dn_dev.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478
  1. /*
  2. * DECnet An implementation of the DECnet protocol suite for the LINUX
  3. * operating system. DECnet is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * DECnet Device Layer
  7. *
  8. * Authors: Steve Whitehouse <SteveW@ACM.org>
  9. * Eduardo Marcelo Serrat <emserrat@geocities.com>
  10. *
  11. * Changes:
  12. * Steve Whitehouse : Devices now see incoming frames so they
  13. * can mark on who it came from.
  14. * Steve Whitehouse : Fixed bug in creating neighbours. Each neighbour
  15. * can now have a device specific setup func.
  16. * Steve Whitehouse : Added /proc/sys/net/decnet/conf/<dev>/
  17. * Steve Whitehouse : Fixed bug which sometimes killed timer
  18. * Steve Whitehouse : Multiple ifaddr support
  19. * Steve Whitehouse : SIOCGIFCONF is now a compile time option
  20. * Steve Whitehouse : /proc/sys/net/decnet/conf/<sys>/forwarding
  21. * Steve Whitehouse : Removed timer1 - it's a user space issue now
  22. * Patrick Caulfield : Fixed router hello message format
  23. * Steve Whitehouse : Got rid of constant sizes for blksize for
  24. * devices. All mtu based now.
  25. */
  26. #include <linux/capability.h>
  27. #include <linux/module.h>
  28. #include <linux/moduleparam.h>
  29. #include <linux/init.h>
  30. #include <linux/net.h>
  31. #include <linux/netdevice.h>
  32. #include <linux/proc_fs.h>
  33. #include <linux/seq_file.h>
  34. #include <linux/timer.h>
  35. #include <linux/string.h>
  36. #include <linux/if_arp.h>
  37. #include <linux/if_ether.h>
  38. #include <linux/skbuff.h>
  39. #include <linux/rtnetlink.h>
  40. #include <linux/sysctl.h>
  41. #include <linux/notifier.h>
  42. #include <asm/uaccess.h>
  43. #include <asm/system.h>
  44. #include <net/neighbour.h>
  45. #include <net/dst.h>
  46. #include <net/flow.h>
  47. #include <net/dn.h>
  48. #include <net/dn_dev.h>
  49. #include <net/dn_route.h>
  50. #include <net/dn_neigh.h>
  51. #include <net/dn_fib.h>
  52. #define DN_IFREQ_SIZE (sizeof(struct ifreq) - sizeof(struct sockaddr) + sizeof(struct sockaddr_dn))
  53. static char dn_rt_all_end_mcast[ETH_ALEN] = {0xAB,0x00,0x00,0x04,0x00,0x00};
  54. static char dn_rt_all_rt_mcast[ETH_ALEN] = {0xAB,0x00,0x00,0x03,0x00,0x00};
  55. static char dn_hiord[ETH_ALEN] = {0xAA,0x00,0x04,0x00,0x00,0x00};
  56. static unsigned char dn_eco_version[3] = {0x02,0x00,0x00};
  57. extern struct neigh_table dn_neigh_table;
  58. /*
  59. * decnet_address is kept in network order.
  60. */
  61. __le16 decnet_address = 0;
  62. static DEFINE_RWLOCK(dndev_lock);
  63. static struct net_device *decnet_default_device;
  64. static BLOCKING_NOTIFIER_HEAD(dnaddr_chain);
  65. static struct dn_dev *dn_dev_create(struct net_device *dev, int *err);
  66. static void dn_dev_delete(struct net_device *dev);
  67. static void rtmsg_ifa(int event, struct dn_ifaddr *ifa);
  68. static int dn_eth_up(struct net_device *);
  69. static void dn_eth_down(struct net_device *);
  70. static void dn_send_brd_hello(struct net_device *dev, struct dn_ifaddr *ifa);
  71. static void dn_send_ptp_hello(struct net_device *dev, struct dn_ifaddr *ifa);
  72. static struct dn_dev_parms dn_dev_list[] = {
  73. {
  74. .type = ARPHRD_ETHER, /* Ethernet */
  75. .mode = DN_DEV_BCAST,
  76. .state = DN_DEV_S_RU,
  77. .t2 = 1,
  78. .t3 = 10,
  79. .name = "ethernet",
  80. .ctl_name = NET_DECNET_CONF_ETHER,
  81. .up = dn_eth_up,
  82. .down = dn_eth_down,
  83. .timer3 = dn_send_brd_hello,
  84. },
  85. {
  86. .type = ARPHRD_IPGRE, /* DECnet tunneled over GRE in IP */
  87. .mode = DN_DEV_BCAST,
  88. .state = DN_DEV_S_RU,
  89. .t2 = 1,
  90. .t3 = 10,
  91. .name = "ipgre",
  92. .ctl_name = NET_DECNET_CONF_GRE,
  93. .timer3 = dn_send_brd_hello,
  94. },
  95. #if 0
  96. {
  97. .type = ARPHRD_X25, /* Bog standard X.25 */
  98. .mode = DN_DEV_UCAST,
  99. .state = DN_DEV_S_DS,
  100. .t2 = 1,
  101. .t3 = 120,
  102. .name = "x25",
  103. .ctl_name = NET_DECNET_CONF_X25,
  104. .timer3 = dn_send_ptp_hello,
  105. },
  106. #endif
  107. #if 0
  108. {
  109. .type = ARPHRD_PPP, /* DECnet over PPP */
  110. .mode = DN_DEV_BCAST,
  111. .state = DN_DEV_S_RU,
  112. .t2 = 1,
  113. .t3 = 10,
  114. .name = "ppp",
  115. .ctl_name = NET_DECNET_CONF_PPP,
  116. .timer3 = dn_send_brd_hello,
  117. },
  118. #endif
  119. {
  120. .type = ARPHRD_DDCMP, /* DECnet over DDCMP */
  121. .mode = DN_DEV_UCAST,
  122. .state = DN_DEV_S_DS,
  123. .t2 = 1,
  124. .t3 = 120,
  125. .name = "ddcmp",
  126. .ctl_name = NET_DECNET_CONF_DDCMP,
  127. .timer3 = dn_send_ptp_hello,
  128. },
  129. {
  130. .type = ARPHRD_LOOPBACK, /* Loopback interface - always last */
  131. .mode = DN_DEV_BCAST,
  132. .state = DN_DEV_S_RU,
  133. .t2 = 1,
  134. .t3 = 10,
  135. .name = "loopback",
  136. .ctl_name = NET_DECNET_CONF_LOOPBACK,
  137. .timer3 = dn_send_brd_hello,
  138. }
  139. };
  140. #define DN_DEV_LIST_SIZE (sizeof(dn_dev_list)/sizeof(struct dn_dev_parms))
  141. #define DN_DEV_PARMS_OFFSET(x) ((int) ((char *) &((struct dn_dev_parms *)0)->x))
  142. #ifdef CONFIG_SYSCTL
  143. static int min_t2[] = { 1 };
  144. static int max_t2[] = { 60 }; /* No max specified, but this seems sensible */
  145. static int min_t3[] = { 1 };
  146. static int max_t3[] = { 8191 }; /* Must fit in 16 bits when multiplied by BCT3MULT or T3MULT */
  147. static int min_priority[1];
  148. static int max_priority[] = { 127 }; /* From DECnet spec */
  149. static int dn_forwarding_proc(ctl_table *, int, struct file *,
  150. void __user *, size_t *, loff_t *);
  151. static int dn_forwarding_sysctl(ctl_table *table, int __user *name, int nlen,
  152. void __user *oldval, size_t __user *oldlenp,
  153. void __user *newval, size_t newlen,
  154. void **context);
  155. static struct dn_dev_sysctl_table {
  156. struct ctl_table_header *sysctl_header;
  157. ctl_table dn_dev_vars[5];
  158. ctl_table dn_dev_dev[2];
  159. ctl_table dn_dev_conf_dir[2];
  160. ctl_table dn_dev_proto_dir[2];
  161. ctl_table dn_dev_root_dir[2];
  162. } dn_dev_sysctl = {
  163. NULL,
  164. {
  165. {
  166. .ctl_name = NET_DECNET_CONF_DEV_FORWARDING,
  167. .procname = "forwarding",
  168. .data = (void *)DN_DEV_PARMS_OFFSET(forwarding),
  169. .maxlen = sizeof(int),
  170. .mode = 0644,
  171. .proc_handler = dn_forwarding_proc,
  172. .strategy = dn_forwarding_sysctl,
  173. },
  174. {
  175. .ctl_name = NET_DECNET_CONF_DEV_PRIORITY,
  176. .procname = "priority",
  177. .data = (void *)DN_DEV_PARMS_OFFSET(priority),
  178. .maxlen = sizeof(int),
  179. .mode = 0644,
  180. .proc_handler = proc_dointvec_minmax,
  181. .strategy = sysctl_intvec,
  182. .extra1 = &min_priority,
  183. .extra2 = &max_priority
  184. },
  185. {
  186. .ctl_name = NET_DECNET_CONF_DEV_T2,
  187. .procname = "t2",
  188. .data = (void *)DN_DEV_PARMS_OFFSET(t2),
  189. .maxlen = sizeof(int),
  190. .mode = 0644,
  191. .proc_handler = proc_dointvec_minmax,
  192. .strategy = sysctl_intvec,
  193. .extra1 = &min_t2,
  194. .extra2 = &max_t2
  195. },
  196. {
  197. .ctl_name = NET_DECNET_CONF_DEV_T3,
  198. .procname = "t3",
  199. .data = (void *)DN_DEV_PARMS_OFFSET(t3),
  200. .maxlen = sizeof(int),
  201. .mode = 0644,
  202. .proc_handler = proc_dointvec_minmax,
  203. .strategy = sysctl_intvec,
  204. .extra1 = &min_t3,
  205. .extra2 = &max_t3
  206. },
  207. {0}
  208. },
  209. {{
  210. .ctl_name = 0,
  211. .procname = "",
  212. .mode = 0555,
  213. .child = dn_dev_sysctl.dn_dev_vars
  214. }, {0}},
  215. {{
  216. .ctl_name = NET_DECNET_CONF,
  217. .procname = "conf",
  218. .mode = 0555,
  219. .child = dn_dev_sysctl.dn_dev_dev
  220. }, {0}},
  221. {{
  222. .ctl_name = NET_DECNET,
  223. .procname = "decnet",
  224. .mode = 0555,
  225. .child = dn_dev_sysctl.dn_dev_conf_dir
  226. }, {0}},
  227. {{
  228. .ctl_name = CTL_NET,
  229. .procname = "net",
  230. .mode = 0555,
  231. .child = dn_dev_sysctl.dn_dev_proto_dir
  232. }, {0}}
  233. };
  234. static void dn_dev_sysctl_register(struct net_device *dev, struct dn_dev_parms *parms)
  235. {
  236. struct dn_dev_sysctl_table *t;
  237. int i;
  238. t = kmalloc(sizeof(*t), GFP_KERNEL);
  239. if (t == NULL)
  240. return;
  241. memcpy(t, &dn_dev_sysctl, sizeof(*t));
  242. for(i = 0; i < ARRAY_SIZE(t->dn_dev_vars) - 1; i++) {
  243. long offset = (long)t->dn_dev_vars[i].data;
  244. t->dn_dev_vars[i].data = ((char *)parms) + offset;
  245. t->dn_dev_vars[i].de = NULL;
  246. }
  247. if (dev) {
  248. t->dn_dev_dev[0].procname = dev->name;
  249. t->dn_dev_dev[0].ctl_name = dev->ifindex;
  250. } else {
  251. t->dn_dev_dev[0].procname = parms->name;
  252. t->dn_dev_dev[0].ctl_name = parms->ctl_name;
  253. }
  254. t->dn_dev_dev[0].child = t->dn_dev_vars;
  255. t->dn_dev_dev[0].de = NULL;
  256. t->dn_dev_conf_dir[0].child = t->dn_dev_dev;
  257. t->dn_dev_conf_dir[0].de = NULL;
  258. t->dn_dev_proto_dir[0].child = t->dn_dev_conf_dir;
  259. t->dn_dev_proto_dir[0].de = NULL;
  260. t->dn_dev_root_dir[0].child = t->dn_dev_proto_dir;
  261. t->dn_dev_root_dir[0].de = NULL;
  262. t->dn_dev_vars[0].extra1 = (void *)dev;
  263. t->sysctl_header = register_sysctl_table(t->dn_dev_root_dir, 0);
  264. if (t->sysctl_header == NULL)
  265. kfree(t);
  266. else
  267. parms->sysctl = t;
  268. }
  269. static void dn_dev_sysctl_unregister(struct dn_dev_parms *parms)
  270. {
  271. if (parms->sysctl) {
  272. struct dn_dev_sysctl_table *t = parms->sysctl;
  273. parms->sysctl = NULL;
  274. unregister_sysctl_table(t->sysctl_header);
  275. kfree(t);
  276. }
  277. }
  278. static int dn_forwarding_proc(ctl_table *table, int write,
  279. struct file *filep,
  280. void __user *buffer,
  281. size_t *lenp, loff_t *ppos)
  282. {
  283. #ifdef CONFIG_DECNET_ROUTER
  284. struct net_device *dev = table->extra1;
  285. struct dn_dev *dn_db;
  286. int err;
  287. int tmp, old;
  288. if (table->extra1 == NULL)
  289. return -EINVAL;
  290. dn_db = dev->dn_ptr;
  291. old = dn_db->parms.forwarding;
  292. err = proc_dointvec(table, write, filep, buffer, lenp, ppos);
  293. if ((err >= 0) && write) {
  294. if (dn_db->parms.forwarding < 0)
  295. dn_db->parms.forwarding = 0;
  296. if (dn_db->parms.forwarding > 2)
  297. dn_db->parms.forwarding = 2;
  298. /*
  299. * What an ugly hack this is... its works, just. It
  300. * would be nice if sysctl/proc were just that little
  301. * bit more flexible so I don't have to write a special
  302. * routine, or suffer hacks like this - SJW
  303. */
  304. tmp = dn_db->parms.forwarding;
  305. dn_db->parms.forwarding = old;
  306. if (dn_db->parms.down)
  307. dn_db->parms.down(dev);
  308. dn_db->parms.forwarding = tmp;
  309. if (dn_db->parms.up)
  310. dn_db->parms.up(dev);
  311. }
  312. return err;
  313. #else
  314. return -EINVAL;
  315. #endif
  316. }
  317. static int dn_forwarding_sysctl(ctl_table *table, int __user *name, int nlen,
  318. void __user *oldval, size_t __user *oldlenp,
  319. void __user *newval, size_t newlen,
  320. void **context)
  321. {
  322. #ifdef CONFIG_DECNET_ROUTER
  323. struct net_device *dev = table->extra1;
  324. struct dn_dev *dn_db;
  325. int value;
  326. if (table->extra1 == NULL)
  327. return -EINVAL;
  328. dn_db = dev->dn_ptr;
  329. if (newval && newlen) {
  330. if (newlen != sizeof(int))
  331. return -EINVAL;
  332. if (get_user(value, (int __user *)newval))
  333. return -EFAULT;
  334. if (value < 0)
  335. return -EINVAL;
  336. if (value > 2)
  337. return -EINVAL;
  338. if (dn_db->parms.down)
  339. dn_db->parms.down(dev);
  340. dn_db->parms.forwarding = value;
  341. if (dn_db->parms.up)
  342. dn_db->parms.up(dev);
  343. }
  344. return 0;
  345. #else
  346. return -EINVAL;
  347. #endif
  348. }
  349. #else /* CONFIG_SYSCTL */
  350. static void dn_dev_sysctl_unregister(struct dn_dev_parms *parms)
  351. {
  352. }
  353. static void dn_dev_sysctl_register(struct net_device *dev, struct dn_dev_parms *parms)
  354. {
  355. }
  356. #endif /* CONFIG_SYSCTL */
  357. static inline __u16 mtu2blksize(struct net_device *dev)
  358. {
  359. u32 blksize = dev->mtu;
  360. if (blksize > 0xffff)
  361. blksize = 0xffff;
  362. if (dev->type == ARPHRD_ETHER ||
  363. dev->type == ARPHRD_PPP ||
  364. dev->type == ARPHRD_IPGRE ||
  365. dev->type == ARPHRD_LOOPBACK)
  366. blksize -= 2;
  367. return (__u16)blksize;
  368. }
  369. static struct dn_ifaddr *dn_dev_alloc_ifa(void)
  370. {
  371. struct dn_ifaddr *ifa;
  372. ifa = kzalloc(sizeof(*ifa), GFP_KERNEL);
  373. return ifa;
  374. }
  375. static __inline__ void dn_dev_free_ifa(struct dn_ifaddr *ifa)
  376. {
  377. kfree(ifa);
  378. }
  379. static void dn_dev_del_ifa(struct dn_dev *dn_db, struct dn_ifaddr **ifap, int destroy)
  380. {
  381. struct dn_ifaddr *ifa1 = *ifap;
  382. unsigned char mac_addr[6];
  383. struct net_device *dev = dn_db->dev;
  384. ASSERT_RTNL();
  385. *ifap = ifa1->ifa_next;
  386. if (dn_db->dev->type == ARPHRD_ETHER) {
  387. if (ifa1->ifa_local != dn_eth2dn(dev->dev_addr)) {
  388. dn_dn2eth(mac_addr, ifa1->ifa_local);
  389. dev_mc_delete(dev, mac_addr, ETH_ALEN, 0);
  390. }
  391. }
  392. rtmsg_ifa(RTM_DELADDR, ifa1);
  393. blocking_notifier_call_chain(&dnaddr_chain, NETDEV_DOWN, ifa1);
  394. if (destroy) {
  395. dn_dev_free_ifa(ifa1);
  396. if (dn_db->ifa_list == NULL)
  397. dn_dev_delete(dn_db->dev);
  398. }
  399. }
  400. static int dn_dev_insert_ifa(struct dn_dev *dn_db, struct dn_ifaddr *ifa)
  401. {
  402. struct net_device *dev = dn_db->dev;
  403. struct dn_ifaddr *ifa1;
  404. unsigned char mac_addr[6];
  405. ASSERT_RTNL();
  406. /* Check for duplicates */
  407. for(ifa1 = dn_db->ifa_list; ifa1; ifa1 = ifa1->ifa_next) {
  408. if (ifa1->ifa_local == ifa->ifa_local)
  409. return -EEXIST;
  410. }
  411. if (dev->type == ARPHRD_ETHER) {
  412. if (ifa->ifa_local != dn_eth2dn(dev->dev_addr)) {
  413. dn_dn2eth(mac_addr, ifa->ifa_local);
  414. dev_mc_add(dev, mac_addr, ETH_ALEN, 0);
  415. dev_mc_upload(dev);
  416. }
  417. }
  418. ifa->ifa_next = dn_db->ifa_list;
  419. dn_db->ifa_list = ifa;
  420. rtmsg_ifa(RTM_NEWADDR, ifa);
  421. blocking_notifier_call_chain(&dnaddr_chain, NETDEV_UP, ifa);
  422. return 0;
  423. }
  424. static int dn_dev_set_ifa(struct net_device *dev, struct dn_ifaddr *ifa)
  425. {
  426. struct dn_dev *dn_db = dev->dn_ptr;
  427. int rv;
  428. if (dn_db == NULL) {
  429. int err;
  430. dn_db = dn_dev_create(dev, &err);
  431. if (dn_db == NULL)
  432. return err;
  433. }
  434. ifa->ifa_dev = dn_db;
  435. if (dev->flags & IFF_LOOPBACK)
  436. ifa->ifa_scope = RT_SCOPE_HOST;
  437. rv = dn_dev_insert_ifa(dn_db, ifa);
  438. if (rv)
  439. dn_dev_free_ifa(ifa);
  440. return rv;
  441. }
  442. int dn_dev_ioctl(unsigned int cmd, void __user *arg)
  443. {
  444. char buffer[DN_IFREQ_SIZE];
  445. struct ifreq *ifr = (struct ifreq *)buffer;
  446. struct sockaddr_dn *sdn = (struct sockaddr_dn *)&ifr->ifr_addr;
  447. struct dn_dev *dn_db;
  448. struct net_device *dev;
  449. struct dn_ifaddr *ifa = NULL, **ifap = NULL;
  450. int ret = 0;
  451. if (copy_from_user(ifr, arg, DN_IFREQ_SIZE))
  452. return -EFAULT;
  453. ifr->ifr_name[IFNAMSIZ-1] = 0;
  454. #ifdef CONFIG_KMOD
  455. dev_load(ifr->ifr_name);
  456. #endif
  457. switch(cmd) {
  458. case SIOCGIFADDR:
  459. break;
  460. case SIOCSIFADDR:
  461. if (!capable(CAP_NET_ADMIN))
  462. return -EACCES;
  463. if (sdn->sdn_family != AF_DECnet)
  464. return -EINVAL;
  465. break;
  466. default:
  467. return -EINVAL;
  468. }
  469. rtnl_lock();
  470. if ((dev = __dev_get_by_name(ifr->ifr_name)) == NULL) {
  471. ret = -ENODEV;
  472. goto done;
  473. }
  474. if ((dn_db = dev->dn_ptr) != NULL) {
  475. for (ifap = &dn_db->ifa_list; (ifa=*ifap) != NULL; ifap = &ifa->ifa_next)
  476. if (strcmp(ifr->ifr_name, ifa->ifa_label) == 0)
  477. break;
  478. }
  479. if (ifa == NULL && cmd != SIOCSIFADDR) {
  480. ret = -EADDRNOTAVAIL;
  481. goto done;
  482. }
  483. switch(cmd) {
  484. case SIOCGIFADDR:
  485. *((__le16 *)sdn->sdn_nodeaddr) = ifa->ifa_local;
  486. goto rarok;
  487. case SIOCSIFADDR:
  488. if (!ifa) {
  489. if ((ifa = dn_dev_alloc_ifa()) == NULL) {
  490. ret = -ENOBUFS;
  491. break;
  492. }
  493. memcpy(ifa->ifa_label, dev->name, IFNAMSIZ);
  494. } else {
  495. if (ifa->ifa_local == dn_saddr2dn(sdn))
  496. break;
  497. dn_dev_del_ifa(dn_db, ifap, 0);
  498. }
  499. ifa->ifa_local = ifa->ifa_address = dn_saddr2dn(sdn);
  500. ret = dn_dev_set_ifa(dev, ifa);
  501. }
  502. done:
  503. rtnl_unlock();
  504. return ret;
  505. rarok:
  506. if (copy_to_user(arg, ifr, DN_IFREQ_SIZE))
  507. ret = -EFAULT;
  508. goto done;
  509. }
  510. struct net_device *dn_dev_get_default(void)
  511. {
  512. struct net_device *dev;
  513. read_lock(&dndev_lock);
  514. dev = decnet_default_device;
  515. if (dev) {
  516. if (dev->dn_ptr)
  517. dev_hold(dev);
  518. else
  519. dev = NULL;
  520. }
  521. read_unlock(&dndev_lock);
  522. return dev;
  523. }
  524. int dn_dev_set_default(struct net_device *dev, int force)
  525. {
  526. struct net_device *old = NULL;
  527. int rv = -EBUSY;
  528. if (!dev->dn_ptr)
  529. return -ENODEV;
  530. write_lock(&dndev_lock);
  531. if (force || decnet_default_device == NULL) {
  532. old = decnet_default_device;
  533. decnet_default_device = dev;
  534. rv = 0;
  535. }
  536. write_unlock(&dndev_lock);
  537. if (old)
  538. dev_put(old);
  539. return rv;
  540. }
  541. static void dn_dev_check_default(struct net_device *dev)
  542. {
  543. write_lock(&dndev_lock);
  544. if (dev == decnet_default_device) {
  545. decnet_default_device = NULL;
  546. } else {
  547. dev = NULL;
  548. }
  549. write_unlock(&dndev_lock);
  550. if (dev)
  551. dev_put(dev);
  552. }
  553. static struct dn_dev *dn_dev_by_index(int ifindex)
  554. {
  555. struct net_device *dev;
  556. struct dn_dev *dn_dev = NULL;
  557. dev = dev_get_by_index(ifindex);
  558. if (dev) {
  559. dn_dev = dev->dn_ptr;
  560. dev_put(dev);
  561. }
  562. return dn_dev;
  563. }
  564. static int dn_dev_rtm_deladdr(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
  565. {
  566. struct rtattr **rta = arg;
  567. struct dn_dev *dn_db;
  568. struct ifaddrmsg *ifm = NLMSG_DATA(nlh);
  569. struct dn_ifaddr *ifa, **ifap;
  570. if ((dn_db = dn_dev_by_index(ifm->ifa_index)) == NULL)
  571. return -EADDRNOTAVAIL;
  572. for(ifap = &dn_db->ifa_list; (ifa=*ifap) != NULL; ifap = &ifa->ifa_next) {
  573. void *tmp = rta[IFA_LOCAL-1];
  574. if ((tmp && memcmp(RTA_DATA(tmp), &ifa->ifa_local, 2)) ||
  575. (rta[IFA_LABEL-1] && rtattr_strcmp(rta[IFA_LABEL-1], ifa->ifa_label)))
  576. continue;
  577. dn_dev_del_ifa(dn_db, ifap, 1);
  578. return 0;
  579. }
  580. return -EADDRNOTAVAIL;
  581. }
  582. static int dn_dev_rtm_newaddr(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
  583. {
  584. struct rtattr **rta = arg;
  585. struct net_device *dev;
  586. struct dn_dev *dn_db;
  587. struct ifaddrmsg *ifm = NLMSG_DATA(nlh);
  588. struct dn_ifaddr *ifa;
  589. int rv;
  590. if (rta[IFA_LOCAL-1] == NULL)
  591. return -EINVAL;
  592. if ((dev = __dev_get_by_index(ifm->ifa_index)) == NULL)
  593. return -ENODEV;
  594. if ((dn_db = dev->dn_ptr) == NULL) {
  595. int err;
  596. dn_db = dn_dev_create(dev, &err);
  597. if (!dn_db)
  598. return err;
  599. }
  600. if ((ifa = dn_dev_alloc_ifa()) == NULL)
  601. return -ENOBUFS;
  602. if (!rta[IFA_ADDRESS - 1])
  603. rta[IFA_ADDRESS - 1] = rta[IFA_LOCAL - 1];
  604. memcpy(&ifa->ifa_local, RTA_DATA(rta[IFA_LOCAL-1]), 2);
  605. memcpy(&ifa->ifa_address, RTA_DATA(rta[IFA_ADDRESS-1]), 2);
  606. ifa->ifa_flags = ifm->ifa_flags;
  607. ifa->ifa_scope = ifm->ifa_scope;
  608. ifa->ifa_dev = dn_db;
  609. if (rta[IFA_LABEL-1])
  610. rtattr_strlcpy(ifa->ifa_label, rta[IFA_LABEL-1], IFNAMSIZ);
  611. else
  612. memcpy(ifa->ifa_label, dev->name, IFNAMSIZ);
  613. rv = dn_dev_insert_ifa(dn_db, ifa);
  614. if (rv)
  615. dn_dev_free_ifa(ifa);
  616. return rv;
  617. }
  618. static int dn_dev_fill_ifaddr(struct sk_buff *skb, struct dn_ifaddr *ifa,
  619. u32 pid, u32 seq, int event, unsigned int flags)
  620. {
  621. struct ifaddrmsg *ifm;
  622. struct nlmsghdr *nlh;
  623. unsigned char *b = skb->tail;
  624. nlh = NLMSG_NEW(skb, pid, seq, event, sizeof(*ifm), flags);
  625. ifm = NLMSG_DATA(nlh);
  626. ifm->ifa_family = AF_DECnet;
  627. ifm->ifa_prefixlen = 16;
  628. ifm->ifa_flags = ifa->ifa_flags | IFA_F_PERMANENT;
  629. ifm->ifa_scope = ifa->ifa_scope;
  630. ifm->ifa_index = ifa->ifa_dev->dev->ifindex;
  631. if (ifa->ifa_address)
  632. RTA_PUT(skb, IFA_ADDRESS, 2, &ifa->ifa_address);
  633. if (ifa->ifa_local)
  634. RTA_PUT(skb, IFA_LOCAL, 2, &ifa->ifa_local);
  635. if (ifa->ifa_label[0])
  636. RTA_PUT(skb, IFA_LABEL, IFNAMSIZ, &ifa->ifa_label);
  637. nlh->nlmsg_len = skb->tail - b;
  638. return skb->len;
  639. nlmsg_failure:
  640. rtattr_failure:
  641. skb_trim(skb, b - skb->data);
  642. return -1;
  643. }
  644. static void rtmsg_ifa(int event, struct dn_ifaddr *ifa)
  645. {
  646. struct sk_buff *skb;
  647. int size = NLMSG_SPACE(sizeof(struct ifaddrmsg)+128);
  648. skb = alloc_skb(size, GFP_KERNEL);
  649. if (!skb) {
  650. netlink_set_err(rtnl, 0, RTNLGRP_DECnet_IFADDR, ENOBUFS);
  651. return;
  652. }
  653. if (dn_dev_fill_ifaddr(skb, ifa, 0, 0, event, 0) < 0) {
  654. kfree_skb(skb);
  655. netlink_set_err(rtnl, 0, RTNLGRP_DECnet_IFADDR, EINVAL);
  656. return;
  657. }
  658. NETLINK_CB(skb).dst_group = RTNLGRP_DECnet_IFADDR;
  659. netlink_broadcast(rtnl, skb, 0, RTNLGRP_DECnet_IFADDR, GFP_KERNEL);
  660. }
  661. static int dn_dev_dump_ifaddr(struct sk_buff *skb, struct netlink_callback *cb)
  662. {
  663. int idx, dn_idx;
  664. int s_idx, s_dn_idx;
  665. struct net_device *dev;
  666. struct dn_dev *dn_db;
  667. struct dn_ifaddr *ifa;
  668. s_idx = cb->args[0];
  669. s_dn_idx = dn_idx = cb->args[1];
  670. read_lock(&dev_base_lock);
  671. for(dev = dev_base, idx = 0; dev; dev = dev->next, idx++) {
  672. if (idx < s_idx)
  673. continue;
  674. if (idx > s_idx)
  675. s_dn_idx = 0;
  676. if ((dn_db = dev->dn_ptr) == NULL)
  677. continue;
  678. for(ifa = dn_db->ifa_list, dn_idx = 0; ifa; ifa = ifa->ifa_next, dn_idx++) {
  679. if (dn_idx < s_dn_idx)
  680. continue;
  681. if (dn_dev_fill_ifaddr(skb, ifa,
  682. NETLINK_CB(cb->skb).pid,
  683. cb->nlh->nlmsg_seq,
  684. RTM_NEWADDR,
  685. NLM_F_MULTI) <= 0)
  686. goto done;
  687. }
  688. }
  689. done:
  690. read_unlock(&dev_base_lock);
  691. cb->args[0] = idx;
  692. cb->args[1] = dn_idx;
  693. return skb->len;
  694. }
  695. static int dn_dev_get_first(struct net_device *dev, __le16 *addr)
  696. {
  697. struct dn_dev *dn_db = (struct dn_dev *)dev->dn_ptr;
  698. struct dn_ifaddr *ifa;
  699. int rv = -ENODEV;
  700. if (dn_db == NULL)
  701. goto out;
  702. ifa = dn_db->ifa_list;
  703. if (ifa != NULL) {
  704. *addr = ifa->ifa_local;
  705. rv = 0;
  706. }
  707. out:
  708. return rv;
  709. }
  710. /*
  711. * Find a default address to bind to.
  712. *
  713. * This is one of those areas where the initial VMS concepts don't really
  714. * map onto the Linux concepts, and since we introduced multiple addresses
  715. * per interface we have to cope with slightly odd ways of finding out what
  716. * "our address" really is. Mostly it's not a problem; for this we just guess
  717. * a sensible default. Eventually the routing code will take care of all the
  718. * nasties for us I hope.
  719. */
  720. int dn_dev_bind_default(__le16 *addr)
  721. {
  722. struct net_device *dev;
  723. int rv;
  724. dev = dn_dev_get_default();
  725. last_chance:
  726. if (dev) {
  727. read_lock(&dev_base_lock);
  728. rv = dn_dev_get_first(dev, addr);
  729. read_unlock(&dev_base_lock);
  730. dev_put(dev);
  731. if (rv == 0 || dev == &loopback_dev)
  732. return rv;
  733. }
  734. dev = &loopback_dev;
  735. dev_hold(dev);
  736. goto last_chance;
  737. }
  738. static void dn_send_endnode_hello(struct net_device *dev, struct dn_ifaddr *ifa)
  739. {
  740. struct endnode_hello_message *msg;
  741. struct sk_buff *skb = NULL;
  742. __le16 *pktlen;
  743. struct dn_dev *dn_db = (struct dn_dev *)dev->dn_ptr;
  744. if ((skb = dn_alloc_skb(NULL, sizeof(*msg), GFP_ATOMIC)) == NULL)
  745. return;
  746. skb->dev = dev;
  747. msg = (struct endnode_hello_message *)skb_put(skb,sizeof(*msg));
  748. msg->msgflg = 0x0D;
  749. memcpy(msg->tiver, dn_eco_version, 3);
  750. dn_dn2eth(msg->id, ifa->ifa_local);
  751. msg->iinfo = DN_RT_INFO_ENDN;
  752. msg->blksize = dn_htons(mtu2blksize(dev));
  753. msg->area = 0x00;
  754. memset(msg->seed, 0, 8);
  755. memcpy(msg->neighbor, dn_hiord, ETH_ALEN);
  756. if (dn_db->router) {
  757. struct dn_neigh *dn = (struct dn_neigh *)dn_db->router;
  758. dn_dn2eth(msg->neighbor, dn->addr);
  759. }
  760. msg->timer = dn_htons((unsigned short)dn_db->parms.t3);
  761. msg->mpd = 0x00;
  762. msg->datalen = 0x02;
  763. memset(msg->data, 0xAA, 2);
  764. pktlen = (__le16 *)skb_push(skb,2);
  765. *pktlen = dn_htons(skb->len - 2);
  766. skb->nh.raw = skb->data;
  767. dn_rt_finish_output(skb, dn_rt_all_rt_mcast, msg->id);
  768. }
  769. #define DRDELAY (5 * HZ)
  770. static int dn_am_i_a_router(struct dn_neigh *dn, struct dn_dev *dn_db, struct dn_ifaddr *ifa)
  771. {
  772. /* First check time since device went up */
  773. if ((jiffies - dn_db->uptime) < DRDELAY)
  774. return 0;
  775. /* If there is no router, then yes... */
  776. if (!dn_db->router)
  777. return 1;
  778. /* otherwise only if we have a higher priority or.. */
  779. if (dn->priority < dn_db->parms.priority)
  780. return 1;
  781. /* if we have equal priority and a higher node number */
  782. if (dn->priority != dn_db->parms.priority)
  783. return 0;
  784. if (dn_ntohs(dn->addr) < dn_ntohs(ifa->ifa_local))
  785. return 1;
  786. return 0;
  787. }
  788. static void dn_send_router_hello(struct net_device *dev, struct dn_ifaddr *ifa)
  789. {
  790. int n;
  791. struct dn_dev *dn_db = dev->dn_ptr;
  792. struct dn_neigh *dn = (struct dn_neigh *)dn_db->router;
  793. struct sk_buff *skb;
  794. size_t size;
  795. unsigned char *ptr;
  796. unsigned char *i1, *i2;
  797. __le16 *pktlen;
  798. char *src;
  799. if (mtu2blksize(dev) < (26 + 7))
  800. return;
  801. n = mtu2blksize(dev) - 26;
  802. n /= 7;
  803. if (n > 32)
  804. n = 32;
  805. size = 2 + 26 + 7 * n;
  806. if ((skb = dn_alloc_skb(NULL, size, GFP_ATOMIC)) == NULL)
  807. return;
  808. skb->dev = dev;
  809. ptr = skb_put(skb, size);
  810. *ptr++ = DN_RT_PKT_CNTL | DN_RT_PKT_ERTH;
  811. *ptr++ = 2; /* ECO */
  812. *ptr++ = 0;
  813. *ptr++ = 0;
  814. dn_dn2eth(ptr, ifa->ifa_local);
  815. src = ptr;
  816. ptr += ETH_ALEN;
  817. *ptr++ = dn_db->parms.forwarding == 1 ?
  818. DN_RT_INFO_L1RT : DN_RT_INFO_L2RT;
  819. *((__le16 *)ptr) = dn_htons(mtu2blksize(dev));
  820. ptr += 2;
  821. *ptr++ = dn_db->parms.priority; /* Priority */
  822. *ptr++ = 0; /* Area: Reserved */
  823. *((__le16 *)ptr) = dn_htons((unsigned short)dn_db->parms.t3);
  824. ptr += 2;
  825. *ptr++ = 0; /* MPD: Reserved */
  826. i1 = ptr++;
  827. memset(ptr, 0, 7); /* Name: Reserved */
  828. ptr += 7;
  829. i2 = ptr++;
  830. n = dn_neigh_elist(dev, ptr, n);
  831. *i2 = 7 * n;
  832. *i1 = 8 + *i2;
  833. skb_trim(skb, (27 + *i2));
  834. pktlen = (__le16 *)skb_push(skb, 2);
  835. *pktlen = dn_htons(skb->len - 2);
  836. skb->nh.raw = skb->data;
  837. if (dn_am_i_a_router(dn, dn_db, ifa)) {
  838. struct sk_buff *skb2 = skb_copy(skb, GFP_ATOMIC);
  839. if (skb2) {
  840. dn_rt_finish_output(skb2, dn_rt_all_end_mcast, src);
  841. }
  842. }
  843. dn_rt_finish_output(skb, dn_rt_all_rt_mcast, src);
  844. }
  845. static void dn_send_brd_hello(struct net_device *dev, struct dn_ifaddr *ifa)
  846. {
  847. struct dn_dev *dn_db = (struct dn_dev *)dev->dn_ptr;
  848. if (dn_db->parms.forwarding == 0)
  849. dn_send_endnode_hello(dev, ifa);
  850. else
  851. dn_send_router_hello(dev, ifa);
  852. }
  853. static void dn_send_ptp_hello(struct net_device *dev, struct dn_ifaddr *ifa)
  854. {
  855. int tdlen = 16;
  856. int size = dev->hard_header_len + 2 + 4 + tdlen;
  857. struct sk_buff *skb = dn_alloc_skb(NULL, size, GFP_ATOMIC);
  858. int i;
  859. unsigned char *ptr;
  860. char src[ETH_ALEN];
  861. if (skb == NULL)
  862. return ;
  863. skb->dev = dev;
  864. skb_push(skb, dev->hard_header_len);
  865. ptr = skb_put(skb, 2 + 4 + tdlen);
  866. *ptr++ = DN_RT_PKT_HELO;
  867. *((__le16 *)ptr) = ifa->ifa_local;
  868. ptr += 2;
  869. *ptr++ = tdlen;
  870. for(i = 0; i < tdlen; i++)
  871. *ptr++ = 0252;
  872. dn_dn2eth(src, ifa->ifa_local);
  873. dn_rt_finish_output(skb, dn_rt_all_rt_mcast, src);
  874. }
  875. static int dn_eth_up(struct net_device *dev)
  876. {
  877. struct dn_dev *dn_db = dev->dn_ptr;
  878. if (dn_db->parms.forwarding == 0)
  879. dev_mc_add(dev, dn_rt_all_end_mcast, ETH_ALEN, 0);
  880. else
  881. dev_mc_add(dev, dn_rt_all_rt_mcast, ETH_ALEN, 0);
  882. dev_mc_upload(dev);
  883. dn_db->use_long = 1;
  884. return 0;
  885. }
  886. static void dn_eth_down(struct net_device *dev)
  887. {
  888. struct dn_dev *dn_db = dev->dn_ptr;
  889. if (dn_db->parms.forwarding == 0)
  890. dev_mc_delete(dev, dn_rt_all_end_mcast, ETH_ALEN, 0);
  891. else
  892. dev_mc_delete(dev, dn_rt_all_rt_mcast, ETH_ALEN, 0);
  893. }
  894. static void dn_dev_set_timer(struct net_device *dev);
  895. static void dn_dev_timer_func(unsigned long arg)
  896. {
  897. struct net_device *dev = (struct net_device *)arg;
  898. struct dn_dev *dn_db = dev->dn_ptr;
  899. struct dn_ifaddr *ifa;
  900. if (dn_db->t3 <= dn_db->parms.t2) {
  901. if (dn_db->parms.timer3) {
  902. for(ifa = dn_db->ifa_list; ifa; ifa = ifa->ifa_next) {
  903. if (!(ifa->ifa_flags & IFA_F_SECONDARY))
  904. dn_db->parms.timer3(dev, ifa);
  905. }
  906. }
  907. dn_db->t3 = dn_db->parms.t3;
  908. } else {
  909. dn_db->t3 -= dn_db->parms.t2;
  910. }
  911. dn_dev_set_timer(dev);
  912. }
  913. static void dn_dev_set_timer(struct net_device *dev)
  914. {
  915. struct dn_dev *dn_db = dev->dn_ptr;
  916. if (dn_db->parms.t2 > dn_db->parms.t3)
  917. dn_db->parms.t2 = dn_db->parms.t3;
  918. dn_db->timer.data = (unsigned long)dev;
  919. dn_db->timer.function = dn_dev_timer_func;
  920. dn_db->timer.expires = jiffies + (dn_db->parms.t2 * HZ);
  921. add_timer(&dn_db->timer);
  922. }
  923. struct dn_dev *dn_dev_create(struct net_device *dev, int *err)
  924. {
  925. int i;
  926. struct dn_dev_parms *p = dn_dev_list;
  927. struct dn_dev *dn_db;
  928. for(i = 0; i < DN_DEV_LIST_SIZE; i++, p++) {
  929. if (p->type == dev->type)
  930. break;
  931. }
  932. *err = -ENODEV;
  933. if (i == DN_DEV_LIST_SIZE)
  934. return NULL;
  935. *err = -ENOBUFS;
  936. if ((dn_db = kzalloc(sizeof(struct dn_dev), GFP_ATOMIC)) == NULL)
  937. return NULL;
  938. memcpy(&dn_db->parms, p, sizeof(struct dn_dev_parms));
  939. smp_wmb();
  940. dev->dn_ptr = dn_db;
  941. dn_db->dev = dev;
  942. init_timer(&dn_db->timer);
  943. dn_db->uptime = jiffies;
  944. if (dn_db->parms.up) {
  945. if (dn_db->parms.up(dev) < 0) {
  946. dev->dn_ptr = NULL;
  947. kfree(dn_db);
  948. return NULL;
  949. }
  950. }
  951. dn_db->neigh_parms = neigh_parms_alloc(dev, &dn_neigh_table);
  952. dn_dev_sysctl_register(dev, &dn_db->parms);
  953. dn_dev_set_timer(dev);
  954. *err = 0;
  955. return dn_db;
  956. }
  957. /*
  958. * This processes a device up event. We only start up
  959. * the loopback device & ethernet devices with correct
  960. * MAC addreses automatically. Others must be started
  961. * specifically.
  962. *
  963. * FIXME: How should we configure the loopback address ? If we could dispense
  964. * with using decnet_address here and for autobind, it will be one less thing
  965. * for users to worry about setting up.
  966. */
  967. void dn_dev_up(struct net_device *dev)
  968. {
  969. struct dn_ifaddr *ifa;
  970. __le16 addr = decnet_address;
  971. int maybe_default = 0;
  972. struct dn_dev *dn_db = (struct dn_dev *)dev->dn_ptr;
  973. if ((dev->type != ARPHRD_ETHER) && (dev->type != ARPHRD_LOOPBACK))
  974. return;
  975. /*
  976. * Need to ensure that loopback device has a dn_db attached to it
  977. * to allow creation of neighbours against it, even though it might
  978. * not have a local address of its own. Might as well do the same for
  979. * all autoconfigured interfaces.
  980. */
  981. if (dn_db == NULL) {
  982. int err;
  983. dn_db = dn_dev_create(dev, &err);
  984. if (dn_db == NULL)
  985. return;
  986. }
  987. if (dev->type == ARPHRD_ETHER) {
  988. if (memcmp(dev->dev_addr, dn_hiord, 4) != 0)
  989. return;
  990. addr = dn_eth2dn(dev->dev_addr);
  991. maybe_default = 1;
  992. }
  993. if (addr == 0)
  994. return;
  995. if ((ifa = dn_dev_alloc_ifa()) == NULL)
  996. return;
  997. ifa->ifa_local = ifa->ifa_address = addr;
  998. ifa->ifa_flags = 0;
  999. ifa->ifa_scope = RT_SCOPE_UNIVERSE;
  1000. strcpy(ifa->ifa_label, dev->name);
  1001. dn_dev_set_ifa(dev, ifa);
  1002. /*
  1003. * Automagically set the default device to the first automatically
  1004. * configured ethernet card in the system.
  1005. */
  1006. if (maybe_default) {
  1007. dev_hold(dev);
  1008. if (dn_dev_set_default(dev, 0))
  1009. dev_put(dev);
  1010. }
  1011. }
  1012. static void dn_dev_delete(struct net_device *dev)
  1013. {
  1014. struct dn_dev *dn_db = dev->dn_ptr;
  1015. if (dn_db == NULL)
  1016. return;
  1017. del_timer_sync(&dn_db->timer);
  1018. dn_dev_sysctl_unregister(&dn_db->parms);
  1019. dn_dev_check_default(dev);
  1020. neigh_ifdown(&dn_neigh_table, dev);
  1021. if (dn_db->parms.down)
  1022. dn_db->parms.down(dev);
  1023. dev->dn_ptr = NULL;
  1024. neigh_parms_release(&dn_neigh_table, dn_db->neigh_parms);
  1025. neigh_ifdown(&dn_neigh_table, dev);
  1026. if (dn_db->router)
  1027. neigh_release(dn_db->router);
  1028. if (dn_db->peer)
  1029. neigh_release(dn_db->peer);
  1030. kfree(dn_db);
  1031. }
  1032. void dn_dev_down(struct net_device *dev)
  1033. {
  1034. struct dn_dev *dn_db = dev->dn_ptr;
  1035. struct dn_ifaddr *ifa;
  1036. if (dn_db == NULL)
  1037. return;
  1038. while((ifa = dn_db->ifa_list) != NULL) {
  1039. dn_dev_del_ifa(dn_db, &dn_db->ifa_list, 0);
  1040. dn_dev_free_ifa(ifa);
  1041. }
  1042. dn_dev_delete(dev);
  1043. }
  1044. void dn_dev_init_pkt(struct sk_buff *skb)
  1045. {
  1046. return;
  1047. }
  1048. void dn_dev_veri_pkt(struct sk_buff *skb)
  1049. {
  1050. return;
  1051. }
  1052. void dn_dev_hello(struct sk_buff *skb)
  1053. {
  1054. return;
  1055. }
  1056. void dn_dev_devices_off(void)
  1057. {
  1058. struct net_device *dev;
  1059. rtnl_lock();
  1060. for(dev = dev_base; dev; dev = dev->next)
  1061. dn_dev_down(dev);
  1062. rtnl_unlock();
  1063. }
  1064. void dn_dev_devices_on(void)
  1065. {
  1066. struct net_device *dev;
  1067. rtnl_lock();
  1068. for(dev = dev_base; dev; dev = dev->next) {
  1069. if (dev->flags & IFF_UP)
  1070. dn_dev_up(dev);
  1071. }
  1072. rtnl_unlock();
  1073. }
  1074. int register_dnaddr_notifier(struct notifier_block *nb)
  1075. {
  1076. return blocking_notifier_chain_register(&dnaddr_chain, nb);
  1077. }
  1078. int unregister_dnaddr_notifier(struct notifier_block *nb)
  1079. {
  1080. return blocking_notifier_chain_unregister(&dnaddr_chain, nb);
  1081. }
  1082. #ifdef CONFIG_PROC_FS
  1083. static inline struct net_device *dn_dev_get_next(struct seq_file *seq, struct net_device *dev)
  1084. {
  1085. do {
  1086. dev = dev->next;
  1087. } while(dev && !dev->dn_ptr);
  1088. return dev;
  1089. }
  1090. static struct net_device *dn_dev_get_idx(struct seq_file *seq, loff_t pos)
  1091. {
  1092. struct net_device *dev;
  1093. dev = dev_base;
  1094. if (dev && !dev->dn_ptr)
  1095. dev = dn_dev_get_next(seq, dev);
  1096. if (pos) {
  1097. while(dev && (dev = dn_dev_get_next(seq, dev)))
  1098. --pos;
  1099. }
  1100. return dev;
  1101. }
  1102. static void *dn_dev_seq_start(struct seq_file *seq, loff_t *pos)
  1103. {
  1104. if (*pos) {
  1105. struct net_device *dev;
  1106. read_lock(&dev_base_lock);
  1107. dev = dn_dev_get_idx(seq, *pos - 1);
  1108. if (dev == NULL)
  1109. read_unlock(&dev_base_lock);
  1110. return dev;
  1111. }
  1112. return SEQ_START_TOKEN;
  1113. }
  1114. static void *dn_dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1115. {
  1116. struct net_device *dev = v;
  1117. loff_t one = 1;
  1118. if (v == SEQ_START_TOKEN) {
  1119. dev = dn_dev_seq_start(seq, &one);
  1120. } else {
  1121. dev = dn_dev_get_next(seq, dev);
  1122. if (dev == NULL)
  1123. read_unlock(&dev_base_lock);
  1124. }
  1125. ++*pos;
  1126. return dev;
  1127. }
  1128. static void dn_dev_seq_stop(struct seq_file *seq, void *v)
  1129. {
  1130. if (v && v != SEQ_START_TOKEN)
  1131. read_unlock(&dev_base_lock);
  1132. }
  1133. static char *dn_type2asc(char type)
  1134. {
  1135. switch(type) {
  1136. case DN_DEV_BCAST:
  1137. return "B";
  1138. case DN_DEV_UCAST:
  1139. return "U";
  1140. case DN_DEV_MPOINT:
  1141. return "M";
  1142. }
  1143. return "?";
  1144. }
  1145. static int dn_dev_seq_show(struct seq_file *seq, void *v)
  1146. {
  1147. if (v == SEQ_START_TOKEN)
  1148. seq_puts(seq, "Name Flags T1 Timer1 T3 Timer3 BlkSize Pri State DevType Router Peer\n");
  1149. else {
  1150. struct net_device *dev = v;
  1151. char peer_buf[DN_ASCBUF_LEN];
  1152. char router_buf[DN_ASCBUF_LEN];
  1153. struct dn_dev *dn_db = dev->dn_ptr;
  1154. seq_printf(seq, "%-8s %1s %04u %04u %04lu %04lu"
  1155. " %04hu %03d %02x %-10s %-7s %-7s\n",
  1156. dev->name ? dev->name : "???",
  1157. dn_type2asc(dn_db->parms.mode),
  1158. 0, 0,
  1159. dn_db->t3, dn_db->parms.t3,
  1160. mtu2blksize(dev),
  1161. dn_db->parms.priority,
  1162. dn_db->parms.state, dn_db->parms.name,
  1163. dn_db->router ? dn_addr2asc(dn_ntohs(*(__le16 *)dn_db->router->primary_key), router_buf) : "",
  1164. dn_db->peer ? dn_addr2asc(dn_ntohs(*(__le16 *)dn_db->peer->primary_key), peer_buf) : "");
  1165. }
  1166. return 0;
  1167. }
  1168. static struct seq_operations dn_dev_seq_ops = {
  1169. .start = dn_dev_seq_start,
  1170. .next = dn_dev_seq_next,
  1171. .stop = dn_dev_seq_stop,
  1172. .show = dn_dev_seq_show,
  1173. };
  1174. static int dn_dev_seq_open(struct inode *inode, struct file *file)
  1175. {
  1176. return seq_open(file, &dn_dev_seq_ops);
  1177. }
  1178. static struct file_operations dn_dev_seq_fops = {
  1179. .owner = THIS_MODULE,
  1180. .open = dn_dev_seq_open,
  1181. .read = seq_read,
  1182. .llseek = seq_lseek,
  1183. .release = seq_release,
  1184. };
  1185. #endif /* CONFIG_PROC_FS */
  1186. static struct rtnetlink_link dnet_rtnetlink_table[RTM_NR_MSGTYPES] =
  1187. {
  1188. [RTM_NEWADDR - RTM_BASE] = { .doit = dn_dev_rtm_newaddr, },
  1189. [RTM_DELADDR - RTM_BASE] = { .doit = dn_dev_rtm_deladdr, },
  1190. [RTM_GETADDR - RTM_BASE] = { .dumpit = dn_dev_dump_ifaddr, },
  1191. #ifdef CONFIG_DECNET_ROUTER
  1192. [RTM_NEWROUTE - RTM_BASE] = { .doit = dn_fib_rtm_newroute, },
  1193. [RTM_DELROUTE - RTM_BASE] = { .doit = dn_fib_rtm_delroute, },
  1194. [RTM_GETROUTE - RTM_BASE] = { .doit = dn_cache_getroute,
  1195. .dumpit = dn_fib_dump, },
  1196. [RTM_NEWRULE - RTM_BASE] = { .doit = dn_fib_rtm_newrule, },
  1197. [RTM_DELRULE - RTM_BASE] = { .doit = dn_fib_rtm_delrule, },
  1198. [RTM_GETRULE - RTM_BASE] = { .dumpit = dn_fib_dump_rules, },
  1199. #else
  1200. [RTM_GETROUTE - RTM_BASE] = { .doit = dn_cache_getroute,
  1201. .dumpit = dn_cache_dump, },
  1202. #endif
  1203. };
  1204. static int __initdata addr[2];
  1205. module_param_array(addr, int, NULL, 0444);
  1206. MODULE_PARM_DESC(addr, "The DECnet address of this machine: area,node");
  1207. void __init dn_dev_init(void)
  1208. {
  1209. if (addr[0] > 63 || addr[0] < 0) {
  1210. printk(KERN_ERR "DECnet: Area must be between 0 and 63");
  1211. return;
  1212. }
  1213. if (addr[1] > 1023 || addr[1] < 0) {
  1214. printk(KERN_ERR "DECnet: Node must be between 0 and 1023");
  1215. return;
  1216. }
  1217. decnet_address = dn_htons((addr[0] << 10) | addr[1]);
  1218. dn_dev_devices_on();
  1219. rtnetlink_links[PF_DECnet] = dnet_rtnetlink_table;
  1220. proc_net_fops_create("decnet_dev", S_IRUGO, &dn_dev_seq_fops);
  1221. #ifdef CONFIG_SYSCTL
  1222. {
  1223. int i;
  1224. for(i = 0; i < DN_DEV_LIST_SIZE; i++)
  1225. dn_dev_sysctl_register(NULL, &dn_dev_list[i]);
  1226. }
  1227. #endif /* CONFIG_SYSCTL */
  1228. }
  1229. void __exit dn_dev_cleanup(void)
  1230. {
  1231. rtnetlink_links[PF_DECnet] = NULL;
  1232. #ifdef CONFIG_SYSCTL
  1233. {
  1234. int i;
  1235. for(i = 0; i < DN_DEV_LIST_SIZE; i++)
  1236. dn_dev_sysctl_unregister(&dn_dev_list[i]);
  1237. }
  1238. #endif /* CONFIG_SYSCTL */
  1239. proc_net_remove("decnet_dev");
  1240. dn_dev_devices_off();
  1241. }