i915_gem.c 103 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  37. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  39. static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
  40. bool write);
  41. static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  42. uint64_t offset,
  43. uint64_t size);
  44. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
  45. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  46. unsigned alignment,
  47. bool map_and_fenceable);
  48. static void i915_gem_clear_fence_reg(struct drm_device *dev,
  49. struct drm_i915_fence_reg *reg);
  50. static int i915_gem_phys_pwrite(struct drm_device *dev,
  51. struct drm_i915_gem_object *obj,
  52. struct drm_i915_gem_pwrite *args,
  53. struct drm_file *file);
  54. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  55. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  56. int nr_to_scan,
  57. gfp_t gfp_mask);
  58. /* some bookkeeping */
  59. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  60. size_t size)
  61. {
  62. dev_priv->mm.object_count++;
  63. dev_priv->mm.object_memory += size;
  64. }
  65. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  66. size_t size)
  67. {
  68. dev_priv->mm.object_count--;
  69. dev_priv->mm.object_memory -= size;
  70. }
  71. static int
  72. i915_gem_wait_for_error(struct drm_device *dev)
  73. {
  74. struct drm_i915_private *dev_priv = dev->dev_private;
  75. struct completion *x = &dev_priv->error_completion;
  76. unsigned long flags;
  77. int ret;
  78. if (!atomic_read(&dev_priv->mm.wedged))
  79. return 0;
  80. ret = wait_for_completion_interruptible(x);
  81. if (ret)
  82. return ret;
  83. if (atomic_read(&dev_priv->mm.wedged)) {
  84. /* GPU is hung, bump the completion count to account for
  85. * the token we just consumed so that we never hit zero and
  86. * end up waiting upon a subsequent completion event that
  87. * will never happen.
  88. */
  89. spin_lock_irqsave(&x->wait.lock, flags);
  90. x->done++;
  91. spin_unlock_irqrestore(&x->wait.lock, flags);
  92. }
  93. return 0;
  94. }
  95. int i915_mutex_lock_interruptible(struct drm_device *dev)
  96. {
  97. int ret;
  98. ret = i915_gem_wait_for_error(dev);
  99. if (ret)
  100. return ret;
  101. ret = mutex_lock_interruptible(&dev->struct_mutex);
  102. if (ret)
  103. return ret;
  104. WARN_ON(i915_verify_lists(dev));
  105. return 0;
  106. }
  107. static inline bool
  108. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  109. {
  110. return obj->gtt_space && !obj->active && obj->pin_count == 0;
  111. }
  112. void i915_gem_do_init(struct drm_device *dev,
  113. unsigned long start,
  114. unsigned long mappable_end,
  115. unsigned long end)
  116. {
  117. drm_i915_private_t *dev_priv = dev->dev_private;
  118. drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
  119. dev_priv->mm.gtt_start = start;
  120. dev_priv->mm.gtt_mappable_end = mappable_end;
  121. dev_priv->mm.gtt_end = end;
  122. dev_priv->mm.gtt_total = end - start;
  123. dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
  124. /* Take over this portion of the GTT */
  125. intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
  126. }
  127. int
  128. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  129. struct drm_file *file)
  130. {
  131. struct drm_i915_gem_init *args = data;
  132. if (args->gtt_start >= args->gtt_end ||
  133. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  134. return -EINVAL;
  135. mutex_lock(&dev->struct_mutex);
  136. i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
  137. mutex_unlock(&dev->struct_mutex);
  138. return 0;
  139. }
  140. int
  141. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  142. struct drm_file *file)
  143. {
  144. struct drm_i915_private *dev_priv = dev->dev_private;
  145. struct drm_i915_gem_get_aperture *args = data;
  146. struct drm_i915_gem_object *obj;
  147. size_t pinned;
  148. if (!(dev->driver->driver_features & DRIVER_GEM))
  149. return -ENODEV;
  150. pinned = 0;
  151. mutex_lock(&dev->struct_mutex);
  152. list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
  153. pinned += obj->gtt_space->size;
  154. mutex_unlock(&dev->struct_mutex);
  155. args->aper_size = dev_priv->mm.gtt_total;
  156. args->aper_available_size = args->aper_size -pinned;
  157. return 0;
  158. }
  159. /**
  160. * Creates a new mm object and returns a handle to it.
  161. */
  162. int
  163. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  164. struct drm_file *file)
  165. {
  166. struct drm_i915_gem_create *args = data;
  167. struct drm_i915_gem_object *obj;
  168. int ret;
  169. u32 handle;
  170. args->size = roundup(args->size, PAGE_SIZE);
  171. /* Allocate the new object */
  172. obj = i915_gem_alloc_object(dev, args->size);
  173. if (obj == NULL)
  174. return -ENOMEM;
  175. ret = drm_gem_handle_create(file, &obj->base, &handle);
  176. if (ret) {
  177. drm_gem_object_release(&obj->base);
  178. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  179. kfree(obj);
  180. return ret;
  181. }
  182. /* drop reference from allocate - handle holds it now */
  183. drm_gem_object_unreference(&obj->base);
  184. trace_i915_gem_object_create(obj);
  185. args->handle = handle;
  186. return 0;
  187. }
  188. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  189. {
  190. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  191. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  192. obj->tiling_mode != I915_TILING_NONE;
  193. }
  194. static inline void
  195. slow_shmem_copy(struct page *dst_page,
  196. int dst_offset,
  197. struct page *src_page,
  198. int src_offset,
  199. int length)
  200. {
  201. char *dst_vaddr, *src_vaddr;
  202. dst_vaddr = kmap(dst_page);
  203. src_vaddr = kmap(src_page);
  204. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  205. kunmap(src_page);
  206. kunmap(dst_page);
  207. }
  208. static inline void
  209. slow_shmem_bit17_copy(struct page *gpu_page,
  210. int gpu_offset,
  211. struct page *cpu_page,
  212. int cpu_offset,
  213. int length,
  214. int is_read)
  215. {
  216. char *gpu_vaddr, *cpu_vaddr;
  217. /* Use the unswizzled path if this page isn't affected. */
  218. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  219. if (is_read)
  220. return slow_shmem_copy(cpu_page, cpu_offset,
  221. gpu_page, gpu_offset, length);
  222. else
  223. return slow_shmem_copy(gpu_page, gpu_offset,
  224. cpu_page, cpu_offset, length);
  225. }
  226. gpu_vaddr = kmap(gpu_page);
  227. cpu_vaddr = kmap(cpu_page);
  228. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  229. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  230. */
  231. while (length > 0) {
  232. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  233. int this_length = min(cacheline_end - gpu_offset, length);
  234. int swizzled_gpu_offset = gpu_offset ^ 64;
  235. if (is_read) {
  236. memcpy(cpu_vaddr + cpu_offset,
  237. gpu_vaddr + swizzled_gpu_offset,
  238. this_length);
  239. } else {
  240. memcpy(gpu_vaddr + swizzled_gpu_offset,
  241. cpu_vaddr + cpu_offset,
  242. this_length);
  243. }
  244. cpu_offset += this_length;
  245. gpu_offset += this_length;
  246. length -= this_length;
  247. }
  248. kunmap(cpu_page);
  249. kunmap(gpu_page);
  250. }
  251. /**
  252. * This is the fast shmem pread path, which attempts to copy_from_user directly
  253. * from the backing pages of the object to the user's address space. On a
  254. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  255. */
  256. static int
  257. i915_gem_shmem_pread_fast(struct drm_device *dev,
  258. struct drm_i915_gem_object *obj,
  259. struct drm_i915_gem_pread *args,
  260. struct drm_file *file)
  261. {
  262. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  263. ssize_t remain;
  264. loff_t offset;
  265. char __user *user_data;
  266. int page_offset, page_length;
  267. user_data = (char __user *) (uintptr_t) args->data_ptr;
  268. remain = args->size;
  269. offset = args->offset;
  270. while (remain > 0) {
  271. struct page *page;
  272. char *vaddr;
  273. int ret;
  274. /* Operation in this page
  275. *
  276. * page_offset = offset within page
  277. * page_length = bytes to copy for this page
  278. */
  279. page_offset = offset & (PAGE_SIZE-1);
  280. page_length = remain;
  281. if ((page_offset + remain) > PAGE_SIZE)
  282. page_length = PAGE_SIZE - page_offset;
  283. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  284. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  285. if (IS_ERR(page))
  286. return PTR_ERR(page);
  287. vaddr = kmap_atomic(page);
  288. ret = __copy_to_user_inatomic(user_data,
  289. vaddr + page_offset,
  290. page_length);
  291. kunmap_atomic(vaddr);
  292. mark_page_accessed(page);
  293. page_cache_release(page);
  294. if (ret)
  295. return -EFAULT;
  296. remain -= page_length;
  297. user_data += page_length;
  298. offset += page_length;
  299. }
  300. return 0;
  301. }
  302. /**
  303. * This is the fallback shmem pread path, which allocates temporary storage
  304. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  305. * can copy out of the object's backing pages while holding the struct mutex
  306. * and not take page faults.
  307. */
  308. static int
  309. i915_gem_shmem_pread_slow(struct drm_device *dev,
  310. struct drm_i915_gem_object *obj,
  311. struct drm_i915_gem_pread *args,
  312. struct drm_file *file)
  313. {
  314. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  315. struct mm_struct *mm = current->mm;
  316. struct page **user_pages;
  317. ssize_t remain;
  318. loff_t offset, pinned_pages, i;
  319. loff_t first_data_page, last_data_page, num_pages;
  320. int shmem_page_offset;
  321. int data_page_index, data_page_offset;
  322. int page_length;
  323. int ret;
  324. uint64_t data_ptr = args->data_ptr;
  325. int do_bit17_swizzling;
  326. remain = args->size;
  327. /* Pin the user pages containing the data. We can't fault while
  328. * holding the struct mutex, yet we want to hold it while
  329. * dereferencing the user data.
  330. */
  331. first_data_page = data_ptr / PAGE_SIZE;
  332. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  333. num_pages = last_data_page - first_data_page + 1;
  334. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  335. if (user_pages == NULL)
  336. return -ENOMEM;
  337. mutex_unlock(&dev->struct_mutex);
  338. down_read(&mm->mmap_sem);
  339. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  340. num_pages, 1, 0, user_pages, NULL);
  341. up_read(&mm->mmap_sem);
  342. mutex_lock(&dev->struct_mutex);
  343. if (pinned_pages < num_pages) {
  344. ret = -EFAULT;
  345. goto out;
  346. }
  347. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  348. args->offset,
  349. args->size);
  350. if (ret)
  351. goto out;
  352. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  353. offset = args->offset;
  354. while (remain > 0) {
  355. struct page *page;
  356. /* Operation in this page
  357. *
  358. * shmem_page_offset = offset within page in shmem file
  359. * data_page_index = page number in get_user_pages return
  360. * data_page_offset = offset with data_page_index page.
  361. * page_length = bytes to copy for this page
  362. */
  363. shmem_page_offset = offset & ~PAGE_MASK;
  364. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  365. data_page_offset = data_ptr & ~PAGE_MASK;
  366. page_length = remain;
  367. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  368. page_length = PAGE_SIZE - shmem_page_offset;
  369. if ((data_page_offset + page_length) > PAGE_SIZE)
  370. page_length = PAGE_SIZE - data_page_offset;
  371. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  372. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  373. if (IS_ERR(page))
  374. return PTR_ERR(page);
  375. if (do_bit17_swizzling) {
  376. slow_shmem_bit17_copy(page,
  377. shmem_page_offset,
  378. user_pages[data_page_index],
  379. data_page_offset,
  380. page_length,
  381. 1);
  382. } else {
  383. slow_shmem_copy(user_pages[data_page_index],
  384. data_page_offset,
  385. page,
  386. shmem_page_offset,
  387. page_length);
  388. }
  389. mark_page_accessed(page);
  390. page_cache_release(page);
  391. remain -= page_length;
  392. data_ptr += page_length;
  393. offset += page_length;
  394. }
  395. out:
  396. for (i = 0; i < pinned_pages; i++) {
  397. SetPageDirty(user_pages[i]);
  398. mark_page_accessed(user_pages[i]);
  399. page_cache_release(user_pages[i]);
  400. }
  401. drm_free_large(user_pages);
  402. return ret;
  403. }
  404. /**
  405. * Reads data from the object referenced by handle.
  406. *
  407. * On error, the contents of *data are undefined.
  408. */
  409. int
  410. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  411. struct drm_file *file)
  412. {
  413. struct drm_i915_gem_pread *args = data;
  414. struct drm_i915_gem_object *obj;
  415. int ret = 0;
  416. if (args->size == 0)
  417. return 0;
  418. if (!access_ok(VERIFY_WRITE,
  419. (char __user *)(uintptr_t)args->data_ptr,
  420. args->size))
  421. return -EFAULT;
  422. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  423. args->size);
  424. if (ret)
  425. return -EFAULT;
  426. ret = i915_mutex_lock_interruptible(dev);
  427. if (ret)
  428. return ret;
  429. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  430. if (&obj->base == NULL) {
  431. ret = -ENOENT;
  432. goto unlock;
  433. }
  434. /* Bounds check source. */
  435. if (args->offset > obj->base.size ||
  436. args->size > obj->base.size - args->offset) {
  437. ret = -EINVAL;
  438. goto out;
  439. }
  440. trace_i915_gem_object_pread(obj, args->offset, args->size);
  441. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  442. args->offset,
  443. args->size);
  444. if (ret)
  445. goto out;
  446. ret = -EFAULT;
  447. if (!i915_gem_object_needs_bit17_swizzle(obj))
  448. ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
  449. if (ret == -EFAULT)
  450. ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
  451. out:
  452. drm_gem_object_unreference(&obj->base);
  453. unlock:
  454. mutex_unlock(&dev->struct_mutex);
  455. return ret;
  456. }
  457. /* This is the fast write path which cannot handle
  458. * page faults in the source data
  459. */
  460. static inline int
  461. fast_user_write(struct io_mapping *mapping,
  462. loff_t page_base, int page_offset,
  463. char __user *user_data,
  464. int length)
  465. {
  466. char *vaddr_atomic;
  467. unsigned long unwritten;
  468. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  469. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  470. user_data, length);
  471. io_mapping_unmap_atomic(vaddr_atomic);
  472. return unwritten;
  473. }
  474. /* Here's the write path which can sleep for
  475. * page faults
  476. */
  477. static inline void
  478. slow_kernel_write(struct io_mapping *mapping,
  479. loff_t gtt_base, int gtt_offset,
  480. struct page *user_page, int user_offset,
  481. int length)
  482. {
  483. char __iomem *dst_vaddr;
  484. char *src_vaddr;
  485. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  486. src_vaddr = kmap(user_page);
  487. memcpy_toio(dst_vaddr + gtt_offset,
  488. src_vaddr + user_offset,
  489. length);
  490. kunmap(user_page);
  491. io_mapping_unmap(dst_vaddr);
  492. }
  493. /**
  494. * This is the fast pwrite path, where we copy the data directly from the
  495. * user into the GTT, uncached.
  496. */
  497. static int
  498. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  499. struct drm_i915_gem_object *obj,
  500. struct drm_i915_gem_pwrite *args,
  501. struct drm_file *file)
  502. {
  503. drm_i915_private_t *dev_priv = dev->dev_private;
  504. ssize_t remain;
  505. loff_t offset, page_base;
  506. char __user *user_data;
  507. int page_offset, page_length;
  508. user_data = (char __user *) (uintptr_t) args->data_ptr;
  509. remain = args->size;
  510. offset = obj->gtt_offset + args->offset;
  511. while (remain > 0) {
  512. /* Operation in this page
  513. *
  514. * page_base = page offset within aperture
  515. * page_offset = offset within page
  516. * page_length = bytes to copy for this page
  517. */
  518. page_base = (offset & ~(PAGE_SIZE-1));
  519. page_offset = offset & (PAGE_SIZE-1);
  520. page_length = remain;
  521. if ((page_offset + remain) > PAGE_SIZE)
  522. page_length = PAGE_SIZE - page_offset;
  523. /* If we get a fault while copying data, then (presumably) our
  524. * source page isn't available. Return the error and we'll
  525. * retry in the slow path.
  526. */
  527. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  528. page_offset, user_data, page_length))
  529. return -EFAULT;
  530. remain -= page_length;
  531. user_data += page_length;
  532. offset += page_length;
  533. }
  534. return 0;
  535. }
  536. /**
  537. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  538. * the memory and maps it using kmap_atomic for copying.
  539. *
  540. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  541. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  542. */
  543. static int
  544. i915_gem_gtt_pwrite_slow(struct drm_device *dev,
  545. struct drm_i915_gem_object *obj,
  546. struct drm_i915_gem_pwrite *args,
  547. struct drm_file *file)
  548. {
  549. drm_i915_private_t *dev_priv = dev->dev_private;
  550. ssize_t remain;
  551. loff_t gtt_page_base, offset;
  552. loff_t first_data_page, last_data_page, num_pages;
  553. loff_t pinned_pages, i;
  554. struct page **user_pages;
  555. struct mm_struct *mm = current->mm;
  556. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  557. int ret;
  558. uint64_t data_ptr = args->data_ptr;
  559. remain = args->size;
  560. /* Pin the user pages containing the data. We can't fault while
  561. * holding the struct mutex, and all of the pwrite implementations
  562. * want to hold it while dereferencing the user data.
  563. */
  564. first_data_page = data_ptr / PAGE_SIZE;
  565. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  566. num_pages = last_data_page - first_data_page + 1;
  567. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  568. if (user_pages == NULL)
  569. return -ENOMEM;
  570. mutex_unlock(&dev->struct_mutex);
  571. down_read(&mm->mmap_sem);
  572. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  573. num_pages, 0, 0, user_pages, NULL);
  574. up_read(&mm->mmap_sem);
  575. mutex_lock(&dev->struct_mutex);
  576. if (pinned_pages < num_pages) {
  577. ret = -EFAULT;
  578. goto out_unpin_pages;
  579. }
  580. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  581. if (ret)
  582. goto out_unpin_pages;
  583. ret = i915_gem_object_put_fence(obj);
  584. if (ret)
  585. goto out_unpin_pages;
  586. offset = obj->gtt_offset + args->offset;
  587. while (remain > 0) {
  588. /* Operation in this page
  589. *
  590. * gtt_page_base = page offset within aperture
  591. * gtt_page_offset = offset within page in aperture
  592. * data_page_index = page number in get_user_pages return
  593. * data_page_offset = offset with data_page_index page.
  594. * page_length = bytes to copy for this page
  595. */
  596. gtt_page_base = offset & PAGE_MASK;
  597. gtt_page_offset = offset & ~PAGE_MASK;
  598. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  599. data_page_offset = data_ptr & ~PAGE_MASK;
  600. page_length = remain;
  601. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  602. page_length = PAGE_SIZE - gtt_page_offset;
  603. if ((data_page_offset + page_length) > PAGE_SIZE)
  604. page_length = PAGE_SIZE - data_page_offset;
  605. slow_kernel_write(dev_priv->mm.gtt_mapping,
  606. gtt_page_base, gtt_page_offset,
  607. user_pages[data_page_index],
  608. data_page_offset,
  609. page_length);
  610. remain -= page_length;
  611. offset += page_length;
  612. data_ptr += page_length;
  613. }
  614. out_unpin_pages:
  615. for (i = 0; i < pinned_pages; i++)
  616. page_cache_release(user_pages[i]);
  617. drm_free_large(user_pages);
  618. return ret;
  619. }
  620. /**
  621. * This is the fast shmem pwrite path, which attempts to directly
  622. * copy_from_user into the kmapped pages backing the object.
  623. */
  624. static int
  625. i915_gem_shmem_pwrite_fast(struct drm_device *dev,
  626. struct drm_i915_gem_object *obj,
  627. struct drm_i915_gem_pwrite *args,
  628. struct drm_file *file)
  629. {
  630. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  631. ssize_t remain;
  632. loff_t offset;
  633. char __user *user_data;
  634. int page_offset, page_length;
  635. user_data = (char __user *) (uintptr_t) args->data_ptr;
  636. remain = args->size;
  637. offset = args->offset;
  638. obj->dirty = 1;
  639. while (remain > 0) {
  640. struct page *page;
  641. char *vaddr;
  642. int ret;
  643. /* Operation in this page
  644. *
  645. * page_offset = offset within page
  646. * page_length = bytes to copy for this page
  647. */
  648. page_offset = offset & (PAGE_SIZE-1);
  649. page_length = remain;
  650. if ((page_offset + remain) > PAGE_SIZE)
  651. page_length = PAGE_SIZE - page_offset;
  652. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  653. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  654. if (IS_ERR(page))
  655. return PTR_ERR(page);
  656. vaddr = kmap_atomic(page, KM_USER0);
  657. ret = __copy_from_user_inatomic(vaddr + page_offset,
  658. user_data,
  659. page_length);
  660. kunmap_atomic(vaddr, KM_USER0);
  661. set_page_dirty(page);
  662. mark_page_accessed(page);
  663. page_cache_release(page);
  664. /* If we get a fault while copying data, then (presumably) our
  665. * source page isn't available. Return the error and we'll
  666. * retry in the slow path.
  667. */
  668. if (ret)
  669. return -EFAULT;
  670. remain -= page_length;
  671. user_data += page_length;
  672. offset += page_length;
  673. }
  674. return 0;
  675. }
  676. /**
  677. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  678. * the memory and maps it using kmap_atomic for copying.
  679. *
  680. * This avoids taking mmap_sem for faulting on the user's address while the
  681. * struct_mutex is held.
  682. */
  683. static int
  684. i915_gem_shmem_pwrite_slow(struct drm_device *dev,
  685. struct drm_i915_gem_object *obj,
  686. struct drm_i915_gem_pwrite *args,
  687. struct drm_file *file)
  688. {
  689. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  690. struct mm_struct *mm = current->mm;
  691. struct page **user_pages;
  692. ssize_t remain;
  693. loff_t offset, pinned_pages, i;
  694. loff_t first_data_page, last_data_page, num_pages;
  695. int shmem_page_offset;
  696. int data_page_index, data_page_offset;
  697. int page_length;
  698. int ret;
  699. uint64_t data_ptr = args->data_ptr;
  700. int do_bit17_swizzling;
  701. remain = args->size;
  702. /* Pin the user pages containing the data. We can't fault while
  703. * holding the struct mutex, and all of the pwrite implementations
  704. * want to hold it while dereferencing the user data.
  705. */
  706. first_data_page = data_ptr / PAGE_SIZE;
  707. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  708. num_pages = last_data_page - first_data_page + 1;
  709. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  710. if (user_pages == NULL)
  711. return -ENOMEM;
  712. mutex_unlock(&dev->struct_mutex);
  713. down_read(&mm->mmap_sem);
  714. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  715. num_pages, 0, 0, user_pages, NULL);
  716. up_read(&mm->mmap_sem);
  717. mutex_lock(&dev->struct_mutex);
  718. if (pinned_pages < num_pages) {
  719. ret = -EFAULT;
  720. goto out;
  721. }
  722. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  723. if (ret)
  724. goto out;
  725. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  726. offset = args->offset;
  727. obj->dirty = 1;
  728. while (remain > 0) {
  729. struct page *page;
  730. /* Operation in this page
  731. *
  732. * shmem_page_offset = offset within page in shmem file
  733. * data_page_index = page number in get_user_pages return
  734. * data_page_offset = offset with data_page_index page.
  735. * page_length = bytes to copy for this page
  736. */
  737. shmem_page_offset = offset & ~PAGE_MASK;
  738. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  739. data_page_offset = data_ptr & ~PAGE_MASK;
  740. page_length = remain;
  741. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  742. page_length = PAGE_SIZE - shmem_page_offset;
  743. if ((data_page_offset + page_length) > PAGE_SIZE)
  744. page_length = PAGE_SIZE - data_page_offset;
  745. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  746. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  747. if (IS_ERR(page)) {
  748. ret = PTR_ERR(page);
  749. goto out;
  750. }
  751. if (do_bit17_swizzling) {
  752. slow_shmem_bit17_copy(page,
  753. shmem_page_offset,
  754. user_pages[data_page_index],
  755. data_page_offset,
  756. page_length,
  757. 0);
  758. } else {
  759. slow_shmem_copy(page,
  760. shmem_page_offset,
  761. user_pages[data_page_index],
  762. data_page_offset,
  763. page_length);
  764. }
  765. set_page_dirty(page);
  766. mark_page_accessed(page);
  767. page_cache_release(page);
  768. remain -= page_length;
  769. data_ptr += page_length;
  770. offset += page_length;
  771. }
  772. out:
  773. for (i = 0; i < pinned_pages; i++)
  774. page_cache_release(user_pages[i]);
  775. drm_free_large(user_pages);
  776. return ret;
  777. }
  778. /**
  779. * Writes data to the object referenced by handle.
  780. *
  781. * On error, the contents of the buffer that were to be modified are undefined.
  782. */
  783. int
  784. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  785. struct drm_file *file)
  786. {
  787. struct drm_i915_gem_pwrite *args = data;
  788. struct drm_i915_gem_object *obj;
  789. int ret;
  790. if (args->size == 0)
  791. return 0;
  792. if (!access_ok(VERIFY_READ,
  793. (char __user *)(uintptr_t)args->data_ptr,
  794. args->size))
  795. return -EFAULT;
  796. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  797. args->size);
  798. if (ret)
  799. return -EFAULT;
  800. ret = i915_mutex_lock_interruptible(dev);
  801. if (ret)
  802. return ret;
  803. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  804. if (&obj->base == NULL) {
  805. ret = -ENOENT;
  806. goto unlock;
  807. }
  808. /* Bounds check destination. */
  809. if (args->offset > obj->base.size ||
  810. args->size > obj->base.size - args->offset) {
  811. ret = -EINVAL;
  812. goto out;
  813. }
  814. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  815. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  816. * it would end up going through the fenced access, and we'll get
  817. * different detiling behavior between reading and writing.
  818. * pread/pwrite currently are reading and writing from the CPU
  819. * perspective, requiring manual detiling by the client.
  820. */
  821. if (obj->phys_obj)
  822. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  823. else if (obj->gtt_space &&
  824. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  825. ret = i915_gem_object_pin(obj, 0, true);
  826. if (ret)
  827. goto out;
  828. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  829. if (ret)
  830. goto out_unpin;
  831. ret = i915_gem_object_put_fence(obj);
  832. if (ret)
  833. goto out_unpin;
  834. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  835. if (ret == -EFAULT)
  836. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  837. out_unpin:
  838. i915_gem_object_unpin(obj);
  839. } else {
  840. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  841. if (ret)
  842. goto out;
  843. ret = -EFAULT;
  844. if (!i915_gem_object_needs_bit17_swizzle(obj))
  845. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  846. if (ret == -EFAULT)
  847. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  848. }
  849. out:
  850. drm_gem_object_unreference(&obj->base);
  851. unlock:
  852. mutex_unlock(&dev->struct_mutex);
  853. return ret;
  854. }
  855. /**
  856. * Called when user space prepares to use an object with the CPU, either
  857. * through the mmap ioctl's mapping or a GTT mapping.
  858. */
  859. int
  860. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  861. struct drm_file *file)
  862. {
  863. struct drm_i915_gem_set_domain *args = data;
  864. struct drm_i915_gem_object *obj;
  865. uint32_t read_domains = args->read_domains;
  866. uint32_t write_domain = args->write_domain;
  867. int ret;
  868. if (!(dev->driver->driver_features & DRIVER_GEM))
  869. return -ENODEV;
  870. /* Only handle setting domains to types used by the CPU. */
  871. if (write_domain & I915_GEM_GPU_DOMAINS)
  872. return -EINVAL;
  873. if (read_domains & I915_GEM_GPU_DOMAINS)
  874. return -EINVAL;
  875. /* Having something in the write domain implies it's in the read
  876. * domain, and only that read domain. Enforce that in the request.
  877. */
  878. if (write_domain != 0 && read_domains != write_domain)
  879. return -EINVAL;
  880. ret = i915_mutex_lock_interruptible(dev);
  881. if (ret)
  882. return ret;
  883. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  884. if (&obj->base == NULL) {
  885. ret = -ENOENT;
  886. goto unlock;
  887. }
  888. if (read_domains & I915_GEM_DOMAIN_GTT) {
  889. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  890. /* Silently promote "you're not bound, there was nothing to do"
  891. * to success, since the client was just asking us to
  892. * make sure everything was done.
  893. */
  894. if (ret == -EINVAL)
  895. ret = 0;
  896. } else {
  897. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  898. }
  899. drm_gem_object_unreference(&obj->base);
  900. unlock:
  901. mutex_unlock(&dev->struct_mutex);
  902. return ret;
  903. }
  904. /**
  905. * Called when user space has done writes to this buffer
  906. */
  907. int
  908. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  909. struct drm_file *file)
  910. {
  911. struct drm_i915_gem_sw_finish *args = data;
  912. struct drm_i915_gem_object *obj;
  913. int ret = 0;
  914. if (!(dev->driver->driver_features & DRIVER_GEM))
  915. return -ENODEV;
  916. ret = i915_mutex_lock_interruptible(dev);
  917. if (ret)
  918. return ret;
  919. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  920. if (&obj->base == NULL) {
  921. ret = -ENOENT;
  922. goto unlock;
  923. }
  924. /* Pinned buffers may be scanout, so flush the cache */
  925. if (obj->pin_count)
  926. i915_gem_object_flush_cpu_write_domain(obj);
  927. drm_gem_object_unreference(&obj->base);
  928. unlock:
  929. mutex_unlock(&dev->struct_mutex);
  930. return ret;
  931. }
  932. /**
  933. * Maps the contents of an object, returning the address it is mapped
  934. * into.
  935. *
  936. * While the mapping holds a reference on the contents of the object, it doesn't
  937. * imply a ref on the object itself.
  938. */
  939. int
  940. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  941. struct drm_file *file)
  942. {
  943. struct drm_i915_private *dev_priv = dev->dev_private;
  944. struct drm_i915_gem_mmap *args = data;
  945. struct drm_gem_object *obj;
  946. unsigned long addr;
  947. if (!(dev->driver->driver_features & DRIVER_GEM))
  948. return -ENODEV;
  949. obj = drm_gem_object_lookup(dev, file, args->handle);
  950. if (obj == NULL)
  951. return -ENOENT;
  952. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  953. drm_gem_object_unreference_unlocked(obj);
  954. return -E2BIG;
  955. }
  956. down_write(&current->mm->mmap_sem);
  957. addr = do_mmap(obj->filp, 0, args->size,
  958. PROT_READ | PROT_WRITE, MAP_SHARED,
  959. args->offset);
  960. up_write(&current->mm->mmap_sem);
  961. drm_gem_object_unreference_unlocked(obj);
  962. if (IS_ERR((void *)addr))
  963. return addr;
  964. args->addr_ptr = (uint64_t) addr;
  965. return 0;
  966. }
  967. /**
  968. * i915_gem_fault - fault a page into the GTT
  969. * vma: VMA in question
  970. * vmf: fault info
  971. *
  972. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  973. * from userspace. The fault handler takes care of binding the object to
  974. * the GTT (if needed), allocating and programming a fence register (again,
  975. * only if needed based on whether the old reg is still valid or the object
  976. * is tiled) and inserting a new PTE into the faulting process.
  977. *
  978. * Note that the faulting process may involve evicting existing objects
  979. * from the GTT and/or fence registers to make room. So performance may
  980. * suffer if the GTT working set is large or there are few fence registers
  981. * left.
  982. */
  983. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  984. {
  985. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  986. struct drm_device *dev = obj->base.dev;
  987. drm_i915_private_t *dev_priv = dev->dev_private;
  988. pgoff_t page_offset;
  989. unsigned long pfn;
  990. int ret = 0;
  991. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  992. /* We don't use vmf->pgoff since that has the fake offset */
  993. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  994. PAGE_SHIFT;
  995. ret = i915_mutex_lock_interruptible(dev);
  996. if (ret)
  997. goto out;
  998. trace_i915_gem_object_fault(obj, page_offset, true, write);
  999. /* Now bind it into the GTT if needed */
  1000. if (!obj->map_and_fenceable) {
  1001. ret = i915_gem_object_unbind(obj);
  1002. if (ret)
  1003. goto unlock;
  1004. }
  1005. if (!obj->gtt_space) {
  1006. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  1007. if (ret)
  1008. goto unlock;
  1009. }
  1010. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1011. if (ret)
  1012. goto unlock;
  1013. if (obj->tiling_mode == I915_TILING_NONE)
  1014. ret = i915_gem_object_put_fence(obj);
  1015. else
  1016. ret = i915_gem_object_get_fence(obj, NULL);
  1017. if (ret)
  1018. goto unlock;
  1019. if (i915_gem_object_is_inactive(obj))
  1020. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1021. obj->fault_mappable = true;
  1022. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  1023. page_offset;
  1024. /* Finally, remap it using the new GTT offset */
  1025. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1026. unlock:
  1027. mutex_unlock(&dev->struct_mutex);
  1028. out:
  1029. switch (ret) {
  1030. case -EIO:
  1031. case -EAGAIN:
  1032. /* Give the error handler a chance to run and move the
  1033. * objects off the GPU active list. Next time we service the
  1034. * fault, we should be able to transition the page into the
  1035. * GTT without touching the GPU (and so avoid further
  1036. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  1037. * with coherency, just lost writes.
  1038. */
  1039. set_need_resched();
  1040. case 0:
  1041. case -ERESTARTSYS:
  1042. case -EINTR:
  1043. return VM_FAULT_NOPAGE;
  1044. case -ENOMEM:
  1045. return VM_FAULT_OOM;
  1046. default:
  1047. return VM_FAULT_SIGBUS;
  1048. }
  1049. }
  1050. /**
  1051. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1052. * @obj: obj in question
  1053. *
  1054. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1055. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1056. * up the object based on the offset and sets up the various memory mapping
  1057. * structures.
  1058. *
  1059. * This routine allocates and attaches a fake offset for @obj.
  1060. */
  1061. static int
  1062. i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
  1063. {
  1064. struct drm_device *dev = obj->base.dev;
  1065. struct drm_gem_mm *mm = dev->mm_private;
  1066. struct drm_map_list *list;
  1067. struct drm_local_map *map;
  1068. int ret = 0;
  1069. /* Set the object up for mmap'ing */
  1070. list = &obj->base.map_list;
  1071. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1072. if (!list->map)
  1073. return -ENOMEM;
  1074. map = list->map;
  1075. map->type = _DRM_GEM;
  1076. map->size = obj->base.size;
  1077. map->handle = obj;
  1078. /* Get a DRM GEM mmap offset allocated... */
  1079. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1080. obj->base.size / PAGE_SIZE,
  1081. 0, 0);
  1082. if (!list->file_offset_node) {
  1083. DRM_ERROR("failed to allocate offset for bo %d\n",
  1084. obj->base.name);
  1085. ret = -ENOSPC;
  1086. goto out_free_list;
  1087. }
  1088. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1089. obj->base.size / PAGE_SIZE,
  1090. 0);
  1091. if (!list->file_offset_node) {
  1092. ret = -ENOMEM;
  1093. goto out_free_list;
  1094. }
  1095. list->hash.key = list->file_offset_node->start;
  1096. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1097. if (ret) {
  1098. DRM_ERROR("failed to add to map hash\n");
  1099. goto out_free_mm;
  1100. }
  1101. return 0;
  1102. out_free_mm:
  1103. drm_mm_put_block(list->file_offset_node);
  1104. out_free_list:
  1105. kfree(list->map);
  1106. list->map = NULL;
  1107. return ret;
  1108. }
  1109. /**
  1110. * i915_gem_release_mmap - remove physical page mappings
  1111. * @obj: obj in question
  1112. *
  1113. * Preserve the reservation of the mmapping with the DRM core code, but
  1114. * relinquish ownership of the pages back to the system.
  1115. *
  1116. * It is vital that we remove the page mapping if we have mapped a tiled
  1117. * object through the GTT and then lose the fence register due to
  1118. * resource pressure. Similarly if the object has been moved out of the
  1119. * aperture, than pages mapped into userspace must be revoked. Removing the
  1120. * mapping will then trigger a page fault on the next user access, allowing
  1121. * fixup by i915_gem_fault().
  1122. */
  1123. void
  1124. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1125. {
  1126. if (!obj->fault_mappable)
  1127. return;
  1128. unmap_mapping_range(obj->base.dev->dev_mapping,
  1129. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1130. obj->base.size, 1);
  1131. obj->fault_mappable = false;
  1132. }
  1133. static void
  1134. i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
  1135. {
  1136. struct drm_device *dev = obj->base.dev;
  1137. struct drm_gem_mm *mm = dev->mm_private;
  1138. struct drm_map_list *list = &obj->base.map_list;
  1139. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1140. drm_mm_put_block(list->file_offset_node);
  1141. kfree(list->map);
  1142. list->map = NULL;
  1143. }
  1144. static uint32_t
  1145. i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
  1146. {
  1147. struct drm_device *dev = obj->base.dev;
  1148. uint32_t size;
  1149. if (INTEL_INFO(dev)->gen >= 4 ||
  1150. obj->tiling_mode == I915_TILING_NONE)
  1151. return obj->base.size;
  1152. /* Previous chips need a power-of-two fence region when tiling */
  1153. if (INTEL_INFO(dev)->gen == 3)
  1154. size = 1024*1024;
  1155. else
  1156. size = 512*1024;
  1157. while (size < obj->base.size)
  1158. size <<= 1;
  1159. return size;
  1160. }
  1161. /**
  1162. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1163. * @obj: object to check
  1164. *
  1165. * Return the required GTT alignment for an object, taking into account
  1166. * potential fence register mapping.
  1167. */
  1168. static uint32_t
  1169. i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
  1170. {
  1171. struct drm_device *dev = obj->base.dev;
  1172. /*
  1173. * Minimum alignment is 4k (GTT page size), but might be greater
  1174. * if a fence register is needed for the object.
  1175. */
  1176. if (INTEL_INFO(dev)->gen >= 4 ||
  1177. obj->tiling_mode == I915_TILING_NONE)
  1178. return 4096;
  1179. /*
  1180. * Previous chips need to be aligned to the size of the smallest
  1181. * fence register that can contain the object.
  1182. */
  1183. return i915_gem_get_gtt_size(obj);
  1184. }
  1185. /**
  1186. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1187. * unfenced object
  1188. * @obj: object to check
  1189. *
  1190. * Return the required GTT alignment for an object, only taking into account
  1191. * unfenced tiled surface requirements.
  1192. */
  1193. static uint32_t
  1194. i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
  1195. {
  1196. struct drm_device *dev = obj->base.dev;
  1197. int tile_height;
  1198. /*
  1199. * Minimum alignment is 4k (GTT page size) for sane hw.
  1200. */
  1201. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1202. obj->tiling_mode == I915_TILING_NONE)
  1203. return 4096;
  1204. /*
  1205. * Older chips need unfenced tiled buffers to be aligned to the left
  1206. * edge of an even tile row (where tile rows are counted as if the bo is
  1207. * placed in a fenced gtt region).
  1208. */
  1209. if (IS_GEN2(dev) ||
  1210. (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
  1211. tile_height = 32;
  1212. else
  1213. tile_height = 8;
  1214. return tile_height * obj->stride * 2;
  1215. }
  1216. /**
  1217. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1218. * @dev: DRM device
  1219. * @data: GTT mapping ioctl data
  1220. * @file: GEM object info
  1221. *
  1222. * Simply returns the fake offset to userspace so it can mmap it.
  1223. * The mmap call will end up in drm_gem_mmap(), which will set things
  1224. * up so we can get faults in the handler above.
  1225. *
  1226. * The fault handler will take care of binding the object into the GTT
  1227. * (since it may have been evicted to make room for something), allocating
  1228. * a fence register, and mapping the appropriate aperture address into
  1229. * userspace.
  1230. */
  1231. int
  1232. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1233. struct drm_file *file)
  1234. {
  1235. struct drm_i915_private *dev_priv = dev->dev_private;
  1236. struct drm_i915_gem_mmap_gtt *args = data;
  1237. struct drm_i915_gem_object *obj;
  1238. int ret;
  1239. if (!(dev->driver->driver_features & DRIVER_GEM))
  1240. return -ENODEV;
  1241. ret = i915_mutex_lock_interruptible(dev);
  1242. if (ret)
  1243. return ret;
  1244. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1245. if (&obj->base == NULL) {
  1246. ret = -ENOENT;
  1247. goto unlock;
  1248. }
  1249. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1250. ret = -E2BIG;
  1251. goto unlock;
  1252. }
  1253. if (obj->madv != I915_MADV_WILLNEED) {
  1254. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1255. ret = -EINVAL;
  1256. goto out;
  1257. }
  1258. if (!obj->base.map_list.map) {
  1259. ret = i915_gem_create_mmap_offset(obj);
  1260. if (ret)
  1261. goto out;
  1262. }
  1263. args->offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1264. out:
  1265. drm_gem_object_unreference(&obj->base);
  1266. unlock:
  1267. mutex_unlock(&dev->struct_mutex);
  1268. return ret;
  1269. }
  1270. static int
  1271. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1272. gfp_t gfpmask)
  1273. {
  1274. int page_count, i;
  1275. struct address_space *mapping;
  1276. struct inode *inode;
  1277. struct page *page;
  1278. /* Get the list of pages out of our struct file. They'll be pinned
  1279. * at this point until we release them.
  1280. */
  1281. page_count = obj->base.size / PAGE_SIZE;
  1282. BUG_ON(obj->pages != NULL);
  1283. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1284. if (obj->pages == NULL)
  1285. return -ENOMEM;
  1286. inode = obj->base.filp->f_path.dentry->d_inode;
  1287. mapping = inode->i_mapping;
  1288. for (i = 0; i < page_count; i++) {
  1289. page = read_cache_page_gfp(mapping, i,
  1290. GFP_HIGHUSER |
  1291. __GFP_COLD |
  1292. __GFP_RECLAIMABLE |
  1293. gfpmask);
  1294. if (IS_ERR(page))
  1295. goto err_pages;
  1296. obj->pages[i] = page;
  1297. }
  1298. if (obj->tiling_mode != I915_TILING_NONE)
  1299. i915_gem_object_do_bit_17_swizzle(obj);
  1300. return 0;
  1301. err_pages:
  1302. while (i--)
  1303. page_cache_release(obj->pages[i]);
  1304. drm_free_large(obj->pages);
  1305. obj->pages = NULL;
  1306. return PTR_ERR(page);
  1307. }
  1308. static void
  1309. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1310. {
  1311. int page_count = obj->base.size / PAGE_SIZE;
  1312. int i;
  1313. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1314. if (obj->tiling_mode != I915_TILING_NONE)
  1315. i915_gem_object_save_bit_17_swizzle(obj);
  1316. if (obj->madv == I915_MADV_DONTNEED)
  1317. obj->dirty = 0;
  1318. for (i = 0; i < page_count; i++) {
  1319. if (obj->dirty)
  1320. set_page_dirty(obj->pages[i]);
  1321. if (obj->madv == I915_MADV_WILLNEED)
  1322. mark_page_accessed(obj->pages[i]);
  1323. page_cache_release(obj->pages[i]);
  1324. }
  1325. obj->dirty = 0;
  1326. drm_free_large(obj->pages);
  1327. obj->pages = NULL;
  1328. }
  1329. void
  1330. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1331. struct intel_ring_buffer *ring,
  1332. u32 seqno)
  1333. {
  1334. struct drm_device *dev = obj->base.dev;
  1335. struct drm_i915_private *dev_priv = dev->dev_private;
  1336. BUG_ON(ring == NULL);
  1337. obj->ring = ring;
  1338. /* Add a reference if we're newly entering the active list. */
  1339. if (!obj->active) {
  1340. drm_gem_object_reference(&obj->base);
  1341. obj->active = 1;
  1342. }
  1343. /* Move from whatever list we were on to the tail of execution. */
  1344. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1345. list_move_tail(&obj->ring_list, &ring->active_list);
  1346. obj->last_rendering_seqno = seqno;
  1347. if (obj->fenced_gpu_access) {
  1348. struct drm_i915_fence_reg *reg;
  1349. BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
  1350. obj->last_fenced_seqno = seqno;
  1351. obj->last_fenced_ring = ring;
  1352. reg = &dev_priv->fence_regs[obj->fence_reg];
  1353. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1354. }
  1355. }
  1356. static void
  1357. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1358. {
  1359. list_del_init(&obj->ring_list);
  1360. obj->last_rendering_seqno = 0;
  1361. }
  1362. static void
  1363. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1364. {
  1365. struct drm_device *dev = obj->base.dev;
  1366. drm_i915_private_t *dev_priv = dev->dev_private;
  1367. BUG_ON(!obj->active);
  1368. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1369. i915_gem_object_move_off_active(obj);
  1370. }
  1371. static void
  1372. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1373. {
  1374. struct drm_device *dev = obj->base.dev;
  1375. struct drm_i915_private *dev_priv = dev->dev_private;
  1376. if (obj->pin_count != 0)
  1377. list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
  1378. else
  1379. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1380. BUG_ON(!list_empty(&obj->gpu_write_list));
  1381. BUG_ON(!obj->active);
  1382. obj->ring = NULL;
  1383. i915_gem_object_move_off_active(obj);
  1384. obj->fenced_gpu_access = false;
  1385. obj->active = 0;
  1386. obj->pending_gpu_write = false;
  1387. drm_gem_object_unreference(&obj->base);
  1388. WARN_ON(i915_verify_lists(dev));
  1389. }
  1390. /* Immediately discard the backing storage */
  1391. static void
  1392. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1393. {
  1394. struct inode *inode;
  1395. /* Our goal here is to return as much of the memory as
  1396. * is possible back to the system as we are called from OOM.
  1397. * To do this we must instruct the shmfs to drop all of its
  1398. * backing pages, *now*. Here we mirror the actions taken
  1399. * when by shmem_delete_inode() to release the backing store.
  1400. */
  1401. inode = obj->base.filp->f_path.dentry->d_inode;
  1402. truncate_inode_pages(inode->i_mapping, 0);
  1403. if (inode->i_op->truncate_range)
  1404. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1405. obj->madv = __I915_MADV_PURGED;
  1406. }
  1407. static inline int
  1408. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1409. {
  1410. return obj->madv == I915_MADV_DONTNEED;
  1411. }
  1412. static void
  1413. i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
  1414. uint32_t flush_domains)
  1415. {
  1416. struct drm_i915_gem_object *obj, *next;
  1417. list_for_each_entry_safe(obj, next,
  1418. &ring->gpu_write_list,
  1419. gpu_write_list) {
  1420. if (obj->base.write_domain & flush_domains) {
  1421. uint32_t old_write_domain = obj->base.write_domain;
  1422. obj->base.write_domain = 0;
  1423. list_del_init(&obj->gpu_write_list);
  1424. i915_gem_object_move_to_active(obj, ring,
  1425. i915_gem_next_request_seqno(ring));
  1426. trace_i915_gem_object_change_domain(obj,
  1427. obj->base.read_domains,
  1428. old_write_domain);
  1429. }
  1430. }
  1431. }
  1432. int
  1433. i915_add_request(struct intel_ring_buffer *ring,
  1434. struct drm_file *file,
  1435. struct drm_i915_gem_request *request)
  1436. {
  1437. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1438. uint32_t seqno;
  1439. int was_empty;
  1440. int ret;
  1441. BUG_ON(request == NULL);
  1442. ret = ring->add_request(ring, &seqno);
  1443. if (ret)
  1444. return ret;
  1445. trace_i915_gem_request_add(ring, seqno);
  1446. request->seqno = seqno;
  1447. request->ring = ring;
  1448. request->emitted_jiffies = jiffies;
  1449. was_empty = list_empty(&ring->request_list);
  1450. list_add_tail(&request->list, &ring->request_list);
  1451. if (file) {
  1452. struct drm_i915_file_private *file_priv = file->driver_priv;
  1453. spin_lock(&file_priv->mm.lock);
  1454. request->file_priv = file_priv;
  1455. list_add_tail(&request->client_list,
  1456. &file_priv->mm.request_list);
  1457. spin_unlock(&file_priv->mm.lock);
  1458. }
  1459. ring->outstanding_lazy_request = false;
  1460. if (!dev_priv->mm.suspended) {
  1461. mod_timer(&dev_priv->hangcheck_timer,
  1462. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1463. if (was_empty)
  1464. queue_delayed_work(dev_priv->wq,
  1465. &dev_priv->mm.retire_work, HZ);
  1466. }
  1467. return 0;
  1468. }
  1469. static inline void
  1470. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1471. {
  1472. struct drm_i915_file_private *file_priv = request->file_priv;
  1473. if (!file_priv)
  1474. return;
  1475. spin_lock(&file_priv->mm.lock);
  1476. list_del(&request->client_list);
  1477. request->file_priv = NULL;
  1478. spin_unlock(&file_priv->mm.lock);
  1479. }
  1480. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1481. struct intel_ring_buffer *ring)
  1482. {
  1483. while (!list_empty(&ring->request_list)) {
  1484. struct drm_i915_gem_request *request;
  1485. request = list_first_entry(&ring->request_list,
  1486. struct drm_i915_gem_request,
  1487. list);
  1488. list_del(&request->list);
  1489. i915_gem_request_remove_from_client(request);
  1490. kfree(request);
  1491. }
  1492. while (!list_empty(&ring->active_list)) {
  1493. struct drm_i915_gem_object *obj;
  1494. obj = list_first_entry(&ring->active_list,
  1495. struct drm_i915_gem_object,
  1496. ring_list);
  1497. obj->base.write_domain = 0;
  1498. list_del_init(&obj->gpu_write_list);
  1499. i915_gem_object_move_to_inactive(obj);
  1500. }
  1501. }
  1502. static void i915_gem_reset_fences(struct drm_device *dev)
  1503. {
  1504. struct drm_i915_private *dev_priv = dev->dev_private;
  1505. int i;
  1506. for (i = 0; i < 16; i++) {
  1507. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1508. struct drm_i915_gem_object *obj = reg->obj;
  1509. if (!obj)
  1510. continue;
  1511. if (obj->tiling_mode)
  1512. i915_gem_release_mmap(obj);
  1513. reg->obj->fence_reg = I915_FENCE_REG_NONE;
  1514. reg->obj->fenced_gpu_access = false;
  1515. reg->obj->last_fenced_seqno = 0;
  1516. reg->obj->last_fenced_ring = NULL;
  1517. i915_gem_clear_fence_reg(dev, reg);
  1518. }
  1519. }
  1520. void i915_gem_reset(struct drm_device *dev)
  1521. {
  1522. struct drm_i915_private *dev_priv = dev->dev_private;
  1523. struct drm_i915_gem_object *obj;
  1524. int i;
  1525. for (i = 0; i < I915_NUM_RINGS; i++)
  1526. i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
  1527. /* Remove anything from the flushing lists. The GPU cache is likely
  1528. * to be lost on reset along with the data, so simply move the
  1529. * lost bo to the inactive list.
  1530. */
  1531. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1532. obj= list_first_entry(&dev_priv->mm.flushing_list,
  1533. struct drm_i915_gem_object,
  1534. mm_list);
  1535. obj->base.write_domain = 0;
  1536. list_del_init(&obj->gpu_write_list);
  1537. i915_gem_object_move_to_inactive(obj);
  1538. }
  1539. /* Move everything out of the GPU domains to ensure we do any
  1540. * necessary invalidation upon reuse.
  1541. */
  1542. list_for_each_entry(obj,
  1543. &dev_priv->mm.inactive_list,
  1544. mm_list)
  1545. {
  1546. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1547. }
  1548. /* The fence registers are invalidated so clear them out */
  1549. i915_gem_reset_fences(dev);
  1550. }
  1551. /**
  1552. * This function clears the request list as sequence numbers are passed.
  1553. */
  1554. static void
  1555. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1556. {
  1557. uint32_t seqno;
  1558. int i;
  1559. if (list_empty(&ring->request_list))
  1560. return;
  1561. WARN_ON(i915_verify_lists(ring->dev));
  1562. seqno = ring->get_seqno(ring);
  1563. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1564. if (seqno >= ring->sync_seqno[i])
  1565. ring->sync_seqno[i] = 0;
  1566. while (!list_empty(&ring->request_list)) {
  1567. struct drm_i915_gem_request *request;
  1568. request = list_first_entry(&ring->request_list,
  1569. struct drm_i915_gem_request,
  1570. list);
  1571. if (!i915_seqno_passed(seqno, request->seqno))
  1572. break;
  1573. trace_i915_gem_request_retire(ring, request->seqno);
  1574. list_del(&request->list);
  1575. i915_gem_request_remove_from_client(request);
  1576. kfree(request);
  1577. }
  1578. /* Move any buffers on the active list that are no longer referenced
  1579. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1580. */
  1581. while (!list_empty(&ring->active_list)) {
  1582. struct drm_i915_gem_object *obj;
  1583. obj= list_first_entry(&ring->active_list,
  1584. struct drm_i915_gem_object,
  1585. ring_list);
  1586. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1587. break;
  1588. if (obj->base.write_domain != 0)
  1589. i915_gem_object_move_to_flushing(obj);
  1590. else
  1591. i915_gem_object_move_to_inactive(obj);
  1592. }
  1593. if (unlikely(ring->trace_irq_seqno &&
  1594. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1595. ring->irq_put(ring);
  1596. ring->trace_irq_seqno = 0;
  1597. }
  1598. WARN_ON(i915_verify_lists(ring->dev));
  1599. }
  1600. void
  1601. i915_gem_retire_requests(struct drm_device *dev)
  1602. {
  1603. drm_i915_private_t *dev_priv = dev->dev_private;
  1604. int i;
  1605. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1606. struct drm_i915_gem_object *obj, *next;
  1607. /* We must be careful that during unbind() we do not
  1608. * accidentally infinitely recurse into retire requests.
  1609. * Currently:
  1610. * retire -> free -> unbind -> wait -> retire_ring
  1611. */
  1612. list_for_each_entry_safe(obj, next,
  1613. &dev_priv->mm.deferred_free_list,
  1614. mm_list)
  1615. i915_gem_free_object_tail(obj);
  1616. }
  1617. for (i = 0; i < I915_NUM_RINGS; i++)
  1618. i915_gem_retire_requests_ring(&dev_priv->ring[i]);
  1619. }
  1620. static void
  1621. i915_gem_retire_work_handler(struct work_struct *work)
  1622. {
  1623. drm_i915_private_t *dev_priv;
  1624. struct drm_device *dev;
  1625. bool idle;
  1626. int i;
  1627. dev_priv = container_of(work, drm_i915_private_t,
  1628. mm.retire_work.work);
  1629. dev = dev_priv->dev;
  1630. /* Come back later if the device is busy... */
  1631. if (!mutex_trylock(&dev->struct_mutex)) {
  1632. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1633. return;
  1634. }
  1635. i915_gem_retire_requests(dev);
  1636. /* Send a periodic flush down the ring so we don't hold onto GEM
  1637. * objects indefinitely.
  1638. */
  1639. idle = true;
  1640. for (i = 0; i < I915_NUM_RINGS; i++) {
  1641. struct intel_ring_buffer *ring = &dev_priv->ring[i];
  1642. if (!list_empty(&ring->gpu_write_list)) {
  1643. struct drm_i915_gem_request *request;
  1644. int ret;
  1645. ret = i915_gem_flush_ring(ring,
  1646. 0, I915_GEM_GPU_DOMAINS);
  1647. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1648. if (ret || request == NULL ||
  1649. i915_add_request(ring, NULL, request))
  1650. kfree(request);
  1651. }
  1652. idle &= list_empty(&ring->request_list);
  1653. }
  1654. if (!dev_priv->mm.suspended && !idle)
  1655. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1656. mutex_unlock(&dev->struct_mutex);
  1657. }
  1658. /**
  1659. * Waits for a sequence number to be signaled, and cleans up the
  1660. * request and object lists appropriately for that event.
  1661. */
  1662. int
  1663. i915_wait_request(struct intel_ring_buffer *ring,
  1664. uint32_t seqno)
  1665. {
  1666. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1667. u32 ier;
  1668. int ret = 0;
  1669. BUG_ON(seqno == 0);
  1670. if (atomic_read(&dev_priv->mm.wedged)) {
  1671. struct completion *x = &dev_priv->error_completion;
  1672. bool recovery_complete;
  1673. unsigned long flags;
  1674. /* Give the error handler a chance to run. */
  1675. spin_lock_irqsave(&x->wait.lock, flags);
  1676. recovery_complete = x->done > 0;
  1677. spin_unlock_irqrestore(&x->wait.lock, flags);
  1678. return recovery_complete ? -EIO : -EAGAIN;
  1679. }
  1680. if (seqno == ring->outstanding_lazy_request) {
  1681. struct drm_i915_gem_request *request;
  1682. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1683. if (request == NULL)
  1684. return -ENOMEM;
  1685. ret = i915_add_request(ring, NULL, request);
  1686. if (ret) {
  1687. kfree(request);
  1688. return ret;
  1689. }
  1690. seqno = request->seqno;
  1691. }
  1692. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1693. if (HAS_PCH_SPLIT(ring->dev))
  1694. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1695. else
  1696. ier = I915_READ(IER);
  1697. if (!ier) {
  1698. DRM_ERROR("something (likely vbetool) disabled "
  1699. "interrupts, re-enabling\n");
  1700. i915_driver_irq_preinstall(ring->dev);
  1701. i915_driver_irq_postinstall(ring->dev);
  1702. }
  1703. trace_i915_gem_request_wait_begin(ring, seqno);
  1704. ring->waiting_seqno = seqno;
  1705. if (ring->irq_get(ring)) {
  1706. if (dev_priv->mm.interruptible)
  1707. ret = wait_event_interruptible(ring->irq_queue,
  1708. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1709. || atomic_read(&dev_priv->mm.wedged));
  1710. else
  1711. wait_event(ring->irq_queue,
  1712. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1713. || atomic_read(&dev_priv->mm.wedged));
  1714. ring->irq_put(ring);
  1715. } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
  1716. seqno) ||
  1717. atomic_read(&dev_priv->mm.wedged), 3000))
  1718. ret = -EBUSY;
  1719. ring->waiting_seqno = 0;
  1720. trace_i915_gem_request_wait_end(ring, seqno);
  1721. }
  1722. if (atomic_read(&dev_priv->mm.wedged))
  1723. ret = -EAGAIN;
  1724. if (ret && ret != -ERESTARTSYS)
  1725. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1726. __func__, ret, seqno, ring->get_seqno(ring),
  1727. dev_priv->next_seqno);
  1728. /* Directly dispatch request retiring. While we have the work queue
  1729. * to handle this, the waiter on a request often wants an associated
  1730. * buffer to have made it to the inactive list, and we would need
  1731. * a separate wait queue to handle that.
  1732. */
  1733. if (ret == 0)
  1734. i915_gem_retire_requests_ring(ring);
  1735. return ret;
  1736. }
  1737. /**
  1738. * Ensures that all rendering to the object has completed and the object is
  1739. * safe to unbind from the GTT or access from the CPU.
  1740. */
  1741. int
  1742. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
  1743. {
  1744. int ret;
  1745. /* This function only exists to support waiting for existing rendering,
  1746. * not for emitting required flushes.
  1747. */
  1748. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1749. /* If there is rendering queued on the buffer being evicted, wait for
  1750. * it.
  1751. */
  1752. if (obj->active) {
  1753. ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
  1754. if (ret)
  1755. return ret;
  1756. }
  1757. return 0;
  1758. }
  1759. /**
  1760. * Unbinds an object from the GTT aperture.
  1761. */
  1762. int
  1763. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1764. {
  1765. int ret = 0;
  1766. if (obj->gtt_space == NULL)
  1767. return 0;
  1768. if (obj->pin_count != 0) {
  1769. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1770. return -EINVAL;
  1771. }
  1772. /* blow away mappings if mapped through GTT */
  1773. i915_gem_release_mmap(obj);
  1774. /* Move the object to the CPU domain to ensure that
  1775. * any possible CPU writes while it's not in the GTT
  1776. * are flushed when we go to remap it. This will
  1777. * also ensure that all pending GPU writes are finished
  1778. * before we unbind.
  1779. */
  1780. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1781. if (ret == -ERESTARTSYS)
  1782. return ret;
  1783. /* Continue on if we fail due to EIO, the GPU is hung so we
  1784. * should be safe and we need to cleanup or else we might
  1785. * cause memory corruption through use-after-free.
  1786. */
  1787. if (ret) {
  1788. i915_gem_clflush_object(obj);
  1789. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1790. }
  1791. /* release the fence reg _after_ flushing */
  1792. ret = i915_gem_object_put_fence(obj);
  1793. if (ret == -ERESTARTSYS)
  1794. return ret;
  1795. trace_i915_gem_object_unbind(obj);
  1796. i915_gem_gtt_unbind_object(obj);
  1797. i915_gem_object_put_pages_gtt(obj);
  1798. list_del_init(&obj->gtt_list);
  1799. list_del_init(&obj->mm_list);
  1800. /* Avoid an unnecessary call to unbind on rebind. */
  1801. obj->map_and_fenceable = true;
  1802. drm_mm_put_block(obj->gtt_space);
  1803. obj->gtt_space = NULL;
  1804. obj->gtt_offset = 0;
  1805. if (i915_gem_object_is_purgeable(obj))
  1806. i915_gem_object_truncate(obj);
  1807. return ret;
  1808. }
  1809. int
  1810. i915_gem_flush_ring(struct intel_ring_buffer *ring,
  1811. uint32_t invalidate_domains,
  1812. uint32_t flush_domains)
  1813. {
  1814. int ret;
  1815. trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
  1816. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1817. if (ret)
  1818. return ret;
  1819. i915_gem_process_flushing_list(ring, flush_domains);
  1820. return 0;
  1821. }
  1822. static int i915_ring_idle(struct intel_ring_buffer *ring)
  1823. {
  1824. int ret;
  1825. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1826. return 0;
  1827. if (!list_empty(&ring->gpu_write_list)) {
  1828. ret = i915_gem_flush_ring(ring,
  1829. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1830. if (ret)
  1831. return ret;
  1832. }
  1833. return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
  1834. }
  1835. int
  1836. i915_gpu_idle(struct drm_device *dev)
  1837. {
  1838. drm_i915_private_t *dev_priv = dev->dev_private;
  1839. bool lists_empty;
  1840. int ret, i;
  1841. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1842. list_empty(&dev_priv->mm.active_list));
  1843. if (lists_empty)
  1844. return 0;
  1845. /* Flush everything onto the inactive list. */
  1846. for (i = 0; i < I915_NUM_RINGS; i++) {
  1847. ret = i915_ring_idle(&dev_priv->ring[i]);
  1848. if (ret)
  1849. return ret;
  1850. }
  1851. return 0;
  1852. }
  1853. static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
  1854. struct intel_ring_buffer *pipelined)
  1855. {
  1856. struct drm_device *dev = obj->base.dev;
  1857. drm_i915_private_t *dev_priv = dev->dev_private;
  1858. u32 size = obj->gtt_space->size;
  1859. int regnum = obj->fence_reg;
  1860. uint64_t val;
  1861. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1862. 0xfffff000) << 32;
  1863. val |= obj->gtt_offset & 0xfffff000;
  1864. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1865. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1866. if (obj->tiling_mode == I915_TILING_Y)
  1867. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1868. val |= I965_FENCE_REG_VALID;
  1869. if (pipelined) {
  1870. int ret = intel_ring_begin(pipelined, 6);
  1871. if (ret)
  1872. return ret;
  1873. intel_ring_emit(pipelined, MI_NOOP);
  1874. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1875. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
  1876. intel_ring_emit(pipelined, (u32)val);
  1877. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
  1878. intel_ring_emit(pipelined, (u32)(val >> 32));
  1879. intel_ring_advance(pipelined);
  1880. } else
  1881. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
  1882. return 0;
  1883. }
  1884. static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
  1885. struct intel_ring_buffer *pipelined)
  1886. {
  1887. struct drm_device *dev = obj->base.dev;
  1888. drm_i915_private_t *dev_priv = dev->dev_private;
  1889. u32 size = obj->gtt_space->size;
  1890. int regnum = obj->fence_reg;
  1891. uint64_t val;
  1892. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1893. 0xfffff000) << 32;
  1894. val |= obj->gtt_offset & 0xfffff000;
  1895. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1896. if (obj->tiling_mode == I915_TILING_Y)
  1897. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1898. val |= I965_FENCE_REG_VALID;
  1899. if (pipelined) {
  1900. int ret = intel_ring_begin(pipelined, 6);
  1901. if (ret)
  1902. return ret;
  1903. intel_ring_emit(pipelined, MI_NOOP);
  1904. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1905. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
  1906. intel_ring_emit(pipelined, (u32)val);
  1907. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
  1908. intel_ring_emit(pipelined, (u32)(val >> 32));
  1909. intel_ring_advance(pipelined);
  1910. } else
  1911. I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
  1912. return 0;
  1913. }
  1914. static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
  1915. struct intel_ring_buffer *pipelined)
  1916. {
  1917. struct drm_device *dev = obj->base.dev;
  1918. drm_i915_private_t *dev_priv = dev->dev_private;
  1919. u32 size = obj->gtt_space->size;
  1920. u32 fence_reg, val, pitch_val;
  1921. int tile_width;
  1922. if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1923. (size & -size) != size ||
  1924. (obj->gtt_offset & (size - 1)),
  1925. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1926. obj->gtt_offset, obj->map_and_fenceable, size))
  1927. return -EINVAL;
  1928. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1929. tile_width = 128;
  1930. else
  1931. tile_width = 512;
  1932. /* Note: pitch better be a power of two tile widths */
  1933. pitch_val = obj->stride / tile_width;
  1934. pitch_val = ffs(pitch_val) - 1;
  1935. val = obj->gtt_offset;
  1936. if (obj->tiling_mode == I915_TILING_Y)
  1937. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1938. val |= I915_FENCE_SIZE_BITS(size);
  1939. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1940. val |= I830_FENCE_REG_VALID;
  1941. fence_reg = obj->fence_reg;
  1942. if (fence_reg < 8)
  1943. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  1944. else
  1945. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  1946. if (pipelined) {
  1947. int ret = intel_ring_begin(pipelined, 4);
  1948. if (ret)
  1949. return ret;
  1950. intel_ring_emit(pipelined, MI_NOOP);
  1951. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1952. intel_ring_emit(pipelined, fence_reg);
  1953. intel_ring_emit(pipelined, val);
  1954. intel_ring_advance(pipelined);
  1955. } else
  1956. I915_WRITE(fence_reg, val);
  1957. return 0;
  1958. }
  1959. static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
  1960. struct intel_ring_buffer *pipelined)
  1961. {
  1962. struct drm_device *dev = obj->base.dev;
  1963. drm_i915_private_t *dev_priv = dev->dev_private;
  1964. u32 size = obj->gtt_space->size;
  1965. int regnum = obj->fence_reg;
  1966. uint32_t val;
  1967. uint32_t pitch_val;
  1968. if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  1969. (size & -size) != size ||
  1970. (obj->gtt_offset & (size - 1)),
  1971. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  1972. obj->gtt_offset, size))
  1973. return -EINVAL;
  1974. pitch_val = obj->stride / 128;
  1975. pitch_val = ffs(pitch_val) - 1;
  1976. val = obj->gtt_offset;
  1977. if (obj->tiling_mode == I915_TILING_Y)
  1978. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1979. val |= I830_FENCE_SIZE_BITS(size);
  1980. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1981. val |= I830_FENCE_REG_VALID;
  1982. if (pipelined) {
  1983. int ret = intel_ring_begin(pipelined, 4);
  1984. if (ret)
  1985. return ret;
  1986. intel_ring_emit(pipelined, MI_NOOP);
  1987. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1988. intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
  1989. intel_ring_emit(pipelined, val);
  1990. intel_ring_advance(pipelined);
  1991. } else
  1992. I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
  1993. return 0;
  1994. }
  1995. static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
  1996. {
  1997. return i915_seqno_passed(ring->get_seqno(ring), seqno);
  1998. }
  1999. static int
  2000. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
  2001. struct intel_ring_buffer *pipelined)
  2002. {
  2003. int ret;
  2004. if (obj->fenced_gpu_access) {
  2005. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2006. ret = i915_gem_flush_ring(obj->last_fenced_ring,
  2007. 0, obj->base.write_domain);
  2008. if (ret)
  2009. return ret;
  2010. }
  2011. obj->fenced_gpu_access = false;
  2012. }
  2013. if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
  2014. if (!ring_passed_seqno(obj->last_fenced_ring,
  2015. obj->last_fenced_seqno)) {
  2016. ret = i915_wait_request(obj->last_fenced_ring,
  2017. obj->last_fenced_seqno);
  2018. if (ret)
  2019. return ret;
  2020. }
  2021. obj->last_fenced_seqno = 0;
  2022. obj->last_fenced_ring = NULL;
  2023. }
  2024. /* Ensure that all CPU reads are completed before installing a fence
  2025. * and all writes before removing the fence.
  2026. */
  2027. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  2028. mb();
  2029. return 0;
  2030. }
  2031. int
  2032. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2033. {
  2034. int ret;
  2035. if (obj->tiling_mode)
  2036. i915_gem_release_mmap(obj);
  2037. ret = i915_gem_object_flush_fence(obj, NULL);
  2038. if (ret)
  2039. return ret;
  2040. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2041. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2042. i915_gem_clear_fence_reg(obj->base.dev,
  2043. &dev_priv->fence_regs[obj->fence_reg]);
  2044. obj->fence_reg = I915_FENCE_REG_NONE;
  2045. }
  2046. return 0;
  2047. }
  2048. static struct drm_i915_fence_reg *
  2049. i915_find_fence_reg(struct drm_device *dev,
  2050. struct intel_ring_buffer *pipelined)
  2051. {
  2052. struct drm_i915_private *dev_priv = dev->dev_private;
  2053. struct drm_i915_fence_reg *reg, *first, *avail;
  2054. int i;
  2055. /* First try to find a free reg */
  2056. avail = NULL;
  2057. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2058. reg = &dev_priv->fence_regs[i];
  2059. if (!reg->obj)
  2060. return reg;
  2061. if (!reg->obj->pin_count)
  2062. avail = reg;
  2063. }
  2064. if (avail == NULL)
  2065. return NULL;
  2066. /* None available, try to steal one or wait for a user to finish */
  2067. avail = first = NULL;
  2068. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2069. if (reg->obj->pin_count)
  2070. continue;
  2071. if (first == NULL)
  2072. first = reg;
  2073. if (!pipelined ||
  2074. !reg->obj->last_fenced_ring ||
  2075. reg->obj->last_fenced_ring == pipelined) {
  2076. avail = reg;
  2077. break;
  2078. }
  2079. }
  2080. if (avail == NULL)
  2081. avail = first;
  2082. return avail;
  2083. }
  2084. /**
  2085. * i915_gem_object_get_fence - set up a fence reg for an object
  2086. * @obj: object to map through a fence reg
  2087. * @pipelined: ring on which to queue the change, or NULL for CPU access
  2088. * @interruptible: must we wait uninterruptibly for the register to retire?
  2089. *
  2090. * When mapping objects through the GTT, userspace wants to be able to write
  2091. * to them without having to worry about swizzling if the object is tiled.
  2092. *
  2093. * This function walks the fence regs looking for a free one for @obj,
  2094. * stealing one if it can't find any.
  2095. *
  2096. * It then sets up the reg based on the object's properties: address, pitch
  2097. * and tiling format.
  2098. */
  2099. int
  2100. i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
  2101. struct intel_ring_buffer *pipelined)
  2102. {
  2103. struct drm_device *dev = obj->base.dev;
  2104. struct drm_i915_private *dev_priv = dev->dev_private;
  2105. struct drm_i915_fence_reg *reg;
  2106. int ret;
  2107. /* XXX disable pipelining. There are bugs. Shocking. */
  2108. pipelined = NULL;
  2109. /* Just update our place in the LRU if our fence is getting reused. */
  2110. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2111. reg = &dev_priv->fence_regs[obj->fence_reg];
  2112. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2113. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  2114. pipelined = NULL;
  2115. if (!pipelined) {
  2116. if (reg->setup_seqno) {
  2117. if (!ring_passed_seqno(obj->last_fenced_ring,
  2118. reg->setup_seqno)) {
  2119. ret = i915_wait_request(obj->last_fenced_ring,
  2120. reg->setup_seqno);
  2121. if (ret)
  2122. return ret;
  2123. }
  2124. reg->setup_seqno = 0;
  2125. }
  2126. } else if (obj->last_fenced_ring &&
  2127. obj->last_fenced_ring != pipelined) {
  2128. ret = i915_gem_object_flush_fence(obj, pipelined);
  2129. if (ret)
  2130. return ret;
  2131. } else if (obj->tiling_changed) {
  2132. if (obj->fenced_gpu_access) {
  2133. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2134. ret = i915_gem_flush_ring(obj->ring,
  2135. 0, obj->base.write_domain);
  2136. if (ret)
  2137. return ret;
  2138. }
  2139. obj->fenced_gpu_access = false;
  2140. }
  2141. }
  2142. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  2143. pipelined = NULL;
  2144. BUG_ON(!pipelined && reg->setup_seqno);
  2145. if (obj->tiling_changed) {
  2146. if (pipelined) {
  2147. reg->setup_seqno =
  2148. i915_gem_next_request_seqno(pipelined);
  2149. obj->last_fenced_seqno = reg->setup_seqno;
  2150. obj->last_fenced_ring = pipelined;
  2151. }
  2152. goto update;
  2153. }
  2154. return 0;
  2155. }
  2156. reg = i915_find_fence_reg(dev, pipelined);
  2157. if (reg == NULL)
  2158. return -ENOSPC;
  2159. ret = i915_gem_object_flush_fence(obj, pipelined);
  2160. if (ret)
  2161. return ret;
  2162. if (reg->obj) {
  2163. struct drm_i915_gem_object *old = reg->obj;
  2164. drm_gem_object_reference(&old->base);
  2165. if (old->tiling_mode)
  2166. i915_gem_release_mmap(old);
  2167. ret = i915_gem_object_flush_fence(old, pipelined);
  2168. if (ret) {
  2169. drm_gem_object_unreference(&old->base);
  2170. return ret;
  2171. }
  2172. if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
  2173. pipelined = NULL;
  2174. old->fence_reg = I915_FENCE_REG_NONE;
  2175. old->last_fenced_ring = pipelined;
  2176. old->last_fenced_seqno =
  2177. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2178. drm_gem_object_unreference(&old->base);
  2179. } else if (obj->last_fenced_seqno == 0)
  2180. pipelined = NULL;
  2181. reg->obj = obj;
  2182. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2183. obj->fence_reg = reg - dev_priv->fence_regs;
  2184. obj->last_fenced_ring = pipelined;
  2185. reg->setup_seqno =
  2186. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2187. obj->last_fenced_seqno = reg->setup_seqno;
  2188. update:
  2189. obj->tiling_changed = false;
  2190. switch (INTEL_INFO(dev)->gen) {
  2191. case 6:
  2192. ret = sandybridge_write_fence_reg(obj, pipelined);
  2193. break;
  2194. case 5:
  2195. case 4:
  2196. ret = i965_write_fence_reg(obj, pipelined);
  2197. break;
  2198. case 3:
  2199. ret = i915_write_fence_reg(obj, pipelined);
  2200. break;
  2201. case 2:
  2202. ret = i830_write_fence_reg(obj, pipelined);
  2203. break;
  2204. }
  2205. return ret;
  2206. }
  2207. /**
  2208. * i915_gem_clear_fence_reg - clear out fence register info
  2209. * @obj: object to clear
  2210. *
  2211. * Zeroes out the fence register itself and clears out the associated
  2212. * data structures in dev_priv and obj.
  2213. */
  2214. static void
  2215. i915_gem_clear_fence_reg(struct drm_device *dev,
  2216. struct drm_i915_fence_reg *reg)
  2217. {
  2218. drm_i915_private_t *dev_priv = dev->dev_private;
  2219. uint32_t fence_reg = reg - dev_priv->fence_regs;
  2220. switch (INTEL_INFO(dev)->gen) {
  2221. case 6:
  2222. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
  2223. break;
  2224. case 5:
  2225. case 4:
  2226. I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
  2227. break;
  2228. case 3:
  2229. if (fence_reg >= 8)
  2230. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2231. else
  2232. case 2:
  2233. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2234. I915_WRITE(fence_reg, 0);
  2235. break;
  2236. }
  2237. list_del_init(&reg->lru_list);
  2238. reg->obj = NULL;
  2239. reg->setup_seqno = 0;
  2240. }
  2241. /**
  2242. * Finds free space in the GTT aperture and binds the object there.
  2243. */
  2244. static int
  2245. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2246. unsigned alignment,
  2247. bool map_and_fenceable)
  2248. {
  2249. struct drm_device *dev = obj->base.dev;
  2250. drm_i915_private_t *dev_priv = dev->dev_private;
  2251. struct drm_mm_node *free_space;
  2252. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2253. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2254. bool mappable, fenceable;
  2255. int ret;
  2256. if (obj->madv != I915_MADV_WILLNEED) {
  2257. DRM_ERROR("Attempting to bind a purgeable object\n");
  2258. return -EINVAL;
  2259. }
  2260. fence_size = i915_gem_get_gtt_size(obj);
  2261. fence_alignment = i915_gem_get_gtt_alignment(obj);
  2262. unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
  2263. if (alignment == 0)
  2264. alignment = map_and_fenceable ? fence_alignment :
  2265. unfenced_alignment;
  2266. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2267. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2268. return -EINVAL;
  2269. }
  2270. size = map_and_fenceable ? fence_size : obj->base.size;
  2271. /* If the object is bigger than the entire aperture, reject it early
  2272. * before evicting everything in a vain attempt to find space.
  2273. */
  2274. if (obj->base.size >
  2275. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2276. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2277. return -E2BIG;
  2278. }
  2279. search_free:
  2280. if (map_and_fenceable)
  2281. free_space =
  2282. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2283. size, alignment, 0,
  2284. dev_priv->mm.gtt_mappable_end,
  2285. 0);
  2286. else
  2287. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2288. size, alignment, 0);
  2289. if (free_space != NULL) {
  2290. if (map_and_fenceable)
  2291. obj->gtt_space =
  2292. drm_mm_get_block_range_generic(free_space,
  2293. size, alignment, 0,
  2294. dev_priv->mm.gtt_mappable_end,
  2295. 0);
  2296. else
  2297. obj->gtt_space =
  2298. drm_mm_get_block(free_space, size, alignment);
  2299. }
  2300. if (obj->gtt_space == NULL) {
  2301. /* If the gtt is empty and we're still having trouble
  2302. * fitting our object in, we're out of memory.
  2303. */
  2304. ret = i915_gem_evict_something(dev, size, alignment,
  2305. map_and_fenceable);
  2306. if (ret)
  2307. return ret;
  2308. goto search_free;
  2309. }
  2310. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2311. if (ret) {
  2312. drm_mm_put_block(obj->gtt_space);
  2313. obj->gtt_space = NULL;
  2314. if (ret == -ENOMEM) {
  2315. /* first try to reclaim some memory by clearing the GTT */
  2316. ret = i915_gem_evict_everything(dev, false);
  2317. if (ret) {
  2318. /* now try to shrink everyone else */
  2319. if (gfpmask) {
  2320. gfpmask = 0;
  2321. goto search_free;
  2322. }
  2323. return -ENOMEM;
  2324. }
  2325. goto search_free;
  2326. }
  2327. return ret;
  2328. }
  2329. ret = i915_gem_gtt_bind_object(obj);
  2330. if (ret) {
  2331. i915_gem_object_put_pages_gtt(obj);
  2332. drm_mm_put_block(obj->gtt_space);
  2333. obj->gtt_space = NULL;
  2334. if (i915_gem_evict_everything(dev, false))
  2335. return ret;
  2336. goto search_free;
  2337. }
  2338. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2339. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2340. /* Assert that the object is not currently in any GPU domain. As it
  2341. * wasn't in the GTT, there shouldn't be any way it could have been in
  2342. * a GPU cache
  2343. */
  2344. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2345. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2346. obj->gtt_offset = obj->gtt_space->start;
  2347. fenceable =
  2348. obj->gtt_space->size == fence_size &&
  2349. (obj->gtt_space->start & (fence_alignment -1)) == 0;
  2350. mappable =
  2351. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2352. obj->map_and_fenceable = mappable && fenceable;
  2353. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2354. return 0;
  2355. }
  2356. void
  2357. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2358. {
  2359. /* If we don't have a page list set up, then we're not pinned
  2360. * to GPU, and we can ignore the cache flush because it'll happen
  2361. * again at bind time.
  2362. */
  2363. if (obj->pages == NULL)
  2364. return;
  2365. trace_i915_gem_object_clflush(obj);
  2366. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2367. }
  2368. /** Flushes any GPU write domain for the object if it's dirty. */
  2369. static int
  2370. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2371. {
  2372. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2373. return 0;
  2374. /* Queue the GPU write cache flushing we need. */
  2375. return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2376. }
  2377. /** Flushes the GTT write domain for the object if it's dirty. */
  2378. static void
  2379. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2380. {
  2381. uint32_t old_write_domain;
  2382. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2383. return;
  2384. /* No actual flushing is required for the GTT write domain. Writes
  2385. * to it immediately go to main memory as far as we know, so there's
  2386. * no chipset flush. It also doesn't land in render cache.
  2387. *
  2388. * However, we do have to enforce the order so that all writes through
  2389. * the GTT land before any writes to the device, such as updates to
  2390. * the GATT itself.
  2391. */
  2392. wmb();
  2393. i915_gem_release_mmap(obj);
  2394. old_write_domain = obj->base.write_domain;
  2395. obj->base.write_domain = 0;
  2396. trace_i915_gem_object_change_domain(obj,
  2397. obj->base.read_domains,
  2398. old_write_domain);
  2399. }
  2400. /** Flushes the CPU write domain for the object if it's dirty. */
  2401. static void
  2402. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2403. {
  2404. uint32_t old_write_domain;
  2405. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2406. return;
  2407. i915_gem_clflush_object(obj);
  2408. intel_gtt_chipset_flush();
  2409. old_write_domain = obj->base.write_domain;
  2410. obj->base.write_domain = 0;
  2411. trace_i915_gem_object_change_domain(obj,
  2412. obj->base.read_domains,
  2413. old_write_domain);
  2414. }
  2415. /**
  2416. * Moves a single object to the GTT read, and possibly write domain.
  2417. *
  2418. * This function returns when the move is complete, including waiting on
  2419. * flushes to occur.
  2420. */
  2421. int
  2422. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2423. {
  2424. uint32_t old_write_domain, old_read_domains;
  2425. int ret;
  2426. /* Not valid to be called on unbound objects. */
  2427. if (obj->gtt_space == NULL)
  2428. return -EINVAL;
  2429. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2430. return 0;
  2431. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2432. if (ret)
  2433. return ret;
  2434. if (obj->pending_gpu_write || write) {
  2435. ret = i915_gem_object_wait_rendering(obj);
  2436. if (ret)
  2437. return ret;
  2438. }
  2439. i915_gem_object_flush_cpu_write_domain(obj);
  2440. old_write_domain = obj->base.write_domain;
  2441. old_read_domains = obj->base.read_domains;
  2442. /* It should now be out of any other write domains, and we can update
  2443. * the domain values for our changes.
  2444. */
  2445. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2446. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2447. if (write) {
  2448. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2449. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2450. obj->dirty = 1;
  2451. }
  2452. trace_i915_gem_object_change_domain(obj,
  2453. old_read_domains,
  2454. old_write_domain);
  2455. return 0;
  2456. }
  2457. /*
  2458. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2459. * wait, as in modesetting process we're not supposed to be interrupted.
  2460. */
  2461. int
  2462. i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
  2463. struct intel_ring_buffer *pipelined)
  2464. {
  2465. uint32_t old_read_domains;
  2466. int ret;
  2467. /* Not valid to be called on unbound objects. */
  2468. if (obj->gtt_space == NULL)
  2469. return -EINVAL;
  2470. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2471. if (ret)
  2472. return ret;
  2473. /* Currently, we are always called from an non-interruptible context. */
  2474. if (pipelined != obj->ring) {
  2475. ret = i915_gem_object_wait_rendering(obj);
  2476. if (ret)
  2477. return ret;
  2478. }
  2479. i915_gem_object_flush_cpu_write_domain(obj);
  2480. old_read_domains = obj->base.read_domains;
  2481. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2482. trace_i915_gem_object_change_domain(obj,
  2483. old_read_domains,
  2484. obj->base.write_domain);
  2485. return 0;
  2486. }
  2487. int
  2488. i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj)
  2489. {
  2490. int ret;
  2491. if (!obj->active)
  2492. return 0;
  2493. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2494. ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2495. if (ret)
  2496. return ret;
  2497. }
  2498. return i915_gem_object_wait_rendering(obj);
  2499. }
  2500. /**
  2501. * Moves a single object to the CPU read, and possibly write domain.
  2502. *
  2503. * This function returns when the move is complete, including waiting on
  2504. * flushes to occur.
  2505. */
  2506. static int
  2507. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2508. {
  2509. uint32_t old_write_domain, old_read_domains;
  2510. int ret;
  2511. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2512. return 0;
  2513. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2514. if (ret)
  2515. return ret;
  2516. ret = i915_gem_object_wait_rendering(obj);
  2517. if (ret)
  2518. return ret;
  2519. i915_gem_object_flush_gtt_write_domain(obj);
  2520. /* If we have a partially-valid cache of the object in the CPU,
  2521. * finish invalidating it and free the per-page flags.
  2522. */
  2523. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2524. old_write_domain = obj->base.write_domain;
  2525. old_read_domains = obj->base.read_domains;
  2526. /* Flush the CPU cache if it's still invalid. */
  2527. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2528. i915_gem_clflush_object(obj);
  2529. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2530. }
  2531. /* It should now be out of any other write domains, and we can update
  2532. * the domain values for our changes.
  2533. */
  2534. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2535. /* If we're writing through the CPU, then the GPU read domains will
  2536. * need to be invalidated at next use.
  2537. */
  2538. if (write) {
  2539. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2540. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2541. }
  2542. trace_i915_gem_object_change_domain(obj,
  2543. old_read_domains,
  2544. old_write_domain);
  2545. return 0;
  2546. }
  2547. /**
  2548. * Moves the object from a partially CPU read to a full one.
  2549. *
  2550. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2551. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2552. */
  2553. static void
  2554. i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
  2555. {
  2556. if (!obj->page_cpu_valid)
  2557. return;
  2558. /* If we're partially in the CPU read domain, finish moving it in.
  2559. */
  2560. if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
  2561. int i;
  2562. for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
  2563. if (obj->page_cpu_valid[i])
  2564. continue;
  2565. drm_clflush_pages(obj->pages + i, 1);
  2566. }
  2567. }
  2568. /* Free the page_cpu_valid mappings which are now stale, whether
  2569. * or not we've got I915_GEM_DOMAIN_CPU.
  2570. */
  2571. kfree(obj->page_cpu_valid);
  2572. obj->page_cpu_valid = NULL;
  2573. }
  2574. /**
  2575. * Set the CPU read domain on a range of the object.
  2576. *
  2577. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2578. * not entirely valid. The page_cpu_valid member of the object flags which
  2579. * pages have been flushed, and will be respected by
  2580. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2581. * of the whole object.
  2582. *
  2583. * This function returns when the move is complete, including waiting on
  2584. * flushes to occur.
  2585. */
  2586. static int
  2587. i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  2588. uint64_t offset, uint64_t size)
  2589. {
  2590. uint32_t old_read_domains;
  2591. int i, ret;
  2592. if (offset == 0 && size == obj->base.size)
  2593. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2594. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2595. if (ret)
  2596. return ret;
  2597. ret = i915_gem_object_wait_rendering(obj);
  2598. if (ret)
  2599. return ret;
  2600. i915_gem_object_flush_gtt_write_domain(obj);
  2601. /* If we're already fully in the CPU read domain, we're done. */
  2602. if (obj->page_cpu_valid == NULL &&
  2603. (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2604. return 0;
  2605. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2606. * newly adding I915_GEM_DOMAIN_CPU
  2607. */
  2608. if (obj->page_cpu_valid == NULL) {
  2609. obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
  2610. GFP_KERNEL);
  2611. if (obj->page_cpu_valid == NULL)
  2612. return -ENOMEM;
  2613. } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2614. memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
  2615. /* Flush the cache on any pages that are still invalid from the CPU's
  2616. * perspective.
  2617. */
  2618. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2619. i++) {
  2620. if (obj->page_cpu_valid[i])
  2621. continue;
  2622. drm_clflush_pages(obj->pages + i, 1);
  2623. obj->page_cpu_valid[i] = 1;
  2624. }
  2625. /* It should now be out of any other write domains, and we can update
  2626. * the domain values for our changes.
  2627. */
  2628. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2629. old_read_domains = obj->base.read_domains;
  2630. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2631. trace_i915_gem_object_change_domain(obj,
  2632. old_read_domains,
  2633. obj->base.write_domain);
  2634. return 0;
  2635. }
  2636. /* Throttle our rendering by waiting until the ring has completed our requests
  2637. * emitted over 20 msec ago.
  2638. *
  2639. * Note that if we were to use the current jiffies each time around the loop,
  2640. * we wouldn't escape the function with any frames outstanding if the time to
  2641. * render a frame was over 20ms.
  2642. *
  2643. * This should get us reasonable parallelism between CPU and GPU but also
  2644. * relatively low latency when blocking on a particular request to finish.
  2645. */
  2646. static int
  2647. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2648. {
  2649. struct drm_i915_private *dev_priv = dev->dev_private;
  2650. struct drm_i915_file_private *file_priv = file->driver_priv;
  2651. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2652. struct drm_i915_gem_request *request;
  2653. struct intel_ring_buffer *ring = NULL;
  2654. u32 seqno = 0;
  2655. int ret;
  2656. if (atomic_read(&dev_priv->mm.wedged))
  2657. return -EIO;
  2658. spin_lock(&file_priv->mm.lock);
  2659. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2660. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2661. break;
  2662. ring = request->ring;
  2663. seqno = request->seqno;
  2664. }
  2665. spin_unlock(&file_priv->mm.lock);
  2666. if (seqno == 0)
  2667. return 0;
  2668. ret = 0;
  2669. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  2670. /* And wait for the seqno passing without holding any locks and
  2671. * causing extra latency for others. This is safe as the irq
  2672. * generation is designed to be run atomically and so is
  2673. * lockless.
  2674. */
  2675. if (ring->irq_get(ring)) {
  2676. ret = wait_event_interruptible(ring->irq_queue,
  2677. i915_seqno_passed(ring->get_seqno(ring), seqno)
  2678. || atomic_read(&dev_priv->mm.wedged));
  2679. ring->irq_put(ring);
  2680. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2681. ret = -EIO;
  2682. }
  2683. }
  2684. if (ret == 0)
  2685. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2686. return ret;
  2687. }
  2688. int
  2689. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2690. uint32_t alignment,
  2691. bool map_and_fenceable)
  2692. {
  2693. struct drm_device *dev = obj->base.dev;
  2694. struct drm_i915_private *dev_priv = dev->dev_private;
  2695. int ret;
  2696. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2697. WARN_ON(i915_verify_lists(dev));
  2698. if (obj->gtt_space != NULL) {
  2699. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2700. (map_and_fenceable && !obj->map_and_fenceable)) {
  2701. WARN(obj->pin_count,
  2702. "bo is already pinned with incorrect alignment:"
  2703. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2704. " obj->map_and_fenceable=%d\n",
  2705. obj->gtt_offset, alignment,
  2706. map_and_fenceable,
  2707. obj->map_and_fenceable);
  2708. ret = i915_gem_object_unbind(obj);
  2709. if (ret)
  2710. return ret;
  2711. }
  2712. }
  2713. if (obj->gtt_space == NULL) {
  2714. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2715. map_and_fenceable);
  2716. if (ret)
  2717. return ret;
  2718. }
  2719. if (obj->pin_count++ == 0) {
  2720. if (!obj->active)
  2721. list_move_tail(&obj->mm_list,
  2722. &dev_priv->mm.pinned_list);
  2723. }
  2724. obj->pin_mappable |= map_and_fenceable;
  2725. WARN_ON(i915_verify_lists(dev));
  2726. return 0;
  2727. }
  2728. void
  2729. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2730. {
  2731. struct drm_device *dev = obj->base.dev;
  2732. drm_i915_private_t *dev_priv = dev->dev_private;
  2733. WARN_ON(i915_verify_lists(dev));
  2734. BUG_ON(obj->pin_count == 0);
  2735. BUG_ON(obj->gtt_space == NULL);
  2736. if (--obj->pin_count == 0) {
  2737. if (!obj->active)
  2738. list_move_tail(&obj->mm_list,
  2739. &dev_priv->mm.inactive_list);
  2740. obj->pin_mappable = false;
  2741. }
  2742. WARN_ON(i915_verify_lists(dev));
  2743. }
  2744. int
  2745. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2746. struct drm_file *file)
  2747. {
  2748. struct drm_i915_gem_pin *args = data;
  2749. struct drm_i915_gem_object *obj;
  2750. int ret;
  2751. ret = i915_mutex_lock_interruptible(dev);
  2752. if (ret)
  2753. return ret;
  2754. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2755. if (&obj->base == NULL) {
  2756. ret = -ENOENT;
  2757. goto unlock;
  2758. }
  2759. if (obj->madv != I915_MADV_WILLNEED) {
  2760. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2761. ret = -EINVAL;
  2762. goto out;
  2763. }
  2764. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2765. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2766. args->handle);
  2767. ret = -EINVAL;
  2768. goto out;
  2769. }
  2770. obj->user_pin_count++;
  2771. obj->pin_filp = file;
  2772. if (obj->user_pin_count == 1) {
  2773. ret = i915_gem_object_pin(obj, args->alignment, true);
  2774. if (ret)
  2775. goto out;
  2776. }
  2777. /* XXX - flush the CPU caches for pinned objects
  2778. * as the X server doesn't manage domains yet
  2779. */
  2780. i915_gem_object_flush_cpu_write_domain(obj);
  2781. args->offset = obj->gtt_offset;
  2782. out:
  2783. drm_gem_object_unreference(&obj->base);
  2784. unlock:
  2785. mutex_unlock(&dev->struct_mutex);
  2786. return ret;
  2787. }
  2788. int
  2789. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2790. struct drm_file *file)
  2791. {
  2792. struct drm_i915_gem_pin *args = data;
  2793. struct drm_i915_gem_object *obj;
  2794. int ret;
  2795. ret = i915_mutex_lock_interruptible(dev);
  2796. if (ret)
  2797. return ret;
  2798. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2799. if (&obj->base == NULL) {
  2800. ret = -ENOENT;
  2801. goto unlock;
  2802. }
  2803. if (obj->pin_filp != file) {
  2804. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2805. args->handle);
  2806. ret = -EINVAL;
  2807. goto out;
  2808. }
  2809. obj->user_pin_count--;
  2810. if (obj->user_pin_count == 0) {
  2811. obj->pin_filp = NULL;
  2812. i915_gem_object_unpin(obj);
  2813. }
  2814. out:
  2815. drm_gem_object_unreference(&obj->base);
  2816. unlock:
  2817. mutex_unlock(&dev->struct_mutex);
  2818. return ret;
  2819. }
  2820. int
  2821. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2822. struct drm_file *file)
  2823. {
  2824. struct drm_i915_gem_busy *args = data;
  2825. struct drm_i915_gem_object *obj;
  2826. int ret;
  2827. ret = i915_mutex_lock_interruptible(dev);
  2828. if (ret)
  2829. return ret;
  2830. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2831. if (&obj->base == NULL) {
  2832. ret = -ENOENT;
  2833. goto unlock;
  2834. }
  2835. /* Count all active objects as busy, even if they are currently not used
  2836. * by the gpu. Users of this interface expect objects to eventually
  2837. * become non-busy without any further actions, therefore emit any
  2838. * necessary flushes here.
  2839. */
  2840. args->busy = obj->active;
  2841. if (args->busy) {
  2842. /* Unconditionally flush objects, even when the gpu still uses this
  2843. * object. Userspace calling this function indicates that it wants to
  2844. * use this buffer rather sooner than later, so issuing the required
  2845. * flush earlier is beneficial.
  2846. */
  2847. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2848. ret = i915_gem_flush_ring(obj->ring,
  2849. 0, obj->base.write_domain);
  2850. } else if (obj->ring->outstanding_lazy_request ==
  2851. obj->last_rendering_seqno) {
  2852. struct drm_i915_gem_request *request;
  2853. /* This ring is not being cleared by active usage,
  2854. * so emit a request to do so.
  2855. */
  2856. request = kzalloc(sizeof(*request), GFP_KERNEL);
  2857. if (request)
  2858. ret = i915_add_request(obj->ring, NULL,request);
  2859. else
  2860. ret = -ENOMEM;
  2861. }
  2862. /* Update the active list for the hardware's current position.
  2863. * Otherwise this only updates on a delayed timer or when irqs
  2864. * are actually unmasked, and our working set ends up being
  2865. * larger than required.
  2866. */
  2867. i915_gem_retire_requests_ring(obj->ring);
  2868. args->busy = obj->active;
  2869. }
  2870. drm_gem_object_unreference(&obj->base);
  2871. unlock:
  2872. mutex_unlock(&dev->struct_mutex);
  2873. return ret;
  2874. }
  2875. int
  2876. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2877. struct drm_file *file_priv)
  2878. {
  2879. return i915_gem_ring_throttle(dev, file_priv);
  2880. }
  2881. int
  2882. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2883. struct drm_file *file_priv)
  2884. {
  2885. struct drm_i915_gem_madvise *args = data;
  2886. struct drm_i915_gem_object *obj;
  2887. int ret;
  2888. switch (args->madv) {
  2889. case I915_MADV_DONTNEED:
  2890. case I915_MADV_WILLNEED:
  2891. break;
  2892. default:
  2893. return -EINVAL;
  2894. }
  2895. ret = i915_mutex_lock_interruptible(dev);
  2896. if (ret)
  2897. return ret;
  2898. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2899. if (&obj->base == NULL) {
  2900. ret = -ENOENT;
  2901. goto unlock;
  2902. }
  2903. if (obj->pin_count) {
  2904. ret = -EINVAL;
  2905. goto out;
  2906. }
  2907. if (obj->madv != __I915_MADV_PURGED)
  2908. obj->madv = args->madv;
  2909. /* if the object is no longer bound, discard its backing storage */
  2910. if (i915_gem_object_is_purgeable(obj) &&
  2911. obj->gtt_space == NULL)
  2912. i915_gem_object_truncate(obj);
  2913. args->retained = obj->madv != __I915_MADV_PURGED;
  2914. out:
  2915. drm_gem_object_unreference(&obj->base);
  2916. unlock:
  2917. mutex_unlock(&dev->struct_mutex);
  2918. return ret;
  2919. }
  2920. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2921. size_t size)
  2922. {
  2923. struct drm_i915_private *dev_priv = dev->dev_private;
  2924. struct drm_i915_gem_object *obj;
  2925. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2926. if (obj == NULL)
  2927. return NULL;
  2928. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2929. kfree(obj);
  2930. return NULL;
  2931. }
  2932. i915_gem_info_add_obj(dev_priv, size);
  2933. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2934. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2935. obj->agp_type = AGP_USER_MEMORY;
  2936. obj->base.driver_private = NULL;
  2937. obj->fence_reg = I915_FENCE_REG_NONE;
  2938. INIT_LIST_HEAD(&obj->mm_list);
  2939. INIT_LIST_HEAD(&obj->gtt_list);
  2940. INIT_LIST_HEAD(&obj->ring_list);
  2941. INIT_LIST_HEAD(&obj->exec_list);
  2942. INIT_LIST_HEAD(&obj->gpu_write_list);
  2943. obj->madv = I915_MADV_WILLNEED;
  2944. /* Avoid an unnecessary call to unbind on the first bind. */
  2945. obj->map_and_fenceable = true;
  2946. return obj;
  2947. }
  2948. int i915_gem_init_object(struct drm_gem_object *obj)
  2949. {
  2950. BUG();
  2951. return 0;
  2952. }
  2953. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
  2954. {
  2955. struct drm_device *dev = obj->base.dev;
  2956. drm_i915_private_t *dev_priv = dev->dev_private;
  2957. int ret;
  2958. ret = i915_gem_object_unbind(obj);
  2959. if (ret == -ERESTARTSYS) {
  2960. list_move(&obj->mm_list,
  2961. &dev_priv->mm.deferred_free_list);
  2962. return;
  2963. }
  2964. if (obj->base.map_list.map)
  2965. i915_gem_free_mmap_offset(obj);
  2966. drm_gem_object_release(&obj->base);
  2967. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  2968. kfree(obj->page_cpu_valid);
  2969. kfree(obj->bit_17);
  2970. kfree(obj);
  2971. trace_i915_gem_object_destroy(obj);
  2972. }
  2973. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  2974. {
  2975. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  2976. struct drm_device *dev = obj->base.dev;
  2977. while (obj->pin_count > 0)
  2978. i915_gem_object_unpin(obj);
  2979. if (obj->phys_obj)
  2980. i915_gem_detach_phys_object(dev, obj);
  2981. i915_gem_free_object_tail(obj);
  2982. }
  2983. int
  2984. i915_gem_idle(struct drm_device *dev)
  2985. {
  2986. drm_i915_private_t *dev_priv = dev->dev_private;
  2987. int ret;
  2988. mutex_lock(&dev->struct_mutex);
  2989. if (dev_priv->mm.suspended) {
  2990. mutex_unlock(&dev->struct_mutex);
  2991. return 0;
  2992. }
  2993. ret = i915_gpu_idle(dev);
  2994. if (ret) {
  2995. mutex_unlock(&dev->struct_mutex);
  2996. return ret;
  2997. }
  2998. /* Under UMS, be paranoid and evict. */
  2999. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3000. ret = i915_gem_evict_inactive(dev, false);
  3001. if (ret) {
  3002. mutex_unlock(&dev->struct_mutex);
  3003. return ret;
  3004. }
  3005. }
  3006. i915_gem_reset_fences(dev);
  3007. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3008. * We need to replace this with a semaphore, or something.
  3009. * And not confound mm.suspended!
  3010. */
  3011. dev_priv->mm.suspended = 1;
  3012. del_timer_sync(&dev_priv->hangcheck_timer);
  3013. i915_kernel_lost_context(dev);
  3014. i915_gem_cleanup_ringbuffer(dev);
  3015. mutex_unlock(&dev->struct_mutex);
  3016. /* Cancel the retire work handler, which should be idle now. */
  3017. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3018. return 0;
  3019. }
  3020. int
  3021. i915_gem_init_ringbuffer(struct drm_device *dev)
  3022. {
  3023. drm_i915_private_t *dev_priv = dev->dev_private;
  3024. int ret;
  3025. ret = intel_init_render_ring_buffer(dev);
  3026. if (ret)
  3027. return ret;
  3028. if (HAS_BSD(dev)) {
  3029. ret = intel_init_bsd_ring_buffer(dev);
  3030. if (ret)
  3031. goto cleanup_render_ring;
  3032. }
  3033. if (HAS_BLT(dev)) {
  3034. ret = intel_init_blt_ring_buffer(dev);
  3035. if (ret)
  3036. goto cleanup_bsd_ring;
  3037. }
  3038. dev_priv->next_seqno = 1;
  3039. return 0;
  3040. cleanup_bsd_ring:
  3041. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3042. cleanup_render_ring:
  3043. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3044. return ret;
  3045. }
  3046. void
  3047. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3048. {
  3049. drm_i915_private_t *dev_priv = dev->dev_private;
  3050. int i;
  3051. for (i = 0; i < I915_NUM_RINGS; i++)
  3052. intel_cleanup_ring_buffer(&dev_priv->ring[i]);
  3053. }
  3054. int
  3055. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3056. struct drm_file *file_priv)
  3057. {
  3058. drm_i915_private_t *dev_priv = dev->dev_private;
  3059. int ret, i;
  3060. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3061. return 0;
  3062. if (atomic_read(&dev_priv->mm.wedged)) {
  3063. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3064. atomic_set(&dev_priv->mm.wedged, 0);
  3065. }
  3066. mutex_lock(&dev->struct_mutex);
  3067. dev_priv->mm.suspended = 0;
  3068. ret = i915_gem_init_ringbuffer(dev);
  3069. if (ret != 0) {
  3070. mutex_unlock(&dev->struct_mutex);
  3071. return ret;
  3072. }
  3073. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3074. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3075. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3076. for (i = 0; i < I915_NUM_RINGS; i++) {
  3077. BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
  3078. BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
  3079. }
  3080. mutex_unlock(&dev->struct_mutex);
  3081. ret = drm_irq_install(dev);
  3082. if (ret)
  3083. goto cleanup_ringbuffer;
  3084. return 0;
  3085. cleanup_ringbuffer:
  3086. mutex_lock(&dev->struct_mutex);
  3087. i915_gem_cleanup_ringbuffer(dev);
  3088. dev_priv->mm.suspended = 1;
  3089. mutex_unlock(&dev->struct_mutex);
  3090. return ret;
  3091. }
  3092. int
  3093. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3094. struct drm_file *file_priv)
  3095. {
  3096. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3097. return 0;
  3098. drm_irq_uninstall(dev);
  3099. return i915_gem_idle(dev);
  3100. }
  3101. void
  3102. i915_gem_lastclose(struct drm_device *dev)
  3103. {
  3104. int ret;
  3105. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3106. return;
  3107. ret = i915_gem_idle(dev);
  3108. if (ret)
  3109. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3110. }
  3111. static void
  3112. init_ring_lists(struct intel_ring_buffer *ring)
  3113. {
  3114. INIT_LIST_HEAD(&ring->active_list);
  3115. INIT_LIST_HEAD(&ring->request_list);
  3116. INIT_LIST_HEAD(&ring->gpu_write_list);
  3117. }
  3118. void
  3119. i915_gem_load(struct drm_device *dev)
  3120. {
  3121. int i;
  3122. drm_i915_private_t *dev_priv = dev->dev_private;
  3123. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3124. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3125. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3126. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3127. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3128. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3129. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3130. for (i = 0; i < I915_NUM_RINGS; i++)
  3131. init_ring_lists(&dev_priv->ring[i]);
  3132. for (i = 0; i < 16; i++)
  3133. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3134. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3135. i915_gem_retire_work_handler);
  3136. init_completion(&dev_priv->error_completion);
  3137. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3138. if (IS_GEN3(dev)) {
  3139. u32 tmp = I915_READ(MI_ARB_STATE);
  3140. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3141. /* arb state is a masked write, so set bit + bit in mask */
  3142. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3143. I915_WRITE(MI_ARB_STATE, tmp);
  3144. }
  3145. }
  3146. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3147. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3148. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3149. dev_priv->fence_reg_start = 3;
  3150. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3151. dev_priv->num_fence_regs = 16;
  3152. else
  3153. dev_priv->num_fence_regs = 8;
  3154. /* Initialize fence registers to zero */
  3155. switch (INTEL_INFO(dev)->gen) {
  3156. case 6:
  3157. for (i = 0; i < 16; i++)
  3158. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  3159. break;
  3160. case 5:
  3161. case 4:
  3162. for (i = 0; i < 16; i++)
  3163. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  3164. break;
  3165. case 3:
  3166. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3167. for (i = 0; i < 8; i++)
  3168. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  3169. case 2:
  3170. for (i = 0; i < 8; i++)
  3171. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  3172. break;
  3173. }
  3174. i915_gem_detect_bit_6_swizzle(dev);
  3175. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3176. dev_priv->mm.interruptible = true;
  3177. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3178. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3179. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3180. }
  3181. /*
  3182. * Create a physically contiguous memory object for this object
  3183. * e.g. for cursor + overlay regs
  3184. */
  3185. static int i915_gem_init_phys_object(struct drm_device *dev,
  3186. int id, int size, int align)
  3187. {
  3188. drm_i915_private_t *dev_priv = dev->dev_private;
  3189. struct drm_i915_gem_phys_object *phys_obj;
  3190. int ret;
  3191. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3192. return 0;
  3193. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3194. if (!phys_obj)
  3195. return -ENOMEM;
  3196. phys_obj->id = id;
  3197. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3198. if (!phys_obj->handle) {
  3199. ret = -ENOMEM;
  3200. goto kfree_obj;
  3201. }
  3202. #ifdef CONFIG_X86
  3203. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3204. #endif
  3205. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3206. return 0;
  3207. kfree_obj:
  3208. kfree(phys_obj);
  3209. return ret;
  3210. }
  3211. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3212. {
  3213. drm_i915_private_t *dev_priv = dev->dev_private;
  3214. struct drm_i915_gem_phys_object *phys_obj;
  3215. if (!dev_priv->mm.phys_objs[id - 1])
  3216. return;
  3217. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3218. if (phys_obj->cur_obj) {
  3219. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3220. }
  3221. #ifdef CONFIG_X86
  3222. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3223. #endif
  3224. drm_pci_free(dev, phys_obj->handle);
  3225. kfree(phys_obj);
  3226. dev_priv->mm.phys_objs[id - 1] = NULL;
  3227. }
  3228. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3229. {
  3230. int i;
  3231. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3232. i915_gem_free_phys_object(dev, i);
  3233. }
  3234. void i915_gem_detach_phys_object(struct drm_device *dev,
  3235. struct drm_i915_gem_object *obj)
  3236. {
  3237. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3238. char *vaddr;
  3239. int i;
  3240. int page_count;
  3241. if (!obj->phys_obj)
  3242. return;
  3243. vaddr = obj->phys_obj->handle->vaddr;
  3244. page_count = obj->base.size / PAGE_SIZE;
  3245. for (i = 0; i < page_count; i++) {
  3246. struct page *page = read_cache_page_gfp(mapping, i,
  3247. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  3248. if (!IS_ERR(page)) {
  3249. char *dst = kmap_atomic(page);
  3250. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3251. kunmap_atomic(dst);
  3252. drm_clflush_pages(&page, 1);
  3253. set_page_dirty(page);
  3254. mark_page_accessed(page);
  3255. page_cache_release(page);
  3256. }
  3257. }
  3258. intel_gtt_chipset_flush();
  3259. obj->phys_obj->cur_obj = NULL;
  3260. obj->phys_obj = NULL;
  3261. }
  3262. int
  3263. i915_gem_attach_phys_object(struct drm_device *dev,
  3264. struct drm_i915_gem_object *obj,
  3265. int id,
  3266. int align)
  3267. {
  3268. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3269. drm_i915_private_t *dev_priv = dev->dev_private;
  3270. int ret = 0;
  3271. int page_count;
  3272. int i;
  3273. if (id > I915_MAX_PHYS_OBJECT)
  3274. return -EINVAL;
  3275. if (obj->phys_obj) {
  3276. if (obj->phys_obj->id == id)
  3277. return 0;
  3278. i915_gem_detach_phys_object(dev, obj);
  3279. }
  3280. /* create a new object */
  3281. if (!dev_priv->mm.phys_objs[id - 1]) {
  3282. ret = i915_gem_init_phys_object(dev, id,
  3283. obj->base.size, align);
  3284. if (ret) {
  3285. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3286. id, obj->base.size);
  3287. return ret;
  3288. }
  3289. }
  3290. /* bind to the object */
  3291. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3292. obj->phys_obj->cur_obj = obj;
  3293. page_count = obj->base.size / PAGE_SIZE;
  3294. for (i = 0; i < page_count; i++) {
  3295. struct page *page;
  3296. char *dst, *src;
  3297. page = read_cache_page_gfp(mapping, i,
  3298. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  3299. if (IS_ERR(page))
  3300. return PTR_ERR(page);
  3301. src = kmap_atomic(page);
  3302. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3303. memcpy(dst, src, PAGE_SIZE);
  3304. kunmap_atomic(src);
  3305. mark_page_accessed(page);
  3306. page_cache_release(page);
  3307. }
  3308. return 0;
  3309. }
  3310. static int
  3311. i915_gem_phys_pwrite(struct drm_device *dev,
  3312. struct drm_i915_gem_object *obj,
  3313. struct drm_i915_gem_pwrite *args,
  3314. struct drm_file *file_priv)
  3315. {
  3316. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3317. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3318. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3319. unsigned long unwritten;
  3320. /* The physical object once assigned is fixed for the lifetime
  3321. * of the obj, so we can safely drop the lock and continue
  3322. * to access vaddr.
  3323. */
  3324. mutex_unlock(&dev->struct_mutex);
  3325. unwritten = copy_from_user(vaddr, user_data, args->size);
  3326. mutex_lock(&dev->struct_mutex);
  3327. if (unwritten)
  3328. return -EFAULT;
  3329. }
  3330. intel_gtt_chipset_flush();
  3331. return 0;
  3332. }
  3333. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3334. {
  3335. struct drm_i915_file_private *file_priv = file->driver_priv;
  3336. /* Clean up our request list when the client is going away, so that
  3337. * later retire_requests won't dereference our soon-to-be-gone
  3338. * file_priv.
  3339. */
  3340. spin_lock(&file_priv->mm.lock);
  3341. while (!list_empty(&file_priv->mm.request_list)) {
  3342. struct drm_i915_gem_request *request;
  3343. request = list_first_entry(&file_priv->mm.request_list,
  3344. struct drm_i915_gem_request,
  3345. client_list);
  3346. list_del(&request->client_list);
  3347. request->file_priv = NULL;
  3348. }
  3349. spin_unlock(&file_priv->mm.lock);
  3350. }
  3351. static int
  3352. i915_gpu_is_active(struct drm_device *dev)
  3353. {
  3354. drm_i915_private_t *dev_priv = dev->dev_private;
  3355. int lists_empty;
  3356. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3357. list_empty(&dev_priv->mm.active_list);
  3358. return !lists_empty;
  3359. }
  3360. static int
  3361. i915_gem_inactive_shrink(struct shrinker *shrinker,
  3362. int nr_to_scan,
  3363. gfp_t gfp_mask)
  3364. {
  3365. struct drm_i915_private *dev_priv =
  3366. container_of(shrinker,
  3367. struct drm_i915_private,
  3368. mm.inactive_shrinker);
  3369. struct drm_device *dev = dev_priv->dev;
  3370. struct drm_i915_gem_object *obj, *next;
  3371. int cnt;
  3372. if (!mutex_trylock(&dev->struct_mutex))
  3373. return 0;
  3374. /* "fast-path" to count number of available objects */
  3375. if (nr_to_scan == 0) {
  3376. cnt = 0;
  3377. list_for_each_entry(obj,
  3378. &dev_priv->mm.inactive_list,
  3379. mm_list)
  3380. cnt++;
  3381. mutex_unlock(&dev->struct_mutex);
  3382. return cnt / 100 * sysctl_vfs_cache_pressure;
  3383. }
  3384. rescan:
  3385. /* first scan for clean buffers */
  3386. i915_gem_retire_requests(dev);
  3387. list_for_each_entry_safe(obj, next,
  3388. &dev_priv->mm.inactive_list,
  3389. mm_list) {
  3390. if (i915_gem_object_is_purgeable(obj)) {
  3391. if (i915_gem_object_unbind(obj) == 0 &&
  3392. --nr_to_scan == 0)
  3393. break;
  3394. }
  3395. }
  3396. /* second pass, evict/count anything still on the inactive list */
  3397. cnt = 0;
  3398. list_for_each_entry_safe(obj, next,
  3399. &dev_priv->mm.inactive_list,
  3400. mm_list) {
  3401. if (nr_to_scan &&
  3402. i915_gem_object_unbind(obj) == 0)
  3403. nr_to_scan--;
  3404. else
  3405. cnt++;
  3406. }
  3407. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3408. /*
  3409. * We are desperate for pages, so as a last resort, wait
  3410. * for the GPU to finish and discard whatever we can.
  3411. * This has a dramatic impact to reduce the number of
  3412. * OOM-killer events whilst running the GPU aggressively.
  3413. */
  3414. if (i915_gpu_idle(dev) == 0)
  3415. goto rescan;
  3416. }
  3417. mutex_unlock(&dev->struct_mutex);
  3418. return cnt / 100 * sysctl_vfs_cache_pressure;
  3419. }