cpufreq_ondemand.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695
  1. /*
  2. * drivers/cpufreq/cpufreq_ondemand.c
  3. *
  4. * Copyright (C) 2001 Russell King
  5. * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
  6. * Jun Nakajima <jun.nakajima@intel.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/init.h>
  15. #include <linux/cpufreq.h>
  16. #include <linux/cpu.h>
  17. #include <linux/jiffies.h>
  18. #include <linux/kernel_stat.h>
  19. #include <linux/mutex.h>
  20. #include <linux/hrtimer.h>
  21. #include <linux/tick.h>
  22. #include <linux/ktime.h>
  23. #include <linux/sched.h>
  24. /*
  25. * dbs is used in this file as a shortform for demandbased switching
  26. * It helps to keep variable names smaller, simpler
  27. */
  28. #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
  29. #define DEF_FREQUENCY_UP_THRESHOLD (80)
  30. #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
  31. #define MICRO_FREQUENCY_UP_THRESHOLD (95)
  32. #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
  33. #define MIN_FREQUENCY_UP_THRESHOLD (11)
  34. #define MAX_FREQUENCY_UP_THRESHOLD (100)
  35. /*
  36. * The polling frequency of this governor depends on the capability of
  37. * the processor. Default polling frequency is 1000 times the transition
  38. * latency of the processor. The governor will work on any processor with
  39. * transition latency <= 10mS, using appropriate sampling
  40. * rate.
  41. * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
  42. * this governor will not work.
  43. * All times here are in uS.
  44. */
  45. #define MIN_SAMPLING_RATE_RATIO (2)
  46. static unsigned int min_sampling_rate;
  47. #define LATENCY_MULTIPLIER (1000)
  48. #define MIN_LATENCY_MULTIPLIER (100)
  49. #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
  50. static void do_dbs_timer(struct work_struct *work);
  51. /* Sampling types */
  52. enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
  53. struct cpu_dbs_info_s {
  54. cputime64_t prev_cpu_idle;
  55. cputime64_t prev_cpu_wall;
  56. cputime64_t prev_cpu_nice;
  57. struct cpufreq_policy *cur_policy;
  58. struct delayed_work work;
  59. struct cpufreq_frequency_table *freq_table;
  60. unsigned int freq_lo;
  61. unsigned int freq_lo_jiffies;
  62. unsigned int freq_hi_jiffies;
  63. int cpu;
  64. unsigned int enable:1,
  65. sample_type:1;
  66. };
  67. static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
  68. static unsigned int dbs_enable; /* number of CPUs using this policy */
  69. /*
  70. * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
  71. * lock and dbs_mutex. cpu_hotplug lock should always be held before
  72. * dbs_mutex. If any function that can potentially take cpu_hotplug lock
  73. * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
  74. * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
  75. * is recursive for the same process. -Venki
  76. * DEADLOCK ALERT! (2) : do_dbs_timer() must not take the dbs_mutex, because it
  77. * would deadlock with cancel_delayed_work_sync(), which is needed for proper
  78. * raceless workqueue teardown.
  79. */
  80. static DEFINE_MUTEX(dbs_mutex);
  81. static struct workqueue_struct *kondemand_wq;
  82. static struct dbs_tuners {
  83. unsigned int sampling_rate;
  84. unsigned int up_threshold;
  85. unsigned int down_differential;
  86. unsigned int ignore_nice;
  87. unsigned int powersave_bias;
  88. } dbs_tuners_ins = {
  89. .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
  90. .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
  91. .ignore_nice = 0,
  92. .powersave_bias = 0,
  93. };
  94. static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
  95. cputime64_t *wall)
  96. {
  97. cputime64_t idle_time;
  98. cputime64_t cur_wall_time;
  99. cputime64_t busy_time;
  100. cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
  101. busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
  102. kstat_cpu(cpu).cpustat.system);
  103. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
  104. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
  105. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
  106. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
  107. idle_time = cputime64_sub(cur_wall_time, busy_time);
  108. if (wall)
  109. *wall = cur_wall_time;
  110. return idle_time;
  111. }
  112. static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
  113. {
  114. u64 idle_time = get_cpu_idle_time_us(cpu, wall);
  115. if (idle_time == -1ULL)
  116. return get_cpu_idle_time_jiffy(cpu, wall);
  117. return idle_time;
  118. }
  119. /*
  120. * Find right freq to be set now with powersave_bias on.
  121. * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
  122. * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
  123. */
  124. static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
  125. unsigned int freq_next,
  126. unsigned int relation)
  127. {
  128. unsigned int freq_req, freq_reduc, freq_avg;
  129. unsigned int freq_hi, freq_lo;
  130. unsigned int index = 0;
  131. unsigned int jiffies_total, jiffies_hi, jiffies_lo;
  132. struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
  133. if (!dbs_info->freq_table) {
  134. dbs_info->freq_lo = 0;
  135. dbs_info->freq_lo_jiffies = 0;
  136. return freq_next;
  137. }
  138. cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
  139. relation, &index);
  140. freq_req = dbs_info->freq_table[index].frequency;
  141. freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
  142. freq_avg = freq_req - freq_reduc;
  143. /* Find freq bounds for freq_avg in freq_table */
  144. index = 0;
  145. cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
  146. CPUFREQ_RELATION_H, &index);
  147. freq_lo = dbs_info->freq_table[index].frequency;
  148. index = 0;
  149. cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
  150. CPUFREQ_RELATION_L, &index);
  151. freq_hi = dbs_info->freq_table[index].frequency;
  152. /* Find out how long we have to be in hi and lo freqs */
  153. if (freq_hi == freq_lo) {
  154. dbs_info->freq_lo = 0;
  155. dbs_info->freq_lo_jiffies = 0;
  156. return freq_lo;
  157. }
  158. jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  159. jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
  160. jiffies_hi += ((freq_hi - freq_lo) / 2);
  161. jiffies_hi /= (freq_hi - freq_lo);
  162. jiffies_lo = jiffies_total - jiffies_hi;
  163. dbs_info->freq_lo = freq_lo;
  164. dbs_info->freq_lo_jiffies = jiffies_lo;
  165. dbs_info->freq_hi_jiffies = jiffies_hi;
  166. return freq_hi;
  167. }
  168. static void ondemand_powersave_bias_init(void)
  169. {
  170. int i;
  171. for_each_online_cpu(i) {
  172. struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
  173. dbs_info->freq_table = cpufreq_frequency_get_table(i);
  174. dbs_info->freq_lo = 0;
  175. }
  176. }
  177. /************************** sysfs interface ************************/
  178. static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
  179. {
  180. printk_once(KERN_INFO "CPUFREQ: ondemand sampling_rate_max "
  181. "sysfs file is deprecated - used by: %s\n", current->comm);
  182. return sprintf(buf, "%u\n", -1U);
  183. }
  184. static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
  185. {
  186. return sprintf(buf, "%u\n", min_sampling_rate);
  187. }
  188. #define define_one_ro(_name) \
  189. static struct freq_attr _name = \
  190. __ATTR(_name, 0444, show_##_name, NULL)
  191. define_one_ro(sampling_rate_max);
  192. define_one_ro(sampling_rate_min);
  193. /* cpufreq_ondemand Governor Tunables */
  194. #define show_one(file_name, object) \
  195. static ssize_t show_##file_name \
  196. (struct cpufreq_policy *unused, char *buf) \
  197. { \
  198. return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
  199. }
  200. show_one(sampling_rate, sampling_rate);
  201. show_one(up_threshold, up_threshold);
  202. show_one(ignore_nice_load, ignore_nice);
  203. show_one(powersave_bias, powersave_bias);
  204. static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
  205. const char *buf, size_t count)
  206. {
  207. unsigned int input;
  208. int ret;
  209. ret = sscanf(buf, "%u", &input);
  210. mutex_lock(&dbs_mutex);
  211. if (ret != 1) {
  212. mutex_unlock(&dbs_mutex);
  213. return -EINVAL;
  214. }
  215. dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
  216. mutex_unlock(&dbs_mutex);
  217. return count;
  218. }
  219. static ssize_t store_up_threshold(struct cpufreq_policy *unused,
  220. const char *buf, size_t count)
  221. {
  222. unsigned int input;
  223. int ret;
  224. ret = sscanf(buf, "%u", &input);
  225. mutex_lock(&dbs_mutex);
  226. if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
  227. input < MIN_FREQUENCY_UP_THRESHOLD) {
  228. mutex_unlock(&dbs_mutex);
  229. return -EINVAL;
  230. }
  231. dbs_tuners_ins.up_threshold = input;
  232. mutex_unlock(&dbs_mutex);
  233. return count;
  234. }
  235. static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
  236. const char *buf, size_t count)
  237. {
  238. unsigned int input;
  239. int ret;
  240. unsigned int j;
  241. ret = sscanf(buf, "%u", &input);
  242. if (ret != 1)
  243. return -EINVAL;
  244. if (input > 1)
  245. input = 1;
  246. mutex_lock(&dbs_mutex);
  247. if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
  248. mutex_unlock(&dbs_mutex);
  249. return count;
  250. }
  251. dbs_tuners_ins.ignore_nice = input;
  252. /* we need to re-evaluate prev_cpu_idle */
  253. for_each_online_cpu(j) {
  254. struct cpu_dbs_info_s *dbs_info;
  255. dbs_info = &per_cpu(cpu_dbs_info, j);
  256. dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
  257. &dbs_info->prev_cpu_wall);
  258. if (dbs_tuners_ins.ignore_nice)
  259. dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
  260. }
  261. mutex_unlock(&dbs_mutex);
  262. return count;
  263. }
  264. static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
  265. const char *buf, size_t count)
  266. {
  267. unsigned int input;
  268. int ret;
  269. ret = sscanf(buf, "%u", &input);
  270. if (ret != 1)
  271. return -EINVAL;
  272. if (input > 1000)
  273. input = 1000;
  274. mutex_lock(&dbs_mutex);
  275. dbs_tuners_ins.powersave_bias = input;
  276. ondemand_powersave_bias_init();
  277. mutex_unlock(&dbs_mutex);
  278. return count;
  279. }
  280. #define define_one_rw(_name) \
  281. static struct freq_attr _name = \
  282. __ATTR(_name, 0644, show_##_name, store_##_name)
  283. define_one_rw(sampling_rate);
  284. define_one_rw(up_threshold);
  285. define_one_rw(ignore_nice_load);
  286. define_one_rw(powersave_bias);
  287. static struct attribute *dbs_attributes[] = {
  288. &sampling_rate_max.attr,
  289. &sampling_rate_min.attr,
  290. &sampling_rate.attr,
  291. &up_threshold.attr,
  292. &ignore_nice_load.attr,
  293. &powersave_bias.attr,
  294. NULL
  295. };
  296. static struct attribute_group dbs_attr_group = {
  297. .attrs = dbs_attributes,
  298. .name = "ondemand",
  299. };
  300. /************************** sysfs end ************************/
  301. static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
  302. {
  303. unsigned int max_load_freq;
  304. struct cpufreq_policy *policy;
  305. unsigned int j;
  306. if (!this_dbs_info->enable)
  307. return;
  308. this_dbs_info->freq_lo = 0;
  309. policy = this_dbs_info->cur_policy;
  310. /*
  311. * Every sampling_rate, we check, if current idle time is less
  312. * than 20% (default), then we try to increase frequency
  313. * Every sampling_rate, we look for a the lowest
  314. * frequency which can sustain the load while keeping idle time over
  315. * 30%. If such a frequency exist, we try to decrease to this frequency.
  316. *
  317. * Any frequency increase takes it to the maximum frequency.
  318. * Frequency reduction happens at minimum steps of
  319. * 5% (default) of current frequency
  320. */
  321. /* Get Absolute Load - in terms of freq */
  322. max_load_freq = 0;
  323. for_each_cpu(j, policy->cpus) {
  324. struct cpu_dbs_info_s *j_dbs_info;
  325. cputime64_t cur_wall_time, cur_idle_time;
  326. unsigned int idle_time, wall_time;
  327. unsigned int load, load_freq;
  328. int freq_avg;
  329. j_dbs_info = &per_cpu(cpu_dbs_info, j);
  330. cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
  331. wall_time = (unsigned int) cputime64_sub(cur_wall_time,
  332. j_dbs_info->prev_cpu_wall);
  333. j_dbs_info->prev_cpu_wall = cur_wall_time;
  334. idle_time = (unsigned int) cputime64_sub(cur_idle_time,
  335. j_dbs_info->prev_cpu_idle);
  336. j_dbs_info->prev_cpu_idle = cur_idle_time;
  337. if (dbs_tuners_ins.ignore_nice) {
  338. cputime64_t cur_nice;
  339. unsigned long cur_nice_jiffies;
  340. cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
  341. j_dbs_info->prev_cpu_nice);
  342. /*
  343. * Assumption: nice time between sampling periods will
  344. * be less than 2^32 jiffies for 32 bit sys
  345. */
  346. cur_nice_jiffies = (unsigned long)
  347. cputime64_to_jiffies64(cur_nice);
  348. j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
  349. idle_time += jiffies_to_usecs(cur_nice_jiffies);
  350. }
  351. if (unlikely(!wall_time || wall_time < idle_time))
  352. continue;
  353. load = 100 * (wall_time - idle_time) / wall_time;
  354. freq_avg = __cpufreq_driver_getavg(policy, j);
  355. if (freq_avg <= 0)
  356. freq_avg = policy->cur;
  357. load_freq = load * freq_avg;
  358. if (load_freq > max_load_freq)
  359. max_load_freq = load_freq;
  360. }
  361. /* Check for frequency increase */
  362. if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
  363. /* if we are already at full speed then break out early */
  364. if (!dbs_tuners_ins.powersave_bias) {
  365. if (policy->cur == policy->max)
  366. return;
  367. __cpufreq_driver_target(policy, policy->max,
  368. CPUFREQ_RELATION_H);
  369. } else {
  370. int freq = powersave_bias_target(policy, policy->max,
  371. CPUFREQ_RELATION_H);
  372. __cpufreq_driver_target(policy, freq,
  373. CPUFREQ_RELATION_L);
  374. }
  375. return;
  376. }
  377. /* Check for frequency decrease */
  378. /* if we cannot reduce the frequency anymore, break out early */
  379. if (policy->cur == policy->min)
  380. return;
  381. /*
  382. * The optimal frequency is the frequency that is the lowest that
  383. * can support the current CPU usage without triggering the up
  384. * policy. To be safe, we focus 10 points under the threshold.
  385. */
  386. if (max_load_freq <
  387. (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
  388. policy->cur) {
  389. unsigned int freq_next;
  390. freq_next = max_load_freq /
  391. (dbs_tuners_ins.up_threshold -
  392. dbs_tuners_ins.down_differential);
  393. if (!dbs_tuners_ins.powersave_bias) {
  394. __cpufreq_driver_target(policy, freq_next,
  395. CPUFREQ_RELATION_L);
  396. } else {
  397. int freq = powersave_bias_target(policy, freq_next,
  398. CPUFREQ_RELATION_L);
  399. __cpufreq_driver_target(policy, freq,
  400. CPUFREQ_RELATION_L);
  401. }
  402. }
  403. }
  404. static void do_dbs_timer(struct work_struct *work)
  405. {
  406. struct cpu_dbs_info_s *dbs_info =
  407. container_of(work, struct cpu_dbs_info_s, work.work);
  408. unsigned int cpu = dbs_info->cpu;
  409. int sample_type = dbs_info->sample_type;
  410. /* We want all CPUs to do sampling nearly on same jiffy */
  411. int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  412. delay -= jiffies % delay;
  413. if (lock_policy_rwsem_write(cpu) < 0)
  414. return;
  415. if (!dbs_info->enable) {
  416. unlock_policy_rwsem_write(cpu);
  417. return;
  418. }
  419. /* Common NORMAL_SAMPLE setup */
  420. dbs_info->sample_type = DBS_NORMAL_SAMPLE;
  421. if (!dbs_tuners_ins.powersave_bias ||
  422. sample_type == DBS_NORMAL_SAMPLE) {
  423. dbs_check_cpu(dbs_info);
  424. if (dbs_info->freq_lo) {
  425. /* Setup timer for SUB_SAMPLE */
  426. dbs_info->sample_type = DBS_SUB_SAMPLE;
  427. delay = dbs_info->freq_hi_jiffies;
  428. }
  429. } else {
  430. __cpufreq_driver_target(dbs_info->cur_policy,
  431. dbs_info->freq_lo, CPUFREQ_RELATION_H);
  432. }
  433. queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
  434. unlock_policy_rwsem_write(cpu);
  435. }
  436. static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
  437. {
  438. /* We want all CPUs to do sampling nearly on same jiffy */
  439. int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  440. delay -= jiffies % delay;
  441. dbs_info->enable = 1;
  442. ondemand_powersave_bias_init();
  443. dbs_info->sample_type = DBS_NORMAL_SAMPLE;
  444. INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
  445. queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
  446. delay);
  447. }
  448. static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
  449. {
  450. dbs_info->enable = 0;
  451. cancel_delayed_work_sync(&dbs_info->work);
  452. }
  453. static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
  454. unsigned int event)
  455. {
  456. unsigned int cpu = policy->cpu;
  457. struct cpu_dbs_info_s *this_dbs_info;
  458. unsigned int j;
  459. int rc;
  460. this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
  461. switch (event) {
  462. case CPUFREQ_GOV_START:
  463. if ((!cpu_online(cpu)) || (!policy->cur))
  464. return -EINVAL;
  465. if (this_dbs_info->enable) /* Already enabled */
  466. break;
  467. mutex_lock(&dbs_mutex);
  468. dbs_enable++;
  469. rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
  470. if (rc) {
  471. dbs_enable--;
  472. mutex_unlock(&dbs_mutex);
  473. return rc;
  474. }
  475. for_each_cpu(j, policy->cpus) {
  476. struct cpu_dbs_info_s *j_dbs_info;
  477. j_dbs_info = &per_cpu(cpu_dbs_info, j);
  478. j_dbs_info->cur_policy = policy;
  479. j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
  480. &j_dbs_info->prev_cpu_wall);
  481. if (dbs_tuners_ins.ignore_nice) {
  482. j_dbs_info->prev_cpu_nice =
  483. kstat_cpu(j).cpustat.nice;
  484. }
  485. }
  486. this_dbs_info->cpu = cpu;
  487. /*
  488. * Start the timerschedule work, when this governor
  489. * is used for first time
  490. */
  491. if (dbs_enable == 1) {
  492. unsigned int latency;
  493. /* policy latency is in nS. Convert it to uS first */
  494. latency = policy->cpuinfo.transition_latency / 1000;
  495. if (latency == 0)
  496. latency = 1;
  497. /* Bring kernel and HW constraints together */
  498. min_sampling_rate = max(min_sampling_rate,
  499. MIN_LATENCY_MULTIPLIER * latency);
  500. dbs_tuners_ins.sampling_rate =
  501. max(min_sampling_rate,
  502. latency * LATENCY_MULTIPLIER);
  503. }
  504. dbs_timer_init(this_dbs_info);
  505. mutex_unlock(&dbs_mutex);
  506. break;
  507. case CPUFREQ_GOV_STOP:
  508. mutex_lock(&dbs_mutex);
  509. dbs_timer_exit(this_dbs_info);
  510. sysfs_remove_group(&policy->kobj, &dbs_attr_group);
  511. dbs_enable--;
  512. mutex_unlock(&dbs_mutex);
  513. break;
  514. case CPUFREQ_GOV_LIMITS:
  515. mutex_lock(&dbs_mutex);
  516. if (policy->max < this_dbs_info->cur_policy->cur)
  517. __cpufreq_driver_target(this_dbs_info->cur_policy,
  518. policy->max, CPUFREQ_RELATION_H);
  519. else if (policy->min > this_dbs_info->cur_policy->cur)
  520. __cpufreq_driver_target(this_dbs_info->cur_policy,
  521. policy->min, CPUFREQ_RELATION_L);
  522. mutex_unlock(&dbs_mutex);
  523. break;
  524. }
  525. return 0;
  526. }
  527. #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
  528. static
  529. #endif
  530. struct cpufreq_governor cpufreq_gov_ondemand = {
  531. .name = "ondemand",
  532. .governor = cpufreq_governor_dbs,
  533. .max_transition_latency = TRANSITION_LATENCY_LIMIT,
  534. .owner = THIS_MODULE,
  535. };
  536. static int __init cpufreq_gov_dbs_init(void)
  537. {
  538. int err;
  539. cputime64_t wall;
  540. u64 idle_time;
  541. int cpu = get_cpu();
  542. idle_time = get_cpu_idle_time_us(cpu, &wall);
  543. put_cpu();
  544. if (idle_time != -1ULL) {
  545. /* Idle micro accounting is supported. Use finer thresholds */
  546. dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
  547. dbs_tuners_ins.down_differential =
  548. MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
  549. /*
  550. * In no_hz/micro accounting case we set the minimum frequency
  551. * not depending on HZ, but fixed (very low). The deferred
  552. * timer might skip some samples if idle/sleeping as needed.
  553. */
  554. min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
  555. } else {
  556. /* For correct statistics, we need 10 ticks for each measure */
  557. min_sampling_rate =
  558. MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
  559. }
  560. kondemand_wq = create_workqueue("kondemand");
  561. if (!kondemand_wq) {
  562. printk(KERN_ERR "Creation of kondemand failed\n");
  563. return -EFAULT;
  564. }
  565. err = cpufreq_register_governor(&cpufreq_gov_ondemand);
  566. if (err)
  567. destroy_workqueue(kondemand_wq);
  568. return err;
  569. }
  570. static void __exit cpufreq_gov_dbs_exit(void)
  571. {
  572. cpufreq_unregister_governor(&cpufreq_gov_ondemand);
  573. destroy_workqueue(kondemand_wq);
  574. }
  575. MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
  576. MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
  577. MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
  578. "Low Latency Frequency Transition capable processors");
  579. MODULE_LICENSE("GPL");
  580. #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
  581. fs_initcall(cpufreq_gov_dbs_init);
  582. #else
  583. module_init(cpufreq_gov_dbs_init);
  584. #endif
  585. module_exit(cpufreq_gov_dbs_exit);