rmap.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * inode->i_alloc_sem
  24. *
  25. * When a page fault occurs in writing from user to file, down_read
  26. * of mmap_sem nests within i_mutex; in sys_msync, i_mutex nests within
  27. * down_read of mmap_sem; i_mutex and down_write of mmap_sem are never
  28. * taken together; in truncation, i_mutex is taken outermost.
  29. *
  30. * mm->mmap_sem
  31. * page->flags PG_locked (lock_page)
  32. * mapping->i_mmap_lock
  33. * anon_vma->lock
  34. * mm->page_table_lock or pte_lock
  35. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  36. * swap_lock (in swap_duplicate, swap_info_get)
  37. * mmlist_lock (in mmput, drain_mmlist and others)
  38. * mapping->private_lock (in __set_page_dirty_buffers)
  39. * inode_lock (in set_page_dirty's __mark_inode_dirty)
  40. * sb_lock (within inode_lock in fs/fs-writeback.c)
  41. * mapping->tree_lock (widely used, in set_page_dirty,
  42. * in arch-dependent flush_dcache_mmap_lock,
  43. * within inode_lock in __sync_single_inode)
  44. */
  45. #include <linux/mm.h>
  46. #include <linux/pagemap.h>
  47. #include <linux/swap.h>
  48. #include <linux/swapops.h>
  49. #include <linux/slab.h>
  50. #include <linux/init.h>
  51. #include <linux/rmap.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/module.h>
  54. #include <asm/tlbflush.h>
  55. struct kmem_cache *anon_vma_cachep;
  56. static inline void validate_anon_vma(struct vm_area_struct *find_vma)
  57. {
  58. #ifdef CONFIG_DEBUG_VM
  59. struct anon_vma *anon_vma = find_vma->anon_vma;
  60. struct vm_area_struct *vma;
  61. unsigned int mapcount = 0;
  62. int found = 0;
  63. list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
  64. mapcount++;
  65. BUG_ON(mapcount > 100000);
  66. if (vma == find_vma)
  67. found = 1;
  68. }
  69. BUG_ON(!found);
  70. #endif
  71. }
  72. /* This must be called under the mmap_sem. */
  73. int anon_vma_prepare(struct vm_area_struct *vma)
  74. {
  75. struct anon_vma *anon_vma = vma->anon_vma;
  76. might_sleep();
  77. if (unlikely(!anon_vma)) {
  78. struct mm_struct *mm = vma->vm_mm;
  79. struct anon_vma *allocated, *locked;
  80. anon_vma = find_mergeable_anon_vma(vma);
  81. if (anon_vma) {
  82. allocated = NULL;
  83. locked = anon_vma;
  84. spin_lock(&locked->lock);
  85. } else {
  86. anon_vma = anon_vma_alloc();
  87. if (unlikely(!anon_vma))
  88. return -ENOMEM;
  89. allocated = anon_vma;
  90. locked = NULL;
  91. }
  92. /* page_table_lock to protect against threads */
  93. spin_lock(&mm->page_table_lock);
  94. if (likely(!vma->anon_vma)) {
  95. vma->anon_vma = anon_vma;
  96. list_add_tail(&vma->anon_vma_node, &anon_vma->head);
  97. allocated = NULL;
  98. }
  99. spin_unlock(&mm->page_table_lock);
  100. if (locked)
  101. spin_unlock(&locked->lock);
  102. if (unlikely(allocated))
  103. anon_vma_free(allocated);
  104. }
  105. return 0;
  106. }
  107. void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
  108. {
  109. BUG_ON(vma->anon_vma != next->anon_vma);
  110. list_del(&next->anon_vma_node);
  111. }
  112. void __anon_vma_link(struct vm_area_struct *vma)
  113. {
  114. struct anon_vma *anon_vma = vma->anon_vma;
  115. if (anon_vma) {
  116. list_add_tail(&vma->anon_vma_node, &anon_vma->head);
  117. validate_anon_vma(vma);
  118. }
  119. }
  120. void anon_vma_link(struct vm_area_struct *vma)
  121. {
  122. struct anon_vma *anon_vma = vma->anon_vma;
  123. if (anon_vma) {
  124. spin_lock(&anon_vma->lock);
  125. list_add_tail(&vma->anon_vma_node, &anon_vma->head);
  126. validate_anon_vma(vma);
  127. spin_unlock(&anon_vma->lock);
  128. }
  129. }
  130. void anon_vma_unlink(struct vm_area_struct *vma)
  131. {
  132. struct anon_vma *anon_vma = vma->anon_vma;
  133. int empty;
  134. if (!anon_vma)
  135. return;
  136. spin_lock(&anon_vma->lock);
  137. validate_anon_vma(vma);
  138. list_del(&vma->anon_vma_node);
  139. /* We must garbage collect the anon_vma if it's empty */
  140. empty = list_empty(&anon_vma->head);
  141. spin_unlock(&anon_vma->lock);
  142. if (empty)
  143. anon_vma_free(anon_vma);
  144. }
  145. static void anon_vma_ctor(void *data, struct kmem_cache *cachep,
  146. unsigned long flags)
  147. {
  148. if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
  149. SLAB_CTOR_CONSTRUCTOR) {
  150. struct anon_vma *anon_vma = data;
  151. spin_lock_init(&anon_vma->lock);
  152. INIT_LIST_HEAD(&anon_vma->head);
  153. }
  154. }
  155. void __init anon_vma_init(void)
  156. {
  157. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  158. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
  159. }
  160. /*
  161. * Getting a lock on a stable anon_vma from a page off the LRU is
  162. * tricky: page_lock_anon_vma rely on RCU to guard against the races.
  163. */
  164. static struct anon_vma *page_lock_anon_vma(struct page *page)
  165. {
  166. struct anon_vma *anon_vma = NULL;
  167. unsigned long anon_mapping;
  168. rcu_read_lock();
  169. anon_mapping = (unsigned long) page->mapping;
  170. if (!(anon_mapping & PAGE_MAPPING_ANON))
  171. goto out;
  172. if (!page_mapped(page))
  173. goto out;
  174. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  175. spin_lock(&anon_vma->lock);
  176. out:
  177. rcu_read_unlock();
  178. return anon_vma;
  179. }
  180. /*
  181. * At what user virtual address is page expected in vma?
  182. */
  183. static inline unsigned long
  184. vma_address(struct page *page, struct vm_area_struct *vma)
  185. {
  186. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  187. unsigned long address;
  188. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  189. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  190. /* page should be within any vma from prio_tree_next */
  191. BUG_ON(!PageAnon(page));
  192. return -EFAULT;
  193. }
  194. return address;
  195. }
  196. /*
  197. * At what user virtual address is page expected in vma? checking that the
  198. * page matches the vma: currently only used on anon pages, by unuse_vma;
  199. */
  200. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  201. {
  202. if (PageAnon(page)) {
  203. if ((void *)vma->anon_vma !=
  204. (void *)page->mapping - PAGE_MAPPING_ANON)
  205. return -EFAULT;
  206. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  207. if (!vma->vm_file ||
  208. vma->vm_file->f_mapping != page->mapping)
  209. return -EFAULT;
  210. } else
  211. return -EFAULT;
  212. return vma_address(page, vma);
  213. }
  214. /*
  215. * Check that @page is mapped at @address into @mm.
  216. *
  217. * On success returns with pte mapped and locked.
  218. */
  219. pte_t *page_check_address(struct page *page, struct mm_struct *mm,
  220. unsigned long address, spinlock_t **ptlp)
  221. {
  222. pgd_t *pgd;
  223. pud_t *pud;
  224. pmd_t *pmd;
  225. pte_t *pte;
  226. spinlock_t *ptl;
  227. pgd = pgd_offset(mm, address);
  228. if (!pgd_present(*pgd))
  229. return NULL;
  230. pud = pud_offset(pgd, address);
  231. if (!pud_present(*pud))
  232. return NULL;
  233. pmd = pmd_offset(pud, address);
  234. if (!pmd_present(*pmd))
  235. return NULL;
  236. pte = pte_offset_map(pmd, address);
  237. /* Make a quick check before getting the lock */
  238. if (!pte_present(*pte)) {
  239. pte_unmap(pte);
  240. return NULL;
  241. }
  242. ptl = pte_lockptr(mm, pmd);
  243. spin_lock(ptl);
  244. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  245. *ptlp = ptl;
  246. return pte;
  247. }
  248. pte_unmap_unlock(pte, ptl);
  249. return NULL;
  250. }
  251. /*
  252. * Subfunctions of page_referenced: page_referenced_one called
  253. * repeatedly from either page_referenced_anon or page_referenced_file.
  254. */
  255. static int page_referenced_one(struct page *page,
  256. struct vm_area_struct *vma, unsigned int *mapcount)
  257. {
  258. struct mm_struct *mm = vma->vm_mm;
  259. unsigned long address;
  260. pte_t *pte;
  261. spinlock_t *ptl;
  262. int referenced = 0;
  263. address = vma_address(page, vma);
  264. if (address == -EFAULT)
  265. goto out;
  266. pte = page_check_address(page, mm, address, &ptl);
  267. if (!pte)
  268. goto out;
  269. if (ptep_clear_flush_young(vma, address, pte))
  270. referenced++;
  271. /* Pretend the page is referenced if the task has the
  272. swap token and is in the middle of a page fault. */
  273. if (mm != current->mm && has_swap_token(mm) &&
  274. rwsem_is_locked(&mm->mmap_sem))
  275. referenced++;
  276. (*mapcount)--;
  277. pte_unmap_unlock(pte, ptl);
  278. out:
  279. return referenced;
  280. }
  281. static int page_referenced_anon(struct page *page)
  282. {
  283. unsigned int mapcount;
  284. struct anon_vma *anon_vma;
  285. struct vm_area_struct *vma;
  286. int referenced = 0;
  287. anon_vma = page_lock_anon_vma(page);
  288. if (!anon_vma)
  289. return referenced;
  290. mapcount = page_mapcount(page);
  291. list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
  292. referenced += page_referenced_one(page, vma, &mapcount);
  293. if (!mapcount)
  294. break;
  295. }
  296. spin_unlock(&anon_vma->lock);
  297. return referenced;
  298. }
  299. /**
  300. * page_referenced_file - referenced check for object-based rmap
  301. * @page: the page we're checking references on.
  302. *
  303. * For an object-based mapped page, find all the places it is mapped and
  304. * check/clear the referenced flag. This is done by following the page->mapping
  305. * pointer, then walking the chain of vmas it holds. It returns the number
  306. * of references it found.
  307. *
  308. * This function is only called from page_referenced for object-based pages.
  309. */
  310. static int page_referenced_file(struct page *page)
  311. {
  312. unsigned int mapcount;
  313. struct address_space *mapping = page->mapping;
  314. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  315. struct vm_area_struct *vma;
  316. struct prio_tree_iter iter;
  317. int referenced = 0;
  318. /*
  319. * The caller's checks on page->mapping and !PageAnon have made
  320. * sure that this is a file page: the check for page->mapping
  321. * excludes the case just before it gets set on an anon page.
  322. */
  323. BUG_ON(PageAnon(page));
  324. /*
  325. * The page lock not only makes sure that page->mapping cannot
  326. * suddenly be NULLified by truncation, it makes sure that the
  327. * structure at mapping cannot be freed and reused yet,
  328. * so we can safely take mapping->i_mmap_lock.
  329. */
  330. BUG_ON(!PageLocked(page));
  331. spin_lock(&mapping->i_mmap_lock);
  332. /*
  333. * i_mmap_lock does not stabilize mapcount at all, but mapcount
  334. * is more likely to be accurate if we note it after spinning.
  335. */
  336. mapcount = page_mapcount(page);
  337. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  338. if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
  339. == (VM_LOCKED|VM_MAYSHARE)) {
  340. referenced++;
  341. break;
  342. }
  343. referenced += page_referenced_one(page, vma, &mapcount);
  344. if (!mapcount)
  345. break;
  346. }
  347. spin_unlock(&mapping->i_mmap_lock);
  348. return referenced;
  349. }
  350. /**
  351. * page_referenced - test if the page was referenced
  352. * @page: the page to test
  353. * @is_locked: caller holds lock on the page
  354. *
  355. * Quick test_and_clear_referenced for all mappings to a page,
  356. * returns the number of ptes which referenced the page.
  357. */
  358. int page_referenced(struct page *page, int is_locked)
  359. {
  360. int referenced = 0;
  361. if (page_test_and_clear_young(page))
  362. referenced++;
  363. if (TestClearPageReferenced(page))
  364. referenced++;
  365. if (page_mapped(page) && page->mapping) {
  366. if (PageAnon(page))
  367. referenced += page_referenced_anon(page);
  368. else if (is_locked)
  369. referenced += page_referenced_file(page);
  370. else if (TestSetPageLocked(page))
  371. referenced++;
  372. else {
  373. if (page->mapping)
  374. referenced += page_referenced_file(page);
  375. unlock_page(page);
  376. }
  377. }
  378. return referenced;
  379. }
  380. /**
  381. * page_set_anon_rmap - setup new anonymous rmap
  382. * @page: the page to add the mapping to
  383. * @vma: the vm area in which the mapping is added
  384. * @address: the user virtual address mapped
  385. */
  386. static void __page_set_anon_rmap(struct page *page,
  387. struct vm_area_struct *vma, unsigned long address)
  388. {
  389. struct anon_vma *anon_vma = vma->anon_vma;
  390. BUG_ON(!anon_vma);
  391. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  392. page->mapping = (struct address_space *) anon_vma;
  393. page->index = linear_page_index(vma, address);
  394. /*
  395. * nr_mapped state can be updated without turning off
  396. * interrupts because it is not modified via interrupt.
  397. */
  398. __inc_zone_page_state(page, NR_ANON_PAGES);
  399. }
  400. /**
  401. * page_add_anon_rmap - add pte mapping to an anonymous page
  402. * @page: the page to add the mapping to
  403. * @vma: the vm area in which the mapping is added
  404. * @address: the user virtual address mapped
  405. *
  406. * The caller needs to hold the pte lock.
  407. */
  408. void page_add_anon_rmap(struct page *page,
  409. struct vm_area_struct *vma, unsigned long address)
  410. {
  411. if (atomic_inc_and_test(&page->_mapcount))
  412. __page_set_anon_rmap(page, vma, address);
  413. /* else checking page index and mapping is racy */
  414. }
  415. /*
  416. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  417. * @page: the page to add the mapping to
  418. * @vma: the vm area in which the mapping is added
  419. * @address: the user virtual address mapped
  420. *
  421. * Same as page_add_anon_rmap but must only be called on *new* pages.
  422. * This means the inc-and-test can be bypassed.
  423. */
  424. void page_add_new_anon_rmap(struct page *page,
  425. struct vm_area_struct *vma, unsigned long address)
  426. {
  427. atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
  428. __page_set_anon_rmap(page, vma, address);
  429. }
  430. /**
  431. * page_add_file_rmap - add pte mapping to a file page
  432. * @page: the page to add the mapping to
  433. *
  434. * The caller needs to hold the pte lock.
  435. */
  436. void page_add_file_rmap(struct page *page)
  437. {
  438. if (atomic_inc_and_test(&page->_mapcount))
  439. __inc_zone_page_state(page, NR_FILE_MAPPED);
  440. }
  441. /**
  442. * page_remove_rmap - take down pte mapping from a page
  443. * @page: page to remove mapping from
  444. *
  445. * The caller needs to hold the pte lock.
  446. */
  447. void page_remove_rmap(struct page *page)
  448. {
  449. if (atomic_add_negative(-1, &page->_mapcount)) {
  450. #ifdef CONFIG_DEBUG_VM
  451. if (unlikely(page_mapcount(page) < 0)) {
  452. printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
  453. printk (KERN_EMERG " page->flags = %lx\n", page->flags);
  454. printk (KERN_EMERG " page->count = %x\n", page_count(page));
  455. printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
  456. }
  457. #endif
  458. BUG_ON(page_mapcount(page) < 0);
  459. /*
  460. * It would be tidy to reset the PageAnon mapping here,
  461. * but that might overwrite a racing page_add_anon_rmap
  462. * which increments mapcount after us but sets mapping
  463. * before us: so leave the reset to free_hot_cold_page,
  464. * and remember that it's only reliable while mapped.
  465. * Leaving it set also helps swapoff to reinstate ptes
  466. * faster for those pages still in swapcache.
  467. */
  468. if (page_test_and_clear_dirty(page))
  469. set_page_dirty(page);
  470. __dec_zone_page_state(page,
  471. PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
  472. }
  473. }
  474. /*
  475. * Subfunctions of try_to_unmap: try_to_unmap_one called
  476. * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  477. */
  478. static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  479. int migration)
  480. {
  481. struct mm_struct *mm = vma->vm_mm;
  482. unsigned long address;
  483. pte_t *pte;
  484. pte_t pteval;
  485. spinlock_t *ptl;
  486. int ret = SWAP_AGAIN;
  487. address = vma_address(page, vma);
  488. if (address == -EFAULT)
  489. goto out;
  490. pte = page_check_address(page, mm, address, &ptl);
  491. if (!pte)
  492. goto out;
  493. /*
  494. * If the page is mlock()d, we cannot swap it out.
  495. * If it's recently referenced (perhaps page_referenced
  496. * skipped over this mm) then we should reactivate it.
  497. */
  498. if (!migration && ((vma->vm_flags & VM_LOCKED) ||
  499. (ptep_clear_flush_young(vma, address, pte)))) {
  500. ret = SWAP_FAIL;
  501. goto out_unmap;
  502. }
  503. /* Nuke the page table entry. */
  504. flush_cache_page(vma, address, page_to_pfn(page));
  505. pteval = ptep_clear_flush(vma, address, pte);
  506. /* Move the dirty bit to the physical page now the pte is gone. */
  507. if (pte_dirty(pteval))
  508. set_page_dirty(page);
  509. /* Update high watermark before we lower rss */
  510. update_hiwater_rss(mm);
  511. if (PageAnon(page)) {
  512. swp_entry_t entry = { .val = page_private(page) };
  513. if (PageSwapCache(page)) {
  514. /*
  515. * Store the swap location in the pte.
  516. * See handle_pte_fault() ...
  517. */
  518. swap_duplicate(entry);
  519. if (list_empty(&mm->mmlist)) {
  520. spin_lock(&mmlist_lock);
  521. if (list_empty(&mm->mmlist))
  522. list_add(&mm->mmlist, &init_mm.mmlist);
  523. spin_unlock(&mmlist_lock);
  524. }
  525. dec_mm_counter(mm, anon_rss);
  526. #ifdef CONFIG_MIGRATION
  527. } else {
  528. /*
  529. * Store the pfn of the page in a special migration
  530. * pte. do_swap_page() will wait until the migration
  531. * pte is removed and then restart fault handling.
  532. */
  533. BUG_ON(!migration);
  534. entry = make_migration_entry(page, pte_write(pteval));
  535. #endif
  536. }
  537. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  538. BUG_ON(pte_file(*pte));
  539. } else
  540. #ifdef CONFIG_MIGRATION
  541. if (migration) {
  542. /* Establish migration entry for a file page */
  543. swp_entry_t entry;
  544. entry = make_migration_entry(page, pte_write(pteval));
  545. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  546. } else
  547. #endif
  548. dec_mm_counter(mm, file_rss);
  549. page_remove_rmap(page);
  550. page_cache_release(page);
  551. out_unmap:
  552. pte_unmap_unlock(pte, ptl);
  553. out:
  554. return ret;
  555. }
  556. /*
  557. * objrmap doesn't work for nonlinear VMAs because the assumption that
  558. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  559. * Consequently, given a particular page and its ->index, we cannot locate the
  560. * ptes which are mapping that page without an exhaustive linear search.
  561. *
  562. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  563. * maps the file to which the target page belongs. The ->vm_private_data field
  564. * holds the current cursor into that scan. Successive searches will circulate
  565. * around the vma's virtual address space.
  566. *
  567. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  568. * more scanning pressure is placed against them as well. Eventually pages
  569. * will become fully unmapped and are eligible for eviction.
  570. *
  571. * For very sparsely populated VMAs this is a little inefficient - chances are
  572. * there there won't be many ptes located within the scan cluster. In this case
  573. * maybe we could scan further - to the end of the pte page, perhaps.
  574. */
  575. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  576. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  577. static void try_to_unmap_cluster(unsigned long cursor,
  578. unsigned int *mapcount, struct vm_area_struct *vma)
  579. {
  580. struct mm_struct *mm = vma->vm_mm;
  581. pgd_t *pgd;
  582. pud_t *pud;
  583. pmd_t *pmd;
  584. pte_t *pte;
  585. pte_t pteval;
  586. spinlock_t *ptl;
  587. struct page *page;
  588. unsigned long address;
  589. unsigned long end;
  590. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  591. end = address + CLUSTER_SIZE;
  592. if (address < vma->vm_start)
  593. address = vma->vm_start;
  594. if (end > vma->vm_end)
  595. end = vma->vm_end;
  596. pgd = pgd_offset(mm, address);
  597. if (!pgd_present(*pgd))
  598. return;
  599. pud = pud_offset(pgd, address);
  600. if (!pud_present(*pud))
  601. return;
  602. pmd = pmd_offset(pud, address);
  603. if (!pmd_present(*pmd))
  604. return;
  605. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  606. /* Update high watermark before we lower rss */
  607. update_hiwater_rss(mm);
  608. for (; address < end; pte++, address += PAGE_SIZE) {
  609. if (!pte_present(*pte))
  610. continue;
  611. page = vm_normal_page(vma, address, *pte);
  612. BUG_ON(!page || PageAnon(page));
  613. if (ptep_clear_flush_young(vma, address, pte))
  614. continue;
  615. /* Nuke the page table entry. */
  616. flush_cache_page(vma, address, pte_pfn(*pte));
  617. pteval = ptep_clear_flush(vma, address, pte);
  618. /* If nonlinear, store the file page offset in the pte. */
  619. if (page->index != linear_page_index(vma, address))
  620. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  621. /* Move the dirty bit to the physical page now the pte is gone. */
  622. if (pte_dirty(pteval))
  623. set_page_dirty(page);
  624. page_remove_rmap(page);
  625. page_cache_release(page);
  626. dec_mm_counter(mm, file_rss);
  627. (*mapcount)--;
  628. }
  629. pte_unmap_unlock(pte - 1, ptl);
  630. }
  631. static int try_to_unmap_anon(struct page *page, int migration)
  632. {
  633. struct anon_vma *anon_vma;
  634. struct vm_area_struct *vma;
  635. int ret = SWAP_AGAIN;
  636. anon_vma = page_lock_anon_vma(page);
  637. if (!anon_vma)
  638. return ret;
  639. list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
  640. ret = try_to_unmap_one(page, vma, migration);
  641. if (ret == SWAP_FAIL || !page_mapped(page))
  642. break;
  643. }
  644. spin_unlock(&anon_vma->lock);
  645. return ret;
  646. }
  647. /**
  648. * try_to_unmap_file - unmap file page using the object-based rmap method
  649. * @page: the page to unmap
  650. *
  651. * Find all the mappings of a page using the mapping pointer and the vma chains
  652. * contained in the address_space struct it points to.
  653. *
  654. * This function is only called from try_to_unmap for object-based pages.
  655. */
  656. static int try_to_unmap_file(struct page *page, int migration)
  657. {
  658. struct address_space *mapping = page->mapping;
  659. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  660. struct vm_area_struct *vma;
  661. struct prio_tree_iter iter;
  662. int ret = SWAP_AGAIN;
  663. unsigned long cursor;
  664. unsigned long max_nl_cursor = 0;
  665. unsigned long max_nl_size = 0;
  666. unsigned int mapcount;
  667. spin_lock(&mapping->i_mmap_lock);
  668. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  669. ret = try_to_unmap_one(page, vma, migration);
  670. if (ret == SWAP_FAIL || !page_mapped(page))
  671. goto out;
  672. }
  673. if (list_empty(&mapping->i_mmap_nonlinear))
  674. goto out;
  675. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  676. shared.vm_set.list) {
  677. if ((vma->vm_flags & VM_LOCKED) && !migration)
  678. continue;
  679. cursor = (unsigned long) vma->vm_private_data;
  680. if (cursor > max_nl_cursor)
  681. max_nl_cursor = cursor;
  682. cursor = vma->vm_end - vma->vm_start;
  683. if (cursor > max_nl_size)
  684. max_nl_size = cursor;
  685. }
  686. if (max_nl_size == 0) { /* any nonlinears locked or reserved */
  687. ret = SWAP_FAIL;
  688. goto out;
  689. }
  690. /*
  691. * We don't try to search for this page in the nonlinear vmas,
  692. * and page_referenced wouldn't have found it anyway. Instead
  693. * just walk the nonlinear vmas trying to age and unmap some.
  694. * The mapcount of the page we came in with is irrelevant,
  695. * but even so use it as a guide to how hard we should try?
  696. */
  697. mapcount = page_mapcount(page);
  698. if (!mapcount)
  699. goto out;
  700. cond_resched_lock(&mapping->i_mmap_lock);
  701. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  702. if (max_nl_cursor == 0)
  703. max_nl_cursor = CLUSTER_SIZE;
  704. do {
  705. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  706. shared.vm_set.list) {
  707. if ((vma->vm_flags & VM_LOCKED) && !migration)
  708. continue;
  709. cursor = (unsigned long) vma->vm_private_data;
  710. while ( cursor < max_nl_cursor &&
  711. cursor < vma->vm_end - vma->vm_start) {
  712. try_to_unmap_cluster(cursor, &mapcount, vma);
  713. cursor += CLUSTER_SIZE;
  714. vma->vm_private_data = (void *) cursor;
  715. if ((int)mapcount <= 0)
  716. goto out;
  717. }
  718. vma->vm_private_data = (void *) max_nl_cursor;
  719. }
  720. cond_resched_lock(&mapping->i_mmap_lock);
  721. max_nl_cursor += CLUSTER_SIZE;
  722. } while (max_nl_cursor <= max_nl_size);
  723. /*
  724. * Don't loop forever (perhaps all the remaining pages are
  725. * in locked vmas). Reset cursor on all unreserved nonlinear
  726. * vmas, now forgetting on which ones it had fallen behind.
  727. */
  728. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  729. vma->vm_private_data = NULL;
  730. out:
  731. spin_unlock(&mapping->i_mmap_lock);
  732. return ret;
  733. }
  734. /**
  735. * try_to_unmap - try to remove all page table mappings to a page
  736. * @page: the page to get unmapped
  737. *
  738. * Tries to remove all the page table entries which are mapping this
  739. * page, used in the pageout path. Caller must hold the page lock.
  740. * Return values are:
  741. *
  742. * SWAP_SUCCESS - we succeeded in removing all mappings
  743. * SWAP_AGAIN - we missed a mapping, try again later
  744. * SWAP_FAIL - the page is unswappable
  745. */
  746. int try_to_unmap(struct page *page, int migration)
  747. {
  748. int ret;
  749. BUG_ON(!PageLocked(page));
  750. if (PageAnon(page))
  751. ret = try_to_unmap_anon(page, migration);
  752. else
  753. ret = try_to_unmap_file(page, migration);
  754. if (!page_mapped(page))
  755. ret = SWAP_SUCCESS;
  756. return ret;
  757. }