xmit.c 62 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "ath9k.h"
  17. #include "ar9003_mac.h"
  18. #define BITS_PER_BYTE 8
  19. #define OFDM_PLCP_BITS 22
  20. #define HT_RC_2_MCS(_rc) ((_rc) & 0x1f)
  21. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  22. #define L_STF 8
  23. #define L_LTF 8
  24. #define L_SIG 4
  25. #define HT_SIG 8
  26. #define HT_STF 4
  27. #define HT_LTF(_ns) (4 * (_ns))
  28. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  29. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  30. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  31. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  32. #define OFDM_SIFS_TIME 16
  33. static u16 bits_per_symbol[][2] = {
  34. /* 20MHz 40MHz */
  35. { 26, 54 }, /* 0: BPSK */
  36. { 52, 108 }, /* 1: QPSK 1/2 */
  37. { 78, 162 }, /* 2: QPSK 3/4 */
  38. { 104, 216 }, /* 3: 16-QAM 1/2 */
  39. { 156, 324 }, /* 4: 16-QAM 3/4 */
  40. { 208, 432 }, /* 5: 64-QAM 2/3 */
  41. { 234, 486 }, /* 6: 64-QAM 3/4 */
  42. { 260, 540 }, /* 7: 64-QAM 5/6 */
  43. };
  44. #define IS_HT_RATE(_rate) ((_rate) & 0x80)
  45. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  46. struct ath_atx_tid *tid,
  47. struct list_head *bf_head, int frmlen);
  48. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  49. struct ath_txq *txq, struct list_head *bf_q,
  50. struct ath_tx_status *ts, int txok, int sendbar);
  51. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  52. struct list_head *head);
  53. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf, int len);
  54. static void ath_tx_rc_status(struct ath_buf *bf, struct ath_tx_status *ts,
  55. int nframes, int nbad, int txok, bool update_rc);
  56. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  57. int seqno);
  58. enum {
  59. MCS_HT20,
  60. MCS_HT20_SGI,
  61. MCS_HT40,
  62. MCS_HT40_SGI,
  63. };
  64. static int ath_max_4ms_framelen[4][32] = {
  65. [MCS_HT20] = {
  66. 3212, 6432, 9648, 12864, 19300, 25736, 28952, 32172,
  67. 6424, 12852, 19280, 25708, 38568, 51424, 57852, 64280,
  68. 9628, 19260, 28896, 38528, 57792, 65532, 65532, 65532,
  69. 12828, 25656, 38488, 51320, 65532, 65532, 65532, 65532,
  70. },
  71. [MCS_HT20_SGI] = {
  72. 3572, 7144, 10720, 14296, 21444, 28596, 32172, 35744,
  73. 7140, 14284, 21428, 28568, 42856, 57144, 64288, 65532,
  74. 10700, 21408, 32112, 42816, 64228, 65532, 65532, 65532,
  75. 14256, 28516, 42780, 57040, 65532, 65532, 65532, 65532,
  76. },
  77. [MCS_HT40] = {
  78. 6680, 13360, 20044, 26724, 40092, 53456, 60140, 65532,
  79. 13348, 26700, 40052, 53400, 65532, 65532, 65532, 65532,
  80. 20004, 40008, 60016, 65532, 65532, 65532, 65532, 65532,
  81. 26644, 53292, 65532, 65532, 65532, 65532, 65532, 65532,
  82. },
  83. [MCS_HT40_SGI] = {
  84. 7420, 14844, 22272, 29696, 44544, 59396, 65532, 65532,
  85. 14832, 29668, 44504, 59340, 65532, 65532, 65532, 65532,
  86. 22232, 44464, 65532, 65532, 65532, 65532, 65532, 65532,
  87. 29616, 59232, 65532, 65532, 65532, 65532, 65532, 65532,
  88. }
  89. };
  90. /*********************/
  91. /* Aggregation logic */
  92. /*********************/
  93. static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
  94. {
  95. struct ath_atx_ac *ac = tid->ac;
  96. if (tid->paused)
  97. return;
  98. if (tid->sched)
  99. return;
  100. tid->sched = true;
  101. list_add_tail(&tid->list, &ac->tid_q);
  102. if (ac->sched)
  103. return;
  104. ac->sched = true;
  105. list_add_tail(&ac->list, &txq->axq_acq);
  106. }
  107. static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  108. {
  109. struct ath_txq *txq = tid->ac->txq;
  110. WARN_ON(!tid->paused);
  111. spin_lock_bh(&txq->axq_lock);
  112. tid->paused = false;
  113. if (list_empty(&tid->buf_q))
  114. goto unlock;
  115. ath_tx_queue_tid(txq, tid);
  116. ath_txq_schedule(sc, txq);
  117. unlock:
  118. spin_unlock_bh(&txq->axq_lock);
  119. }
  120. static u16 ath_frame_seqno(struct sk_buff *skb)
  121. {
  122. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  123. return le16_to_cpu(hdr->seq_ctrl) >> IEEE80211_SEQ_SEQ_SHIFT;
  124. }
  125. static int ath_frame_len(struct sk_buff *skb)
  126. {
  127. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  128. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  129. int frmlen = skb->len + FCS_LEN;
  130. int padpos, padsize;
  131. /* Remove the padding size, if any */
  132. padpos = ath9k_cmn_padpos(hdr->frame_control);
  133. padsize = padpos & 3;
  134. if (padsize && skb->len > padpos + padsize)
  135. frmlen -= padsize;
  136. if (tx_info->control.hw_key)
  137. frmlen += tx_info->control.hw_key->icv_len;
  138. return frmlen;
  139. }
  140. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  141. {
  142. struct ath_txq *txq = tid->ac->txq;
  143. struct ath_buf *bf;
  144. struct list_head bf_head;
  145. struct ath_tx_status ts;
  146. INIT_LIST_HEAD(&bf_head);
  147. memset(&ts, 0, sizeof(ts));
  148. spin_lock_bh(&txq->axq_lock);
  149. while (!list_empty(&tid->buf_q)) {
  150. bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
  151. list_move_tail(&bf->list, &bf_head);
  152. if (bf_isretried(bf)) {
  153. ath_tx_update_baw(sc, tid, ath_frame_seqno(bf->bf_mpdu));
  154. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
  155. } else {
  156. ath_tx_send_normal(sc, txq, tid, &bf_head,
  157. ath_frame_len(bf->bf_mpdu));
  158. }
  159. }
  160. spin_unlock_bh(&txq->axq_lock);
  161. }
  162. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  163. int seqno)
  164. {
  165. int index, cindex;
  166. index = ATH_BA_INDEX(tid->seq_start, seqno);
  167. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  168. __clear_bit(cindex, tid->tx_buf);
  169. while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
  170. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  171. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  172. }
  173. }
  174. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  175. u16 seqno)
  176. {
  177. int index, cindex;
  178. index = ATH_BA_INDEX(tid->seq_start, seqno);
  179. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  180. __set_bit(cindex, tid->tx_buf);
  181. if (index >= ((tid->baw_tail - tid->baw_head) &
  182. (ATH_TID_MAX_BUFS - 1))) {
  183. tid->baw_tail = cindex;
  184. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  185. }
  186. }
  187. /*
  188. * TODO: For frame(s) that are in the retry state, we will reuse the
  189. * sequence number(s) without setting the retry bit. The
  190. * alternative is to give up on these and BAR the receiver's window
  191. * forward.
  192. */
  193. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  194. struct ath_atx_tid *tid)
  195. {
  196. struct ath_buf *bf;
  197. struct list_head bf_head;
  198. struct ath_tx_status ts;
  199. u16 bf_seqno;
  200. memset(&ts, 0, sizeof(ts));
  201. INIT_LIST_HEAD(&bf_head);
  202. for (;;) {
  203. if (list_empty(&tid->buf_q))
  204. break;
  205. bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
  206. list_move_tail(&bf->list, &bf_head);
  207. bf_seqno = ath_frame_seqno(bf->bf_mpdu);
  208. if (bf_isretried(bf))
  209. ath_tx_update_baw(sc, tid, bf_seqno);
  210. spin_unlock(&txq->axq_lock);
  211. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
  212. spin_lock(&txq->axq_lock);
  213. }
  214. tid->seq_next = tid->seq_start;
  215. tid->baw_tail = tid->baw_head;
  216. }
  217. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  218. struct ath_buf *bf)
  219. {
  220. struct sk_buff *skb;
  221. struct ieee80211_hdr *hdr;
  222. bf->bf_state.bf_type |= BUF_RETRY;
  223. bf->bf_retries++;
  224. TX_STAT_INC(txq->axq_qnum, a_retries);
  225. skb = bf->bf_mpdu;
  226. hdr = (struct ieee80211_hdr *)skb->data;
  227. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  228. }
  229. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  230. {
  231. struct ath_buf *bf = NULL;
  232. spin_lock_bh(&sc->tx.txbuflock);
  233. if (unlikely(list_empty(&sc->tx.txbuf))) {
  234. spin_unlock_bh(&sc->tx.txbuflock);
  235. return NULL;
  236. }
  237. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  238. list_del(&bf->list);
  239. spin_unlock_bh(&sc->tx.txbuflock);
  240. return bf;
  241. }
  242. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  243. {
  244. spin_lock_bh(&sc->tx.txbuflock);
  245. list_add_tail(&bf->list, &sc->tx.txbuf);
  246. spin_unlock_bh(&sc->tx.txbuflock);
  247. }
  248. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  249. {
  250. struct ath_buf *tbf;
  251. tbf = ath_tx_get_buffer(sc);
  252. if (WARN_ON(!tbf))
  253. return NULL;
  254. ATH_TXBUF_RESET(tbf);
  255. tbf->aphy = bf->aphy;
  256. tbf->bf_mpdu = bf->bf_mpdu;
  257. tbf->bf_buf_addr = bf->bf_buf_addr;
  258. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  259. tbf->bf_state = bf->bf_state;
  260. return tbf;
  261. }
  262. static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
  263. struct ath_tx_status *ts, int txok,
  264. int *nframes, int *nbad)
  265. {
  266. u16 seq_st = 0;
  267. u32 ba[WME_BA_BMP_SIZE >> 5];
  268. int ba_index;
  269. int isaggr = 0;
  270. *nbad = 0;
  271. *nframes = 0;
  272. isaggr = bf_isaggr(bf);
  273. if (isaggr) {
  274. seq_st = ts->ts_seqnum;
  275. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  276. }
  277. while (bf) {
  278. ba_index = ATH_BA_INDEX(seq_st, ath_frame_seqno(bf->bf_mpdu));
  279. (*nframes)++;
  280. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  281. (*nbad)++;
  282. bf = bf->bf_next;
  283. }
  284. }
  285. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  286. struct ath_buf *bf, struct list_head *bf_q,
  287. struct ath_tx_status *ts, int txok, bool retry)
  288. {
  289. struct ath_node *an = NULL;
  290. struct sk_buff *skb;
  291. struct ieee80211_sta *sta;
  292. struct ieee80211_hw *hw;
  293. struct ieee80211_hdr *hdr;
  294. struct ieee80211_tx_info *tx_info;
  295. struct ath_atx_tid *tid = NULL;
  296. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  297. struct list_head bf_head, bf_pending;
  298. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0;
  299. u32 ba[WME_BA_BMP_SIZE >> 5];
  300. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  301. bool rc_update = true;
  302. struct ieee80211_tx_rate rates[4];
  303. u16 bf_seqno;
  304. int nframes;
  305. u8 tidno;
  306. skb = bf->bf_mpdu;
  307. hdr = (struct ieee80211_hdr *)skb->data;
  308. tx_info = IEEE80211_SKB_CB(skb);
  309. hw = bf->aphy->hw;
  310. memcpy(rates, tx_info->control.rates, sizeof(rates));
  311. rcu_read_lock();
  312. sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
  313. if (!sta) {
  314. rcu_read_unlock();
  315. INIT_LIST_HEAD(&bf_head);
  316. while (bf) {
  317. bf_next = bf->bf_next;
  318. bf->bf_state.bf_type |= BUF_XRETRY;
  319. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) ||
  320. !bf->bf_stale || bf_next != NULL)
  321. list_move_tail(&bf->list, &bf_head);
  322. ath_tx_rc_status(bf, ts, 1, 1, 0, false);
  323. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  324. 0, 0);
  325. bf = bf_next;
  326. }
  327. return;
  328. }
  329. an = (struct ath_node *)sta->drv_priv;
  330. tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
  331. tid = ATH_AN_2_TID(an, tidno);
  332. /*
  333. * The hardware occasionally sends a tx status for the wrong TID.
  334. * In this case, the BA status cannot be considered valid and all
  335. * subframes need to be retransmitted
  336. */
  337. if (tidno != ts->tid)
  338. txok = false;
  339. isaggr = bf_isaggr(bf);
  340. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  341. if (isaggr && txok) {
  342. if (ts->ts_flags & ATH9K_TX_BA) {
  343. seq_st = ts->ts_seqnum;
  344. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  345. } else {
  346. /*
  347. * AR5416 can become deaf/mute when BA
  348. * issue happens. Chip needs to be reset.
  349. * But AP code may have sychronization issues
  350. * when perform internal reset in this routine.
  351. * Only enable reset in STA mode for now.
  352. */
  353. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  354. needreset = 1;
  355. }
  356. }
  357. INIT_LIST_HEAD(&bf_pending);
  358. INIT_LIST_HEAD(&bf_head);
  359. ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
  360. while (bf) {
  361. txfail = txpending = 0;
  362. bf_next = bf->bf_next;
  363. skb = bf->bf_mpdu;
  364. tx_info = IEEE80211_SKB_CB(skb);
  365. bf_seqno = ath_frame_seqno(skb);
  366. if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf_seqno))) {
  367. /* transmit completion, subframe is
  368. * acked by block ack */
  369. acked_cnt++;
  370. } else if (!isaggr && txok) {
  371. /* transmit completion */
  372. acked_cnt++;
  373. } else {
  374. if (!(tid->state & AGGR_CLEANUP) && retry) {
  375. if (bf->bf_retries < ATH_MAX_SW_RETRIES) {
  376. ath_tx_set_retry(sc, txq, bf);
  377. txpending = 1;
  378. } else {
  379. bf->bf_state.bf_type |= BUF_XRETRY;
  380. txfail = 1;
  381. sendbar = 1;
  382. txfail_cnt++;
  383. }
  384. } else {
  385. /*
  386. * cleanup in progress, just fail
  387. * the un-acked sub-frames
  388. */
  389. txfail = 1;
  390. }
  391. }
  392. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
  393. bf_next == NULL) {
  394. /*
  395. * Make sure the last desc is reclaimed if it
  396. * not a holding desc.
  397. */
  398. if (!bf_last->bf_stale)
  399. list_move_tail(&bf->list, &bf_head);
  400. else
  401. INIT_LIST_HEAD(&bf_head);
  402. } else {
  403. BUG_ON(list_empty(bf_q));
  404. list_move_tail(&bf->list, &bf_head);
  405. }
  406. if (!txpending || (tid->state & AGGR_CLEANUP)) {
  407. /*
  408. * complete the acked-ones/xretried ones; update
  409. * block-ack window
  410. */
  411. spin_lock_bh(&txq->axq_lock);
  412. ath_tx_update_baw(sc, tid, bf_seqno);
  413. spin_unlock_bh(&txq->axq_lock);
  414. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  415. memcpy(tx_info->control.rates, rates, sizeof(rates));
  416. ath_tx_rc_status(bf, ts, nframes, nbad, txok, true);
  417. rc_update = false;
  418. } else {
  419. ath_tx_rc_status(bf, ts, nframes, nbad, txok, false);
  420. }
  421. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  422. !txfail, sendbar);
  423. } else {
  424. /* retry the un-acked ones */
  425. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) {
  426. if (bf->bf_next == NULL && bf_last->bf_stale) {
  427. struct ath_buf *tbf;
  428. tbf = ath_clone_txbuf(sc, bf_last);
  429. /*
  430. * Update tx baw and complete the
  431. * frame with failed status if we
  432. * run out of tx buf.
  433. */
  434. if (!tbf) {
  435. spin_lock_bh(&txq->axq_lock);
  436. ath_tx_update_baw(sc, tid,
  437. bf_seqno);
  438. spin_unlock_bh(&txq->axq_lock);
  439. bf->bf_state.bf_type |=
  440. BUF_XRETRY;
  441. ath_tx_rc_status(bf, ts, nframes,
  442. nbad, 0, false);
  443. ath_tx_complete_buf(sc, bf, txq,
  444. &bf_head,
  445. ts, 0, 0);
  446. break;
  447. }
  448. ath9k_hw_cleartxdesc(sc->sc_ah,
  449. tbf->bf_desc);
  450. list_add_tail(&tbf->list, &bf_head);
  451. } else {
  452. /*
  453. * Clear descriptor status words for
  454. * software retry
  455. */
  456. ath9k_hw_cleartxdesc(sc->sc_ah,
  457. bf->bf_desc);
  458. }
  459. }
  460. /*
  461. * Put this buffer to the temporary pending
  462. * queue to retain ordering
  463. */
  464. list_splice_tail_init(&bf_head, &bf_pending);
  465. }
  466. bf = bf_next;
  467. }
  468. /* prepend un-acked frames to the beginning of the pending frame queue */
  469. if (!list_empty(&bf_pending)) {
  470. spin_lock_bh(&txq->axq_lock);
  471. list_splice(&bf_pending, &tid->buf_q);
  472. ath_tx_queue_tid(txq, tid);
  473. spin_unlock_bh(&txq->axq_lock);
  474. }
  475. if (tid->state & AGGR_CLEANUP) {
  476. ath_tx_flush_tid(sc, tid);
  477. if (tid->baw_head == tid->baw_tail) {
  478. tid->state &= ~AGGR_ADDBA_COMPLETE;
  479. tid->state &= ~AGGR_CLEANUP;
  480. }
  481. }
  482. rcu_read_unlock();
  483. if (needreset)
  484. ath_reset(sc, false);
  485. }
  486. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  487. struct ath_atx_tid *tid)
  488. {
  489. struct sk_buff *skb;
  490. struct ieee80211_tx_info *tx_info;
  491. struct ieee80211_tx_rate *rates;
  492. u32 max_4ms_framelen, frmlen;
  493. u16 aggr_limit, legacy = 0;
  494. int i;
  495. skb = bf->bf_mpdu;
  496. tx_info = IEEE80211_SKB_CB(skb);
  497. rates = tx_info->control.rates;
  498. /*
  499. * Find the lowest frame length among the rate series that will have a
  500. * 4ms transmit duration.
  501. * TODO - TXOP limit needs to be considered.
  502. */
  503. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  504. for (i = 0; i < 4; i++) {
  505. if (rates[i].count) {
  506. int modeidx;
  507. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  508. legacy = 1;
  509. break;
  510. }
  511. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  512. modeidx = MCS_HT40;
  513. else
  514. modeidx = MCS_HT20;
  515. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  516. modeidx++;
  517. frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx];
  518. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  519. }
  520. }
  521. /*
  522. * limit aggregate size by the minimum rate if rate selected is
  523. * not a probe rate, if rate selected is a probe rate then
  524. * avoid aggregation of this packet.
  525. */
  526. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  527. return 0;
  528. if (sc->sc_flags & SC_OP_BT_PRIORITY_DETECTED)
  529. aggr_limit = min((max_4ms_framelen * 3) / 8,
  530. (u32)ATH_AMPDU_LIMIT_MAX);
  531. else
  532. aggr_limit = min(max_4ms_framelen,
  533. (u32)ATH_AMPDU_LIMIT_MAX);
  534. /*
  535. * h/w can accept aggregates upto 16 bit lengths (65535).
  536. * The IE, however can hold upto 65536, which shows up here
  537. * as zero. Ignore 65536 since we are constrained by hw.
  538. */
  539. if (tid->an->maxampdu)
  540. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  541. return aggr_limit;
  542. }
  543. /*
  544. * Returns the number of delimiters to be added to
  545. * meet the minimum required mpdudensity.
  546. */
  547. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  548. struct ath_buf *bf, u16 frmlen)
  549. {
  550. struct sk_buff *skb = bf->bf_mpdu;
  551. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  552. u32 nsymbits, nsymbols;
  553. u16 minlen;
  554. u8 flags, rix;
  555. int width, streams, half_gi, ndelim, mindelim;
  556. /* Select standard number of delimiters based on frame length alone */
  557. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  558. /*
  559. * If encryption enabled, hardware requires some more padding between
  560. * subframes.
  561. * TODO - this could be improved to be dependent on the rate.
  562. * The hardware can keep up at lower rates, but not higher rates
  563. */
  564. if (tx_info->control.hw_key)
  565. ndelim += ATH_AGGR_ENCRYPTDELIM;
  566. /*
  567. * Convert desired mpdu density from microeconds to bytes based
  568. * on highest rate in rate series (i.e. first rate) to determine
  569. * required minimum length for subframe. Take into account
  570. * whether high rate is 20 or 40Mhz and half or full GI.
  571. *
  572. * If there is no mpdu density restriction, no further calculation
  573. * is needed.
  574. */
  575. if (tid->an->mpdudensity == 0)
  576. return ndelim;
  577. rix = tx_info->control.rates[0].idx;
  578. flags = tx_info->control.rates[0].flags;
  579. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  580. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  581. if (half_gi)
  582. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  583. else
  584. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  585. if (nsymbols == 0)
  586. nsymbols = 1;
  587. streams = HT_RC_2_STREAMS(rix);
  588. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  589. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  590. if (frmlen < minlen) {
  591. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  592. ndelim = max(mindelim, ndelim);
  593. }
  594. return ndelim;
  595. }
  596. static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
  597. struct ath_txq *txq,
  598. struct ath_atx_tid *tid,
  599. struct list_head *bf_q,
  600. int *aggr_len)
  601. {
  602. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  603. struct ath_buf *bf, *bf_first, *bf_prev = NULL;
  604. int rl = 0, nframes = 0, ndelim, prev_al = 0;
  605. u16 aggr_limit = 0, al = 0, bpad = 0,
  606. al_delta, h_baw = tid->baw_size / 2;
  607. enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
  608. struct ieee80211_tx_info *tx_info;
  609. int frmlen;
  610. u16 bf_seqno;
  611. bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
  612. do {
  613. bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
  614. bf_seqno = ath_frame_seqno(bf->bf_mpdu);
  615. /* do not step over block-ack window */
  616. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf_seqno)) {
  617. status = ATH_AGGR_BAW_CLOSED;
  618. break;
  619. }
  620. if (!rl) {
  621. aggr_limit = ath_lookup_rate(sc, bf, tid);
  622. rl = 1;
  623. }
  624. /* do not exceed aggregation limit */
  625. frmlen = ath_frame_len(bf->bf_mpdu);
  626. al_delta = ATH_AGGR_DELIM_SZ + frmlen;
  627. if (nframes &&
  628. (aggr_limit < (al + bpad + al_delta + prev_al))) {
  629. status = ATH_AGGR_LIMITED;
  630. break;
  631. }
  632. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  633. if (nframes && ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
  634. !(tx_info->control.rates[0].flags & IEEE80211_TX_RC_MCS)))
  635. break;
  636. /* do not exceed subframe limit */
  637. if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
  638. status = ATH_AGGR_LIMITED;
  639. break;
  640. }
  641. nframes++;
  642. /* add padding for previous frame to aggregation length */
  643. al += bpad + al_delta;
  644. /*
  645. * Get the delimiters needed to meet the MPDU
  646. * density for this node.
  647. */
  648. ndelim = ath_compute_num_delims(sc, tid, bf_first, frmlen);
  649. bpad = PADBYTES(al_delta) + (ndelim << 2);
  650. bf->bf_next = NULL;
  651. ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, 0);
  652. /* link buffers of this frame to the aggregate */
  653. if (!bf_isretried(bf))
  654. ath_tx_addto_baw(sc, tid, bf_seqno);
  655. ath9k_hw_set11n_aggr_middle(sc->sc_ah, bf->bf_desc, ndelim);
  656. list_move_tail(&bf->list, bf_q);
  657. if (bf_prev) {
  658. bf_prev->bf_next = bf;
  659. ath9k_hw_set_desc_link(sc->sc_ah, bf_prev->bf_desc,
  660. bf->bf_daddr);
  661. }
  662. bf_prev = bf;
  663. } while (!list_empty(&tid->buf_q));
  664. *aggr_len = al;
  665. return status;
  666. #undef PADBYTES
  667. }
  668. static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  669. struct ath_atx_tid *tid)
  670. {
  671. struct ath_buf *bf;
  672. enum ATH_AGGR_STATUS status;
  673. struct list_head bf_q;
  674. int aggr_len;
  675. do {
  676. if (list_empty(&tid->buf_q))
  677. return;
  678. INIT_LIST_HEAD(&bf_q);
  679. status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
  680. /*
  681. * no frames picked up to be aggregated;
  682. * block-ack window is not open.
  683. */
  684. if (list_empty(&bf_q))
  685. break;
  686. bf = list_first_entry(&bf_q, struct ath_buf, list);
  687. bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
  688. /* if only one frame, send as non-aggregate */
  689. if (bf == bf->bf_lastbf) {
  690. bf->bf_state.bf_type &= ~BUF_AGGR;
  691. ath9k_hw_clr11n_aggr(sc->sc_ah, bf->bf_desc);
  692. ath_buf_set_rate(sc, bf, ath_frame_len(bf->bf_mpdu));
  693. ath_tx_txqaddbuf(sc, txq, &bf_q);
  694. continue;
  695. }
  696. /* setup first desc of aggregate */
  697. bf->bf_state.bf_type |= BUF_AGGR;
  698. ath_buf_set_rate(sc, bf, aggr_len);
  699. ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, aggr_len);
  700. /* anchor last desc of aggregate */
  701. ath9k_hw_set11n_aggr_last(sc->sc_ah, bf->bf_lastbf->bf_desc);
  702. ath_tx_txqaddbuf(sc, txq, &bf_q);
  703. TX_STAT_INC(txq->axq_qnum, a_aggr);
  704. } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH &&
  705. status != ATH_AGGR_BAW_CLOSED);
  706. }
  707. int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  708. u16 tid, u16 *ssn)
  709. {
  710. struct ath_atx_tid *txtid;
  711. struct ath_node *an;
  712. an = (struct ath_node *)sta->drv_priv;
  713. txtid = ATH_AN_2_TID(an, tid);
  714. if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
  715. return -EAGAIN;
  716. txtid->state |= AGGR_ADDBA_PROGRESS;
  717. txtid->paused = true;
  718. *ssn = txtid->seq_start;
  719. return 0;
  720. }
  721. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  722. {
  723. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  724. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  725. struct ath_txq *txq = txtid->ac->txq;
  726. if (txtid->state & AGGR_CLEANUP)
  727. return;
  728. if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
  729. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  730. return;
  731. }
  732. spin_lock_bh(&txq->axq_lock);
  733. txtid->paused = true;
  734. /*
  735. * If frames are still being transmitted for this TID, they will be
  736. * cleaned up during tx completion. To prevent race conditions, this
  737. * TID can only be reused after all in-progress subframes have been
  738. * completed.
  739. */
  740. if (txtid->baw_head != txtid->baw_tail)
  741. txtid->state |= AGGR_CLEANUP;
  742. else
  743. txtid->state &= ~AGGR_ADDBA_COMPLETE;
  744. spin_unlock_bh(&txq->axq_lock);
  745. ath_tx_flush_tid(sc, txtid);
  746. }
  747. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  748. {
  749. struct ath_atx_tid *txtid;
  750. struct ath_node *an;
  751. an = (struct ath_node *)sta->drv_priv;
  752. if (sc->sc_flags & SC_OP_TXAGGR) {
  753. txtid = ATH_AN_2_TID(an, tid);
  754. txtid->baw_size =
  755. IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  756. txtid->state |= AGGR_ADDBA_COMPLETE;
  757. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  758. ath_tx_resume_tid(sc, txtid);
  759. }
  760. }
  761. /********************/
  762. /* Queue Management */
  763. /********************/
  764. static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
  765. struct ath_txq *txq)
  766. {
  767. struct ath_atx_ac *ac, *ac_tmp;
  768. struct ath_atx_tid *tid, *tid_tmp;
  769. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  770. list_del(&ac->list);
  771. ac->sched = false;
  772. list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
  773. list_del(&tid->list);
  774. tid->sched = false;
  775. ath_tid_drain(sc, txq, tid);
  776. }
  777. }
  778. }
  779. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  780. {
  781. struct ath_hw *ah = sc->sc_ah;
  782. struct ath_common *common = ath9k_hw_common(ah);
  783. struct ath9k_tx_queue_info qi;
  784. static const int subtype_txq_to_hwq[] = {
  785. [WME_AC_BE] = ATH_TXQ_AC_BE,
  786. [WME_AC_BK] = ATH_TXQ_AC_BK,
  787. [WME_AC_VI] = ATH_TXQ_AC_VI,
  788. [WME_AC_VO] = ATH_TXQ_AC_VO,
  789. };
  790. int qnum, i;
  791. memset(&qi, 0, sizeof(qi));
  792. qi.tqi_subtype = subtype_txq_to_hwq[subtype];
  793. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  794. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  795. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  796. qi.tqi_physCompBuf = 0;
  797. /*
  798. * Enable interrupts only for EOL and DESC conditions.
  799. * We mark tx descriptors to receive a DESC interrupt
  800. * when a tx queue gets deep; otherwise waiting for the
  801. * EOL to reap descriptors. Note that this is done to
  802. * reduce interrupt load and this only defers reaping
  803. * descriptors, never transmitting frames. Aside from
  804. * reducing interrupts this also permits more concurrency.
  805. * The only potential downside is if the tx queue backs
  806. * up in which case the top half of the kernel may backup
  807. * due to a lack of tx descriptors.
  808. *
  809. * The UAPSD queue is an exception, since we take a desc-
  810. * based intr on the EOSP frames.
  811. */
  812. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  813. qi.tqi_qflags = TXQ_FLAG_TXOKINT_ENABLE |
  814. TXQ_FLAG_TXERRINT_ENABLE;
  815. } else {
  816. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  817. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  818. else
  819. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  820. TXQ_FLAG_TXDESCINT_ENABLE;
  821. }
  822. qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  823. if (qnum == -1) {
  824. /*
  825. * NB: don't print a message, this happens
  826. * normally on parts with too few tx queues
  827. */
  828. return NULL;
  829. }
  830. if (qnum >= ARRAY_SIZE(sc->tx.txq)) {
  831. ath_print(common, ATH_DBG_FATAL,
  832. "qnum %u out of range, max %u!\n",
  833. qnum, (unsigned int)ARRAY_SIZE(sc->tx.txq));
  834. ath9k_hw_releasetxqueue(ah, qnum);
  835. return NULL;
  836. }
  837. if (!ATH_TXQ_SETUP(sc, qnum)) {
  838. struct ath_txq *txq = &sc->tx.txq[qnum];
  839. txq->axq_qnum = qnum;
  840. txq->axq_link = NULL;
  841. INIT_LIST_HEAD(&txq->axq_q);
  842. INIT_LIST_HEAD(&txq->axq_acq);
  843. spin_lock_init(&txq->axq_lock);
  844. txq->axq_depth = 0;
  845. txq->axq_tx_inprogress = false;
  846. sc->tx.txqsetup |= 1<<qnum;
  847. txq->txq_headidx = txq->txq_tailidx = 0;
  848. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  849. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  850. INIT_LIST_HEAD(&txq->txq_fifo_pending);
  851. }
  852. return &sc->tx.txq[qnum];
  853. }
  854. int ath_txq_update(struct ath_softc *sc, int qnum,
  855. struct ath9k_tx_queue_info *qinfo)
  856. {
  857. struct ath_hw *ah = sc->sc_ah;
  858. int error = 0;
  859. struct ath9k_tx_queue_info qi;
  860. if (qnum == sc->beacon.beaconq) {
  861. /*
  862. * XXX: for beacon queue, we just save the parameter.
  863. * It will be picked up by ath_beaconq_config when
  864. * it's necessary.
  865. */
  866. sc->beacon.beacon_qi = *qinfo;
  867. return 0;
  868. }
  869. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  870. ath9k_hw_get_txq_props(ah, qnum, &qi);
  871. qi.tqi_aifs = qinfo->tqi_aifs;
  872. qi.tqi_cwmin = qinfo->tqi_cwmin;
  873. qi.tqi_cwmax = qinfo->tqi_cwmax;
  874. qi.tqi_burstTime = qinfo->tqi_burstTime;
  875. qi.tqi_readyTime = qinfo->tqi_readyTime;
  876. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  877. ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
  878. "Unable to update hardware queue %u!\n", qnum);
  879. error = -EIO;
  880. } else {
  881. ath9k_hw_resettxqueue(ah, qnum);
  882. }
  883. return error;
  884. }
  885. int ath_cabq_update(struct ath_softc *sc)
  886. {
  887. struct ath9k_tx_queue_info qi;
  888. int qnum = sc->beacon.cabq->axq_qnum;
  889. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  890. /*
  891. * Ensure the readytime % is within the bounds.
  892. */
  893. if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
  894. sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
  895. else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
  896. sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
  897. qi.tqi_readyTime = (sc->beacon_interval *
  898. sc->config.cabqReadytime) / 100;
  899. ath_txq_update(sc, qnum, &qi);
  900. return 0;
  901. }
  902. /*
  903. * Drain a given TX queue (could be Beacon or Data)
  904. *
  905. * This assumes output has been stopped and
  906. * we do not need to block ath_tx_tasklet.
  907. */
  908. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
  909. {
  910. struct ath_buf *bf, *lastbf;
  911. struct list_head bf_head;
  912. struct ath_tx_status ts;
  913. memset(&ts, 0, sizeof(ts));
  914. INIT_LIST_HEAD(&bf_head);
  915. for (;;) {
  916. spin_lock_bh(&txq->axq_lock);
  917. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  918. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  919. txq->txq_headidx = txq->txq_tailidx = 0;
  920. spin_unlock_bh(&txq->axq_lock);
  921. break;
  922. } else {
  923. bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
  924. struct ath_buf, list);
  925. }
  926. } else {
  927. if (list_empty(&txq->axq_q)) {
  928. txq->axq_link = NULL;
  929. spin_unlock_bh(&txq->axq_lock);
  930. break;
  931. }
  932. bf = list_first_entry(&txq->axq_q, struct ath_buf,
  933. list);
  934. if (bf->bf_stale) {
  935. list_del(&bf->list);
  936. spin_unlock_bh(&txq->axq_lock);
  937. ath_tx_return_buffer(sc, bf);
  938. continue;
  939. }
  940. }
  941. lastbf = bf->bf_lastbf;
  942. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  943. list_cut_position(&bf_head,
  944. &txq->txq_fifo[txq->txq_tailidx],
  945. &lastbf->list);
  946. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  947. } else {
  948. /* remove ath_buf's of the same mpdu from txq */
  949. list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
  950. }
  951. txq->axq_depth--;
  952. spin_unlock_bh(&txq->axq_lock);
  953. if (bf_isampdu(bf))
  954. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0,
  955. retry_tx);
  956. else
  957. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
  958. }
  959. spin_lock_bh(&txq->axq_lock);
  960. txq->axq_tx_inprogress = false;
  961. spin_unlock_bh(&txq->axq_lock);
  962. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  963. spin_lock_bh(&txq->axq_lock);
  964. while (!list_empty(&txq->txq_fifo_pending)) {
  965. bf = list_first_entry(&txq->txq_fifo_pending,
  966. struct ath_buf, list);
  967. list_cut_position(&bf_head,
  968. &txq->txq_fifo_pending,
  969. &bf->bf_lastbf->list);
  970. spin_unlock_bh(&txq->axq_lock);
  971. if (bf_isampdu(bf))
  972. ath_tx_complete_aggr(sc, txq, bf, &bf_head,
  973. &ts, 0, retry_tx);
  974. else
  975. ath_tx_complete_buf(sc, bf, txq, &bf_head,
  976. &ts, 0, 0);
  977. spin_lock_bh(&txq->axq_lock);
  978. }
  979. spin_unlock_bh(&txq->axq_lock);
  980. }
  981. /* flush any pending frames if aggregation is enabled */
  982. if (sc->sc_flags & SC_OP_TXAGGR) {
  983. if (!retry_tx) {
  984. spin_lock_bh(&txq->axq_lock);
  985. ath_txq_drain_pending_buffers(sc, txq);
  986. spin_unlock_bh(&txq->axq_lock);
  987. }
  988. }
  989. }
  990. void ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
  991. {
  992. struct ath_hw *ah = sc->sc_ah;
  993. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  994. struct ath_txq *txq;
  995. int i, npend = 0;
  996. if (sc->sc_flags & SC_OP_INVALID)
  997. return;
  998. /* Stop beacon queue */
  999. ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
  1000. /* Stop data queues */
  1001. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1002. if (ATH_TXQ_SETUP(sc, i)) {
  1003. txq = &sc->tx.txq[i];
  1004. ath9k_hw_stoptxdma(ah, txq->axq_qnum);
  1005. npend += ath9k_hw_numtxpending(ah, txq->axq_qnum);
  1006. }
  1007. }
  1008. if (npend) {
  1009. int r;
  1010. ath_print(common, ATH_DBG_FATAL,
  1011. "Failed to stop TX DMA. Resetting hardware!\n");
  1012. r = ath9k_hw_reset(ah, sc->sc_ah->curchan, ah->caldata, false);
  1013. if (r)
  1014. ath_print(common, ATH_DBG_FATAL,
  1015. "Unable to reset hardware; reset status %d\n",
  1016. r);
  1017. }
  1018. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1019. if (ATH_TXQ_SETUP(sc, i))
  1020. ath_draintxq(sc, &sc->tx.txq[i], retry_tx);
  1021. }
  1022. }
  1023. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  1024. {
  1025. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  1026. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  1027. }
  1028. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  1029. {
  1030. struct ath_atx_ac *ac;
  1031. struct ath_atx_tid *tid;
  1032. if (list_empty(&txq->axq_acq))
  1033. return;
  1034. ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
  1035. list_del(&ac->list);
  1036. ac->sched = false;
  1037. do {
  1038. if (list_empty(&ac->tid_q))
  1039. return;
  1040. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list);
  1041. list_del(&tid->list);
  1042. tid->sched = false;
  1043. if (tid->paused)
  1044. continue;
  1045. ath_tx_sched_aggr(sc, txq, tid);
  1046. /*
  1047. * add tid to round-robin queue if more frames
  1048. * are pending for the tid
  1049. */
  1050. if (!list_empty(&tid->buf_q))
  1051. ath_tx_queue_tid(txq, tid);
  1052. break;
  1053. } while (!list_empty(&ac->tid_q));
  1054. if (!list_empty(&ac->tid_q)) {
  1055. if (!ac->sched) {
  1056. ac->sched = true;
  1057. list_add_tail(&ac->list, &txq->axq_acq);
  1058. }
  1059. }
  1060. }
  1061. /***********/
  1062. /* TX, DMA */
  1063. /***********/
  1064. /*
  1065. * Insert a chain of ath_buf (descriptors) on a txq and
  1066. * assume the descriptors are already chained together by caller.
  1067. */
  1068. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1069. struct list_head *head)
  1070. {
  1071. struct ath_hw *ah = sc->sc_ah;
  1072. struct ath_common *common = ath9k_hw_common(ah);
  1073. struct ath_buf *bf;
  1074. /*
  1075. * Insert the frame on the outbound list and
  1076. * pass it on to the hardware.
  1077. */
  1078. if (list_empty(head))
  1079. return;
  1080. bf = list_first_entry(head, struct ath_buf, list);
  1081. ath_print(common, ATH_DBG_QUEUE,
  1082. "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
  1083. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1084. if (txq->axq_depth >= ATH_TXFIFO_DEPTH) {
  1085. list_splice_tail_init(head, &txq->txq_fifo_pending);
  1086. return;
  1087. }
  1088. if (!list_empty(&txq->txq_fifo[txq->txq_headidx]))
  1089. ath_print(common, ATH_DBG_XMIT,
  1090. "Initializing tx fifo %d which "
  1091. "is non-empty\n",
  1092. txq->txq_headidx);
  1093. INIT_LIST_HEAD(&txq->txq_fifo[txq->txq_headidx]);
  1094. list_splice_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1095. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1096. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1097. ath_print(common, ATH_DBG_XMIT,
  1098. "TXDP[%u] = %llx (%p)\n",
  1099. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1100. } else {
  1101. list_splice_tail_init(head, &txq->axq_q);
  1102. if (txq->axq_link == NULL) {
  1103. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1104. ath_print(common, ATH_DBG_XMIT,
  1105. "TXDP[%u] = %llx (%p)\n",
  1106. txq->axq_qnum, ito64(bf->bf_daddr),
  1107. bf->bf_desc);
  1108. } else {
  1109. *txq->axq_link = bf->bf_daddr;
  1110. ath_print(common, ATH_DBG_XMIT,
  1111. "link[%u] (%p)=%llx (%p)\n",
  1112. txq->axq_qnum, txq->axq_link,
  1113. ito64(bf->bf_daddr), bf->bf_desc);
  1114. }
  1115. ath9k_hw_get_desc_link(ah, bf->bf_lastbf->bf_desc,
  1116. &txq->axq_link);
  1117. ath9k_hw_txstart(ah, txq->axq_qnum);
  1118. }
  1119. txq->axq_depth++;
  1120. }
  1121. static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
  1122. struct list_head *bf_head,
  1123. struct ath_tx_control *txctl, int frmlen)
  1124. {
  1125. struct ath_buf *bf;
  1126. u16 bf_seqno;
  1127. bf = list_first_entry(bf_head, struct ath_buf, list);
  1128. bf->bf_state.bf_type |= BUF_AMPDU;
  1129. TX_STAT_INC(txctl->txq->axq_qnum, a_queued);
  1130. bf_seqno = ath_frame_seqno(bf->bf_mpdu);
  1131. /*
  1132. * Do not queue to h/w when any of the following conditions is true:
  1133. * - there are pending frames in software queue
  1134. * - the TID is currently paused for ADDBA/BAR request
  1135. * - seqno is not within block-ack window
  1136. * - h/w queue depth exceeds low water mark
  1137. */
  1138. if (!list_empty(&tid->buf_q) || tid->paused ||
  1139. !BAW_WITHIN(tid->seq_start, tid->baw_size, bf_seqno) ||
  1140. txctl->txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
  1141. /*
  1142. * Add this frame to software queue for scheduling later
  1143. * for aggregation.
  1144. */
  1145. list_move_tail(&bf->list, &tid->buf_q);
  1146. ath_tx_queue_tid(txctl->txq, tid);
  1147. return;
  1148. }
  1149. /* Add sub-frame to BAW */
  1150. if (!bf_isretried(bf))
  1151. ath_tx_addto_baw(sc, tid, bf_seqno);
  1152. /* Queue to h/w without aggregation */
  1153. bf->bf_lastbf = bf;
  1154. ath_buf_set_rate(sc, bf, frmlen);
  1155. ath_tx_txqaddbuf(sc, txctl->txq, bf_head);
  1156. }
  1157. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1158. struct ath_atx_tid *tid,
  1159. struct list_head *bf_head, int frmlen)
  1160. {
  1161. struct ath_buf *bf;
  1162. bf = list_first_entry(bf_head, struct ath_buf, list);
  1163. bf->bf_state.bf_type &= ~BUF_AMPDU;
  1164. /* update starting sequence number for subsequent ADDBA request */
  1165. if (tid)
  1166. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  1167. bf->bf_lastbf = bf;
  1168. ath_buf_set_rate(sc, bf, frmlen);
  1169. ath_tx_txqaddbuf(sc, txq, bf_head);
  1170. TX_STAT_INC(txq->axq_qnum, queued);
  1171. }
  1172. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  1173. {
  1174. struct ieee80211_hdr *hdr;
  1175. enum ath9k_pkt_type htype;
  1176. __le16 fc;
  1177. hdr = (struct ieee80211_hdr *)skb->data;
  1178. fc = hdr->frame_control;
  1179. if (ieee80211_is_beacon(fc))
  1180. htype = ATH9K_PKT_TYPE_BEACON;
  1181. else if (ieee80211_is_probe_resp(fc))
  1182. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  1183. else if (ieee80211_is_atim(fc))
  1184. htype = ATH9K_PKT_TYPE_ATIM;
  1185. else if (ieee80211_is_pspoll(fc))
  1186. htype = ATH9K_PKT_TYPE_PSPOLL;
  1187. else
  1188. htype = ATH9K_PKT_TYPE_NORMAL;
  1189. return htype;
  1190. }
  1191. static void assign_aggr_tid_seqno(struct sk_buff *skb,
  1192. struct ath_buf *bf)
  1193. {
  1194. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1195. struct ieee80211_hdr *hdr;
  1196. struct ath_node *an;
  1197. struct ath_atx_tid *tid;
  1198. __le16 fc;
  1199. u8 tidno;
  1200. if (!tx_info->control.sta)
  1201. return;
  1202. an = (struct ath_node *)tx_info->control.sta->drv_priv;
  1203. hdr = (struct ieee80211_hdr *)skb->data;
  1204. fc = hdr->frame_control;
  1205. tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
  1206. /*
  1207. * Override seqno set by upper layer with the one
  1208. * in tx aggregation state.
  1209. */
  1210. tid = ATH_AN_2_TID(an, tidno);
  1211. hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
  1212. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1213. }
  1214. static int setup_tx_flags(struct sk_buff *skb)
  1215. {
  1216. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1217. int flags = 0;
  1218. flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
  1219. flags |= ATH9K_TXDESC_INTREQ;
  1220. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  1221. flags |= ATH9K_TXDESC_NOACK;
  1222. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  1223. flags |= ATH9K_TXDESC_LDPC;
  1224. return flags;
  1225. }
  1226. /*
  1227. * rix - rate index
  1228. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  1229. * width - 0 for 20 MHz, 1 for 40 MHz
  1230. * half_gi - to use 4us v/s 3.6 us for symbol time
  1231. */
  1232. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
  1233. int width, int half_gi, bool shortPreamble)
  1234. {
  1235. u32 nbits, nsymbits, duration, nsymbols;
  1236. int streams;
  1237. /* find number of symbols: PLCP + data */
  1238. streams = HT_RC_2_STREAMS(rix);
  1239. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  1240. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  1241. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  1242. if (!half_gi)
  1243. duration = SYMBOL_TIME(nsymbols);
  1244. else
  1245. duration = SYMBOL_TIME_HALFGI(nsymbols);
  1246. /* addup duration for legacy/ht training and signal fields */
  1247. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  1248. return duration;
  1249. }
  1250. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf, int len)
  1251. {
  1252. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1253. struct ath9k_11n_rate_series series[4];
  1254. struct sk_buff *skb;
  1255. struct ieee80211_tx_info *tx_info;
  1256. struct ieee80211_tx_rate *rates;
  1257. const struct ieee80211_rate *rate;
  1258. struct ieee80211_hdr *hdr;
  1259. int i, flags = 0;
  1260. u8 rix = 0, ctsrate = 0;
  1261. bool is_pspoll;
  1262. memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
  1263. skb = bf->bf_mpdu;
  1264. tx_info = IEEE80211_SKB_CB(skb);
  1265. rates = tx_info->control.rates;
  1266. hdr = (struct ieee80211_hdr *)skb->data;
  1267. is_pspoll = ieee80211_is_pspoll(hdr->frame_control);
  1268. /*
  1269. * We check if Short Preamble is needed for the CTS rate by
  1270. * checking the BSS's global flag.
  1271. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  1272. */
  1273. rate = ieee80211_get_rts_cts_rate(sc->hw, tx_info);
  1274. ctsrate = rate->hw_value;
  1275. if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
  1276. ctsrate |= rate->hw_value_short;
  1277. for (i = 0; i < 4; i++) {
  1278. bool is_40, is_sgi, is_sp;
  1279. int phy;
  1280. if (!rates[i].count || (rates[i].idx < 0))
  1281. continue;
  1282. rix = rates[i].idx;
  1283. series[i].Tries = rates[i].count;
  1284. series[i].ChSel = common->tx_chainmask;
  1285. if ((sc->config.ath_aggr_prot && bf_isaggr(bf)) ||
  1286. (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS)) {
  1287. series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  1288. flags |= ATH9K_TXDESC_RTSENA;
  1289. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  1290. series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  1291. flags |= ATH9K_TXDESC_CTSENA;
  1292. }
  1293. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  1294. series[i].RateFlags |= ATH9K_RATESERIES_2040;
  1295. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  1296. series[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  1297. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  1298. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  1299. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  1300. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  1301. /* MCS rates */
  1302. series[i].Rate = rix | 0x80;
  1303. series[i].PktDuration = ath_pkt_duration(sc, rix, len,
  1304. is_40, is_sgi, is_sp);
  1305. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  1306. series[i].RateFlags |= ATH9K_RATESERIES_STBC;
  1307. continue;
  1308. }
  1309. /* legcay rates */
  1310. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  1311. !(rate->flags & IEEE80211_RATE_ERP_G))
  1312. phy = WLAN_RC_PHY_CCK;
  1313. else
  1314. phy = WLAN_RC_PHY_OFDM;
  1315. rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
  1316. series[i].Rate = rate->hw_value;
  1317. if (rate->hw_value_short) {
  1318. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  1319. series[i].Rate |= rate->hw_value_short;
  1320. } else {
  1321. is_sp = false;
  1322. }
  1323. series[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  1324. phy, rate->bitrate * 100, len, rix, is_sp);
  1325. }
  1326. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  1327. if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
  1328. flags &= ~ATH9K_TXDESC_RTSENA;
  1329. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  1330. if (flags & ATH9K_TXDESC_RTSENA)
  1331. flags &= ~ATH9K_TXDESC_CTSENA;
  1332. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  1333. ath9k_hw_set11n_ratescenario(sc->sc_ah, bf->bf_desc,
  1334. bf->bf_lastbf->bf_desc,
  1335. !is_pspoll, ctsrate,
  1336. 0, series, 4, flags);
  1337. if (sc->config.ath_aggr_prot && flags)
  1338. ath9k_hw_set11n_burstduration(sc->sc_ah, bf->bf_desc, 8192);
  1339. }
  1340. static struct ath_buf *ath_tx_setup_buffer(struct ieee80211_hw *hw,
  1341. struct sk_buff *skb)
  1342. {
  1343. struct ath_wiphy *aphy = hw->priv;
  1344. struct ath_softc *sc = aphy->sc;
  1345. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1346. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1347. struct ath_buf *bf;
  1348. int hdrlen;
  1349. __le16 fc;
  1350. bf = ath_tx_get_buffer(sc);
  1351. if (!bf) {
  1352. ath_print(common, ATH_DBG_XMIT, "TX buffers are full\n");
  1353. return NULL;
  1354. }
  1355. hdrlen = ieee80211_get_hdrlen_from_skb(skb);
  1356. fc = hdr->frame_control;
  1357. ATH_TXBUF_RESET(bf);
  1358. bf->aphy = aphy;
  1359. if (ieee80211_is_data_qos(fc) && conf_is_ht(&hw->conf)) {
  1360. bf->bf_state.bf_type |= BUF_HT;
  1361. if (sc->sc_flags & SC_OP_TXAGGR)
  1362. assign_aggr_tid_seqno(skb, bf);
  1363. }
  1364. bf->bf_flags = setup_tx_flags(skb);
  1365. bf->bf_mpdu = skb;
  1366. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  1367. skb->len, DMA_TO_DEVICE);
  1368. if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
  1369. bf->bf_mpdu = NULL;
  1370. bf->bf_buf_addr = 0;
  1371. ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
  1372. "dma_mapping_error() on TX\n");
  1373. ath_tx_return_buffer(sc, bf);
  1374. return NULL;
  1375. }
  1376. return bf;
  1377. }
  1378. /* FIXME: tx power */
  1379. static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf,
  1380. struct ath_tx_control *txctl)
  1381. {
  1382. struct sk_buff *skb = bf->bf_mpdu;
  1383. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1384. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1385. struct ath_node *an = NULL;
  1386. struct list_head bf_head;
  1387. struct ath_desc *ds;
  1388. struct ath_atx_tid *tid;
  1389. struct ath_hw *ah = sc->sc_ah;
  1390. enum ath9k_key_type keytype;
  1391. u32 keyix;
  1392. int frm_type;
  1393. __le16 fc;
  1394. u8 tidno;
  1395. int frmlen;
  1396. frm_type = get_hw_packet_type(skb);
  1397. fc = hdr->frame_control;
  1398. INIT_LIST_HEAD(&bf_head);
  1399. list_add_tail(&bf->list, &bf_head);
  1400. ds = bf->bf_desc;
  1401. ath9k_hw_set_desc_link(ah, ds, 0);
  1402. keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
  1403. if (tx_info->control.hw_key)
  1404. keyix = tx_info->control.hw_key->hw_key_idx;
  1405. else
  1406. keyix = ATH9K_TXKEYIX_INVALID;
  1407. frmlen = ath_frame_len(bf->bf_mpdu);
  1408. ath9k_hw_set11n_txdesc(ah, ds, frmlen, frm_type, MAX_RATE_POWER,
  1409. keyix, keytype, bf->bf_flags);
  1410. ath9k_hw_filltxdesc(ah, ds,
  1411. skb->len, /* segment length */
  1412. true, /* first segment */
  1413. true, /* last segment */
  1414. ds, /* first descriptor */
  1415. bf->bf_buf_addr,
  1416. txctl->txq->axq_qnum);
  1417. spin_lock_bh(&txctl->txq->axq_lock);
  1418. if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR) &&
  1419. tx_info->control.sta) {
  1420. an = (struct ath_node *)tx_info->control.sta->drv_priv;
  1421. tidno = ieee80211_get_qos_ctl(hdr)[0] &
  1422. IEEE80211_QOS_CTL_TID_MASK;
  1423. tid = ATH_AN_2_TID(an, tidno);
  1424. WARN_ON(tid->ac->txq != txctl->txq);
  1425. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
  1426. /*
  1427. * Try aggregation if it's a unicast data frame
  1428. * and the destination is HT capable.
  1429. */
  1430. ath_tx_send_ampdu(sc, tid, &bf_head, txctl, frmlen);
  1431. } else {
  1432. /*
  1433. * Send this frame as regular when ADDBA
  1434. * exchange is neither complete nor pending.
  1435. */
  1436. ath_tx_send_normal(sc, txctl->txq, tid, &bf_head, frmlen);
  1437. }
  1438. } else {
  1439. bf->bf_state.bfs_ftype = txctl->frame_type;
  1440. bf->bf_state.bfs_paprd = txctl->paprd;
  1441. if (bf->bf_state.bfs_paprd)
  1442. ar9003_hw_set_paprd_txdesc(ah, ds, bf->bf_state.bfs_paprd);
  1443. ath_tx_send_normal(sc, txctl->txq, NULL, &bf_head, frmlen);
  1444. }
  1445. spin_unlock_bh(&txctl->txq->axq_lock);
  1446. }
  1447. /* Upon failure caller should free skb */
  1448. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1449. struct ath_tx_control *txctl)
  1450. {
  1451. struct ath_wiphy *aphy = hw->priv;
  1452. struct ath_softc *sc = aphy->sc;
  1453. struct ath_txq *txq = txctl->txq;
  1454. struct ath_buf *bf;
  1455. int q;
  1456. bf = ath_tx_setup_buffer(hw, skb);
  1457. if (unlikely(!bf))
  1458. return -ENOMEM;
  1459. q = skb_get_queue_mapping(skb);
  1460. spin_lock_bh(&txq->axq_lock);
  1461. if (txq == sc->tx.txq_map[q] &&
  1462. ++txq->pending_frames > ATH_MAX_QDEPTH && !txq->stopped) {
  1463. ath_mac80211_stop_queue(sc, q);
  1464. txq->stopped = 1;
  1465. }
  1466. spin_unlock_bh(&txq->axq_lock);
  1467. ath_tx_start_dma(sc, bf, txctl);
  1468. return 0;
  1469. }
  1470. void ath_tx_cabq(struct ieee80211_hw *hw, struct sk_buff *skb)
  1471. {
  1472. struct ath_wiphy *aphy = hw->priv;
  1473. struct ath_softc *sc = aphy->sc;
  1474. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1475. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1476. int padpos, padsize;
  1477. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1478. struct ath_tx_control txctl;
  1479. memset(&txctl, 0, sizeof(struct ath_tx_control));
  1480. /*
  1481. * As a temporary workaround, assign seq# here; this will likely need
  1482. * to be cleaned up to work better with Beacon transmission and virtual
  1483. * BSSes.
  1484. */
  1485. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1486. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1487. sc->tx.seq_no += 0x10;
  1488. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1489. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1490. }
  1491. /* Add the padding after the header if this is not already done */
  1492. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1493. padsize = padpos & 3;
  1494. if (padsize && skb->len>padpos) {
  1495. if (skb_headroom(skb) < padsize) {
  1496. ath_print(common, ATH_DBG_XMIT,
  1497. "TX CABQ padding failed\n");
  1498. dev_kfree_skb_any(skb);
  1499. return;
  1500. }
  1501. skb_push(skb, padsize);
  1502. memmove(skb->data, skb->data + padsize, padpos);
  1503. }
  1504. txctl.txq = sc->beacon.cabq;
  1505. ath_print(common, ATH_DBG_XMIT,
  1506. "transmitting CABQ packet, skb: %p\n", skb);
  1507. if (ath_tx_start(hw, skb, &txctl) != 0) {
  1508. ath_print(common, ATH_DBG_XMIT, "CABQ TX failed\n");
  1509. goto exit;
  1510. }
  1511. return;
  1512. exit:
  1513. dev_kfree_skb_any(skb);
  1514. }
  1515. /*****************/
  1516. /* TX Completion */
  1517. /*****************/
  1518. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1519. struct ath_wiphy *aphy, int tx_flags, int ftype,
  1520. struct ath_txq *txq)
  1521. {
  1522. struct ieee80211_hw *hw = sc->hw;
  1523. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1524. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1525. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1526. int q, padpos, padsize;
  1527. ath_print(common, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
  1528. if (aphy)
  1529. hw = aphy->hw;
  1530. if (tx_flags & ATH_TX_BAR)
  1531. tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
  1532. if (!(tx_flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) {
  1533. /* Frame was ACKed */
  1534. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1535. }
  1536. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1537. padsize = padpos & 3;
  1538. if (padsize && skb->len>padpos+padsize) {
  1539. /*
  1540. * Remove MAC header padding before giving the frame back to
  1541. * mac80211.
  1542. */
  1543. memmove(skb->data + padsize, skb->data, padpos);
  1544. skb_pull(skb, padsize);
  1545. }
  1546. if (sc->ps_flags & PS_WAIT_FOR_TX_ACK) {
  1547. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  1548. ath_print(common, ATH_DBG_PS,
  1549. "Going back to sleep after having "
  1550. "received TX status (0x%lx)\n",
  1551. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1552. PS_WAIT_FOR_CAB |
  1553. PS_WAIT_FOR_PSPOLL_DATA |
  1554. PS_WAIT_FOR_TX_ACK));
  1555. }
  1556. if (unlikely(ftype))
  1557. ath9k_tx_status(hw, skb, ftype);
  1558. else {
  1559. q = skb_get_queue_mapping(skb);
  1560. if (txq == sc->tx.txq_map[q]) {
  1561. spin_lock_bh(&txq->axq_lock);
  1562. if (WARN_ON(--txq->pending_frames < 0))
  1563. txq->pending_frames = 0;
  1564. spin_unlock_bh(&txq->axq_lock);
  1565. }
  1566. ieee80211_tx_status(hw, skb);
  1567. }
  1568. }
  1569. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  1570. struct ath_txq *txq, struct list_head *bf_q,
  1571. struct ath_tx_status *ts, int txok, int sendbar)
  1572. {
  1573. struct sk_buff *skb = bf->bf_mpdu;
  1574. unsigned long flags;
  1575. int tx_flags = 0;
  1576. if (sendbar)
  1577. tx_flags = ATH_TX_BAR;
  1578. if (!txok) {
  1579. tx_flags |= ATH_TX_ERROR;
  1580. if (bf_isxretried(bf))
  1581. tx_flags |= ATH_TX_XRETRY;
  1582. }
  1583. dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
  1584. bf->bf_buf_addr = 0;
  1585. if (bf->bf_state.bfs_paprd) {
  1586. if (!sc->paprd_pending)
  1587. dev_kfree_skb_any(skb);
  1588. else
  1589. complete(&sc->paprd_complete);
  1590. } else {
  1591. ath_debug_stat_tx(sc, bf, ts);
  1592. ath_tx_complete(sc, skb, bf->aphy, tx_flags,
  1593. bf->bf_state.bfs_ftype, txq);
  1594. }
  1595. /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
  1596. * accidentally reference it later.
  1597. */
  1598. bf->bf_mpdu = NULL;
  1599. /*
  1600. * Return the list of ath_buf of this mpdu to free queue
  1601. */
  1602. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  1603. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  1604. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  1605. }
  1606. static void ath_tx_rc_status(struct ath_buf *bf, struct ath_tx_status *ts,
  1607. int nframes, int nbad, int txok, bool update_rc)
  1608. {
  1609. struct sk_buff *skb = bf->bf_mpdu;
  1610. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1611. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1612. struct ieee80211_hw *hw = bf->aphy->hw;
  1613. struct ath_softc *sc = bf->aphy->sc;
  1614. struct ath_hw *ah = sc->sc_ah;
  1615. u8 i, tx_rateindex;
  1616. if (txok)
  1617. tx_info->status.ack_signal = ts->ts_rssi;
  1618. tx_rateindex = ts->ts_rateindex;
  1619. WARN_ON(tx_rateindex >= hw->max_rates);
  1620. if (ts->ts_status & ATH9K_TXERR_FILT)
  1621. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1622. if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && update_rc) {
  1623. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  1624. BUG_ON(nbad > nframes);
  1625. tx_info->status.ampdu_len = nframes;
  1626. tx_info->status.ampdu_ack_len = nframes - nbad;
  1627. }
  1628. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  1629. (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0 && update_rc) {
  1630. /*
  1631. * If an underrun error is seen assume it as an excessive
  1632. * retry only if max frame trigger level has been reached
  1633. * (2 KB for single stream, and 4 KB for dual stream).
  1634. * Adjust the long retry as if the frame was tried
  1635. * hw->max_rate_tries times to affect how rate control updates
  1636. * PER for the failed rate.
  1637. * In case of congestion on the bus penalizing this type of
  1638. * underruns should help hardware actually transmit new frames
  1639. * successfully by eventually preferring slower rates.
  1640. * This itself should also alleviate congestion on the bus.
  1641. */
  1642. if (ieee80211_is_data(hdr->frame_control) &&
  1643. (ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
  1644. ATH9K_TX_DELIM_UNDERRUN)) &&
  1645. ah->tx_trig_level >= sc->sc_ah->caps.tx_triglevel_max)
  1646. tx_info->status.rates[tx_rateindex].count =
  1647. hw->max_rate_tries;
  1648. }
  1649. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  1650. tx_info->status.rates[i].count = 0;
  1651. tx_info->status.rates[i].idx = -1;
  1652. }
  1653. tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
  1654. }
  1655. static void ath_wake_mac80211_queue(struct ath_softc *sc, int qnum)
  1656. {
  1657. struct ath_txq *txq;
  1658. txq = sc->tx.txq_map[qnum];
  1659. spin_lock_bh(&txq->axq_lock);
  1660. if (txq->stopped && txq->pending_frames < ATH_MAX_QDEPTH) {
  1661. if (ath_mac80211_start_queue(sc, qnum))
  1662. txq->stopped = 0;
  1663. }
  1664. spin_unlock_bh(&txq->axq_lock);
  1665. }
  1666. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  1667. {
  1668. struct ath_hw *ah = sc->sc_ah;
  1669. struct ath_common *common = ath9k_hw_common(ah);
  1670. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  1671. struct list_head bf_head;
  1672. struct ath_desc *ds;
  1673. struct ath_tx_status ts;
  1674. int txok;
  1675. int status;
  1676. int qnum;
  1677. ath_print(common, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
  1678. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  1679. txq->axq_link);
  1680. for (;;) {
  1681. spin_lock_bh(&txq->axq_lock);
  1682. if (list_empty(&txq->axq_q)) {
  1683. txq->axq_link = NULL;
  1684. spin_unlock_bh(&txq->axq_lock);
  1685. break;
  1686. }
  1687. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  1688. /*
  1689. * There is a race condition that a BH gets scheduled
  1690. * after sw writes TxE and before hw re-load the last
  1691. * descriptor to get the newly chained one.
  1692. * Software must keep the last DONE descriptor as a
  1693. * holding descriptor - software does so by marking
  1694. * it with the STALE flag.
  1695. */
  1696. bf_held = NULL;
  1697. if (bf->bf_stale) {
  1698. bf_held = bf;
  1699. if (list_is_last(&bf_held->list, &txq->axq_q)) {
  1700. spin_unlock_bh(&txq->axq_lock);
  1701. break;
  1702. } else {
  1703. bf = list_entry(bf_held->list.next,
  1704. struct ath_buf, list);
  1705. }
  1706. }
  1707. lastbf = bf->bf_lastbf;
  1708. ds = lastbf->bf_desc;
  1709. memset(&ts, 0, sizeof(ts));
  1710. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  1711. if (status == -EINPROGRESS) {
  1712. spin_unlock_bh(&txq->axq_lock);
  1713. break;
  1714. }
  1715. /*
  1716. * Remove ath_buf's of the same transmit unit from txq,
  1717. * however leave the last descriptor back as the holding
  1718. * descriptor for hw.
  1719. */
  1720. lastbf->bf_stale = true;
  1721. INIT_LIST_HEAD(&bf_head);
  1722. if (!list_is_singular(&lastbf->list))
  1723. list_cut_position(&bf_head,
  1724. &txq->axq_q, lastbf->list.prev);
  1725. txq->axq_depth--;
  1726. txok = !(ts.ts_status & ATH9K_TXERR_MASK);
  1727. txq->axq_tx_inprogress = false;
  1728. if (bf_held)
  1729. list_del(&bf_held->list);
  1730. spin_unlock_bh(&txq->axq_lock);
  1731. if (bf_held)
  1732. ath_tx_return_buffer(sc, bf_held);
  1733. if (!bf_isampdu(bf)) {
  1734. /*
  1735. * This frame is sent out as a single frame.
  1736. * Use hardware retry status for this frame.
  1737. */
  1738. if (ts.ts_status & ATH9K_TXERR_XRETRY)
  1739. bf->bf_state.bf_type |= BUF_XRETRY;
  1740. ath_tx_rc_status(bf, &ts, 1, txok ? 0 : 1, txok, true);
  1741. }
  1742. qnum = skb_get_queue_mapping(bf->bf_mpdu);
  1743. if (bf_isampdu(bf))
  1744. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, txok,
  1745. true);
  1746. else
  1747. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, txok, 0);
  1748. if (txq == sc->tx.txq_map[qnum])
  1749. ath_wake_mac80211_queue(sc, qnum);
  1750. spin_lock_bh(&txq->axq_lock);
  1751. if (sc->sc_flags & SC_OP_TXAGGR)
  1752. ath_txq_schedule(sc, txq);
  1753. spin_unlock_bh(&txq->axq_lock);
  1754. }
  1755. }
  1756. static void ath_tx_complete_poll_work(struct work_struct *work)
  1757. {
  1758. struct ath_softc *sc = container_of(work, struct ath_softc,
  1759. tx_complete_work.work);
  1760. struct ath_txq *txq;
  1761. int i;
  1762. bool needreset = false;
  1763. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1764. if (ATH_TXQ_SETUP(sc, i)) {
  1765. txq = &sc->tx.txq[i];
  1766. spin_lock_bh(&txq->axq_lock);
  1767. if (txq->axq_depth) {
  1768. if (txq->axq_tx_inprogress) {
  1769. needreset = true;
  1770. spin_unlock_bh(&txq->axq_lock);
  1771. break;
  1772. } else {
  1773. txq->axq_tx_inprogress = true;
  1774. }
  1775. }
  1776. spin_unlock_bh(&txq->axq_lock);
  1777. }
  1778. if (needreset) {
  1779. ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_RESET,
  1780. "tx hung, resetting the chip\n");
  1781. ath9k_ps_wakeup(sc);
  1782. ath_reset(sc, true);
  1783. ath9k_ps_restore(sc);
  1784. }
  1785. ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
  1786. msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
  1787. }
  1788. void ath_tx_tasklet(struct ath_softc *sc)
  1789. {
  1790. int i;
  1791. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
  1792. ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
  1793. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1794. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  1795. ath_tx_processq(sc, &sc->tx.txq[i]);
  1796. }
  1797. }
  1798. void ath_tx_edma_tasklet(struct ath_softc *sc)
  1799. {
  1800. struct ath_tx_status txs;
  1801. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1802. struct ath_hw *ah = sc->sc_ah;
  1803. struct ath_txq *txq;
  1804. struct ath_buf *bf, *lastbf;
  1805. struct list_head bf_head;
  1806. int status;
  1807. int txok;
  1808. int qnum;
  1809. for (;;) {
  1810. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&txs);
  1811. if (status == -EINPROGRESS)
  1812. break;
  1813. if (status == -EIO) {
  1814. ath_print(common, ATH_DBG_XMIT,
  1815. "Error processing tx status\n");
  1816. break;
  1817. }
  1818. /* Skip beacon completions */
  1819. if (txs.qid == sc->beacon.beaconq)
  1820. continue;
  1821. txq = &sc->tx.txq[txs.qid];
  1822. spin_lock_bh(&txq->axq_lock);
  1823. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1824. spin_unlock_bh(&txq->axq_lock);
  1825. return;
  1826. }
  1827. bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
  1828. struct ath_buf, list);
  1829. lastbf = bf->bf_lastbf;
  1830. INIT_LIST_HEAD(&bf_head);
  1831. list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
  1832. &lastbf->list);
  1833. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  1834. txq->axq_depth--;
  1835. txq->axq_tx_inprogress = false;
  1836. spin_unlock_bh(&txq->axq_lock);
  1837. txok = !(txs.ts_status & ATH9K_TXERR_MASK);
  1838. if (!bf_isampdu(bf)) {
  1839. if (txs.ts_status & ATH9K_TXERR_XRETRY)
  1840. bf->bf_state.bf_type |= BUF_XRETRY;
  1841. ath_tx_rc_status(bf, &txs, 1, txok ? 0 : 1, txok, true);
  1842. }
  1843. qnum = skb_get_queue_mapping(bf->bf_mpdu);
  1844. if (bf_isampdu(bf))
  1845. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &txs,
  1846. txok, true);
  1847. else
  1848. ath_tx_complete_buf(sc, bf, txq, &bf_head,
  1849. &txs, txok, 0);
  1850. if (txq == sc->tx.txq_map[qnum])
  1851. ath_wake_mac80211_queue(sc, qnum);
  1852. spin_lock_bh(&txq->axq_lock);
  1853. if (!list_empty(&txq->txq_fifo_pending)) {
  1854. INIT_LIST_HEAD(&bf_head);
  1855. bf = list_first_entry(&txq->txq_fifo_pending,
  1856. struct ath_buf, list);
  1857. list_cut_position(&bf_head, &txq->txq_fifo_pending,
  1858. &bf->bf_lastbf->list);
  1859. ath_tx_txqaddbuf(sc, txq, &bf_head);
  1860. } else if (sc->sc_flags & SC_OP_TXAGGR)
  1861. ath_txq_schedule(sc, txq);
  1862. spin_unlock_bh(&txq->axq_lock);
  1863. }
  1864. }
  1865. /*****************/
  1866. /* Init, Cleanup */
  1867. /*****************/
  1868. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  1869. {
  1870. struct ath_descdma *dd = &sc->txsdma;
  1871. u8 txs_len = sc->sc_ah->caps.txs_len;
  1872. dd->dd_desc_len = size * txs_len;
  1873. dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
  1874. &dd->dd_desc_paddr, GFP_KERNEL);
  1875. if (!dd->dd_desc)
  1876. return -ENOMEM;
  1877. return 0;
  1878. }
  1879. static int ath_tx_edma_init(struct ath_softc *sc)
  1880. {
  1881. int err;
  1882. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  1883. if (!err)
  1884. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  1885. sc->txsdma.dd_desc_paddr,
  1886. ATH_TXSTATUS_RING_SIZE);
  1887. return err;
  1888. }
  1889. static void ath_tx_edma_cleanup(struct ath_softc *sc)
  1890. {
  1891. struct ath_descdma *dd = &sc->txsdma;
  1892. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  1893. dd->dd_desc_paddr);
  1894. }
  1895. int ath_tx_init(struct ath_softc *sc, int nbufs)
  1896. {
  1897. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1898. int error = 0;
  1899. spin_lock_init(&sc->tx.txbuflock);
  1900. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  1901. "tx", nbufs, 1, 1);
  1902. if (error != 0) {
  1903. ath_print(common, ATH_DBG_FATAL,
  1904. "Failed to allocate tx descriptors: %d\n", error);
  1905. goto err;
  1906. }
  1907. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  1908. "beacon", ATH_BCBUF, 1, 1);
  1909. if (error != 0) {
  1910. ath_print(common, ATH_DBG_FATAL,
  1911. "Failed to allocate beacon descriptors: %d\n", error);
  1912. goto err;
  1913. }
  1914. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  1915. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1916. error = ath_tx_edma_init(sc);
  1917. if (error)
  1918. goto err;
  1919. }
  1920. err:
  1921. if (error != 0)
  1922. ath_tx_cleanup(sc);
  1923. return error;
  1924. }
  1925. void ath_tx_cleanup(struct ath_softc *sc)
  1926. {
  1927. if (sc->beacon.bdma.dd_desc_len != 0)
  1928. ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
  1929. if (sc->tx.txdma.dd_desc_len != 0)
  1930. ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
  1931. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  1932. ath_tx_edma_cleanup(sc);
  1933. }
  1934. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  1935. {
  1936. struct ath_atx_tid *tid;
  1937. struct ath_atx_ac *ac;
  1938. int tidno, acno;
  1939. for (tidno = 0, tid = &an->tid[tidno];
  1940. tidno < WME_NUM_TID;
  1941. tidno++, tid++) {
  1942. tid->an = an;
  1943. tid->tidno = tidno;
  1944. tid->seq_start = tid->seq_next = 0;
  1945. tid->baw_size = WME_MAX_BA;
  1946. tid->baw_head = tid->baw_tail = 0;
  1947. tid->sched = false;
  1948. tid->paused = false;
  1949. tid->state &= ~AGGR_CLEANUP;
  1950. INIT_LIST_HEAD(&tid->buf_q);
  1951. acno = TID_TO_WME_AC(tidno);
  1952. tid->ac = &an->ac[acno];
  1953. tid->state &= ~AGGR_ADDBA_COMPLETE;
  1954. tid->state &= ~AGGR_ADDBA_PROGRESS;
  1955. }
  1956. for (acno = 0, ac = &an->ac[acno];
  1957. acno < WME_NUM_AC; acno++, ac++) {
  1958. ac->sched = false;
  1959. ac->txq = sc->tx.txq_map[acno];
  1960. INIT_LIST_HEAD(&ac->tid_q);
  1961. }
  1962. }
  1963. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  1964. {
  1965. struct ath_atx_ac *ac;
  1966. struct ath_atx_tid *tid;
  1967. struct ath_txq *txq;
  1968. int tidno;
  1969. for (tidno = 0, tid = &an->tid[tidno];
  1970. tidno < WME_NUM_TID; tidno++, tid++) {
  1971. ac = tid->ac;
  1972. txq = ac->txq;
  1973. spin_lock_bh(&txq->axq_lock);
  1974. if (tid->sched) {
  1975. list_del(&tid->list);
  1976. tid->sched = false;
  1977. }
  1978. if (ac->sched) {
  1979. list_del(&ac->list);
  1980. tid->ac->sched = false;
  1981. }
  1982. ath_tid_drain(sc, txq, tid);
  1983. tid->state &= ~AGGR_ADDBA_COMPLETE;
  1984. tid->state &= ~AGGR_CLEANUP;
  1985. spin_unlock_bh(&txq->axq_lock);
  1986. }
  1987. }