fault.c 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304
  1. /*
  2. * arch/microblaze/mm/fault.c
  3. *
  4. * Copyright (C) 2007 Xilinx, Inc. All rights reserved.
  5. *
  6. * Derived from "arch/ppc/mm/fault.c"
  7. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  8. *
  9. * Derived from "arch/i386/mm/fault.c"
  10. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  11. *
  12. * Modified by Cort Dougan and Paul Mackerras.
  13. *
  14. * This file is subject to the terms and conditions of the GNU General
  15. * Public License. See the file COPYING in the main directory of this
  16. * archive for more details.
  17. *
  18. */
  19. #include <linux/module.h>
  20. #include <linux/signal.h>
  21. #include <linux/sched.h>
  22. #include <linux/kernel.h>
  23. #include <linux/errno.h>
  24. #include <linux/string.h>
  25. #include <linux/types.h>
  26. #include <linux/ptrace.h>
  27. #include <linux/mman.h>
  28. #include <linux/mm.h>
  29. #include <linux/interrupt.h>
  30. #include <asm/page.h>
  31. #include <asm/pgtable.h>
  32. #include <asm/mmu.h>
  33. #include <asm/mmu_context.h>
  34. #include <asm/system.h>
  35. #include <linux/uaccess.h>
  36. #include <asm/exceptions.h>
  37. #if defined(CONFIG_KGDB)
  38. int debugger_kernel_faults = 1;
  39. #endif
  40. static unsigned long pte_misses; /* updated by do_page_fault() */
  41. static unsigned long pte_errors; /* updated by do_page_fault() */
  42. /*
  43. * Check whether the instruction at regs->pc is a store using
  44. * an update addressing form which will update r1.
  45. */
  46. static int store_updates_sp(struct pt_regs *regs)
  47. {
  48. unsigned int inst;
  49. if (get_user(inst, (unsigned int *)regs->pc))
  50. return 0;
  51. /* check for 1 in the rD field */
  52. if (((inst >> 21) & 0x1f) != 1)
  53. return 0;
  54. /* check for store opcodes */
  55. if ((inst & 0xd0000000) == 0xd0000000)
  56. return 1;
  57. return 0;
  58. }
  59. /*
  60. * bad_page_fault is called when we have a bad access from the kernel.
  61. * It is called from do_page_fault above and from some of the procedures
  62. * in traps.c.
  63. */
  64. static void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
  65. {
  66. const struct exception_table_entry *fixup;
  67. /* MS: no context */
  68. /* Are we prepared to handle this fault? */
  69. fixup = search_exception_tables(regs->pc);
  70. if (fixup) {
  71. regs->pc = fixup->fixup;
  72. return;
  73. }
  74. /* kernel has accessed a bad area */
  75. #if defined(CONFIG_KGDB)
  76. if (debugger_kernel_faults)
  77. debugger(regs);
  78. #endif
  79. die("kernel access of bad area", regs, sig);
  80. }
  81. /*
  82. * The error_code parameter is ESR for a data fault,
  83. * 0 for an instruction fault.
  84. */
  85. void do_page_fault(struct pt_regs *regs, unsigned long address,
  86. unsigned long error_code)
  87. {
  88. struct vm_area_struct *vma;
  89. struct mm_struct *mm = current->mm;
  90. siginfo_t info;
  91. int code = SEGV_MAPERR;
  92. int is_write = error_code & ESR_S;
  93. int fault;
  94. regs->ear = address;
  95. regs->esr = error_code;
  96. /* On a kernel SLB miss we can only check for a valid exception entry */
  97. if (kernel_mode(regs) && (address >= TASK_SIZE)) {
  98. printk(KERN_WARNING "kernel task_size exceed");
  99. _exception(SIGSEGV, regs, code, address);
  100. }
  101. /* for instr TLB miss and instr storage exception ESR_S is undefined */
  102. if ((error_code & 0x13) == 0x13 || (error_code & 0x11) == 0x11)
  103. is_write = 0;
  104. #if defined(CONFIG_KGDB)
  105. if (debugger_fault_handler && regs->trap == 0x300) {
  106. debugger_fault_handler(regs);
  107. return;
  108. }
  109. #endif /* CONFIG_KGDB */
  110. if (in_atomic() || mm == NULL) {
  111. /* FIXME */
  112. if (kernel_mode(regs)) {
  113. printk(KERN_EMERG
  114. "Page fault in kernel mode - Oooou!!! pid %d\n",
  115. current->pid);
  116. _exception(SIGSEGV, regs, code, address);
  117. return;
  118. }
  119. /* in_atomic() in user mode is really bad,
  120. as is current->mm == NULL. */
  121. printk(KERN_EMERG "Page fault in user mode with "
  122. "in_atomic(), mm = %p\n", mm);
  123. printk(KERN_EMERG "r15 = %lx MSR = %lx\n",
  124. regs->r15, regs->msr);
  125. die("Weird page fault", regs, SIGSEGV);
  126. }
  127. /* When running in the kernel we expect faults to occur only to
  128. * addresses in user space. All other faults represent errors in the
  129. * kernel and should generate an OOPS. Unfortunately, in the case of an
  130. * erroneous fault occurring in a code path which already holds mmap_sem
  131. * we will deadlock attempting to validate the fault against the
  132. * address space. Luckily the kernel only validly references user
  133. * space from well defined areas of code, which are listed in the
  134. * exceptions table.
  135. *
  136. * As the vast majority of faults will be valid we will only perform
  137. * the source reference check when there is a possibility of a deadlock.
  138. * Attempt to lock the address space, if we cannot we then validate the
  139. * source. If this is invalid we can skip the address space check,
  140. * thus avoiding the deadlock.
  141. */
  142. if (!down_read_trylock(&mm->mmap_sem)) {
  143. if (kernel_mode(regs) && !search_exception_tables(regs->pc))
  144. goto bad_area_nosemaphore;
  145. down_read(&mm->mmap_sem);
  146. }
  147. vma = find_vma(mm, address);
  148. if (!vma)
  149. goto bad_area;
  150. if (vma->vm_start <= address)
  151. goto good_area;
  152. if (!(vma->vm_flags & VM_GROWSDOWN))
  153. goto bad_area;
  154. if (!is_write)
  155. goto bad_area;
  156. /*
  157. * N.B. The ABI allows programs to access up to
  158. * a few hundred bytes below the stack pointer (TBD).
  159. * The kernel signal delivery code writes up to about 1.5kB
  160. * below the stack pointer (r1) before decrementing it.
  161. * The exec code can write slightly over 640kB to the stack
  162. * before setting the user r1. Thus we allow the stack to
  163. * expand to 1MB without further checks.
  164. */
  165. if (address + 0x100000 < vma->vm_end) {
  166. /* get user regs even if this fault is in kernel mode */
  167. struct pt_regs *uregs = current->thread.regs;
  168. if (uregs == NULL)
  169. goto bad_area;
  170. /*
  171. * A user-mode access to an address a long way below
  172. * the stack pointer is only valid if the instruction
  173. * is one which would update the stack pointer to the
  174. * address accessed if the instruction completed,
  175. * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
  176. * (or the byte, halfword, float or double forms).
  177. *
  178. * If we don't check this then any write to the area
  179. * between the last mapped region and the stack will
  180. * expand the stack rather than segfaulting.
  181. */
  182. if (address + 2048 < uregs->r1
  183. && (kernel_mode(regs) || !store_updates_sp(regs)))
  184. goto bad_area;
  185. }
  186. if (expand_stack(vma, address))
  187. goto bad_area;
  188. good_area:
  189. code = SEGV_ACCERR;
  190. /* a write */
  191. if (is_write) {
  192. if (!(vma->vm_flags & VM_WRITE))
  193. goto bad_area;
  194. /* a read */
  195. } else {
  196. /* protection fault */
  197. if (error_code & 0x08000000)
  198. goto bad_area;
  199. if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
  200. goto bad_area;
  201. }
  202. /*
  203. * If for any reason at all we couldn't handle the fault,
  204. * make sure we exit gracefully rather than endlessly redo
  205. * the fault.
  206. */
  207. survive:
  208. fault = handle_mm_fault(mm, vma, address, is_write ? FAULT_FLAG_WRITE : 0);
  209. if (unlikely(fault & VM_FAULT_ERROR)) {
  210. if (fault & VM_FAULT_OOM)
  211. goto out_of_memory;
  212. else if (fault & VM_FAULT_SIGBUS)
  213. goto do_sigbus;
  214. BUG();
  215. }
  216. if (fault & VM_FAULT_MAJOR)
  217. current->maj_flt++;
  218. else
  219. current->min_flt++;
  220. up_read(&mm->mmap_sem);
  221. /*
  222. * keep track of tlb+htab misses that are good addrs but
  223. * just need pte's created via handle_mm_fault()
  224. * -- Cort
  225. */
  226. pte_misses++;
  227. return;
  228. bad_area:
  229. up_read(&mm->mmap_sem);
  230. bad_area_nosemaphore:
  231. pte_errors++;
  232. /* User mode accesses cause a SIGSEGV */
  233. if (user_mode(regs)) {
  234. _exception(SIGSEGV, regs, code, address);
  235. /* info.si_signo = SIGSEGV;
  236. info.si_errno = 0;
  237. info.si_code = code;
  238. info.si_addr = (void *) address;
  239. force_sig_info(SIGSEGV, &info, current);*/
  240. return;
  241. }
  242. bad_page_fault(regs, address, SIGSEGV);
  243. return;
  244. /*
  245. * We ran out of memory, or some other thing happened to us that made
  246. * us unable to handle the page fault gracefully.
  247. */
  248. out_of_memory:
  249. if (current->pid == 1) {
  250. yield();
  251. down_read(&mm->mmap_sem);
  252. goto survive;
  253. }
  254. up_read(&mm->mmap_sem);
  255. printk(KERN_WARNING "VM: killing process %s\n", current->comm);
  256. if (user_mode(regs))
  257. do_exit(SIGKILL);
  258. bad_page_fault(regs, address, SIGKILL);
  259. return;
  260. do_sigbus:
  261. up_read(&mm->mmap_sem);
  262. if (user_mode(regs)) {
  263. info.si_signo = SIGBUS;
  264. info.si_errno = 0;
  265. info.si_code = BUS_ADRERR;
  266. info.si_addr = (void __user *)address;
  267. force_sig_info(SIGBUS, &info, current);
  268. return;
  269. }
  270. bad_page_fault(regs, address, SIGBUS);
  271. }