processor_idle.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164
  1. /*
  2. * processor_idle - idle state submodule to the ACPI processor driver
  3. *
  4. * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
  5. * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
  6. * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
  7. * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
  8. * - Added processor hotplug support
  9. * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  10. * - Added support for C3 on SMP
  11. *
  12. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  13. *
  14. * This program is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License as published by
  16. * the Free Software Foundation; either version 2 of the License, or (at
  17. * your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful, but
  20. * WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  22. * General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License along
  25. * with this program; if not, write to the Free Software Foundation, Inc.,
  26. * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
  27. *
  28. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  29. */
  30. #include <linux/kernel.h>
  31. #include <linux/module.h>
  32. #include <linux/init.h>
  33. #include <linux/cpufreq.h>
  34. #include <linux/proc_fs.h>
  35. #include <linux/seq_file.h>
  36. #include <linux/acpi.h>
  37. #include <linux/dmi.h>
  38. #include <linux/moduleparam.h>
  39. #include <linux/sched.h> /* need_resched() */
  40. #include <asm/io.h>
  41. #include <asm/uaccess.h>
  42. #include <acpi/acpi_bus.h>
  43. #include <acpi/processor.h>
  44. #define ACPI_PROCESSOR_COMPONENT 0x01000000
  45. #define ACPI_PROCESSOR_CLASS "processor"
  46. #define ACPI_PROCESSOR_DRIVER_NAME "ACPI Processor Driver"
  47. #define _COMPONENT ACPI_PROCESSOR_COMPONENT
  48. ACPI_MODULE_NAME("acpi_processor")
  49. #define ACPI_PROCESSOR_FILE_POWER "power"
  50. #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
  51. #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
  52. #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
  53. static void (*pm_idle_save) (void) __read_mostly;
  54. module_param(max_cstate, uint, 0644);
  55. static unsigned int nocst __read_mostly;
  56. module_param(nocst, uint, 0000);
  57. /*
  58. * bm_history -- bit-mask with a bit per jiffy of bus-master activity
  59. * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
  60. * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
  61. * 100 HZ: 0x0000000F: 4 jiffies = 40ms
  62. * reduce history for more aggressive entry into C3
  63. */
  64. static unsigned int bm_history __read_mostly =
  65. (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
  66. module_param(bm_history, uint, 0644);
  67. /* --------------------------------------------------------------------------
  68. Power Management
  69. -------------------------------------------------------------------------- */
  70. /*
  71. * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  72. * For now disable this. Probably a bug somewhere else.
  73. *
  74. * To skip this limit, boot/load with a large max_cstate limit.
  75. */
  76. static int set_max_cstate(struct dmi_system_id *id)
  77. {
  78. if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  79. return 0;
  80. printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
  81. " Override with \"processor.max_cstate=%d\"\n", id->ident,
  82. (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
  83. max_cstate = (long)id->driver_data;
  84. return 0;
  85. }
  86. /* Actually this shouldn't be __cpuinitdata, would be better to fix the
  87. callers to only run once -AK */
  88. static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
  89. { set_max_cstate, "IBM ThinkPad R40e", {
  90. DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
  91. DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
  92. { set_max_cstate, "IBM ThinkPad R40e", {
  93. DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
  94. DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
  95. { set_max_cstate, "IBM ThinkPad R40e", {
  96. DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
  97. DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
  98. { set_max_cstate, "IBM ThinkPad R40e", {
  99. DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
  100. DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
  101. { set_max_cstate, "IBM ThinkPad R40e", {
  102. DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
  103. DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
  104. { set_max_cstate, "IBM ThinkPad R40e", {
  105. DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
  106. DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
  107. { set_max_cstate, "IBM ThinkPad R40e", {
  108. DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
  109. DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
  110. { set_max_cstate, "IBM ThinkPad R40e", {
  111. DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
  112. DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
  113. { set_max_cstate, "IBM ThinkPad R40e", {
  114. DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
  115. DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
  116. { set_max_cstate, "IBM ThinkPad R40e", {
  117. DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
  118. DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
  119. { set_max_cstate, "IBM ThinkPad R40e", {
  120. DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
  121. DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
  122. { set_max_cstate, "IBM ThinkPad R40e", {
  123. DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
  124. DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
  125. { set_max_cstate, "IBM ThinkPad R40e", {
  126. DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
  127. DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
  128. { set_max_cstate, "IBM ThinkPad R40e", {
  129. DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
  130. DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
  131. { set_max_cstate, "IBM ThinkPad R40e", {
  132. DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
  133. DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
  134. { set_max_cstate, "Medion 41700", {
  135. DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
  136. DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
  137. { set_max_cstate, "Clevo 5600D", {
  138. DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
  139. DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
  140. (void *)2},
  141. {},
  142. };
  143. static inline u32 ticks_elapsed(u32 t1, u32 t2)
  144. {
  145. if (t2 >= t1)
  146. return (t2 - t1);
  147. else if (!acpi_fadt.tmr_val_ext)
  148. return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
  149. else
  150. return ((0xFFFFFFFF - t1) + t2);
  151. }
  152. static void
  153. acpi_processor_power_activate(struct acpi_processor *pr,
  154. struct acpi_processor_cx *new)
  155. {
  156. struct acpi_processor_cx *old;
  157. if (!pr || !new)
  158. return;
  159. old = pr->power.state;
  160. if (old)
  161. old->promotion.count = 0;
  162. new->demotion.count = 0;
  163. /* Cleanup from old state. */
  164. if (old) {
  165. switch (old->type) {
  166. case ACPI_STATE_C3:
  167. /* Disable bus master reload */
  168. if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
  169. acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0,
  170. ACPI_MTX_DO_NOT_LOCK);
  171. break;
  172. }
  173. }
  174. /* Prepare to use new state. */
  175. switch (new->type) {
  176. case ACPI_STATE_C3:
  177. /* Enable bus master reload */
  178. if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
  179. acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1,
  180. ACPI_MTX_DO_NOT_LOCK);
  181. break;
  182. }
  183. pr->power.state = new;
  184. return;
  185. }
  186. static void acpi_safe_halt(void)
  187. {
  188. current_thread_info()->status &= ~TS_POLLING;
  189. smp_mb__after_clear_bit();
  190. if (!need_resched())
  191. safe_halt();
  192. current_thread_info()->status |= TS_POLLING;
  193. }
  194. static atomic_t c3_cpu_count;
  195. static void acpi_processor_idle(void)
  196. {
  197. struct acpi_processor *pr = NULL;
  198. struct acpi_processor_cx *cx = NULL;
  199. struct acpi_processor_cx *next_state = NULL;
  200. int sleep_ticks = 0;
  201. u32 t1, t2 = 0;
  202. pr = processors[smp_processor_id()];
  203. if (!pr)
  204. return;
  205. /*
  206. * Interrupts must be disabled during bus mastering calculations and
  207. * for C2/C3 transitions.
  208. */
  209. local_irq_disable();
  210. /*
  211. * Check whether we truly need to go idle, or should
  212. * reschedule:
  213. */
  214. if (unlikely(need_resched())) {
  215. local_irq_enable();
  216. return;
  217. }
  218. cx = pr->power.state;
  219. if (!cx) {
  220. if (pm_idle_save)
  221. pm_idle_save();
  222. else
  223. acpi_safe_halt();
  224. return;
  225. }
  226. /*
  227. * Check BM Activity
  228. * -----------------
  229. * Check for bus mastering activity (if required), record, and check
  230. * for demotion.
  231. */
  232. if (pr->flags.bm_check) {
  233. u32 bm_status = 0;
  234. unsigned long diff = jiffies - pr->power.bm_check_timestamp;
  235. if (diff > 31)
  236. diff = 31;
  237. pr->power.bm_activity <<= diff;
  238. acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS,
  239. &bm_status, ACPI_MTX_DO_NOT_LOCK);
  240. if (bm_status) {
  241. pr->power.bm_activity |= 0x1;
  242. acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS,
  243. 1, ACPI_MTX_DO_NOT_LOCK);
  244. }
  245. /*
  246. * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
  247. * the true state of bus mastering activity; forcing us to
  248. * manually check the BMIDEA bit of each IDE channel.
  249. */
  250. else if (errata.piix4.bmisx) {
  251. if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
  252. || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
  253. pr->power.bm_activity |= 0x1;
  254. }
  255. pr->power.bm_check_timestamp = jiffies;
  256. /*
  257. * Apply bus mastering demotion policy. Automatically demote
  258. * to avoid a faulty transition. Note that the processor
  259. * won't enter a low-power state during this call (to this
  260. * funciton) but should upon the next.
  261. *
  262. * TBD: A better policy might be to fallback to the demotion
  263. * state (use it for this quantum only) istead of
  264. * demoting -- and rely on duration as our sole demotion
  265. * qualification. This may, however, introduce DMA
  266. * issues (e.g. floppy DMA transfer overrun/underrun).
  267. */
  268. if (pr->power.bm_activity & cx->demotion.threshold.bm) {
  269. local_irq_enable();
  270. next_state = cx->demotion.state;
  271. goto end;
  272. }
  273. }
  274. #ifdef CONFIG_HOTPLUG_CPU
  275. /*
  276. * Check for P_LVL2_UP flag before entering C2 and above on
  277. * an SMP system. We do it here instead of doing it at _CST/P_LVL
  278. * detection phase, to work cleanly with logical CPU hotplug.
  279. */
  280. if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
  281. !pr->flags.has_cst && !acpi_fadt.plvl2_up)
  282. cx = &pr->power.states[ACPI_STATE_C1];
  283. #endif
  284. /*
  285. * Sleep:
  286. * ------
  287. * Invoke the current Cx state to put the processor to sleep.
  288. */
  289. if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
  290. current_thread_info()->status &= ~TS_POLLING;
  291. smp_mb__after_clear_bit();
  292. if (need_resched()) {
  293. current_thread_info()->status |= TS_POLLING;
  294. local_irq_enable();
  295. return;
  296. }
  297. }
  298. switch (cx->type) {
  299. case ACPI_STATE_C1:
  300. /*
  301. * Invoke C1.
  302. * Use the appropriate idle routine, the one that would
  303. * be used without acpi C-states.
  304. */
  305. if (pm_idle_save)
  306. pm_idle_save();
  307. else
  308. acpi_safe_halt();
  309. /*
  310. * TBD: Can't get time duration while in C1, as resumes
  311. * go to an ISR rather than here. Need to instrument
  312. * base interrupt handler.
  313. */
  314. sleep_ticks = 0xFFFFFFFF;
  315. break;
  316. case ACPI_STATE_C2:
  317. /* Get start time (ticks) */
  318. t1 = inl(acpi_fadt.xpm_tmr_blk.address);
  319. /* Invoke C2 */
  320. inb(cx->address);
  321. /* Dummy op - must do something useless after P_LVL2 read */
  322. t2 = inl(acpi_fadt.xpm_tmr_blk.address);
  323. /* Get end time (ticks) */
  324. t2 = inl(acpi_fadt.xpm_tmr_blk.address);
  325. #ifdef CONFIG_GENERIC_TIME
  326. /* TSC halts in C2, so notify users */
  327. mark_tsc_unstable();
  328. #endif
  329. /* Re-enable interrupts */
  330. local_irq_enable();
  331. current_thread_info()->status |= TS_POLLING;
  332. /* Compute time (ticks) that we were actually asleep */
  333. sleep_ticks =
  334. ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD;
  335. break;
  336. case ACPI_STATE_C3:
  337. if (pr->flags.bm_check) {
  338. if (atomic_inc_return(&c3_cpu_count) ==
  339. num_online_cpus()) {
  340. /*
  341. * All CPUs are trying to go to C3
  342. * Disable bus master arbitration
  343. */
  344. acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1,
  345. ACPI_MTX_DO_NOT_LOCK);
  346. }
  347. } else {
  348. /* SMP with no shared cache... Invalidate cache */
  349. ACPI_FLUSH_CPU_CACHE();
  350. }
  351. /* Get start time (ticks) */
  352. t1 = inl(acpi_fadt.xpm_tmr_blk.address);
  353. /* Invoke C3 */
  354. inb(cx->address);
  355. /* Dummy op - must do something useless after P_LVL3 read */
  356. t2 = inl(acpi_fadt.xpm_tmr_blk.address);
  357. /* Get end time (ticks) */
  358. t2 = inl(acpi_fadt.xpm_tmr_blk.address);
  359. if (pr->flags.bm_check) {
  360. /* Enable bus master arbitration */
  361. atomic_dec(&c3_cpu_count);
  362. acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0,
  363. ACPI_MTX_DO_NOT_LOCK);
  364. }
  365. #ifdef CONFIG_GENERIC_TIME
  366. /* TSC halts in C3, so notify users */
  367. mark_tsc_unstable();
  368. #endif
  369. /* Re-enable interrupts */
  370. local_irq_enable();
  371. current_thread_info()->status |= TS_POLLING;
  372. /* Compute time (ticks) that we were actually asleep */
  373. sleep_ticks =
  374. ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD;
  375. break;
  376. default:
  377. local_irq_enable();
  378. return;
  379. }
  380. cx->usage++;
  381. if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
  382. cx->time += sleep_ticks;
  383. next_state = pr->power.state;
  384. #ifdef CONFIG_HOTPLUG_CPU
  385. /* Don't do promotion/demotion */
  386. if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
  387. !pr->flags.has_cst && !acpi_fadt.plvl2_up) {
  388. next_state = cx;
  389. goto end;
  390. }
  391. #endif
  392. /*
  393. * Promotion?
  394. * ----------
  395. * Track the number of longs (time asleep is greater than threshold)
  396. * and promote when the count threshold is reached. Note that bus
  397. * mastering activity may prevent promotions.
  398. * Do not promote above max_cstate.
  399. */
  400. if (cx->promotion.state &&
  401. ((cx->promotion.state - pr->power.states) <= max_cstate)) {
  402. if (sleep_ticks > cx->promotion.threshold.ticks) {
  403. cx->promotion.count++;
  404. cx->demotion.count = 0;
  405. if (cx->promotion.count >=
  406. cx->promotion.threshold.count) {
  407. if (pr->flags.bm_check) {
  408. if (!
  409. (pr->power.bm_activity & cx->
  410. promotion.threshold.bm)) {
  411. next_state =
  412. cx->promotion.state;
  413. goto end;
  414. }
  415. } else {
  416. next_state = cx->promotion.state;
  417. goto end;
  418. }
  419. }
  420. }
  421. }
  422. /*
  423. * Demotion?
  424. * ---------
  425. * Track the number of shorts (time asleep is less than time threshold)
  426. * and demote when the usage threshold is reached.
  427. */
  428. if (cx->demotion.state) {
  429. if (sleep_ticks < cx->demotion.threshold.ticks) {
  430. cx->demotion.count++;
  431. cx->promotion.count = 0;
  432. if (cx->demotion.count >= cx->demotion.threshold.count) {
  433. next_state = cx->demotion.state;
  434. goto end;
  435. }
  436. }
  437. }
  438. end:
  439. /*
  440. * Demote if current state exceeds max_cstate
  441. */
  442. if ((pr->power.state - pr->power.states) > max_cstate) {
  443. if (cx->demotion.state)
  444. next_state = cx->demotion.state;
  445. }
  446. /*
  447. * New Cx State?
  448. * -------------
  449. * If we're going to start using a new Cx state we must clean up
  450. * from the previous and prepare to use the new.
  451. */
  452. if (next_state != pr->power.state)
  453. acpi_processor_power_activate(pr, next_state);
  454. }
  455. static int acpi_processor_set_power_policy(struct acpi_processor *pr)
  456. {
  457. unsigned int i;
  458. unsigned int state_is_set = 0;
  459. struct acpi_processor_cx *lower = NULL;
  460. struct acpi_processor_cx *higher = NULL;
  461. struct acpi_processor_cx *cx;
  462. if (!pr)
  463. return -EINVAL;
  464. /*
  465. * This function sets the default Cx state policy (OS idle handler).
  466. * Our scheme is to promote quickly to C2 but more conservatively
  467. * to C3. We're favoring C2 for its characteristics of low latency
  468. * (quick response), good power savings, and ability to allow bus
  469. * mastering activity. Note that the Cx state policy is completely
  470. * customizable and can be altered dynamically.
  471. */
  472. /* startup state */
  473. for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
  474. cx = &pr->power.states[i];
  475. if (!cx->valid)
  476. continue;
  477. if (!state_is_set)
  478. pr->power.state = cx;
  479. state_is_set++;
  480. break;
  481. }
  482. if (!state_is_set)
  483. return -ENODEV;
  484. /* demotion */
  485. for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
  486. cx = &pr->power.states[i];
  487. if (!cx->valid)
  488. continue;
  489. if (lower) {
  490. cx->demotion.state = lower;
  491. cx->demotion.threshold.ticks = cx->latency_ticks;
  492. cx->demotion.threshold.count = 1;
  493. if (cx->type == ACPI_STATE_C3)
  494. cx->demotion.threshold.bm = bm_history;
  495. }
  496. lower = cx;
  497. }
  498. /* promotion */
  499. for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
  500. cx = &pr->power.states[i];
  501. if (!cx->valid)
  502. continue;
  503. if (higher) {
  504. cx->promotion.state = higher;
  505. cx->promotion.threshold.ticks = cx->latency_ticks;
  506. if (cx->type >= ACPI_STATE_C2)
  507. cx->promotion.threshold.count = 4;
  508. else
  509. cx->promotion.threshold.count = 10;
  510. if (higher->type == ACPI_STATE_C3)
  511. cx->promotion.threshold.bm = bm_history;
  512. }
  513. higher = cx;
  514. }
  515. return 0;
  516. }
  517. static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
  518. {
  519. if (!pr)
  520. return -EINVAL;
  521. if (!pr->pblk)
  522. return -ENODEV;
  523. /* if info is obtained from pblk/fadt, type equals state */
  524. pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
  525. pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
  526. #ifndef CONFIG_HOTPLUG_CPU
  527. /*
  528. * Check for P_LVL2_UP flag before entering C2 and above on
  529. * an SMP system.
  530. */
  531. if ((num_online_cpus() > 1) && !acpi_fadt.plvl2_up)
  532. return -ENODEV;
  533. #endif
  534. /* determine C2 and C3 address from pblk */
  535. pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
  536. pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
  537. /* determine latencies from FADT */
  538. pr->power.states[ACPI_STATE_C2].latency = acpi_fadt.plvl2_lat;
  539. pr->power.states[ACPI_STATE_C3].latency = acpi_fadt.plvl3_lat;
  540. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  541. "lvl2[0x%08x] lvl3[0x%08x]\n",
  542. pr->power.states[ACPI_STATE_C2].address,
  543. pr->power.states[ACPI_STATE_C3].address));
  544. return 0;
  545. }
  546. static int acpi_processor_get_power_info_default_c1(struct acpi_processor *pr)
  547. {
  548. /* Zero initialize all the C-states info. */
  549. memset(pr->power.states, 0, sizeof(pr->power.states));
  550. /* set the first C-State to C1 */
  551. pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
  552. /* the C0 state only exists as a filler in our array,
  553. * and all processors need to support C1 */
  554. pr->power.states[ACPI_STATE_C0].valid = 1;
  555. pr->power.states[ACPI_STATE_C1].valid = 1;
  556. return 0;
  557. }
  558. static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
  559. {
  560. acpi_status status = 0;
  561. acpi_integer count;
  562. int current_count;
  563. int i;
  564. struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
  565. union acpi_object *cst;
  566. if (nocst)
  567. return -ENODEV;
  568. current_count = 1;
  569. /* Zero initialize C2 onwards and prepare for fresh CST lookup */
  570. for (i = 2; i < ACPI_PROCESSOR_MAX_POWER; i++)
  571. memset(&(pr->power.states[i]), 0,
  572. sizeof(struct acpi_processor_cx));
  573. status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
  574. if (ACPI_FAILURE(status)) {
  575. ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
  576. return -ENODEV;
  577. }
  578. cst = (union acpi_object *)buffer.pointer;
  579. /* There must be at least 2 elements */
  580. if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
  581. printk(KERN_ERR PREFIX "not enough elements in _CST\n");
  582. status = -EFAULT;
  583. goto end;
  584. }
  585. count = cst->package.elements[0].integer.value;
  586. /* Validate number of power states. */
  587. if (count < 1 || count != cst->package.count - 1) {
  588. printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
  589. status = -EFAULT;
  590. goto end;
  591. }
  592. /* Tell driver that at least _CST is supported. */
  593. pr->flags.has_cst = 1;
  594. for (i = 1; i <= count; i++) {
  595. union acpi_object *element;
  596. union acpi_object *obj;
  597. struct acpi_power_register *reg;
  598. struct acpi_processor_cx cx;
  599. memset(&cx, 0, sizeof(cx));
  600. element = (union acpi_object *)&(cst->package.elements[i]);
  601. if (element->type != ACPI_TYPE_PACKAGE)
  602. continue;
  603. if (element->package.count != 4)
  604. continue;
  605. obj = (union acpi_object *)&(element->package.elements[0]);
  606. if (obj->type != ACPI_TYPE_BUFFER)
  607. continue;
  608. reg = (struct acpi_power_register *)obj->buffer.pointer;
  609. if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
  610. (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
  611. continue;
  612. cx.address = (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) ?
  613. 0 : reg->address;
  614. /* There should be an easy way to extract an integer... */
  615. obj = (union acpi_object *)&(element->package.elements[1]);
  616. if (obj->type != ACPI_TYPE_INTEGER)
  617. continue;
  618. cx.type = obj->integer.value;
  619. if ((cx.type != ACPI_STATE_C1) &&
  620. (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO))
  621. continue;
  622. if ((cx.type < ACPI_STATE_C2) || (cx.type > ACPI_STATE_C3))
  623. continue;
  624. obj = (union acpi_object *)&(element->package.elements[2]);
  625. if (obj->type != ACPI_TYPE_INTEGER)
  626. continue;
  627. cx.latency = obj->integer.value;
  628. obj = (union acpi_object *)&(element->package.elements[3]);
  629. if (obj->type != ACPI_TYPE_INTEGER)
  630. continue;
  631. cx.power = obj->integer.value;
  632. current_count++;
  633. memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
  634. /*
  635. * We support total ACPI_PROCESSOR_MAX_POWER - 1
  636. * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
  637. */
  638. if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
  639. printk(KERN_WARNING
  640. "Limiting number of power states to max (%d)\n",
  641. ACPI_PROCESSOR_MAX_POWER);
  642. printk(KERN_WARNING
  643. "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
  644. break;
  645. }
  646. }
  647. ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
  648. current_count));
  649. /* Validate number of power states discovered */
  650. if (current_count < 2)
  651. status = -EFAULT;
  652. end:
  653. acpi_os_free(buffer.pointer);
  654. return status;
  655. }
  656. static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
  657. {
  658. if (!cx->address)
  659. return;
  660. /*
  661. * C2 latency must be less than or equal to 100
  662. * microseconds.
  663. */
  664. else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
  665. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  666. "latency too large [%d]\n", cx->latency));
  667. return;
  668. }
  669. /*
  670. * Otherwise we've met all of our C2 requirements.
  671. * Normalize the C2 latency to expidite policy
  672. */
  673. cx->valid = 1;
  674. cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
  675. return;
  676. }
  677. static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
  678. struct acpi_processor_cx *cx)
  679. {
  680. static int bm_check_flag;
  681. if (!cx->address)
  682. return;
  683. /*
  684. * C3 latency must be less than or equal to 1000
  685. * microseconds.
  686. */
  687. else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
  688. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  689. "latency too large [%d]\n", cx->latency));
  690. return;
  691. }
  692. /*
  693. * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
  694. * DMA transfers are used by any ISA device to avoid livelock.
  695. * Note that we could disable Type-F DMA (as recommended by
  696. * the erratum), but this is known to disrupt certain ISA
  697. * devices thus we take the conservative approach.
  698. */
  699. else if (errata.piix4.fdma) {
  700. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  701. "C3 not supported on PIIX4 with Type-F DMA\n"));
  702. return;
  703. }
  704. /* All the logic here assumes flags.bm_check is same across all CPUs */
  705. if (!bm_check_flag) {
  706. /* Determine whether bm_check is needed based on CPU */
  707. acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
  708. bm_check_flag = pr->flags.bm_check;
  709. } else {
  710. pr->flags.bm_check = bm_check_flag;
  711. }
  712. if (pr->flags.bm_check) {
  713. /* bus mastering control is necessary */
  714. if (!pr->flags.bm_control) {
  715. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  716. "C3 support requires bus mastering control\n"));
  717. return;
  718. }
  719. } else {
  720. /*
  721. * WBINVD should be set in fadt, for C3 state to be
  722. * supported on when bm_check is not required.
  723. */
  724. if (acpi_fadt.wb_invd != 1) {
  725. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  726. "Cache invalidation should work properly"
  727. " for C3 to be enabled on SMP systems\n"));
  728. return;
  729. }
  730. acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD,
  731. 0, ACPI_MTX_DO_NOT_LOCK);
  732. }
  733. /*
  734. * Otherwise we've met all of our C3 requirements.
  735. * Normalize the C3 latency to expidite policy. Enable
  736. * checking of bus mastering status (bm_check) so we can
  737. * use this in our C3 policy
  738. */
  739. cx->valid = 1;
  740. cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
  741. return;
  742. }
  743. static int acpi_processor_power_verify(struct acpi_processor *pr)
  744. {
  745. unsigned int i;
  746. unsigned int working = 0;
  747. #ifdef ARCH_APICTIMER_STOPS_ON_C3
  748. int timer_broadcast = 0;
  749. cpumask_t mask = cpumask_of_cpu(pr->id);
  750. on_each_cpu(switch_ipi_to_APIC_timer, &mask, 1, 1);
  751. #endif
  752. for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
  753. struct acpi_processor_cx *cx = &pr->power.states[i];
  754. switch (cx->type) {
  755. case ACPI_STATE_C1:
  756. cx->valid = 1;
  757. break;
  758. case ACPI_STATE_C2:
  759. acpi_processor_power_verify_c2(cx);
  760. #ifdef ARCH_APICTIMER_STOPS_ON_C3
  761. /* Some AMD systems fake C3 as C2, but still
  762. have timer troubles */
  763. if (cx->valid &&
  764. boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
  765. timer_broadcast++;
  766. #endif
  767. break;
  768. case ACPI_STATE_C3:
  769. acpi_processor_power_verify_c3(pr, cx);
  770. #ifdef ARCH_APICTIMER_STOPS_ON_C3
  771. if (cx->valid)
  772. timer_broadcast++;
  773. #endif
  774. break;
  775. }
  776. if (cx->valid)
  777. working++;
  778. }
  779. #ifdef ARCH_APICTIMER_STOPS_ON_C3
  780. if (timer_broadcast)
  781. on_each_cpu(switch_APIC_timer_to_ipi, &mask, 1, 1);
  782. #endif
  783. return (working);
  784. }
  785. static int acpi_processor_get_power_info(struct acpi_processor *pr)
  786. {
  787. unsigned int i;
  788. int result;
  789. /* NOTE: the idle thread may not be running while calling
  790. * this function */
  791. /* Adding C1 state */
  792. acpi_processor_get_power_info_default_c1(pr);
  793. result = acpi_processor_get_power_info_cst(pr);
  794. if (result == -ENODEV)
  795. acpi_processor_get_power_info_fadt(pr);
  796. pr->power.count = acpi_processor_power_verify(pr);
  797. /*
  798. * Set Default Policy
  799. * ------------------
  800. * Now that we know which states are supported, set the default
  801. * policy. Note that this policy can be changed dynamically
  802. * (e.g. encourage deeper sleeps to conserve battery life when
  803. * not on AC).
  804. */
  805. result = acpi_processor_set_power_policy(pr);
  806. if (result)
  807. return result;
  808. /*
  809. * if one state of type C2 or C3 is available, mark this
  810. * CPU as being "idle manageable"
  811. */
  812. for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
  813. if (pr->power.states[i].valid) {
  814. pr->power.count = i;
  815. if (pr->power.states[i].type >= ACPI_STATE_C2)
  816. pr->flags.power = 1;
  817. }
  818. }
  819. return 0;
  820. }
  821. int acpi_processor_cst_has_changed(struct acpi_processor *pr)
  822. {
  823. int result = 0;
  824. if (!pr)
  825. return -EINVAL;
  826. if (nocst) {
  827. return -ENODEV;
  828. }
  829. if (!pr->flags.power_setup_done)
  830. return -ENODEV;
  831. /* Fall back to the default idle loop */
  832. pm_idle = pm_idle_save;
  833. synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
  834. pr->flags.power = 0;
  835. result = acpi_processor_get_power_info(pr);
  836. if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
  837. pm_idle = acpi_processor_idle;
  838. return result;
  839. }
  840. /* proc interface */
  841. static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
  842. {
  843. struct acpi_processor *pr = (struct acpi_processor *)seq->private;
  844. unsigned int i;
  845. if (!pr)
  846. goto end;
  847. seq_printf(seq, "active state: C%zd\n"
  848. "max_cstate: C%d\n"
  849. "bus master activity: %08x\n",
  850. pr->power.state ? pr->power.state - pr->power.states : 0,
  851. max_cstate, (unsigned)pr->power.bm_activity);
  852. seq_puts(seq, "states:\n");
  853. for (i = 1; i <= pr->power.count; i++) {
  854. seq_printf(seq, " %cC%d: ",
  855. (&pr->power.states[i] ==
  856. pr->power.state ? '*' : ' '), i);
  857. if (!pr->power.states[i].valid) {
  858. seq_puts(seq, "<not supported>\n");
  859. continue;
  860. }
  861. switch (pr->power.states[i].type) {
  862. case ACPI_STATE_C1:
  863. seq_printf(seq, "type[C1] ");
  864. break;
  865. case ACPI_STATE_C2:
  866. seq_printf(seq, "type[C2] ");
  867. break;
  868. case ACPI_STATE_C3:
  869. seq_printf(seq, "type[C3] ");
  870. break;
  871. default:
  872. seq_printf(seq, "type[--] ");
  873. break;
  874. }
  875. if (pr->power.states[i].promotion.state)
  876. seq_printf(seq, "promotion[C%zd] ",
  877. (pr->power.states[i].promotion.state -
  878. pr->power.states));
  879. else
  880. seq_puts(seq, "promotion[--] ");
  881. if (pr->power.states[i].demotion.state)
  882. seq_printf(seq, "demotion[C%zd] ",
  883. (pr->power.states[i].demotion.state -
  884. pr->power.states));
  885. else
  886. seq_puts(seq, "demotion[--] ");
  887. seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
  888. pr->power.states[i].latency,
  889. pr->power.states[i].usage,
  890. pr->power.states[i].time);
  891. }
  892. end:
  893. return 0;
  894. }
  895. static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
  896. {
  897. return single_open(file, acpi_processor_power_seq_show,
  898. PDE(inode)->data);
  899. }
  900. static struct file_operations acpi_processor_power_fops = {
  901. .open = acpi_processor_power_open_fs,
  902. .read = seq_read,
  903. .llseek = seq_lseek,
  904. .release = single_release,
  905. };
  906. int acpi_processor_power_init(struct acpi_processor *pr,
  907. struct acpi_device *device)
  908. {
  909. acpi_status status = 0;
  910. static int first_run;
  911. struct proc_dir_entry *entry = NULL;
  912. unsigned int i;
  913. if (!first_run) {
  914. dmi_check_system(processor_power_dmi_table);
  915. if (max_cstate < ACPI_C_STATES_MAX)
  916. printk(KERN_NOTICE
  917. "ACPI: processor limited to max C-state %d\n",
  918. max_cstate);
  919. first_run++;
  920. }
  921. if (!pr)
  922. return -EINVAL;
  923. if (acpi_fadt.cst_cnt && !nocst) {
  924. status =
  925. acpi_os_write_port(acpi_fadt.smi_cmd, acpi_fadt.cst_cnt, 8);
  926. if (ACPI_FAILURE(status)) {
  927. ACPI_EXCEPTION((AE_INFO, status,
  928. "Notifying BIOS of _CST ability failed"));
  929. }
  930. }
  931. acpi_processor_get_power_info(pr);
  932. /*
  933. * Install the idle handler if processor power management is supported.
  934. * Note that we use previously set idle handler will be used on
  935. * platforms that only support C1.
  936. */
  937. if ((pr->flags.power) && (!boot_option_idle_override)) {
  938. printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
  939. for (i = 1; i <= pr->power.count; i++)
  940. if (pr->power.states[i].valid)
  941. printk(" C%d[C%d]", i,
  942. pr->power.states[i].type);
  943. printk(")\n");
  944. if (pr->id == 0) {
  945. pm_idle_save = pm_idle;
  946. pm_idle = acpi_processor_idle;
  947. }
  948. }
  949. /* 'power' [R] */
  950. entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
  951. S_IRUGO, acpi_device_dir(device));
  952. if (!entry)
  953. return -EIO;
  954. else {
  955. entry->proc_fops = &acpi_processor_power_fops;
  956. entry->data = acpi_driver_data(device);
  957. entry->owner = THIS_MODULE;
  958. }
  959. pr->flags.power_setup_done = 1;
  960. return 0;
  961. }
  962. int acpi_processor_power_exit(struct acpi_processor *pr,
  963. struct acpi_device *device)
  964. {
  965. pr->flags.power_setup_done = 0;
  966. if (acpi_device_dir(device))
  967. remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
  968. acpi_device_dir(device));
  969. /* Unregister the idle handler when processor #0 is removed. */
  970. if (pr->id == 0) {
  971. pm_idle = pm_idle_save;
  972. /*
  973. * We are about to unload the current idle thread pm callback
  974. * (pm_idle), Wait for all processors to update cached/local
  975. * copies of pm_idle before proceeding.
  976. */
  977. cpu_idle_wait();
  978. }
  979. return 0;
  980. }