rt2x00dev.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995
  1. /*
  2. Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2x00lib
  19. Abstract: rt2x00 generic device routines.
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/module.h>
  23. #include "rt2x00.h"
  24. #include "rt2x00lib.h"
  25. /*
  26. * Radio control handlers.
  27. */
  28. int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
  29. {
  30. int status;
  31. /*
  32. * Don't enable the radio twice.
  33. * And check if the hardware button has been disabled.
  34. */
  35. if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags) ||
  36. test_bit(DEVICE_STATE_DISABLED_RADIO_HW, &rt2x00dev->flags))
  37. return 0;
  38. /*
  39. * Initialize all data queues.
  40. */
  41. rt2x00queue_init_queues(rt2x00dev);
  42. /*
  43. * Enable radio.
  44. */
  45. status =
  46. rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
  47. if (status)
  48. return status;
  49. rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
  50. rt2x00leds_led_radio(rt2x00dev, true);
  51. rt2x00led_led_activity(rt2x00dev, true);
  52. set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
  53. /*
  54. * Enable RX.
  55. */
  56. rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
  57. /*
  58. * Start the TX queues.
  59. */
  60. ieee80211_wake_queues(rt2x00dev->hw);
  61. return 0;
  62. }
  63. void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
  64. {
  65. if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  66. return;
  67. /*
  68. * Stop the TX queues in mac80211.
  69. */
  70. ieee80211_stop_queues(rt2x00dev->hw);
  71. rt2x00queue_stop_queues(rt2x00dev);
  72. /*
  73. * Disable RX.
  74. */
  75. rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
  76. /*
  77. * Disable radio.
  78. */
  79. rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
  80. rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
  81. rt2x00led_led_activity(rt2x00dev, false);
  82. rt2x00leds_led_radio(rt2x00dev, false);
  83. }
  84. void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
  85. {
  86. /*
  87. * When we are disabling the RX, we should also stop the link tuner.
  88. */
  89. if (state == STATE_RADIO_RX_OFF)
  90. rt2x00link_stop_tuner(rt2x00dev);
  91. rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
  92. /*
  93. * When we are enabling the RX, we should also start the link tuner.
  94. */
  95. if (state == STATE_RADIO_RX_ON)
  96. rt2x00link_start_tuner(rt2x00dev);
  97. }
  98. static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
  99. {
  100. struct rt2x00_dev *rt2x00dev =
  101. container_of(work, struct rt2x00_dev, filter_work);
  102. rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
  103. }
  104. static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
  105. struct ieee80211_vif *vif)
  106. {
  107. struct rt2x00_dev *rt2x00dev = data;
  108. struct rt2x00_intf *intf = vif_to_intf(vif);
  109. struct ieee80211_bss_conf conf;
  110. int delayed_flags;
  111. /*
  112. * Copy all data we need during this action under the protection
  113. * of a spinlock. Otherwise race conditions might occur which results
  114. * into an invalid configuration.
  115. */
  116. spin_lock(&intf->lock);
  117. memcpy(&conf, &vif->bss_conf, sizeof(conf));
  118. delayed_flags = intf->delayed_flags;
  119. intf->delayed_flags = 0;
  120. spin_unlock(&intf->lock);
  121. /*
  122. * It is possible the radio was disabled while the work had been
  123. * scheduled. If that happens we should return here immediately,
  124. * note that in the spinlock protected area above the delayed_flags
  125. * have been cleared correctly.
  126. */
  127. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  128. return;
  129. if (delayed_flags & DELAYED_UPDATE_BEACON)
  130. rt2x00queue_update_beacon(rt2x00dev, vif, true);
  131. if (delayed_flags & DELAYED_CONFIG_ERP)
  132. rt2x00lib_config_erp(rt2x00dev, intf, &conf);
  133. if (delayed_flags & DELAYED_LED_ASSOC)
  134. rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
  135. }
  136. static void rt2x00lib_intf_scheduled(struct work_struct *work)
  137. {
  138. struct rt2x00_dev *rt2x00dev =
  139. container_of(work, struct rt2x00_dev, intf_work);
  140. /*
  141. * Iterate over each interface and perform the
  142. * requested configurations.
  143. */
  144. ieee80211_iterate_active_interfaces(rt2x00dev->hw,
  145. rt2x00lib_intf_scheduled_iter,
  146. rt2x00dev);
  147. }
  148. /*
  149. * Interrupt context handlers.
  150. */
  151. static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
  152. struct ieee80211_vif *vif)
  153. {
  154. struct rt2x00_dev *rt2x00dev = data;
  155. struct rt2x00_intf *intf = vif_to_intf(vif);
  156. if (vif->type != NL80211_IFTYPE_AP &&
  157. vif->type != NL80211_IFTYPE_ADHOC &&
  158. vif->type != NL80211_IFTYPE_MESH_POINT &&
  159. vif->type != NL80211_IFTYPE_WDS)
  160. return;
  161. /*
  162. * Clean up the beacon skb.
  163. */
  164. rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
  165. intf->beacon->skb = NULL;
  166. spin_lock(&intf->lock);
  167. intf->delayed_flags |= DELAYED_UPDATE_BEACON;
  168. spin_unlock(&intf->lock);
  169. }
  170. void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
  171. {
  172. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  173. return;
  174. ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
  175. rt2x00lib_beacondone_iter,
  176. rt2x00dev);
  177. queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
  178. }
  179. EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
  180. void rt2x00lib_txdone(struct queue_entry *entry,
  181. struct txdone_entry_desc *txdesc)
  182. {
  183. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  184. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
  185. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  186. enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
  187. unsigned int header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
  188. u8 rate_idx, rate_flags;
  189. /*
  190. * Unmap the skb.
  191. */
  192. rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
  193. /*
  194. * Remove L2 padding which was added during
  195. */
  196. if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
  197. rt2x00queue_payload_align(entry->skb, true, header_length);
  198. /*
  199. * If the IV/EIV data was stripped from the frame before it was
  200. * passed to the hardware, we should now reinsert it again because
  201. * mac80211 will expect the the same data to be present it the
  202. * frame as it was passed to us.
  203. */
  204. if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
  205. rt2x00crypto_tx_insert_iv(entry->skb, header_length);
  206. /*
  207. * Send frame to debugfs immediately, after this call is completed
  208. * we are going to overwrite the skb->cb array.
  209. */
  210. rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
  211. /*
  212. * Update TX statistics.
  213. */
  214. rt2x00dev->link.qual.tx_success +=
  215. test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
  216. test_bit(TXDONE_UNKNOWN, &txdesc->flags);
  217. rt2x00dev->link.qual.tx_failed +=
  218. test_bit(TXDONE_FAILURE, &txdesc->flags);
  219. rate_idx = skbdesc->tx_rate_idx;
  220. rate_flags = skbdesc->tx_rate_flags;
  221. /*
  222. * Initialize TX status
  223. */
  224. memset(&tx_info->status, 0, sizeof(tx_info->status));
  225. tx_info->status.ack_signal = 0;
  226. tx_info->status.rates[0].idx = rate_idx;
  227. tx_info->status.rates[0].flags = rate_flags;
  228. tx_info->status.rates[0].count = txdesc->retry + 1;
  229. tx_info->status.rates[1].idx = -1; /* terminate */
  230. if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
  231. if (test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
  232. test_bit(TXDONE_UNKNOWN, &txdesc->flags))
  233. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  234. else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
  235. rt2x00dev->low_level_stats.dot11ACKFailureCount++;
  236. }
  237. if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
  238. if (test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
  239. test_bit(TXDONE_UNKNOWN, &txdesc->flags))
  240. rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
  241. else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
  242. rt2x00dev->low_level_stats.dot11RTSFailureCount++;
  243. }
  244. /*
  245. * Only send the status report to mac80211 when TX status was
  246. * requested by it. If this was a extra frame coming through
  247. * a mac80211 library call (RTS/CTS) then we should not send the
  248. * status report back.
  249. */
  250. if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
  251. ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
  252. else
  253. dev_kfree_skb_irq(entry->skb);
  254. /*
  255. * Make this entry available for reuse.
  256. */
  257. entry->skb = NULL;
  258. entry->flags = 0;
  259. rt2x00dev->ops->lib->clear_entry(entry);
  260. clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
  261. rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
  262. /*
  263. * If the data queue was below the threshold before the txdone
  264. * handler we must make sure the packet queue in the mac80211 stack
  265. * is reenabled when the txdone handler has finished.
  266. */
  267. if (!rt2x00queue_threshold(entry->queue))
  268. ieee80211_wake_queue(rt2x00dev->hw, qid);
  269. }
  270. EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
  271. static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
  272. struct rxdone_entry_desc *rxdesc)
  273. {
  274. struct ieee80211_supported_band *sband;
  275. const struct rt2x00_rate *rate;
  276. unsigned int i;
  277. int signal;
  278. int type;
  279. /*
  280. * For non-HT rates the MCS value needs to contain the
  281. * actually used rate modulation (CCK or OFDM).
  282. */
  283. if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
  284. signal = RATE_MCS(rxdesc->rate_mode, rxdesc->signal);
  285. else
  286. signal = rxdesc->signal;
  287. type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
  288. sband = &rt2x00dev->bands[rt2x00dev->curr_band];
  289. for (i = 0; i < sband->n_bitrates; i++) {
  290. rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
  291. if (((type == RXDONE_SIGNAL_PLCP) &&
  292. (rate->plcp == signal)) ||
  293. ((type == RXDONE_SIGNAL_BITRATE) &&
  294. (rate->bitrate == signal)) ||
  295. ((type == RXDONE_SIGNAL_MCS) &&
  296. (rate->mcs == signal))) {
  297. return i;
  298. }
  299. }
  300. WARNING(rt2x00dev, "Frame received with unrecognized signal, "
  301. "signal=0x%.4x, type=%d.\n", signal, type);
  302. return 0;
  303. }
  304. void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
  305. struct queue_entry *entry)
  306. {
  307. struct rxdone_entry_desc rxdesc;
  308. struct sk_buff *skb;
  309. struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
  310. unsigned int header_length;
  311. bool l2pad;
  312. int rate_idx;
  313. /*
  314. * Allocate a new sk_buffer. If no new buffer available, drop the
  315. * received frame and reuse the existing buffer.
  316. */
  317. skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
  318. if (!skb)
  319. return;
  320. /*
  321. * Unmap the skb.
  322. */
  323. rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
  324. /*
  325. * Extract the RXD details.
  326. */
  327. memset(&rxdesc, 0, sizeof(rxdesc));
  328. rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
  329. /* Trim buffer to correct size */
  330. skb_trim(entry->skb, rxdesc.size);
  331. /*
  332. * The data behind the ieee80211 header must be
  333. * aligned on a 4 byte boundary.
  334. */
  335. header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
  336. l2pad = !!(rxdesc.dev_flags & RXDONE_L2PAD);
  337. /*
  338. * Hardware might have stripped the IV/EIV/ICV data,
  339. * in that case it is possible that the data was
  340. * provided seperately (through hardware descriptor)
  341. * in which case we should reinsert the data into the frame.
  342. */
  343. if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
  344. (rxdesc.flags & RX_FLAG_IV_STRIPPED))
  345. rt2x00crypto_rx_insert_iv(entry->skb, l2pad, header_length,
  346. &rxdesc);
  347. else
  348. rt2x00queue_payload_align(entry->skb, l2pad, header_length);
  349. /*
  350. * Check if the frame was received using HT. In that case,
  351. * the rate is the MCS index and should be passed to mac80211
  352. * directly. Otherwise we need to translate the signal to
  353. * the correct bitrate index.
  354. */
  355. if (rxdesc.rate_mode == RATE_MODE_CCK ||
  356. rxdesc.rate_mode == RATE_MODE_OFDM) {
  357. rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
  358. } else {
  359. rxdesc.flags |= RX_FLAG_HT;
  360. rate_idx = rxdesc.signal;
  361. }
  362. /*
  363. * Update extra components
  364. */
  365. rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
  366. rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
  367. rx_status->mactime = rxdesc.timestamp;
  368. rx_status->rate_idx = rate_idx;
  369. rx_status->qual = rt2x00link_calculate_signal(rt2x00dev, rxdesc.rssi);
  370. rx_status->signal = rxdesc.rssi;
  371. rx_status->noise = rxdesc.noise;
  372. rx_status->flag = rxdesc.flags;
  373. rx_status->antenna = rt2x00dev->link.ant.active.rx;
  374. /*
  375. * Send frame to mac80211 & debugfs.
  376. * mac80211 will clean up the skb structure.
  377. */
  378. rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
  379. ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
  380. /*
  381. * Replace the skb with the freshly allocated one.
  382. */
  383. entry->skb = skb;
  384. entry->flags = 0;
  385. rt2x00dev->ops->lib->clear_entry(entry);
  386. rt2x00queue_index_inc(entry->queue, Q_INDEX);
  387. }
  388. EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
  389. /*
  390. * Driver initialization handlers.
  391. */
  392. const struct rt2x00_rate rt2x00_supported_rates[12] = {
  393. {
  394. .flags = DEV_RATE_CCK,
  395. .bitrate = 10,
  396. .ratemask = BIT(0),
  397. .plcp = 0x00,
  398. .mcs = RATE_MCS(RATE_MODE_CCK, 0),
  399. },
  400. {
  401. .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
  402. .bitrate = 20,
  403. .ratemask = BIT(1),
  404. .plcp = 0x01,
  405. .mcs = RATE_MCS(RATE_MODE_CCK, 1),
  406. },
  407. {
  408. .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
  409. .bitrate = 55,
  410. .ratemask = BIT(2),
  411. .plcp = 0x02,
  412. .mcs = RATE_MCS(RATE_MODE_CCK, 2),
  413. },
  414. {
  415. .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
  416. .bitrate = 110,
  417. .ratemask = BIT(3),
  418. .plcp = 0x03,
  419. .mcs = RATE_MCS(RATE_MODE_CCK, 3),
  420. },
  421. {
  422. .flags = DEV_RATE_OFDM,
  423. .bitrate = 60,
  424. .ratemask = BIT(4),
  425. .plcp = 0x0b,
  426. .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
  427. },
  428. {
  429. .flags = DEV_RATE_OFDM,
  430. .bitrate = 90,
  431. .ratemask = BIT(5),
  432. .plcp = 0x0f,
  433. .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
  434. },
  435. {
  436. .flags = DEV_RATE_OFDM,
  437. .bitrate = 120,
  438. .ratemask = BIT(6),
  439. .plcp = 0x0a,
  440. .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
  441. },
  442. {
  443. .flags = DEV_RATE_OFDM,
  444. .bitrate = 180,
  445. .ratemask = BIT(7),
  446. .plcp = 0x0e,
  447. .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
  448. },
  449. {
  450. .flags = DEV_RATE_OFDM,
  451. .bitrate = 240,
  452. .ratemask = BIT(8),
  453. .plcp = 0x09,
  454. .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
  455. },
  456. {
  457. .flags = DEV_RATE_OFDM,
  458. .bitrate = 360,
  459. .ratemask = BIT(9),
  460. .plcp = 0x0d,
  461. .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
  462. },
  463. {
  464. .flags = DEV_RATE_OFDM,
  465. .bitrate = 480,
  466. .ratemask = BIT(10),
  467. .plcp = 0x08,
  468. .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
  469. },
  470. {
  471. .flags = DEV_RATE_OFDM,
  472. .bitrate = 540,
  473. .ratemask = BIT(11),
  474. .plcp = 0x0c,
  475. .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
  476. },
  477. };
  478. static void rt2x00lib_channel(struct ieee80211_channel *entry,
  479. const int channel, const int tx_power,
  480. const int value)
  481. {
  482. entry->center_freq = ieee80211_channel_to_frequency(channel);
  483. entry->hw_value = value;
  484. entry->max_power = tx_power;
  485. entry->max_antenna_gain = 0xff;
  486. }
  487. static void rt2x00lib_rate(struct ieee80211_rate *entry,
  488. const u16 index, const struct rt2x00_rate *rate)
  489. {
  490. entry->flags = 0;
  491. entry->bitrate = rate->bitrate;
  492. entry->hw_value =index;
  493. entry->hw_value_short = index;
  494. if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
  495. entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
  496. }
  497. static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
  498. struct hw_mode_spec *spec)
  499. {
  500. struct ieee80211_hw *hw = rt2x00dev->hw;
  501. struct ieee80211_channel *channels;
  502. struct ieee80211_rate *rates;
  503. unsigned int num_rates;
  504. unsigned int i;
  505. num_rates = 0;
  506. if (spec->supported_rates & SUPPORT_RATE_CCK)
  507. num_rates += 4;
  508. if (spec->supported_rates & SUPPORT_RATE_OFDM)
  509. num_rates += 8;
  510. channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
  511. if (!channels)
  512. return -ENOMEM;
  513. rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
  514. if (!rates)
  515. goto exit_free_channels;
  516. /*
  517. * Initialize Rate list.
  518. */
  519. for (i = 0; i < num_rates; i++)
  520. rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
  521. /*
  522. * Initialize Channel list.
  523. */
  524. for (i = 0; i < spec->num_channels; i++) {
  525. rt2x00lib_channel(&channels[i],
  526. spec->channels[i].channel,
  527. spec->channels_info[i].tx_power1, i);
  528. }
  529. /*
  530. * Intitialize 802.11b, 802.11g
  531. * Rates: CCK, OFDM.
  532. * Channels: 2.4 GHz
  533. */
  534. if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
  535. rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
  536. rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
  537. rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
  538. rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
  539. hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
  540. &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
  541. memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
  542. &spec->ht, sizeof(spec->ht));
  543. }
  544. /*
  545. * Intitialize 802.11a
  546. * Rates: OFDM.
  547. * Channels: OFDM, UNII, HiperLAN2.
  548. */
  549. if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
  550. rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
  551. spec->num_channels - 14;
  552. rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
  553. num_rates - 4;
  554. rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
  555. rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
  556. hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
  557. &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
  558. memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
  559. &spec->ht, sizeof(spec->ht));
  560. }
  561. return 0;
  562. exit_free_channels:
  563. kfree(channels);
  564. ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
  565. return -ENOMEM;
  566. }
  567. static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
  568. {
  569. if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
  570. ieee80211_unregister_hw(rt2x00dev->hw);
  571. if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
  572. kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
  573. kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
  574. rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
  575. rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
  576. }
  577. kfree(rt2x00dev->spec.channels_info);
  578. }
  579. static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
  580. {
  581. struct hw_mode_spec *spec = &rt2x00dev->spec;
  582. int status;
  583. if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
  584. return 0;
  585. /*
  586. * Initialize HW modes.
  587. */
  588. status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
  589. if (status)
  590. return status;
  591. /*
  592. * Initialize HW fields.
  593. */
  594. rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
  595. /*
  596. * Register HW.
  597. */
  598. status = ieee80211_register_hw(rt2x00dev->hw);
  599. if (status)
  600. return status;
  601. set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
  602. return 0;
  603. }
  604. /*
  605. * Initialization/uninitialization handlers.
  606. */
  607. static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
  608. {
  609. if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
  610. return;
  611. /*
  612. * Unregister extra components.
  613. */
  614. rt2x00rfkill_unregister(rt2x00dev);
  615. /*
  616. * Allow the HW to uninitialize.
  617. */
  618. rt2x00dev->ops->lib->uninitialize(rt2x00dev);
  619. /*
  620. * Free allocated queue entries.
  621. */
  622. rt2x00queue_uninitialize(rt2x00dev);
  623. }
  624. static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
  625. {
  626. int status;
  627. if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
  628. return 0;
  629. /*
  630. * Allocate all queue entries.
  631. */
  632. status = rt2x00queue_initialize(rt2x00dev);
  633. if (status)
  634. return status;
  635. /*
  636. * Initialize the device.
  637. */
  638. status = rt2x00dev->ops->lib->initialize(rt2x00dev);
  639. if (status) {
  640. rt2x00queue_uninitialize(rt2x00dev);
  641. return status;
  642. }
  643. set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
  644. /*
  645. * Register the extra components.
  646. */
  647. rt2x00rfkill_register(rt2x00dev);
  648. return 0;
  649. }
  650. int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
  651. {
  652. int retval;
  653. if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
  654. return 0;
  655. /*
  656. * If this is the first interface which is added,
  657. * we should load the firmware now.
  658. */
  659. retval = rt2x00lib_load_firmware(rt2x00dev);
  660. if (retval)
  661. return retval;
  662. /*
  663. * Initialize the device.
  664. */
  665. retval = rt2x00lib_initialize(rt2x00dev);
  666. if (retval)
  667. return retval;
  668. rt2x00dev->intf_ap_count = 0;
  669. rt2x00dev->intf_sta_count = 0;
  670. rt2x00dev->intf_associated = 0;
  671. set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
  672. return 0;
  673. }
  674. void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
  675. {
  676. if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
  677. return;
  678. /*
  679. * Perhaps we can add something smarter here,
  680. * but for now just disabling the radio should do.
  681. */
  682. rt2x00lib_disable_radio(rt2x00dev);
  683. rt2x00dev->intf_ap_count = 0;
  684. rt2x00dev->intf_sta_count = 0;
  685. rt2x00dev->intf_associated = 0;
  686. }
  687. /*
  688. * driver allocation handlers.
  689. */
  690. int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
  691. {
  692. int retval = -ENOMEM;
  693. mutex_init(&rt2x00dev->csr_mutex);
  694. /*
  695. * Make room for rt2x00_intf inside the per-interface
  696. * structure ieee80211_vif.
  697. */
  698. rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
  699. /*
  700. * Determine which operating modes are supported, all modes
  701. * which require beaconing, depend on the availability of
  702. * beacon entries.
  703. */
  704. rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
  705. if (rt2x00dev->ops->bcn->entry_num > 0)
  706. rt2x00dev->hw->wiphy->interface_modes |=
  707. BIT(NL80211_IFTYPE_ADHOC) |
  708. BIT(NL80211_IFTYPE_AP) |
  709. BIT(NL80211_IFTYPE_MESH_POINT) |
  710. BIT(NL80211_IFTYPE_WDS);
  711. /*
  712. * Let the driver probe the device to detect the capabilities.
  713. */
  714. retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
  715. if (retval) {
  716. ERROR(rt2x00dev, "Failed to allocate device.\n");
  717. goto exit;
  718. }
  719. /*
  720. * Initialize configuration work.
  721. */
  722. INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
  723. INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
  724. /*
  725. * Allocate queue array.
  726. */
  727. retval = rt2x00queue_allocate(rt2x00dev);
  728. if (retval)
  729. goto exit;
  730. /*
  731. * Initialize ieee80211 structure.
  732. */
  733. retval = rt2x00lib_probe_hw(rt2x00dev);
  734. if (retval) {
  735. ERROR(rt2x00dev, "Failed to initialize hw.\n");
  736. goto exit;
  737. }
  738. /*
  739. * Register extra components.
  740. */
  741. rt2x00link_register(rt2x00dev);
  742. rt2x00leds_register(rt2x00dev);
  743. rt2x00rfkill_allocate(rt2x00dev);
  744. rt2x00debug_register(rt2x00dev);
  745. set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
  746. return 0;
  747. exit:
  748. rt2x00lib_remove_dev(rt2x00dev);
  749. return retval;
  750. }
  751. EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
  752. void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
  753. {
  754. clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
  755. /*
  756. * Disable radio.
  757. */
  758. rt2x00lib_disable_radio(rt2x00dev);
  759. /*
  760. * Uninitialize device.
  761. */
  762. rt2x00lib_uninitialize(rt2x00dev);
  763. /*
  764. * Free extra components
  765. */
  766. rt2x00debug_deregister(rt2x00dev);
  767. rt2x00rfkill_free(rt2x00dev);
  768. rt2x00leds_unregister(rt2x00dev);
  769. /*
  770. * Free ieee80211_hw memory.
  771. */
  772. rt2x00lib_remove_hw(rt2x00dev);
  773. /*
  774. * Free firmware image.
  775. */
  776. rt2x00lib_free_firmware(rt2x00dev);
  777. /*
  778. * Free queue structures.
  779. */
  780. rt2x00queue_free(rt2x00dev);
  781. }
  782. EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
  783. /*
  784. * Device state handlers
  785. */
  786. #ifdef CONFIG_PM
  787. int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
  788. {
  789. NOTICE(rt2x00dev, "Going to sleep.\n");
  790. /*
  791. * Prevent mac80211 from accessing driver while suspended.
  792. */
  793. if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
  794. return 0;
  795. /*
  796. * Cleanup as much as possible.
  797. */
  798. rt2x00lib_uninitialize(rt2x00dev);
  799. /*
  800. * Suspend/disable extra components.
  801. */
  802. rt2x00leds_suspend(rt2x00dev);
  803. rt2x00debug_deregister(rt2x00dev);
  804. /*
  805. * Set device mode to sleep for power management,
  806. * on some hardware this call seems to consistently fail.
  807. * From the specifications it is hard to tell why it fails,
  808. * and if this is a "bad thing".
  809. * Overall it is safe to just ignore the failure and
  810. * continue suspending. The only downside is that the
  811. * device will not be in optimal power save mode, but with
  812. * the radio and the other components already disabled the
  813. * device is as good as disabled.
  814. */
  815. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
  816. WARNING(rt2x00dev, "Device failed to enter sleep state, "
  817. "continue suspending.\n");
  818. return 0;
  819. }
  820. EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
  821. int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
  822. {
  823. NOTICE(rt2x00dev, "Waking up.\n");
  824. /*
  825. * Restore/enable extra components.
  826. */
  827. rt2x00debug_register(rt2x00dev);
  828. rt2x00leds_resume(rt2x00dev);
  829. /*
  830. * We are ready again to receive requests from mac80211.
  831. */
  832. set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
  833. return 0;
  834. }
  835. EXPORT_SYMBOL_GPL(rt2x00lib_resume);
  836. #endif /* CONFIG_PM */
  837. /*
  838. * rt2x00lib module information.
  839. */
  840. MODULE_AUTHOR(DRV_PROJECT);
  841. MODULE_VERSION(DRV_VERSION);
  842. MODULE_DESCRIPTION("rt2x00 library");
  843. MODULE_LICENSE("GPL");