i915_gem.c 117 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include <linux/swap.h>
  32. #include <linux/pci.h>
  33. #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  34. static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
  35. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  36. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  37. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  38. int write);
  39. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  40. uint64_t offset,
  41. uint64_t size);
  42. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  43. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
  44. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  45. unsigned alignment);
  46. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  47. static int i915_gem_evict_something(struct drm_device *dev);
  48. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  49. struct drm_i915_gem_pwrite *args,
  50. struct drm_file *file_priv);
  51. int i915_gem_do_init(struct drm_device *dev, unsigned long start,
  52. unsigned long end)
  53. {
  54. drm_i915_private_t *dev_priv = dev->dev_private;
  55. if (start >= end ||
  56. (start & (PAGE_SIZE - 1)) != 0 ||
  57. (end & (PAGE_SIZE - 1)) != 0) {
  58. return -EINVAL;
  59. }
  60. drm_mm_init(&dev_priv->mm.gtt_space, start,
  61. end - start);
  62. dev->gtt_total = (uint32_t) (end - start);
  63. return 0;
  64. }
  65. int
  66. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  67. struct drm_file *file_priv)
  68. {
  69. struct drm_i915_gem_init *args = data;
  70. int ret;
  71. mutex_lock(&dev->struct_mutex);
  72. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  73. mutex_unlock(&dev->struct_mutex);
  74. return ret;
  75. }
  76. int
  77. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  78. struct drm_file *file_priv)
  79. {
  80. struct drm_i915_gem_get_aperture *args = data;
  81. if (!(dev->driver->driver_features & DRIVER_GEM))
  82. return -ENODEV;
  83. args->aper_size = dev->gtt_total;
  84. args->aper_available_size = (args->aper_size -
  85. atomic_read(&dev->pin_memory));
  86. return 0;
  87. }
  88. /**
  89. * Creates a new mm object and returns a handle to it.
  90. */
  91. int
  92. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  93. struct drm_file *file_priv)
  94. {
  95. struct drm_i915_gem_create *args = data;
  96. struct drm_gem_object *obj;
  97. int handle, ret;
  98. args->size = roundup(args->size, PAGE_SIZE);
  99. /* Allocate the new object */
  100. obj = drm_gem_object_alloc(dev, args->size);
  101. if (obj == NULL)
  102. return -ENOMEM;
  103. ret = drm_gem_handle_create(file_priv, obj, &handle);
  104. mutex_lock(&dev->struct_mutex);
  105. drm_gem_object_handle_unreference(obj);
  106. mutex_unlock(&dev->struct_mutex);
  107. if (ret)
  108. return ret;
  109. args->handle = handle;
  110. return 0;
  111. }
  112. static inline int
  113. fast_shmem_read(struct page **pages,
  114. loff_t page_base, int page_offset,
  115. char __user *data,
  116. int length)
  117. {
  118. char __iomem *vaddr;
  119. int unwritten;
  120. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  121. if (vaddr == NULL)
  122. return -ENOMEM;
  123. unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  124. kunmap_atomic(vaddr, KM_USER0);
  125. if (unwritten)
  126. return -EFAULT;
  127. return 0;
  128. }
  129. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  130. {
  131. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  132. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  133. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  134. obj_priv->tiling_mode != I915_TILING_NONE;
  135. }
  136. static inline int
  137. slow_shmem_copy(struct page *dst_page,
  138. int dst_offset,
  139. struct page *src_page,
  140. int src_offset,
  141. int length)
  142. {
  143. char *dst_vaddr, *src_vaddr;
  144. dst_vaddr = kmap_atomic(dst_page, KM_USER0);
  145. if (dst_vaddr == NULL)
  146. return -ENOMEM;
  147. src_vaddr = kmap_atomic(src_page, KM_USER1);
  148. if (src_vaddr == NULL) {
  149. kunmap_atomic(dst_vaddr, KM_USER0);
  150. return -ENOMEM;
  151. }
  152. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  153. kunmap_atomic(src_vaddr, KM_USER1);
  154. kunmap_atomic(dst_vaddr, KM_USER0);
  155. return 0;
  156. }
  157. static inline int
  158. slow_shmem_bit17_copy(struct page *gpu_page,
  159. int gpu_offset,
  160. struct page *cpu_page,
  161. int cpu_offset,
  162. int length,
  163. int is_read)
  164. {
  165. char *gpu_vaddr, *cpu_vaddr;
  166. /* Use the unswizzled path if this page isn't affected. */
  167. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  168. if (is_read)
  169. return slow_shmem_copy(cpu_page, cpu_offset,
  170. gpu_page, gpu_offset, length);
  171. else
  172. return slow_shmem_copy(gpu_page, gpu_offset,
  173. cpu_page, cpu_offset, length);
  174. }
  175. gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
  176. if (gpu_vaddr == NULL)
  177. return -ENOMEM;
  178. cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
  179. if (cpu_vaddr == NULL) {
  180. kunmap_atomic(gpu_vaddr, KM_USER0);
  181. return -ENOMEM;
  182. }
  183. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  184. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  185. */
  186. while (length > 0) {
  187. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  188. int this_length = min(cacheline_end - gpu_offset, length);
  189. int swizzled_gpu_offset = gpu_offset ^ 64;
  190. if (is_read) {
  191. memcpy(cpu_vaddr + cpu_offset,
  192. gpu_vaddr + swizzled_gpu_offset,
  193. this_length);
  194. } else {
  195. memcpy(gpu_vaddr + swizzled_gpu_offset,
  196. cpu_vaddr + cpu_offset,
  197. this_length);
  198. }
  199. cpu_offset += this_length;
  200. gpu_offset += this_length;
  201. length -= this_length;
  202. }
  203. kunmap_atomic(cpu_vaddr, KM_USER1);
  204. kunmap_atomic(gpu_vaddr, KM_USER0);
  205. return 0;
  206. }
  207. /**
  208. * This is the fast shmem pread path, which attempts to copy_from_user directly
  209. * from the backing pages of the object to the user's address space. On a
  210. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  211. */
  212. static int
  213. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  214. struct drm_i915_gem_pread *args,
  215. struct drm_file *file_priv)
  216. {
  217. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  218. ssize_t remain;
  219. loff_t offset, page_base;
  220. char __user *user_data;
  221. int page_offset, page_length;
  222. int ret;
  223. user_data = (char __user *) (uintptr_t) args->data_ptr;
  224. remain = args->size;
  225. mutex_lock(&dev->struct_mutex);
  226. ret = i915_gem_object_get_pages(obj);
  227. if (ret != 0)
  228. goto fail_unlock;
  229. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  230. args->size);
  231. if (ret != 0)
  232. goto fail_put_pages;
  233. obj_priv = obj->driver_private;
  234. offset = args->offset;
  235. while (remain > 0) {
  236. /* Operation in this page
  237. *
  238. * page_base = page offset within aperture
  239. * page_offset = offset within page
  240. * page_length = bytes to copy for this page
  241. */
  242. page_base = (offset & ~(PAGE_SIZE-1));
  243. page_offset = offset & (PAGE_SIZE-1);
  244. page_length = remain;
  245. if ((page_offset + remain) > PAGE_SIZE)
  246. page_length = PAGE_SIZE - page_offset;
  247. ret = fast_shmem_read(obj_priv->pages,
  248. page_base, page_offset,
  249. user_data, page_length);
  250. if (ret)
  251. goto fail_put_pages;
  252. remain -= page_length;
  253. user_data += page_length;
  254. offset += page_length;
  255. }
  256. fail_put_pages:
  257. i915_gem_object_put_pages(obj);
  258. fail_unlock:
  259. mutex_unlock(&dev->struct_mutex);
  260. return ret;
  261. }
  262. /**
  263. * This is the fallback shmem pread path, which allocates temporary storage
  264. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  265. * can copy out of the object's backing pages while holding the struct mutex
  266. * and not take page faults.
  267. */
  268. static int
  269. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  270. struct drm_i915_gem_pread *args,
  271. struct drm_file *file_priv)
  272. {
  273. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  274. struct mm_struct *mm = current->mm;
  275. struct page **user_pages;
  276. ssize_t remain;
  277. loff_t offset, pinned_pages, i;
  278. loff_t first_data_page, last_data_page, num_pages;
  279. int shmem_page_index, shmem_page_offset;
  280. int data_page_index, data_page_offset;
  281. int page_length;
  282. int ret;
  283. uint64_t data_ptr = args->data_ptr;
  284. int do_bit17_swizzling;
  285. remain = args->size;
  286. /* Pin the user pages containing the data. We can't fault while
  287. * holding the struct mutex, yet we want to hold it while
  288. * dereferencing the user data.
  289. */
  290. first_data_page = data_ptr / PAGE_SIZE;
  291. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  292. num_pages = last_data_page - first_data_page + 1;
  293. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  294. if (user_pages == NULL)
  295. return -ENOMEM;
  296. down_read(&mm->mmap_sem);
  297. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  298. num_pages, 1, 0, user_pages, NULL);
  299. up_read(&mm->mmap_sem);
  300. if (pinned_pages < num_pages) {
  301. ret = -EFAULT;
  302. goto fail_put_user_pages;
  303. }
  304. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  305. mutex_lock(&dev->struct_mutex);
  306. ret = i915_gem_object_get_pages(obj);
  307. if (ret != 0)
  308. goto fail_unlock;
  309. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  310. args->size);
  311. if (ret != 0)
  312. goto fail_put_pages;
  313. obj_priv = obj->driver_private;
  314. offset = args->offset;
  315. while (remain > 0) {
  316. /* Operation in this page
  317. *
  318. * shmem_page_index = page number within shmem file
  319. * shmem_page_offset = offset within page in shmem file
  320. * data_page_index = page number in get_user_pages return
  321. * data_page_offset = offset with data_page_index page.
  322. * page_length = bytes to copy for this page
  323. */
  324. shmem_page_index = offset / PAGE_SIZE;
  325. shmem_page_offset = offset & ~PAGE_MASK;
  326. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  327. data_page_offset = data_ptr & ~PAGE_MASK;
  328. page_length = remain;
  329. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  330. page_length = PAGE_SIZE - shmem_page_offset;
  331. if ((data_page_offset + page_length) > PAGE_SIZE)
  332. page_length = PAGE_SIZE - data_page_offset;
  333. if (do_bit17_swizzling) {
  334. ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  335. shmem_page_offset,
  336. user_pages[data_page_index],
  337. data_page_offset,
  338. page_length,
  339. 1);
  340. } else {
  341. ret = slow_shmem_copy(user_pages[data_page_index],
  342. data_page_offset,
  343. obj_priv->pages[shmem_page_index],
  344. shmem_page_offset,
  345. page_length);
  346. }
  347. if (ret)
  348. goto fail_put_pages;
  349. remain -= page_length;
  350. data_ptr += page_length;
  351. offset += page_length;
  352. }
  353. fail_put_pages:
  354. i915_gem_object_put_pages(obj);
  355. fail_unlock:
  356. mutex_unlock(&dev->struct_mutex);
  357. fail_put_user_pages:
  358. for (i = 0; i < pinned_pages; i++) {
  359. SetPageDirty(user_pages[i]);
  360. page_cache_release(user_pages[i]);
  361. }
  362. drm_free_large(user_pages);
  363. return ret;
  364. }
  365. /**
  366. * Reads data from the object referenced by handle.
  367. *
  368. * On error, the contents of *data are undefined.
  369. */
  370. int
  371. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  372. struct drm_file *file_priv)
  373. {
  374. struct drm_i915_gem_pread *args = data;
  375. struct drm_gem_object *obj;
  376. struct drm_i915_gem_object *obj_priv;
  377. int ret;
  378. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  379. if (obj == NULL)
  380. return -EBADF;
  381. obj_priv = obj->driver_private;
  382. /* Bounds check source.
  383. *
  384. * XXX: This could use review for overflow issues...
  385. */
  386. if (args->offset > obj->size || args->size > obj->size ||
  387. args->offset + args->size > obj->size) {
  388. drm_gem_object_unreference(obj);
  389. return -EINVAL;
  390. }
  391. if (i915_gem_object_needs_bit17_swizzle(obj)) {
  392. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  393. } else {
  394. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  395. if (ret != 0)
  396. ret = i915_gem_shmem_pread_slow(dev, obj, args,
  397. file_priv);
  398. }
  399. drm_gem_object_unreference(obj);
  400. return ret;
  401. }
  402. /* This is the fast write path which cannot handle
  403. * page faults in the source data
  404. */
  405. static inline int
  406. fast_user_write(struct io_mapping *mapping,
  407. loff_t page_base, int page_offset,
  408. char __user *user_data,
  409. int length)
  410. {
  411. char *vaddr_atomic;
  412. unsigned long unwritten;
  413. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  414. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  415. user_data, length);
  416. io_mapping_unmap_atomic(vaddr_atomic);
  417. if (unwritten)
  418. return -EFAULT;
  419. return 0;
  420. }
  421. /* Here's the write path which can sleep for
  422. * page faults
  423. */
  424. static inline int
  425. slow_kernel_write(struct io_mapping *mapping,
  426. loff_t gtt_base, int gtt_offset,
  427. struct page *user_page, int user_offset,
  428. int length)
  429. {
  430. char *src_vaddr, *dst_vaddr;
  431. unsigned long unwritten;
  432. dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
  433. src_vaddr = kmap_atomic(user_page, KM_USER1);
  434. unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
  435. src_vaddr + user_offset,
  436. length);
  437. kunmap_atomic(src_vaddr, KM_USER1);
  438. io_mapping_unmap_atomic(dst_vaddr);
  439. if (unwritten)
  440. return -EFAULT;
  441. return 0;
  442. }
  443. static inline int
  444. fast_shmem_write(struct page **pages,
  445. loff_t page_base, int page_offset,
  446. char __user *data,
  447. int length)
  448. {
  449. char __iomem *vaddr;
  450. unsigned long unwritten;
  451. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  452. if (vaddr == NULL)
  453. return -ENOMEM;
  454. unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  455. kunmap_atomic(vaddr, KM_USER0);
  456. if (unwritten)
  457. return -EFAULT;
  458. return 0;
  459. }
  460. /**
  461. * This is the fast pwrite path, where we copy the data directly from the
  462. * user into the GTT, uncached.
  463. */
  464. static int
  465. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  466. struct drm_i915_gem_pwrite *args,
  467. struct drm_file *file_priv)
  468. {
  469. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  470. drm_i915_private_t *dev_priv = dev->dev_private;
  471. ssize_t remain;
  472. loff_t offset, page_base;
  473. char __user *user_data;
  474. int page_offset, page_length;
  475. int ret;
  476. user_data = (char __user *) (uintptr_t) args->data_ptr;
  477. remain = args->size;
  478. if (!access_ok(VERIFY_READ, user_data, remain))
  479. return -EFAULT;
  480. mutex_lock(&dev->struct_mutex);
  481. ret = i915_gem_object_pin(obj, 0);
  482. if (ret) {
  483. mutex_unlock(&dev->struct_mutex);
  484. return ret;
  485. }
  486. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  487. if (ret)
  488. goto fail;
  489. obj_priv = obj->driver_private;
  490. offset = obj_priv->gtt_offset + args->offset;
  491. while (remain > 0) {
  492. /* Operation in this page
  493. *
  494. * page_base = page offset within aperture
  495. * page_offset = offset within page
  496. * page_length = bytes to copy for this page
  497. */
  498. page_base = (offset & ~(PAGE_SIZE-1));
  499. page_offset = offset & (PAGE_SIZE-1);
  500. page_length = remain;
  501. if ((page_offset + remain) > PAGE_SIZE)
  502. page_length = PAGE_SIZE - page_offset;
  503. ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
  504. page_offset, user_data, page_length);
  505. /* If we get a fault while copying data, then (presumably) our
  506. * source page isn't available. Return the error and we'll
  507. * retry in the slow path.
  508. */
  509. if (ret)
  510. goto fail;
  511. remain -= page_length;
  512. user_data += page_length;
  513. offset += page_length;
  514. }
  515. fail:
  516. i915_gem_object_unpin(obj);
  517. mutex_unlock(&dev->struct_mutex);
  518. return ret;
  519. }
  520. /**
  521. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  522. * the memory and maps it using kmap_atomic for copying.
  523. *
  524. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  525. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  526. */
  527. static int
  528. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  529. struct drm_i915_gem_pwrite *args,
  530. struct drm_file *file_priv)
  531. {
  532. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  533. drm_i915_private_t *dev_priv = dev->dev_private;
  534. ssize_t remain;
  535. loff_t gtt_page_base, offset;
  536. loff_t first_data_page, last_data_page, num_pages;
  537. loff_t pinned_pages, i;
  538. struct page **user_pages;
  539. struct mm_struct *mm = current->mm;
  540. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  541. int ret;
  542. uint64_t data_ptr = args->data_ptr;
  543. remain = args->size;
  544. /* Pin the user pages containing the data. We can't fault while
  545. * holding the struct mutex, and all of the pwrite implementations
  546. * want to hold it while dereferencing the user data.
  547. */
  548. first_data_page = data_ptr / PAGE_SIZE;
  549. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  550. num_pages = last_data_page - first_data_page + 1;
  551. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  552. if (user_pages == NULL)
  553. return -ENOMEM;
  554. down_read(&mm->mmap_sem);
  555. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  556. num_pages, 0, 0, user_pages, NULL);
  557. up_read(&mm->mmap_sem);
  558. if (pinned_pages < num_pages) {
  559. ret = -EFAULT;
  560. goto out_unpin_pages;
  561. }
  562. mutex_lock(&dev->struct_mutex);
  563. ret = i915_gem_object_pin(obj, 0);
  564. if (ret)
  565. goto out_unlock;
  566. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  567. if (ret)
  568. goto out_unpin_object;
  569. obj_priv = obj->driver_private;
  570. offset = obj_priv->gtt_offset + args->offset;
  571. while (remain > 0) {
  572. /* Operation in this page
  573. *
  574. * gtt_page_base = page offset within aperture
  575. * gtt_page_offset = offset within page in aperture
  576. * data_page_index = page number in get_user_pages return
  577. * data_page_offset = offset with data_page_index page.
  578. * page_length = bytes to copy for this page
  579. */
  580. gtt_page_base = offset & PAGE_MASK;
  581. gtt_page_offset = offset & ~PAGE_MASK;
  582. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  583. data_page_offset = data_ptr & ~PAGE_MASK;
  584. page_length = remain;
  585. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  586. page_length = PAGE_SIZE - gtt_page_offset;
  587. if ((data_page_offset + page_length) > PAGE_SIZE)
  588. page_length = PAGE_SIZE - data_page_offset;
  589. ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
  590. gtt_page_base, gtt_page_offset,
  591. user_pages[data_page_index],
  592. data_page_offset,
  593. page_length);
  594. /* If we get a fault while copying data, then (presumably) our
  595. * source page isn't available. Return the error and we'll
  596. * retry in the slow path.
  597. */
  598. if (ret)
  599. goto out_unpin_object;
  600. remain -= page_length;
  601. offset += page_length;
  602. data_ptr += page_length;
  603. }
  604. out_unpin_object:
  605. i915_gem_object_unpin(obj);
  606. out_unlock:
  607. mutex_unlock(&dev->struct_mutex);
  608. out_unpin_pages:
  609. for (i = 0; i < pinned_pages; i++)
  610. page_cache_release(user_pages[i]);
  611. drm_free_large(user_pages);
  612. return ret;
  613. }
  614. /**
  615. * This is the fast shmem pwrite path, which attempts to directly
  616. * copy_from_user into the kmapped pages backing the object.
  617. */
  618. static int
  619. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  620. struct drm_i915_gem_pwrite *args,
  621. struct drm_file *file_priv)
  622. {
  623. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  624. ssize_t remain;
  625. loff_t offset, page_base;
  626. char __user *user_data;
  627. int page_offset, page_length;
  628. int ret;
  629. user_data = (char __user *) (uintptr_t) args->data_ptr;
  630. remain = args->size;
  631. mutex_lock(&dev->struct_mutex);
  632. ret = i915_gem_object_get_pages(obj);
  633. if (ret != 0)
  634. goto fail_unlock;
  635. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  636. if (ret != 0)
  637. goto fail_put_pages;
  638. obj_priv = obj->driver_private;
  639. offset = args->offset;
  640. obj_priv->dirty = 1;
  641. while (remain > 0) {
  642. /* Operation in this page
  643. *
  644. * page_base = page offset within aperture
  645. * page_offset = offset within page
  646. * page_length = bytes to copy for this page
  647. */
  648. page_base = (offset & ~(PAGE_SIZE-1));
  649. page_offset = offset & (PAGE_SIZE-1);
  650. page_length = remain;
  651. if ((page_offset + remain) > PAGE_SIZE)
  652. page_length = PAGE_SIZE - page_offset;
  653. ret = fast_shmem_write(obj_priv->pages,
  654. page_base, page_offset,
  655. user_data, page_length);
  656. if (ret)
  657. goto fail_put_pages;
  658. remain -= page_length;
  659. user_data += page_length;
  660. offset += page_length;
  661. }
  662. fail_put_pages:
  663. i915_gem_object_put_pages(obj);
  664. fail_unlock:
  665. mutex_unlock(&dev->struct_mutex);
  666. return ret;
  667. }
  668. /**
  669. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  670. * the memory and maps it using kmap_atomic for copying.
  671. *
  672. * This avoids taking mmap_sem for faulting on the user's address while the
  673. * struct_mutex is held.
  674. */
  675. static int
  676. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  677. struct drm_i915_gem_pwrite *args,
  678. struct drm_file *file_priv)
  679. {
  680. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  681. struct mm_struct *mm = current->mm;
  682. struct page **user_pages;
  683. ssize_t remain;
  684. loff_t offset, pinned_pages, i;
  685. loff_t first_data_page, last_data_page, num_pages;
  686. int shmem_page_index, shmem_page_offset;
  687. int data_page_index, data_page_offset;
  688. int page_length;
  689. int ret;
  690. uint64_t data_ptr = args->data_ptr;
  691. int do_bit17_swizzling;
  692. remain = args->size;
  693. /* Pin the user pages containing the data. We can't fault while
  694. * holding the struct mutex, and all of the pwrite implementations
  695. * want to hold it while dereferencing the user data.
  696. */
  697. first_data_page = data_ptr / PAGE_SIZE;
  698. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  699. num_pages = last_data_page - first_data_page + 1;
  700. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  701. if (user_pages == NULL)
  702. return -ENOMEM;
  703. down_read(&mm->mmap_sem);
  704. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  705. num_pages, 0, 0, user_pages, NULL);
  706. up_read(&mm->mmap_sem);
  707. if (pinned_pages < num_pages) {
  708. ret = -EFAULT;
  709. goto fail_put_user_pages;
  710. }
  711. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  712. mutex_lock(&dev->struct_mutex);
  713. ret = i915_gem_object_get_pages(obj);
  714. if (ret != 0)
  715. goto fail_unlock;
  716. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  717. if (ret != 0)
  718. goto fail_put_pages;
  719. obj_priv = obj->driver_private;
  720. offset = args->offset;
  721. obj_priv->dirty = 1;
  722. while (remain > 0) {
  723. /* Operation in this page
  724. *
  725. * shmem_page_index = page number within shmem file
  726. * shmem_page_offset = offset within page in shmem file
  727. * data_page_index = page number in get_user_pages return
  728. * data_page_offset = offset with data_page_index page.
  729. * page_length = bytes to copy for this page
  730. */
  731. shmem_page_index = offset / PAGE_SIZE;
  732. shmem_page_offset = offset & ~PAGE_MASK;
  733. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  734. data_page_offset = data_ptr & ~PAGE_MASK;
  735. page_length = remain;
  736. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  737. page_length = PAGE_SIZE - shmem_page_offset;
  738. if ((data_page_offset + page_length) > PAGE_SIZE)
  739. page_length = PAGE_SIZE - data_page_offset;
  740. if (do_bit17_swizzling) {
  741. ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  742. shmem_page_offset,
  743. user_pages[data_page_index],
  744. data_page_offset,
  745. page_length,
  746. 0);
  747. } else {
  748. ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
  749. shmem_page_offset,
  750. user_pages[data_page_index],
  751. data_page_offset,
  752. page_length);
  753. }
  754. if (ret)
  755. goto fail_put_pages;
  756. remain -= page_length;
  757. data_ptr += page_length;
  758. offset += page_length;
  759. }
  760. fail_put_pages:
  761. i915_gem_object_put_pages(obj);
  762. fail_unlock:
  763. mutex_unlock(&dev->struct_mutex);
  764. fail_put_user_pages:
  765. for (i = 0; i < pinned_pages; i++)
  766. page_cache_release(user_pages[i]);
  767. drm_free_large(user_pages);
  768. return ret;
  769. }
  770. /**
  771. * Writes data to the object referenced by handle.
  772. *
  773. * On error, the contents of the buffer that were to be modified are undefined.
  774. */
  775. int
  776. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  777. struct drm_file *file_priv)
  778. {
  779. struct drm_i915_gem_pwrite *args = data;
  780. struct drm_gem_object *obj;
  781. struct drm_i915_gem_object *obj_priv;
  782. int ret = 0;
  783. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  784. if (obj == NULL)
  785. return -EBADF;
  786. obj_priv = obj->driver_private;
  787. /* Bounds check destination.
  788. *
  789. * XXX: This could use review for overflow issues...
  790. */
  791. if (args->offset > obj->size || args->size > obj->size ||
  792. args->offset + args->size > obj->size) {
  793. drm_gem_object_unreference(obj);
  794. return -EINVAL;
  795. }
  796. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  797. * it would end up going through the fenced access, and we'll get
  798. * different detiling behavior between reading and writing.
  799. * pread/pwrite currently are reading and writing from the CPU
  800. * perspective, requiring manual detiling by the client.
  801. */
  802. if (obj_priv->phys_obj)
  803. ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
  804. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  805. dev->gtt_total != 0) {
  806. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
  807. if (ret == -EFAULT) {
  808. ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
  809. file_priv);
  810. }
  811. } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
  812. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
  813. } else {
  814. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
  815. if (ret == -EFAULT) {
  816. ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
  817. file_priv);
  818. }
  819. }
  820. #if WATCH_PWRITE
  821. if (ret)
  822. DRM_INFO("pwrite failed %d\n", ret);
  823. #endif
  824. drm_gem_object_unreference(obj);
  825. return ret;
  826. }
  827. /**
  828. * Called when user space prepares to use an object with the CPU, either
  829. * through the mmap ioctl's mapping or a GTT mapping.
  830. */
  831. int
  832. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  833. struct drm_file *file_priv)
  834. {
  835. struct drm_i915_gem_set_domain *args = data;
  836. struct drm_gem_object *obj;
  837. uint32_t read_domains = args->read_domains;
  838. uint32_t write_domain = args->write_domain;
  839. int ret;
  840. if (!(dev->driver->driver_features & DRIVER_GEM))
  841. return -ENODEV;
  842. /* Only handle setting domains to types used by the CPU. */
  843. if (write_domain & I915_GEM_GPU_DOMAINS)
  844. return -EINVAL;
  845. if (read_domains & I915_GEM_GPU_DOMAINS)
  846. return -EINVAL;
  847. /* Having something in the write domain implies it's in the read
  848. * domain, and only that read domain. Enforce that in the request.
  849. */
  850. if (write_domain != 0 && read_domains != write_domain)
  851. return -EINVAL;
  852. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  853. if (obj == NULL)
  854. return -EBADF;
  855. mutex_lock(&dev->struct_mutex);
  856. #if WATCH_BUF
  857. DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
  858. obj, obj->size, read_domains, write_domain);
  859. #endif
  860. if (read_domains & I915_GEM_DOMAIN_GTT) {
  861. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  862. /* Silently promote "you're not bound, there was nothing to do"
  863. * to success, since the client was just asking us to
  864. * make sure everything was done.
  865. */
  866. if (ret == -EINVAL)
  867. ret = 0;
  868. } else {
  869. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  870. }
  871. drm_gem_object_unreference(obj);
  872. mutex_unlock(&dev->struct_mutex);
  873. return ret;
  874. }
  875. /**
  876. * Called when user space has done writes to this buffer
  877. */
  878. int
  879. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  880. struct drm_file *file_priv)
  881. {
  882. struct drm_i915_gem_sw_finish *args = data;
  883. struct drm_gem_object *obj;
  884. struct drm_i915_gem_object *obj_priv;
  885. int ret = 0;
  886. if (!(dev->driver->driver_features & DRIVER_GEM))
  887. return -ENODEV;
  888. mutex_lock(&dev->struct_mutex);
  889. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  890. if (obj == NULL) {
  891. mutex_unlock(&dev->struct_mutex);
  892. return -EBADF;
  893. }
  894. #if WATCH_BUF
  895. DRM_INFO("%s: sw_finish %d (%p %zd)\n",
  896. __func__, args->handle, obj, obj->size);
  897. #endif
  898. obj_priv = obj->driver_private;
  899. /* Pinned buffers may be scanout, so flush the cache */
  900. if (obj_priv->pin_count)
  901. i915_gem_object_flush_cpu_write_domain(obj);
  902. drm_gem_object_unreference(obj);
  903. mutex_unlock(&dev->struct_mutex);
  904. return ret;
  905. }
  906. /**
  907. * Maps the contents of an object, returning the address it is mapped
  908. * into.
  909. *
  910. * While the mapping holds a reference on the contents of the object, it doesn't
  911. * imply a ref on the object itself.
  912. */
  913. int
  914. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  915. struct drm_file *file_priv)
  916. {
  917. struct drm_i915_gem_mmap *args = data;
  918. struct drm_gem_object *obj;
  919. loff_t offset;
  920. unsigned long addr;
  921. if (!(dev->driver->driver_features & DRIVER_GEM))
  922. return -ENODEV;
  923. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  924. if (obj == NULL)
  925. return -EBADF;
  926. offset = args->offset;
  927. down_write(&current->mm->mmap_sem);
  928. addr = do_mmap(obj->filp, 0, args->size,
  929. PROT_READ | PROT_WRITE, MAP_SHARED,
  930. args->offset);
  931. up_write(&current->mm->mmap_sem);
  932. mutex_lock(&dev->struct_mutex);
  933. drm_gem_object_unreference(obj);
  934. mutex_unlock(&dev->struct_mutex);
  935. if (IS_ERR((void *)addr))
  936. return addr;
  937. args->addr_ptr = (uint64_t) addr;
  938. return 0;
  939. }
  940. /**
  941. * i915_gem_fault - fault a page into the GTT
  942. * vma: VMA in question
  943. * vmf: fault info
  944. *
  945. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  946. * from userspace. The fault handler takes care of binding the object to
  947. * the GTT (if needed), allocating and programming a fence register (again,
  948. * only if needed based on whether the old reg is still valid or the object
  949. * is tiled) and inserting a new PTE into the faulting process.
  950. *
  951. * Note that the faulting process may involve evicting existing objects
  952. * from the GTT and/or fence registers to make room. So performance may
  953. * suffer if the GTT working set is large or there are few fence registers
  954. * left.
  955. */
  956. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  957. {
  958. struct drm_gem_object *obj = vma->vm_private_data;
  959. struct drm_device *dev = obj->dev;
  960. struct drm_i915_private *dev_priv = dev->dev_private;
  961. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  962. pgoff_t page_offset;
  963. unsigned long pfn;
  964. int ret = 0;
  965. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  966. /* We don't use vmf->pgoff since that has the fake offset */
  967. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  968. PAGE_SHIFT;
  969. /* Now bind it into the GTT if needed */
  970. mutex_lock(&dev->struct_mutex);
  971. if (!obj_priv->gtt_space) {
  972. ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
  973. if (ret) {
  974. mutex_unlock(&dev->struct_mutex);
  975. return VM_FAULT_SIGBUS;
  976. }
  977. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  978. if (ret) {
  979. mutex_unlock(&dev->struct_mutex);
  980. return VM_FAULT_SIGBUS;
  981. }
  982. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  983. }
  984. /* Need a new fence register? */
  985. if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
  986. obj_priv->tiling_mode != I915_TILING_NONE) {
  987. ret = i915_gem_object_get_fence_reg(obj);
  988. if (ret) {
  989. mutex_unlock(&dev->struct_mutex);
  990. return VM_FAULT_SIGBUS;
  991. }
  992. }
  993. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  994. page_offset;
  995. /* Finally, remap it using the new GTT offset */
  996. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  997. mutex_unlock(&dev->struct_mutex);
  998. switch (ret) {
  999. case -ENOMEM:
  1000. case -EAGAIN:
  1001. return VM_FAULT_OOM;
  1002. case -EFAULT:
  1003. case -EINVAL:
  1004. return VM_FAULT_SIGBUS;
  1005. default:
  1006. return VM_FAULT_NOPAGE;
  1007. }
  1008. }
  1009. /**
  1010. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1011. * @obj: obj in question
  1012. *
  1013. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1014. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1015. * up the object based on the offset and sets up the various memory mapping
  1016. * structures.
  1017. *
  1018. * This routine allocates and attaches a fake offset for @obj.
  1019. */
  1020. static int
  1021. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1022. {
  1023. struct drm_device *dev = obj->dev;
  1024. struct drm_gem_mm *mm = dev->mm_private;
  1025. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1026. struct drm_map_list *list;
  1027. struct drm_local_map *map;
  1028. int ret = 0;
  1029. /* Set the object up for mmap'ing */
  1030. list = &obj->map_list;
  1031. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1032. if (!list->map)
  1033. return -ENOMEM;
  1034. map = list->map;
  1035. map->type = _DRM_GEM;
  1036. map->size = obj->size;
  1037. map->handle = obj;
  1038. /* Get a DRM GEM mmap offset allocated... */
  1039. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1040. obj->size / PAGE_SIZE, 0, 0);
  1041. if (!list->file_offset_node) {
  1042. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1043. ret = -ENOMEM;
  1044. goto out_free_list;
  1045. }
  1046. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1047. obj->size / PAGE_SIZE, 0);
  1048. if (!list->file_offset_node) {
  1049. ret = -ENOMEM;
  1050. goto out_free_list;
  1051. }
  1052. list->hash.key = list->file_offset_node->start;
  1053. if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
  1054. DRM_ERROR("failed to add to map hash\n");
  1055. goto out_free_mm;
  1056. }
  1057. /* By now we should be all set, any drm_mmap request on the offset
  1058. * below will get to our mmap & fault handler */
  1059. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1060. return 0;
  1061. out_free_mm:
  1062. drm_mm_put_block(list->file_offset_node);
  1063. out_free_list:
  1064. kfree(list->map);
  1065. return ret;
  1066. }
  1067. static void
  1068. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1069. {
  1070. struct drm_device *dev = obj->dev;
  1071. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1072. struct drm_gem_mm *mm = dev->mm_private;
  1073. struct drm_map_list *list;
  1074. list = &obj->map_list;
  1075. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1076. if (list->file_offset_node) {
  1077. drm_mm_put_block(list->file_offset_node);
  1078. list->file_offset_node = NULL;
  1079. }
  1080. if (list->map) {
  1081. kfree(list->map);
  1082. list->map = NULL;
  1083. }
  1084. obj_priv->mmap_offset = 0;
  1085. }
  1086. /**
  1087. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1088. * @obj: object to check
  1089. *
  1090. * Return the required GTT alignment for an object, taking into account
  1091. * potential fence register mapping if needed.
  1092. */
  1093. static uint32_t
  1094. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1095. {
  1096. struct drm_device *dev = obj->dev;
  1097. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1098. int start, i;
  1099. /*
  1100. * Minimum alignment is 4k (GTT page size), but might be greater
  1101. * if a fence register is needed for the object.
  1102. */
  1103. if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
  1104. return 4096;
  1105. /*
  1106. * Previous chips need to be aligned to the size of the smallest
  1107. * fence register that can contain the object.
  1108. */
  1109. if (IS_I9XX(dev))
  1110. start = 1024*1024;
  1111. else
  1112. start = 512*1024;
  1113. for (i = start; i < obj->size; i <<= 1)
  1114. ;
  1115. return i;
  1116. }
  1117. /**
  1118. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1119. * @dev: DRM device
  1120. * @data: GTT mapping ioctl data
  1121. * @file_priv: GEM object info
  1122. *
  1123. * Simply returns the fake offset to userspace so it can mmap it.
  1124. * The mmap call will end up in drm_gem_mmap(), which will set things
  1125. * up so we can get faults in the handler above.
  1126. *
  1127. * The fault handler will take care of binding the object into the GTT
  1128. * (since it may have been evicted to make room for something), allocating
  1129. * a fence register, and mapping the appropriate aperture address into
  1130. * userspace.
  1131. */
  1132. int
  1133. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1134. struct drm_file *file_priv)
  1135. {
  1136. struct drm_i915_gem_mmap_gtt *args = data;
  1137. struct drm_i915_private *dev_priv = dev->dev_private;
  1138. struct drm_gem_object *obj;
  1139. struct drm_i915_gem_object *obj_priv;
  1140. int ret;
  1141. if (!(dev->driver->driver_features & DRIVER_GEM))
  1142. return -ENODEV;
  1143. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1144. if (obj == NULL)
  1145. return -EBADF;
  1146. mutex_lock(&dev->struct_mutex);
  1147. obj_priv = obj->driver_private;
  1148. if (!obj_priv->mmap_offset) {
  1149. ret = i915_gem_create_mmap_offset(obj);
  1150. if (ret) {
  1151. drm_gem_object_unreference(obj);
  1152. mutex_unlock(&dev->struct_mutex);
  1153. return ret;
  1154. }
  1155. }
  1156. args->offset = obj_priv->mmap_offset;
  1157. obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
  1158. /* Make sure the alignment is correct for fence regs etc */
  1159. if (obj_priv->agp_mem &&
  1160. (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
  1161. drm_gem_object_unreference(obj);
  1162. mutex_unlock(&dev->struct_mutex);
  1163. return -EINVAL;
  1164. }
  1165. /*
  1166. * Pull it into the GTT so that we have a page list (makes the
  1167. * initial fault faster and any subsequent flushing possible).
  1168. */
  1169. if (!obj_priv->agp_mem) {
  1170. ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
  1171. if (ret) {
  1172. drm_gem_object_unreference(obj);
  1173. mutex_unlock(&dev->struct_mutex);
  1174. return ret;
  1175. }
  1176. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1177. }
  1178. drm_gem_object_unreference(obj);
  1179. mutex_unlock(&dev->struct_mutex);
  1180. return 0;
  1181. }
  1182. void
  1183. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1184. {
  1185. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1186. int page_count = obj->size / PAGE_SIZE;
  1187. int i;
  1188. BUG_ON(obj_priv->pages_refcount == 0);
  1189. if (--obj_priv->pages_refcount != 0)
  1190. return;
  1191. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1192. i915_gem_object_save_bit_17_swizzle(obj);
  1193. for (i = 0; i < page_count; i++)
  1194. if (obj_priv->pages[i] != NULL) {
  1195. if (obj_priv->dirty)
  1196. set_page_dirty(obj_priv->pages[i]);
  1197. mark_page_accessed(obj_priv->pages[i]);
  1198. page_cache_release(obj_priv->pages[i]);
  1199. }
  1200. obj_priv->dirty = 0;
  1201. drm_free_large(obj_priv->pages);
  1202. obj_priv->pages = NULL;
  1203. }
  1204. static void
  1205. i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
  1206. {
  1207. struct drm_device *dev = obj->dev;
  1208. drm_i915_private_t *dev_priv = dev->dev_private;
  1209. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1210. /* Add a reference if we're newly entering the active list. */
  1211. if (!obj_priv->active) {
  1212. drm_gem_object_reference(obj);
  1213. obj_priv->active = 1;
  1214. }
  1215. /* Move from whatever list we were on to the tail of execution. */
  1216. spin_lock(&dev_priv->mm.active_list_lock);
  1217. list_move_tail(&obj_priv->list,
  1218. &dev_priv->mm.active_list);
  1219. spin_unlock(&dev_priv->mm.active_list_lock);
  1220. obj_priv->last_rendering_seqno = seqno;
  1221. }
  1222. static void
  1223. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1224. {
  1225. struct drm_device *dev = obj->dev;
  1226. drm_i915_private_t *dev_priv = dev->dev_private;
  1227. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1228. BUG_ON(!obj_priv->active);
  1229. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1230. obj_priv->last_rendering_seqno = 0;
  1231. }
  1232. static void
  1233. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1234. {
  1235. struct drm_device *dev = obj->dev;
  1236. drm_i915_private_t *dev_priv = dev->dev_private;
  1237. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1238. i915_verify_inactive(dev, __FILE__, __LINE__);
  1239. if (obj_priv->pin_count != 0)
  1240. list_del_init(&obj_priv->list);
  1241. else
  1242. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1243. obj_priv->last_rendering_seqno = 0;
  1244. if (obj_priv->active) {
  1245. obj_priv->active = 0;
  1246. drm_gem_object_unreference(obj);
  1247. }
  1248. i915_verify_inactive(dev, __FILE__, __LINE__);
  1249. }
  1250. /**
  1251. * Creates a new sequence number, emitting a write of it to the status page
  1252. * plus an interrupt, which will trigger i915_user_interrupt_handler.
  1253. *
  1254. * Must be called with struct_lock held.
  1255. *
  1256. * Returned sequence numbers are nonzero on success.
  1257. */
  1258. static uint32_t
  1259. i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
  1260. uint32_t flush_domains)
  1261. {
  1262. drm_i915_private_t *dev_priv = dev->dev_private;
  1263. struct drm_i915_file_private *i915_file_priv = NULL;
  1264. struct drm_i915_gem_request *request;
  1265. uint32_t seqno;
  1266. int was_empty;
  1267. RING_LOCALS;
  1268. if (file_priv != NULL)
  1269. i915_file_priv = file_priv->driver_priv;
  1270. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1271. if (request == NULL)
  1272. return 0;
  1273. /* Grab the seqno we're going to make this request be, and bump the
  1274. * next (skipping 0 so it can be the reserved no-seqno value).
  1275. */
  1276. seqno = dev_priv->mm.next_gem_seqno;
  1277. dev_priv->mm.next_gem_seqno++;
  1278. if (dev_priv->mm.next_gem_seqno == 0)
  1279. dev_priv->mm.next_gem_seqno++;
  1280. BEGIN_LP_RING(4);
  1281. OUT_RING(MI_STORE_DWORD_INDEX);
  1282. OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1283. OUT_RING(seqno);
  1284. OUT_RING(MI_USER_INTERRUPT);
  1285. ADVANCE_LP_RING();
  1286. DRM_DEBUG("%d\n", seqno);
  1287. request->seqno = seqno;
  1288. request->emitted_jiffies = jiffies;
  1289. was_empty = list_empty(&dev_priv->mm.request_list);
  1290. list_add_tail(&request->list, &dev_priv->mm.request_list);
  1291. if (i915_file_priv) {
  1292. list_add_tail(&request->client_list,
  1293. &i915_file_priv->mm.request_list);
  1294. } else {
  1295. INIT_LIST_HEAD(&request->client_list);
  1296. }
  1297. /* Associate any objects on the flushing list matching the write
  1298. * domain we're flushing with our flush.
  1299. */
  1300. if (flush_domains != 0) {
  1301. struct drm_i915_gem_object *obj_priv, *next;
  1302. list_for_each_entry_safe(obj_priv, next,
  1303. &dev_priv->mm.flushing_list, list) {
  1304. struct drm_gem_object *obj = obj_priv->obj;
  1305. if ((obj->write_domain & flush_domains) ==
  1306. obj->write_domain) {
  1307. obj->write_domain = 0;
  1308. i915_gem_object_move_to_active(obj, seqno);
  1309. }
  1310. }
  1311. }
  1312. if (was_empty && !dev_priv->mm.suspended)
  1313. schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
  1314. return seqno;
  1315. }
  1316. /**
  1317. * Command execution barrier
  1318. *
  1319. * Ensures that all commands in the ring are finished
  1320. * before signalling the CPU
  1321. */
  1322. static uint32_t
  1323. i915_retire_commands(struct drm_device *dev)
  1324. {
  1325. drm_i915_private_t *dev_priv = dev->dev_private;
  1326. uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1327. uint32_t flush_domains = 0;
  1328. RING_LOCALS;
  1329. /* The sampler always gets flushed on i965 (sigh) */
  1330. if (IS_I965G(dev))
  1331. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1332. BEGIN_LP_RING(2);
  1333. OUT_RING(cmd);
  1334. OUT_RING(0); /* noop */
  1335. ADVANCE_LP_RING();
  1336. return flush_domains;
  1337. }
  1338. /**
  1339. * Moves buffers associated only with the given active seqno from the active
  1340. * to inactive list, potentially freeing them.
  1341. */
  1342. static void
  1343. i915_gem_retire_request(struct drm_device *dev,
  1344. struct drm_i915_gem_request *request)
  1345. {
  1346. drm_i915_private_t *dev_priv = dev->dev_private;
  1347. /* Move any buffers on the active list that are no longer referenced
  1348. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1349. */
  1350. spin_lock(&dev_priv->mm.active_list_lock);
  1351. while (!list_empty(&dev_priv->mm.active_list)) {
  1352. struct drm_gem_object *obj;
  1353. struct drm_i915_gem_object *obj_priv;
  1354. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  1355. struct drm_i915_gem_object,
  1356. list);
  1357. obj = obj_priv->obj;
  1358. /* If the seqno being retired doesn't match the oldest in the
  1359. * list, then the oldest in the list must still be newer than
  1360. * this seqno.
  1361. */
  1362. if (obj_priv->last_rendering_seqno != request->seqno)
  1363. goto out;
  1364. #if WATCH_LRU
  1365. DRM_INFO("%s: retire %d moves to inactive list %p\n",
  1366. __func__, request->seqno, obj);
  1367. #endif
  1368. if (obj->write_domain != 0)
  1369. i915_gem_object_move_to_flushing(obj);
  1370. else {
  1371. /* Take a reference on the object so it won't be
  1372. * freed while the spinlock is held. The list
  1373. * protection for this spinlock is safe when breaking
  1374. * the lock like this since the next thing we do
  1375. * is just get the head of the list again.
  1376. */
  1377. drm_gem_object_reference(obj);
  1378. i915_gem_object_move_to_inactive(obj);
  1379. spin_unlock(&dev_priv->mm.active_list_lock);
  1380. drm_gem_object_unreference(obj);
  1381. spin_lock(&dev_priv->mm.active_list_lock);
  1382. }
  1383. }
  1384. out:
  1385. spin_unlock(&dev_priv->mm.active_list_lock);
  1386. }
  1387. /**
  1388. * Returns true if seq1 is later than seq2.
  1389. */
  1390. static int
  1391. i915_seqno_passed(uint32_t seq1, uint32_t seq2)
  1392. {
  1393. return (int32_t)(seq1 - seq2) >= 0;
  1394. }
  1395. uint32_t
  1396. i915_get_gem_seqno(struct drm_device *dev)
  1397. {
  1398. drm_i915_private_t *dev_priv = dev->dev_private;
  1399. return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
  1400. }
  1401. /**
  1402. * This function clears the request list as sequence numbers are passed.
  1403. */
  1404. void
  1405. i915_gem_retire_requests(struct drm_device *dev)
  1406. {
  1407. drm_i915_private_t *dev_priv = dev->dev_private;
  1408. uint32_t seqno;
  1409. if (!dev_priv->hw_status_page)
  1410. return;
  1411. seqno = i915_get_gem_seqno(dev);
  1412. while (!list_empty(&dev_priv->mm.request_list)) {
  1413. struct drm_i915_gem_request *request;
  1414. uint32_t retiring_seqno;
  1415. request = list_first_entry(&dev_priv->mm.request_list,
  1416. struct drm_i915_gem_request,
  1417. list);
  1418. retiring_seqno = request->seqno;
  1419. if (i915_seqno_passed(seqno, retiring_seqno) ||
  1420. dev_priv->mm.wedged) {
  1421. i915_gem_retire_request(dev, request);
  1422. list_del(&request->list);
  1423. list_del(&request->client_list);
  1424. kfree(request);
  1425. } else
  1426. break;
  1427. }
  1428. }
  1429. void
  1430. i915_gem_retire_work_handler(struct work_struct *work)
  1431. {
  1432. drm_i915_private_t *dev_priv;
  1433. struct drm_device *dev;
  1434. dev_priv = container_of(work, drm_i915_private_t,
  1435. mm.retire_work.work);
  1436. dev = dev_priv->dev;
  1437. mutex_lock(&dev->struct_mutex);
  1438. i915_gem_retire_requests(dev);
  1439. if (!dev_priv->mm.suspended &&
  1440. !list_empty(&dev_priv->mm.request_list))
  1441. schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
  1442. mutex_unlock(&dev->struct_mutex);
  1443. }
  1444. /**
  1445. * Waits for a sequence number to be signaled, and cleans up the
  1446. * request and object lists appropriately for that event.
  1447. */
  1448. static int
  1449. i915_wait_request(struct drm_device *dev, uint32_t seqno)
  1450. {
  1451. drm_i915_private_t *dev_priv = dev->dev_private;
  1452. u32 ier;
  1453. int ret = 0;
  1454. BUG_ON(seqno == 0);
  1455. if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
  1456. if (IS_IGDNG(dev))
  1457. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1458. else
  1459. ier = I915_READ(IER);
  1460. if (!ier) {
  1461. DRM_ERROR("something (likely vbetool) disabled "
  1462. "interrupts, re-enabling\n");
  1463. i915_driver_irq_preinstall(dev);
  1464. i915_driver_irq_postinstall(dev);
  1465. }
  1466. dev_priv->mm.waiting_gem_seqno = seqno;
  1467. i915_user_irq_get(dev);
  1468. ret = wait_event_interruptible(dev_priv->irq_queue,
  1469. i915_seqno_passed(i915_get_gem_seqno(dev),
  1470. seqno) ||
  1471. dev_priv->mm.wedged);
  1472. i915_user_irq_put(dev);
  1473. dev_priv->mm.waiting_gem_seqno = 0;
  1474. }
  1475. if (dev_priv->mm.wedged)
  1476. ret = -EIO;
  1477. if (ret && ret != -ERESTARTSYS)
  1478. DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
  1479. __func__, ret, seqno, i915_get_gem_seqno(dev));
  1480. /* Directly dispatch request retiring. While we have the work queue
  1481. * to handle this, the waiter on a request often wants an associated
  1482. * buffer to have made it to the inactive list, and we would need
  1483. * a separate wait queue to handle that.
  1484. */
  1485. if (ret == 0)
  1486. i915_gem_retire_requests(dev);
  1487. return ret;
  1488. }
  1489. static void
  1490. i915_gem_flush(struct drm_device *dev,
  1491. uint32_t invalidate_domains,
  1492. uint32_t flush_domains)
  1493. {
  1494. drm_i915_private_t *dev_priv = dev->dev_private;
  1495. uint32_t cmd;
  1496. RING_LOCALS;
  1497. #if WATCH_EXEC
  1498. DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
  1499. invalidate_domains, flush_domains);
  1500. #endif
  1501. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1502. drm_agp_chipset_flush(dev);
  1503. if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
  1504. /*
  1505. * read/write caches:
  1506. *
  1507. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  1508. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  1509. * also flushed at 2d versus 3d pipeline switches.
  1510. *
  1511. * read-only caches:
  1512. *
  1513. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  1514. * MI_READ_FLUSH is set, and is always flushed on 965.
  1515. *
  1516. * I915_GEM_DOMAIN_COMMAND may not exist?
  1517. *
  1518. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  1519. * invalidated when MI_EXE_FLUSH is set.
  1520. *
  1521. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  1522. * invalidated with every MI_FLUSH.
  1523. *
  1524. * TLBs:
  1525. *
  1526. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  1527. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  1528. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  1529. * are flushed at any MI_FLUSH.
  1530. */
  1531. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1532. if ((invalidate_domains|flush_domains) &
  1533. I915_GEM_DOMAIN_RENDER)
  1534. cmd &= ~MI_NO_WRITE_FLUSH;
  1535. if (!IS_I965G(dev)) {
  1536. /*
  1537. * On the 965, the sampler cache always gets flushed
  1538. * and this bit is reserved.
  1539. */
  1540. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  1541. cmd |= MI_READ_FLUSH;
  1542. }
  1543. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  1544. cmd |= MI_EXE_FLUSH;
  1545. #if WATCH_EXEC
  1546. DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
  1547. #endif
  1548. BEGIN_LP_RING(2);
  1549. OUT_RING(cmd);
  1550. OUT_RING(0); /* noop */
  1551. ADVANCE_LP_RING();
  1552. }
  1553. }
  1554. /**
  1555. * Ensures that all rendering to the object has completed and the object is
  1556. * safe to unbind from the GTT or access from the CPU.
  1557. */
  1558. static int
  1559. i915_gem_object_wait_rendering(struct drm_gem_object *obj)
  1560. {
  1561. struct drm_device *dev = obj->dev;
  1562. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1563. int ret;
  1564. /* This function only exists to support waiting for existing rendering,
  1565. * not for emitting required flushes.
  1566. */
  1567. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1568. /* If there is rendering queued on the buffer being evicted, wait for
  1569. * it.
  1570. */
  1571. if (obj_priv->active) {
  1572. #if WATCH_BUF
  1573. DRM_INFO("%s: object %p wait for seqno %08x\n",
  1574. __func__, obj, obj_priv->last_rendering_seqno);
  1575. #endif
  1576. ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
  1577. if (ret != 0)
  1578. return ret;
  1579. }
  1580. return 0;
  1581. }
  1582. /**
  1583. * Unbinds an object from the GTT aperture.
  1584. */
  1585. int
  1586. i915_gem_object_unbind(struct drm_gem_object *obj)
  1587. {
  1588. struct drm_device *dev = obj->dev;
  1589. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1590. loff_t offset;
  1591. int ret = 0;
  1592. #if WATCH_BUF
  1593. DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
  1594. DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
  1595. #endif
  1596. if (obj_priv->gtt_space == NULL)
  1597. return 0;
  1598. if (obj_priv->pin_count != 0) {
  1599. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1600. return -EINVAL;
  1601. }
  1602. /* Move the object to the CPU domain to ensure that
  1603. * any possible CPU writes while it's not in the GTT
  1604. * are flushed when we go to remap it. This will
  1605. * also ensure that all pending GPU writes are finished
  1606. * before we unbind.
  1607. */
  1608. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1609. if (ret) {
  1610. if (ret != -ERESTARTSYS)
  1611. DRM_ERROR("set_domain failed: %d\n", ret);
  1612. return ret;
  1613. }
  1614. if (obj_priv->agp_mem != NULL) {
  1615. drm_unbind_agp(obj_priv->agp_mem);
  1616. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1617. obj_priv->agp_mem = NULL;
  1618. }
  1619. BUG_ON(obj_priv->active);
  1620. /* blow away mappings if mapped through GTT */
  1621. offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
  1622. if (dev->dev_mapping)
  1623. unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
  1624. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1625. i915_gem_clear_fence_reg(obj);
  1626. i915_gem_object_put_pages(obj);
  1627. if (obj_priv->gtt_space) {
  1628. atomic_dec(&dev->gtt_count);
  1629. atomic_sub(obj->size, &dev->gtt_memory);
  1630. drm_mm_put_block(obj_priv->gtt_space);
  1631. obj_priv->gtt_space = NULL;
  1632. }
  1633. /* Remove ourselves from the LRU list if present. */
  1634. if (!list_empty(&obj_priv->list))
  1635. list_del_init(&obj_priv->list);
  1636. return 0;
  1637. }
  1638. static int
  1639. i915_gem_evict_something(struct drm_device *dev)
  1640. {
  1641. drm_i915_private_t *dev_priv = dev->dev_private;
  1642. struct drm_gem_object *obj;
  1643. struct drm_i915_gem_object *obj_priv;
  1644. int ret = 0;
  1645. for (;;) {
  1646. /* If there's an inactive buffer available now, grab it
  1647. * and be done.
  1648. */
  1649. if (!list_empty(&dev_priv->mm.inactive_list)) {
  1650. obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
  1651. struct drm_i915_gem_object,
  1652. list);
  1653. obj = obj_priv->obj;
  1654. BUG_ON(obj_priv->pin_count != 0);
  1655. #if WATCH_LRU
  1656. DRM_INFO("%s: evicting %p\n", __func__, obj);
  1657. #endif
  1658. BUG_ON(obj_priv->active);
  1659. /* Wait on the rendering and unbind the buffer. */
  1660. ret = i915_gem_object_unbind(obj);
  1661. break;
  1662. }
  1663. /* If we didn't get anything, but the ring is still processing
  1664. * things, wait for one of those things to finish and hopefully
  1665. * leave us a buffer to evict.
  1666. */
  1667. if (!list_empty(&dev_priv->mm.request_list)) {
  1668. struct drm_i915_gem_request *request;
  1669. request = list_first_entry(&dev_priv->mm.request_list,
  1670. struct drm_i915_gem_request,
  1671. list);
  1672. ret = i915_wait_request(dev, request->seqno);
  1673. if (ret)
  1674. break;
  1675. /* if waiting caused an object to become inactive,
  1676. * then loop around and wait for it. Otherwise, we
  1677. * assume that waiting freed and unbound something,
  1678. * so there should now be some space in the GTT
  1679. */
  1680. if (!list_empty(&dev_priv->mm.inactive_list))
  1681. continue;
  1682. break;
  1683. }
  1684. /* If we didn't have anything on the request list but there
  1685. * are buffers awaiting a flush, emit one and try again.
  1686. * When we wait on it, those buffers waiting for that flush
  1687. * will get moved to inactive.
  1688. */
  1689. if (!list_empty(&dev_priv->mm.flushing_list)) {
  1690. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1691. struct drm_i915_gem_object,
  1692. list);
  1693. obj = obj_priv->obj;
  1694. i915_gem_flush(dev,
  1695. obj->write_domain,
  1696. obj->write_domain);
  1697. i915_add_request(dev, NULL, obj->write_domain);
  1698. obj = NULL;
  1699. continue;
  1700. }
  1701. DRM_ERROR("inactive empty %d request empty %d "
  1702. "flushing empty %d\n",
  1703. list_empty(&dev_priv->mm.inactive_list),
  1704. list_empty(&dev_priv->mm.request_list),
  1705. list_empty(&dev_priv->mm.flushing_list));
  1706. /* If we didn't do any of the above, there's nothing to be done
  1707. * and we just can't fit it in.
  1708. */
  1709. return -ENOSPC;
  1710. }
  1711. return ret;
  1712. }
  1713. static int
  1714. i915_gem_evict_everything(struct drm_device *dev)
  1715. {
  1716. int ret;
  1717. for (;;) {
  1718. ret = i915_gem_evict_something(dev);
  1719. if (ret != 0)
  1720. break;
  1721. }
  1722. if (ret == -ENOSPC)
  1723. return 0;
  1724. return ret;
  1725. }
  1726. int
  1727. i915_gem_object_get_pages(struct drm_gem_object *obj)
  1728. {
  1729. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1730. int page_count, i;
  1731. struct address_space *mapping;
  1732. struct inode *inode;
  1733. struct page *page;
  1734. int ret;
  1735. if (obj_priv->pages_refcount++ != 0)
  1736. return 0;
  1737. /* Get the list of pages out of our struct file. They'll be pinned
  1738. * at this point until we release them.
  1739. */
  1740. page_count = obj->size / PAGE_SIZE;
  1741. BUG_ON(obj_priv->pages != NULL);
  1742. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1743. if (obj_priv->pages == NULL) {
  1744. DRM_ERROR("Faled to allocate page list\n");
  1745. obj_priv->pages_refcount--;
  1746. return -ENOMEM;
  1747. }
  1748. inode = obj->filp->f_path.dentry->d_inode;
  1749. mapping = inode->i_mapping;
  1750. for (i = 0; i < page_count; i++) {
  1751. page = read_mapping_page(mapping, i, NULL);
  1752. if (IS_ERR(page)) {
  1753. ret = PTR_ERR(page);
  1754. DRM_ERROR("read_mapping_page failed: %d\n", ret);
  1755. i915_gem_object_put_pages(obj);
  1756. return ret;
  1757. }
  1758. obj_priv->pages[i] = page;
  1759. }
  1760. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1761. i915_gem_object_do_bit_17_swizzle(obj);
  1762. return 0;
  1763. }
  1764. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1765. {
  1766. struct drm_gem_object *obj = reg->obj;
  1767. struct drm_device *dev = obj->dev;
  1768. drm_i915_private_t *dev_priv = dev->dev_private;
  1769. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1770. int regnum = obj_priv->fence_reg;
  1771. uint64_t val;
  1772. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1773. 0xfffff000) << 32;
  1774. val |= obj_priv->gtt_offset & 0xfffff000;
  1775. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1776. if (obj_priv->tiling_mode == I915_TILING_Y)
  1777. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1778. val |= I965_FENCE_REG_VALID;
  1779. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1780. }
  1781. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1782. {
  1783. struct drm_gem_object *obj = reg->obj;
  1784. struct drm_device *dev = obj->dev;
  1785. drm_i915_private_t *dev_priv = dev->dev_private;
  1786. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1787. int regnum = obj_priv->fence_reg;
  1788. int tile_width;
  1789. uint32_t fence_reg, val;
  1790. uint32_t pitch_val;
  1791. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1792. (obj_priv->gtt_offset & (obj->size - 1))) {
  1793. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1794. __func__, obj_priv->gtt_offset, obj->size);
  1795. return;
  1796. }
  1797. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1798. HAS_128_BYTE_Y_TILING(dev))
  1799. tile_width = 128;
  1800. else
  1801. tile_width = 512;
  1802. /* Note: pitch better be a power of two tile widths */
  1803. pitch_val = obj_priv->stride / tile_width;
  1804. pitch_val = ffs(pitch_val) - 1;
  1805. val = obj_priv->gtt_offset;
  1806. if (obj_priv->tiling_mode == I915_TILING_Y)
  1807. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1808. val |= I915_FENCE_SIZE_BITS(obj->size);
  1809. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1810. val |= I830_FENCE_REG_VALID;
  1811. if (regnum < 8)
  1812. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1813. else
  1814. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1815. I915_WRITE(fence_reg, val);
  1816. }
  1817. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1818. {
  1819. struct drm_gem_object *obj = reg->obj;
  1820. struct drm_device *dev = obj->dev;
  1821. drm_i915_private_t *dev_priv = dev->dev_private;
  1822. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1823. int regnum = obj_priv->fence_reg;
  1824. uint32_t val;
  1825. uint32_t pitch_val;
  1826. uint32_t fence_size_bits;
  1827. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1828. (obj_priv->gtt_offset & (obj->size - 1))) {
  1829. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1830. __func__, obj_priv->gtt_offset);
  1831. return;
  1832. }
  1833. pitch_val = obj_priv->stride / 128;
  1834. pitch_val = ffs(pitch_val) - 1;
  1835. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1836. val = obj_priv->gtt_offset;
  1837. if (obj_priv->tiling_mode == I915_TILING_Y)
  1838. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1839. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  1840. WARN_ON(fence_size_bits & ~0x00000f00);
  1841. val |= fence_size_bits;
  1842. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1843. val |= I830_FENCE_REG_VALID;
  1844. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  1845. }
  1846. /**
  1847. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  1848. * @obj: object to map through a fence reg
  1849. *
  1850. * When mapping objects through the GTT, userspace wants to be able to write
  1851. * to them without having to worry about swizzling if the object is tiled.
  1852. *
  1853. * This function walks the fence regs looking for a free one for @obj,
  1854. * stealing one if it can't find any.
  1855. *
  1856. * It then sets up the reg based on the object's properties: address, pitch
  1857. * and tiling format.
  1858. */
  1859. int
  1860. i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
  1861. {
  1862. struct drm_device *dev = obj->dev;
  1863. struct drm_i915_private *dev_priv = dev->dev_private;
  1864. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1865. struct drm_i915_fence_reg *reg = NULL;
  1866. struct drm_i915_gem_object *old_obj_priv = NULL;
  1867. int i, ret, avail;
  1868. switch (obj_priv->tiling_mode) {
  1869. case I915_TILING_NONE:
  1870. WARN(1, "allocating a fence for non-tiled object?\n");
  1871. break;
  1872. case I915_TILING_X:
  1873. if (!obj_priv->stride)
  1874. return -EINVAL;
  1875. WARN((obj_priv->stride & (512 - 1)),
  1876. "object 0x%08x is X tiled but has non-512B pitch\n",
  1877. obj_priv->gtt_offset);
  1878. break;
  1879. case I915_TILING_Y:
  1880. if (!obj_priv->stride)
  1881. return -EINVAL;
  1882. WARN((obj_priv->stride & (128 - 1)),
  1883. "object 0x%08x is Y tiled but has non-128B pitch\n",
  1884. obj_priv->gtt_offset);
  1885. break;
  1886. }
  1887. /* First try to find a free reg */
  1888. try_again:
  1889. avail = 0;
  1890. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1891. reg = &dev_priv->fence_regs[i];
  1892. if (!reg->obj)
  1893. break;
  1894. old_obj_priv = reg->obj->driver_private;
  1895. if (!old_obj_priv->pin_count)
  1896. avail++;
  1897. }
  1898. /* None available, try to steal one or wait for a user to finish */
  1899. if (i == dev_priv->num_fence_regs) {
  1900. uint32_t seqno = dev_priv->mm.next_gem_seqno;
  1901. loff_t offset;
  1902. if (avail == 0)
  1903. return -ENOSPC;
  1904. for (i = dev_priv->fence_reg_start;
  1905. i < dev_priv->num_fence_regs; i++) {
  1906. uint32_t this_seqno;
  1907. reg = &dev_priv->fence_regs[i];
  1908. old_obj_priv = reg->obj->driver_private;
  1909. if (old_obj_priv->pin_count)
  1910. continue;
  1911. /* i915 uses fences for GPU access to tiled buffers */
  1912. if (IS_I965G(dev) || !old_obj_priv->active)
  1913. break;
  1914. /* find the seqno of the first available fence */
  1915. this_seqno = old_obj_priv->last_rendering_seqno;
  1916. if (this_seqno != 0 &&
  1917. reg->obj->write_domain == 0 &&
  1918. i915_seqno_passed(seqno, this_seqno))
  1919. seqno = this_seqno;
  1920. }
  1921. /*
  1922. * Now things get ugly... we have to wait for one of the
  1923. * objects to finish before trying again.
  1924. */
  1925. if (i == dev_priv->num_fence_regs) {
  1926. if (seqno == dev_priv->mm.next_gem_seqno) {
  1927. i915_gem_flush(dev,
  1928. I915_GEM_GPU_DOMAINS,
  1929. I915_GEM_GPU_DOMAINS);
  1930. seqno = i915_add_request(dev, NULL,
  1931. I915_GEM_GPU_DOMAINS);
  1932. if (seqno == 0)
  1933. return -ENOMEM;
  1934. }
  1935. ret = i915_wait_request(dev, seqno);
  1936. if (ret)
  1937. return ret;
  1938. goto try_again;
  1939. }
  1940. /*
  1941. * Zap this virtual mapping so we can set up a fence again
  1942. * for this object next time we need it.
  1943. */
  1944. offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
  1945. if (dev->dev_mapping)
  1946. unmap_mapping_range(dev->dev_mapping, offset,
  1947. reg->obj->size, 1);
  1948. old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
  1949. }
  1950. obj_priv->fence_reg = i;
  1951. reg->obj = obj;
  1952. if (IS_I965G(dev))
  1953. i965_write_fence_reg(reg);
  1954. else if (IS_I9XX(dev))
  1955. i915_write_fence_reg(reg);
  1956. else
  1957. i830_write_fence_reg(reg);
  1958. return 0;
  1959. }
  1960. /**
  1961. * i915_gem_clear_fence_reg - clear out fence register info
  1962. * @obj: object to clear
  1963. *
  1964. * Zeroes out the fence register itself and clears out the associated
  1965. * data structures in dev_priv and obj_priv.
  1966. */
  1967. static void
  1968. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  1969. {
  1970. struct drm_device *dev = obj->dev;
  1971. drm_i915_private_t *dev_priv = dev->dev_private;
  1972. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1973. if (IS_I965G(dev))
  1974. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  1975. else {
  1976. uint32_t fence_reg;
  1977. if (obj_priv->fence_reg < 8)
  1978. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  1979. else
  1980. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
  1981. 8) * 4;
  1982. I915_WRITE(fence_reg, 0);
  1983. }
  1984. dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
  1985. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  1986. }
  1987. /**
  1988. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  1989. * to the buffer to finish, and then resets the fence register.
  1990. * @obj: tiled object holding a fence register.
  1991. *
  1992. * Zeroes out the fence register itself and clears out the associated
  1993. * data structures in dev_priv and obj_priv.
  1994. */
  1995. int
  1996. i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
  1997. {
  1998. struct drm_device *dev = obj->dev;
  1999. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2000. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2001. return 0;
  2002. /* On the i915, GPU access to tiled buffers is via a fence,
  2003. * therefore we must wait for any outstanding access to complete
  2004. * before clearing the fence.
  2005. */
  2006. if (!IS_I965G(dev)) {
  2007. int ret;
  2008. i915_gem_object_flush_gpu_write_domain(obj);
  2009. i915_gem_object_flush_gtt_write_domain(obj);
  2010. ret = i915_gem_object_wait_rendering(obj);
  2011. if (ret != 0)
  2012. return ret;
  2013. }
  2014. i915_gem_clear_fence_reg (obj);
  2015. return 0;
  2016. }
  2017. /**
  2018. * Finds free space in the GTT aperture and binds the object there.
  2019. */
  2020. static int
  2021. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  2022. {
  2023. struct drm_device *dev = obj->dev;
  2024. drm_i915_private_t *dev_priv = dev->dev_private;
  2025. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2026. struct drm_mm_node *free_space;
  2027. int page_count, ret;
  2028. if (dev_priv->mm.suspended)
  2029. return -EBUSY;
  2030. if (alignment == 0)
  2031. alignment = i915_gem_get_gtt_alignment(obj);
  2032. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2033. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2034. return -EINVAL;
  2035. }
  2036. search_free:
  2037. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2038. obj->size, alignment, 0);
  2039. if (free_space != NULL) {
  2040. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  2041. alignment);
  2042. if (obj_priv->gtt_space != NULL) {
  2043. obj_priv->gtt_space->private = obj;
  2044. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2045. }
  2046. }
  2047. if (obj_priv->gtt_space == NULL) {
  2048. bool lists_empty;
  2049. /* If the gtt is empty and we're still having trouble
  2050. * fitting our object in, we're out of memory.
  2051. */
  2052. #if WATCH_LRU
  2053. DRM_INFO("%s: GTT full, evicting something\n", __func__);
  2054. #endif
  2055. spin_lock(&dev_priv->mm.active_list_lock);
  2056. lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
  2057. list_empty(&dev_priv->mm.flushing_list) &&
  2058. list_empty(&dev_priv->mm.active_list));
  2059. spin_unlock(&dev_priv->mm.active_list_lock);
  2060. if (lists_empty) {
  2061. DRM_ERROR("GTT full, but LRU list empty\n");
  2062. return -ENOSPC;
  2063. }
  2064. ret = i915_gem_evict_something(dev);
  2065. if (ret != 0) {
  2066. if (ret != -ERESTARTSYS)
  2067. DRM_ERROR("Failed to evict a buffer %d\n", ret);
  2068. return ret;
  2069. }
  2070. goto search_free;
  2071. }
  2072. #if WATCH_BUF
  2073. DRM_INFO("Binding object of size %zd at 0x%08x\n",
  2074. obj->size, obj_priv->gtt_offset);
  2075. #endif
  2076. ret = i915_gem_object_get_pages(obj);
  2077. if (ret) {
  2078. drm_mm_put_block(obj_priv->gtt_space);
  2079. obj_priv->gtt_space = NULL;
  2080. return ret;
  2081. }
  2082. page_count = obj->size / PAGE_SIZE;
  2083. /* Create an AGP memory structure pointing at our pages, and bind it
  2084. * into the GTT.
  2085. */
  2086. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2087. obj_priv->pages,
  2088. page_count,
  2089. obj_priv->gtt_offset,
  2090. obj_priv->agp_type);
  2091. if (obj_priv->agp_mem == NULL) {
  2092. i915_gem_object_put_pages(obj);
  2093. drm_mm_put_block(obj_priv->gtt_space);
  2094. obj_priv->gtt_space = NULL;
  2095. return -ENOMEM;
  2096. }
  2097. atomic_inc(&dev->gtt_count);
  2098. atomic_add(obj->size, &dev->gtt_memory);
  2099. /* Assert that the object is not currently in any GPU domain. As it
  2100. * wasn't in the GTT, there shouldn't be any way it could have been in
  2101. * a GPU cache
  2102. */
  2103. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2104. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2105. return 0;
  2106. }
  2107. void
  2108. i915_gem_clflush_object(struct drm_gem_object *obj)
  2109. {
  2110. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2111. /* If we don't have a page list set up, then we're not pinned
  2112. * to GPU, and we can ignore the cache flush because it'll happen
  2113. * again at bind time.
  2114. */
  2115. if (obj_priv->pages == NULL)
  2116. return;
  2117. /* XXX: The 865 in particular appears to be weird in how it handles
  2118. * cache flushing. We haven't figured it out, but the
  2119. * clflush+agp_chipset_flush doesn't appear to successfully get the
  2120. * data visible to the PGU, while wbinvd + agp_chipset_flush does.
  2121. */
  2122. if (IS_I865G(obj->dev)) {
  2123. wbinvd();
  2124. return;
  2125. }
  2126. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2127. }
  2128. /** Flushes any GPU write domain for the object if it's dirty. */
  2129. static void
  2130. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
  2131. {
  2132. struct drm_device *dev = obj->dev;
  2133. uint32_t seqno;
  2134. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2135. return;
  2136. /* Queue the GPU write cache flushing we need. */
  2137. i915_gem_flush(dev, 0, obj->write_domain);
  2138. seqno = i915_add_request(dev, NULL, obj->write_domain);
  2139. obj->write_domain = 0;
  2140. i915_gem_object_move_to_active(obj, seqno);
  2141. }
  2142. /** Flushes the GTT write domain for the object if it's dirty. */
  2143. static void
  2144. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2145. {
  2146. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2147. return;
  2148. /* No actual flushing is required for the GTT write domain. Writes
  2149. * to it immediately go to main memory as far as we know, so there's
  2150. * no chipset flush. It also doesn't land in render cache.
  2151. */
  2152. obj->write_domain = 0;
  2153. }
  2154. /** Flushes the CPU write domain for the object if it's dirty. */
  2155. static void
  2156. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2157. {
  2158. struct drm_device *dev = obj->dev;
  2159. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2160. return;
  2161. i915_gem_clflush_object(obj);
  2162. drm_agp_chipset_flush(dev);
  2163. obj->write_domain = 0;
  2164. }
  2165. /**
  2166. * Moves a single object to the GTT read, and possibly write domain.
  2167. *
  2168. * This function returns when the move is complete, including waiting on
  2169. * flushes to occur.
  2170. */
  2171. int
  2172. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2173. {
  2174. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2175. int ret;
  2176. /* Not valid to be called on unbound objects. */
  2177. if (obj_priv->gtt_space == NULL)
  2178. return -EINVAL;
  2179. i915_gem_object_flush_gpu_write_domain(obj);
  2180. /* Wait on any GPU rendering and flushing to occur. */
  2181. ret = i915_gem_object_wait_rendering(obj);
  2182. if (ret != 0)
  2183. return ret;
  2184. /* If we're writing through the GTT domain, then CPU and GPU caches
  2185. * will need to be invalidated at next use.
  2186. */
  2187. if (write)
  2188. obj->read_domains &= I915_GEM_DOMAIN_GTT;
  2189. i915_gem_object_flush_cpu_write_domain(obj);
  2190. /* It should now be out of any other write domains, and we can update
  2191. * the domain values for our changes.
  2192. */
  2193. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2194. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2195. if (write) {
  2196. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2197. obj_priv->dirty = 1;
  2198. }
  2199. return 0;
  2200. }
  2201. /**
  2202. * Moves a single object to the CPU read, and possibly write domain.
  2203. *
  2204. * This function returns when the move is complete, including waiting on
  2205. * flushes to occur.
  2206. */
  2207. static int
  2208. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2209. {
  2210. int ret;
  2211. i915_gem_object_flush_gpu_write_domain(obj);
  2212. /* Wait on any GPU rendering and flushing to occur. */
  2213. ret = i915_gem_object_wait_rendering(obj);
  2214. if (ret != 0)
  2215. return ret;
  2216. i915_gem_object_flush_gtt_write_domain(obj);
  2217. /* If we have a partially-valid cache of the object in the CPU,
  2218. * finish invalidating it and free the per-page flags.
  2219. */
  2220. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2221. /* Flush the CPU cache if it's still invalid. */
  2222. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2223. i915_gem_clflush_object(obj);
  2224. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2225. }
  2226. /* It should now be out of any other write domains, and we can update
  2227. * the domain values for our changes.
  2228. */
  2229. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2230. /* If we're writing through the CPU, then the GPU read domains will
  2231. * need to be invalidated at next use.
  2232. */
  2233. if (write) {
  2234. obj->read_domains &= I915_GEM_DOMAIN_CPU;
  2235. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2236. }
  2237. return 0;
  2238. }
  2239. /*
  2240. * Set the next domain for the specified object. This
  2241. * may not actually perform the necessary flushing/invaliding though,
  2242. * as that may want to be batched with other set_domain operations
  2243. *
  2244. * This is (we hope) the only really tricky part of gem. The goal
  2245. * is fairly simple -- track which caches hold bits of the object
  2246. * and make sure they remain coherent. A few concrete examples may
  2247. * help to explain how it works. For shorthand, we use the notation
  2248. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2249. * a pair of read and write domain masks.
  2250. *
  2251. * Case 1: the batch buffer
  2252. *
  2253. * 1. Allocated
  2254. * 2. Written by CPU
  2255. * 3. Mapped to GTT
  2256. * 4. Read by GPU
  2257. * 5. Unmapped from GTT
  2258. * 6. Freed
  2259. *
  2260. * Let's take these a step at a time
  2261. *
  2262. * 1. Allocated
  2263. * Pages allocated from the kernel may still have
  2264. * cache contents, so we set them to (CPU, CPU) always.
  2265. * 2. Written by CPU (using pwrite)
  2266. * The pwrite function calls set_domain (CPU, CPU) and
  2267. * this function does nothing (as nothing changes)
  2268. * 3. Mapped by GTT
  2269. * This function asserts that the object is not
  2270. * currently in any GPU-based read or write domains
  2271. * 4. Read by GPU
  2272. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2273. * As write_domain is zero, this function adds in the
  2274. * current read domains (CPU+COMMAND, 0).
  2275. * flush_domains is set to CPU.
  2276. * invalidate_domains is set to COMMAND
  2277. * clflush is run to get data out of the CPU caches
  2278. * then i915_dev_set_domain calls i915_gem_flush to
  2279. * emit an MI_FLUSH and drm_agp_chipset_flush
  2280. * 5. Unmapped from GTT
  2281. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2282. * flush_domains and invalidate_domains end up both zero
  2283. * so no flushing/invalidating happens
  2284. * 6. Freed
  2285. * yay, done
  2286. *
  2287. * Case 2: The shared render buffer
  2288. *
  2289. * 1. Allocated
  2290. * 2. Mapped to GTT
  2291. * 3. Read/written by GPU
  2292. * 4. set_domain to (CPU,CPU)
  2293. * 5. Read/written by CPU
  2294. * 6. Read/written by GPU
  2295. *
  2296. * 1. Allocated
  2297. * Same as last example, (CPU, CPU)
  2298. * 2. Mapped to GTT
  2299. * Nothing changes (assertions find that it is not in the GPU)
  2300. * 3. Read/written by GPU
  2301. * execbuffer calls set_domain (RENDER, RENDER)
  2302. * flush_domains gets CPU
  2303. * invalidate_domains gets GPU
  2304. * clflush (obj)
  2305. * MI_FLUSH and drm_agp_chipset_flush
  2306. * 4. set_domain (CPU, CPU)
  2307. * flush_domains gets GPU
  2308. * invalidate_domains gets CPU
  2309. * wait_rendering (obj) to make sure all drawing is complete.
  2310. * This will include an MI_FLUSH to get the data from GPU
  2311. * to memory
  2312. * clflush (obj) to invalidate the CPU cache
  2313. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2314. * 5. Read/written by CPU
  2315. * cache lines are loaded and dirtied
  2316. * 6. Read written by GPU
  2317. * Same as last GPU access
  2318. *
  2319. * Case 3: The constant buffer
  2320. *
  2321. * 1. Allocated
  2322. * 2. Written by CPU
  2323. * 3. Read by GPU
  2324. * 4. Updated (written) by CPU again
  2325. * 5. Read by GPU
  2326. *
  2327. * 1. Allocated
  2328. * (CPU, CPU)
  2329. * 2. Written by CPU
  2330. * (CPU, CPU)
  2331. * 3. Read by GPU
  2332. * (CPU+RENDER, 0)
  2333. * flush_domains = CPU
  2334. * invalidate_domains = RENDER
  2335. * clflush (obj)
  2336. * MI_FLUSH
  2337. * drm_agp_chipset_flush
  2338. * 4. Updated (written) by CPU again
  2339. * (CPU, CPU)
  2340. * flush_domains = 0 (no previous write domain)
  2341. * invalidate_domains = 0 (no new read domains)
  2342. * 5. Read by GPU
  2343. * (CPU+RENDER, 0)
  2344. * flush_domains = CPU
  2345. * invalidate_domains = RENDER
  2346. * clflush (obj)
  2347. * MI_FLUSH
  2348. * drm_agp_chipset_flush
  2349. */
  2350. static void
  2351. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2352. {
  2353. struct drm_device *dev = obj->dev;
  2354. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2355. uint32_t invalidate_domains = 0;
  2356. uint32_t flush_domains = 0;
  2357. BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
  2358. BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
  2359. #if WATCH_BUF
  2360. DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
  2361. __func__, obj,
  2362. obj->read_domains, obj->pending_read_domains,
  2363. obj->write_domain, obj->pending_write_domain);
  2364. #endif
  2365. /*
  2366. * If the object isn't moving to a new write domain,
  2367. * let the object stay in multiple read domains
  2368. */
  2369. if (obj->pending_write_domain == 0)
  2370. obj->pending_read_domains |= obj->read_domains;
  2371. else
  2372. obj_priv->dirty = 1;
  2373. /*
  2374. * Flush the current write domain if
  2375. * the new read domains don't match. Invalidate
  2376. * any read domains which differ from the old
  2377. * write domain
  2378. */
  2379. if (obj->write_domain &&
  2380. obj->write_domain != obj->pending_read_domains) {
  2381. flush_domains |= obj->write_domain;
  2382. invalidate_domains |=
  2383. obj->pending_read_domains & ~obj->write_domain;
  2384. }
  2385. /*
  2386. * Invalidate any read caches which may have
  2387. * stale data. That is, any new read domains.
  2388. */
  2389. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2390. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
  2391. #if WATCH_BUF
  2392. DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
  2393. __func__, flush_domains, invalidate_domains);
  2394. #endif
  2395. i915_gem_clflush_object(obj);
  2396. }
  2397. /* The actual obj->write_domain will be updated with
  2398. * pending_write_domain after we emit the accumulated flush for all
  2399. * of our domain changes in execbuffers (which clears objects'
  2400. * write_domains). So if we have a current write domain that we
  2401. * aren't changing, set pending_write_domain to that.
  2402. */
  2403. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2404. obj->pending_write_domain = obj->write_domain;
  2405. obj->read_domains = obj->pending_read_domains;
  2406. dev->invalidate_domains |= invalidate_domains;
  2407. dev->flush_domains |= flush_domains;
  2408. #if WATCH_BUF
  2409. DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
  2410. __func__,
  2411. obj->read_domains, obj->write_domain,
  2412. dev->invalidate_domains, dev->flush_domains);
  2413. #endif
  2414. }
  2415. /**
  2416. * Moves the object from a partially CPU read to a full one.
  2417. *
  2418. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2419. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2420. */
  2421. static void
  2422. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2423. {
  2424. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2425. if (!obj_priv->page_cpu_valid)
  2426. return;
  2427. /* If we're partially in the CPU read domain, finish moving it in.
  2428. */
  2429. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2430. int i;
  2431. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2432. if (obj_priv->page_cpu_valid[i])
  2433. continue;
  2434. drm_clflush_pages(obj_priv->pages + i, 1);
  2435. }
  2436. }
  2437. /* Free the page_cpu_valid mappings which are now stale, whether
  2438. * or not we've got I915_GEM_DOMAIN_CPU.
  2439. */
  2440. kfree(obj_priv->page_cpu_valid);
  2441. obj_priv->page_cpu_valid = NULL;
  2442. }
  2443. /**
  2444. * Set the CPU read domain on a range of the object.
  2445. *
  2446. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2447. * not entirely valid. The page_cpu_valid member of the object flags which
  2448. * pages have been flushed, and will be respected by
  2449. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2450. * of the whole object.
  2451. *
  2452. * This function returns when the move is complete, including waiting on
  2453. * flushes to occur.
  2454. */
  2455. static int
  2456. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2457. uint64_t offset, uint64_t size)
  2458. {
  2459. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2460. int i, ret;
  2461. if (offset == 0 && size == obj->size)
  2462. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2463. i915_gem_object_flush_gpu_write_domain(obj);
  2464. /* Wait on any GPU rendering and flushing to occur. */
  2465. ret = i915_gem_object_wait_rendering(obj);
  2466. if (ret != 0)
  2467. return ret;
  2468. i915_gem_object_flush_gtt_write_domain(obj);
  2469. /* If we're already fully in the CPU read domain, we're done. */
  2470. if (obj_priv->page_cpu_valid == NULL &&
  2471. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2472. return 0;
  2473. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2474. * newly adding I915_GEM_DOMAIN_CPU
  2475. */
  2476. if (obj_priv->page_cpu_valid == NULL) {
  2477. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2478. GFP_KERNEL);
  2479. if (obj_priv->page_cpu_valid == NULL)
  2480. return -ENOMEM;
  2481. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2482. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2483. /* Flush the cache on any pages that are still invalid from the CPU's
  2484. * perspective.
  2485. */
  2486. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2487. i++) {
  2488. if (obj_priv->page_cpu_valid[i])
  2489. continue;
  2490. drm_clflush_pages(obj_priv->pages + i, 1);
  2491. obj_priv->page_cpu_valid[i] = 1;
  2492. }
  2493. /* It should now be out of any other write domains, and we can update
  2494. * the domain values for our changes.
  2495. */
  2496. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2497. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2498. return 0;
  2499. }
  2500. /**
  2501. * Pin an object to the GTT and evaluate the relocations landing in it.
  2502. */
  2503. static int
  2504. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2505. struct drm_file *file_priv,
  2506. struct drm_i915_gem_exec_object *entry,
  2507. struct drm_i915_gem_relocation_entry *relocs)
  2508. {
  2509. struct drm_device *dev = obj->dev;
  2510. drm_i915_private_t *dev_priv = dev->dev_private;
  2511. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2512. int i, ret;
  2513. void __iomem *reloc_page;
  2514. /* Choose the GTT offset for our buffer and put it there. */
  2515. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2516. if (ret)
  2517. return ret;
  2518. entry->offset = obj_priv->gtt_offset;
  2519. /* Apply the relocations, using the GTT aperture to avoid cache
  2520. * flushing requirements.
  2521. */
  2522. for (i = 0; i < entry->relocation_count; i++) {
  2523. struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
  2524. struct drm_gem_object *target_obj;
  2525. struct drm_i915_gem_object *target_obj_priv;
  2526. uint32_t reloc_val, reloc_offset;
  2527. uint32_t __iomem *reloc_entry;
  2528. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2529. reloc->target_handle);
  2530. if (target_obj == NULL) {
  2531. i915_gem_object_unpin(obj);
  2532. return -EBADF;
  2533. }
  2534. target_obj_priv = target_obj->driver_private;
  2535. /* The target buffer should have appeared before us in the
  2536. * exec_object list, so it should have a GTT space bound by now.
  2537. */
  2538. if (target_obj_priv->gtt_space == NULL) {
  2539. DRM_ERROR("No GTT space found for object %d\n",
  2540. reloc->target_handle);
  2541. drm_gem_object_unreference(target_obj);
  2542. i915_gem_object_unpin(obj);
  2543. return -EINVAL;
  2544. }
  2545. if (reloc->offset > obj->size - 4) {
  2546. DRM_ERROR("Relocation beyond object bounds: "
  2547. "obj %p target %d offset %d size %d.\n",
  2548. obj, reloc->target_handle,
  2549. (int) reloc->offset, (int) obj->size);
  2550. drm_gem_object_unreference(target_obj);
  2551. i915_gem_object_unpin(obj);
  2552. return -EINVAL;
  2553. }
  2554. if (reloc->offset & 3) {
  2555. DRM_ERROR("Relocation not 4-byte aligned: "
  2556. "obj %p target %d offset %d.\n",
  2557. obj, reloc->target_handle,
  2558. (int) reloc->offset);
  2559. drm_gem_object_unreference(target_obj);
  2560. i915_gem_object_unpin(obj);
  2561. return -EINVAL;
  2562. }
  2563. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2564. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2565. DRM_ERROR("reloc with read/write CPU domains: "
  2566. "obj %p target %d offset %d "
  2567. "read %08x write %08x",
  2568. obj, reloc->target_handle,
  2569. (int) reloc->offset,
  2570. reloc->read_domains,
  2571. reloc->write_domain);
  2572. drm_gem_object_unreference(target_obj);
  2573. i915_gem_object_unpin(obj);
  2574. return -EINVAL;
  2575. }
  2576. if (reloc->write_domain && target_obj->pending_write_domain &&
  2577. reloc->write_domain != target_obj->pending_write_domain) {
  2578. DRM_ERROR("Write domain conflict: "
  2579. "obj %p target %d offset %d "
  2580. "new %08x old %08x\n",
  2581. obj, reloc->target_handle,
  2582. (int) reloc->offset,
  2583. reloc->write_domain,
  2584. target_obj->pending_write_domain);
  2585. drm_gem_object_unreference(target_obj);
  2586. i915_gem_object_unpin(obj);
  2587. return -EINVAL;
  2588. }
  2589. #if WATCH_RELOC
  2590. DRM_INFO("%s: obj %p offset %08x target %d "
  2591. "read %08x write %08x gtt %08x "
  2592. "presumed %08x delta %08x\n",
  2593. __func__,
  2594. obj,
  2595. (int) reloc->offset,
  2596. (int) reloc->target_handle,
  2597. (int) reloc->read_domains,
  2598. (int) reloc->write_domain,
  2599. (int) target_obj_priv->gtt_offset,
  2600. (int) reloc->presumed_offset,
  2601. reloc->delta);
  2602. #endif
  2603. target_obj->pending_read_domains |= reloc->read_domains;
  2604. target_obj->pending_write_domain |= reloc->write_domain;
  2605. /* If the relocation already has the right value in it, no
  2606. * more work needs to be done.
  2607. */
  2608. if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
  2609. drm_gem_object_unreference(target_obj);
  2610. continue;
  2611. }
  2612. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2613. if (ret != 0) {
  2614. drm_gem_object_unreference(target_obj);
  2615. i915_gem_object_unpin(obj);
  2616. return -EINVAL;
  2617. }
  2618. /* Map the page containing the relocation we're going to
  2619. * perform.
  2620. */
  2621. reloc_offset = obj_priv->gtt_offset + reloc->offset;
  2622. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2623. (reloc_offset &
  2624. ~(PAGE_SIZE - 1)));
  2625. reloc_entry = (uint32_t __iomem *)(reloc_page +
  2626. (reloc_offset & (PAGE_SIZE - 1)));
  2627. reloc_val = target_obj_priv->gtt_offset + reloc->delta;
  2628. #if WATCH_BUF
  2629. DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
  2630. obj, (unsigned int) reloc->offset,
  2631. readl(reloc_entry), reloc_val);
  2632. #endif
  2633. writel(reloc_val, reloc_entry);
  2634. io_mapping_unmap_atomic(reloc_page);
  2635. /* The updated presumed offset for this entry will be
  2636. * copied back out to the user.
  2637. */
  2638. reloc->presumed_offset = target_obj_priv->gtt_offset;
  2639. drm_gem_object_unreference(target_obj);
  2640. }
  2641. #if WATCH_BUF
  2642. if (0)
  2643. i915_gem_dump_object(obj, 128, __func__, ~0);
  2644. #endif
  2645. return 0;
  2646. }
  2647. /** Dispatch a batchbuffer to the ring
  2648. */
  2649. static int
  2650. i915_dispatch_gem_execbuffer(struct drm_device *dev,
  2651. struct drm_i915_gem_execbuffer *exec,
  2652. struct drm_clip_rect *cliprects,
  2653. uint64_t exec_offset)
  2654. {
  2655. drm_i915_private_t *dev_priv = dev->dev_private;
  2656. int nbox = exec->num_cliprects;
  2657. int i = 0, count;
  2658. uint32_t exec_start, exec_len;
  2659. RING_LOCALS;
  2660. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2661. exec_len = (uint32_t) exec->batch_len;
  2662. count = nbox ? nbox : 1;
  2663. for (i = 0; i < count; i++) {
  2664. if (i < nbox) {
  2665. int ret = i915_emit_box(dev, cliprects, i,
  2666. exec->DR1, exec->DR4);
  2667. if (ret)
  2668. return ret;
  2669. }
  2670. if (IS_I830(dev) || IS_845G(dev)) {
  2671. BEGIN_LP_RING(4);
  2672. OUT_RING(MI_BATCH_BUFFER);
  2673. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2674. OUT_RING(exec_start + exec_len - 4);
  2675. OUT_RING(0);
  2676. ADVANCE_LP_RING();
  2677. } else {
  2678. BEGIN_LP_RING(2);
  2679. if (IS_I965G(dev)) {
  2680. OUT_RING(MI_BATCH_BUFFER_START |
  2681. (2 << 6) |
  2682. MI_BATCH_NON_SECURE_I965);
  2683. OUT_RING(exec_start);
  2684. } else {
  2685. OUT_RING(MI_BATCH_BUFFER_START |
  2686. (2 << 6));
  2687. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2688. }
  2689. ADVANCE_LP_RING();
  2690. }
  2691. }
  2692. /* XXX breadcrumb */
  2693. return 0;
  2694. }
  2695. /* Throttle our rendering by waiting until the ring has completed our requests
  2696. * emitted over 20 msec ago.
  2697. *
  2698. * Note that if we were to use the current jiffies each time around the loop,
  2699. * we wouldn't escape the function with any frames outstanding if the time to
  2700. * render a frame was over 20ms.
  2701. *
  2702. * This should get us reasonable parallelism between CPU and GPU but also
  2703. * relatively low latency when blocking on a particular request to finish.
  2704. */
  2705. static int
  2706. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
  2707. {
  2708. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2709. int ret = 0;
  2710. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2711. mutex_lock(&dev->struct_mutex);
  2712. while (!list_empty(&i915_file_priv->mm.request_list)) {
  2713. struct drm_i915_gem_request *request;
  2714. request = list_first_entry(&i915_file_priv->mm.request_list,
  2715. struct drm_i915_gem_request,
  2716. client_list);
  2717. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2718. break;
  2719. ret = i915_wait_request(dev, request->seqno);
  2720. if (ret != 0)
  2721. break;
  2722. }
  2723. mutex_unlock(&dev->struct_mutex);
  2724. return ret;
  2725. }
  2726. static int
  2727. i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
  2728. uint32_t buffer_count,
  2729. struct drm_i915_gem_relocation_entry **relocs)
  2730. {
  2731. uint32_t reloc_count = 0, reloc_index = 0, i;
  2732. int ret;
  2733. *relocs = NULL;
  2734. for (i = 0; i < buffer_count; i++) {
  2735. if (reloc_count + exec_list[i].relocation_count < reloc_count)
  2736. return -EINVAL;
  2737. reloc_count += exec_list[i].relocation_count;
  2738. }
  2739. *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
  2740. if (*relocs == NULL)
  2741. return -ENOMEM;
  2742. for (i = 0; i < buffer_count; i++) {
  2743. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2744. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2745. ret = copy_from_user(&(*relocs)[reloc_index],
  2746. user_relocs,
  2747. exec_list[i].relocation_count *
  2748. sizeof(**relocs));
  2749. if (ret != 0) {
  2750. drm_free_large(*relocs);
  2751. *relocs = NULL;
  2752. return -EFAULT;
  2753. }
  2754. reloc_index += exec_list[i].relocation_count;
  2755. }
  2756. return 0;
  2757. }
  2758. static int
  2759. i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
  2760. uint32_t buffer_count,
  2761. struct drm_i915_gem_relocation_entry *relocs)
  2762. {
  2763. uint32_t reloc_count = 0, i;
  2764. int ret = 0;
  2765. for (i = 0; i < buffer_count; i++) {
  2766. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2767. int unwritten;
  2768. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2769. unwritten = copy_to_user(user_relocs,
  2770. &relocs[reloc_count],
  2771. exec_list[i].relocation_count *
  2772. sizeof(*relocs));
  2773. if (unwritten) {
  2774. ret = -EFAULT;
  2775. goto err;
  2776. }
  2777. reloc_count += exec_list[i].relocation_count;
  2778. }
  2779. err:
  2780. drm_free_large(relocs);
  2781. return ret;
  2782. }
  2783. static int
  2784. i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
  2785. uint64_t exec_offset)
  2786. {
  2787. uint32_t exec_start, exec_len;
  2788. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2789. exec_len = (uint32_t) exec->batch_len;
  2790. if ((exec_start | exec_len) & 0x7)
  2791. return -EINVAL;
  2792. if (!exec_start)
  2793. return -EINVAL;
  2794. return 0;
  2795. }
  2796. int
  2797. i915_gem_execbuffer(struct drm_device *dev, void *data,
  2798. struct drm_file *file_priv)
  2799. {
  2800. drm_i915_private_t *dev_priv = dev->dev_private;
  2801. struct drm_i915_gem_execbuffer *args = data;
  2802. struct drm_i915_gem_exec_object *exec_list = NULL;
  2803. struct drm_gem_object **object_list = NULL;
  2804. struct drm_gem_object *batch_obj;
  2805. struct drm_i915_gem_object *obj_priv;
  2806. struct drm_clip_rect *cliprects = NULL;
  2807. struct drm_i915_gem_relocation_entry *relocs;
  2808. int ret, ret2, i, pinned = 0;
  2809. uint64_t exec_offset;
  2810. uint32_t seqno, flush_domains, reloc_index;
  2811. int pin_tries;
  2812. #if WATCH_EXEC
  2813. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  2814. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  2815. #endif
  2816. if (args->buffer_count < 1) {
  2817. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  2818. return -EINVAL;
  2819. }
  2820. /* Copy in the exec list from userland */
  2821. exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
  2822. object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
  2823. if (exec_list == NULL || object_list == NULL) {
  2824. DRM_ERROR("Failed to allocate exec or object list "
  2825. "for %d buffers\n",
  2826. args->buffer_count);
  2827. ret = -ENOMEM;
  2828. goto pre_mutex_err;
  2829. }
  2830. ret = copy_from_user(exec_list,
  2831. (struct drm_i915_relocation_entry __user *)
  2832. (uintptr_t) args->buffers_ptr,
  2833. sizeof(*exec_list) * args->buffer_count);
  2834. if (ret != 0) {
  2835. DRM_ERROR("copy %d exec entries failed %d\n",
  2836. args->buffer_count, ret);
  2837. goto pre_mutex_err;
  2838. }
  2839. if (args->num_cliprects != 0) {
  2840. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  2841. GFP_KERNEL);
  2842. if (cliprects == NULL)
  2843. goto pre_mutex_err;
  2844. ret = copy_from_user(cliprects,
  2845. (struct drm_clip_rect __user *)
  2846. (uintptr_t) args->cliprects_ptr,
  2847. sizeof(*cliprects) * args->num_cliprects);
  2848. if (ret != 0) {
  2849. DRM_ERROR("copy %d cliprects failed: %d\n",
  2850. args->num_cliprects, ret);
  2851. goto pre_mutex_err;
  2852. }
  2853. }
  2854. ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
  2855. &relocs);
  2856. if (ret != 0)
  2857. goto pre_mutex_err;
  2858. mutex_lock(&dev->struct_mutex);
  2859. i915_verify_inactive(dev, __FILE__, __LINE__);
  2860. if (dev_priv->mm.wedged) {
  2861. DRM_ERROR("Execbuf while wedged\n");
  2862. mutex_unlock(&dev->struct_mutex);
  2863. ret = -EIO;
  2864. goto pre_mutex_err;
  2865. }
  2866. if (dev_priv->mm.suspended) {
  2867. DRM_ERROR("Execbuf while VT-switched.\n");
  2868. mutex_unlock(&dev->struct_mutex);
  2869. ret = -EBUSY;
  2870. goto pre_mutex_err;
  2871. }
  2872. /* Look up object handles */
  2873. for (i = 0; i < args->buffer_count; i++) {
  2874. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  2875. exec_list[i].handle);
  2876. if (object_list[i] == NULL) {
  2877. DRM_ERROR("Invalid object handle %d at index %d\n",
  2878. exec_list[i].handle, i);
  2879. ret = -EBADF;
  2880. goto err;
  2881. }
  2882. obj_priv = object_list[i]->driver_private;
  2883. if (obj_priv->in_execbuffer) {
  2884. DRM_ERROR("Object %p appears more than once in object list\n",
  2885. object_list[i]);
  2886. ret = -EBADF;
  2887. goto err;
  2888. }
  2889. obj_priv->in_execbuffer = true;
  2890. }
  2891. /* Pin and relocate */
  2892. for (pin_tries = 0; ; pin_tries++) {
  2893. ret = 0;
  2894. reloc_index = 0;
  2895. for (i = 0; i < args->buffer_count; i++) {
  2896. object_list[i]->pending_read_domains = 0;
  2897. object_list[i]->pending_write_domain = 0;
  2898. ret = i915_gem_object_pin_and_relocate(object_list[i],
  2899. file_priv,
  2900. &exec_list[i],
  2901. &relocs[reloc_index]);
  2902. if (ret)
  2903. break;
  2904. pinned = i + 1;
  2905. reloc_index += exec_list[i].relocation_count;
  2906. }
  2907. /* success */
  2908. if (ret == 0)
  2909. break;
  2910. /* error other than GTT full, or we've already tried again */
  2911. if (ret != -ENOSPC || pin_tries >= 1) {
  2912. if (ret != -ERESTARTSYS)
  2913. DRM_ERROR("Failed to pin buffers %d\n", ret);
  2914. goto err;
  2915. }
  2916. /* unpin all of our buffers */
  2917. for (i = 0; i < pinned; i++)
  2918. i915_gem_object_unpin(object_list[i]);
  2919. pinned = 0;
  2920. /* evict everyone we can from the aperture */
  2921. ret = i915_gem_evict_everything(dev);
  2922. if (ret)
  2923. goto err;
  2924. }
  2925. /* Set the pending read domains for the batch buffer to COMMAND */
  2926. batch_obj = object_list[args->buffer_count-1];
  2927. if (batch_obj->pending_write_domain) {
  2928. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  2929. ret = -EINVAL;
  2930. goto err;
  2931. }
  2932. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  2933. /* Sanity check the batch buffer, prior to moving objects */
  2934. exec_offset = exec_list[args->buffer_count - 1].offset;
  2935. ret = i915_gem_check_execbuffer (args, exec_offset);
  2936. if (ret != 0) {
  2937. DRM_ERROR("execbuf with invalid offset/length\n");
  2938. goto err;
  2939. }
  2940. i915_verify_inactive(dev, __FILE__, __LINE__);
  2941. /* Zero the global flush/invalidate flags. These
  2942. * will be modified as new domains are computed
  2943. * for each object
  2944. */
  2945. dev->invalidate_domains = 0;
  2946. dev->flush_domains = 0;
  2947. for (i = 0; i < args->buffer_count; i++) {
  2948. struct drm_gem_object *obj = object_list[i];
  2949. /* Compute new gpu domains and update invalidate/flush */
  2950. i915_gem_object_set_to_gpu_domain(obj);
  2951. }
  2952. i915_verify_inactive(dev, __FILE__, __LINE__);
  2953. if (dev->invalidate_domains | dev->flush_domains) {
  2954. #if WATCH_EXEC
  2955. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  2956. __func__,
  2957. dev->invalidate_domains,
  2958. dev->flush_domains);
  2959. #endif
  2960. i915_gem_flush(dev,
  2961. dev->invalidate_domains,
  2962. dev->flush_domains);
  2963. if (dev->flush_domains)
  2964. (void)i915_add_request(dev, file_priv,
  2965. dev->flush_domains);
  2966. }
  2967. for (i = 0; i < args->buffer_count; i++) {
  2968. struct drm_gem_object *obj = object_list[i];
  2969. obj->write_domain = obj->pending_write_domain;
  2970. }
  2971. i915_verify_inactive(dev, __FILE__, __LINE__);
  2972. #if WATCH_COHERENCY
  2973. for (i = 0; i < args->buffer_count; i++) {
  2974. i915_gem_object_check_coherency(object_list[i],
  2975. exec_list[i].handle);
  2976. }
  2977. #endif
  2978. #if WATCH_EXEC
  2979. i915_gem_dump_object(batch_obj,
  2980. args->batch_len,
  2981. __func__,
  2982. ~0);
  2983. #endif
  2984. /* Exec the batchbuffer */
  2985. ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
  2986. if (ret) {
  2987. DRM_ERROR("dispatch failed %d\n", ret);
  2988. goto err;
  2989. }
  2990. /*
  2991. * Ensure that the commands in the batch buffer are
  2992. * finished before the interrupt fires
  2993. */
  2994. flush_domains = i915_retire_commands(dev);
  2995. i915_verify_inactive(dev, __FILE__, __LINE__);
  2996. /*
  2997. * Get a seqno representing the execution of the current buffer,
  2998. * which we can wait on. We would like to mitigate these interrupts,
  2999. * likely by only creating seqnos occasionally (so that we have
  3000. * *some* interrupts representing completion of buffers that we can
  3001. * wait on when trying to clear up gtt space).
  3002. */
  3003. seqno = i915_add_request(dev, file_priv, flush_domains);
  3004. BUG_ON(seqno == 0);
  3005. for (i = 0; i < args->buffer_count; i++) {
  3006. struct drm_gem_object *obj = object_list[i];
  3007. i915_gem_object_move_to_active(obj, seqno);
  3008. #if WATCH_LRU
  3009. DRM_INFO("%s: move to exec list %p\n", __func__, obj);
  3010. #endif
  3011. }
  3012. #if WATCH_LRU
  3013. i915_dump_lru(dev, __func__);
  3014. #endif
  3015. i915_verify_inactive(dev, __FILE__, __LINE__);
  3016. err:
  3017. for (i = 0; i < pinned; i++)
  3018. i915_gem_object_unpin(object_list[i]);
  3019. for (i = 0; i < args->buffer_count; i++) {
  3020. if (object_list[i]) {
  3021. obj_priv = object_list[i]->driver_private;
  3022. obj_priv->in_execbuffer = false;
  3023. }
  3024. drm_gem_object_unreference(object_list[i]);
  3025. }
  3026. mutex_unlock(&dev->struct_mutex);
  3027. if (!ret) {
  3028. /* Copy the new buffer offsets back to the user's exec list. */
  3029. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3030. (uintptr_t) args->buffers_ptr,
  3031. exec_list,
  3032. sizeof(*exec_list) * args->buffer_count);
  3033. if (ret) {
  3034. ret = -EFAULT;
  3035. DRM_ERROR("failed to copy %d exec entries "
  3036. "back to user (%d)\n",
  3037. args->buffer_count, ret);
  3038. }
  3039. }
  3040. /* Copy the updated relocations out regardless of current error
  3041. * state. Failure to update the relocs would mean that the next
  3042. * time userland calls execbuf, it would do so with presumed offset
  3043. * state that didn't match the actual object state.
  3044. */
  3045. ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
  3046. relocs);
  3047. if (ret2 != 0) {
  3048. DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
  3049. if (ret == 0)
  3050. ret = ret2;
  3051. }
  3052. pre_mutex_err:
  3053. drm_free_large(object_list);
  3054. drm_free_large(exec_list);
  3055. kfree(cliprects);
  3056. return ret;
  3057. }
  3058. int
  3059. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  3060. {
  3061. struct drm_device *dev = obj->dev;
  3062. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3063. int ret;
  3064. i915_verify_inactive(dev, __FILE__, __LINE__);
  3065. if (obj_priv->gtt_space == NULL) {
  3066. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  3067. if (ret != 0) {
  3068. if (ret != -EBUSY && ret != -ERESTARTSYS)
  3069. DRM_ERROR("Failure to bind: %d\n", ret);
  3070. return ret;
  3071. }
  3072. }
  3073. /*
  3074. * Pre-965 chips need a fence register set up in order to
  3075. * properly handle tiled surfaces.
  3076. */
  3077. if (!IS_I965G(dev) &&
  3078. obj_priv->fence_reg == I915_FENCE_REG_NONE &&
  3079. obj_priv->tiling_mode != I915_TILING_NONE) {
  3080. ret = i915_gem_object_get_fence_reg(obj);
  3081. if (ret != 0) {
  3082. if (ret != -EBUSY && ret != -ERESTARTSYS)
  3083. DRM_ERROR("Failure to install fence: %d\n",
  3084. ret);
  3085. return ret;
  3086. }
  3087. }
  3088. obj_priv->pin_count++;
  3089. /* If the object is not active and not pending a flush,
  3090. * remove it from the inactive list
  3091. */
  3092. if (obj_priv->pin_count == 1) {
  3093. atomic_inc(&dev->pin_count);
  3094. atomic_add(obj->size, &dev->pin_memory);
  3095. if (!obj_priv->active &&
  3096. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
  3097. !list_empty(&obj_priv->list))
  3098. list_del_init(&obj_priv->list);
  3099. }
  3100. i915_verify_inactive(dev, __FILE__, __LINE__);
  3101. return 0;
  3102. }
  3103. void
  3104. i915_gem_object_unpin(struct drm_gem_object *obj)
  3105. {
  3106. struct drm_device *dev = obj->dev;
  3107. drm_i915_private_t *dev_priv = dev->dev_private;
  3108. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3109. i915_verify_inactive(dev, __FILE__, __LINE__);
  3110. obj_priv->pin_count--;
  3111. BUG_ON(obj_priv->pin_count < 0);
  3112. BUG_ON(obj_priv->gtt_space == NULL);
  3113. /* If the object is no longer pinned, and is
  3114. * neither active nor being flushed, then stick it on
  3115. * the inactive list
  3116. */
  3117. if (obj_priv->pin_count == 0) {
  3118. if (!obj_priv->active &&
  3119. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  3120. list_move_tail(&obj_priv->list,
  3121. &dev_priv->mm.inactive_list);
  3122. atomic_dec(&dev->pin_count);
  3123. atomic_sub(obj->size, &dev->pin_memory);
  3124. }
  3125. i915_verify_inactive(dev, __FILE__, __LINE__);
  3126. }
  3127. int
  3128. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3129. struct drm_file *file_priv)
  3130. {
  3131. struct drm_i915_gem_pin *args = data;
  3132. struct drm_gem_object *obj;
  3133. struct drm_i915_gem_object *obj_priv;
  3134. int ret;
  3135. mutex_lock(&dev->struct_mutex);
  3136. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3137. if (obj == NULL) {
  3138. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  3139. args->handle);
  3140. mutex_unlock(&dev->struct_mutex);
  3141. return -EBADF;
  3142. }
  3143. obj_priv = obj->driver_private;
  3144. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3145. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3146. args->handle);
  3147. drm_gem_object_unreference(obj);
  3148. mutex_unlock(&dev->struct_mutex);
  3149. return -EINVAL;
  3150. }
  3151. obj_priv->user_pin_count++;
  3152. obj_priv->pin_filp = file_priv;
  3153. if (obj_priv->user_pin_count == 1) {
  3154. ret = i915_gem_object_pin(obj, args->alignment);
  3155. if (ret != 0) {
  3156. drm_gem_object_unreference(obj);
  3157. mutex_unlock(&dev->struct_mutex);
  3158. return ret;
  3159. }
  3160. }
  3161. /* XXX - flush the CPU caches for pinned objects
  3162. * as the X server doesn't manage domains yet
  3163. */
  3164. i915_gem_object_flush_cpu_write_domain(obj);
  3165. args->offset = obj_priv->gtt_offset;
  3166. drm_gem_object_unreference(obj);
  3167. mutex_unlock(&dev->struct_mutex);
  3168. return 0;
  3169. }
  3170. int
  3171. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3172. struct drm_file *file_priv)
  3173. {
  3174. struct drm_i915_gem_pin *args = data;
  3175. struct drm_gem_object *obj;
  3176. struct drm_i915_gem_object *obj_priv;
  3177. mutex_lock(&dev->struct_mutex);
  3178. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3179. if (obj == NULL) {
  3180. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  3181. args->handle);
  3182. mutex_unlock(&dev->struct_mutex);
  3183. return -EBADF;
  3184. }
  3185. obj_priv = obj->driver_private;
  3186. if (obj_priv->pin_filp != file_priv) {
  3187. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3188. args->handle);
  3189. drm_gem_object_unreference(obj);
  3190. mutex_unlock(&dev->struct_mutex);
  3191. return -EINVAL;
  3192. }
  3193. obj_priv->user_pin_count--;
  3194. if (obj_priv->user_pin_count == 0) {
  3195. obj_priv->pin_filp = NULL;
  3196. i915_gem_object_unpin(obj);
  3197. }
  3198. drm_gem_object_unreference(obj);
  3199. mutex_unlock(&dev->struct_mutex);
  3200. return 0;
  3201. }
  3202. int
  3203. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3204. struct drm_file *file_priv)
  3205. {
  3206. struct drm_i915_gem_busy *args = data;
  3207. struct drm_gem_object *obj;
  3208. struct drm_i915_gem_object *obj_priv;
  3209. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3210. if (obj == NULL) {
  3211. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3212. args->handle);
  3213. return -EBADF;
  3214. }
  3215. mutex_lock(&dev->struct_mutex);
  3216. /* Update the active list for the hardware's current position.
  3217. * Otherwise this only updates on a delayed timer or when irqs are
  3218. * actually unmasked, and our working set ends up being larger than
  3219. * required.
  3220. */
  3221. i915_gem_retire_requests(dev);
  3222. obj_priv = obj->driver_private;
  3223. /* Don't count being on the flushing list against the object being
  3224. * done. Otherwise, a buffer left on the flushing list but not getting
  3225. * flushed (because nobody's flushing that domain) won't ever return
  3226. * unbusy and get reused by libdrm's bo cache. The other expected
  3227. * consumer of this interface, OpenGL's occlusion queries, also specs
  3228. * that the objects get unbusy "eventually" without any interference.
  3229. */
  3230. args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
  3231. drm_gem_object_unreference(obj);
  3232. mutex_unlock(&dev->struct_mutex);
  3233. return 0;
  3234. }
  3235. int
  3236. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3237. struct drm_file *file_priv)
  3238. {
  3239. return i915_gem_ring_throttle(dev, file_priv);
  3240. }
  3241. int i915_gem_init_object(struct drm_gem_object *obj)
  3242. {
  3243. struct drm_i915_gem_object *obj_priv;
  3244. obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
  3245. if (obj_priv == NULL)
  3246. return -ENOMEM;
  3247. /*
  3248. * We've just allocated pages from the kernel,
  3249. * so they've just been written by the CPU with
  3250. * zeros. They'll need to be clflushed before we
  3251. * use them with the GPU.
  3252. */
  3253. obj->write_domain = I915_GEM_DOMAIN_CPU;
  3254. obj->read_domains = I915_GEM_DOMAIN_CPU;
  3255. obj_priv->agp_type = AGP_USER_MEMORY;
  3256. obj->driver_private = obj_priv;
  3257. obj_priv->obj = obj;
  3258. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  3259. INIT_LIST_HEAD(&obj_priv->list);
  3260. return 0;
  3261. }
  3262. void i915_gem_free_object(struct drm_gem_object *obj)
  3263. {
  3264. struct drm_device *dev = obj->dev;
  3265. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3266. while (obj_priv->pin_count > 0)
  3267. i915_gem_object_unpin(obj);
  3268. if (obj_priv->phys_obj)
  3269. i915_gem_detach_phys_object(dev, obj);
  3270. i915_gem_object_unbind(obj);
  3271. i915_gem_free_mmap_offset(obj);
  3272. kfree(obj_priv->page_cpu_valid);
  3273. kfree(obj_priv->bit_17);
  3274. kfree(obj->driver_private);
  3275. }
  3276. /** Unbinds all objects that are on the given buffer list. */
  3277. static int
  3278. i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
  3279. {
  3280. struct drm_gem_object *obj;
  3281. struct drm_i915_gem_object *obj_priv;
  3282. int ret;
  3283. while (!list_empty(head)) {
  3284. obj_priv = list_first_entry(head,
  3285. struct drm_i915_gem_object,
  3286. list);
  3287. obj = obj_priv->obj;
  3288. if (obj_priv->pin_count != 0) {
  3289. DRM_ERROR("Pinned object in unbind list\n");
  3290. mutex_unlock(&dev->struct_mutex);
  3291. return -EINVAL;
  3292. }
  3293. ret = i915_gem_object_unbind(obj);
  3294. if (ret != 0) {
  3295. DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
  3296. ret);
  3297. mutex_unlock(&dev->struct_mutex);
  3298. return ret;
  3299. }
  3300. }
  3301. return 0;
  3302. }
  3303. int
  3304. i915_gem_idle(struct drm_device *dev)
  3305. {
  3306. drm_i915_private_t *dev_priv = dev->dev_private;
  3307. uint32_t seqno, cur_seqno, last_seqno;
  3308. int stuck, ret;
  3309. mutex_lock(&dev->struct_mutex);
  3310. if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
  3311. mutex_unlock(&dev->struct_mutex);
  3312. return 0;
  3313. }
  3314. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3315. * We need to replace this with a semaphore, or something.
  3316. */
  3317. dev_priv->mm.suspended = 1;
  3318. /* Cancel the retire work handler, wait for it to finish if running
  3319. */
  3320. mutex_unlock(&dev->struct_mutex);
  3321. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3322. mutex_lock(&dev->struct_mutex);
  3323. i915_kernel_lost_context(dev);
  3324. /* Flush the GPU along with all non-CPU write domains
  3325. */
  3326. i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  3327. seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
  3328. if (seqno == 0) {
  3329. mutex_unlock(&dev->struct_mutex);
  3330. return -ENOMEM;
  3331. }
  3332. dev_priv->mm.waiting_gem_seqno = seqno;
  3333. last_seqno = 0;
  3334. stuck = 0;
  3335. for (;;) {
  3336. cur_seqno = i915_get_gem_seqno(dev);
  3337. if (i915_seqno_passed(cur_seqno, seqno))
  3338. break;
  3339. if (last_seqno == cur_seqno) {
  3340. if (stuck++ > 100) {
  3341. DRM_ERROR("hardware wedged\n");
  3342. dev_priv->mm.wedged = 1;
  3343. DRM_WAKEUP(&dev_priv->irq_queue);
  3344. break;
  3345. }
  3346. }
  3347. msleep(10);
  3348. last_seqno = cur_seqno;
  3349. }
  3350. dev_priv->mm.waiting_gem_seqno = 0;
  3351. i915_gem_retire_requests(dev);
  3352. spin_lock(&dev_priv->mm.active_list_lock);
  3353. if (!dev_priv->mm.wedged) {
  3354. /* Active and flushing should now be empty as we've
  3355. * waited for a sequence higher than any pending execbuffer
  3356. */
  3357. WARN_ON(!list_empty(&dev_priv->mm.active_list));
  3358. WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
  3359. /* Request should now be empty as we've also waited
  3360. * for the last request in the list
  3361. */
  3362. WARN_ON(!list_empty(&dev_priv->mm.request_list));
  3363. }
  3364. /* Empty the active and flushing lists to inactive. If there's
  3365. * anything left at this point, it means that we're wedged and
  3366. * nothing good's going to happen by leaving them there. So strip
  3367. * the GPU domains and just stuff them onto inactive.
  3368. */
  3369. while (!list_empty(&dev_priv->mm.active_list)) {
  3370. struct drm_i915_gem_object *obj_priv;
  3371. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  3372. struct drm_i915_gem_object,
  3373. list);
  3374. obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3375. i915_gem_object_move_to_inactive(obj_priv->obj);
  3376. }
  3377. spin_unlock(&dev_priv->mm.active_list_lock);
  3378. while (!list_empty(&dev_priv->mm.flushing_list)) {
  3379. struct drm_i915_gem_object *obj_priv;
  3380. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  3381. struct drm_i915_gem_object,
  3382. list);
  3383. obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3384. i915_gem_object_move_to_inactive(obj_priv->obj);
  3385. }
  3386. /* Move all inactive buffers out of the GTT. */
  3387. ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
  3388. WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
  3389. if (ret) {
  3390. mutex_unlock(&dev->struct_mutex);
  3391. return ret;
  3392. }
  3393. i915_gem_cleanup_ringbuffer(dev);
  3394. mutex_unlock(&dev->struct_mutex);
  3395. return 0;
  3396. }
  3397. static int
  3398. i915_gem_init_hws(struct drm_device *dev)
  3399. {
  3400. drm_i915_private_t *dev_priv = dev->dev_private;
  3401. struct drm_gem_object *obj;
  3402. struct drm_i915_gem_object *obj_priv;
  3403. int ret;
  3404. /* If we need a physical address for the status page, it's already
  3405. * initialized at driver load time.
  3406. */
  3407. if (!I915_NEED_GFX_HWS(dev))
  3408. return 0;
  3409. obj = drm_gem_object_alloc(dev, 4096);
  3410. if (obj == NULL) {
  3411. DRM_ERROR("Failed to allocate status page\n");
  3412. return -ENOMEM;
  3413. }
  3414. obj_priv = obj->driver_private;
  3415. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3416. ret = i915_gem_object_pin(obj, 4096);
  3417. if (ret != 0) {
  3418. drm_gem_object_unreference(obj);
  3419. return ret;
  3420. }
  3421. dev_priv->status_gfx_addr = obj_priv->gtt_offset;
  3422. dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
  3423. if (dev_priv->hw_status_page == NULL) {
  3424. DRM_ERROR("Failed to map status page.\n");
  3425. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3426. i915_gem_object_unpin(obj);
  3427. drm_gem_object_unreference(obj);
  3428. return -EINVAL;
  3429. }
  3430. dev_priv->hws_obj = obj;
  3431. memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
  3432. I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
  3433. I915_READ(HWS_PGA); /* posting read */
  3434. DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
  3435. return 0;
  3436. }
  3437. static void
  3438. i915_gem_cleanup_hws(struct drm_device *dev)
  3439. {
  3440. drm_i915_private_t *dev_priv = dev->dev_private;
  3441. struct drm_gem_object *obj;
  3442. struct drm_i915_gem_object *obj_priv;
  3443. if (dev_priv->hws_obj == NULL)
  3444. return;
  3445. obj = dev_priv->hws_obj;
  3446. obj_priv = obj->driver_private;
  3447. kunmap(obj_priv->pages[0]);
  3448. i915_gem_object_unpin(obj);
  3449. drm_gem_object_unreference(obj);
  3450. dev_priv->hws_obj = NULL;
  3451. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3452. dev_priv->hw_status_page = NULL;
  3453. /* Write high address into HWS_PGA when disabling. */
  3454. I915_WRITE(HWS_PGA, 0x1ffff000);
  3455. }
  3456. int
  3457. i915_gem_init_ringbuffer(struct drm_device *dev)
  3458. {
  3459. drm_i915_private_t *dev_priv = dev->dev_private;
  3460. struct drm_gem_object *obj;
  3461. struct drm_i915_gem_object *obj_priv;
  3462. drm_i915_ring_buffer_t *ring = &dev_priv->ring;
  3463. int ret;
  3464. u32 head;
  3465. ret = i915_gem_init_hws(dev);
  3466. if (ret != 0)
  3467. return ret;
  3468. obj = drm_gem_object_alloc(dev, 128 * 1024);
  3469. if (obj == NULL) {
  3470. DRM_ERROR("Failed to allocate ringbuffer\n");
  3471. i915_gem_cleanup_hws(dev);
  3472. return -ENOMEM;
  3473. }
  3474. obj_priv = obj->driver_private;
  3475. ret = i915_gem_object_pin(obj, 4096);
  3476. if (ret != 0) {
  3477. drm_gem_object_unreference(obj);
  3478. i915_gem_cleanup_hws(dev);
  3479. return ret;
  3480. }
  3481. /* Set up the kernel mapping for the ring. */
  3482. ring->Size = obj->size;
  3483. ring->tail_mask = obj->size - 1;
  3484. ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
  3485. ring->map.size = obj->size;
  3486. ring->map.type = 0;
  3487. ring->map.flags = 0;
  3488. ring->map.mtrr = 0;
  3489. drm_core_ioremap_wc(&ring->map, dev);
  3490. if (ring->map.handle == NULL) {
  3491. DRM_ERROR("Failed to map ringbuffer.\n");
  3492. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3493. i915_gem_object_unpin(obj);
  3494. drm_gem_object_unreference(obj);
  3495. i915_gem_cleanup_hws(dev);
  3496. return -EINVAL;
  3497. }
  3498. ring->ring_obj = obj;
  3499. ring->virtual_start = ring->map.handle;
  3500. /* Stop the ring if it's running. */
  3501. I915_WRITE(PRB0_CTL, 0);
  3502. I915_WRITE(PRB0_TAIL, 0);
  3503. I915_WRITE(PRB0_HEAD, 0);
  3504. /* Initialize the ring. */
  3505. I915_WRITE(PRB0_START, obj_priv->gtt_offset);
  3506. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3507. /* G45 ring initialization fails to reset head to zero */
  3508. if (head != 0) {
  3509. DRM_ERROR("Ring head not reset to zero "
  3510. "ctl %08x head %08x tail %08x start %08x\n",
  3511. I915_READ(PRB0_CTL),
  3512. I915_READ(PRB0_HEAD),
  3513. I915_READ(PRB0_TAIL),
  3514. I915_READ(PRB0_START));
  3515. I915_WRITE(PRB0_HEAD, 0);
  3516. DRM_ERROR("Ring head forced to zero "
  3517. "ctl %08x head %08x tail %08x start %08x\n",
  3518. I915_READ(PRB0_CTL),
  3519. I915_READ(PRB0_HEAD),
  3520. I915_READ(PRB0_TAIL),
  3521. I915_READ(PRB0_START));
  3522. }
  3523. I915_WRITE(PRB0_CTL,
  3524. ((obj->size - 4096) & RING_NR_PAGES) |
  3525. RING_NO_REPORT |
  3526. RING_VALID);
  3527. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3528. /* If the head is still not zero, the ring is dead */
  3529. if (head != 0) {
  3530. DRM_ERROR("Ring initialization failed "
  3531. "ctl %08x head %08x tail %08x start %08x\n",
  3532. I915_READ(PRB0_CTL),
  3533. I915_READ(PRB0_HEAD),
  3534. I915_READ(PRB0_TAIL),
  3535. I915_READ(PRB0_START));
  3536. return -EIO;
  3537. }
  3538. /* Update our cache of the ring state */
  3539. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3540. i915_kernel_lost_context(dev);
  3541. else {
  3542. ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3543. ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
  3544. ring->space = ring->head - (ring->tail + 8);
  3545. if (ring->space < 0)
  3546. ring->space += ring->Size;
  3547. }
  3548. return 0;
  3549. }
  3550. void
  3551. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3552. {
  3553. drm_i915_private_t *dev_priv = dev->dev_private;
  3554. if (dev_priv->ring.ring_obj == NULL)
  3555. return;
  3556. drm_core_ioremapfree(&dev_priv->ring.map, dev);
  3557. i915_gem_object_unpin(dev_priv->ring.ring_obj);
  3558. drm_gem_object_unreference(dev_priv->ring.ring_obj);
  3559. dev_priv->ring.ring_obj = NULL;
  3560. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3561. i915_gem_cleanup_hws(dev);
  3562. }
  3563. int
  3564. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3565. struct drm_file *file_priv)
  3566. {
  3567. drm_i915_private_t *dev_priv = dev->dev_private;
  3568. int ret;
  3569. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3570. return 0;
  3571. if (dev_priv->mm.wedged) {
  3572. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3573. dev_priv->mm.wedged = 0;
  3574. }
  3575. mutex_lock(&dev->struct_mutex);
  3576. dev_priv->mm.suspended = 0;
  3577. ret = i915_gem_init_ringbuffer(dev);
  3578. if (ret != 0) {
  3579. mutex_unlock(&dev->struct_mutex);
  3580. return ret;
  3581. }
  3582. spin_lock(&dev_priv->mm.active_list_lock);
  3583. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3584. spin_unlock(&dev_priv->mm.active_list_lock);
  3585. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3586. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3587. BUG_ON(!list_empty(&dev_priv->mm.request_list));
  3588. mutex_unlock(&dev->struct_mutex);
  3589. drm_irq_install(dev);
  3590. return 0;
  3591. }
  3592. int
  3593. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3594. struct drm_file *file_priv)
  3595. {
  3596. int ret;
  3597. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3598. return 0;
  3599. ret = i915_gem_idle(dev);
  3600. drm_irq_uninstall(dev);
  3601. return ret;
  3602. }
  3603. void
  3604. i915_gem_lastclose(struct drm_device *dev)
  3605. {
  3606. int ret;
  3607. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3608. return;
  3609. ret = i915_gem_idle(dev);
  3610. if (ret)
  3611. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3612. }
  3613. void
  3614. i915_gem_load(struct drm_device *dev)
  3615. {
  3616. int i;
  3617. drm_i915_private_t *dev_priv = dev->dev_private;
  3618. spin_lock_init(&dev_priv->mm.active_list_lock);
  3619. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3620. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3621. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3622. INIT_LIST_HEAD(&dev_priv->mm.request_list);
  3623. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3624. i915_gem_retire_work_handler);
  3625. dev_priv->mm.next_gem_seqno = 1;
  3626. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3627. dev_priv->fence_reg_start = 3;
  3628. if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3629. dev_priv->num_fence_regs = 16;
  3630. else
  3631. dev_priv->num_fence_regs = 8;
  3632. /* Initialize fence registers to zero */
  3633. if (IS_I965G(dev)) {
  3634. for (i = 0; i < 16; i++)
  3635. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  3636. } else {
  3637. for (i = 0; i < 8; i++)
  3638. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  3639. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3640. for (i = 0; i < 8; i++)
  3641. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  3642. }
  3643. i915_gem_detect_bit_6_swizzle(dev);
  3644. }
  3645. /*
  3646. * Create a physically contiguous memory object for this object
  3647. * e.g. for cursor + overlay regs
  3648. */
  3649. int i915_gem_init_phys_object(struct drm_device *dev,
  3650. int id, int size)
  3651. {
  3652. drm_i915_private_t *dev_priv = dev->dev_private;
  3653. struct drm_i915_gem_phys_object *phys_obj;
  3654. int ret;
  3655. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3656. return 0;
  3657. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3658. if (!phys_obj)
  3659. return -ENOMEM;
  3660. phys_obj->id = id;
  3661. phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
  3662. if (!phys_obj->handle) {
  3663. ret = -ENOMEM;
  3664. goto kfree_obj;
  3665. }
  3666. #ifdef CONFIG_X86
  3667. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3668. #endif
  3669. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3670. return 0;
  3671. kfree_obj:
  3672. kfree(phys_obj);
  3673. return ret;
  3674. }
  3675. void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3676. {
  3677. drm_i915_private_t *dev_priv = dev->dev_private;
  3678. struct drm_i915_gem_phys_object *phys_obj;
  3679. if (!dev_priv->mm.phys_objs[id - 1])
  3680. return;
  3681. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3682. if (phys_obj->cur_obj) {
  3683. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3684. }
  3685. #ifdef CONFIG_X86
  3686. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3687. #endif
  3688. drm_pci_free(dev, phys_obj->handle);
  3689. kfree(phys_obj);
  3690. dev_priv->mm.phys_objs[id - 1] = NULL;
  3691. }
  3692. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3693. {
  3694. int i;
  3695. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3696. i915_gem_free_phys_object(dev, i);
  3697. }
  3698. void i915_gem_detach_phys_object(struct drm_device *dev,
  3699. struct drm_gem_object *obj)
  3700. {
  3701. struct drm_i915_gem_object *obj_priv;
  3702. int i;
  3703. int ret;
  3704. int page_count;
  3705. obj_priv = obj->driver_private;
  3706. if (!obj_priv->phys_obj)
  3707. return;
  3708. ret = i915_gem_object_get_pages(obj);
  3709. if (ret)
  3710. goto out;
  3711. page_count = obj->size / PAGE_SIZE;
  3712. for (i = 0; i < page_count; i++) {
  3713. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  3714. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3715. memcpy(dst, src, PAGE_SIZE);
  3716. kunmap_atomic(dst, KM_USER0);
  3717. }
  3718. drm_clflush_pages(obj_priv->pages, page_count);
  3719. drm_agp_chipset_flush(dev);
  3720. i915_gem_object_put_pages(obj);
  3721. out:
  3722. obj_priv->phys_obj->cur_obj = NULL;
  3723. obj_priv->phys_obj = NULL;
  3724. }
  3725. int
  3726. i915_gem_attach_phys_object(struct drm_device *dev,
  3727. struct drm_gem_object *obj, int id)
  3728. {
  3729. drm_i915_private_t *dev_priv = dev->dev_private;
  3730. struct drm_i915_gem_object *obj_priv;
  3731. int ret = 0;
  3732. int page_count;
  3733. int i;
  3734. if (id > I915_MAX_PHYS_OBJECT)
  3735. return -EINVAL;
  3736. obj_priv = obj->driver_private;
  3737. if (obj_priv->phys_obj) {
  3738. if (obj_priv->phys_obj->id == id)
  3739. return 0;
  3740. i915_gem_detach_phys_object(dev, obj);
  3741. }
  3742. /* create a new object */
  3743. if (!dev_priv->mm.phys_objs[id - 1]) {
  3744. ret = i915_gem_init_phys_object(dev, id,
  3745. obj->size);
  3746. if (ret) {
  3747. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  3748. goto out;
  3749. }
  3750. }
  3751. /* bind to the object */
  3752. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3753. obj_priv->phys_obj->cur_obj = obj;
  3754. ret = i915_gem_object_get_pages(obj);
  3755. if (ret) {
  3756. DRM_ERROR("failed to get page list\n");
  3757. goto out;
  3758. }
  3759. page_count = obj->size / PAGE_SIZE;
  3760. for (i = 0; i < page_count; i++) {
  3761. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  3762. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3763. memcpy(dst, src, PAGE_SIZE);
  3764. kunmap_atomic(src, KM_USER0);
  3765. }
  3766. i915_gem_object_put_pages(obj);
  3767. return 0;
  3768. out:
  3769. return ret;
  3770. }
  3771. static int
  3772. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  3773. struct drm_i915_gem_pwrite *args,
  3774. struct drm_file *file_priv)
  3775. {
  3776. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3777. void *obj_addr;
  3778. int ret;
  3779. char __user *user_data;
  3780. user_data = (char __user *) (uintptr_t) args->data_ptr;
  3781. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  3782. DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
  3783. ret = copy_from_user(obj_addr, user_data, args->size);
  3784. if (ret)
  3785. return -EFAULT;
  3786. drm_agp_chipset_flush(dev);
  3787. return 0;
  3788. }
  3789. void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
  3790. {
  3791. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  3792. /* Clean up our request list when the client is going away, so that
  3793. * later retire_requests won't dereference our soon-to-be-gone
  3794. * file_priv.
  3795. */
  3796. mutex_lock(&dev->struct_mutex);
  3797. while (!list_empty(&i915_file_priv->mm.request_list))
  3798. list_del_init(i915_file_priv->mm.request_list.next);
  3799. mutex_unlock(&dev->struct_mutex);
  3800. }