af_key.c 86 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/capability.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <net/xfrm.h>
  29. #include <net/sock.h>
  30. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  31. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  32. /* List of all pfkey sockets. */
  33. static HLIST_HEAD(pfkey_table);
  34. static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait);
  35. static DEFINE_RWLOCK(pfkey_table_lock);
  36. static atomic_t pfkey_table_users = ATOMIC_INIT(0);
  37. static atomic_t pfkey_socks_nr = ATOMIC_INIT(0);
  38. struct pfkey_sock {
  39. /* struct sock must be the first member of struct pfkey_sock */
  40. struct sock sk;
  41. int registered;
  42. int promisc;
  43. };
  44. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  45. {
  46. return (struct pfkey_sock *)sk;
  47. }
  48. static void pfkey_sock_destruct(struct sock *sk)
  49. {
  50. skb_queue_purge(&sk->sk_receive_queue);
  51. if (!sock_flag(sk, SOCK_DEAD)) {
  52. printk("Attempt to release alive pfkey socket: %p\n", sk);
  53. return;
  54. }
  55. BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc));
  56. BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc));
  57. atomic_dec(&pfkey_socks_nr);
  58. }
  59. static void pfkey_table_grab(void)
  60. {
  61. write_lock_bh(&pfkey_table_lock);
  62. if (atomic_read(&pfkey_table_users)) {
  63. DECLARE_WAITQUEUE(wait, current);
  64. add_wait_queue_exclusive(&pfkey_table_wait, &wait);
  65. for(;;) {
  66. set_current_state(TASK_UNINTERRUPTIBLE);
  67. if (atomic_read(&pfkey_table_users) == 0)
  68. break;
  69. write_unlock_bh(&pfkey_table_lock);
  70. schedule();
  71. write_lock_bh(&pfkey_table_lock);
  72. }
  73. __set_current_state(TASK_RUNNING);
  74. remove_wait_queue(&pfkey_table_wait, &wait);
  75. }
  76. }
  77. static __inline__ void pfkey_table_ungrab(void)
  78. {
  79. write_unlock_bh(&pfkey_table_lock);
  80. wake_up(&pfkey_table_wait);
  81. }
  82. static __inline__ void pfkey_lock_table(void)
  83. {
  84. /* read_lock() synchronizes us to pfkey_table_grab */
  85. read_lock(&pfkey_table_lock);
  86. atomic_inc(&pfkey_table_users);
  87. read_unlock(&pfkey_table_lock);
  88. }
  89. static __inline__ void pfkey_unlock_table(void)
  90. {
  91. if (atomic_dec_and_test(&pfkey_table_users))
  92. wake_up(&pfkey_table_wait);
  93. }
  94. static const struct proto_ops pfkey_ops;
  95. static void pfkey_insert(struct sock *sk)
  96. {
  97. pfkey_table_grab();
  98. sk_add_node(sk, &pfkey_table);
  99. pfkey_table_ungrab();
  100. }
  101. static void pfkey_remove(struct sock *sk)
  102. {
  103. pfkey_table_grab();
  104. sk_del_node_init(sk);
  105. pfkey_table_ungrab();
  106. }
  107. static struct proto key_proto = {
  108. .name = "KEY",
  109. .owner = THIS_MODULE,
  110. .obj_size = sizeof(struct pfkey_sock),
  111. };
  112. static int pfkey_create(struct socket *sock, int protocol)
  113. {
  114. struct sock *sk;
  115. int err;
  116. if (!capable(CAP_NET_ADMIN))
  117. return -EPERM;
  118. if (sock->type != SOCK_RAW)
  119. return -ESOCKTNOSUPPORT;
  120. if (protocol != PF_KEY_V2)
  121. return -EPROTONOSUPPORT;
  122. err = -ENOMEM;
  123. sk = sk_alloc(PF_KEY, GFP_KERNEL, &key_proto, 1);
  124. if (sk == NULL)
  125. goto out;
  126. sock->ops = &pfkey_ops;
  127. sock_init_data(sock, sk);
  128. sk->sk_family = PF_KEY;
  129. sk->sk_destruct = pfkey_sock_destruct;
  130. atomic_inc(&pfkey_socks_nr);
  131. pfkey_insert(sk);
  132. return 0;
  133. out:
  134. return err;
  135. }
  136. static int pfkey_release(struct socket *sock)
  137. {
  138. struct sock *sk = sock->sk;
  139. if (!sk)
  140. return 0;
  141. pfkey_remove(sk);
  142. sock_orphan(sk);
  143. sock->sk = NULL;
  144. skb_queue_purge(&sk->sk_write_queue);
  145. sock_put(sk);
  146. return 0;
  147. }
  148. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  149. gfp_t allocation, struct sock *sk)
  150. {
  151. int err = -ENOBUFS;
  152. sock_hold(sk);
  153. if (*skb2 == NULL) {
  154. if (atomic_read(&skb->users) != 1) {
  155. *skb2 = skb_clone(skb, allocation);
  156. } else {
  157. *skb2 = skb;
  158. atomic_inc(&skb->users);
  159. }
  160. }
  161. if (*skb2 != NULL) {
  162. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  163. skb_orphan(*skb2);
  164. skb_set_owner_r(*skb2, sk);
  165. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  166. sk->sk_data_ready(sk, (*skb2)->len);
  167. *skb2 = NULL;
  168. err = 0;
  169. }
  170. }
  171. sock_put(sk);
  172. return err;
  173. }
  174. /* Send SKB to all pfkey sockets matching selected criteria. */
  175. #define BROADCAST_ALL 0
  176. #define BROADCAST_ONE 1
  177. #define BROADCAST_REGISTERED 2
  178. #define BROADCAST_PROMISC_ONLY 4
  179. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  180. int broadcast_flags, struct sock *one_sk)
  181. {
  182. struct sock *sk;
  183. struct hlist_node *node;
  184. struct sk_buff *skb2 = NULL;
  185. int err = -ESRCH;
  186. /* XXX Do we need something like netlink_overrun? I think
  187. * XXX PF_KEY socket apps will not mind current behavior.
  188. */
  189. if (!skb)
  190. return -ENOMEM;
  191. pfkey_lock_table();
  192. sk_for_each(sk, node, &pfkey_table) {
  193. struct pfkey_sock *pfk = pfkey_sk(sk);
  194. int err2;
  195. /* Yes, it means that if you are meant to receive this
  196. * pfkey message you receive it twice as promiscuous
  197. * socket.
  198. */
  199. if (pfk->promisc)
  200. pfkey_broadcast_one(skb, &skb2, allocation, sk);
  201. /* the exact target will be processed later */
  202. if (sk == one_sk)
  203. continue;
  204. if (broadcast_flags != BROADCAST_ALL) {
  205. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  206. continue;
  207. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  208. !pfk->registered)
  209. continue;
  210. if (broadcast_flags & BROADCAST_ONE)
  211. continue;
  212. }
  213. err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
  214. /* Error is cleare after succecful sending to at least one
  215. * registered KM */
  216. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  217. err = err2;
  218. }
  219. pfkey_unlock_table();
  220. if (one_sk != NULL)
  221. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  222. if (skb2)
  223. kfree_skb(skb2);
  224. kfree_skb(skb);
  225. return err;
  226. }
  227. static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig)
  228. {
  229. *new = *orig;
  230. }
  231. static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk)
  232. {
  233. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  234. struct sadb_msg *hdr;
  235. if (!skb)
  236. return -ENOBUFS;
  237. /* Woe be to the platform trying to support PFKEY yet
  238. * having normal errnos outside the 1-255 range, inclusive.
  239. */
  240. err = -err;
  241. if (err == ERESTARTSYS ||
  242. err == ERESTARTNOHAND ||
  243. err == ERESTARTNOINTR)
  244. err = EINTR;
  245. if (err >= 512)
  246. err = EINVAL;
  247. BUG_ON(err <= 0 || err >= 256);
  248. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  249. pfkey_hdr_dup(hdr, orig);
  250. hdr->sadb_msg_errno = (uint8_t) err;
  251. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  252. sizeof(uint64_t));
  253. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk);
  254. return 0;
  255. }
  256. static u8 sadb_ext_min_len[] = {
  257. [SADB_EXT_RESERVED] = (u8) 0,
  258. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  259. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  260. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  261. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  262. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  263. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  264. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  265. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  266. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  267. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  268. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  269. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  270. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  271. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  272. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  273. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  274. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  275. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  276. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  277. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  278. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  279. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  280. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  281. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  282. };
  283. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  284. static int verify_address_len(void *p)
  285. {
  286. struct sadb_address *sp = p;
  287. struct sockaddr *addr = (struct sockaddr *)(sp + 1);
  288. struct sockaddr_in *sin;
  289. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  290. struct sockaddr_in6 *sin6;
  291. #endif
  292. int len;
  293. switch (addr->sa_family) {
  294. case AF_INET:
  295. len = sizeof(*sp) + sizeof(*sin) + (sizeof(uint64_t) - 1);
  296. len /= sizeof(uint64_t);
  297. if (sp->sadb_address_len != len ||
  298. sp->sadb_address_prefixlen > 32)
  299. return -EINVAL;
  300. break;
  301. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  302. case AF_INET6:
  303. len = sizeof(*sp) + sizeof(*sin6) + (sizeof(uint64_t) - 1);
  304. len /= sizeof(uint64_t);
  305. if (sp->sadb_address_len != len ||
  306. sp->sadb_address_prefixlen > 128)
  307. return -EINVAL;
  308. break;
  309. #endif
  310. default:
  311. /* It is user using kernel to keep track of security
  312. * associations for another protocol, such as
  313. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  314. * lengths.
  315. *
  316. * XXX Actually, association/policy database is not yet
  317. * XXX able to cope with arbitrary sockaddr families.
  318. * XXX When it can, remove this -EINVAL. -DaveM
  319. */
  320. return -EINVAL;
  321. break;
  322. };
  323. return 0;
  324. }
  325. static inline int pfkey_sec_ctx_len(struct sadb_x_sec_ctx *sec_ctx)
  326. {
  327. int len = 0;
  328. len += sizeof(struct sadb_x_sec_ctx);
  329. len += sec_ctx->sadb_x_ctx_len;
  330. len += sizeof(uint64_t) - 1;
  331. len /= sizeof(uint64_t);
  332. return len;
  333. }
  334. static inline int verify_sec_ctx_len(void *p)
  335. {
  336. struct sadb_x_sec_ctx *sec_ctx = (struct sadb_x_sec_ctx *)p;
  337. int len;
  338. if (sec_ctx->sadb_x_ctx_len > PAGE_SIZE)
  339. return -EINVAL;
  340. len = pfkey_sec_ctx_len(sec_ctx);
  341. if (sec_ctx->sadb_x_sec_len != len)
  342. return -EINVAL;
  343. return 0;
  344. }
  345. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(struct sadb_x_sec_ctx *sec_ctx)
  346. {
  347. struct xfrm_user_sec_ctx *uctx = NULL;
  348. int ctx_size = sec_ctx->sadb_x_ctx_len;
  349. uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL);
  350. if (!uctx)
  351. return NULL;
  352. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  353. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  354. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  355. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  356. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  357. memcpy(uctx + 1, sec_ctx + 1,
  358. uctx->ctx_len);
  359. return uctx;
  360. }
  361. static int present_and_same_family(struct sadb_address *src,
  362. struct sadb_address *dst)
  363. {
  364. struct sockaddr *s_addr, *d_addr;
  365. if (!src || !dst)
  366. return 0;
  367. s_addr = (struct sockaddr *)(src + 1);
  368. d_addr = (struct sockaddr *)(dst + 1);
  369. if (s_addr->sa_family != d_addr->sa_family)
  370. return 0;
  371. if (s_addr->sa_family != AF_INET
  372. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  373. && s_addr->sa_family != AF_INET6
  374. #endif
  375. )
  376. return 0;
  377. return 1;
  378. }
  379. static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  380. {
  381. char *p = (char *) hdr;
  382. int len = skb->len;
  383. len -= sizeof(*hdr);
  384. p += sizeof(*hdr);
  385. while (len > 0) {
  386. struct sadb_ext *ehdr = (struct sadb_ext *) p;
  387. uint16_t ext_type;
  388. int ext_len;
  389. ext_len = ehdr->sadb_ext_len;
  390. ext_len *= sizeof(uint64_t);
  391. ext_type = ehdr->sadb_ext_type;
  392. if (ext_len < sizeof(uint64_t) ||
  393. ext_len > len ||
  394. ext_type == SADB_EXT_RESERVED)
  395. return -EINVAL;
  396. if (ext_type <= SADB_EXT_MAX) {
  397. int min = (int) sadb_ext_min_len[ext_type];
  398. if (ext_len < min)
  399. return -EINVAL;
  400. if (ext_hdrs[ext_type-1] != NULL)
  401. return -EINVAL;
  402. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  403. ext_type == SADB_EXT_ADDRESS_DST ||
  404. ext_type == SADB_EXT_ADDRESS_PROXY ||
  405. ext_type == SADB_X_EXT_NAT_T_OA) {
  406. if (verify_address_len(p))
  407. return -EINVAL;
  408. }
  409. if (ext_type == SADB_X_EXT_SEC_CTX) {
  410. if (verify_sec_ctx_len(p))
  411. return -EINVAL;
  412. }
  413. ext_hdrs[ext_type-1] = p;
  414. }
  415. p += ext_len;
  416. len -= ext_len;
  417. }
  418. return 0;
  419. }
  420. static uint16_t
  421. pfkey_satype2proto(uint8_t satype)
  422. {
  423. switch (satype) {
  424. case SADB_SATYPE_UNSPEC:
  425. return IPSEC_PROTO_ANY;
  426. case SADB_SATYPE_AH:
  427. return IPPROTO_AH;
  428. case SADB_SATYPE_ESP:
  429. return IPPROTO_ESP;
  430. case SADB_X_SATYPE_IPCOMP:
  431. return IPPROTO_COMP;
  432. break;
  433. default:
  434. return 0;
  435. }
  436. /* NOTREACHED */
  437. }
  438. static uint8_t
  439. pfkey_proto2satype(uint16_t proto)
  440. {
  441. switch (proto) {
  442. case IPPROTO_AH:
  443. return SADB_SATYPE_AH;
  444. case IPPROTO_ESP:
  445. return SADB_SATYPE_ESP;
  446. case IPPROTO_COMP:
  447. return SADB_X_SATYPE_IPCOMP;
  448. break;
  449. default:
  450. return 0;
  451. }
  452. /* NOTREACHED */
  453. }
  454. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  455. * say specifically 'just raw sockets' as we encode them as 255.
  456. */
  457. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  458. {
  459. return (proto == IPSEC_PROTO_ANY ? 0 : proto);
  460. }
  461. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  462. {
  463. return (proto ? proto : IPSEC_PROTO_ANY);
  464. }
  465. static int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr,
  466. xfrm_address_t *xaddr)
  467. {
  468. switch (((struct sockaddr*)(addr + 1))->sa_family) {
  469. case AF_INET:
  470. xaddr->a4 =
  471. ((struct sockaddr_in *)(addr + 1))->sin_addr.s_addr;
  472. return AF_INET;
  473. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  474. case AF_INET6:
  475. memcpy(xaddr->a6,
  476. &((struct sockaddr_in6 *)(addr + 1))->sin6_addr,
  477. sizeof(struct in6_addr));
  478. return AF_INET6;
  479. #endif
  480. default:
  481. return 0;
  482. }
  483. /* NOTREACHED */
  484. }
  485. static struct xfrm_state *pfkey_xfrm_state_lookup(struct sadb_msg *hdr, void **ext_hdrs)
  486. {
  487. struct sadb_sa *sa;
  488. struct sadb_address *addr;
  489. uint16_t proto;
  490. unsigned short family;
  491. xfrm_address_t *xaddr;
  492. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  493. if (sa == NULL)
  494. return NULL;
  495. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  496. if (proto == 0)
  497. return NULL;
  498. /* sadb_address_len should be checked by caller */
  499. addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  500. if (addr == NULL)
  501. return NULL;
  502. family = ((struct sockaddr *)(addr + 1))->sa_family;
  503. switch (family) {
  504. case AF_INET:
  505. xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr;
  506. break;
  507. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  508. case AF_INET6:
  509. xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  510. break;
  511. #endif
  512. default:
  513. xaddr = NULL;
  514. }
  515. if (!xaddr)
  516. return NULL;
  517. return xfrm_state_lookup(xaddr, sa->sadb_sa_spi, proto, family);
  518. }
  519. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  520. static int
  521. pfkey_sockaddr_size(sa_family_t family)
  522. {
  523. switch (family) {
  524. case AF_INET:
  525. return PFKEY_ALIGN8(sizeof(struct sockaddr_in));
  526. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  527. case AF_INET6:
  528. return PFKEY_ALIGN8(sizeof(struct sockaddr_in6));
  529. #endif
  530. default:
  531. return 0;
  532. }
  533. /* NOTREACHED */
  534. }
  535. static struct sk_buff * pfkey_xfrm_state2msg(struct xfrm_state *x, int add_keys, int hsc)
  536. {
  537. struct sk_buff *skb;
  538. struct sadb_msg *hdr;
  539. struct sadb_sa *sa;
  540. struct sadb_lifetime *lifetime;
  541. struct sadb_address *addr;
  542. struct sadb_key *key;
  543. struct sadb_x_sa2 *sa2;
  544. struct sockaddr_in *sin;
  545. struct sadb_x_sec_ctx *sec_ctx;
  546. struct xfrm_sec_ctx *xfrm_ctx;
  547. int ctx_size = 0;
  548. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  549. struct sockaddr_in6 *sin6;
  550. #endif
  551. int size;
  552. int auth_key_size = 0;
  553. int encrypt_key_size = 0;
  554. int sockaddr_size;
  555. struct xfrm_encap_tmpl *natt = NULL;
  556. /* address family check */
  557. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  558. if (!sockaddr_size)
  559. return ERR_PTR(-EINVAL);
  560. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  561. key(AE), (identity(SD),) (sensitivity)> */
  562. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  563. sizeof(struct sadb_lifetime) +
  564. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  565. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  566. sizeof(struct sadb_address)*2 +
  567. sockaddr_size*2 +
  568. sizeof(struct sadb_x_sa2);
  569. if ((xfrm_ctx = x->security)) {
  570. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  571. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  572. }
  573. /* identity & sensitivity */
  574. if ((x->props.family == AF_INET &&
  575. x->sel.saddr.a4 != x->props.saddr.a4)
  576. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  577. || (x->props.family == AF_INET6 &&
  578. memcmp (x->sel.saddr.a6, x->props.saddr.a6, sizeof (struct in6_addr)))
  579. #endif
  580. )
  581. size += sizeof(struct sadb_address) + sockaddr_size;
  582. if (add_keys) {
  583. if (x->aalg && x->aalg->alg_key_len) {
  584. auth_key_size =
  585. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  586. size += sizeof(struct sadb_key) + auth_key_size;
  587. }
  588. if (x->ealg && x->ealg->alg_key_len) {
  589. encrypt_key_size =
  590. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  591. size += sizeof(struct sadb_key) + encrypt_key_size;
  592. }
  593. }
  594. if (x->encap)
  595. natt = x->encap;
  596. if (natt && natt->encap_type) {
  597. size += sizeof(struct sadb_x_nat_t_type);
  598. size += sizeof(struct sadb_x_nat_t_port);
  599. size += sizeof(struct sadb_x_nat_t_port);
  600. }
  601. skb = alloc_skb(size + 16, GFP_ATOMIC);
  602. if (skb == NULL)
  603. return ERR_PTR(-ENOBUFS);
  604. /* call should fill header later */
  605. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  606. memset(hdr, 0, size); /* XXX do we need this ? */
  607. hdr->sadb_msg_len = size / sizeof(uint64_t);
  608. /* sa */
  609. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  610. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  611. sa->sadb_sa_exttype = SADB_EXT_SA;
  612. sa->sadb_sa_spi = x->id.spi;
  613. sa->sadb_sa_replay = x->props.replay_window;
  614. switch (x->km.state) {
  615. case XFRM_STATE_VALID:
  616. sa->sadb_sa_state = x->km.dying ?
  617. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  618. break;
  619. case XFRM_STATE_ACQ:
  620. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  621. break;
  622. default:
  623. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  624. break;
  625. }
  626. sa->sadb_sa_auth = 0;
  627. if (x->aalg) {
  628. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  629. sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
  630. }
  631. sa->sadb_sa_encrypt = 0;
  632. BUG_ON(x->ealg && x->calg);
  633. if (x->ealg) {
  634. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  635. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  636. }
  637. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  638. if (x->calg) {
  639. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  640. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  641. }
  642. sa->sadb_sa_flags = 0;
  643. if (x->props.flags & XFRM_STATE_NOECN)
  644. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  645. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  646. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  647. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  648. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  649. /* hard time */
  650. if (hsc & 2) {
  651. lifetime = (struct sadb_lifetime *) skb_put(skb,
  652. sizeof(struct sadb_lifetime));
  653. lifetime->sadb_lifetime_len =
  654. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  655. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  656. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  657. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  658. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  659. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  660. }
  661. /* soft time */
  662. if (hsc & 1) {
  663. lifetime = (struct sadb_lifetime *) skb_put(skb,
  664. sizeof(struct sadb_lifetime));
  665. lifetime->sadb_lifetime_len =
  666. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  667. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  668. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  669. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  670. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  671. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  672. }
  673. /* current time */
  674. lifetime = (struct sadb_lifetime *) skb_put(skb,
  675. sizeof(struct sadb_lifetime));
  676. lifetime->sadb_lifetime_len =
  677. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  678. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  679. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  680. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  681. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  682. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  683. /* src address */
  684. addr = (struct sadb_address*) skb_put(skb,
  685. sizeof(struct sadb_address)+sockaddr_size);
  686. addr->sadb_address_len =
  687. (sizeof(struct sadb_address)+sockaddr_size)/
  688. sizeof(uint64_t);
  689. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  690. /* "if the ports are non-zero, then the sadb_address_proto field,
  691. normally zero, MUST be filled in with the transport
  692. protocol's number." - RFC2367 */
  693. addr->sadb_address_proto = 0;
  694. addr->sadb_address_reserved = 0;
  695. if (x->props.family == AF_INET) {
  696. addr->sadb_address_prefixlen = 32;
  697. sin = (struct sockaddr_in *) (addr + 1);
  698. sin->sin_family = AF_INET;
  699. sin->sin_addr.s_addr = x->props.saddr.a4;
  700. sin->sin_port = 0;
  701. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  702. }
  703. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  704. else if (x->props.family == AF_INET6) {
  705. addr->sadb_address_prefixlen = 128;
  706. sin6 = (struct sockaddr_in6 *) (addr + 1);
  707. sin6->sin6_family = AF_INET6;
  708. sin6->sin6_port = 0;
  709. sin6->sin6_flowinfo = 0;
  710. memcpy(&sin6->sin6_addr, x->props.saddr.a6,
  711. sizeof(struct in6_addr));
  712. sin6->sin6_scope_id = 0;
  713. }
  714. #endif
  715. else
  716. BUG();
  717. /* dst address */
  718. addr = (struct sadb_address*) skb_put(skb,
  719. sizeof(struct sadb_address)+sockaddr_size);
  720. addr->sadb_address_len =
  721. (sizeof(struct sadb_address)+sockaddr_size)/
  722. sizeof(uint64_t);
  723. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  724. addr->sadb_address_proto = 0;
  725. addr->sadb_address_prefixlen = 32; /* XXX */
  726. addr->sadb_address_reserved = 0;
  727. if (x->props.family == AF_INET) {
  728. sin = (struct sockaddr_in *) (addr + 1);
  729. sin->sin_family = AF_INET;
  730. sin->sin_addr.s_addr = x->id.daddr.a4;
  731. sin->sin_port = 0;
  732. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  733. if (x->sel.saddr.a4 != x->props.saddr.a4) {
  734. addr = (struct sadb_address*) skb_put(skb,
  735. sizeof(struct sadb_address)+sockaddr_size);
  736. addr->sadb_address_len =
  737. (sizeof(struct sadb_address)+sockaddr_size)/
  738. sizeof(uint64_t);
  739. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  740. addr->sadb_address_proto =
  741. pfkey_proto_from_xfrm(x->sel.proto);
  742. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  743. addr->sadb_address_reserved = 0;
  744. sin = (struct sockaddr_in *) (addr + 1);
  745. sin->sin_family = AF_INET;
  746. sin->sin_addr.s_addr = x->sel.saddr.a4;
  747. sin->sin_port = x->sel.sport;
  748. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  749. }
  750. }
  751. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  752. else if (x->props.family == AF_INET6) {
  753. addr->sadb_address_prefixlen = 128;
  754. sin6 = (struct sockaddr_in6 *) (addr + 1);
  755. sin6->sin6_family = AF_INET6;
  756. sin6->sin6_port = 0;
  757. sin6->sin6_flowinfo = 0;
  758. memcpy(&sin6->sin6_addr, x->id.daddr.a6, sizeof(struct in6_addr));
  759. sin6->sin6_scope_id = 0;
  760. if (memcmp (x->sel.saddr.a6, x->props.saddr.a6,
  761. sizeof(struct in6_addr))) {
  762. addr = (struct sadb_address *) skb_put(skb,
  763. sizeof(struct sadb_address)+sockaddr_size);
  764. addr->sadb_address_len =
  765. (sizeof(struct sadb_address)+sockaddr_size)/
  766. sizeof(uint64_t);
  767. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  768. addr->sadb_address_proto =
  769. pfkey_proto_from_xfrm(x->sel.proto);
  770. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  771. addr->sadb_address_reserved = 0;
  772. sin6 = (struct sockaddr_in6 *) (addr + 1);
  773. sin6->sin6_family = AF_INET6;
  774. sin6->sin6_port = x->sel.sport;
  775. sin6->sin6_flowinfo = 0;
  776. memcpy(&sin6->sin6_addr, x->sel.saddr.a6,
  777. sizeof(struct in6_addr));
  778. sin6->sin6_scope_id = 0;
  779. }
  780. }
  781. #endif
  782. else
  783. BUG();
  784. /* auth key */
  785. if (add_keys && auth_key_size) {
  786. key = (struct sadb_key *) skb_put(skb,
  787. sizeof(struct sadb_key)+auth_key_size);
  788. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  789. sizeof(uint64_t);
  790. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  791. key->sadb_key_bits = x->aalg->alg_key_len;
  792. key->sadb_key_reserved = 0;
  793. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  794. }
  795. /* encrypt key */
  796. if (add_keys && encrypt_key_size) {
  797. key = (struct sadb_key *) skb_put(skb,
  798. sizeof(struct sadb_key)+encrypt_key_size);
  799. key->sadb_key_len = (sizeof(struct sadb_key) +
  800. encrypt_key_size) / sizeof(uint64_t);
  801. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  802. key->sadb_key_bits = x->ealg->alg_key_len;
  803. key->sadb_key_reserved = 0;
  804. memcpy(key + 1, x->ealg->alg_key,
  805. (x->ealg->alg_key_len+7)/8);
  806. }
  807. /* sa */
  808. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  809. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  810. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  811. sa2->sadb_x_sa2_mode = x->props.mode + 1;
  812. sa2->sadb_x_sa2_reserved1 = 0;
  813. sa2->sadb_x_sa2_reserved2 = 0;
  814. sa2->sadb_x_sa2_sequence = 0;
  815. sa2->sadb_x_sa2_reqid = x->props.reqid;
  816. if (natt && natt->encap_type) {
  817. struct sadb_x_nat_t_type *n_type;
  818. struct sadb_x_nat_t_port *n_port;
  819. /* type */
  820. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  821. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  822. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  823. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  824. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  825. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  826. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  827. /* source port */
  828. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  829. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  830. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  831. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  832. n_port->sadb_x_nat_t_port_reserved = 0;
  833. /* dest port */
  834. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  835. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  836. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  837. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  838. n_port->sadb_x_nat_t_port_reserved = 0;
  839. }
  840. /* security context */
  841. if (xfrm_ctx) {
  842. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  843. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  844. sec_ctx->sadb_x_sec_len =
  845. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  846. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  847. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  848. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  849. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  850. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  851. xfrm_ctx->ctx_len);
  852. }
  853. return skb;
  854. }
  855. static struct xfrm_state * pfkey_msg2xfrm_state(struct sadb_msg *hdr,
  856. void **ext_hdrs)
  857. {
  858. struct xfrm_state *x;
  859. struct sadb_lifetime *lifetime;
  860. struct sadb_sa *sa;
  861. struct sadb_key *key;
  862. struct sadb_x_sec_ctx *sec_ctx;
  863. uint16_t proto;
  864. int err;
  865. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  866. if (!sa ||
  867. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  868. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  869. return ERR_PTR(-EINVAL);
  870. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  871. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  872. return ERR_PTR(-EINVAL);
  873. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  874. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  875. return ERR_PTR(-EINVAL);
  876. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  877. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  878. return ERR_PTR(-EINVAL);
  879. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  880. if (proto == 0)
  881. return ERR_PTR(-EINVAL);
  882. /* default error is no buffer space */
  883. err = -ENOBUFS;
  884. /* RFC2367:
  885. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  886. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  887. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  888. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  889. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  890. not true.
  891. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  892. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  893. */
  894. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  895. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  896. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  897. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  898. return ERR_PTR(-EINVAL);
  899. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  900. if (key != NULL &&
  901. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  902. ((key->sadb_key_bits+7) / 8 == 0 ||
  903. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  904. return ERR_PTR(-EINVAL);
  905. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  906. if (key != NULL &&
  907. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  908. ((key->sadb_key_bits+7) / 8 == 0 ||
  909. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  910. return ERR_PTR(-EINVAL);
  911. x = xfrm_state_alloc();
  912. if (x == NULL)
  913. return ERR_PTR(-ENOBUFS);
  914. x->id.proto = proto;
  915. x->id.spi = sa->sadb_sa_spi;
  916. x->props.replay_window = sa->sadb_sa_replay;
  917. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  918. x->props.flags |= XFRM_STATE_NOECN;
  919. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  920. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  921. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  922. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  923. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1];
  924. if (lifetime != NULL) {
  925. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  926. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  927. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  928. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  929. }
  930. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1];
  931. if (lifetime != NULL) {
  932. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  933. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  934. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  935. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  936. }
  937. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  938. if (sec_ctx != NULL) {
  939. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  940. if (!uctx)
  941. goto out;
  942. err = security_xfrm_state_alloc(x, uctx);
  943. kfree(uctx);
  944. if (err)
  945. goto out;
  946. }
  947. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  948. if (sa->sadb_sa_auth) {
  949. int keysize = 0;
  950. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  951. if (!a) {
  952. err = -ENOSYS;
  953. goto out;
  954. }
  955. if (key)
  956. keysize = (key->sadb_key_bits + 7) / 8;
  957. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  958. if (!x->aalg)
  959. goto out;
  960. strcpy(x->aalg->alg_name, a->name);
  961. x->aalg->alg_key_len = 0;
  962. if (key) {
  963. x->aalg->alg_key_len = key->sadb_key_bits;
  964. memcpy(x->aalg->alg_key, key+1, keysize);
  965. }
  966. x->props.aalgo = sa->sadb_sa_auth;
  967. /* x->algo.flags = sa->sadb_sa_flags; */
  968. }
  969. if (sa->sadb_sa_encrypt) {
  970. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  971. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  972. if (!a) {
  973. err = -ENOSYS;
  974. goto out;
  975. }
  976. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  977. if (!x->calg)
  978. goto out;
  979. strcpy(x->calg->alg_name, a->name);
  980. x->props.calgo = sa->sadb_sa_encrypt;
  981. } else {
  982. int keysize = 0;
  983. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  984. if (!a) {
  985. err = -ENOSYS;
  986. goto out;
  987. }
  988. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  989. if (key)
  990. keysize = (key->sadb_key_bits + 7) / 8;
  991. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  992. if (!x->ealg)
  993. goto out;
  994. strcpy(x->ealg->alg_name, a->name);
  995. x->ealg->alg_key_len = 0;
  996. if (key) {
  997. x->ealg->alg_key_len = key->sadb_key_bits;
  998. memcpy(x->ealg->alg_key, key+1, keysize);
  999. }
  1000. x->props.ealgo = sa->sadb_sa_encrypt;
  1001. }
  1002. }
  1003. /* x->algo.flags = sa->sadb_sa_flags; */
  1004. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1005. &x->props.saddr);
  1006. if (!x->props.family) {
  1007. err = -EAFNOSUPPORT;
  1008. goto out;
  1009. }
  1010. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1011. &x->id.daddr);
  1012. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1013. struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1];
  1014. x->props.mode = sa2->sadb_x_sa2_mode;
  1015. if (x->props.mode)
  1016. x->props.mode--;
  1017. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1018. }
  1019. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1020. struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1021. /* Nobody uses this, but we try. */
  1022. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1023. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1024. }
  1025. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1026. struct sadb_x_nat_t_type* n_type;
  1027. struct xfrm_encap_tmpl *natt;
  1028. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1029. if (!x->encap)
  1030. goto out;
  1031. natt = x->encap;
  1032. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1033. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1034. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1035. struct sadb_x_nat_t_port* n_port =
  1036. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1037. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1038. }
  1039. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1040. struct sadb_x_nat_t_port* n_port =
  1041. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1042. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1043. }
  1044. }
  1045. err = xfrm_init_state(x);
  1046. if (err)
  1047. goto out;
  1048. x->km.seq = hdr->sadb_msg_seq;
  1049. return x;
  1050. out:
  1051. x->km.state = XFRM_STATE_DEAD;
  1052. xfrm_state_put(x);
  1053. return ERR_PTR(err);
  1054. }
  1055. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1056. {
  1057. return -EOPNOTSUPP;
  1058. }
  1059. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1060. {
  1061. struct sk_buff *resp_skb;
  1062. struct sadb_x_sa2 *sa2;
  1063. struct sadb_address *saddr, *daddr;
  1064. struct sadb_msg *out_hdr;
  1065. struct xfrm_state *x = NULL;
  1066. u8 mode;
  1067. u32 reqid;
  1068. u8 proto;
  1069. unsigned short family;
  1070. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1071. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1072. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1073. return -EINVAL;
  1074. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1075. if (proto == 0)
  1076. return -EINVAL;
  1077. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1078. mode = sa2->sadb_x_sa2_mode - 1;
  1079. reqid = sa2->sadb_x_sa2_reqid;
  1080. } else {
  1081. mode = 0;
  1082. reqid = 0;
  1083. }
  1084. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1085. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1086. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1087. switch (family) {
  1088. case AF_INET:
  1089. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1090. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1091. break;
  1092. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1093. case AF_INET6:
  1094. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1095. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1096. break;
  1097. #endif
  1098. }
  1099. if (hdr->sadb_msg_seq) {
  1100. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1101. if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
  1102. xfrm_state_put(x);
  1103. x = NULL;
  1104. }
  1105. }
  1106. if (!x)
  1107. x = xfrm_find_acq(mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1108. if (x == NULL)
  1109. return -ENOENT;
  1110. resp_skb = ERR_PTR(-ENOENT);
  1111. spin_lock_bh(&x->lock);
  1112. if (x->km.state != XFRM_STATE_DEAD) {
  1113. struct sadb_spirange *range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1114. u32 min_spi, max_spi;
  1115. if (range != NULL) {
  1116. min_spi = range->sadb_spirange_min;
  1117. max_spi = range->sadb_spirange_max;
  1118. } else {
  1119. min_spi = 0x100;
  1120. max_spi = 0x0fffffff;
  1121. }
  1122. xfrm_alloc_spi(x, htonl(min_spi), htonl(max_spi));
  1123. if (x->id.spi)
  1124. resp_skb = pfkey_xfrm_state2msg(x, 0, 3);
  1125. }
  1126. spin_unlock_bh(&x->lock);
  1127. if (IS_ERR(resp_skb)) {
  1128. xfrm_state_put(x);
  1129. return PTR_ERR(resp_skb);
  1130. }
  1131. out_hdr = (struct sadb_msg *) resp_skb->data;
  1132. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1133. out_hdr->sadb_msg_type = SADB_GETSPI;
  1134. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1135. out_hdr->sadb_msg_errno = 0;
  1136. out_hdr->sadb_msg_reserved = 0;
  1137. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1138. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1139. xfrm_state_put(x);
  1140. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk);
  1141. return 0;
  1142. }
  1143. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1144. {
  1145. struct xfrm_state *x;
  1146. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1147. return -EOPNOTSUPP;
  1148. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1149. return 0;
  1150. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1151. if (x == NULL)
  1152. return 0;
  1153. spin_lock_bh(&x->lock);
  1154. if (x->km.state == XFRM_STATE_ACQ) {
  1155. x->km.state = XFRM_STATE_ERROR;
  1156. wake_up(&km_waitq);
  1157. }
  1158. spin_unlock_bh(&x->lock);
  1159. xfrm_state_put(x);
  1160. return 0;
  1161. }
  1162. static inline int event2poltype(int event)
  1163. {
  1164. switch (event) {
  1165. case XFRM_MSG_DELPOLICY:
  1166. return SADB_X_SPDDELETE;
  1167. case XFRM_MSG_NEWPOLICY:
  1168. return SADB_X_SPDADD;
  1169. case XFRM_MSG_UPDPOLICY:
  1170. return SADB_X_SPDUPDATE;
  1171. case XFRM_MSG_POLEXPIRE:
  1172. // return SADB_X_SPDEXPIRE;
  1173. default:
  1174. printk("pfkey: Unknown policy event %d\n", event);
  1175. break;
  1176. }
  1177. return 0;
  1178. }
  1179. static inline int event2keytype(int event)
  1180. {
  1181. switch (event) {
  1182. case XFRM_MSG_DELSA:
  1183. return SADB_DELETE;
  1184. case XFRM_MSG_NEWSA:
  1185. return SADB_ADD;
  1186. case XFRM_MSG_UPDSA:
  1187. return SADB_UPDATE;
  1188. case XFRM_MSG_EXPIRE:
  1189. return SADB_EXPIRE;
  1190. default:
  1191. printk("pfkey: Unknown SA event %d\n", event);
  1192. break;
  1193. }
  1194. return 0;
  1195. }
  1196. /* ADD/UPD/DEL */
  1197. static int key_notify_sa(struct xfrm_state *x, struct km_event *c)
  1198. {
  1199. struct sk_buff *skb;
  1200. struct sadb_msg *hdr;
  1201. int hsc = 3;
  1202. if (c->event == XFRM_MSG_DELSA)
  1203. hsc = 0;
  1204. skb = pfkey_xfrm_state2msg(x, 0, hsc);
  1205. if (IS_ERR(skb))
  1206. return PTR_ERR(skb);
  1207. hdr = (struct sadb_msg *) skb->data;
  1208. hdr->sadb_msg_version = PF_KEY_V2;
  1209. hdr->sadb_msg_type = event2keytype(c->event);
  1210. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1211. hdr->sadb_msg_errno = 0;
  1212. hdr->sadb_msg_reserved = 0;
  1213. hdr->sadb_msg_seq = c->seq;
  1214. hdr->sadb_msg_pid = c->pid;
  1215. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1216. return 0;
  1217. }
  1218. static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1219. {
  1220. struct xfrm_state *x;
  1221. int err;
  1222. struct km_event c;
  1223. xfrm_probe_algs();
  1224. x = pfkey_msg2xfrm_state(hdr, ext_hdrs);
  1225. if (IS_ERR(x))
  1226. return PTR_ERR(x);
  1227. xfrm_state_hold(x);
  1228. if (hdr->sadb_msg_type == SADB_ADD)
  1229. err = xfrm_state_add(x);
  1230. else
  1231. err = xfrm_state_update(x);
  1232. if (err < 0) {
  1233. x->km.state = XFRM_STATE_DEAD;
  1234. __xfrm_state_put(x);
  1235. goto out;
  1236. }
  1237. if (hdr->sadb_msg_type == SADB_ADD)
  1238. c.event = XFRM_MSG_NEWSA;
  1239. else
  1240. c.event = XFRM_MSG_UPDSA;
  1241. c.seq = hdr->sadb_msg_seq;
  1242. c.pid = hdr->sadb_msg_pid;
  1243. km_state_notify(x, &c);
  1244. out:
  1245. xfrm_state_put(x);
  1246. return err;
  1247. }
  1248. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1249. {
  1250. struct xfrm_state *x;
  1251. struct km_event c;
  1252. int err;
  1253. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1254. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1255. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1256. return -EINVAL;
  1257. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1258. if (x == NULL)
  1259. return -ESRCH;
  1260. if ((err = security_xfrm_state_delete(x)))
  1261. goto out;
  1262. if (xfrm_state_kern(x)) {
  1263. err = -EPERM;
  1264. goto out;
  1265. }
  1266. err = xfrm_state_delete(x);
  1267. if (err < 0)
  1268. goto out;
  1269. c.seq = hdr->sadb_msg_seq;
  1270. c.pid = hdr->sadb_msg_pid;
  1271. c.event = XFRM_MSG_DELSA;
  1272. km_state_notify(x, &c);
  1273. out:
  1274. xfrm_state_put(x);
  1275. return err;
  1276. }
  1277. static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1278. {
  1279. __u8 proto;
  1280. struct sk_buff *out_skb;
  1281. struct sadb_msg *out_hdr;
  1282. struct xfrm_state *x;
  1283. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1284. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1285. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1286. return -EINVAL;
  1287. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1288. if (x == NULL)
  1289. return -ESRCH;
  1290. out_skb = pfkey_xfrm_state2msg(x, 1, 3);
  1291. proto = x->id.proto;
  1292. xfrm_state_put(x);
  1293. if (IS_ERR(out_skb))
  1294. return PTR_ERR(out_skb);
  1295. out_hdr = (struct sadb_msg *) out_skb->data;
  1296. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1297. out_hdr->sadb_msg_type = SADB_DUMP;
  1298. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1299. out_hdr->sadb_msg_errno = 0;
  1300. out_hdr->sadb_msg_reserved = 0;
  1301. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1302. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1303. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  1304. return 0;
  1305. }
  1306. static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig,
  1307. gfp_t allocation)
  1308. {
  1309. struct sk_buff *skb;
  1310. struct sadb_msg *hdr;
  1311. int len, auth_len, enc_len, i;
  1312. auth_len = xfrm_count_auth_supported();
  1313. if (auth_len) {
  1314. auth_len *= sizeof(struct sadb_alg);
  1315. auth_len += sizeof(struct sadb_supported);
  1316. }
  1317. enc_len = xfrm_count_enc_supported();
  1318. if (enc_len) {
  1319. enc_len *= sizeof(struct sadb_alg);
  1320. enc_len += sizeof(struct sadb_supported);
  1321. }
  1322. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1323. skb = alloc_skb(len + 16, allocation);
  1324. if (!skb)
  1325. goto out_put_algs;
  1326. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1327. pfkey_hdr_dup(hdr, orig);
  1328. hdr->sadb_msg_errno = 0;
  1329. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1330. if (auth_len) {
  1331. struct sadb_supported *sp;
  1332. struct sadb_alg *ap;
  1333. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1334. ap = (struct sadb_alg *) (sp + 1);
  1335. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1336. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1337. for (i = 0; ; i++) {
  1338. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1339. if (!aalg)
  1340. break;
  1341. if (aalg->available)
  1342. *ap++ = aalg->desc;
  1343. }
  1344. }
  1345. if (enc_len) {
  1346. struct sadb_supported *sp;
  1347. struct sadb_alg *ap;
  1348. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1349. ap = (struct sadb_alg *) (sp + 1);
  1350. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1351. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1352. for (i = 0; ; i++) {
  1353. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1354. if (!ealg)
  1355. break;
  1356. if (ealg->available)
  1357. *ap++ = ealg->desc;
  1358. }
  1359. }
  1360. out_put_algs:
  1361. return skb;
  1362. }
  1363. static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1364. {
  1365. struct pfkey_sock *pfk = pfkey_sk(sk);
  1366. struct sk_buff *supp_skb;
  1367. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1368. return -EINVAL;
  1369. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1370. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1371. return -EEXIST;
  1372. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1373. }
  1374. xfrm_probe_algs();
  1375. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1376. if (!supp_skb) {
  1377. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1378. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1379. return -ENOBUFS;
  1380. }
  1381. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk);
  1382. return 0;
  1383. }
  1384. static int key_notify_sa_flush(struct km_event *c)
  1385. {
  1386. struct sk_buff *skb;
  1387. struct sadb_msg *hdr;
  1388. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1389. if (!skb)
  1390. return -ENOBUFS;
  1391. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1392. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1393. hdr->sadb_msg_type = SADB_FLUSH;
  1394. hdr->sadb_msg_seq = c->seq;
  1395. hdr->sadb_msg_pid = c->pid;
  1396. hdr->sadb_msg_version = PF_KEY_V2;
  1397. hdr->sadb_msg_errno = (uint8_t) 0;
  1398. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1399. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1400. return 0;
  1401. }
  1402. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1403. {
  1404. unsigned proto;
  1405. struct km_event c;
  1406. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1407. if (proto == 0)
  1408. return -EINVAL;
  1409. xfrm_state_flush(proto);
  1410. c.data.proto = proto;
  1411. c.seq = hdr->sadb_msg_seq;
  1412. c.pid = hdr->sadb_msg_pid;
  1413. c.event = XFRM_MSG_FLUSHSA;
  1414. km_state_notify(NULL, &c);
  1415. return 0;
  1416. }
  1417. struct pfkey_dump_data
  1418. {
  1419. struct sk_buff *skb;
  1420. struct sadb_msg *hdr;
  1421. struct sock *sk;
  1422. };
  1423. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1424. {
  1425. struct pfkey_dump_data *data = ptr;
  1426. struct sk_buff *out_skb;
  1427. struct sadb_msg *out_hdr;
  1428. out_skb = pfkey_xfrm_state2msg(x, 1, 3);
  1429. if (IS_ERR(out_skb))
  1430. return PTR_ERR(out_skb);
  1431. out_hdr = (struct sadb_msg *) out_skb->data;
  1432. out_hdr->sadb_msg_version = data->hdr->sadb_msg_version;
  1433. out_hdr->sadb_msg_type = SADB_DUMP;
  1434. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1435. out_hdr->sadb_msg_errno = 0;
  1436. out_hdr->sadb_msg_reserved = 0;
  1437. out_hdr->sadb_msg_seq = count;
  1438. out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid;
  1439. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk);
  1440. return 0;
  1441. }
  1442. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1443. {
  1444. u8 proto;
  1445. struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk };
  1446. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1447. if (proto == 0)
  1448. return -EINVAL;
  1449. return xfrm_state_walk(proto, dump_sa, &data);
  1450. }
  1451. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1452. {
  1453. struct pfkey_sock *pfk = pfkey_sk(sk);
  1454. int satype = hdr->sadb_msg_satype;
  1455. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1456. /* XXX we mangle packet... */
  1457. hdr->sadb_msg_errno = 0;
  1458. if (satype != 0 && satype != 1)
  1459. return -EINVAL;
  1460. pfk->promisc = satype;
  1461. }
  1462. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL);
  1463. return 0;
  1464. }
  1465. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1466. {
  1467. int i;
  1468. u32 reqid = *(u32*)ptr;
  1469. for (i=0; i<xp->xfrm_nr; i++) {
  1470. if (xp->xfrm_vec[i].reqid == reqid)
  1471. return -EEXIST;
  1472. }
  1473. return 0;
  1474. }
  1475. static u32 gen_reqid(void)
  1476. {
  1477. u32 start;
  1478. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1479. start = reqid;
  1480. do {
  1481. ++reqid;
  1482. if (reqid == 0)
  1483. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1484. if (xfrm_policy_walk(check_reqid, (void*)&reqid) != -EEXIST)
  1485. return reqid;
  1486. } while (reqid != start);
  1487. return 0;
  1488. }
  1489. static int
  1490. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1491. {
  1492. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1493. struct sockaddr_in *sin;
  1494. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1495. struct sockaddr_in6 *sin6;
  1496. #endif
  1497. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1498. return -ELOOP;
  1499. if (rq->sadb_x_ipsecrequest_mode == 0)
  1500. return -EINVAL;
  1501. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1502. t->mode = rq->sadb_x_ipsecrequest_mode-1;
  1503. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1504. t->optional = 1;
  1505. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1506. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1507. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1508. t->reqid = 0;
  1509. if (!t->reqid && !(t->reqid = gen_reqid()))
  1510. return -ENOBUFS;
  1511. }
  1512. /* addresses present only in tunnel mode */
  1513. if (t->mode) {
  1514. switch (xp->family) {
  1515. case AF_INET:
  1516. sin = (void*)(rq+1);
  1517. if (sin->sin_family != AF_INET)
  1518. return -EINVAL;
  1519. t->saddr.a4 = sin->sin_addr.s_addr;
  1520. sin++;
  1521. if (sin->sin_family != AF_INET)
  1522. return -EINVAL;
  1523. t->id.daddr.a4 = sin->sin_addr.s_addr;
  1524. break;
  1525. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1526. case AF_INET6:
  1527. sin6 = (void *)(rq+1);
  1528. if (sin6->sin6_family != AF_INET6)
  1529. return -EINVAL;
  1530. memcpy(t->saddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
  1531. sin6++;
  1532. if (sin6->sin6_family != AF_INET6)
  1533. return -EINVAL;
  1534. memcpy(t->id.daddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
  1535. break;
  1536. #endif
  1537. default:
  1538. return -EINVAL;
  1539. }
  1540. }
  1541. /* No way to set this via kame pfkey */
  1542. t->aalgos = t->ealgos = t->calgos = ~0;
  1543. xp->xfrm_nr++;
  1544. return 0;
  1545. }
  1546. static int
  1547. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1548. {
  1549. int err;
  1550. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1551. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1552. while (len >= sizeof(struct sadb_x_ipsecrequest)) {
  1553. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1554. return err;
  1555. len -= rq->sadb_x_ipsecrequest_len;
  1556. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1557. }
  1558. return 0;
  1559. }
  1560. static inline int pfkey_xfrm_policy2sec_ctx_size(struct xfrm_policy *xp)
  1561. {
  1562. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1563. if (xfrm_ctx) {
  1564. int len = sizeof(struct sadb_x_sec_ctx);
  1565. len += xfrm_ctx->ctx_len;
  1566. return PFKEY_ALIGN8(len);
  1567. }
  1568. return 0;
  1569. }
  1570. static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp)
  1571. {
  1572. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1573. int socklen = (xp->family == AF_INET ?
  1574. sizeof(struct sockaddr_in) :
  1575. sizeof(struct sockaddr_in6));
  1576. return sizeof(struct sadb_msg) +
  1577. (sizeof(struct sadb_lifetime) * 3) +
  1578. (sizeof(struct sadb_address) * 2) +
  1579. (sockaddr_size * 2) +
  1580. sizeof(struct sadb_x_policy) +
  1581. (xp->xfrm_nr * (sizeof(struct sadb_x_ipsecrequest) +
  1582. (socklen * 2))) +
  1583. pfkey_xfrm_policy2sec_ctx_size(xp);
  1584. }
  1585. static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp)
  1586. {
  1587. struct sk_buff *skb;
  1588. int size;
  1589. size = pfkey_xfrm_policy2msg_size(xp);
  1590. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1591. if (skb == NULL)
  1592. return ERR_PTR(-ENOBUFS);
  1593. return skb;
  1594. }
  1595. static void pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir)
  1596. {
  1597. struct sadb_msg *hdr;
  1598. struct sadb_address *addr;
  1599. struct sadb_lifetime *lifetime;
  1600. struct sadb_x_policy *pol;
  1601. struct sockaddr_in *sin;
  1602. struct sadb_x_sec_ctx *sec_ctx;
  1603. struct xfrm_sec_ctx *xfrm_ctx;
  1604. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1605. struct sockaddr_in6 *sin6;
  1606. #endif
  1607. int i;
  1608. int size;
  1609. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1610. int socklen = (xp->family == AF_INET ?
  1611. sizeof(struct sockaddr_in) :
  1612. sizeof(struct sockaddr_in6));
  1613. size = pfkey_xfrm_policy2msg_size(xp);
  1614. /* call should fill header later */
  1615. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1616. memset(hdr, 0, size); /* XXX do we need this ? */
  1617. /* src address */
  1618. addr = (struct sadb_address*) skb_put(skb,
  1619. sizeof(struct sadb_address)+sockaddr_size);
  1620. addr->sadb_address_len =
  1621. (sizeof(struct sadb_address)+sockaddr_size)/
  1622. sizeof(uint64_t);
  1623. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1624. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1625. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1626. addr->sadb_address_reserved = 0;
  1627. /* src address */
  1628. if (xp->family == AF_INET) {
  1629. sin = (struct sockaddr_in *) (addr + 1);
  1630. sin->sin_family = AF_INET;
  1631. sin->sin_addr.s_addr = xp->selector.saddr.a4;
  1632. sin->sin_port = xp->selector.sport;
  1633. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1634. }
  1635. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1636. else if (xp->family == AF_INET6) {
  1637. sin6 = (struct sockaddr_in6 *) (addr + 1);
  1638. sin6->sin6_family = AF_INET6;
  1639. sin6->sin6_port = xp->selector.sport;
  1640. sin6->sin6_flowinfo = 0;
  1641. memcpy(&sin6->sin6_addr, xp->selector.saddr.a6,
  1642. sizeof(struct in6_addr));
  1643. sin6->sin6_scope_id = 0;
  1644. }
  1645. #endif
  1646. else
  1647. BUG();
  1648. /* dst address */
  1649. addr = (struct sadb_address*) skb_put(skb,
  1650. sizeof(struct sadb_address)+sockaddr_size);
  1651. addr->sadb_address_len =
  1652. (sizeof(struct sadb_address)+sockaddr_size)/
  1653. sizeof(uint64_t);
  1654. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1655. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1656. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1657. addr->sadb_address_reserved = 0;
  1658. if (xp->family == AF_INET) {
  1659. sin = (struct sockaddr_in *) (addr + 1);
  1660. sin->sin_family = AF_INET;
  1661. sin->sin_addr.s_addr = xp->selector.daddr.a4;
  1662. sin->sin_port = xp->selector.dport;
  1663. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1664. }
  1665. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1666. else if (xp->family == AF_INET6) {
  1667. sin6 = (struct sockaddr_in6 *) (addr + 1);
  1668. sin6->sin6_family = AF_INET6;
  1669. sin6->sin6_port = xp->selector.dport;
  1670. sin6->sin6_flowinfo = 0;
  1671. memcpy(&sin6->sin6_addr, xp->selector.daddr.a6,
  1672. sizeof(struct in6_addr));
  1673. sin6->sin6_scope_id = 0;
  1674. }
  1675. #endif
  1676. else
  1677. BUG();
  1678. /* hard time */
  1679. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1680. sizeof(struct sadb_lifetime));
  1681. lifetime->sadb_lifetime_len =
  1682. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1683. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1684. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1685. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1686. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1687. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1688. /* soft time */
  1689. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1690. sizeof(struct sadb_lifetime));
  1691. lifetime->sadb_lifetime_len =
  1692. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1693. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1694. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1695. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1696. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1697. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1698. /* current time */
  1699. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1700. sizeof(struct sadb_lifetime));
  1701. lifetime->sadb_lifetime_len =
  1702. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1703. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1704. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1705. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1706. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1707. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1708. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  1709. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1710. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1711. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1712. if (xp->action == XFRM_POLICY_ALLOW) {
  1713. if (xp->xfrm_nr)
  1714. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1715. else
  1716. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1717. }
  1718. pol->sadb_x_policy_dir = dir+1;
  1719. pol->sadb_x_policy_id = xp->index;
  1720. pol->sadb_x_policy_priority = xp->priority;
  1721. for (i=0; i<xp->xfrm_nr; i++) {
  1722. struct sadb_x_ipsecrequest *rq;
  1723. struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1724. int req_size;
  1725. req_size = sizeof(struct sadb_x_ipsecrequest);
  1726. if (t->mode)
  1727. req_size += 2*socklen;
  1728. else
  1729. size -= 2*socklen;
  1730. rq = (void*)skb_put(skb, req_size);
  1731. pol->sadb_x_policy_len += req_size/8;
  1732. memset(rq, 0, sizeof(*rq));
  1733. rq->sadb_x_ipsecrequest_len = req_size;
  1734. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1735. rq->sadb_x_ipsecrequest_mode = t->mode+1;
  1736. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1737. if (t->reqid)
  1738. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1739. if (t->optional)
  1740. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1741. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1742. if (t->mode) {
  1743. switch (xp->family) {
  1744. case AF_INET:
  1745. sin = (void*)(rq+1);
  1746. sin->sin_family = AF_INET;
  1747. sin->sin_addr.s_addr = t->saddr.a4;
  1748. sin->sin_port = 0;
  1749. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1750. sin++;
  1751. sin->sin_family = AF_INET;
  1752. sin->sin_addr.s_addr = t->id.daddr.a4;
  1753. sin->sin_port = 0;
  1754. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1755. break;
  1756. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1757. case AF_INET6:
  1758. sin6 = (void*)(rq+1);
  1759. sin6->sin6_family = AF_INET6;
  1760. sin6->sin6_port = 0;
  1761. sin6->sin6_flowinfo = 0;
  1762. memcpy(&sin6->sin6_addr, t->saddr.a6,
  1763. sizeof(struct in6_addr));
  1764. sin6->sin6_scope_id = 0;
  1765. sin6++;
  1766. sin6->sin6_family = AF_INET6;
  1767. sin6->sin6_port = 0;
  1768. sin6->sin6_flowinfo = 0;
  1769. memcpy(&sin6->sin6_addr, t->id.daddr.a6,
  1770. sizeof(struct in6_addr));
  1771. sin6->sin6_scope_id = 0;
  1772. break;
  1773. #endif
  1774. default:
  1775. break;
  1776. }
  1777. }
  1778. }
  1779. /* security context */
  1780. if ((xfrm_ctx = xp->security)) {
  1781. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1782. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
  1783. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1784. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1785. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1786. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1787. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1788. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1789. xfrm_ctx->ctx_len);
  1790. }
  1791. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1792. hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
  1793. }
  1794. static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c)
  1795. {
  1796. struct sk_buff *out_skb;
  1797. struct sadb_msg *out_hdr;
  1798. int err;
  1799. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1800. if (IS_ERR(out_skb)) {
  1801. err = PTR_ERR(out_skb);
  1802. goto out;
  1803. }
  1804. pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1805. out_hdr = (struct sadb_msg *) out_skb->data;
  1806. out_hdr->sadb_msg_version = PF_KEY_V2;
  1807. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1808. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1809. else
  1810. out_hdr->sadb_msg_type = event2poltype(c->event);
  1811. out_hdr->sadb_msg_errno = 0;
  1812. out_hdr->sadb_msg_seq = c->seq;
  1813. out_hdr->sadb_msg_pid = c->pid;
  1814. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1815. out:
  1816. return 0;
  1817. }
  1818. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1819. {
  1820. int err = 0;
  1821. struct sadb_lifetime *lifetime;
  1822. struct sadb_address *sa;
  1823. struct sadb_x_policy *pol;
  1824. struct xfrm_policy *xp;
  1825. struct km_event c;
  1826. struct sadb_x_sec_ctx *sec_ctx;
  1827. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1828. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1829. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1830. return -EINVAL;
  1831. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1832. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1833. return -EINVAL;
  1834. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1835. return -EINVAL;
  1836. xp = xfrm_policy_alloc(GFP_KERNEL);
  1837. if (xp == NULL)
  1838. return -ENOBUFS;
  1839. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1840. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1841. xp->priority = pol->sadb_x_policy_priority;
  1842. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1843. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1844. if (!xp->family) {
  1845. err = -EINVAL;
  1846. goto out;
  1847. }
  1848. xp->selector.family = xp->family;
  1849. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1850. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1851. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1852. if (xp->selector.sport)
  1853. xp->selector.sport_mask = ~0;
  1854. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1855. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1856. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1857. /* Amusing, we set this twice. KAME apps appear to set same value
  1858. * in both addresses.
  1859. */
  1860. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1861. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1862. if (xp->selector.dport)
  1863. xp->selector.dport_mask = ~0;
  1864. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1865. if (sec_ctx != NULL) {
  1866. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1867. if (!uctx) {
  1868. err = -ENOBUFS;
  1869. goto out;
  1870. }
  1871. err = security_xfrm_policy_alloc(xp, uctx);
  1872. kfree(uctx);
  1873. if (err)
  1874. goto out;
  1875. }
  1876. xp->lft.soft_byte_limit = XFRM_INF;
  1877. xp->lft.hard_byte_limit = XFRM_INF;
  1878. xp->lft.soft_packet_limit = XFRM_INF;
  1879. xp->lft.hard_packet_limit = XFRM_INF;
  1880. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1881. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1882. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1883. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1884. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1885. }
  1886. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1887. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1888. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1889. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1890. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1891. }
  1892. xp->xfrm_nr = 0;
  1893. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1894. (err = parse_ipsecrequests(xp, pol)) < 0)
  1895. goto out;
  1896. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1897. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  1898. if (err)
  1899. goto out;
  1900. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  1901. c.event = XFRM_MSG_UPDPOLICY;
  1902. else
  1903. c.event = XFRM_MSG_NEWPOLICY;
  1904. c.seq = hdr->sadb_msg_seq;
  1905. c.pid = hdr->sadb_msg_pid;
  1906. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1907. xfrm_pol_put(xp);
  1908. return 0;
  1909. out:
  1910. security_xfrm_policy_free(xp);
  1911. kfree(xp);
  1912. return err;
  1913. }
  1914. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1915. {
  1916. int err;
  1917. struct sadb_address *sa;
  1918. struct sadb_x_policy *pol;
  1919. struct xfrm_policy *xp, tmp;
  1920. struct xfrm_selector sel;
  1921. struct km_event c;
  1922. struct sadb_x_sec_ctx *sec_ctx;
  1923. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1924. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1925. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1926. return -EINVAL;
  1927. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1928. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1929. return -EINVAL;
  1930. memset(&sel, 0, sizeof(sel));
  1931. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1932. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  1933. sel.prefixlen_s = sa->sadb_address_prefixlen;
  1934. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1935. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1936. if (sel.sport)
  1937. sel.sport_mask = ~0;
  1938. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1939. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  1940. sel.prefixlen_d = sa->sadb_address_prefixlen;
  1941. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1942. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1943. if (sel.dport)
  1944. sel.dport_mask = ~0;
  1945. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1946. memset(&tmp, 0, sizeof(struct xfrm_policy));
  1947. if (sec_ctx != NULL) {
  1948. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1949. if (!uctx)
  1950. return -ENOMEM;
  1951. err = security_xfrm_policy_alloc(&tmp, uctx);
  1952. kfree(uctx);
  1953. if (err)
  1954. return err;
  1955. }
  1956. xp = xfrm_policy_bysel_ctx(pol->sadb_x_policy_dir-1, &sel, tmp.security, 1);
  1957. security_xfrm_policy_free(&tmp);
  1958. if (xp == NULL)
  1959. return -ENOENT;
  1960. err = 0;
  1961. if ((err = security_xfrm_policy_delete(xp)))
  1962. goto out;
  1963. c.seq = hdr->sadb_msg_seq;
  1964. c.pid = hdr->sadb_msg_pid;
  1965. c.event = XFRM_MSG_DELPOLICY;
  1966. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1967. out:
  1968. xfrm_pol_put(xp);
  1969. return err;
  1970. }
  1971. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir)
  1972. {
  1973. int err;
  1974. struct sk_buff *out_skb;
  1975. struct sadb_msg *out_hdr;
  1976. err = 0;
  1977. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1978. if (IS_ERR(out_skb)) {
  1979. err = PTR_ERR(out_skb);
  1980. goto out;
  1981. }
  1982. pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1983. out_hdr = (struct sadb_msg *) out_skb->data;
  1984. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1985. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  1986. out_hdr->sadb_msg_satype = 0;
  1987. out_hdr->sadb_msg_errno = 0;
  1988. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1989. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1990. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  1991. err = 0;
  1992. out:
  1993. return err;
  1994. }
  1995. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1996. {
  1997. unsigned int dir;
  1998. int err;
  1999. struct sadb_x_policy *pol;
  2000. struct xfrm_policy *xp;
  2001. struct km_event c;
  2002. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2003. return -EINVAL;
  2004. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2005. if (dir >= XFRM_POLICY_MAX)
  2006. return -EINVAL;
  2007. xp = xfrm_policy_byid(dir, pol->sadb_x_policy_id,
  2008. hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  2009. if (xp == NULL)
  2010. return -ENOENT;
  2011. err = 0;
  2012. c.seq = hdr->sadb_msg_seq;
  2013. c.pid = hdr->sadb_msg_pid;
  2014. if (hdr->sadb_msg_type == SADB_X_SPDDELETE2) {
  2015. c.data.byid = 1;
  2016. c.event = XFRM_MSG_DELPOLICY;
  2017. km_policy_notify(xp, dir, &c);
  2018. } else {
  2019. err = key_pol_get_resp(sk, xp, hdr, dir);
  2020. }
  2021. xfrm_pol_put(xp);
  2022. return err;
  2023. }
  2024. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2025. {
  2026. struct pfkey_dump_data *data = ptr;
  2027. struct sk_buff *out_skb;
  2028. struct sadb_msg *out_hdr;
  2029. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2030. if (IS_ERR(out_skb))
  2031. return PTR_ERR(out_skb);
  2032. pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2033. out_hdr = (struct sadb_msg *) out_skb->data;
  2034. out_hdr->sadb_msg_version = data->hdr->sadb_msg_version;
  2035. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2036. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2037. out_hdr->sadb_msg_errno = 0;
  2038. out_hdr->sadb_msg_seq = count;
  2039. out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid;
  2040. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk);
  2041. return 0;
  2042. }
  2043. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2044. {
  2045. struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk };
  2046. return xfrm_policy_walk(dump_sp, &data);
  2047. }
  2048. static int key_notify_policy_flush(struct km_event *c)
  2049. {
  2050. struct sk_buff *skb_out;
  2051. struct sadb_msg *hdr;
  2052. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2053. if (!skb_out)
  2054. return -ENOBUFS;
  2055. hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
  2056. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2057. hdr->sadb_msg_seq = c->seq;
  2058. hdr->sadb_msg_pid = c->pid;
  2059. hdr->sadb_msg_version = PF_KEY_V2;
  2060. hdr->sadb_msg_errno = (uint8_t) 0;
  2061. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2062. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL);
  2063. return 0;
  2064. }
  2065. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2066. {
  2067. struct km_event c;
  2068. xfrm_policy_flush();
  2069. c.event = XFRM_MSG_FLUSHPOLICY;
  2070. c.pid = hdr->sadb_msg_pid;
  2071. c.seq = hdr->sadb_msg_seq;
  2072. km_policy_notify(NULL, 0, &c);
  2073. return 0;
  2074. }
  2075. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2076. struct sadb_msg *hdr, void **ext_hdrs);
  2077. static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2078. [SADB_RESERVED] = pfkey_reserved,
  2079. [SADB_GETSPI] = pfkey_getspi,
  2080. [SADB_UPDATE] = pfkey_add,
  2081. [SADB_ADD] = pfkey_add,
  2082. [SADB_DELETE] = pfkey_delete,
  2083. [SADB_GET] = pfkey_get,
  2084. [SADB_ACQUIRE] = pfkey_acquire,
  2085. [SADB_REGISTER] = pfkey_register,
  2086. [SADB_EXPIRE] = NULL,
  2087. [SADB_FLUSH] = pfkey_flush,
  2088. [SADB_DUMP] = pfkey_dump,
  2089. [SADB_X_PROMISC] = pfkey_promisc,
  2090. [SADB_X_PCHANGE] = NULL,
  2091. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2092. [SADB_X_SPDADD] = pfkey_spdadd,
  2093. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2094. [SADB_X_SPDGET] = pfkey_spdget,
  2095. [SADB_X_SPDACQUIRE] = NULL,
  2096. [SADB_X_SPDDUMP] = pfkey_spddump,
  2097. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2098. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2099. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2100. };
  2101. static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr)
  2102. {
  2103. void *ext_hdrs[SADB_EXT_MAX];
  2104. int err;
  2105. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2106. BROADCAST_PROMISC_ONLY, NULL);
  2107. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2108. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2109. if (!err) {
  2110. err = -EOPNOTSUPP;
  2111. if (pfkey_funcs[hdr->sadb_msg_type])
  2112. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2113. }
  2114. return err;
  2115. }
  2116. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2117. {
  2118. struct sadb_msg *hdr = NULL;
  2119. if (skb->len < sizeof(*hdr)) {
  2120. *errp = -EMSGSIZE;
  2121. } else {
  2122. hdr = (struct sadb_msg *) skb->data;
  2123. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2124. hdr->sadb_msg_reserved != 0 ||
  2125. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2126. hdr->sadb_msg_type > SADB_MAX)) {
  2127. hdr = NULL;
  2128. *errp = -EINVAL;
  2129. } else if (hdr->sadb_msg_len != (skb->len /
  2130. sizeof(uint64_t)) ||
  2131. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2132. sizeof(uint64_t))) {
  2133. hdr = NULL;
  2134. *errp = -EMSGSIZE;
  2135. } else {
  2136. *errp = 0;
  2137. }
  2138. }
  2139. return hdr;
  2140. }
  2141. static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2142. {
  2143. return t->aalgos & (1 << d->desc.sadb_alg_id);
  2144. }
  2145. static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2146. {
  2147. return t->ealgos & (1 << d->desc.sadb_alg_id);
  2148. }
  2149. static int count_ah_combs(struct xfrm_tmpl *t)
  2150. {
  2151. int i, sz = 0;
  2152. for (i = 0; ; i++) {
  2153. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2154. if (!aalg)
  2155. break;
  2156. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2157. sz += sizeof(struct sadb_comb);
  2158. }
  2159. return sz + sizeof(struct sadb_prop);
  2160. }
  2161. static int count_esp_combs(struct xfrm_tmpl *t)
  2162. {
  2163. int i, k, sz = 0;
  2164. for (i = 0; ; i++) {
  2165. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2166. if (!ealg)
  2167. break;
  2168. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2169. continue;
  2170. for (k = 1; ; k++) {
  2171. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2172. if (!aalg)
  2173. break;
  2174. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2175. sz += sizeof(struct sadb_comb);
  2176. }
  2177. }
  2178. return sz + sizeof(struct sadb_prop);
  2179. }
  2180. static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2181. {
  2182. struct sadb_prop *p;
  2183. int i;
  2184. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2185. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2186. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2187. p->sadb_prop_replay = 32;
  2188. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2189. for (i = 0; ; i++) {
  2190. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2191. if (!aalg)
  2192. break;
  2193. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2194. struct sadb_comb *c;
  2195. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2196. memset(c, 0, sizeof(*c));
  2197. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2198. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2199. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2200. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2201. c->sadb_comb_hard_addtime = 24*60*60;
  2202. c->sadb_comb_soft_addtime = 20*60*60;
  2203. c->sadb_comb_hard_usetime = 8*60*60;
  2204. c->sadb_comb_soft_usetime = 7*60*60;
  2205. }
  2206. }
  2207. }
  2208. static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2209. {
  2210. struct sadb_prop *p;
  2211. int i, k;
  2212. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2213. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2214. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2215. p->sadb_prop_replay = 32;
  2216. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2217. for (i=0; ; i++) {
  2218. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2219. if (!ealg)
  2220. break;
  2221. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2222. continue;
  2223. for (k = 1; ; k++) {
  2224. struct sadb_comb *c;
  2225. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2226. if (!aalg)
  2227. break;
  2228. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2229. continue;
  2230. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2231. memset(c, 0, sizeof(*c));
  2232. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2233. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2234. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2235. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2236. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2237. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2238. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2239. c->sadb_comb_hard_addtime = 24*60*60;
  2240. c->sadb_comb_soft_addtime = 20*60*60;
  2241. c->sadb_comb_hard_usetime = 8*60*60;
  2242. c->sadb_comb_soft_usetime = 7*60*60;
  2243. }
  2244. }
  2245. }
  2246. static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c)
  2247. {
  2248. return 0;
  2249. }
  2250. static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c)
  2251. {
  2252. struct sk_buff *out_skb;
  2253. struct sadb_msg *out_hdr;
  2254. int hard;
  2255. int hsc;
  2256. hard = c->data.hard;
  2257. if (hard)
  2258. hsc = 2;
  2259. else
  2260. hsc = 1;
  2261. out_skb = pfkey_xfrm_state2msg(x, 0, hsc);
  2262. if (IS_ERR(out_skb))
  2263. return PTR_ERR(out_skb);
  2264. out_hdr = (struct sadb_msg *) out_skb->data;
  2265. out_hdr->sadb_msg_version = PF_KEY_V2;
  2266. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2267. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2268. out_hdr->sadb_msg_errno = 0;
  2269. out_hdr->sadb_msg_reserved = 0;
  2270. out_hdr->sadb_msg_seq = 0;
  2271. out_hdr->sadb_msg_pid = 0;
  2272. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2273. return 0;
  2274. }
  2275. static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c)
  2276. {
  2277. switch (c->event) {
  2278. case XFRM_MSG_EXPIRE:
  2279. return key_notify_sa_expire(x, c);
  2280. case XFRM_MSG_DELSA:
  2281. case XFRM_MSG_NEWSA:
  2282. case XFRM_MSG_UPDSA:
  2283. return key_notify_sa(x, c);
  2284. case XFRM_MSG_FLUSHSA:
  2285. return key_notify_sa_flush(c);
  2286. case XFRM_MSG_NEWAE: /* not yet supported */
  2287. break;
  2288. default:
  2289. printk("pfkey: Unknown SA event %d\n", c->event);
  2290. break;
  2291. }
  2292. return 0;
  2293. }
  2294. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
  2295. {
  2296. switch (c->event) {
  2297. case XFRM_MSG_POLEXPIRE:
  2298. return key_notify_policy_expire(xp, c);
  2299. case XFRM_MSG_DELPOLICY:
  2300. case XFRM_MSG_NEWPOLICY:
  2301. case XFRM_MSG_UPDPOLICY:
  2302. return key_notify_policy(xp, dir, c);
  2303. case XFRM_MSG_FLUSHPOLICY:
  2304. return key_notify_policy_flush(c);
  2305. default:
  2306. printk("pfkey: Unknown policy event %d\n", c->event);
  2307. break;
  2308. }
  2309. return 0;
  2310. }
  2311. static u32 get_acqseq(void)
  2312. {
  2313. u32 res;
  2314. static u32 acqseq;
  2315. static DEFINE_SPINLOCK(acqseq_lock);
  2316. spin_lock_bh(&acqseq_lock);
  2317. res = (++acqseq ? : ++acqseq);
  2318. spin_unlock_bh(&acqseq_lock);
  2319. return res;
  2320. }
  2321. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir)
  2322. {
  2323. struct sk_buff *skb;
  2324. struct sadb_msg *hdr;
  2325. struct sadb_address *addr;
  2326. struct sadb_x_policy *pol;
  2327. struct sockaddr_in *sin;
  2328. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2329. struct sockaddr_in6 *sin6;
  2330. #endif
  2331. int sockaddr_size;
  2332. int size;
  2333. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2334. if (!sockaddr_size)
  2335. return -EINVAL;
  2336. size = sizeof(struct sadb_msg) +
  2337. (sizeof(struct sadb_address) * 2) +
  2338. (sockaddr_size * 2) +
  2339. sizeof(struct sadb_x_policy);
  2340. if (x->id.proto == IPPROTO_AH)
  2341. size += count_ah_combs(t);
  2342. else if (x->id.proto == IPPROTO_ESP)
  2343. size += count_esp_combs(t);
  2344. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2345. if (skb == NULL)
  2346. return -ENOMEM;
  2347. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2348. hdr->sadb_msg_version = PF_KEY_V2;
  2349. hdr->sadb_msg_type = SADB_ACQUIRE;
  2350. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2351. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2352. hdr->sadb_msg_errno = 0;
  2353. hdr->sadb_msg_reserved = 0;
  2354. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2355. hdr->sadb_msg_pid = 0;
  2356. /* src address */
  2357. addr = (struct sadb_address*) skb_put(skb,
  2358. sizeof(struct sadb_address)+sockaddr_size);
  2359. addr->sadb_address_len =
  2360. (sizeof(struct sadb_address)+sockaddr_size)/
  2361. sizeof(uint64_t);
  2362. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2363. addr->sadb_address_proto = 0;
  2364. addr->sadb_address_reserved = 0;
  2365. if (x->props.family == AF_INET) {
  2366. addr->sadb_address_prefixlen = 32;
  2367. sin = (struct sockaddr_in *) (addr + 1);
  2368. sin->sin_family = AF_INET;
  2369. sin->sin_addr.s_addr = x->props.saddr.a4;
  2370. sin->sin_port = 0;
  2371. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2372. }
  2373. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2374. else if (x->props.family == AF_INET6) {
  2375. addr->sadb_address_prefixlen = 128;
  2376. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2377. sin6->sin6_family = AF_INET6;
  2378. sin6->sin6_port = 0;
  2379. sin6->sin6_flowinfo = 0;
  2380. memcpy(&sin6->sin6_addr,
  2381. x->props.saddr.a6, sizeof(struct in6_addr));
  2382. sin6->sin6_scope_id = 0;
  2383. }
  2384. #endif
  2385. else
  2386. BUG();
  2387. /* dst address */
  2388. addr = (struct sadb_address*) skb_put(skb,
  2389. sizeof(struct sadb_address)+sockaddr_size);
  2390. addr->sadb_address_len =
  2391. (sizeof(struct sadb_address)+sockaddr_size)/
  2392. sizeof(uint64_t);
  2393. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2394. addr->sadb_address_proto = 0;
  2395. addr->sadb_address_reserved = 0;
  2396. if (x->props.family == AF_INET) {
  2397. addr->sadb_address_prefixlen = 32;
  2398. sin = (struct sockaddr_in *) (addr + 1);
  2399. sin->sin_family = AF_INET;
  2400. sin->sin_addr.s_addr = x->id.daddr.a4;
  2401. sin->sin_port = 0;
  2402. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2403. }
  2404. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2405. else if (x->props.family == AF_INET6) {
  2406. addr->sadb_address_prefixlen = 128;
  2407. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2408. sin6->sin6_family = AF_INET6;
  2409. sin6->sin6_port = 0;
  2410. sin6->sin6_flowinfo = 0;
  2411. memcpy(&sin6->sin6_addr,
  2412. x->id.daddr.a6, sizeof(struct in6_addr));
  2413. sin6->sin6_scope_id = 0;
  2414. }
  2415. #endif
  2416. else
  2417. BUG();
  2418. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  2419. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2420. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2421. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2422. pol->sadb_x_policy_dir = dir+1;
  2423. pol->sadb_x_policy_id = xp->index;
  2424. /* Set sadb_comb's. */
  2425. if (x->id.proto == IPPROTO_AH)
  2426. dump_ah_combs(skb, t);
  2427. else if (x->id.proto == IPPROTO_ESP)
  2428. dump_esp_combs(skb, t);
  2429. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2430. }
  2431. static struct xfrm_policy *pfkey_compile_policy(u16 family, int opt,
  2432. u8 *data, int len, int *dir)
  2433. {
  2434. struct xfrm_policy *xp;
  2435. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2436. struct sadb_x_sec_ctx *sec_ctx;
  2437. switch (family) {
  2438. case AF_INET:
  2439. if (opt != IP_IPSEC_POLICY) {
  2440. *dir = -EOPNOTSUPP;
  2441. return NULL;
  2442. }
  2443. break;
  2444. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2445. case AF_INET6:
  2446. if (opt != IPV6_IPSEC_POLICY) {
  2447. *dir = -EOPNOTSUPP;
  2448. return NULL;
  2449. }
  2450. break;
  2451. #endif
  2452. default:
  2453. *dir = -EINVAL;
  2454. return NULL;
  2455. }
  2456. *dir = -EINVAL;
  2457. if (len < sizeof(struct sadb_x_policy) ||
  2458. pol->sadb_x_policy_len*8 > len ||
  2459. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2460. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2461. return NULL;
  2462. xp = xfrm_policy_alloc(GFP_ATOMIC);
  2463. if (xp == NULL) {
  2464. *dir = -ENOBUFS;
  2465. return NULL;
  2466. }
  2467. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2468. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2469. xp->lft.soft_byte_limit = XFRM_INF;
  2470. xp->lft.hard_byte_limit = XFRM_INF;
  2471. xp->lft.soft_packet_limit = XFRM_INF;
  2472. xp->lft.hard_packet_limit = XFRM_INF;
  2473. xp->family = family;
  2474. xp->xfrm_nr = 0;
  2475. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2476. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2477. goto out;
  2478. /* security context too */
  2479. if (len >= (pol->sadb_x_policy_len*8 +
  2480. sizeof(struct sadb_x_sec_ctx))) {
  2481. char *p = (char *)pol;
  2482. struct xfrm_user_sec_ctx *uctx;
  2483. p += pol->sadb_x_policy_len*8;
  2484. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2485. if (len < pol->sadb_x_policy_len*8 +
  2486. sec_ctx->sadb_x_sec_len)
  2487. goto out;
  2488. if ((*dir = verify_sec_ctx_len(p)))
  2489. goto out;
  2490. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2491. *dir = security_xfrm_policy_alloc(xp, uctx);
  2492. kfree(uctx);
  2493. if (*dir)
  2494. goto out;
  2495. }
  2496. *dir = pol->sadb_x_policy_dir-1;
  2497. return xp;
  2498. out:
  2499. security_xfrm_policy_free(xp);
  2500. kfree(xp);
  2501. return NULL;
  2502. }
  2503. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, u16 sport)
  2504. {
  2505. struct sk_buff *skb;
  2506. struct sadb_msg *hdr;
  2507. struct sadb_sa *sa;
  2508. struct sadb_address *addr;
  2509. struct sadb_x_nat_t_port *n_port;
  2510. struct sockaddr_in *sin;
  2511. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2512. struct sockaddr_in6 *sin6;
  2513. #endif
  2514. int sockaddr_size;
  2515. int size;
  2516. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2517. struct xfrm_encap_tmpl *natt = NULL;
  2518. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2519. if (!sockaddr_size)
  2520. return -EINVAL;
  2521. if (!satype)
  2522. return -EINVAL;
  2523. if (!x->encap)
  2524. return -EINVAL;
  2525. natt = x->encap;
  2526. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2527. *
  2528. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2529. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2530. */
  2531. size = sizeof(struct sadb_msg) +
  2532. sizeof(struct sadb_sa) +
  2533. (sizeof(struct sadb_address) * 2) +
  2534. (sockaddr_size * 2) +
  2535. (sizeof(struct sadb_x_nat_t_port) * 2);
  2536. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2537. if (skb == NULL)
  2538. return -ENOMEM;
  2539. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2540. hdr->sadb_msg_version = PF_KEY_V2;
  2541. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2542. hdr->sadb_msg_satype = satype;
  2543. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2544. hdr->sadb_msg_errno = 0;
  2545. hdr->sadb_msg_reserved = 0;
  2546. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2547. hdr->sadb_msg_pid = 0;
  2548. /* SA */
  2549. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  2550. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2551. sa->sadb_sa_exttype = SADB_EXT_SA;
  2552. sa->sadb_sa_spi = x->id.spi;
  2553. sa->sadb_sa_replay = 0;
  2554. sa->sadb_sa_state = 0;
  2555. sa->sadb_sa_auth = 0;
  2556. sa->sadb_sa_encrypt = 0;
  2557. sa->sadb_sa_flags = 0;
  2558. /* ADDRESS_SRC (old addr) */
  2559. addr = (struct sadb_address*)
  2560. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2561. addr->sadb_address_len =
  2562. (sizeof(struct sadb_address)+sockaddr_size)/
  2563. sizeof(uint64_t);
  2564. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2565. addr->sadb_address_proto = 0;
  2566. addr->sadb_address_reserved = 0;
  2567. if (x->props.family == AF_INET) {
  2568. addr->sadb_address_prefixlen = 32;
  2569. sin = (struct sockaddr_in *) (addr + 1);
  2570. sin->sin_family = AF_INET;
  2571. sin->sin_addr.s_addr = x->props.saddr.a4;
  2572. sin->sin_port = 0;
  2573. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2574. }
  2575. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2576. else if (x->props.family == AF_INET6) {
  2577. addr->sadb_address_prefixlen = 128;
  2578. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2579. sin6->sin6_family = AF_INET6;
  2580. sin6->sin6_port = 0;
  2581. sin6->sin6_flowinfo = 0;
  2582. memcpy(&sin6->sin6_addr,
  2583. x->props.saddr.a6, sizeof(struct in6_addr));
  2584. sin6->sin6_scope_id = 0;
  2585. }
  2586. #endif
  2587. else
  2588. BUG();
  2589. /* NAT_T_SPORT (old port) */
  2590. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2591. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2592. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2593. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2594. n_port->sadb_x_nat_t_port_reserved = 0;
  2595. /* ADDRESS_DST (new addr) */
  2596. addr = (struct sadb_address*)
  2597. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2598. addr->sadb_address_len =
  2599. (sizeof(struct sadb_address)+sockaddr_size)/
  2600. sizeof(uint64_t);
  2601. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2602. addr->sadb_address_proto = 0;
  2603. addr->sadb_address_reserved = 0;
  2604. if (x->props.family == AF_INET) {
  2605. addr->sadb_address_prefixlen = 32;
  2606. sin = (struct sockaddr_in *) (addr + 1);
  2607. sin->sin_family = AF_INET;
  2608. sin->sin_addr.s_addr = ipaddr->a4;
  2609. sin->sin_port = 0;
  2610. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2611. }
  2612. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2613. else if (x->props.family == AF_INET6) {
  2614. addr->sadb_address_prefixlen = 128;
  2615. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2616. sin6->sin6_family = AF_INET6;
  2617. sin6->sin6_port = 0;
  2618. sin6->sin6_flowinfo = 0;
  2619. memcpy(&sin6->sin6_addr, &ipaddr->a6, sizeof(struct in6_addr));
  2620. sin6->sin6_scope_id = 0;
  2621. }
  2622. #endif
  2623. else
  2624. BUG();
  2625. /* NAT_T_DPORT (new port) */
  2626. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2627. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2628. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2629. n_port->sadb_x_nat_t_port_port = sport;
  2630. n_port->sadb_x_nat_t_port_reserved = 0;
  2631. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2632. }
  2633. static int pfkey_sendmsg(struct kiocb *kiocb,
  2634. struct socket *sock, struct msghdr *msg, size_t len)
  2635. {
  2636. struct sock *sk = sock->sk;
  2637. struct sk_buff *skb = NULL;
  2638. struct sadb_msg *hdr = NULL;
  2639. int err;
  2640. err = -EOPNOTSUPP;
  2641. if (msg->msg_flags & MSG_OOB)
  2642. goto out;
  2643. err = -EMSGSIZE;
  2644. if ((unsigned)len > sk->sk_sndbuf - 32)
  2645. goto out;
  2646. err = -ENOBUFS;
  2647. skb = alloc_skb(len, GFP_KERNEL);
  2648. if (skb == NULL)
  2649. goto out;
  2650. err = -EFAULT;
  2651. if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
  2652. goto out;
  2653. hdr = pfkey_get_base_msg(skb, &err);
  2654. if (!hdr)
  2655. goto out;
  2656. mutex_lock(&xfrm_cfg_mutex);
  2657. err = pfkey_process(sk, skb, hdr);
  2658. mutex_unlock(&xfrm_cfg_mutex);
  2659. out:
  2660. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  2661. err = 0;
  2662. if (skb)
  2663. kfree_skb(skb);
  2664. return err ? : len;
  2665. }
  2666. static int pfkey_recvmsg(struct kiocb *kiocb,
  2667. struct socket *sock, struct msghdr *msg, size_t len,
  2668. int flags)
  2669. {
  2670. struct sock *sk = sock->sk;
  2671. struct sk_buff *skb;
  2672. int copied, err;
  2673. err = -EINVAL;
  2674. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  2675. goto out;
  2676. msg->msg_namelen = 0;
  2677. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  2678. if (skb == NULL)
  2679. goto out;
  2680. copied = skb->len;
  2681. if (copied > len) {
  2682. msg->msg_flags |= MSG_TRUNC;
  2683. copied = len;
  2684. }
  2685. skb->h.raw = skb->data;
  2686. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  2687. if (err)
  2688. goto out_free;
  2689. sock_recv_timestamp(msg, sk, skb);
  2690. err = (flags & MSG_TRUNC) ? skb->len : copied;
  2691. out_free:
  2692. skb_free_datagram(sk, skb);
  2693. out:
  2694. return err;
  2695. }
  2696. static const struct proto_ops pfkey_ops = {
  2697. .family = PF_KEY,
  2698. .owner = THIS_MODULE,
  2699. /* Operations that make no sense on pfkey sockets. */
  2700. .bind = sock_no_bind,
  2701. .connect = sock_no_connect,
  2702. .socketpair = sock_no_socketpair,
  2703. .accept = sock_no_accept,
  2704. .getname = sock_no_getname,
  2705. .ioctl = sock_no_ioctl,
  2706. .listen = sock_no_listen,
  2707. .shutdown = sock_no_shutdown,
  2708. .setsockopt = sock_no_setsockopt,
  2709. .getsockopt = sock_no_getsockopt,
  2710. .mmap = sock_no_mmap,
  2711. .sendpage = sock_no_sendpage,
  2712. /* Now the operations that really occur. */
  2713. .release = pfkey_release,
  2714. .poll = datagram_poll,
  2715. .sendmsg = pfkey_sendmsg,
  2716. .recvmsg = pfkey_recvmsg,
  2717. };
  2718. static struct net_proto_family pfkey_family_ops = {
  2719. .family = PF_KEY,
  2720. .create = pfkey_create,
  2721. .owner = THIS_MODULE,
  2722. };
  2723. #ifdef CONFIG_PROC_FS
  2724. static int pfkey_read_proc(char *buffer, char **start, off_t offset,
  2725. int length, int *eof, void *data)
  2726. {
  2727. off_t pos = 0;
  2728. off_t begin = 0;
  2729. int len = 0;
  2730. struct sock *s;
  2731. struct hlist_node *node;
  2732. len += sprintf(buffer,"sk RefCnt Rmem Wmem User Inode\n");
  2733. read_lock(&pfkey_table_lock);
  2734. sk_for_each(s, node, &pfkey_table) {
  2735. len += sprintf(buffer+len,"%p %-6d %-6u %-6u %-6u %-6lu",
  2736. s,
  2737. atomic_read(&s->sk_refcnt),
  2738. atomic_read(&s->sk_rmem_alloc),
  2739. atomic_read(&s->sk_wmem_alloc),
  2740. sock_i_uid(s),
  2741. sock_i_ino(s)
  2742. );
  2743. buffer[len++] = '\n';
  2744. pos = begin + len;
  2745. if (pos < offset) {
  2746. len = 0;
  2747. begin = pos;
  2748. }
  2749. if(pos > offset + length)
  2750. goto done;
  2751. }
  2752. *eof = 1;
  2753. done:
  2754. read_unlock(&pfkey_table_lock);
  2755. *start = buffer + (offset - begin);
  2756. len -= (offset - begin);
  2757. if (len > length)
  2758. len = length;
  2759. if (len < 0)
  2760. len = 0;
  2761. return len;
  2762. }
  2763. #endif
  2764. static struct xfrm_mgr pfkeyv2_mgr =
  2765. {
  2766. .id = "pfkeyv2",
  2767. .notify = pfkey_send_notify,
  2768. .acquire = pfkey_send_acquire,
  2769. .compile_policy = pfkey_compile_policy,
  2770. .new_mapping = pfkey_send_new_mapping,
  2771. .notify_policy = pfkey_send_policy_notify,
  2772. };
  2773. static void __exit ipsec_pfkey_exit(void)
  2774. {
  2775. xfrm_unregister_km(&pfkeyv2_mgr);
  2776. remove_proc_entry("net/pfkey", NULL);
  2777. sock_unregister(PF_KEY);
  2778. proto_unregister(&key_proto);
  2779. }
  2780. static int __init ipsec_pfkey_init(void)
  2781. {
  2782. int err = proto_register(&key_proto, 0);
  2783. if (err != 0)
  2784. goto out;
  2785. err = sock_register(&pfkey_family_ops);
  2786. if (err != 0)
  2787. goto out_unregister_key_proto;
  2788. #ifdef CONFIG_PROC_FS
  2789. err = -ENOMEM;
  2790. if (create_proc_read_entry("net/pfkey", 0, NULL, pfkey_read_proc, NULL) == NULL)
  2791. goto out_sock_unregister;
  2792. #endif
  2793. err = xfrm_register_km(&pfkeyv2_mgr);
  2794. if (err != 0)
  2795. goto out_remove_proc_entry;
  2796. out:
  2797. return err;
  2798. out_remove_proc_entry:
  2799. #ifdef CONFIG_PROC_FS
  2800. remove_proc_entry("net/pfkey", NULL);
  2801. out_sock_unregister:
  2802. #endif
  2803. sock_unregister(PF_KEY);
  2804. out_unregister_key_proto:
  2805. proto_unregister(&key_proto);
  2806. goto out;
  2807. }
  2808. module_init(ipsec_pfkey_init);
  2809. module_exit(ipsec_pfkey_exit);
  2810. MODULE_LICENSE("GPL");
  2811. MODULE_ALIAS_NETPROTO(PF_KEY);