk_rdev_t *rdev;
  5068. struct list_head *rtmp;
  5069. if (mddev->bitmap)
  5070. bitmap_daemon_work(mddev->bitmap);
  5071. if (mddev->ro)
  5072. return;
  5073. if (signal_pending(current)) {
  5074. if (mddev->pers->sync_request) {
  5075. printk(KERN_INFO "md: %s in immediate safe mode\n",
  5076. mdname(mddev));
  5077. mddev->safemode = 2;
  5078. }
  5079. flush_signals(current);
  5080. }
  5081. if ( ! (
  5082. (mddev->flags && !mddev->external) ||
  5083. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  5084. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  5085. (mddev->safemode == 1) ||
  5086. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  5087. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  5088. ))
  5089. return;
  5090. if (mddev_trylock(mddev)) {
  5091. int spares = 0;
  5092. spin_lock_irq(&mddev->write_lock);
  5093. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  5094. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  5095. mddev->in_sync = 1;
  5096. if (mddev->persistent)
  5097. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  5098. }
  5099. if (mddev->safemode == 1)
  5100. mddev->safemode = 0;
  5101. spin_unlock_irq(&mddev->write_lock);
  5102. if (mddev->flags)
  5103. md_update_sb(mddev, 0);
  5104. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  5105. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  5106. /* resync/recovery still happening */
  5107. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5108. goto unlock;
  5109. }
  5110. if (mddev->sync_thread) {
  5111. /* resync has finished, collect result */
  5112. md_unregister_thread(mddev->sync_thread);
  5113. mddev->sync_thread = NULL;
  5114. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  5115. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  5116. /* success...*/
  5117. /* activate any spares */
  5118. mddev->pers->spare_active(mddev);
  5119. }
  5120. md_update_sb(mddev, 1);
  5121. /* if array is no-longer degraded, then any saved_raid_disk
  5122. * information must be scrapped
  5123. */
  5124. if (!mddev->degraded)
  5125. ITERATE_RDEV(mddev,rdev,rtmp)
  5126. rdev->saved_raid_disk = -1;
  5127. mddev->recovery = 0;
  5128. /* flag recovery needed just to double check */
  5129. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5130. md_new_event(mddev);
  5131. goto unlock;
  5132. }
  5133. /* Clear some bits that don't mean anything, but
  5134. * might be left set
  5135. */
  5136. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5137. clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
  5138. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5139. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  5140. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  5141. goto unlock;
  5142. /* no recovery is running.
  5143. * remove any failed drives, then
  5144. * add spares if possible.
  5145. * Spare are also removed and re-added, to allow
  5146. * the personality to fail the re-add.
  5147. */
  5148. if (mddev->reshape_position != MaxSector) {
  5149. if (mddev->pers->check_reshape(mddev) != 0)
  5150. /* Cannot proceed */
  5151. goto unlock;
  5152. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  5153. } else if ((spares = remove_and_add_spares(mddev))) {
  5154. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  5155. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  5156. } else if (mddev->recovery_cp < MaxSector) {
  5157. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  5158. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  5159. /* nothing to be done ... */
  5160. goto unlock;
  5161. if (mddev->pers->sync_request) {
  5162. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  5163. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  5164. /* We are adding a device or devices to an array
  5165. * which has the bitmap stored on all devices.
  5166. * So make sure all bitmap pages get written
  5167. */
  5168. bitmap_write_all(mddev->bitmap);
  5169. }
  5170. mddev->sync_thread = md_register_thread(md_do_sync,
  5171. mddev,
  5172. "%s_resync");
  5173. if (!mddev->sync_thread) {
  5174. printk(KERN_ERR "%s: could not start resync"
  5175. " thread...\n",
  5176. mdname(mddev));
  5177. /* leave the spares where they are, it shouldn't hurt */
  5178. mddev->recovery = 0;
  5179. } else
  5180. md_wakeup_thread(mddev->sync_thread);
  5181. md_new_event(mddev);
  5182. }
  5183. unlock:
  5184. mddev_unlock(mddev);
  5185. }
  5186. }
  5187. static int md_notify_reboot(struct notifier_block *this,
  5188. unsigned long code, void *x)
  5189. {
  5190. struct list_head *tmp;
  5191. mddev_t *mddev;
  5192. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  5193. printk(KERN_INFO "md: stopping all md devices.\n");
  5194. ITERATE_MDDEV(mddev,tmp)
  5195. if (mddev_trylock(mddev)) {
  5196. do_md_stop (mddev, 1);
  5197. mddev_unlock(mddev);
  5198. }
  5199. /*
  5200. * certain more exotic SCSI devices are known to be
  5201. * volatile wrt too early system reboots. While the
  5202. * right place to handle this issue is the given
  5203. * driver, we do want to have a safe RAID driver ...
  5204. */
  5205. mdelay(1000*1);
  5206. }
  5207. return NOTIFY_DONE;
  5208. }
  5209. static struct notifier_block md_notifier = {
  5210. .notifier_call = md_notify_reboot,
  5211. .next = NULL,
  5212. .priority = INT_MAX, /* before any real devices */
  5213. };
  5214. static void md_geninit(void)
  5215. {
  5216. struct proc_dir_entry *p;
  5217. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  5218. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  5219. if (p)
  5220. p->proc_fops = &md_seq_fops;
  5221. }
  5222. static int __init md_init(void)
  5223. {
  5224. if (register_blkdev(MAJOR_NR, "md"))
  5225. return -1;
  5226. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  5227. unregister_blkdev(MAJOR_NR, "md");
  5228. return -1;
  5229. }
  5230. blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
  5231. md_probe, NULL, NULL);
  5232. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  5233. md_probe, NULL, NULL);
  5234. register_reboot_notifier(&md_notifier);
  5235. raid_table_header = register_sysctl_table(raid_root_table);
  5236. md_geninit();
  5237. return (0);
  5238. }
  5239. #ifndef MODULE
  5240. /*
  5241. * Searches all registered partitions for autorun RAID arrays
  5242. * at boot time.
  5243. */
  5244. static LIST_HEAD(all_detected_devices);
  5245. struct detected_devices_node {
  5246. struct list_head list;
  5247. dev_t dev;
  5248. };
  5249. void md_autodetect_dev(dev_t dev)
  5250. {
  5251. struct detected_devices_node *node_detected_dev;
  5252. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  5253. if (node_detected_dev) {
  5254. node_detected_dev->dev = dev;
  5255. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  5256. } else {
  5257. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  5258. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  5259. }
  5260. }
  5261. static void autostart_arrays(int part)
  5262. {
  5263. mdk_rdev_t *rdev;
  5264. struct detected_devices_node *node_detected_dev;
  5265. dev_t dev;
  5266. int i_scanned, i_passed;
  5267. i_scanned = 0;
  5268. i_passed = 0;
  5269. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  5270. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  5271. i_scanned++;
  5272. node_detected_dev = list_entry(all_detected_devices.next,
  5273. struct detected_devices_node, list);
  5274. list_del(&node_detected_dev->list);
  5275. dev = node_detected_dev->dev;
  5276. kfree(node_detected_dev);
  5277. rdev = md_import_device(dev,0, 90);
  5278. if (IS_ERR(rdev))
  5279. continue;
  5280. if (test_bit(Faulty, &rdev->flags)) {
  5281. MD_BUG();
  5282. continue;
  5283. }
  5284. list_add(&rdev->same_set, &pending_raid_disks);
  5285. i_passed++;
  5286. }
  5287. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  5288. i_scanned, i_passed);
  5289. autorun_devices(part);
  5290. }
  5291. #endif /* !MODULE */
  5292. static __exit void md_exit(void)
  5293. {
  5294. mddev_t *mddev;
  5295. struct list_head *tmp;
  5296. blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
  5297. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  5298. unregister_blkdev(MAJOR_NR,"md");
  5299. unregister_blkdev(mdp_major, "mdp");
  5300. unregister_reboot_notifier(&md_notifier);
  5301. unregister_sysctl_table(raid_table_header);
  5302. remove_proc_entry("mdstat", NULL);
  5303. ITERATE_MDDEV(mddev,tmp) {
  5304. struct gendisk *disk = mddev->gendisk;
  5305. if (!disk)
  5306. continue;
  5307. export_array(mddev);
  5308. del_gendisk(disk);
  5309. put_disk(disk);
  5310. mddev->gendisk = NULL;
  5311. mddev_put(mddev);
  5312. }
  5313. }
  5314. subsys_initcall(md_init);
  5315. module_exit(md_exit)
  5316. static int get_ro(char *buffer, struct kernel_param *kp)
  5317. {
  5318. return sprintf(buffer, "%d", start_readonly);
  5319. }
  5320. static int set_ro(const char *val, struct kernel_param *kp)
  5321. {
  5322. char *e;
  5323. int num = simple_strtoul(val, &e, 10);
  5324. if (*val && (*e == '\0' || *e == '\n')) {
  5325. start_readonly = num;
  5326. return 0;
  5327. }
  5328. return -EINVAL;
  5329. }
  5330. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  5331. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  5332. EXPORT_SYMBOL(register_md_personality);
  5333. EXPORT_SYMBOL(unregister_md_personality);
  5334. EXPORT_SYMBOL(md_error);
  5335. EXPORT_SYMBOL(md_done_sync);
  5336. EXPORT_SYMBOL(md_write_start);
  5337. EXPORT_SYMBOL(md_write_end);
  5338. EXPORT_SYMBOL(md_register_thread);
  5339. EXPORT_SYMBOL(md_unregister_thread);
  5340. EXPORT_SYMBOL(md_wakeup_thread);
  5341. EXPORT_SYMBOL(md_check_recovery);
  5342. MODULE_LICENSE("GPL");
  5343. MODULE_ALIAS("md");
  5344. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);