core.c 25 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043
  1. /*
  2. * linux/arch/arm/mach-versatile/core.c
  3. *
  4. * Copyright (C) 1999 - 2003 ARM Limited
  5. * Copyright (C) 2000 Deep Blue Solutions Ltd
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. #include <linux/init.h>
  22. #include <linux/device.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/sysdev.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/amba/bus.h>
  28. #include <linux/amba/clcd.h>
  29. #include <linux/amba/pl061.h>
  30. #include <linux/amba/mmci.h>
  31. #include <linux/clocksource.h>
  32. #include <linux/clockchips.h>
  33. #include <linux/cnt32_to_63.h>
  34. #include <linux/io.h>
  35. #include <asm/clkdev.h>
  36. #include <asm/system.h>
  37. #include <asm/irq.h>
  38. #include <asm/leds.h>
  39. #include <asm/hardware/arm_timer.h>
  40. #include <asm/hardware/icst.h>
  41. #include <asm/hardware/vic.h>
  42. #include <asm/mach-types.h>
  43. #include <asm/mach/arch.h>
  44. #include <asm/mach/flash.h>
  45. #include <asm/mach/irq.h>
  46. #include <asm/mach/time.h>
  47. #include <asm/mach/map.h>
  48. #include <mach/hardware.h>
  49. #include <mach/platform.h>
  50. #include "core.h"
  51. #include "clock.h"
  52. /*
  53. * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
  54. * is the (PA >> 12).
  55. *
  56. * Setup a VA for the Versatile Vectored Interrupt Controller.
  57. */
  58. #define VA_VIC_BASE __io_address(VERSATILE_VIC_BASE)
  59. #define VA_SIC_BASE __io_address(VERSATILE_SIC_BASE)
  60. static void sic_mask_irq(unsigned int irq)
  61. {
  62. irq -= IRQ_SIC_START;
  63. writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
  64. }
  65. static void sic_unmask_irq(unsigned int irq)
  66. {
  67. irq -= IRQ_SIC_START;
  68. writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_SET);
  69. }
  70. static struct irq_chip sic_chip = {
  71. .name = "SIC",
  72. .ack = sic_mask_irq,
  73. .mask = sic_mask_irq,
  74. .unmask = sic_unmask_irq,
  75. };
  76. static void
  77. sic_handle_irq(unsigned int irq, struct irq_desc *desc)
  78. {
  79. unsigned long status = readl(VA_SIC_BASE + SIC_IRQ_STATUS);
  80. if (status == 0) {
  81. do_bad_IRQ(irq, desc);
  82. return;
  83. }
  84. do {
  85. irq = ffs(status) - 1;
  86. status &= ~(1 << irq);
  87. irq += IRQ_SIC_START;
  88. generic_handle_irq(irq);
  89. } while (status);
  90. }
  91. #if 1
  92. #define IRQ_MMCI0A IRQ_VICSOURCE22
  93. #define IRQ_AACI IRQ_VICSOURCE24
  94. #define IRQ_ETH IRQ_VICSOURCE25
  95. #define PIC_MASK 0xFFD00000
  96. #else
  97. #define IRQ_MMCI0A IRQ_SIC_MMCI0A
  98. #define IRQ_AACI IRQ_SIC_AACI
  99. #define IRQ_ETH IRQ_SIC_ETH
  100. #define PIC_MASK 0
  101. #endif
  102. void __init versatile_init_irq(void)
  103. {
  104. unsigned int i;
  105. vic_init(VA_VIC_BASE, IRQ_VIC_START, ~0, 0);
  106. set_irq_chained_handler(IRQ_VICSOURCE31, sic_handle_irq);
  107. /* Do second interrupt controller */
  108. writel(~0, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
  109. for (i = IRQ_SIC_START; i <= IRQ_SIC_END; i++) {
  110. if ((PIC_MASK & (1 << (i - IRQ_SIC_START))) == 0) {
  111. set_irq_chip(i, &sic_chip);
  112. set_irq_handler(i, handle_level_irq);
  113. set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
  114. }
  115. }
  116. /*
  117. * Interrupts on secondary controller from 0 to 8 are routed to
  118. * source 31 on PIC.
  119. * Interrupts from 21 to 31 are routed directly to the VIC on
  120. * the corresponding number on primary controller. This is controlled
  121. * by setting PIC_ENABLEx.
  122. */
  123. writel(PIC_MASK, VA_SIC_BASE + SIC_INT_PIC_ENABLE);
  124. }
  125. static struct map_desc versatile_io_desc[] __initdata = {
  126. {
  127. .virtual = IO_ADDRESS(VERSATILE_SYS_BASE),
  128. .pfn = __phys_to_pfn(VERSATILE_SYS_BASE),
  129. .length = SZ_4K,
  130. .type = MT_DEVICE
  131. }, {
  132. .virtual = IO_ADDRESS(VERSATILE_SIC_BASE),
  133. .pfn = __phys_to_pfn(VERSATILE_SIC_BASE),
  134. .length = SZ_4K,
  135. .type = MT_DEVICE
  136. }, {
  137. .virtual = IO_ADDRESS(VERSATILE_VIC_BASE),
  138. .pfn = __phys_to_pfn(VERSATILE_VIC_BASE),
  139. .length = SZ_4K,
  140. .type = MT_DEVICE
  141. }, {
  142. .virtual = IO_ADDRESS(VERSATILE_SCTL_BASE),
  143. .pfn = __phys_to_pfn(VERSATILE_SCTL_BASE),
  144. .length = SZ_4K * 9,
  145. .type = MT_DEVICE
  146. },
  147. #ifdef CONFIG_MACH_VERSATILE_AB
  148. {
  149. .virtual = IO_ADDRESS(VERSATILE_GPIO0_BASE),
  150. .pfn = __phys_to_pfn(VERSATILE_GPIO0_BASE),
  151. .length = SZ_4K,
  152. .type = MT_DEVICE
  153. }, {
  154. .virtual = IO_ADDRESS(VERSATILE_IB2_BASE),
  155. .pfn = __phys_to_pfn(VERSATILE_IB2_BASE),
  156. .length = SZ_64M,
  157. .type = MT_DEVICE
  158. },
  159. #endif
  160. #ifdef CONFIG_DEBUG_LL
  161. {
  162. .virtual = IO_ADDRESS(VERSATILE_UART0_BASE),
  163. .pfn = __phys_to_pfn(VERSATILE_UART0_BASE),
  164. .length = SZ_4K,
  165. .type = MT_DEVICE
  166. },
  167. #endif
  168. #ifdef CONFIG_PCI
  169. {
  170. .virtual = IO_ADDRESS(VERSATILE_PCI_CORE_BASE),
  171. .pfn = __phys_to_pfn(VERSATILE_PCI_CORE_BASE),
  172. .length = SZ_4K,
  173. .type = MT_DEVICE
  174. }, {
  175. .virtual = (unsigned long)VERSATILE_PCI_VIRT_BASE,
  176. .pfn = __phys_to_pfn(VERSATILE_PCI_BASE),
  177. .length = VERSATILE_PCI_BASE_SIZE,
  178. .type = MT_DEVICE
  179. }, {
  180. .virtual = (unsigned long)VERSATILE_PCI_CFG_VIRT_BASE,
  181. .pfn = __phys_to_pfn(VERSATILE_PCI_CFG_BASE),
  182. .length = VERSATILE_PCI_CFG_BASE_SIZE,
  183. .type = MT_DEVICE
  184. },
  185. #if 0
  186. {
  187. .virtual = VERSATILE_PCI_VIRT_MEM_BASE0,
  188. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE0),
  189. .length = SZ_16M,
  190. .type = MT_DEVICE
  191. }, {
  192. .virtual = VERSATILE_PCI_VIRT_MEM_BASE1,
  193. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE1),
  194. .length = SZ_16M,
  195. .type = MT_DEVICE
  196. }, {
  197. .virtual = VERSATILE_PCI_VIRT_MEM_BASE2,
  198. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE2),
  199. .length = SZ_16M,
  200. .type = MT_DEVICE
  201. },
  202. #endif
  203. #endif
  204. };
  205. void __init versatile_map_io(void)
  206. {
  207. iotable_init(versatile_io_desc, ARRAY_SIZE(versatile_io_desc));
  208. }
  209. #define VERSATILE_REFCOUNTER (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_24MHz_OFFSET)
  210. /*
  211. * This is the Versatile sched_clock implementation. This has
  212. * a resolution of 41.7ns, and a maximum value of about 35583 days.
  213. *
  214. * The return value is guaranteed to be monotonic in that range as
  215. * long as there is always less than 89 seconds between successive
  216. * calls to this function.
  217. */
  218. unsigned long long sched_clock(void)
  219. {
  220. unsigned long long v = cnt32_to_63(readl(VERSATILE_REFCOUNTER));
  221. /* the <<1 gets rid of the cnt_32_to_63 top bit saving on a bic insn */
  222. v *= 125<<1;
  223. do_div(v, 3<<1);
  224. return v;
  225. }
  226. #define VERSATILE_FLASHCTRL (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_FLASH_OFFSET)
  227. static int versatile_flash_init(void)
  228. {
  229. u32 val;
  230. val = __raw_readl(VERSATILE_FLASHCTRL);
  231. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  232. __raw_writel(val, VERSATILE_FLASHCTRL);
  233. return 0;
  234. }
  235. static void versatile_flash_exit(void)
  236. {
  237. u32 val;
  238. val = __raw_readl(VERSATILE_FLASHCTRL);
  239. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  240. __raw_writel(val, VERSATILE_FLASHCTRL);
  241. }
  242. static void versatile_flash_set_vpp(int on)
  243. {
  244. u32 val;
  245. val = __raw_readl(VERSATILE_FLASHCTRL);
  246. if (on)
  247. val |= VERSATILE_FLASHPROG_FLVPPEN;
  248. else
  249. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  250. __raw_writel(val, VERSATILE_FLASHCTRL);
  251. }
  252. static struct flash_platform_data versatile_flash_data = {
  253. .map_name = "cfi_probe",
  254. .width = 4,
  255. .init = versatile_flash_init,
  256. .exit = versatile_flash_exit,
  257. .set_vpp = versatile_flash_set_vpp,
  258. };
  259. static struct resource versatile_flash_resource = {
  260. .start = VERSATILE_FLASH_BASE,
  261. .end = VERSATILE_FLASH_BASE + VERSATILE_FLASH_SIZE - 1,
  262. .flags = IORESOURCE_MEM,
  263. };
  264. static struct platform_device versatile_flash_device = {
  265. .name = "armflash",
  266. .id = 0,
  267. .dev = {
  268. .platform_data = &versatile_flash_data,
  269. },
  270. .num_resources = 1,
  271. .resource = &versatile_flash_resource,
  272. };
  273. static struct resource smc91x_resources[] = {
  274. [0] = {
  275. .start = VERSATILE_ETH_BASE,
  276. .end = VERSATILE_ETH_BASE + SZ_64K - 1,
  277. .flags = IORESOURCE_MEM,
  278. },
  279. [1] = {
  280. .start = IRQ_ETH,
  281. .end = IRQ_ETH,
  282. .flags = IORESOURCE_IRQ,
  283. },
  284. };
  285. static struct platform_device smc91x_device = {
  286. .name = "smc91x",
  287. .id = 0,
  288. .num_resources = ARRAY_SIZE(smc91x_resources),
  289. .resource = smc91x_resources,
  290. };
  291. static struct resource versatile_i2c_resource = {
  292. .start = VERSATILE_I2C_BASE,
  293. .end = VERSATILE_I2C_BASE + SZ_4K - 1,
  294. .flags = IORESOURCE_MEM,
  295. };
  296. static struct platform_device versatile_i2c_device = {
  297. .name = "versatile-i2c",
  298. .id = 0,
  299. .num_resources = 1,
  300. .resource = &versatile_i2c_resource,
  301. };
  302. static struct i2c_board_info versatile_i2c_board_info[] = {
  303. {
  304. I2C_BOARD_INFO("ds1338", 0xd0 >> 1),
  305. },
  306. };
  307. static int __init versatile_i2c_init(void)
  308. {
  309. return i2c_register_board_info(0, versatile_i2c_board_info,
  310. ARRAY_SIZE(versatile_i2c_board_info));
  311. }
  312. arch_initcall(versatile_i2c_init);
  313. #define VERSATILE_SYSMCI (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_MCI_OFFSET)
  314. unsigned int mmc_status(struct device *dev)
  315. {
  316. struct amba_device *adev = container_of(dev, struct amba_device, dev);
  317. u32 mask;
  318. if (adev->res.start == VERSATILE_MMCI0_BASE)
  319. mask = 1;
  320. else
  321. mask = 2;
  322. return readl(VERSATILE_SYSMCI) & mask;
  323. }
  324. static struct mmci_platform_data mmc0_plat_data = {
  325. .ocr_mask = MMC_VDD_32_33|MMC_VDD_33_34,
  326. .status = mmc_status,
  327. .gpio_wp = -1,
  328. .gpio_cd = -1,
  329. };
  330. /*
  331. * Clock handling
  332. */
  333. static const struct icst_params versatile_oscvco_params = {
  334. .ref = 24000000,
  335. .vco_max = ICST307_VCO_MAX,
  336. .vco_min = ICST307_VCO_MIN,
  337. .vd_min = 4 + 8,
  338. .vd_max = 511 + 8,
  339. .rd_min = 1 + 2,
  340. .rd_max = 127 + 2,
  341. .s2div = icst307_s2div,
  342. .idx2s = icst307_idx2s,
  343. };
  344. static void versatile_oscvco_set(struct clk *clk, struct icst_vco vco)
  345. {
  346. void __iomem *sys = __io_address(VERSATILE_SYS_BASE);
  347. void __iomem *sys_lock = sys + VERSATILE_SYS_LOCK_OFFSET;
  348. u32 val;
  349. val = readl(sys + clk->oscoff) & ~0x7ffff;
  350. val |= vco.v | (vco.r << 9) | (vco.s << 16);
  351. writel(0xa05f, sys_lock);
  352. writel(val, sys + clk->oscoff);
  353. writel(0, sys_lock);
  354. }
  355. static struct clk osc4_clk = {
  356. .params = &versatile_oscvco_params,
  357. .oscoff = VERSATILE_SYS_OSCCLCD_OFFSET,
  358. .setvco = versatile_oscvco_set,
  359. };
  360. /*
  361. * These are fixed clocks.
  362. */
  363. static struct clk ref24_clk = {
  364. .rate = 24000000,
  365. };
  366. static struct clk_lookup lookups[] = {
  367. { /* UART0 */
  368. .dev_id = "dev:f1",
  369. .clk = &ref24_clk,
  370. }, { /* UART1 */
  371. .dev_id = "dev:f2",
  372. .clk = &ref24_clk,
  373. }, { /* UART2 */
  374. .dev_id = "dev:f3",
  375. .clk = &ref24_clk,
  376. }, { /* UART3 */
  377. .dev_id = "fpga:09",
  378. .clk = &ref24_clk,
  379. }, { /* KMI0 */
  380. .dev_id = "fpga:06",
  381. .clk = &ref24_clk,
  382. }, { /* KMI1 */
  383. .dev_id = "fpga:07",
  384. .clk = &ref24_clk,
  385. }, { /* MMC0 */
  386. .dev_id = "fpga:05",
  387. .clk = &ref24_clk,
  388. }, { /* MMC1 */
  389. .dev_id = "fpga:0b",
  390. .clk = &ref24_clk,
  391. }, { /* CLCD */
  392. .dev_id = "dev:20",
  393. .clk = &osc4_clk,
  394. }
  395. };
  396. /*
  397. * CLCD support.
  398. */
  399. #define SYS_CLCD_MODE_MASK (3 << 0)
  400. #define SYS_CLCD_MODE_888 (0 << 0)
  401. #define SYS_CLCD_MODE_5551 (1 << 0)
  402. #define SYS_CLCD_MODE_565_RLSB (2 << 0)
  403. #define SYS_CLCD_MODE_565_BLSB (3 << 0)
  404. #define SYS_CLCD_NLCDIOON (1 << 2)
  405. #define SYS_CLCD_VDDPOSSWITCH (1 << 3)
  406. #define SYS_CLCD_PWR3V5SWITCH (1 << 4)
  407. #define SYS_CLCD_ID_MASK (0x1f << 8)
  408. #define SYS_CLCD_ID_SANYO_3_8 (0x00 << 8)
  409. #define SYS_CLCD_ID_UNKNOWN_8_4 (0x01 << 8)
  410. #define SYS_CLCD_ID_EPSON_2_2 (0x02 << 8)
  411. #define SYS_CLCD_ID_SANYO_2_5 (0x07 << 8)
  412. #define SYS_CLCD_ID_VGA (0x1f << 8)
  413. static struct clcd_panel vga = {
  414. .mode = {
  415. .name = "VGA",
  416. .refresh = 60,
  417. .xres = 640,
  418. .yres = 480,
  419. .pixclock = 39721,
  420. .left_margin = 40,
  421. .right_margin = 24,
  422. .upper_margin = 32,
  423. .lower_margin = 11,
  424. .hsync_len = 96,
  425. .vsync_len = 2,
  426. .sync = 0,
  427. .vmode = FB_VMODE_NONINTERLACED,
  428. },
  429. .width = -1,
  430. .height = -1,
  431. .tim2 = TIM2_BCD | TIM2_IPC,
  432. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  433. .bpp = 16,
  434. };
  435. static struct clcd_panel sanyo_3_8_in = {
  436. .mode = {
  437. .name = "Sanyo QVGA",
  438. .refresh = 116,
  439. .xres = 320,
  440. .yres = 240,
  441. .pixclock = 100000,
  442. .left_margin = 6,
  443. .right_margin = 6,
  444. .upper_margin = 5,
  445. .lower_margin = 5,
  446. .hsync_len = 6,
  447. .vsync_len = 6,
  448. .sync = 0,
  449. .vmode = FB_VMODE_NONINTERLACED,
  450. },
  451. .width = -1,
  452. .height = -1,
  453. .tim2 = TIM2_BCD,
  454. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  455. .bpp = 16,
  456. };
  457. static struct clcd_panel sanyo_2_5_in = {
  458. .mode = {
  459. .name = "Sanyo QVGA Portrait",
  460. .refresh = 116,
  461. .xres = 240,
  462. .yres = 320,
  463. .pixclock = 100000,
  464. .left_margin = 20,
  465. .right_margin = 10,
  466. .upper_margin = 2,
  467. .lower_margin = 2,
  468. .hsync_len = 10,
  469. .vsync_len = 2,
  470. .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
  471. .vmode = FB_VMODE_NONINTERLACED,
  472. },
  473. .width = -1,
  474. .height = -1,
  475. .tim2 = TIM2_IVS | TIM2_IHS | TIM2_IPC,
  476. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  477. .bpp = 16,
  478. };
  479. static struct clcd_panel epson_2_2_in = {
  480. .mode = {
  481. .name = "Epson QCIF",
  482. .refresh = 390,
  483. .xres = 176,
  484. .yres = 220,
  485. .pixclock = 62500,
  486. .left_margin = 3,
  487. .right_margin = 2,
  488. .upper_margin = 1,
  489. .lower_margin = 0,
  490. .hsync_len = 3,
  491. .vsync_len = 2,
  492. .sync = 0,
  493. .vmode = FB_VMODE_NONINTERLACED,
  494. },
  495. .width = -1,
  496. .height = -1,
  497. .tim2 = TIM2_BCD | TIM2_IPC,
  498. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  499. .bpp = 16,
  500. };
  501. /*
  502. * Detect which LCD panel is connected, and return the appropriate
  503. * clcd_panel structure. Note: we do not have any information on
  504. * the required timings for the 8.4in panel, so we presently assume
  505. * VGA timings.
  506. */
  507. static struct clcd_panel *versatile_clcd_panel(void)
  508. {
  509. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  510. struct clcd_panel *panel = &vga;
  511. u32 val;
  512. val = readl(sys_clcd) & SYS_CLCD_ID_MASK;
  513. if (val == SYS_CLCD_ID_SANYO_3_8)
  514. panel = &sanyo_3_8_in;
  515. else if (val == SYS_CLCD_ID_SANYO_2_5)
  516. panel = &sanyo_2_5_in;
  517. else if (val == SYS_CLCD_ID_EPSON_2_2)
  518. panel = &epson_2_2_in;
  519. else if (val == SYS_CLCD_ID_VGA)
  520. panel = &vga;
  521. else {
  522. printk(KERN_ERR "CLCD: unknown LCD panel ID 0x%08x, using VGA\n",
  523. val);
  524. panel = &vga;
  525. }
  526. return panel;
  527. }
  528. /*
  529. * Disable all display connectors on the interface module.
  530. */
  531. static void versatile_clcd_disable(struct clcd_fb *fb)
  532. {
  533. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  534. u32 val;
  535. val = readl(sys_clcd);
  536. val &= ~SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
  537. writel(val, sys_clcd);
  538. #ifdef CONFIG_MACH_VERSATILE_AB
  539. /*
  540. * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light off
  541. */
  542. if (machine_is_versatile_ab() && fb->panel == &sanyo_2_5_in) {
  543. void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
  544. unsigned long ctrl;
  545. ctrl = readl(versatile_ib2_ctrl);
  546. ctrl &= ~0x01;
  547. writel(ctrl, versatile_ib2_ctrl);
  548. }
  549. #endif
  550. }
  551. /*
  552. * Enable the relevant connector on the interface module.
  553. */
  554. static void versatile_clcd_enable(struct clcd_fb *fb)
  555. {
  556. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  557. u32 val;
  558. val = readl(sys_clcd);
  559. val &= ~SYS_CLCD_MODE_MASK;
  560. switch (fb->fb.var.green.length) {
  561. case 5:
  562. val |= SYS_CLCD_MODE_5551;
  563. break;
  564. case 6:
  565. val |= SYS_CLCD_MODE_565_RLSB;
  566. break;
  567. case 8:
  568. val |= SYS_CLCD_MODE_888;
  569. break;
  570. }
  571. /*
  572. * Set the MUX
  573. */
  574. writel(val, sys_clcd);
  575. /*
  576. * And now enable the PSUs
  577. */
  578. val |= SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
  579. writel(val, sys_clcd);
  580. #ifdef CONFIG_MACH_VERSATILE_AB
  581. /*
  582. * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light on
  583. */
  584. if (machine_is_versatile_ab() && fb->panel == &sanyo_2_5_in) {
  585. void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
  586. unsigned long ctrl;
  587. ctrl = readl(versatile_ib2_ctrl);
  588. ctrl |= 0x01;
  589. writel(ctrl, versatile_ib2_ctrl);
  590. }
  591. #endif
  592. }
  593. static unsigned long framesize = SZ_1M;
  594. static int versatile_clcd_setup(struct clcd_fb *fb)
  595. {
  596. dma_addr_t dma;
  597. fb->panel = versatile_clcd_panel();
  598. fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, framesize,
  599. &dma, GFP_KERNEL);
  600. if (!fb->fb.screen_base) {
  601. printk(KERN_ERR "CLCD: unable to map framebuffer\n");
  602. return -ENOMEM;
  603. }
  604. fb->fb.fix.smem_start = dma;
  605. fb->fb.fix.smem_len = framesize;
  606. return 0;
  607. }
  608. static int versatile_clcd_mmap(struct clcd_fb *fb, struct vm_area_struct *vma)
  609. {
  610. return dma_mmap_writecombine(&fb->dev->dev, vma,
  611. fb->fb.screen_base,
  612. fb->fb.fix.smem_start,
  613. fb->fb.fix.smem_len);
  614. }
  615. static void versatile_clcd_remove(struct clcd_fb *fb)
  616. {
  617. dma_free_writecombine(&fb->dev->dev, fb->fb.fix.smem_len,
  618. fb->fb.screen_base, fb->fb.fix.smem_start);
  619. }
  620. static struct clcd_board clcd_plat_data = {
  621. .name = "Versatile",
  622. .check = clcdfb_check,
  623. .decode = clcdfb_decode,
  624. .disable = versatile_clcd_disable,
  625. .enable = versatile_clcd_enable,
  626. .setup = versatile_clcd_setup,
  627. .mmap = versatile_clcd_mmap,
  628. .remove = versatile_clcd_remove,
  629. };
  630. static struct pl061_platform_data gpio0_plat_data = {
  631. .gpio_base = 0,
  632. .irq_base = IRQ_GPIO0_START,
  633. };
  634. static struct pl061_platform_data gpio1_plat_data = {
  635. .gpio_base = 8,
  636. .irq_base = IRQ_GPIO1_START,
  637. };
  638. #define AACI_IRQ { IRQ_AACI, NO_IRQ }
  639. #define AACI_DMA { 0x80, 0x81 }
  640. #define MMCI0_IRQ { IRQ_MMCI0A,IRQ_SIC_MMCI0B }
  641. #define MMCI0_DMA { 0x84, 0 }
  642. #define KMI0_IRQ { IRQ_SIC_KMI0, NO_IRQ }
  643. #define KMI0_DMA { 0, 0 }
  644. #define KMI1_IRQ { IRQ_SIC_KMI1, NO_IRQ }
  645. #define KMI1_DMA { 0, 0 }
  646. /*
  647. * These devices are connected directly to the multi-layer AHB switch
  648. */
  649. #define SMC_IRQ { NO_IRQ, NO_IRQ }
  650. #define SMC_DMA { 0, 0 }
  651. #define MPMC_IRQ { NO_IRQ, NO_IRQ }
  652. #define MPMC_DMA { 0, 0 }
  653. #define CLCD_IRQ { IRQ_CLCDINT, NO_IRQ }
  654. #define CLCD_DMA { 0, 0 }
  655. #define DMAC_IRQ { IRQ_DMAINT, NO_IRQ }
  656. #define DMAC_DMA { 0, 0 }
  657. /*
  658. * These devices are connected via the core APB bridge
  659. */
  660. #define SCTL_IRQ { NO_IRQ, NO_IRQ }
  661. #define SCTL_DMA { 0, 0 }
  662. #define WATCHDOG_IRQ { IRQ_WDOGINT, NO_IRQ }
  663. #define WATCHDOG_DMA { 0, 0 }
  664. #define GPIO0_IRQ { IRQ_GPIOINT0, NO_IRQ }
  665. #define GPIO0_DMA { 0, 0 }
  666. #define GPIO1_IRQ { IRQ_GPIOINT1, NO_IRQ }
  667. #define GPIO1_DMA { 0, 0 }
  668. #define RTC_IRQ { IRQ_RTCINT, NO_IRQ }
  669. #define RTC_DMA { 0, 0 }
  670. /*
  671. * These devices are connected via the DMA APB bridge
  672. */
  673. #define SCI_IRQ { IRQ_SCIINT, NO_IRQ }
  674. #define SCI_DMA { 7, 6 }
  675. #define UART0_IRQ { IRQ_UARTINT0, NO_IRQ }
  676. #define UART0_DMA { 15, 14 }
  677. #define UART1_IRQ { IRQ_UARTINT1, NO_IRQ }
  678. #define UART1_DMA { 13, 12 }
  679. #define UART2_IRQ { IRQ_UARTINT2, NO_IRQ }
  680. #define UART2_DMA { 11, 10 }
  681. #define SSP_IRQ { IRQ_SSPINT, NO_IRQ }
  682. #define SSP_DMA { 9, 8 }
  683. /* FPGA Primecells */
  684. AMBA_DEVICE(aaci, "fpga:04", AACI, NULL);
  685. AMBA_DEVICE(mmc0, "fpga:05", MMCI0, &mmc0_plat_data);
  686. AMBA_DEVICE(kmi0, "fpga:06", KMI0, NULL);
  687. AMBA_DEVICE(kmi1, "fpga:07", KMI1, NULL);
  688. /* DevChip Primecells */
  689. AMBA_DEVICE(smc, "dev:00", SMC, NULL);
  690. AMBA_DEVICE(mpmc, "dev:10", MPMC, NULL);
  691. AMBA_DEVICE(clcd, "dev:20", CLCD, &clcd_plat_data);
  692. AMBA_DEVICE(dmac, "dev:30", DMAC, NULL);
  693. AMBA_DEVICE(sctl, "dev:e0", SCTL, NULL);
  694. AMBA_DEVICE(wdog, "dev:e1", WATCHDOG, NULL);
  695. AMBA_DEVICE(gpio0, "dev:e4", GPIO0, &gpio0_plat_data);
  696. AMBA_DEVICE(gpio1, "dev:e5", GPIO1, &gpio1_plat_data);
  697. AMBA_DEVICE(rtc, "dev:e8", RTC, NULL);
  698. AMBA_DEVICE(sci0, "dev:f0", SCI, NULL);
  699. AMBA_DEVICE(uart0, "dev:f1", UART0, NULL);
  700. AMBA_DEVICE(uart1, "dev:f2", UART1, NULL);
  701. AMBA_DEVICE(uart2, "dev:f3", UART2, NULL);
  702. AMBA_DEVICE(ssp0, "dev:f4", SSP, NULL);
  703. static struct amba_device *amba_devs[] __initdata = {
  704. &dmac_device,
  705. &uart0_device,
  706. &uart1_device,
  707. &uart2_device,
  708. &smc_device,
  709. &mpmc_device,
  710. &clcd_device,
  711. &sctl_device,
  712. &wdog_device,
  713. &gpio0_device,
  714. &gpio1_device,
  715. &rtc_device,
  716. &sci0_device,
  717. &ssp0_device,
  718. &aaci_device,
  719. &mmc0_device,
  720. &kmi0_device,
  721. &kmi1_device,
  722. };
  723. #ifdef CONFIG_LEDS
  724. #define VA_LEDS_BASE (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LED_OFFSET)
  725. static void versatile_leds_event(led_event_t ledevt)
  726. {
  727. unsigned long flags;
  728. u32 val;
  729. local_irq_save(flags);
  730. val = readl(VA_LEDS_BASE);
  731. switch (ledevt) {
  732. case led_idle_start:
  733. val = val & ~VERSATILE_SYS_LED0;
  734. break;
  735. case led_idle_end:
  736. val = val | VERSATILE_SYS_LED0;
  737. break;
  738. case led_timer:
  739. val = val ^ VERSATILE_SYS_LED1;
  740. break;
  741. case led_halted:
  742. val = 0;
  743. break;
  744. default:
  745. break;
  746. }
  747. writel(val, VA_LEDS_BASE);
  748. local_irq_restore(flags);
  749. }
  750. #endif /* CONFIG_LEDS */
  751. void __init versatile_init(void)
  752. {
  753. int i;
  754. clkdev_add_table(lookups, ARRAY_SIZE(lookups));
  755. platform_device_register(&versatile_flash_device);
  756. platform_device_register(&versatile_i2c_device);
  757. platform_device_register(&smc91x_device);
  758. for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
  759. struct amba_device *d = amba_devs[i];
  760. amba_device_register(d, &iomem_resource);
  761. }
  762. #ifdef CONFIG_LEDS
  763. leds_event = versatile_leds_event;
  764. #endif
  765. }
  766. /*
  767. * Where is the timer (VA)?
  768. */
  769. #define TIMER0_VA_BASE __io_address(VERSATILE_TIMER0_1_BASE)
  770. #define TIMER1_VA_BASE (__io_address(VERSATILE_TIMER0_1_BASE) + 0x20)
  771. #define TIMER2_VA_BASE __io_address(VERSATILE_TIMER2_3_BASE)
  772. #define TIMER3_VA_BASE (__io_address(VERSATILE_TIMER2_3_BASE) + 0x20)
  773. #define VA_IC_BASE __io_address(VERSATILE_VIC_BASE)
  774. /*
  775. * How long is the timer interval?
  776. */
  777. #define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10)
  778. #if TIMER_INTERVAL >= 0x100000
  779. #define TIMER_RELOAD (TIMER_INTERVAL >> 8)
  780. #define TIMER_DIVISOR (TIMER_CTRL_DIV256)
  781. #define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC)
  782. #elif TIMER_INTERVAL >= 0x10000
  783. #define TIMER_RELOAD (TIMER_INTERVAL >> 4) /* Divide by 16 */
  784. #define TIMER_DIVISOR (TIMER_CTRL_DIV16)
  785. #define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC)
  786. #else
  787. #define TIMER_RELOAD (TIMER_INTERVAL)
  788. #define TIMER_DIVISOR (TIMER_CTRL_DIV1)
  789. #define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
  790. #endif
  791. static void timer_set_mode(enum clock_event_mode mode,
  792. struct clock_event_device *clk)
  793. {
  794. unsigned long ctrl;
  795. switch(mode) {
  796. case CLOCK_EVT_MODE_PERIODIC:
  797. writel(TIMER_RELOAD, TIMER0_VA_BASE + TIMER_LOAD);
  798. ctrl = TIMER_CTRL_PERIODIC;
  799. ctrl |= TIMER_CTRL_32BIT | TIMER_CTRL_IE | TIMER_CTRL_ENABLE;
  800. break;
  801. case CLOCK_EVT_MODE_ONESHOT:
  802. /* period set, and timer enabled in 'next_event' hook */
  803. ctrl = TIMER_CTRL_ONESHOT;
  804. ctrl |= TIMER_CTRL_32BIT | TIMER_CTRL_IE;
  805. break;
  806. case CLOCK_EVT_MODE_UNUSED:
  807. case CLOCK_EVT_MODE_SHUTDOWN:
  808. default:
  809. ctrl = 0;
  810. }
  811. writel(ctrl, TIMER0_VA_BASE + TIMER_CTRL);
  812. }
  813. static int timer_set_next_event(unsigned long evt,
  814. struct clock_event_device *unused)
  815. {
  816. unsigned long ctrl = readl(TIMER0_VA_BASE + TIMER_CTRL);
  817. writel(evt, TIMER0_VA_BASE + TIMER_LOAD);
  818. writel(ctrl | TIMER_CTRL_ENABLE, TIMER0_VA_BASE + TIMER_CTRL);
  819. return 0;
  820. }
  821. static struct clock_event_device timer0_clockevent = {
  822. .name = "timer0",
  823. .shift = 32,
  824. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  825. .set_mode = timer_set_mode,
  826. .set_next_event = timer_set_next_event,
  827. };
  828. /*
  829. * IRQ handler for the timer
  830. */
  831. static irqreturn_t versatile_timer_interrupt(int irq, void *dev_id)
  832. {
  833. struct clock_event_device *evt = &timer0_clockevent;
  834. writel(1, TIMER0_VA_BASE + TIMER_INTCLR);
  835. evt->event_handler(evt);
  836. return IRQ_HANDLED;
  837. }
  838. static struct irqaction versatile_timer_irq = {
  839. .name = "Versatile Timer Tick",
  840. .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
  841. .handler = versatile_timer_interrupt,
  842. };
  843. static cycle_t versatile_get_cycles(struct clocksource *cs)
  844. {
  845. return ~readl(TIMER3_VA_BASE + TIMER_VALUE);
  846. }
  847. static struct clocksource clocksource_versatile = {
  848. .name = "timer3",
  849. .rating = 200,
  850. .read = versatile_get_cycles,
  851. .mask = CLOCKSOURCE_MASK(32),
  852. .shift = 20,
  853. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  854. };
  855. static int __init versatile_clocksource_init(void)
  856. {
  857. /* setup timer3 as free-running clocksource */
  858. writel(0, TIMER3_VA_BASE + TIMER_CTRL);
  859. writel(0xffffffff, TIMER3_VA_BASE + TIMER_LOAD);
  860. writel(0xffffffff, TIMER3_VA_BASE + TIMER_VALUE);
  861. writel(TIMER_CTRL_32BIT | TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC,
  862. TIMER3_VA_BASE + TIMER_CTRL);
  863. clocksource_versatile.mult =
  864. clocksource_khz2mult(1000, clocksource_versatile.shift);
  865. clocksource_register(&clocksource_versatile);
  866. return 0;
  867. }
  868. /*
  869. * Set up timer interrupt, and return the current time in seconds.
  870. */
  871. static void __init versatile_timer_init(void)
  872. {
  873. u32 val;
  874. /*
  875. * set clock frequency:
  876. * VERSATILE_REFCLK is 32KHz
  877. * VERSATILE_TIMCLK is 1MHz
  878. */
  879. val = readl(__io_address(VERSATILE_SCTL_BASE));
  880. writel((VERSATILE_TIMCLK << VERSATILE_TIMER1_EnSel) |
  881. (VERSATILE_TIMCLK << VERSATILE_TIMER2_EnSel) |
  882. (VERSATILE_TIMCLK << VERSATILE_TIMER3_EnSel) |
  883. (VERSATILE_TIMCLK << VERSATILE_TIMER4_EnSel) | val,
  884. __io_address(VERSATILE_SCTL_BASE));
  885. /*
  886. * Initialise to a known state (all timers off)
  887. */
  888. writel(0, TIMER0_VA_BASE + TIMER_CTRL);
  889. writel(0, TIMER1_VA_BASE + TIMER_CTRL);
  890. writel(0, TIMER2_VA_BASE + TIMER_CTRL);
  891. writel(0, TIMER3_VA_BASE + TIMER_CTRL);
  892. /*
  893. * Make irqs happen for the system timer
  894. */
  895. setup_irq(IRQ_TIMERINT0_1, &versatile_timer_irq);
  896. versatile_clocksource_init();
  897. timer0_clockevent.mult =
  898. div_sc(1000000, NSEC_PER_SEC, timer0_clockevent.shift);
  899. timer0_clockevent.max_delta_ns =
  900. clockevent_delta2ns(0xffffffff, &timer0_clockevent);
  901. timer0_clockevent.min_delta_ns =
  902. clockevent_delta2ns(0xf, &timer0_clockevent);
  903. timer0_clockevent.cpumask = cpumask_of(0);
  904. clockevents_register_device(&timer0_clockevent);
  905. }
  906. struct sys_timer versatile_timer = {
  907. .init = versatile_timer_init,
  908. };