sh_eth.c 56 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312
  1. /*
  2. * SuperH Ethernet device driver
  3. *
  4. * Copyright (C) 2006-2012 Nobuhiro Iwamatsu
  5. * Copyright (C) 2008-2012 Renesas Solutions Corp.
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. *
  19. * The full GNU General Public License is included in this distribution in
  20. * the file called "COPYING".
  21. */
  22. #include <linux/init.h>
  23. #include <linux/module.h>
  24. #include <linux/kernel.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/etherdevice.h>
  29. #include <linux/delay.h>
  30. #include <linux/platform_device.h>
  31. #include <linux/mdio-bitbang.h>
  32. #include <linux/netdevice.h>
  33. #include <linux/phy.h>
  34. #include <linux/cache.h>
  35. #include <linux/io.h>
  36. #include <linux/pm_runtime.h>
  37. #include <linux/slab.h>
  38. #include <linux/ethtool.h>
  39. #include <linux/if_vlan.h>
  40. #include <linux/clk.h>
  41. #include <linux/sh_eth.h>
  42. #include "sh_eth.h"
  43. #define SH_ETH_DEF_MSG_ENABLE \
  44. (NETIF_MSG_LINK | \
  45. NETIF_MSG_TIMER | \
  46. NETIF_MSG_RX_ERR| \
  47. NETIF_MSG_TX_ERR)
  48. /* There is CPU dependent code */
  49. #if defined(CONFIG_CPU_SUBTYPE_SH7724)
  50. #define SH_ETH_RESET_DEFAULT 1
  51. static void sh_eth_set_duplex(struct net_device *ndev)
  52. {
  53. struct sh_eth_private *mdp = netdev_priv(ndev);
  54. if (mdp->duplex) /* Full */
  55. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  56. else /* Half */
  57. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  58. }
  59. static void sh_eth_set_rate(struct net_device *ndev)
  60. {
  61. struct sh_eth_private *mdp = netdev_priv(ndev);
  62. switch (mdp->speed) {
  63. case 10: /* 10BASE */
  64. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
  65. break;
  66. case 100:/* 100BASE */
  67. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
  68. break;
  69. default:
  70. break;
  71. }
  72. }
  73. /* SH7724 */
  74. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  75. .set_duplex = sh_eth_set_duplex,
  76. .set_rate = sh_eth_set_rate,
  77. .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
  78. .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
  79. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
  80. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  81. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  82. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  83. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  84. .apr = 1,
  85. .mpr = 1,
  86. .tpauser = 1,
  87. .hw_swap = 1,
  88. .rpadir = 1,
  89. .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
  90. };
  91. #elif defined(CONFIG_CPU_SUBTYPE_SH7757)
  92. #define SH_ETH_HAS_BOTH_MODULES 1
  93. #define SH_ETH_HAS_TSU 1
  94. static void sh_eth_set_duplex(struct net_device *ndev)
  95. {
  96. struct sh_eth_private *mdp = netdev_priv(ndev);
  97. if (mdp->duplex) /* Full */
  98. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  99. else /* Half */
  100. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  101. }
  102. static void sh_eth_set_rate(struct net_device *ndev)
  103. {
  104. struct sh_eth_private *mdp = netdev_priv(ndev);
  105. switch (mdp->speed) {
  106. case 10: /* 10BASE */
  107. sh_eth_write(ndev, 0, RTRATE);
  108. break;
  109. case 100:/* 100BASE */
  110. sh_eth_write(ndev, 1, RTRATE);
  111. break;
  112. default:
  113. break;
  114. }
  115. }
  116. /* SH7757 */
  117. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  118. .set_duplex = sh_eth_set_duplex,
  119. .set_rate = sh_eth_set_rate,
  120. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  121. .rmcr_value = 0x00000001,
  122. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  123. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  124. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  125. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  126. .apr = 1,
  127. .mpr = 1,
  128. .tpauser = 1,
  129. .hw_swap = 1,
  130. .no_ade = 1,
  131. .rpadir = 1,
  132. .rpadir_value = 2 << 16,
  133. };
  134. #define SH_GIGA_ETH_BASE 0xfee00000
  135. #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
  136. #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
  137. static void sh_eth_chip_reset_giga(struct net_device *ndev)
  138. {
  139. int i;
  140. unsigned long mahr[2], malr[2];
  141. /* save MAHR and MALR */
  142. for (i = 0; i < 2; i++) {
  143. malr[i] = ioread32((void *)GIGA_MALR(i));
  144. mahr[i] = ioread32((void *)GIGA_MAHR(i));
  145. }
  146. /* reset device */
  147. iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
  148. mdelay(1);
  149. /* restore MAHR and MALR */
  150. for (i = 0; i < 2; i++) {
  151. iowrite32(malr[i], (void *)GIGA_MALR(i));
  152. iowrite32(mahr[i], (void *)GIGA_MAHR(i));
  153. }
  154. }
  155. static int sh_eth_is_gether(struct sh_eth_private *mdp);
  156. static void sh_eth_reset(struct net_device *ndev)
  157. {
  158. struct sh_eth_private *mdp = netdev_priv(ndev);
  159. int cnt = 100;
  160. if (sh_eth_is_gether(mdp)) {
  161. sh_eth_write(ndev, 0x03, EDSR);
  162. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
  163. EDMR);
  164. while (cnt > 0) {
  165. if (!(sh_eth_read(ndev, EDMR) & 0x3))
  166. break;
  167. mdelay(1);
  168. cnt--;
  169. }
  170. if (cnt < 0)
  171. printk(KERN_ERR "Device reset fail\n");
  172. /* Table Init */
  173. sh_eth_write(ndev, 0x0, TDLAR);
  174. sh_eth_write(ndev, 0x0, TDFAR);
  175. sh_eth_write(ndev, 0x0, TDFXR);
  176. sh_eth_write(ndev, 0x0, TDFFR);
  177. sh_eth_write(ndev, 0x0, RDLAR);
  178. sh_eth_write(ndev, 0x0, RDFAR);
  179. sh_eth_write(ndev, 0x0, RDFXR);
  180. sh_eth_write(ndev, 0x0, RDFFR);
  181. } else {
  182. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
  183. EDMR);
  184. mdelay(3);
  185. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
  186. EDMR);
  187. }
  188. }
  189. static void sh_eth_set_duplex_giga(struct net_device *ndev)
  190. {
  191. struct sh_eth_private *mdp = netdev_priv(ndev);
  192. if (mdp->duplex) /* Full */
  193. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  194. else /* Half */
  195. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  196. }
  197. static void sh_eth_set_rate_giga(struct net_device *ndev)
  198. {
  199. struct sh_eth_private *mdp = netdev_priv(ndev);
  200. switch (mdp->speed) {
  201. case 10: /* 10BASE */
  202. sh_eth_write(ndev, 0x00000000, GECMR);
  203. break;
  204. case 100:/* 100BASE */
  205. sh_eth_write(ndev, 0x00000010, GECMR);
  206. break;
  207. case 1000: /* 1000BASE */
  208. sh_eth_write(ndev, 0x00000020, GECMR);
  209. break;
  210. default:
  211. break;
  212. }
  213. }
  214. /* SH7757(GETHERC) */
  215. static struct sh_eth_cpu_data sh_eth_my_cpu_data_giga = {
  216. .chip_reset = sh_eth_chip_reset_giga,
  217. .set_duplex = sh_eth_set_duplex_giga,
  218. .set_rate = sh_eth_set_rate_giga,
  219. .ecsr_value = ECSR_ICD | ECSR_MPD,
  220. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  221. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  222. .tx_check = EESR_TC1 | EESR_FTC,
  223. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  224. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  225. EESR_ECI,
  226. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  227. EESR_TFE,
  228. .fdr_value = 0x0000072f,
  229. .rmcr_value = 0x00000001,
  230. .apr = 1,
  231. .mpr = 1,
  232. .tpauser = 1,
  233. .bculr = 1,
  234. .hw_swap = 1,
  235. .rpadir = 1,
  236. .rpadir_value = 2 << 16,
  237. .no_trimd = 1,
  238. .no_ade = 1,
  239. .tsu = 1,
  240. };
  241. static struct sh_eth_cpu_data *sh_eth_get_cpu_data(struct sh_eth_private *mdp)
  242. {
  243. if (sh_eth_is_gether(mdp))
  244. return &sh_eth_my_cpu_data_giga;
  245. else
  246. return &sh_eth_my_cpu_data;
  247. }
  248. #elif defined(CONFIG_CPU_SUBTYPE_SH7734) || defined(CONFIG_CPU_SUBTYPE_SH7763)
  249. #define SH_ETH_HAS_TSU 1
  250. static void sh_eth_reset_hw_crc(struct net_device *ndev);
  251. static void sh_eth_chip_reset(struct net_device *ndev)
  252. {
  253. struct sh_eth_private *mdp = netdev_priv(ndev);
  254. /* reset device */
  255. sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
  256. mdelay(1);
  257. }
  258. static void sh_eth_reset(struct net_device *ndev)
  259. {
  260. int cnt = 100;
  261. sh_eth_write(ndev, EDSR_ENALL, EDSR);
  262. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
  263. while (cnt > 0) {
  264. if (!(sh_eth_read(ndev, EDMR) & 0x3))
  265. break;
  266. mdelay(1);
  267. cnt--;
  268. }
  269. if (cnt == 0)
  270. printk(KERN_ERR "Device reset fail\n");
  271. /* Table Init */
  272. sh_eth_write(ndev, 0x0, TDLAR);
  273. sh_eth_write(ndev, 0x0, TDFAR);
  274. sh_eth_write(ndev, 0x0, TDFXR);
  275. sh_eth_write(ndev, 0x0, TDFFR);
  276. sh_eth_write(ndev, 0x0, RDLAR);
  277. sh_eth_write(ndev, 0x0, RDFAR);
  278. sh_eth_write(ndev, 0x0, RDFXR);
  279. sh_eth_write(ndev, 0x0, RDFFR);
  280. /* Reset HW CRC register */
  281. sh_eth_reset_hw_crc(ndev);
  282. }
  283. static void sh_eth_set_duplex(struct net_device *ndev)
  284. {
  285. struct sh_eth_private *mdp = netdev_priv(ndev);
  286. if (mdp->duplex) /* Full */
  287. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  288. else /* Half */
  289. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  290. }
  291. static void sh_eth_set_rate(struct net_device *ndev)
  292. {
  293. struct sh_eth_private *mdp = netdev_priv(ndev);
  294. switch (mdp->speed) {
  295. case 10: /* 10BASE */
  296. sh_eth_write(ndev, GECMR_10, GECMR);
  297. break;
  298. case 100:/* 100BASE */
  299. sh_eth_write(ndev, GECMR_100, GECMR);
  300. break;
  301. case 1000: /* 1000BASE */
  302. sh_eth_write(ndev, GECMR_1000, GECMR);
  303. break;
  304. default:
  305. break;
  306. }
  307. }
  308. /* sh7763 */
  309. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  310. .chip_reset = sh_eth_chip_reset,
  311. .set_duplex = sh_eth_set_duplex,
  312. .set_rate = sh_eth_set_rate,
  313. .ecsr_value = ECSR_ICD | ECSR_MPD,
  314. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  315. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  316. .tx_check = EESR_TC1 | EESR_FTC,
  317. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  318. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  319. EESR_ECI,
  320. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  321. EESR_TFE,
  322. .apr = 1,
  323. .mpr = 1,
  324. .tpauser = 1,
  325. .bculr = 1,
  326. .hw_swap = 1,
  327. .no_trimd = 1,
  328. .no_ade = 1,
  329. .tsu = 1,
  330. #if defined(CONFIG_CPU_SUBTYPE_SH7734)
  331. .hw_crc = 1,
  332. #endif
  333. };
  334. static void sh_eth_reset_hw_crc(struct net_device *ndev)
  335. {
  336. if (sh_eth_my_cpu_data.hw_crc)
  337. sh_eth_write(ndev, 0x0, CSMR);
  338. }
  339. #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
  340. #define SH_ETH_RESET_DEFAULT 1
  341. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  342. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  343. .apr = 1,
  344. .mpr = 1,
  345. .tpauser = 1,
  346. .hw_swap = 1,
  347. };
  348. #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
  349. #define SH_ETH_RESET_DEFAULT 1
  350. #define SH_ETH_HAS_TSU 1
  351. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  352. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  353. .tsu = 1,
  354. };
  355. #endif
  356. static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
  357. {
  358. if (!cd->ecsr_value)
  359. cd->ecsr_value = DEFAULT_ECSR_INIT;
  360. if (!cd->ecsipr_value)
  361. cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
  362. if (!cd->fcftr_value)
  363. cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
  364. DEFAULT_FIFO_F_D_RFD;
  365. if (!cd->fdr_value)
  366. cd->fdr_value = DEFAULT_FDR_INIT;
  367. if (!cd->rmcr_value)
  368. cd->rmcr_value = DEFAULT_RMCR_VALUE;
  369. if (!cd->tx_check)
  370. cd->tx_check = DEFAULT_TX_CHECK;
  371. if (!cd->eesr_err_check)
  372. cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
  373. if (!cd->tx_error_check)
  374. cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
  375. }
  376. #if defined(SH_ETH_RESET_DEFAULT)
  377. /* Chip Reset */
  378. static void sh_eth_reset(struct net_device *ndev)
  379. {
  380. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR);
  381. mdelay(3);
  382. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR);
  383. }
  384. #endif
  385. #if defined(CONFIG_CPU_SH4)
  386. static void sh_eth_set_receive_align(struct sk_buff *skb)
  387. {
  388. int reserve;
  389. reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
  390. if (reserve)
  391. skb_reserve(skb, reserve);
  392. }
  393. #else
  394. static void sh_eth_set_receive_align(struct sk_buff *skb)
  395. {
  396. skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
  397. }
  398. #endif
  399. /* CPU <-> EDMAC endian convert */
  400. static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
  401. {
  402. switch (mdp->edmac_endian) {
  403. case EDMAC_LITTLE_ENDIAN:
  404. return cpu_to_le32(x);
  405. case EDMAC_BIG_ENDIAN:
  406. return cpu_to_be32(x);
  407. }
  408. return x;
  409. }
  410. static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
  411. {
  412. switch (mdp->edmac_endian) {
  413. case EDMAC_LITTLE_ENDIAN:
  414. return le32_to_cpu(x);
  415. case EDMAC_BIG_ENDIAN:
  416. return be32_to_cpu(x);
  417. }
  418. return x;
  419. }
  420. /*
  421. * Program the hardware MAC address from dev->dev_addr.
  422. */
  423. static void update_mac_address(struct net_device *ndev)
  424. {
  425. sh_eth_write(ndev,
  426. (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  427. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
  428. sh_eth_write(ndev,
  429. (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
  430. }
  431. /*
  432. * Get MAC address from SuperH MAC address register
  433. *
  434. * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
  435. * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
  436. * When you want use this device, you must set MAC address in bootloader.
  437. *
  438. */
  439. static void read_mac_address(struct net_device *ndev, unsigned char *mac)
  440. {
  441. if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
  442. memcpy(ndev->dev_addr, mac, 6);
  443. } else {
  444. ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
  445. ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
  446. ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
  447. ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
  448. ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
  449. ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
  450. }
  451. }
  452. static int sh_eth_is_gether(struct sh_eth_private *mdp)
  453. {
  454. if (mdp->reg_offset == sh_eth_offset_gigabit)
  455. return 1;
  456. else
  457. return 0;
  458. }
  459. static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
  460. {
  461. if (sh_eth_is_gether(mdp))
  462. return EDTRR_TRNS_GETHER;
  463. else
  464. return EDTRR_TRNS_ETHER;
  465. }
  466. struct bb_info {
  467. void (*set_gate)(void *addr);
  468. struct mdiobb_ctrl ctrl;
  469. void *addr;
  470. u32 mmd_msk;/* MMD */
  471. u32 mdo_msk;
  472. u32 mdi_msk;
  473. u32 mdc_msk;
  474. };
  475. /* PHY bit set */
  476. static void bb_set(void *addr, u32 msk)
  477. {
  478. iowrite32(ioread32(addr) | msk, addr);
  479. }
  480. /* PHY bit clear */
  481. static void bb_clr(void *addr, u32 msk)
  482. {
  483. iowrite32((ioread32(addr) & ~msk), addr);
  484. }
  485. /* PHY bit read */
  486. static int bb_read(void *addr, u32 msk)
  487. {
  488. return (ioread32(addr) & msk) != 0;
  489. }
  490. /* Data I/O pin control */
  491. static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  492. {
  493. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  494. if (bitbang->set_gate)
  495. bitbang->set_gate(bitbang->addr);
  496. if (bit)
  497. bb_set(bitbang->addr, bitbang->mmd_msk);
  498. else
  499. bb_clr(bitbang->addr, bitbang->mmd_msk);
  500. }
  501. /* Set bit data*/
  502. static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
  503. {
  504. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  505. if (bitbang->set_gate)
  506. bitbang->set_gate(bitbang->addr);
  507. if (bit)
  508. bb_set(bitbang->addr, bitbang->mdo_msk);
  509. else
  510. bb_clr(bitbang->addr, bitbang->mdo_msk);
  511. }
  512. /* Get bit data*/
  513. static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
  514. {
  515. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  516. if (bitbang->set_gate)
  517. bitbang->set_gate(bitbang->addr);
  518. return bb_read(bitbang->addr, bitbang->mdi_msk);
  519. }
  520. /* MDC pin control */
  521. static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  522. {
  523. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  524. if (bitbang->set_gate)
  525. bitbang->set_gate(bitbang->addr);
  526. if (bit)
  527. bb_set(bitbang->addr, bitbang->mdc_msk);
  528. else
  529. bb_clr(bitbang->addr, bitbang->mdc_msk);
  530. }
  531. /* mdio bus control struct */
  532. static struct mdiobb_ops bb_ops = {
  533. .owner = THIS_MODULE,
  534. .set_mdc = sh_mdc_ctrl,
  535. .set_mdio_dir = sh_mmd_ctrl,
  536. .set_mdio_data = sh_set_mdio,
  537. .get_mdio_data = sh_get_mdio,
  538. };
  539. /* free skb and descriptor buffer */
  540. static void sh_eth_ring_free(struct net_device *ndev)
  541. {
  542. struct sh_eth_private *mdp = netdev_priv(ndev);
  543. int i;
  544. /* Free Rx skb ringbuffer */
  545. if (mdp->rx_skbuff) {
  546. for (i = 0; i < RX_RING_SIZE; i++) {
  547. if (mdp->rx_skbuff[i])
  548. dev_kfree_skb(mdp->rx_skbuff[i]);
  549. }
  550. }
  551. kfree(mdp->rx_skbuff);
  552. /* Free Tx skb ringbuffer */
  553. if (mdp->tx_skbuff) {
  554. for (i = 0; i < TX_RING_SIZE; i++) {
  555. if (mdp->tx_skbuff[i])
  556. dev_kfree_skb(mdp->tx_skbuff[i]);
  557. }
  558. }
  559. kfree(mdp->tx_skbuff);
  560. }
  561. /* format skb and descriptor buffer */
  562. static void sh_eth_ring_format(struct net_device *ndev)
  563. {
  564. struct sh_eth_private *mdp = netdev_priv(ndev);
  565. int i;
  566. struct sk_buff *skb;
  567. struct sh_eth_rxdesc *rxdesc = NULL;
  568. struct sh_eth_txdesc *txdesc = NULL;
  569. int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
  570. int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;
  571. mdp->cur_rx = mdp->cur_tx = 0;
  572. mdp->dirty_rx = mdp->dirty_tx = 0;
  573. memset(mdp->rx_ring, 0, rx_ringsize);
  574. /* build Rx ring buffer */
  575. for (i = 0; i < RX_RING_SIZE; i++) {
  576. /* skb */
  577. mdp->rx_skbuff[i] = NULL;
  578. skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
  579. mdp->rx_skbuff[i] = skb;
  580. if (skb == NULL)
  581. break;
  582. dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
  583. DMA_FROM_DEVICE);
  584. sh_eth_set_receive_align(skb);
  585. /* RX descriptor */
  586. rxdesc = &mdp->rx_ring[i];
  587. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  588. rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  589. /* The size of the buffer is 16 byte boundary. */
  590. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  591. /* Rx descriptor address set */
  592. if (i == 0) {
  593. sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
  594. if (sh_eth_is_gether(mdp))
  595. sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
  596. }
  597. }
  598. mdp->dirty_rx = (u32) (i - RX_RING_SIZE);
  599. /* Mark the last entry as wrapping the ring. */
  600. rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
  601. memset(mdp->tx_ring, 0, tx_ringsize);
  602. /* build Tx ring buffer */
  603. for (i = 0; i < TX_RING_SIZE; i++) {
  604. mdp->tx_skbuff[i] = NULL;
  605. txdesc = &mdp->tx_ring[i];
  606. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  607. txdesc->buffer_length = 0;
  608. if (i == 0) {
  609. /* Tx descriptor address set */
  610. sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
  611. if (sh_eth_is_gether(mdp))
  612. sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
  613. }
  614. }
  615. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  616. }
  617. /* Get skb and descriptor buffer */
  618. static int sh_eth_ring_init(struct net_device *ndev)
  619. {
  620. struct sh_eth_private *mdp = netdev_priv(ndev);
  621. int rx_ringsize, tx_ringsize, ret = 0;
  622. /*
  623. * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
  624. * card needs room to do 8 byte alignment, +2 so we can reserve
  625. * the first 2 bytes, and +16 gets room for the status word from the
  626. * card.
  627. */
  628. mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
  629. (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
  630. if (mdp->cd->rpadir)
  631. mdp->rx_buf_sz += NET_IP_ALIGN;
  632. /* Allocate RX and TX skb rings */
  633. mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
  634. GFP_KERNEL);
  635. if (!mdp->rx_skbuff) {
  636. dev_err(&ndev->dev, "Cannot allocate Rx skb\n");
  637. ret = -ENOMEM;
  638. return ret;
  639. }
  640. mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
  641. GFP_KERNEL);
  642. if (!mdp->tx_skbuff) {
  643. dev_err(&ndev->dev, "Cannot allocate Tx skb\n");
  644. ret = -ENOMEM;
  645. goto skb_ring_free;
  646. }
  647. /* Allocate all Rx descriptors. */
  648. rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  649. mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
  650. GFP_KERNEL);
  651. if (!mdp->rx_ring) {
  652. dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
  653. rx_ringsize);
  654. ret = -ENOMEM;
  655. goto desc_ring_free;
  656. }
  657. mdp->dirty_rx = 0;
  658. /* Allocate all Tx descriptors. */
  659. tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  660. mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
  661. GFP_KERNEL);
  662. if (!mdp->tx_ring) {
  663. dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
  664. tx_ringsize);
  665. ret = -ENOMEM;
  666. goto desc_ring_free;
  667. }
  668. return ret;
  669. desc_ring_free:
  670. /* free DMA buffer */
  671. dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  672. skb_ring_free:
  673. /* Free Rx and Tx skb ring buffer */
  674. sh_eth_ring_free(ndev);
  675. return ret;
  676. }
  677. static int sh_eth_dev_init(struct net_device *ndev)
  678. {
  679. int ret = 0;
  680. struct sh_eth_private *mdp = netdev_priv(ndev);
  681. u_int32_t rx_int_var, tx_int_var;
  682. u32 val;
  683. /* Soft Reset */
  684. sh_eth_reset(ndev);
  685. /* Descriptor format */
  686. sh_eth_ring_format(ndev);
  687. if (mdp->cd->rpadir)
  688. sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
  689. /* all sh_eth int mask */
  690. sh_eth_write(ndev, 0, EESIPR);
  691. #if defined(__LITTLE_ENDIAN)
  692. if (mdp->cd->hw_swap)
  693. sh_eth_write(ndev, EDMR_EL, EDMR);
  694. else
  695. #endif
  696. sh_eth_write(ndev, 0, EDMR);
  697. /* FIFO size set */
  698. sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
  699. sh_eth_write(ndev, 0, TFTR);
  700. /* Frame recv control */
  701. sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
  702. rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5;
  703. tx_int_var = mdp->tx_int_var = DESC_I_TINT2;
  704. sh_eth_write(ndev, rx_int_var | tx_int_var, TRSCER);
  705. if (mdp->cd->bculr)
  706. sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */
  707. sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
  708. if (!mdp->cd->no_trimd)
  709. sh_eth_write(ndev, 0, TRIMD);
  710. /* Recv frame limit set register */
  711. sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
  712. RFLR);
  713. sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
  714. sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
  715. /* PAUSE Prohibition */
  716. val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
  717. ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
  718. sh_eth_write(ndev, val, ECMR);
  719. if (mdp->cd->set_rate)
  720. mdp->cd->set_rate(ndev);
  721. /* E-MAC Status Register clear */
  722. sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
  723. /* E-MAC Interrupt Enable register */
  724. sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
  725. /* Set MAC address */
  726. update_mac_address(ndev);
  727. /* mask reset */
  728. if (mdp->cd->apr)
  729. sh_eth_write(ndev, APR_AP, APR);
  730. if (mdp->cd->mpr)
  731. sh_eth_write(ndev, MPR_MP, MPR);
  732. if (mdp->cd->tpauser)
  733. sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
  734. /* Setting the Rx mode will start the Rx process. */
  735. sh_eth_write(ndev, EDRRR_R, EDRRR);
  736. netif_start_queue(ndev);
  737. return ret;
  738. }
  739. /* free Tx skb function */
  740. static int sh_eth_txfree(struct net_device *ndev)
  741. {
  742. struct sh_eth_private *mdp = netdev_priv(ndev);
  743. struct sh_eth_txdesc *txdesc;
  744. int freeNum = 0;
  745. int entry = 0;
  746. for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
  747. entry = mdp->dirty_tx % TX_RING_SIZE;
  748. txdesc = &mdp->tx_ring[entry];
  749. if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
  750. break;
  751. /* Free the original skb. */
  752. if (mdp->tx_skbuff[entry]) {
  753. dma_unmap_single(&ndev->dev, txdesc->addr,
  754. txdesc->buffer_length, DMA_TO_DEVICE);
  755. dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
  756. mdp->tx_skbuff[entry] = NULL;
  757. freeNum++;
  758. }
  759. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  760. if (entry >= TX_RING_SIZE - 1)
  761. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  762. ndev->stats.tx_packets++;
  763. ndev->stats.tx_bytes += txdesc->buffer_length;
  764. }
  765. return freeNum;
  766. }
  767. /* Packet receive function */
  768. static int sh_eth_rx(struct net_device *ndev)
  769. {
  770. struct sh_eth_private *mdp = netdev_priv(ndev);
  771. struct sh_eth_rxdesc *rxdesc;
  772. int entry = mdp->cur_rx % RX_RING_SIZE;
  773. int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
  774. struct sk_buff *skb;
  775. u16 pkt_len = 0;
  776. u32 desc_status;
  777. rxdesc = &mdp->rx_ring[entry];
  778. while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
  779. desc_status = edmac_to_cpu(mdp, rxdesc->status);
  780. pkt_len = rxdesc->frame_length;
  781. if (--boguscnt < 0)
  782. break;
  783. if (!(desc_status & RDFEND))
  784. ndev->stats.rx_length_errors++;
  785. if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
  786. RD_RFS5 | RD_RFS6 | RD_RFS10)) {
  787. ndev->stats.rx_errors++;
  788. if (desc_status & RD_RFS1)
  789. ndev->stats.rx_crc_errors++;
  790. if (desc_status & RD_RFS2)
  791. ndev->stats.rx_frame_errors++;
  792. if (desc_status & RD_RFS3)
  793. ndev->stats.rx_length_errors++;
  794. if (desc_status & RD_RFS4)
  795. ndev->stats.rx_length_errors++;
  796. if (desc_status & RD_RFS6)
  797. ndev->stats.rx_missed_errors++;
  798. if (desc_status & RD_RFS10)
  799. ndev->stats.rx_over_errors++;
  800. } else {
  801. if (!mdp->cd->hw_swap)
  802. sh_eth_soft_swap(
  803. phys_to_virt(ALIGN(rxdesc->addr, 4)),
  804. pkt_len + 2);
  805. skb = mdp->rx_skbuff[entry];
  806. mdp->rx_skbuff[entry] = NULL;
  807. if (mdp->cd->rpadir)
  808. skb_reserve(skb, NET_IP_ALIGN);
  809. skb_put(skb, pkt_len);
  810. skb->protocol = eth_type_trans(skb, ndev);
  811. netif_rx(skb);
  812. ndev->stats.rx_packets++;
  813. ndev->stats.rx_bytes += pkt_len;
  814. }
  815. rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
  816. entry = (++mdp->cur_rx) % RX_RING_SIZE;
  817. rxdesc = &mdp->rx_ring[entry];
  818. }
  819. /* Refill the Rx ring buffers. */
  820. for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
  821. entry = mdp->dirty_rx % RX_RING_SIZE;
  822. rxdesc = &mdp->rx_ring[entry];
  823. /* The size of the buffer is 16 byte boundary. */
  824. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  825. if (mdp->rx_skbuff[entry] == NULL) {
  826. skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
  827. mdp->rx_skbuff[entry] = skb;
  828. if (skb == NULL)
  829. break; /* Better luck next round. */
  830. dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
  831. DMA_FROM_DEVICE);
  832. sh_eth_set_receive_align(skb);
  833. skb_checksum_none_assert(skb);
  834. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  835. }
  836. if (entry >= RX_RING_SIZE - 1)
  837. rxdesc->status |=
  838. cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
  839. else
  840. rxdesc->status |=
  841. cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  842. }
  843. /* Restart Rx engine if stopped. */
  844. /* If we don't need to check status, don't. -KDU */
  845. if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R))
  846. sh_eth_write(ndev, EDRRR_R, EDRRR);
  847. return 0;
  848. }
  849. static void sh_eth_rcv_snd_disable(struct net_device *ndev)
  850. {
  851. /* disable tx and rx */
  852. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
  853. ~(ECMR_RE | ECMR_TE), ECMR);
  854. }
  855. static void sh_eth_rcv_snd_enable(struct net_device *ndev)
  856. {
  857. /* enable tx and rx */
  858. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
  859. (ECMR_RE | ECMR_TE), ECMR);
  860. }
  861. /* error control function */
  862. static void sh_eth_error(struct net_device *ndev, int intr_status)
  863. {
  864. struct sh_eth_private *mdp = netdev_priv(ndev);
  865. u32 felic_stat;
  866. u32 link_stat;
  867. u32 mask;
  868. if (intr_status & EESR_ECI) {
  869. felic_stat = sh_eth_read(ndev, ECSR);
  870. sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
  871. if (felic_stat & ECSR_ICD)
  872. ndev->stats.tx_carrier_errors++;
  873. if (felic_stat & ECSR_LCHNG) {
  874. /* Link Changed */
  875. if (mdp->cd->no_psr || mdp->no_ether_link) {
  876. if (mdp->link == PHY_DOWN)
  877. link_stat = 0;
  878. else
  879. link_stat = PHY_ST_LINK;
  880. } else {
  881. link_stat = (sh_eth_read(ndev, PSR));
  882. if (mdp->ether_link_active_low)
  883. link_stat = ~link_stat;
  884. }
  885. if (!(link_stat & PHY_ST_LINK))
  886. sh_eth_rcv_snd_disable(ndev);
  887. else {
  888. /* Link Up */
  889. sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
  890. ~DMAC_M_ECI, EESIPR);
  891. /*clear int */
  892. sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
  893. ECSR);
  894. sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
  895. DMAC_M_ECI, EESIPR);
  896. /* enable tx and rx */
  897. sh_eth_rcv_snd_enable(ndev);
  898. }
  899. }
  900. }
  901. if (intr_status & EESR_TWB) {
  902. /* Write buck end. unused write back interrupt */
  903. if (intr_status & EESR_TABT) /* Transmit Abort int */
  904. ndev->stats.tx_aborted_errors++;
  905. if (netif_msg_tx_err(mdp))
  906. dev_err(&ndev->dev, "Transmit Abort\n");
  907. }
  908. if (intr_status & EESR_RABT) {
  909. /* Receive Abort int */
  910. if (intr_status & EESR_RFRMER) {
  911. /* Receive Frame Overflow int */
  912. ndev->stats.rx_frame_errors++;
  913. if (netif_msg_rx_err(mdp))
  914. dev_err(&ndev->dev, "Receive Abort\n");
  915. }
  916. }
  917. if (intr_status & EESR_TDE) {
  918. /* Transmit Descriptor Empty int */
  919. ndev->stats.tx_fifo_errors++;
  920. if (netif_msg_tx_err(mdp))
  921. dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
  922. }
  923. if (intr_status & EESR_TFE) {
  924. /* FIFO under flow */
  925. ndev->stats.tx_fifo_errors++;
  926. if (netif_msg_tx_err(mdp))
  927. dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
  928. }
  929. if (intr_status & EESR_RDE) {
  930. /* Receive Descriptor Empty int */
  931. ndev->stats.rx_over_errors++;
  932. if (sh_eth_read(ndev, EDRRR) ^ EDRRR_R)
  933. sh_eth_write(ndev, EDRRR_R, EDRRR);
  934. if (netif_msg_rx_err(mdp))
  935. dev_err(&ndev->dev, "Receive Descriptor Empty\n");
  936. }
  937. if (intr_status & EESR_RFE) {
  938. /* Receive FIFO Overflow int */
  939. ndev->stats.rx_fifo_errors++;
  940. if (netif_msg_rx_err(mdp))
  941. dev_err(&ndev->dev, "Receive FIFO Overflow\n");
  942. }
  943. if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
  944. /* Address Error */
  945. ndev->stats.tx_fifo_errors++;
  946. if (netif_msg_tx_err(mdp))
  947. dev_err(&ndev->dev, "Address Error\n");
  948. }
  949. mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
  950. if (mdp->cd->no_ade)
  951. mask &= ~EESR_ADE;
  952. if (intr_status & mask) {
  953. /* Tx error */
  954. u32 edtrr = sh_eth_read(ndev, EDTRR);
  955. /* dmesg */
  956. dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
  957. intr_status, mdp->cur_tx);
  958. dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
  959. mdp->dirty_tx, (u32) ndev->state, edtrr);
  960. /* dirty buffer free */
  961. sh_eth_txfree(ndev);
  962. /* SH7712 BUG */
  963. if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
  964. /* tx dma start */
  965. sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
  966. }
  967. /* wakeup */
  968. netif_wake_queue(ndev);
  969. }
  970. }
  971. static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
  972. {
  973. struct net_device *ndev = netdev;
  974. struct sh_eth_private *mdp = netdev_priv(ndev);
  975. struct sh_eth_cpu_data *cd = mdp->cd;
  976. irqreturn_t ret = IRQ_NONE;
  977. u32 intr_status = 0;
  978. spin_lock(&mdp->lock);
  979. /* Get interrpt stat */
  980. intr_status = sh_eth_read(ndev, EESR);
  981. /* Clear interrupt */
  982. if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
  983. EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
  984. cd->tx_check | cd->eesr_err_check)) {
  985. sh_eth_write(ndev, intr_status, EESR);
  986. ret = IRQ_HANDLED;
  987. } else
  988. goto other_irq;
  989. if (intr_status & (EESR_FRC | /* Frame recv*/
  990. EESR_RMAF | /* Multi cast address recv*/
  991. EESR_RRF | /* Bit frame recv */
  992. EESR_RTLF | /* Long frame recv*/
  993. EESR_RTSF | /* short frame recv */
  994. EESR_PRE | /* PHY-LSI recv error */
  995. EESR_CERF)){ /* recv frame CRC error */
  996. sh_eth_rx(ndev);
  997. }
  998. /* Tx Check */
  999. if (intr_status & cd->tx_check) {
  1000. sh_eth_txfree(ndev);
  1001. netif_wake_queue(ndev);
  1002. }
  1003. if (intr_status & cd->eesr_err_check)
  1004. sh_eth_error(ndev, intr_status);
  1005. other_irq:
  1006. spin_unlock(&mdp->lock);
  1007. return ret;
  1008. }
  1009. static void sh_eth_timer(unsigned long data)
  1010. {
  1011. struct net_device *ndev = (struct net_device *)data;
  1012. struct sh_eth_private *mdp = netdev_priv(ndev);
  1013. mod_timer(&mdp->timer, jiffies + (10 * HZ));
  1014. }
  1015. /* PHY state control function */
  1016. static void sh_eth_adjust_link(struct net_device *ndev)
  1017. {
  1018. struct sh_eth_private *mdp = netdev_priv(ndev);
  1019. struct phy_device *phydev = mdp->phydev;
  1020. int new_state = 0;
  1021. if (phydev->link != PHY_DOWN) {
  1022. if (phydev->duplex != mdp->duplex) {
  1023. new_state = 1;
  1024. mdp->duplex = phydev->duplex;
  1025. if (mdp->cd->set_duplex)
  1026. mdp->cd->set_duplex(ndev);
  1027. }
  1028. if (phydev->speed != mdp->speed) {
  1029. new_state = 1;
  1030. mdp->speed = phydev->speed;
  1031. if (mdp->cd->set_rate)
  1032. mdp->cd->set_rate(ndev);
  1033. }
  1034. if (mdp->link == PHY_DOWN) {
  1035. sh_eth_write(ndev,
  1036. (sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
  1037. new_state = 1;
  1038. mdp->link = phydev->link;
  1039. }
  1040. } else if (mdp->link) {
  1041. new_state = 1;
  1042. mdp->link = PHY_DOWN;
  1043. mdp->speed = 0;
  1044. mdp->duplex = -1;
  1045. }
  1046. if (new_state && netif_msg_link(mdp))
  1047. phy_print_status(phydev);
  1048. }
  1049. /* PHY init function */
  1050. static int sh_eth_phy_init(struct net_device *ndev)
  1051. {
  1052. struct sh_eth_private *mdp = netdev_priv(ndev);
  1053. char phy_id[MII_BUS_ID_SIZE + 3];
  1054. struct phy_device *phydev = NULL;
  1055. snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
  1056. mdp->mii_bus->id , mdp->phy_id);
  1057. mdp->link = PHY_DOWN;
  1058. mdp->speed = 0;
  1059. mdp->duplex = -1;
  1060. /* Try connect to PHY */
  1061. phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
  1062. 0, mdp->phy_interface);
  1063. if (IS_ERR(phydev)) {
  1064. dev_err(&ndev->dev, "phy_connect failed\n");
  1065. return PTR_ERR(phydev);
  1066. }
  1067. dev_info(&ndev->dev, "attached phy %i to driver %s\n",
  1068. phydev->addr, phydev->drv->name);
  1069. mdp->phydev = phydev;
  1070. return 0;
  1071. }
  1072. /* PHY control start function */
  1073. static int sh_eth_phy_start(struct net_device *ndev)
  1074. {
  1075. struct sh_eth_private *mdp = netdev_priv(ndev);
  1076. int ret;
  1077. ret = sh_eth_phy_init(ndev);
  1078. if (ret)
  1079. return ret;
  1080. /* reset phy - this also wakes it from PDOWN */
  1081. phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
  1082. phy_start(mdp->phydev);
  1083. return 0;
  1084. }
  1085. static int sh_eth_get_settings(struct net_device *ndev,
  1086. struct ethtool_cmd *ecmd)
  1087. {
  1088. struct sh_eth_private *mdp = netdev_priv(ndev);
  1089. unsigned long flags;
  1090. int ret;
  1091. spin_lock_irqsave(&mdp->lock, flags);
  1092. ret = phy_ethtool_gset(mdp->phydev, ecmd);
  1093. spin_unlock_irqrestore(&mdp->lock, flags);
  1094. return ret;
  1095. }
  1096. static int sh_eth_set_settings(struct net_device *ndev,
  1097. struct ethtool_cmd *ecmd)
  1098. {
  1099. struct sh_eth_private *mdp = netdev_priv(ndev);
  1100. unsigned long flags;
  1101. int ret;
  1102. spin_lock_irqsave(&mdp->lock, flags);
  1103. /* disable tx and rx */
  1104. sh_eth_rcv_snd_disable(ndev);
  1105. ret = phy_ethtool_sset(mdp->phydev, ecmd);
  1106. if (ret)
  1107. goto error_exit;
  1108. if (ecmd->duplex == DUPLEX_FULL)
  1109. mdp->duplex = 1;
  1110. else
  1111. mdp->duplex = 0;
  1112. if (mdp->cd->set_duplex)
  1113. mdp->cd->set_duplex(ndev);
  1114. error_exit:
  1115. mdelay(1);
  1116. /* enable tx and rx */
  1117. sh_eth_rcv_snd_enable(ndev);
  1118. spin_unlock_irqrestore(&mdp->lock, flags);
  1119. return ret;
  1120. }
  1121. static int sh_eth_nway_reset(struct net_device *ndev)
  1122. {
  1123. struct sh_eth_private *mdp = netdev_priv(ndev);
  1124. unsigned long flags;
  1125. int ret;
  1126. spin_lock_irqsave(&mdp->lock, flags);
  1127. ret = phy_start_aneg(mdp->phydev);
  1128. spin_unlock_irqrestore(&mdp->lock, flags);
  1129. return ret;
  1130. }
  1131. static u32 sh_eth_get_msglevel(struct net_device *ndev)
  1132. {
  1133. struct sh_eth_private *mdp = netdev_priv(ndev);
  1134. return mdp->msg_enable;
  1135. }
  1136. static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
  1137. {
  1138. struct sh_eth_private *mdp = netdev_priv(ndev);
  1139. mdp->msg_enable = value;
  1140. }
  1141. static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
  1142. "rx_current", "tx_current",
  1143. "rx_dirty", "tx_dirty",
  1144. };
  1145. #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
  1146. static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
  1147. {
  1148. switch (sset) {
  1149. case ETH_SS_STATS:
  1150. return SH_ETH_STATS_LEN;
  1151. default:
  1152. return -EOPNOTSUPP;
  1153. }
  1154. }
  1155. static void sh_eth_get_ethtool_stats(struct net_device *ndev,
  1156. struct ethtool_stats *stats, u64 *data)
  1157. {
  1158. struct sh_eth_private *mdp = netdev_priv(ndev);
  1159. int i = 0;
  1160. /* device-specific stats */
  1161. data[i++] = mdp->cur_rx;
  1162. data[i++] = mdp->cur_tx;
  1163. data[i++] = mdp->dirty_rx;
  1164. data[i++] = mdp->dirty_tx;
  1165. }
  1166. static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
  1167. {
  1168. switch (stringset) {
  1169. case ETH_SS_STATS:
  1170. memcpy(data, *sh_eth_gstrings_stats,
  1171. sizeof(sh_eth_gstrings_stats));
  1172. break;
  1173. }
  1174. }
  1175. static const struct ethtool_ops sh_eth_ethtool_ops = {
  1176. .get_settings = sh_eth_get_settings,
  1177. .set_settings = sh_eth_set_settings,
  1178. .nway_reset = sh_eth_nway_reset,
  1179. .get_msglevel = sh_eth_get_msglevel,
  1180. .set_msglevel = sh_eth_set_msglevel,
  1181. .get_link = ethtool_op_get_link,
  1182. .get_strings = sh_eth_get_strings,
  1183. .get_ethtool_stats = sh_eth_get_ethtool_stats,
  1184. .get_sset_count = sh_eth_get_sset_count,
  1185. };
  1186. /* network device open function */
  1187. static int sh_eth_open(struct net_device *ndev)
  1188. {
  1189. int ret = 0;
  1190. struct sh_eth_private *mdp = netdev_priv(ndev);
  1191. pm_runtime_get_sync(&mdp->pdev->dev);
  1192. ret = request_irq(ndev->irq, sh_eth_interrupt,
  1193. #if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
  1194. defined(CONFIG_CPU_SUBTYPE_SH7764) || \
  1195. defined(CONFIG_CPU_SUBTYPE_SH7757)
  1196. IRQF_SHARED,
  1197. #else
  1198. 0,
  1199. #endif
  1200. ndev->name, ndev);
  1201. if (ret) {
  1202. dev_err(&ndev->dev, "Can not assign IRQ number\n");
  1203. return ret;
  1204. }
  1205. /* Descriptor set */
  1206. ret = sh_eth_ring_init(ndev);
  1207. if (ret)
  1208. goto out_free_irq;
  1209. /* device init */
  1210. ret = sh_eth_dev_init(ndev);
  1211. if (ret)
  1212. goto out_free_irq;
  1213. /* PHY control start*/
  1214. ret = sh_eth_phy_start(ndev);
  1215. if (ret)
  1216. goto out_free_irq;
  1217. /* Set the timer to check for link beat. */
  1218. init_timer(&mdp->timer);
  1219. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  1220. setup_timer(&mdp->timer, sh_eth_timer, (unsigned long)ndev);
  1221. return ret;
  1222. out_free_irq:
  1223. free_irq(ndev->irq, ndev);
  1224. pm_runtime_put_sync(&mdp->pdev->dev);
  1225. return ret;
  1226. }
  1227. /* Timeout function */
  1228. static void sh_eth_tx_timeout(struct net_device *ndev)
  1229. {
  1230. struct sh_eth_private *mdp = netdev_priv(ndev);
  1231. struct sh_eth_rxdesc *rxdesc;
  1232. int i;
  1233. netif_stop_queue(ndev);
  1234. if (netif_msg_timer(mdp))
  1235. dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
  1236. " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
  1237. /* tx_errors count up */
  1238. ndev->stats.tx_errors++;
  1239. /* timer off */
  1240. del_timer_sync(&mdp->timer);
  1241. /* Free all the skbuffs in the Rx queue. */
  1242. for (i = 0; i < RX_RING_SIZE; i++) {
  1243. rxdesc = &mdp->rx_ring[i];
  1244. rxdesc->status = 0;
  1245. rxdesc->addr = 0xBADF00D0;
  1246. if (mdp->rx_skbuff[i])
  1247. dev_kfree_skb(mdp->rx_skbuff[i]);
  1248. mdp->rx_skbuff[i] = NULL;
  1249. }
  1250. for (i = 0; i < TX_RING_SIZE; i++) {
  1251. if (mdp->tx_skbuff[i])
  1252. dev_kfree_skb(mdp->tx_skbuff[i]);
  1253. mdp->tx_skbuff[i] = NULL;
  1254. }
  1255. /* device init */
  1256. sh_eth_dev_init(ndev);
  1257. /* timer on */
  1258. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  1259. add_timer(&mdp->timer);
  1260. }
  1261. /* Packet transmit function */
  1262. static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  1263. {
  1264. struct sh_eth_private *mdp = netdev_priv(ndev);
  1265. struct sh_eth_txdesc *txdesc;
  1266. u32 entry;
  1267. unsigned long flags;
  1268. spin_lock_irqsave(&mdp->lock, flags);
  1269. if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
  1270. if (!sh_eth_txfree(ndev)) {
  1271. if (netif_msg_tx_queued(mdp))
  1272. dev_warn(&ndev->dev, "TxFD exhausted.\n");
  1273. netif_stop_queue(ndev);
  1274. spin_unlock_irqrestore(&mdp->lock, flags);
  1275. return NETDEV_TX_BUSY;
  1276. }
  1277. }
  1278. spin_unlock_irqrestore(&mdp->lock, flags);
  1279. entry = mdp->cur_tx % TX_RING_SIZE;
  1280. mdp->tx_skbuff[entry] = skb;
  1281. txdesc = &mdp->tx_ring[entry];
  1282. /* soft swap. */
  1283. if (!mdp->cd->hw_swap)
  1284. sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
  1285. skb->len + 2);
  1286. txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
  1287. DMA_TO_DEVICE);
  1288. if (skb->len < ETHERSMALL)
  1289. txdesc->buffer_length = ETHERSMALL;
  1290. else
  1291. txdesc->buffer_length = skb->len;
  1292. if (entry >= TX_RING_SIZE - 1)
  1293. txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
  1294. else
  1295. txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
  1296. mdp->cur_tx++;
  1297. if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
  1298. sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
  1299. return NETDEV_TX_OK;
  1300. }
  1301. /* device close function */
  1302. static int sh_eth_close(struct net_device *ndev)
  1303. {
  1304. struct sh_eth_private *mdp = netdev_priv(ndev);
  1305. int ringsize;
  1306. netif_stop_queue(ndev);
  1307. /* Disable interrupts by clearing the interrupt mask. */
  1308. sh_eth_write(ndev, 0x0000, EESIPR);
  1309. /* Stop the chip's Tx and Rx processes. */
  1310. sh_eth_write(ndev, 0, EDTRR);
  1311. sh_eth_write(ndev, 0, EDRRR);
  1312. /* PHY Disconnect */
  1313. if (mdp->phydev) {
  1314. phy_stop(mdp->phydev);
  1315. phy_disconnect(mdp->phydev);
  1316. }
  1317. free_irq(ndev->irq, ndev);
  1318. del_timer_sync(&mdp->timer);
  1319. /* Free all the skbuffs in the Rx queue. */
  1320. sh_eth_ring_free(ndev);
  1321. /* free DMA buffer */
  1322. ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  1323. dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  1324. /* free DMA buffer */
  1325. ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  1326. dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma);
  1327. pm_runtime_put_sync(&mdp->pdev->dev);
  1328. return 0;
  1329. }
  1330. static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
  1331. {
  1332. struct sh_eth_private *mdp = netdev_priv(ndev);
  1333. pm_runtime_get_sync(&mdp->pdev->dev);
  1334. ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
  1335. sh_eth_write(ndev, 0, TROCR); /* (write clear) */
  1336. ndev->stats.collisions += sh_eth_read(ndev, CDCR);
  1337. sh_eth_write(ndev, 0, CDCR); /* (write clear) */
  1338. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
  1339. sh_eth_write(ndev, 0, LCCR); /* (write clear) */
  1340. if (sh_eth_is_gether(mdp)) {
  1341. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
  1342. sh_eth_write(ndev, 0, CERCR); /* (write clear) */
  1343. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
  1344. sh_eth_write(ndev, 0, CEECR); /* (write clear) */
  1345. } else {
  1346. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
  1347. sh_eth_write(ndev, 0, CNDCR); /* (write clear) */
  1348. }
  1349. pm_runtime_put_sync(&mdp->pdev->dev);
  1350. return &ndev->stats;
  1351. }
  1352. /* ioctl to device function */
  1353. static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
  1354. int cmd)
  1355. {
  1356. struct sh_eth_private *mdp = netdev_priv(ndev);
  1357. struct phy_device *phydev = mdp->phydev;
  1358. if (!netif_running(ndev))
  1359. return -EINVAL;
  1360. if (!phydev)
  1361. return -ENODEV;
  1362. return phy_mii_ioctl(phydev, rq, cmd);
  1363. }
  1364. #if defined(SH_ETH_HAS_TSU)
  1365. /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
  1366. static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
  1367. int entry)
  1368. {
  1369. return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
  1370. }
  1371. static u32 sh_eth_tsu_get_post_mask(int entry)
  1372. {
  1373. return 0x0f << (28 - ((entry % 8) * 4));
  1374. }
  1375. static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
  1376. {
  1377. return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
  1378. }
  1379. static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
  1380. int entry)
  1381. {
  1382. struct sh_eth_private *mdp = netdev_priv(ndev);
  1383. u32 tmp;
  1384. void *reg_offset;
  1385. reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
  1386. tmp = ioread32(reg_offset);
  1387. iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
  1388. }
  1389. static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
  1390. int entry)
  1391. {
  1392. struct sh_eth_private *mdp = netdev_priv(ndev);
  1393. u32 post_mask, ref_mask, tmp;
  1394. void *reg_offset;
  1395. reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
  1396. post_mask = sh_eth_tsu_get_post_mask(entry);
  1397. ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
  1398. tmp = ioread32(reg_offset);
  1399. iowrite32(tmp & ~post_mask, reg_offset);
  1400. /* If other port enables, the function returns "true" */
  1401. return tmp & ref_mask;
  1402. }
  1403. static int sh_eth_tsu_busy(struct net_device *ndev)
  1404. {
  1405. int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
  1406. struct sh_eth_private *mdp = netdev_priv(ndev);
  1407. while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
  1408. udelay(10);
  1409. timeout--;
  1410. if (timeout <= 0) {
  1411. dev_err(&ndev->dev, "%s: timeout\n", __func__);
  1412. return -ETIMEDOUT;
  1413. }
  1414. }
  1415. return 0;
  1416. }
  1417. static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
  1418. const u8 *addr)
  1419. {
  1420. u32 val;
  1421. val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
  1422. iowrite32(val, reg);
  1423. if (sh_eth_tsu_busy(ndev) < 0)
  1424. return -EBUSY;
  1425. val = addr[4] << 8 | addr[5];
  1426. iowrite32(val, reg + 4);
  1427. if (sh_eth_tsu_busy(ndev) < 0)
  1428. return -EBUSY;
  1429. return 0;
  1430. }
  1431. static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
  1432. {
  1433. u32 val;
  1434. val = ioread32(reg);
  1435. addr[0] = (val >> 24) & 0xff;
  1436. addr[1] = (val >> 16) & 0xff;
  1437. addr[2] = (val >> 8) & 0xff;
  1438. addr[3] = val & 0xff;
  1439. val = ioread32(reg + 4);
  1440. addr[4] = (val >> 8) & 0xff;
  1441. addr[5] = val & 0xff;
  1442. }
  1443. static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
  1444. {
  1445. struct sh_eth_private *mdp = netdev_priv(ndev);
  1446. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1447. int i;
  1448. u8 c_addr[ETH_ALEN];
  1449. for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
  1450. sh_eth_tsu_read_entry(reg_offset, c_addr);
  1451. if (memcmp(addr, c_addr, ETH_ALEN) == 0)
  1452. return i;
  1453. }
  1454. return -ENOENT;
  1455. }
  1456. static int sh_eth_tsu_find_empty(struct net_device *ndev)
  1457. {
  1458. u8 blank[ETH_ALEN];
  1459. int entry;
  1460. memset(blank, 0, sizeof(blank));
  1461. entry = sh_eth_tsu_find_entry(ndev, blank);
  1462. return (entry < 0) ? -ENOMEM : entry;
  1463. }
  1464. static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
  1465. int entry)
  1466. {
  1467. struct sh_eth_private *mdp = netdev_priv(ndev);
  1468. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1469. int ret;
  1470. u8 blank[ETH_ALEN];
  1471. sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
  1472. ~(1 << (31 - entry)), TSU_TEN);
  1473. memset(blank, 0, sizeof(blank));
  1474. ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
  1475. if (ret < 0)
  1476. return ret;
  1477. return 0;
  1478. }
  1479. static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
  1480. {
  1481. struct sh_eth_private *mdp = netdev_priv(ndev);
  1482. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1483. int i, ret;
  1484. if (!mdp->cd->tsu)
  1485. return 0;
  1486. i = sh_eth_tsu_find_entry(ndev, addr);
  1487. if (i < 0) {
  1488. /* No entry found, create one */
  1489. i = sh_eth_tsu_find_empty(ndev);
  1490. if (i < 0)
  1491. return -ENOMEM;
  1492. ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
  1493. if (ret < 0)
  1494. return ret;
  1495. /* Enable the entry */
  1496. sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
  1497. (1 << (31 - i)), TSU_TEN);
  1498. }
  1499. /* Entry found or created, enable POST */
  1500. sh_eth_tsu_enable_cam_entry_post(ndev, i);
  1501. return 0;
  1502. }
  1503. static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
  1504. {
  1505. struct sh_eth_private *mdp = netdev_priv(ndev);
  1506. int i, ret;
  1507. if (!mdp->cd->tsu)
  1508. return 0;
  1509. i = sh_eth_tsu_find_entry(ndev, addr);
  1510. if (i) {
  1511. /* Entry found */
  1512. if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
  1513. goto done;
  1514. /* Disable the entry if both ports was disabled */
  1515. ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
  1516. if (ret < 0)
  1517. return ret;
  1518. }
  1519. done:
  1520. return 0;
  1521. }
  1522. static int sh_eth_tsu_purge_all(struct net_device *ndev)
  1523. {
  1524. struct sh_eth_private *mdp = netdev_priv(ndev);
  1525. int i, ret;
  1526. if (unlikely(!mdp->cd->tsu))
  1527. return 0;
  1528. for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
  1529. if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
  1530. continue;
  1531. /* Disable the entry if both ports was disabled */
  1532. ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
  1533. if (ret < 0)
  1534. return ret;
  1535. }
  1536. return 0;
  1537. }
  1538. static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
  1539. {
  1540. struct sh_eth_private *mdp = netdev_priv(ndev);
  1541. u8 addr[ETH_ALEN];
  1542. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1543. int i;
  1544. if (unlikely(!mdp->cd->tsu))
  1545. return;
  1546. for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
  1547. sh_eth_tsu_read_entry(reg_offset, addr);
  1548. if (is_multicast_ether_addr(addr))
  1549. sh_eth_tsu_del_entry(ndev, addr);
  1550. }
  1551. }
  1552. /* Multicast reception directions set */
  1553. static void sh_eth_set_multicast_list(struct net_device *ndev)
  1554. {
  1555. struct sh_eth_private *mdp = netdev_priv(ndev);
  1556. u32 ecmr_bits;
  1557. int mcast_all = 0;
  1558. unsigned long flags;
  1559. spin_lock_irqsave(&mdp->lock, flags);
  1560. /*
  1561. * Initial condition is MCT = 1, PRM = 0.
  1562. * Depending on ndev->flags, set PRM or clear MCT
  1563. */
  1564. ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
  1565. if (!(ndev->flags & IFF_MULTICAST)) {
  1566. sh_eth_tsu_purge_mcast(ndev);
  1567. mcast_all = 1;
  1568. }
  1569. if (ndev->flags & IFF_ALLMULTI) {
  1570. sh_eth_tsu_purge_mcast(ndev);
  1571. ecmr_bits &= ~ECMR_MCT;
  1572. mcast_all = 1;
  1573. }
  1574. if (ndev->flags & IFF_PROMISC) {
  1575. sh_eth_tsu_purge_all(ndev);
  1576. ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
  1577. } else if (mdp->cd->tsu) {
  1578. struct netdev_hw_addr *ha;
  1579. netdev_for_each_mc_addr(ha, ndev) {
  1580. if (mcast_all && is_multicast_ether_addr(ha->addr))
  1581. continue;
  1582. if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
  1583. if (!mcast_all) {
  1584. sh_eth_tsu_purge_mcast(ndev);
  1585. ecmr_bits &= ~ECMR_MCT;
  1586. mcast_all = 1;
  1587. }
  1588. }
  1589. }
  1590. } else {
  1591. /* Normal, unicast/broadcast-only mode. */
  1592. ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
  1593. }
  1594. /* update the ethernet mode */
  1595. sh_eth_write(ndev, ecmr_bits, ECMR);
  1596. spin_unlock_irqrestore(&mdp->lock, flags);
  1597. }
  1598. static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
  1599. {
  1600. if (!mdp->port)
  1601. return TSU_VTAG0;
  1602. else
  1603. return TSU_VTAG1;
  1604. }
  1605. static int sh_eth_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  1606. {
  1607. struct sh_eth_private *mdp = netdev_priv(ndev);
  1608. int vtag_reg_index = sh_eth_get_vtag_index(mdp);
  1609. if (unlikely(!mdp->cd->tsu))
  1610. return -EPERM;
  1611. /* No filtering if vid = 0 */
  1612. if (!vid)
  1613. return 0;
  1614. mdp->vlan_num_ids++;
  1615. /*
  1616. * The controller has one VLAN tag HW filter. So, if the filter is
  1617. * already enabled, the driver disables it and the filte
  1618. */
  1619. if (mdp->vlan_num_ids > 1) {
  1620. /* disable VLAN filter */
  1621. sh_eth_tsu_write(mdp, 0, vtag_reg_index);
  1622. return 0;
  1623. }
  1624. sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
  1625. vtag_reg_index);
  1626. return 0;
  1627. }
  1628. static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  1629. {
  1630. struct sh_eth_private *mdp = netdev_priv(ndev);
  1631. int vtag_reg_index = sh_eth_get_vtag_index(mdp);
  1632. if (unlikely(!mdp->cd->tsu))
  1633. return -EPERM;
  1634. /* No filtering if vid = 0 */
  1635. if (!vid)
  1636. return 0;
  1637. mdp->vlan_num_ids--;
  1638. sh_eth_tsu_write(mdp, 0, vtag_reg_index);
  1639. return 0;
  1640. }
  1641. #endif /* SH_ETH_HAS_TSU */
  1642. /* SuperH's TSU register init function */
  1643. static void sh_eth_tsu_init(struct sh_eth_private *mdp)
  1644. {
  1645. sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
  1646. sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
  1647. sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
  1648. sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
  1649. sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
  1650. sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
  1651. sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
  1652. sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
  1653. sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
  1654. sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
  1655. if (sh_eth_is_gether(mdp)) {
  1656. sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */
  1657. sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */
  1658. } else {
  1659. sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
  1660. sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
  1661. }
  1662. sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
  1663. sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
  1664. sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
  1665. sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
  1666. sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
  1667. sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
  1668. sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
  1669. }
  1670. /* MDIO bus release function */
  1671. static int sh_mdio_release(struct net_device *ndev)
  1672. {
  1673. struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
  1674. /* unregister mdio bus */
  1675. mdiobus_unregister(bus);
  1676. /* remove mdio bus info from net_device */
  1677. dev_set_drvdata(&ndev->dev, NULL);
  1678. /* free interrupts memory */
  1679. kfree(bus->irq);
  1680. /* free bitbang info */
  1681. free_mdio_bitbang(bus);
  1682. return 0;
  1683. }
  1684. /* MDIO bus init function */
  1685. static int sh_mdio_init(struct net_device *ndev, int id,
  1686. struct sh_eth_plat_data *pd)
  1687. {
  1688. int ret, i;
  1689. struct bb_info *bitbang;
  1690. struct sh_eth_private *mdp = netdev_priv(ndev);
  1691. /* create bit control struct for PHY */
  1692. bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
  1693. if (!bitbang) {
  1694. ret = -ENOMEM;
  1695. goto out;
  1696. }
  1697. /* bitbang init */
  1698. bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
  1699. bitbang->set_gate = pd->set_mdio_gate;
  1700. bitbang->mdi_msk = 0x08;
  1701. bitbang->mdo_msk = 0x04;
  1702. bitbang->mmd_msk = 0x02;/* MMD */
  1703. bitbang->mdc_msk = 0x01;
  1704. bitbang->ctrl.ops = &bb_ops;
  1705. /* MII controller setting */
  1706. mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
  1707. if (!mdp->mii_bus) {
  1708. ret = -ENOMEM;
  1709. goto out_free_bitbang;
  1710. }
  1711. /* Hook up MII support for ethtool */
  1712. mdp->mii_bus->name = "sh_mii";
  1713. mdp->mii_bus->parent = &ndev->dev;
  1714. snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
  1715. mdp->pdev->name, id);
  1716. /* PHY IRQ */
  1717. mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
  1718. if (!mdp->mii_bus->irq) {
  1719. ret = -ENOMEM;
  1720. goto out_free_bus;
  1721. }
  1722. for (i = 0; i < PHY_MAX_ADDR; i++)
  1723. mdp->mii_bus->irq[i] = PHY_POLL;
  1724. /* regist mdio bus */
  1725. ret = mdiobus_register(mdp->mii_bus);
  1726. if (ret)
  1727. goto out_free_irq;
  1728. dev_set_drvdata(&ndev->dev, mdp->mii_bus);
  1729. return 0;
  1730. out_free_irq:
  1731. kfree(mdp->mii_bus->irq);
  1732. out_free_bus:
  1733. free_mdio_bitbang(mdp->mii_bus);
  1734. out_free_bitbang:
  1735. kfree(bitbang);
  1736. out:
  1737. return ret;
  1738. }
  1739. static const u16 *sh_eth_get_register_offset(int register_type)
  1740. {
  1741. const u16 *reg_offset = NULL;
  1742. switch (register_type) {
  1743. case SH_ETH_REG_GIGABIT:
  1744. reg_offset = sh_eth_offset_gigabit;
  1745. break;
  1746. case SH_ETH_REG_FAST_SH4:
  1747. reg_offset = sh_eth_offset_fast_sh4;
  1748. break;
  1749. case SH_ETH_REG_FAST_SH3_SH2:
  1750. reg_offset = sh_eth_offset_fast_sh3_sh2;
  1751. break;
  1752. default:
  1753. printk(KERN_ERR "Unknown register type (%d)\n", register_type);
  1754. break;
  1755. }
  1756. return reg_offset;
  1757. }
  1758. static const struct net_device_ops sh_eth_netdev_ops = {
  1759. .ndo_open = sh_eth_open,
  1760. .ndo_stop = sh_eth_close,
  1761. .ndo_start_xmit = sh_eth_start_xmit,
  1762. .ndo_get_stats = sh_eth_get_stats,
  1763. #if defined(SH_ETH_HAS_TSU)
  1764. .ndo_set_rx_mode = sh_eth_set_multicast_list,
  1765. .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid,
  1766. .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid,
  1767. #endif
  1768. .ndo_tx_timeout = sh_eth_tx_timeout,
  1769. .ndo_do_ioctl = sh_eth_do_ioctl,
  1770. .ndo_validate_addr = eth_validate_addr,
  1771. .ndo_set_mac_address = eth_mac_addr,
  1772. .ndo_change_mtu = eth_change_mtu,
  1773. };
  1774. static int sh_eth_drv_probe(struct platform_device *pdev)
  1775. {
  1776. int ret, devno = 0;
  1777. struct resource *res;
  1778. struct net_device *ndev = NULL;
  1779. struct sh_eth_private *mdp = NULL;
  1780. struct sh_eth_plat_data *pd;
  1781. /* get base addr */
  1782. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1783. if (unlikely(res == NULL)) {
  1784. dev_err(&pdev->dev, "invalid resource\n");
  1785. ret = -EINVAL;
  1786. goto out;
  1787. }
  1788. ndev = alloc_etherdev(sizeof(struct sh_eth_private));
  1789. if (!ndev) {
  1790. ret = -ENOMEM;
  1791. goto out;
  1792. }
  1793. /* The sh Ether-specific entries in the device structure. */
  1794. ndev->base_addr = res->start;
  1795. devno = pdev->id;
  1796. if (devno < 0)
  1797. devno = 0;
  1798. ndev->dma = -1;
  1799. ret = platform_get_irq(pdev, 0);
  1800. if (ret < 0) {
  1801. ret = -ENODEV;
  1802. goto out_release;
  1803. }
  1804. ndev->irq = ret;
  1805. SET_NETDEV_DEV(ndev, &pdev->dev);
  1806. /* Fill in the fields of the device structure with ethernet values. */
  1807. ether_setup(ndev);
  1808. mdp = netdev_priv(ndev);
  1809. mdp->addr = ioremap(res->start, resource_size(res));
  1810. if (mdp->addr == NULL) {
  1811. ret = -ENOMEM;
  1812. dev_err(&pdev->dev, "ioremap failed.\n");
  1813. goto out_release;
  1814. }
  1815. spin_lock_init(&mdp->lock);
  1816. mdp->pdev = pdev;
  1817. pm_runtime_enable(&pdev->dev);
  1818. pm_runtime_resume(&pdev->dev);
  1819. pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
  1820. /* get PHY ID */
  1821. mdp->phy_id = pd->phy;
  1822. mdp->phy_interface = pd->phy_interface;
  1823. /* EDMAC endian */
  1824. mdp->edmac_endian = pd->edmac_endian;
  1825. mdp->no_ether_link = pd->no_ether_link;
  1826. mdp->ether_link_active_low = pd->ether_link_active_low;
  1827. mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
  1828. /* set cpu data */
  1829. #if defined(SH_ETH_HAS_BOTH_MODULES)
  1830. mdp->cd = sh_eth_get_cpu_data(mdp);
  1831. #else
  1832. mdp->cd = &sh_eth_my_cpu_data;
  1833. #endif
  1834. sh_eth_set_default_cpu_data(mdp->cd);
  1835. /* set function */
  1836. ndev->netdev_ops = &sh_eth_netdev_ops;
  1837. SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
  1838. ndev->watchdog_timeo = TX_TIMEOUT;
  1839. /* debug message level */
  1840. mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
  1841. mdp->post_rx = POST_RX >> (devno << 1);
  1842. mdp->post_fw = POST_FW >> (devno << 1);
  1843. /* read and set MAC address */
  1844. read_mac_address(ndev, pd->mac_addr);
  1845. /* ioremap the TSU registers */
  1846. if (mdp->cd->tsu) {
  1847. struct resource *rtsu;
  1848. rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1849. if (!rtsu) {
  1850. dev_err(&pdev->dev, "Not found TSU resource\n");
  1851. goto out_release;
  1852. }
  1853. mdp->tsu_addr = ioremap(rtsu->start,
  1854. resource_size(rtsu));
  1855. mdp->port = devno % 2;
  1856. ndev->features = NETIF_F_HW_VLAN_FILTER;
  1857. }
  1858. /* initialize first or needed device */
  1859. if (!devno || pd->needs_init) {
  1860. if (mdp->cd->chip_reset)
  1861. mdp->cd->chip_reset(ndev);
  1862. if (mdp->cd->tsu) {
  1863. /* TSU init (Init only)*/
  1864. sh_eth_tsu_init(mdp);
  1865. }
  1866. }
  1867. /* network device register */
  1868. ret = register_netdev(ndev);
  1869. if (ret)
  1870. goto out_release;
  1871. /* mdio bus init */
  1872. ret = sh_mdio_init(ndev, pdev->id, pd);
  1873. if (ret)
  1874. goto out_unregister;
  1875. /* print device information */
  1876. pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
  1877. (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
  1878. platform_set_drvdata(pdev, ndev);
  1879. return ret;
  1880. out_unregister:
  1881. unregister_netdev(ndev);
  1882. out_release:
  1883. /* net_dev free */
  1884. if (mdp && mdp->addr)
  1885. iounmap(mdp->addr);
  1886. if (mdp && mdp->tsu_addr)
  1887. iounmap(mdp->tsu_addr);
  1888. if (ndev)
  1889. free_netdev(ndev);
  1890. out:
  1891. return ret;
  1892. }
  1893. static int sh_eth_drv_remove(struct platform_device *pdev)
  1894. {
  1895. struct net_device *ndev = platform_get_drvdata(pdev);
  1896. struct sh_eth_private *mdp = netdev_priv(ndev);
  1897. if (mdp->cd->tsu)
  1898. iounmap(mdp->tsu_addr);
  1899. sh_mdio_release(ndev);
  1900. unregister_netdev(ndev);
  1901. pm_runtime_disable(&pdev->dev);
  1902. iounmap(mdp->addr);
  1903. free_netdev(ndev);
  1904. platform_set_drvdata(pdev, NULL);
  1905. return 0;
  1906. }
  1907. static int sh_eth_runtime_nop(struct device *dev)
  1908. {
  1909. /*
  1910. * Runtime PM callback shared between ->runtime_suspend()
  1911. * and ->runtime_resume(). Simply returns success.
  1912. *
  1913. * This driver re-initializes all registers after
  1914. * pm_runtime_get_sync() anyway so there is no need
  1915. * to save and restore registers here.
  1916. */
  1917. return 0;
  1918. }
  1919. static struct dev_pm_ops sh_eth_dev_pm_ops = {
  1920. .runtime_suspend = sh_eth_runtime_nop,
  1921. .runtime_resume = sh_eth_runtime_nop,
  1922. };
  1923. static struct platform_driver sh_eth_driver = {
  1924. .probe = sh_eth_drv_probe,
  1925. .remove = sh_eth_drv_remove,
  1926. .driver = {
  1927. .name = CARDNAME,
  1928. .pm = &sh_eth_dev_pm_ops,
  1929. },
  1930. };
  1931. module_platform_driver(sh_eth_driver);
  1932. MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
  1933. MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
  1934. MODULE_LICENSE("GPL v2");