rrunner.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717
  1. /*
  2. * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
  3. *
  4. * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
  5. *
  6. * Thanks to Essential Communication for providing us with hardware
  7. * and very comprehensive documentation without which I would not have
  8. * been able to write this driver. A special thank you to John Gibbon
  9. * for sorting out the legal issues, with the NDA, allowing the code to
  10. * be released under the GPL.
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License, or
  15. * (at your option) any later version.
  16. *
  17. * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
  18. * stupid bugs in my code.
  19. *
  20. * Softnet support and various other patches from Val Henson of
  21. * ODS/Essential.
  22. *
  23. * PCI DMA mapping code partly based on work by Francois Romieu.
  24. */
  25. #define DEBUG 1
  26. #define RX_DMA_SKBUFF 1
  27. #define PKT_COPY_THRESHOLD 512
  28. #include <linux/module.h>
  29. #include <linux/types.h>
  30. #include <linux/errno.h>
  31. #include <linux/ioport.h>
  32. #include <linux/pci.h>
  33. #include <linux/kernel.h>
  34. #include <linux/netdevice.h>
  35. #include <linux/hippidevice.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/init.h>
  38. #include <linux/delay.h>
  39. #include <linux/mm.h>
  40. #include <net/sock.h>
  41. #include <asm/system.h>
  42. #include <asm/cache.h>
  43. #include <asm/byteorder.h>
  44. #include <asm/io.h>
  45. #include <asm/irq.h>
  46. #include <asm/uaccess.h>
  47. #define rr_if_busy(dev) netif_queue_stopped(dev)
  48. #define rr_if_running(dev) netif_running(dev)
  49. #include "rrunner.h"
  50. #define RUN_AT(x) (jiffies + (x))
  51. MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
  52. MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
  53. MODULE_LICENSE("GPL");
  54. static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n";
  55. /*
  56. * Implementation notes:
  57. *
  58. * The DMA engine only allows for DMA within physical 64KB chunks of
  59. * memory. The current approach of the driver (and stack) is to use
  60. * linear blocks of memory for the skbuffs. However, as the data block
  61. * is always the first part of the skb and skbs are 2^n aligned so we
  62. * are guarantted to get the whole block within one 64KB align 64KB
  63. * chunk.
  64. *
  65. * On the long term, relying on being able to allocate 64KB linear
  66. * chunks of memory is not feasible and the skb handling code and the
  67. * stack will need to know about I/O vectors or something similar.
  68. */
  69. static int __devinit rr_init_one(struct pci_dev *pdev,
  70. const struct pci_device_id *ent)
  71. {
  72. struct net_device *dev;
  73. static int version_disp;
  74. u8 pci_latency;
  75. struct rr_private *rrpriv;
  76. void *tmpptr;
  77. dma_addr_t ring_dma;
  78. int ret = -ENOMEM;
  79. dev = alloc_hippi_dev(sizeof(struct rr_private));
  80. if (!dev)
  81. goto out3;
  82. ret = pci_enable_device(pdev);
  83. if (ret) {
  84. ret = -ENODEV;
  85. goto out2;
  86. }
  87. rrpriv = netdev_priv(dev);
  88. SET_NETDEV_DEV(dev, &pdev->dev);
  89. if (pci_request_regions(pdev, "rrunner")) {
  90. ret = -EIO;
  91. goto out;
  92. }
  93. pci_set_drvdata(pdev, dev);
  94. rrpriv->pci_dev = pdev;
  95. spin_lock_init(&rrpriv->lock);
  96. dev->irq = pdev->irq;
  97. dev->open = &rr_open;
  98. dev->hard_start_xmit = &rr_start_xmit;
  99. dev->stop = &rr_close;
  100. dev->do_ioctl = &rr_ioctl;
  101. dev->base_addr = pci_resource_start(pdev, 0);
  102. /* display version info if adapter is found */
  103. if (!version_disp) {
  104. /* set display flag to TRUE so that */
  105. /* we only display this string ONCE */
  106. version_disp = 1;
  107. printk(version);
  108. }
  109. pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
  110. if (pci_latency <= 0x58){
  111. pci_latency = 0x58;
  112. pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
  113. }
  114. pci_set_master(pdev);
  115. printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
  116. "at 0x%08lx, irq %i, PCI latency %i\n", dev->name,
  117. dev->base_addr, dev->irq, pci_latency);
  118. /*
  119. * Remap the regs into kernel space.
  120. */
  121. rrpriv->regs = ioremap(dev->base_addr, 0x1000);
  122. if (!rrpriv->regs){
  123. printk(KERN_ERR "%s: Unable to map I/O register, "
  124. "RoadRunner will be disabled.\n", dev->name);
  125. ret = -EIO;
  126. goto out;
  127. }
  128. tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
  129. rrpriv->tx_ring = tmpptr;
  130. rrpriv->tx_ring_dma = ring_dma;
  131. if (!tmpptr) {
  132. ret = -ENOMEM;
  133. goto out;
  134. }
  135. tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
  136. rrpriv->rx_ring = tmpptr;
  137. rrpriv->rx_ring_dma = ring_dma;
  138. if (!tmpptr) {
  139. ret = -ENOMEM;
  140. goto out;
  141. }
  142. tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
  143. rrpriv->evt_ring = tmpptr;
  144. rrpriv->evt_ring_dma = ring_dma;
  145. if (!tmpptr) {
  146. ret = -ENOMEM;
  147. goto out;
  148. }
  149. /*
  150. * Don't access any register before this point!
  151. */
  152. #ifdef __BIG_ENDIAN
  153. writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
  154. &rrpriv->regs->HostCtrl);
  155. #endif
  156. /*
  157. * Need to add a case for little-endian 64-bit hosts here.
  158. */
  159. rr_init(dev);
  160. dev->base_addr = 0;
  161. ret = register_netdev(dev);
  162. if (ret)
  163. goto out;
  164. return 0;
  165. out:
  166. if (rrpriv->rx_ring)
  167. pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
  168. rrpriv->rx_ring_dma);
  169. if (rrpriv->tx_ring)
  170. pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
  171. rrpriv->tx_ring_dma);
  172. if (rrpriv->regs)
  173. iounmap(rrpriv->regs);
  174. if (pdev) {
  175. pci_release_regions(pdev);
  176. pci_set_drvdata(pdev, NULL);
  177. }
  178. out2:
  179. free_netdev(dev);
  180. out3:
  181. return ret;
  182. }
  183. static void __devexit rr_remove_one (struct pci_dev *pdev)
  184. {
  185. struct net_device *dev = pci_get_drvdata(pdev);
  186. if (dev) {
  187. struct rr_private *rr = netdev_priv(dev);
  188. if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)){
  189. printk(KERN_ERR "%s: trying to unload running NIC\n",
  190. dev->name);
  191. writel(HALT_NIC, &rr->regs->HostCtrl);
  192. }
  193. pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
  194. rr->evt_ring_dma);
  195. pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
  196. rr->rx_ring_dma);
  197. pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
  198. rr->tx_ring_dma);
  199. unregister_netdev(dev);
  200. iounmap(rr->regs);
  201. free_netdev(dev);
  202. pci_release_regions(pdev);
  203. pci_disable_device(pdev);
  204. pci_set_drvdata(pdev, NULL);
  205. }
  206. }
  207. /*
  208. * Commands are considered to be slow, thus there is no reason to
  209. * inline this.
  210. */
  211. static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
  212. {
  213. struct rr_regs __iomem *regs;
  214. u32 idx;
  215. regs = rrpriv->regs;
  216. /*
  217. * This is temporary - it will go away in the final version.
  218. * We probably also want to make this function inline.
  219. */
  220. if (readl(&regs->HostCtrl) & NIC_HALTED){
  221. printk("issuing command for halted NIC, code 0x%x, "
  222. "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
  223. if (readl(&regs->Mode) & FATAL_ERR)
  224. printk("error codes Fail1 %02x, Fail2 %02x\n",
  225. readl(&regs->Fail1), readl(&regs->Fail2));
  226. }
  227. idx = rrpriv->info->cmd_ctrl.pi;
  228. writel(*(u32*)(cmd), &regs->CmdRing[idx]);
  229. wmb();
  230. idx = (idx - 1) % CMD_RING_ENTRIES;
  231. rrpriv->info->cmd_ctrl.pi = idx;
  232. wmb();
  233. if (readl(&regs->Mode) & FATAL_ERR)
  234. printk("error code %02x\n", readl(&regs->Fail1));
  235. }
  236. /*
  237. * Reset the board in a sensible manner. The NIC is already halted
  238. * when we get here and a spin-lock is held.
  239. */
  240. static int rr_reset(struct net_device *dev)
  241. {
  242. struct rr_private *rrpriv;
  243. struct rr_regs __iomem *regs;
  244. struct eeprom *hw = NULL;
  245. u32 start_pc;
  246. int i;
  247. rrpriv = netdev_priv(dev);
  248. regs = rrpriv->regs;
  249. rr_load_firmware(dev);
  250. writel(0x01000000, &regs->TX_state);
  251. writel(0xff800000, &regs->RX_state);
  252. writel(0, &regs->AssistState);
  253. writel(CLEAR_INTA, &regs->LocalCtrl);
  254. writel(0x01, &regs->BrkPt);
  255. writel(0, &regs->Timer);
  256. writel(0, &regs->TimerRef);
  257. writel(RESET_DMA, &regs->DmaReadState);
  258. writel(RESET_DMA, &regs->DmaWriteState);
  259. writel(0, &regs->DmaWriteHostHi);
  260. writel(0, &regs->DmaWriteHostLo);
  261. writel(0, &regs->DmaReadHostHi);
  262. writel(0, &regs->DmaReadHostLo);
  263. writel(0, &regs->DmaReadLen);
  264. writel(0, &regs->DmaWriteLen);
  265. writel(0, &regs->DmaWriteLcl);
  266. writel(0, &regs->DmaWriteIPchecksum);
  267. writel(0, &regs->DmaReadLcl);
  268. writel(0, &regs->DmaReadIPchecksum);
  269. writel(0, &regs->PciState);
  270. #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
  271. writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
  272. #elif (BITS_PER_LONG == 64)
  273. writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
  274. #else
  275. writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
  276. #endif
  277. #if 0
  278. /*
  279. * Don't worry, this is just black magic.
  280. */
  281. writel(0xdf000, &regs->RxBase);
  282. writel(0xdf000, &regs->RxPrd);
  283. writel(0xdf000, &regs->RxCon);
  284. writel(0xce000, &regs->TxBase);
  285. writel(0xce000, &regs->TxPrd);
  286. writel(0xce000, &regs->TxCon);
  287. writel(0, &regs->RxIndPro);
  288. writel(0, &regs->RxIndCon);
  289. writel(0, &regs->RxIndRef);
  290. writel(0, &regs->TxIndPro);
  291. writel(0, &regs->TxIndCon);
  292. writel(0, &regs->TxIndRef);
  293. writel(0xcc000, &regs->pad10[0]);
  294. writel(0, &regs->DrCmndPro);
  295. writel(0, &regs->DrCmndCon);
  296. writel(0, &regs->DwCmndPro);
  297. writel(0, &regs->DwCmndCon);
  298. writel(0, &regs->DwCmndRef);
  299. writel(0, &regs->DrDataPro);
  300. writel(0, &regs->DrDataCon);
  301. writel(0, &regs->DrDataRef);
  302. writel(0, &regs->DwDataPro);
  303. writel(0, &regs->DwDataCon);
  304. writel(0, &regs->DwDataRef);
  305. #endif
  306. writel(0xffffffff, &regs->MbEvent);
  307. writel(0, &regs->Event);
  308. writel(0, &regs->TxPi);
  309. writel(0, &regs->IpRxPi);
  310. writel(0, &regs->EvtCon);
  311. writel(0, &regs->EvtPrd);
  312. rrpriv->info->evt_ctrl.pi = 0;
  313. for (i = 0; i < CMD_RING_ENTRIES; i++)
  314. writel(0, &regs->CmdRing[i]);
  315. /*
  316. * Why 32 ? is this not cache line size dependent?
  317. */
  318. writel(RBURST_64|WBURST_64, &regs->PciState);
  319. wmb();
  320. start_pc = rr_read_eeprom_word(rrpriv, &hw->rncd_info.FwStart);
  321. #if (DEBUG > 1)
  322. printk("%s: Executing firmware at address 0x%06x\n",
  323. dev->name, start_pc);
  324. #endif
  325. writel(start_pc + 0x800, &regs->Pc);
  326. wmb();
  327. udelay(5);
  328. writel(start_pc, &regs->Pc);
  329. wmb();
  330. return 0;
  331. }
  332. /*
  333. * Read a string from the EEPROM.
  334. */
  335. static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
  336. unsigned long offset,
  337. unsigned char *buf,
  338. unsigned long length)
  339. {
  340. struct rr_regs __iomem *regs = rrpriv->regs;
  341. u32 misc, io, host, i;
  342. io = readl(&regs->ExtIo);
  343. writel(0, &regs->ExtIo);
  344. misc = readl(&regs->LocalCtrl);
  345. writel(0, &regs->LocalCtrl);
  346. host = readl(&regs->HostCtrl);
  347. writel(host | HALT_NIC, &regs->HostCtrl);
  348. mb();
  349. for (i = 0; i < length; i++){
  350. writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
  351. mb();
  352. buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
  353. mb();
  354. }
  355. writel(host, &regs->HostCtrl);
  356. writel(misc, &regs->LocalCtrl);
  357. writel(io, &regs->ExtIo);
  358. mb();
  359. return i;
  360. }
  361. /*
  362. * Shortcut to read one word (4 bytes) out of the EEPROM and convert
  363. * it to our CPU byte-order.
  364. */
  365. static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
  366. void * offset)
  367. {
  368. u32 word;
  369. if ((rr_read_eeprom(rrpriv, (unsigned long)offset,
  370. (char *)&word, 4) == 4))
  371. return be32_to_cpu(word);
  372. return 0;
  373. }
  374. /*
  375. * Write a string to the EEPROM.
  376. *
  377. * This is only called when the firmware is not running.
  378. */
  379. static unsigned int write_eeprom(struct rr_private *rrpriv,
  380. unsigned long offset,
  381. unsigned char *buf,
  382. unsigned long length)
  383. {
  384. struct rr_regs __iomem *regs = rrpriv->regs;
  385. u32 misc, io, data, i, j, ready, error = 0;
  386. io = readl(&regs->ExtIo);
  387. writel(0, &regs->ExtIo);
  388. misc = readl(&regs->LocalCtrl);
  389. writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
  390. mb();
  391. for (i = 0; i < length; i++){
  392. writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
  393. mb();
  394. data = buf[i] << 24;
  395. /*
  396. * Only try to write the data if it is not the same
  397. * value already.
  398. */
  399. if ((readl(&regs->WinData) & 0xff000000) != data){
  400. writel(data, &regs->WinData);
  401. ready = 0;
  402. j = 0;
  403. mb();
  404. while(!ready){
  405. udelay(20);
  406. if ((readl(&regs->WinData) & 0xff000000) ==
  407. data)
  408. ready = 1;
  409. mb();
  410. if (j++ > 5000){
  411. printk("data mismatch: %08x, "
  412. "WinData %08x\n", data,
  413. readl(&regs->WinData));
  414. ready = 1;
  415. error = 1;
  416. }
  417. }
  418. }
  419. }
  420. writel(misc, &regs->LocalCtrl);
  421. writel(io, &regs->ExtIo);
  422. mb();
  423. return error;
  424. }
  425. static int __devinit rr_init(struct net_device *dev)
  426. {
  427. struct rr_private *rrpriv;
  428. struct rr_regs __iomem *regs;
  429. struct eeprom *hw = NULL;
  430. u32 sram_size, rev;
  431. DECLARE_MAC_BUF(mac);
  432. rrpriv = netdev_priv(dev);
  433. regs = rrpriv->regs;
  434. rev = readl(&regs->FwRev);
  435. rrpriv->fw_rev = rev;
  436. if (rev > 0x00020024)
  437. printk(" Firmware revision: %i.%i.%i\n", (rev >> 16),
  438. ((rev >> 8) & 0xff), (rev & 0xff));
  439. else if (rev >= 0x00020000) {
  440. printk(" Firmware revision: %i.%i.%i (2.0.37 or "
  441. "later is recommended)\n", (rev >> 16),
  442. ((rev >> 8) & 0xff), (rev & 0xff));
  443. }else{
  444. printk(" Firmware revision too old: %i.%i.%i, please "
  445. "upgrade to 2.0.37 or later.\n",
  446. (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
  447. }
  448. #if (DEBUG > 2)
  449. printk(" Maximum receive rings %i\n", readl(&regs->MaxRxRng));
  450. #endif
  451. /*
  452. * Read the hardware address from the eeprom. The HW address
  453. * is not really necessary for HIPPI but awfully convenient.
  454. * The pointer arithmetic to put it in dev_addr is ugly, but
  455. * Donald Becker does it this way for the GigE version of this
  456. * card and it's shorter and more portable than any
  457. * other method I've seen. -VAL
  458. */
  459. *(u16 *)(dev->dev_addr) =
  460. htons(rr_read_eeprom_word(rrpriv, &hw->manf.BoardULA));
  461. *(u32 *)(dev->dev_addr+2) =
  462. htonl(rr_read_eeprom_word(rrpriv, &hw->manf.BoardULA[4]));
  463. printk(" MAC: %s\n", print_mac(mac, dev->dev_addr));
  464. sram_size = rr_read_eeprom_word(rrpriv, (void *)8);
  465. printk(" SRAM size 0x%06x\n", sram_size);
  466. return 0;
  467. }
  468. static int rr_init1(struct net_device *dev)
  469. {
  470. struct rr_private *rrpriv;
  471. struct rr_regs __iomem *regs;
  472. unsigned long myjif, flags;
  473. struct cmd cmd;
  474. u32 hostctrl;
  475. int ecode = 0;
  476. short i;
  477. rrpriv = netdev_priv(dev);
  478. regs = rrpriv->regs;
  479. spin_lock_irqsave(&rrpriv->lock, flags);
  480. hostctrl = readl(&regs->HostCtrl);
  481. writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
  482. wmb();
  483. if (hostctrl & PARITY_ERR){
  484. printk("%s: Parity error halting NIC - this is serious!\n",
  485. dev->name);
  486. spin_unlock_irqrestore(&rrpriv->lock, flags);
  487. ecode = -EFAULT;
  488. goto error;
  489. }
  490. set_rxaddr(regs, rrpriv->rx_ctrl_dma);
  491. set_infoaddr(regs, rrpriv->info_dma);
  492. rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
  493. rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
  494. rrpriv->info->evt_ctrl.mode = 0;
  495. rrpriv->info->evt_ctrl.pi = 0;
  496. set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
  497. rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
  498. rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
  499. rrpriv->info->cmd_ctrl.mode = 0;
  500. rrpriv->info->cmd_ctrl.pi = 15;
  501. for (i = 0; i < CMD_RING_ENTRIES; i++) {
  502. writel(0, &regs->CmdRing[i]);
  503. }
  504. for (i = 0; i < TX_RING_ENTRIES; i++) {
  505. rrpriv->tx_ring[i].size = 0;
  506. set_rraddr(&rrpriv->tx_ring[i].addr, 0);
  507. rrpriv->tx_skbuff[i] = NULL;
  508. }
  509. rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
  510. rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
  511. rrpriv->info->tx_ctrl.mode = 0;
  512. rrpriv->info->tx_ctrl.pi = 0;
  513. set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
  514. /*
  515. * Set dirty_tx before we start receiving interrupts, otherwise
  516. * the interrupt handler might think it is supposed to process
  517. * tx ints before we are up and running, which may cause a null
  518. * pointer access in the int handler.
  519. */
  520. rrpriv->tx_full = 0;
  521. rrpriv->cur_rx = 0;
  522. rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
  523. rr_reset(dev);
  524. /* Tuning values */
  525. writel(0x5000, &regs->ConRetry);
  526. writel(0x100, &regs->ConRetryTmr);
  527. writel(0x500000, &regs->ConTmout);
  528. writel(0x60, &regs->IntrTmr);
  529. writel(0x500000, &regs->TxDataMvTimeout);
  530. writel(0x200000, &regs->RxDataMvTimeout);
  531. writel(0x80, &regs->WriteDmaThresh);
  532. writel(0x80, &regs->ReadDmaThresh);
  533. rrpriv->fw_running = 0;
  534. wmb();
  535. hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
  536. writel(hostctrl, &regs->HostCtrl);
  537. wmb();
  538. spin_unlock_irqrestore(&rrpriv->lock, flags);
  539. for (i = 0; i < RX_RING_ENTRIES; i++) {
  540. struct sk_buff *skb;
  541. dma_addr_t addr;
  542. rrpriv->rx_ring[i].mode = 0;
  543. skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
  544. if (!skb) {
  545. printk(KERN_WARNING "%s: Unable to allocate memory "
  546. "for receive ring - halting NIC\n", dev->name);
  547. ecode = -ENOMEM;
  548. goto error;
  549. }
  550. rrpriv->rx_skbuff[i] = skb;
  551. addr = pci_map_single(rrpriv->pci_dev, skb->data,
  552. dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
  553. /*
  554. * Sanity test to see if we conflict with the DMA
  555. * limitations of the Roadrunner.
  556. */
  557. if ((((unsigned long)skb->data) & 0xfff) > ~65320)
  558. printk("skb alloc error\n");
  559. set_rraddr(&rrpriv->rx_ring[i].addr, addr);
  560. rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
  561. }
  562. rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
  563. rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
  564. rrpriv->rx_ctrl[4].mode = 8;
  565. rrpriv->rx_ctrl[4].pi = 0;
  566. wmb();
  567. set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
  568. udelay(1000);
  569. /*
  570. * Now start the FirmWare.
  571. */
  572. cmd.code = C_START_FW;
  573. cmd.ring = 0;
  574. cmd.index = 0;
  575. rr_issue_cmd(rrpriv, &cmd);
  576. /*
  577. * Give the FirmWare time to chew on the `get running' command.
  578. */
  579. myjif = jiffies + 5 * HZ;
  580. while (time_before(jiffies, myjif) && !rrpriv->fw_running)
  581. cpu_relax();
  582. netif_start_queue(dev);
  583. return ecode;
  584. error:
  585. /*
  586. * We might have gotten here because we are out of memory,
  587. * make sure we release everything we allocated before failing
  588. */
  589. for (i = 0; i < RX_RING_ENTRIES; i++) {
  590. struct sk_buff *skb = rrpriv->rx_skbuff[i];
  591. if (skb) {
  592. pci_unmap_single(rrpriv->pci_dev,
  593. rrpriv->rx_ring[i].addr.addrlo,
  594. dev->mtu + HIPPI_HLEN,
  595. PCI_DMA_FROMDEVICE);
  596. rrpriv->rx_ring[i].size = 0;
  597. set_rraddr(&rrpriv->rx_ring[i].addr, 0);
  598. dev_kfree_skb(skb);
  599. rrpriv->rx_skbuff[i] = NULL;
  600. }
  601. }
  602. return ecode;
  603. }
  604. /*
  605. * All events are considered to be slow (RX/TX ints do not generate
  606. * events) and are handled here, outside the main interrupt handler,
  607. * to reduce the size of the handler.
  608. */
  609. static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
  610. {
  611. struct rr_private *rrpriv;
  612. struct rr_regs __iomem *regs;
  613. u32 tmp;
  614. rrpriv = netdev_priv(dev);
  615. regs = rrpriv->regs;
  616. while (prodidx != eidx){
  617. switch (rrpriv->evt_ring[eidx].code){
  618. case E_NIC_UP:
  619. tmp = readl(&regs->FwRev);
  620. printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
  621. "up and running\n", dev->name,
  622. (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
  623. rrpriv->fw_running = 1;
  624. writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
  625. wmb();
  626. break;
  627. case E_LINK_ON:
  628. printk(KERN_INFO "%s: Optical link ON\n", dev->name);
  629. break;
  630. case E_LINK_OFF:
  631. printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
  632. break;
  633. case E_RX_IDLE:
  634. printk(KERN_WARNING "%s: RX data not moving\n",
  635. dev->name);
  636. goto drop;
  637. case E_WATCHDOG:
  638. printk(KERN_INFO "%s: The watchdog is here to see "
  639. "us\n", dev->name);
  640. break;
  641. case E_INTERN_ERR:
  642. printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
  643. dev->name);
  644. writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
  645. &regs->HostCtrl);
  646. wmb();
  647. break;
  648. case E_HOST_ERR:
  649. printk(KERN_ERR "%s: Host software error\n",
  650. dev->name);
  651. writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
  652. &regs->HostCtrl);
  653. wmb();
  654. break;
  655. /*
  656. * TX events.
  657. */
  658. case E_CON_REJ:
  659. printk(KERN_WARNING "%s: Connection rejected\n",
  660. dev->name);
  661. dev->stats.tx_aborted_errors++;
  662. break;
  663. case E_CON_TMOUT:
  664. printk(KERN_WARNING "%s: Connection timeout\n",
  665. dev->name);
  666. break;
  667. case E_DISC_ERR:
  668. printk(KERN_WARNING "%s: HIPPI disconnect error\n",
  669. dev->name);
  670. dev->stats.tx_aborted_errors++;
  671. break;
  672. case E_INT_PRTY:
  673. printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
  674. dev->name);
  675. writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
  676. &regs->HostCtrl);
  677. wmb();
  678. break;
  679. case E_TX_IDLE:
  680. printk(KERN_WARNING "%s: Transmitter idle\n",
  681. dev->name);
  682. break;
  683. case E_TX_LINK_DROP:
  684. printk(KERN_WARNING "%s: Link lost during transmit\n",
  685. dev->name);
  686. dev->stats.tx_aborted_errors++;
  687. writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
  688. &regs->HostCtrl);
  689. wmb();
  690. break;
  691. case E_TX_INV_RNG:
  692. printk(KERN_ERR "%s: Invalid send ring block\n",
  693. dev->name);
  694. writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
  695. &regs->HostCtrl);
  696. wmb();
  697. break;
  698. case E_TX_INV_BUF:
  699. printk(KERN_ERR "%s: Invalid send buffer address\n",
  700. dev->name);
  701. writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
  702. &regs->HostCtrl);
  703. wmb();
  704. break;
  705. case E_TX_INV_DSC:
  706. printk(KERN_ERR "%s: Invalid descriptor address\n",
  707. dev->name);
  708. writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
  709. &regs->HostCtrl);
  710. wmb();
  711. break;
  712. /*
  713. * RX events.
  714. */
  715. case E_RX_RNG_OUT:
  716. printk(KERN_INFO "%s: Receive ring full\n", dev->name);
  717. break;
  718. case E_RX_PAR_ERR:
  719. printk(KERN_WARNING "%s: Receive parity error\n",
  720. dev->name);
  721. goto drop;
  722. case E_RX_LLRC_ERR:
  723. printk(KERN_WARNING "%s: Receive LLRC error\n",
  724. dev->name);
  725. goto drop;
  726. case E_PKT_LN_ERR:
  727. printk(KERN_WARNING "%s: Receive packet length "
  728. "error\n", dev->name);
  729. goto drop;
  730. case E_DTA_CKSM_ERR:
  731. printk(KERN_WARNING "%s: Data checksum error\n",
  732. dev->name);
  733. goto drop;
  734. case E_SHT_BST:
  735. printk(KERN_WARNING "%s: Unexpected short burst "
  736. "error\n", dev->name);
  737. goto drop;
  738. case E_STATE_ERR:
  739. printk(KERN_WARNING "%s: Recv. state transition"
  740. " error\n", dev->name);
  741. goto drop;
  742. case E_UNEXP_DATA:
  743. printk(KERN_WARNING "%s: Unexpected data error\n",
  744. dev->name);
  745. goto drop;
  746. case E_LST_LNK_ERR:
  747. printk(KERN_WARNING "%s: Link lost error\n",
  748. dev->name);
  749. goto drop;
  750. case E_FRM_ERR:
  751. printk(KERN_WARNING "%s: Framming Error\n",
  752. dev->name);
  753. goto drop;
  754. case E_FLG_SYN_ERR:
  755. printk(KERN_WARNING "%s: Flag sync. lost during"
  756. "packet\n", dev->name);
  757. goto drop;
  758. case E_RX_INV_BUF:
  759. printk(KERN_ERR "%s: Invalid receive buffer "
  760. "address\n", dev->name);
  761. writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
  762. &regs->HostCtrl);
  763. wmb();
  764. break;
  765. case E_RX_INV_DSC:
  766. printk(KERN_ERR "%s: Invalid receive descriptor "
  767. "address\n", dev->name);
  768. writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
  769. &regs->HostCtrl);
  770. wmb();
  771. break;
  772. case E_RNG_BLK:
  773. printk(KERN_ERR "%s: Invalid ring block\n",
  774. dev->name);
  775. writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
  776. &regs->HostCtrl);
  777. wmb();
  778. break;
  779. drop:
  780. /* Label packet to be dropped.
  781. * Actual dropping occurs in rx
  782. * handling.
  783. *
  784. * The index of packet we get to drop is
  785. * the index of the packet following
  786. * the bad packet. -kbf
  787. */
  788. {
  789. u16 index = rrpriv->evt_ring[eidx].index;
  790. index = (index + (RX_RING_ENTRIES - 1)) %
  791. RX_RING_ENTRIES;
  792. rrpriv->rx_ring[index].mode |=
  793. (PACKET_BAD | PACKET_END);
  794. }
  795. break;
  796. default:
  797. printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
  798. dev->name, rrpriv->evt_ring[eidx].code);
  799. }
  800. eidx = (eidx + 1) % EVT_RING_ENTRIES;
  801. }
  802. rrpriv->info->evt_ctrl.pi = eidx;
  803. wmb();
  804. return eidx;
  805. }
  806. static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
  807. {
  808. struct rr_private *rrpriv = netdev_priv(dev);
  809. struct rr_regs __iomem *regs = rrpriv->regs;
  810. do {
  811. struct rx_desc *desc;
  812. u32 pkt_len;
  813. desc = &(rrpriv->rx_ring[index]);
  814. pkt_len = desc->size;
  815. #if (DEBUG > 2)
  816. printk("index %i, rxlimit %i\n", index, rxlimit);
  817. printk("len %x, mode %x\n", pkt_len, desc->mode);
  818. #endif
  819. if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
  820. dev->stats.rx_dropped++;
  821. goto defer;
  822. }
  823. if (pkt_len > 0){
  824. struct sk_buff *skb, *rx_skb;
  825. rx_skb = rrpriv->rx_skbuff[index];
  826. if (pkt_len < PKT_COPY_THRESHOLD) {
  827. skb = alloc_skb(pkt_len, GFP_ATOMIC);
  828. if (skb == NULL){
  829. printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
  830. dev->stats.rx_dropped++;
  831. goto defer;
  832. } else {
  833. pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
  834. desc->addr.addrlo,
  835. pkt_len,
  836. PCI_DMA_FROMDEVICE);
  837. memcpy(skb_put(skb, pkt_len),
  838. rx_skb->data, pkt_len);
  839. pci_dma_sync_single_for_device(rrpriv->pci_dev,
  840. desc->addr.addrlo,
  841. pkt_len,
  842. PCI_DMA_FROMDEVICE);
  843. }
  844. }else{
  845. struct sk_buff *newskb;
  846. newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
  847. GFP_ATOMIC);
  848. if (newskb){
  849. dma_addr_t addr;
  850. pci_unmap_single(rrpriv->pci_dev,
  851. desc->addr.addrlo, dev->mtu +
  852. HIPPI_HLEN, PCI_DMA_FROMDEVICE);
  853. skb = rx_skb;
  854. skb_put(skb, pkt_len);
  855. rrpriv->rx_skbuff[index] = newskb;
  856. addr = pci_map_single(rrpriv->pci_dev,
  857. newskb->data,
  858. dev->mtu + HIPPI_HLEN,
  859. PCI_DMA_FROMDEVICE);
  860. set_rraddr(&desc->addr, addr);
  861. } else {
  862. printk("%s: Out of memory, deferring "
  863. "packet\n", dev->name);
  864. dev->stats.rx_dropped++;
  865. goto defer;
  866. }
  867. }
  868. skb->protocol = hippi_type_trans(skb, dev);
  869. netif_rx(skb); /* send it up */
  870. dev->last_rx = jiffies;
  871. dev->stats.rx_packets++;
  872. dev->stats.rx_bytes += pkt_len;
  873. }
  874. defer:
  875. desc->mode = 0;
  876. desc->size = dev->mtu + HIPPI_HLEN;
  877. if ((index & 7) == 7)
  878. writel(index, &regs->IpRxPi);
  879. index = (index + 1) % RX_RING_ENTRIES;
  880. } while(index != rxlimit);
  881. rrpriv->cur_rx = index;
  882. wmb();
  883. }
  884. static irqreturn_t rr_interrupt(int irq, void *dev_id)
  885. {
  886. struct rr_private *rrpriv;
  887. struct rr_regs __iomem *regs;
  888. struct net_device *dev = (struct net_device *)dev_id;
  889. u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
  890. rrpriv = netdev_priv(dev);
  891. regs = rrpriv->regs;
  892. if (!(readl(&regs->HostCtrl) & RR_INT))
  893. return IRQ_NONE;
  894. spin_lock(&rrpriv->lock);
  895. prodidx = readl(&regs->EvtPrd);
  896. txcsmr = (prodidx >> 8) & 0xff;
  897. rxlimit = (prodidx >> 16) & 0xff;
  898. prodidx &= 0xff;
  899. #if (DEBUG > 2)
  900. printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
  901. prodidx, rrpriv->info->evt_ctrl.pi);
  902. #endif
  903. /*
  904. * Order here is important. We must handle events
  905. * before doing anything else in order to catch
  906. * such things as LLRC errors, etc -kbf
  907. */
  908. eidx = rrpriv->info->evt_ctrl.pi;
  909. if (prodidx != eidx)
  910. eidx = rr_handle_event(dev, prodidx, eidx);
  911. rxindex = rrpriv->cur_rx;
  912. if (rxindex != rxlimit)
  913. rx_int(dev, rxlimit, rxindex);
  914. txcon = rrpriv->dirty_tx;
  915. if (txcsmr != txcon) {
  916. do {
  917. /* Due to occational firmware TX producer/consumer out
  918. * of sync. error need to check entry in ring -kbf
  919. */
  920. if(rrpriv->tx_skbuff[txcon]){
  921. struct tx_desc *desc;
  922. struct sk_buff *skb;
  923. desc = &(rrpriv->tx_ring[txcon]);
  924. skb = rrpriv->tx_skbuff[txcon];
  925. dev->stats.tx_packets++;
  926. dev->stats.tx_bytes += skb->len;
  927. pci_unmap_single(rrpriv->pci_dev,
  928. desc->addr.addrlo, skb->len,
  929. PCI_DMA_TODEVICE);
  930. dev_kfree_skb_irq(skb);
  931. rrpriv->tx_skbuff[txcon] = NULL;
  932. desc->size = 0;
  933. set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
  934. desc->mode = 0;
  935. }
  936. txcon = (txcon + 1) % TX_RING_ENTRIES;
  937. } while (txcsmr != txcon);
  938. wmb();
  939. rrpriv->dirty_tx = txcon;
  940. if (rrpriv->tx_full && rr_if_busy(dev) &&
  941. (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
  942. != rrpriv->dirty_tx)){
  943. rrpriv->tx_full = 0;
  944. netif_wake_queue(dev);
  945. }
  946. }
  947. eidx |= ((txcsmr << 8) | (rxlimit << 16));
  948. writel(eidx, &regs->EvtCon);
  949. wmb();
  950. spin_unlock(&rrpriv->lock);
  951. return IRQ_HANDLED;
  952. }
  953. static inline void rr_raz_tx(struct rr_private *rrpriv,
  954. struct net_device *dev)
  955. {
  956. int i;
  957. for (i = 0; i < TX_RING_ENTRIES; i++) {
  958. struct sk_buff *skb = rrpriv->tx_skbuff[i];
  959. if (skb) {
  960. struct tx_desc *desc = &(rrpriv->tx_ring[i]);
  961. pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
  962. skb->len, PCI_DMA_TODEVICE);
  963. desc->size = 0;
  964. set_rraddr(&desc->addr, 0);
  965. dev_kfree_skb(skb);
  966. rrpriv->tx_skbuff[i] = NULL;
  967. }
  968. }
  969. }
  970. static inline void rr_raz_rx(struct rr_private *rrpriv,
  971. struct net_device *dev)
  972. {
  973. int i;
  974. for (i = 0; i < RX_RING_ENTRIES; i++) {
  975. struct sk_buff *skb = rrpriv->rx_skbuff[i];
  976. if (skb) {
  977. struct rx_desc *desc = &(rrpriv->rx_ring[i]);
  978. pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
  979. dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
  980. desc->size = 0;
  981. set_rraddr(&desc->addr, 0);
  982. dev_kfree_skb(skb);
  983. rrpriv->rx_skbuff[i] = NULL;
  984. }
  985. }
  986. }
  987. static void rr_timer(unsigned long data)
  988. {
  989. struct net_device *dev = (struct net_device *)data;
  990. struct rr_private *rrpriv = netdev_priv(dev);
  991. struct rr_regs __iomem *regs = rrpriv->regs;
  992. unsigned long flags;
  993. if (readl(&regs->HostCtrl) & NIC_HALTED){
  994. printk("%s: Restarting nic\n", dev->name);
  995. memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
  996. memset(rrpriv->info, 0, sizeof(struct rr_info));
  997. wmb();
  998. rr_raz_tx(rrpriv, dev);
  999. rr_raz_rx(rrpriv, dev);
  1000. if (rr_init1(dev)) {
  1001. spin_lock_irqsave(&rrpriv->lock, flags);
  1002. writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
  1003. &regs->HostCtrl);
  1004. spin_unlock_irqrestore(&rrpriv->lock, flags);
  1005. }
  1006. }
  1007. rrpriv->timer.expires = RUN_AT(5*HZ);
  1008. add_timer(&rrpriv->timer);
  1009. }
  1010. static int rr_open(struct net_device *dev)
  1011. {
  1012. struct rr_private *rrpriv = netdev_priv(dev);
  1013. struct pci_dev *pdev = rrpriv->pci_dev;
  1014. struct rr_regs __iomem *regs;
  1015. int ecode = 0;
  1016. unsigned long flags;
  1017. dma_addr_t dma_addr;
  1018. regs = rrpriv->regs;
  1019. if (rrpriv->fw_rev < 0x00020000) {
  1020. printk(KERN_WARNING "%s: trying to configure device with "
  1021. "obsolete firmware\n", dev->name);
  1022. ecode = -EBUSY;
  1023. goto error;
  1024. }
  1025. rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
  1026. 256 * sizeof(struct ring_ctrl),
  1027. &dma_addr);
  1028. if (!rrpriv->rx_ctrl) {
  1029. ecode = -ENOMEM;
  1030. goto error;
  1031. }
  1032. rrpriv->rx_ctrl_dma = dma_addr;
  1033. memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
  1034. rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
  1035. &dma_addr);
  1036. if (!rrpriv->info) {
  1037. ecode = -ENOMEM;
  1038. goto error;
  1039. }
  1040. rrpriv->info_dma = dma_addr;
  1041. memset(rrpriv->info, 0, sizeof(struct rr_info));
  1042. wmb();
  1043. spin_lock_irqsave(&rrpriv->lock, flags);
  1044. writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
  1045. readl(&regs->HostCtrl);
  1046. spin_unlock_irqrestore(&rrpriv->lock, flags);
  1047. if (request_irq(dev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
  1048. printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
  1049. dev->name, dev->irq);
  1050. ecode = -EAGAIN;
  1051. goto error;
  1052. }
  1053. if ((ecode = rr_init1(dev)))
  1054. goto error;
  1055. /* Set the timer to switch to check for link beat and perhaps switch
  1056. to an alternate media type. */
  1057. init_timer(&rrpriv->timer);
  1058. rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */
  1059. rrpriv->timer.data = (unsigned long)dev;
  1060. rrpriv->timer.function = &rr_timer; /* timer handler */
  1061. add_timer(&rrpriv->timer);
  1062. netif_start_queue(dev);
  1063. return ecode;
  1064. error:
  1065. spin_lock_irqsave(&rrpriv->lock, flags);
  1066. writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
  1067. spin_unlock_irqrestore(&rrpriv->lock, flags);
  1068. if (rrpriv->info) {
  1069. pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
  1070. rrpriv->info_dma);
  1071. rrpriv->info = NULL;
  1072. }
  1073. if (rrpriv->rx_ctrl) {
  1074. pci_free_consistent(pdev, sizeof(struct ring_ctrl),
  1075. rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
  1076. rrpriv->rx_ctrl = NULL;
  1077. }
  1078. netif_stop_queue(dev);
  1079. return ecode;
  1080. }
  1081. static void rr_dump(struct net_device *dev)
  1082. {
  1083. struct rr_private *rrpriv;
  1084. struct rr_regs __iomem *regs;
  1085. u32 index, cons;
  1086. short i;
  1087. int len;
  1088. rrpriv = netdev_priv(dev);
  1089. regs = rrpriv->regs;
  1090. printk("%s: dumping NIC TX rings\n", dev->name);
  1091. printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
  1092. readl(&regs->RxPrd), readl(&regs->TxPrd),
  1093. readl(&regs->EvtPrd), readl(&regs->TxPi),
  1094. rrpriv->info->tx_ctrl.pi);
  1095. printk("Error code 0x%x\n", readl(&regs->Fail1));
  1096. index = (((readl(&regs->EvtPrd) >> 8) & 0xff ) - 1) % EVT_RING_ENTRIES;
  1097. cons = rrpriv->dirty_tx;
  1098. printk("TX ring index %i, TX consumer %i\n",
  1099. index, cons);
  1100. if (rrpriv->tx_skbuff[index]){
  1101. len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
  1102. printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
  1103. for (i = 0; i < len; i++){
  1104. if (!(i & 7))
  1105. printk("\n");
  1106. printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
  1107. }
  1108. printk("\n");
  1109. }
  1110. if (rrpriv->tx_skbuff[cons]){
  1111. len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
  1112. printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
  1113. printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
  1114. rrpriv->tx_ring[cons].mode,
  1115. rrpriv->tx_ring[cons].size,
  1116. (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
  1117. (unsigned long)rrpriv->tx_skbuff[cons]->data,
  1118. (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
  1119. for (i = 0; i < len; i++){
  1120. if (!(i & 7))
  1121. printk("\n");
  1122. printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
  1123. }
  1124. printk("\n");
  1125. }
  1126. printk("dumping TX ring info:\n");
  1127. for (i = 0; i < TX_RING_ENTRIES; i++)
  1128. printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
  1129. rrpriv->tx_ring[i].mode,
  1130. rrpriv->tx_ring[i].size,
  1131. (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
  1132. }
  1133. static int rr_close(struct net_device *dev)
  1134. {
  1135. struct rr_private *rrpriv;
  1136. struct rr_regs __iomem *regs;
  1137. unsigned long flags;
  1138. u32 tmp;
  1139. short i;
  1140. netif_stop_queue(dev);
  1141. rrpriv = netdev_priv(dev);
  1142. regs = rrpriv->regs;
  1143. /*
  1144. * Lock to make sure we are not cleaning up while another CPU
  1145. * is handling interrupts.
  1146. */
  1147. spin_lock_irqsave(&rrpriv->lock, flags);
  1148. tmp = readl(&regs->HostCtrl);
  1149. if (tmp & NIC_HALTED){
  1150. printk("%s: NIC already halted\n", dev->name);
  1151. rr_dump(dev);
  1152. }else{
  1153. tmp |= HALT_NIC | RR_CLEAR_INT;
  1154. writel(tmp, &regs->HostCtrl);
  1155. readl(&regs->HostCtrl);
  1156. }
  1157. rrpriv->fw_running = 0;
  1158. del_timer_sync(&rrpriv->timer);
  1159. writel(0, &regs->TxPi);
  1160. writel(0, &regs->IpRxPi);
  1161. writel(0, &regs->EvtCon);
  1162. writel(0, &regs->EvtPrd);
  1163. for (i = 0; i < CMD_RING_ENTRIES; i++)
  1164. writel(0, &regs->CmdRing[i]);
  1165. rrpriv->info->tx_ctrl.entries = 0;
  1166. rrpriv->info->cmd_ctrl.pi = 0;
  1167. rrpriv->info->evt_ctrl.pi = 0;
  1168. rrpriv->rx_ctrl[4].entries = 0;
  1169. rr_raz_tx(rrpriv, dev);
  1170. rr_raz_rx(rrpriv, dev);
  1171. pci_free_consistent(rrpriv->pci_dev, 256 * sizeof(struct ring_ctrl),
  1172. rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
  1173. rrpriv->rx_ctrl = NULL;
  1174. pci_free_consistent(rrpriv->pci_dev, sizeof(struct rr_info),
  1175. rrpriv->info, rrpriv->info_dma);
  1176. rrpriv->info = NULL;
  1177. free_irq(dev->irq, dev);
  1178. spin_unlock_irqrestore(&rrpriv->lock, flags);
  1179. return 0;
  1180. }
  1181. static int rr_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1182. {
  1183. struct rr_private *rrpriv = netdev_priv(dev);
  1184. struct rr_regs __iomem *regs = rrpriv->regs;
  1185. struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
  1186. struct ring_ctrl *txctrl;
  1187. unsigned long flags;
  1188. u32 index, len = skb->len;
  1189. u32 *ifield;
  1190. struct sk_buff *new_skb;
  1191. if (readl(&regs->Mode) & FATAL_ERR)
  1192. printk("error codes Fail1 %02x, Fail2 %02x\n",
  1193. readl(&regs->Fail1), readl(&regs->Fail2));
  1194. /*
  1195. * We probably need to deal with tbusy here to prevent overruns.
  1196. */
  1197. if (skb_headroom(skb) < 8){
  1198. printk("incoming skb too small - reallocating\n");
  1199. if (!(new_skb = dev_alloc_skb(len + 8))) {
  1200. dev_kfree_skb(skb);
  1201. netif_wake_queue(dev);
  1202. return -EBUSY;
  1203. }
  1204. skb_reserve(new_skb, 8);
  1205. skb_put(new_skb, len);
  1206. skb_copy_from_linear_data(skb, new_skb->data, len);
  1207. dev_kfree_skb(skb);
  1208. skb = new_skb;
  1209. }
  1210. ifield = (u32 *)skb_push(skb, 8);
  1211. ifield[0] = 0;
  1212. ifield[1] = hcb->ifield;
  1213. /*
  1214. * We don't need the lock before we are actually going to start
  1215. * fiddling with the control blocks.
  1216. */
  1217. spin_lock_irqsave(&rrpriv->lock, flags);
  1218. txctrl = &rrpriv->info->tx_ctrl;
  1219. index = txctrl->pi;
  1220. rrpriv->tx_skbuff[index] = skb;
  1221. set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
  1222. rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
  1223. rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
  1224. rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
  1225. txctrl->pi = (index + 1) % TX_RING_ENTRIES;
  1226. wmb();
  1227. writel(txctrl->pi, &regs->TxPi);
  1228. if (txctrl->pi == rrpriv->dirty_tx){
  1229. rrpriv->tx_full = 1;
  1230. netif_stop_queue(dev);
  1231. }
  1232. spin_unlock_irqrestore(&rrpriv->lock, flags);
  1233. dev->trans_start = jiffies;
  1234. return 0;
  1235. }
  1236. /*
  1237. * Read the firmware out of the EEPROM and put it into the SRAM
  1238. * (or from user space - later)
  1239. *
  1240. * This operation requires the NIC to be halted and is performed with
  1241. * interrupts disabled and with the spinlock hold.
  1242. */
  1243. static int rr_load_firmware(struct net_device *dev)
  1244. {
  1245. struct rr_private *rrpriv;
  1246. struct rr_regs __iomem *regs;
  1247. unsigned long eptr, segptr;
  1248. int i, j;
  1249. u32 localctrl, sptr, len, tmp;
  1250. u32 p2len, p2size, nr_seg, revision, io, sram_size;
  1251. struct eeprom *hw = NULL;
  1252. rrpriv = netdev_priv(dev);
  1253. regs = rrpriv->regs;
  1254. if (dev->flags & IFF_UP)
  1255. return -EBUSY;
  1256. if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
  1257. printk("%s: Trying to load firmware to a running NIC.\n",
  1258. dev->name);
  1259. return -EBUSY;
  1260. }
  1261. localctrl = readl(&regs->LocalCtrl);
  1262. writel(0, &regs->LocalCtrl);
  1263. writel(0, &regs->EvtPrd);
  1264. writel(0, &regs->RxPrd);
  1265. writel(0, &regs->TxPrd);
  1266. /*
  1267. * First wipe the entire SRAM, otherwise we might run into all
  1268. * kinds of trouble ... sigh, this took almost all afternoon
  1269. * to track down ;-(
  1270. */
  1271. io = readl(&regs->ExtIo);
  1272. writel(0, &regs->ExtIo);
  1273. sram_size = rr_read_eeprom_word(rrpriv, (void *)8);
  1274. for (i = 200; i < sram_size / 4; i++){
  1275. writel(i * 4, &regs->WinBase);
  1276. mb();
  1277. writel(0, &regs->WinData);
  1278. mb();
  1279. }
  1280. writel(io, &regs->ExtIo);
  1281. mb();
  1282. eptr = (unsigned long)rr_read_eeprom_word(rrpriv,
  1283. &hw->rncd_info.AddrRunCodeSegs);
  1284. eptr = ((eptr & 0x1fffff) >> 3);
  1285. p2len = rr_read_eeprom_word(rrpriv, (void *)(0x83*4));
  1286. p2len = (p2len << 2);
  1287. p2size = rr_read_eeprom_word(rrpriv, (void *)(0x84*4));
  1288. p2size = ((p2size & 0x1fffff) >> 3);
  1289. if ((eptr < p2size) || (eptr > (p2size + p2len))){
  1290. printk("%s: eptr is invalid\n", dev->name);
  1291. goto out;
  1292. }
  1293. revision = rr_read_eeprom_word(rrpriv, &hw->manf.HeaderFmt);
  1294. if (revision != 1){
  1295. printk("%s: invalid firmware format (%i)\n",
  1296. dev->name, revision);
  1297. goto out;
  1298. }
  1299. nr_seg = rr_read_eeprom_word(rrpriv, (void *)eptr);
  1300. eptr +=4;
  1301. #if (DEBUG > 1)
  1302. printk("%s: nr_seg %i\n", dev->name, nr_seg);
  1303. #endif
  1304. for (i = 0; i < nr_seg; i++){
  1305. sptr = rr_read_eeprom_word(rrpriv, (void *)eptr);
  1306. eptr += 4;
  1307. len = rr_read_eeprom_word(rrpriv, (void *)eptr);
  1308. eptr += 4;
  1309. segptr = (unsigned long)rr_read_eeprom_word(rrpriv, (void *)eptr);
  1310. segptr = ((segptr & 0x1fffff) >> 3);
  1311. eptr += 4;
  1312. #if (DEBUG > 1)
  1313. printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
  1314. dev->name, i, sptr, len, segptr);
  1315. #endif
  1316. for (j = 0; j < len; j++){
  1317. tmp = rr_read_eeprom_word(rrpriv, (void *)segptr);
  1318. writel(sptr, &regs->WinBase);
  1319. mb();
  1320. writel(tmp, &regs->WinData);
  1321. mb();
  1322. segptr += 4;
  1323. sptr += 4;
  1324. }
  1325. }
  1326. out:
  1327. writel(localctrl, &regs->LocalCtrl);
  1328. mb();
  1329. return 0;
  1330. }
  1331. static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  1332. {
  1333. struct rr_private *rrpriv;
  1334. unsigned char *image, *oldimage;
  1335. unsigned long flags;
  1336. unsigned int i;
  1337. int error = -EOPNOTSUPP;
  1338. rrpriv = netdev_priv(dev);
  1339. switch(cmd){
  1340. case SIOCRRGFW:
  1341. if (!capable(CAP_SYS_RAWIO)){
  1342. return -EPERM;
  1343. }
  1344. image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
  1345. if (!image){
  1346. printk(KERN_ERR "%s: Unable to allocate memory "
  1347. "for EEPROM image\n", dev->name);
  1348. return -ENOMEM;
  1349. }
  1350. if (rrpriv->fw_running){
  1351. printk("%s: Firmware already running\n", dev->name);
  1352. error = -EPERM;
  1353. goto gf_out;
  1354. }
  1355. spin_lock_irqsave(&rrpriv->lock, flags);
  1356. i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
  1357. spin_unlock_irqrestore(&rrpriv->lock, flags);
  1358. if (i != EEPROM_BYTES){
  1359. printk(KERN_ERR "%s: Error reading EEPROM\n",
  1360. dev->name);
  1361. error = -EFAULT;
  1362. goto gf_out;
  1363. }
  1364. error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
  1365. if (error)
  1366. error = -EFAULT;
  1367. gf_out:
  1368. kfree(image);
  1369. return error;
  1370. case SIOCRRPFW:
  1371. if (!capable(CAP_SYS_RAWIO)){
  1372. return -EPERM;
  1373. }
  1374. image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
  1375. oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
  1376. if (!image || !oldimage) {
  1377. printk(KERN_ERR "%s: Unable to allocate memory "
  1378. "for EEPROM image\n", dev->name);
  1379. error = -ENOMEM;
  1380. goto wf_out;
  1381. }
  1382. error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
  1383. if (error) {
  1384. error = -EFAULT;
  1385. goto wf_out;
  1386. }
  1387. if (rrpriv->fw_running){
  1388. printk("%s: Firmware already running\n", dev->name);
  1389. error = -EPERM;
  1390. goto wf_out;
  1391. }
  1392. printk("%s: Updating EEPROM firmware\n", dev->name);
  1393. spin_lock_irqsave(&rrpriv->lock, flags);
  1394. error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
  1395. if (error)
  1396. printk(KERN_ERR "%s: Error writing EEPROM\n",
  1397. dev->name);
  1398. i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
  1399. spin_unlock_irqrestore(&rrpriv->lock, flags);
  1400. if (i != EEPROM_BYTES)
  1401. printk(KERN_ERR "%s: Error reading back EEPROM "
  1402. "image\n", dev->name);
  1403. error = memcmp(image, oldimage, EEPROM_BYTES);
  1404. if (error){
  1405. printk(KERN_ERR "%s: Error verifying EEPROM image\n",
  1406. dev->name);
  1407. error = -EFAULT;
  1408. }
  1409. wf_out:
  1410. kfree(oldimage);
  1411. kfree(image);
  1412. return error;
  1413. case SIOCRRID:
  1414. return put_user(0x52523032, (int __user *)rq->ifr_data);
  1415. default:
  1416. return error;
  1417. }
  1418. }
  1419. static struct pci_device_id rr_pci_tbl[] = {
  1420. { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
  1421. PCI_ANY_ID, PCI_ANY_ID, },
  1422. { 0,}
  1423. };
  1424. MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
  1425. static struct pci_driver rr_driver = {
  1426. .name = "rrunner",
  1427. .id_table = rr_pci_tbl,
  1428. .probe = rr_init_one,
  1429. .remove = __devexit_p(rr_remove_one),
  1430. };
  1431. static int __init rr_init_module(void)
  1432. {
  1433. return pci_register_driver(&rr_driver);
  1434. }
  1435. static void __exit rr_cleanup_module(void)
  1436. {
  1437. pci_unregister_driver(&rr_driver);
  1438. }
  1439. module_init(rr_init_module);
  1440. module_exit(rr_cleanup_module);
  1441. /*
  1442. * Local variables:
  1443. * compile-command: "gcc -D__KERNEL__ -I../../include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -DMODULE -DMODVERSIONS -include ../../include/linux/modversions.h -c rrunner.c"
  1444. * End:
  1445. */