page-writeback.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819
  1. /*
  2. * mm/page-writeback.c.
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. *
  6. * Contains functions related to writing back dirty pages at the
  7. * address_space level.
  8. *
  9. * 10Apr2002 akpm@zip.com.au
  10. * Initial version
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/spinlock.h>
  15. #include <linux/fs.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/slab.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/writeback.h>
  21. #include <linux/init.h>
  22. #include <linux/backing-dev.h>
  23. #include <linux/blkdev.h>
  24. #include <linux/mpage.h>
  25. #include <linux/percpu.h>
  26. #include <linux/notifier.h>
  27. #include <linux/smp.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/cpu.h>
  30. #include <linux/syscalls.h>
  31. /*
  32. * The maximum number of pages to writeout in a single bdflush/kupdate
  33. * operation. We do this so we don't hold I_LOCK against an inode for
  34. * enormous amounts of time, which would block a userspace task which has
  35. * been forced to throttle against that inode. Also, the code reevaluates
  36. * the dirty each time it has written this many pages.
  37. */
  38. #define MAX_WRITEBACK_PAGES 1024
  39. /*
  40. * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  41. * will look to see if it needs to force writeback or throttling.
  42. */
  43. static long ratelimit_pages = 32;
  44. static long total_pages; /* The total number of pages in the machine. */
  45. static int dirty_exceeded __cacheline_aligned_in_smp; /* Dirty mem may be over limit */
  46. /*
  47. * When balance_dirty_pages decides that the caller needs to perform some
  48. * non-background writeback, this is how many pages it will attempt to write.
  49. * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
  50. * large amounts of I/O are submitted.
  51. */
  52. static inline long sync_writeback_pages(void)
  53. {
  54. return ratelimit_pages + ratelimit_pages / 2;
  55. }
  56. /* The following parameters are exported via /proc/sys/vm */
  57. /*
  58. * Start background writeback (via pdflush) at this percentage
  59. */
  60. int dirty_background_ratio = 10;
  61. /*
  62. * The generator of dirty data starts writeback at this percentage
  63. */
  64. int vm_dirty_ratio = 40;
  65. /*
  66. * The interval between `kupdate'-style writebacks, in jiffies
  67. */
  68. int dirty_writeback_interval = 5 * HZ;
  69. /*
  70. * The longest number of jiffies for which data is allowed to remain dirty
  71. */
  72. int dirty_expire_interval = 30 * HZ;
  73. /*
  74. * Flag that makes the machine dump writes/reads and block dirtyings.
  75. */
  76. int block_dump;
  77. /*
  78. * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
  79. * a full sync is triggered after this time elapses without any disk activity.
  80. */
  81. int laptop_mode;
  82. EXPORT_SYMBOL(laptop_mode);
  83. /* End of sysctl-exported parameters */
  84. static void background_writeout(unsigned long _min_pages);
  85. /*
  86. * Work out the current dirty-memory clamping and background writeout
  87. * thresholds.
  88. *
  89. * The main aim here is to lower them aggressively if there is a lot of mapped
  90. * memory around. To avoid stressing page reclaim with lots of unreclaimable
  91. * pages. It is better to clamp down on writers than to start swapping, and
  92. * performing lots of scanning.
  93. *
  94. * We only allow 1/2 of the currently-unmapped memory to be dirtied.
  95. *
  96. * We don't permit the clamping level to fall below 5% - that is getting rather
  97. * excessive.
  98. *
  99. * We make sure that the background writeout level is below the adjusted
  100. * clamping level.
  101. */
  102. static void
  103. get_dirty_limits(long *pbackground, long *pdirty,
  104. struct address_space *mapping)
  105. {
  106. int background_ratio; /* Percentages */
  107. int dirty_ratio;
  108. int unmapped_ratio;
  109. long background;
  110. long dirty;
  111. unsigned long available_memory = total_pages;
  112. struct task_struct *tsk;
  113. #ifdef CONFIG_HIGHMEM
  114. /*
  115. * If this mapping can only allocate from low memory,
  116. * we exclude high memory from our count.
  117. */
  118. if (mapping && !(mapping_gfp_mask(mapping) & __GFP_HIGHMEM))
  119. available_memory -= totalhigh_pages;
  120. #endif
  121. unmapped_ratio = 100 - ((global_page_state(NR_FILE_MAPPED) +
  122. global_page_state(NR_ANON_PAGES)) * 100) /
  123. total_pages;
  124. dirty_ratio = vm_dirty_ratio;
  125. if (dirty_ratio > unmapped_ratio / 2)
  126. dirty_ratio = unmapped_ratio / 2;
  127. if (dirty_ratio < 5)
  128. dirty_ratio = 5;
  129. background_ratio = dirty_background_ratio;
  130. if (background_ratio >= dirty_ratio)
  131. background_ratio = dirty_ratio / 2;
  132. background = (background_ratio * available_memory) / 100;
  133. dirty = (dirty_ratio * available_memory) / 100;
  134. tsk = current;
  135. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
  136. background += background / 4;
  137. dirty += dirty / 4;
  138. }
  139. *pbackground = background;
  140. *pdirty = dirty;
  141. }
  142. /*
  143. * balance_dirty_pages() must be called by processes which are generating dirty
  144. * data. It looks at the number of dirty pages in the machine and will force
  145. * the caller to perform writeback if the system is over `vm_dirty_ratio'.
  146. * If we're over `background_thresh' then pdflush is woken to perform some
  147. * writeout.
  148. */
  149. static void balance_dirty_pages(struct address_space *mapping)
  150. {
  151. long nr_reclaimable;
  152. long background_thresh;
  153. long dirty_thresh;
  154. unsigned long pages_written = 0;
  155. unsigned long write_chunk = sync_writeback_pages();
  156. struct backing_dev_info *bdi = mapping->backing_dev_info;
  157. for (;;) {
  158. struct writeback_control wbc = {
  159. .bdi = bdi,
  160. .sync_mode = WB_SYNC_NONE,
  161. .older_than_this = NULL,
  162. .nr_to_write = write_chunk,
  163. .range_cyclic = 1,
  164. };
  165. get_dirty_limits(&background_thresh, &dirty_thresh, mapping);
  166. nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
  167. global_page_state(NR_UNSTABLE_NFS);
  168. if (nr_reclaimable + global_page_state(NR_WRITEBACK) <=
  169. dirty_thresh)
  170. break;
  171. if (!dirty_exceeded)
  172. dirty_exceeded = 1;
  173. /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
  174. * Unstable writes are a feature of certain networked
  175. * filesystems (i.e. NFS) in which data may have been
  176. * written to the server's write cache, but has not yet
  177. * been flushed to permanent storage.
  178. */
  179. if (nr_reclaimable) {
  180. writeback_inodes(&wbc);
  181. get_dirty_limits(&background_thresh,
  182. &dirty_thresh, mapping);
  183. nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
  184. global_page_state(NR_UNSTABLE_NFS);
  185. if (nr_reclaimable +
  186. global_page_state(NR_WRITEBACK)
  187. <= dirty_thresh)
  188. break;
  189. pages_written += write_chunk - wbc.nr_to_write;
  190. if (pages_written >= write_chunk)
  191. break; /* We've done our duty */
  192. }
  193. blk_congestion_wait(WRITE, HZ/10);
  194. }
  195. if (nr_reclaimable + global_page_state(NR_WRITEBACK)
  196. <= dirty_thresh && dirty_exceeded)
  197. dirty_exceeded = 0;
  198. if (writeback_in_progress(bdi))
  199. return; /* pdflush is already working this queue */
  200. /*
  201. * In laptop mode, we wait until hitting the higher threshold before
  202. * starting background writeout, and then write out all the way down
  203. * to the lower threshold. So slow writers cause minimal disk activity.
  204. *
  205. * In normal mode, we start background writeout at the lower
  206. * background_thresh, to keep the amount of dirty memory low.
  207. */
  208. if ((laptop_mode && pages_written) ||
  209. (!laptop_mode && (nr_reclaimable > background_thresh)))
  210. pdflush_operation(background_writeout, 0);
  211. }
  212. /**
  213. * balance_dirty_pages_ratelimited_nr - balance dirty memory state
  214. * @mapping: address_space which was dirtied
  215. * @nr_pages_dirtied: number of pages which the caller has just dirtied
  216. *
  217. * Processes which are dirtying memory should call in here once for each page
  218. * which was newly dirtied. The function will periodically check the system's
  219. * dirty state and will initiate writeback if needed.
  220. *
  221. * On really big machines, get_writeback_state is expensive, so try to avoid
  222. * calling it too often (ratelimiting). But once we're over the dirty memory
  223. * limit we decrease the ratelimiting by a lot, to prevent individual processes
  224. * from overshooting the limit by (ratelimit_pages) each.
  225. */
  226. void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
  227. unsigned long nr_pages_dirtied)
  228. {
  229. static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
  230. unsigned long ratelimit;
  231. unsigned long *p;
  232. ratelimit = ratelimit_pages;
  233. if (dirty_exceeded)
  234. ratelimit = 8;
  235. /*
  236. * Check the rate limiting. Also, we do not want to throttle real-time
  237. * tasks in balance_dirty_pages(). Period.
  238. */
  239. preempt_disable();
  240. p = &__get_cpu_var(ratelimits);
  241. *p += nr_pages_dirtied;
  242. if (unlikely(*p >= ratelimit)) {
  243. *p = 0;
  244. preempt_enable();
  245. balance_dirty_pages(mapping);
  246. return;
  247. }
  248. preempt_enable();
  249. }
  250. EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
  251. void throttle_vm_writeout(void)
  252. {
  253. long background_thresh;
  254. long dirty_thresh;
  255. for ( ; ; ) {
  256. get_dirty_limits(&background_thresh, &dirty_thresh, NULL);
  257. /*
  258. * Boost the allowable dirty threshold a bit for page
  259. * allocators so they don't get DoS'ed by heavy writers
  260. */
  261. dirty_thresh += dirty_thresh / 10; /* wheeee... */
  262. if (global_page_state(NR_UNSTABLE_NFS) +
  263. global_page_state(NR_WRITEBACK) <= dirty_thresh)
  264. break;
  265. blk_congestion_wait(WRITE, HZ/10);
  266. }
  267. }
  268. /*
  269. * writeback at least _min_pages, and keep writing until the amount of dirty
  270. * memory is less than the background threshold, or until we're all clean.
  271. */
  272. static void background_writeout(unsigned long _min_pages)
  273. {
  274. long min_pages = _min_pages;
  275. struct writeback_control wbc = {
  276. .bdi = NULL,
  277. .sync_mode = WB_SYNC_NONE,
  278. .older_than_this = NULL,
  279. .nr_to_write = 0,
  280. .nonblocking = 1,
  281. .range_cyclic = 1,
  282. };
  283. for ( ; ; ) {
  284. long background_thresh;
  285. long dirty_thresh;
  286. get_dirty_limits(&background_thresh, &dirty_thresh, NULL);
  287. if (global_page_state(NR_FILE_DIRTY) +
  288. global_page_state(NR_UNSTABLE_NFS) < background_thresh
  289. && min_pages <= 0)
  290. break;
  291. wbc.encountered_congestion = 0;
  292. wbc.nr_to_write = MAX_WRITEBACK_PAGES;
  293. wbc.pages_skipped = 0;
  294. writeback_inodes(&wbc);
  295. min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
  296. if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
  297. /* Wrote less than expected */
  298. blk_congestion_wait(WRITE, HZ/10);
  299. if (!wbc.encountered_congestion)
  300. break;
  301. }
  302. }
  303. }
  304. /*
  305. * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
  306. * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
  307. * -1 if all pdflush threads were busy.
  308. */
  309. int wakeup_pdflush(long nr_pages)
  310. {
  311. if (nr_pages == 0)
  312. nr_pages = global_page_state(NR_FILE_DIRTY) +
  313. global_page_state(NR_UNSTABLE_NFS);
  314. return pdflush_operation(background_writeout, nr_pages);
  315. }
  316. static void wb_timer_fn(unsigned long unused);
  317. static void laptop_timer_fn(unsigned long unused);
  318. static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
  319. static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
  320. /*
  321. * Periodic writeback of "old" data.
  322. *
  323. * Define "old": the first time one of an inode's pages is dirtied, we mark the
  324. * dirtying-time in the inode's address_space. So this periodic writeback code
  325. * just walks the superblock inode list, writing back any inodes which are
  326. * older than a specific point in time.
  327. *
  328. * Try to run once per dirty_writeback_interval. But if a writeback event
  329. * takes longer than a dirty_writeback_interval interval, then leave a
  330. * one-second gap.
  331. *
  332. * older_than_this takes precedence over nr_to_write. So we'll only write back
  333. * all dirty pages if they are all attached to "old" mappings.
  334. */
  335. static void wb_kupdate(unsigned long arg)
  336. {
  337. unsigned long oldest_jif;
  338. unsigned long start_jif;
  339. unsigned long next_jif;
  340. long nr_to_write;
  341. struct writeback_control wbc = {
  342. .bdi = NULL,
  343. .sync_mode = WB_SYNC_NONE,
  344. .older_than_this = &oldest_jif,
  345. .nr_to_write = 0,
  346. .nonblocking = 1,
  347. .for_kupdate = 1,
  348. .range_cyclic = 1,
  349. };
  350. sync_supers();
  351. oldest_jif = jiffies - dirty_expire_interval;
  352. start_jif = jiffies;
  353. next_jif = start_jif + dirty_writeback_interval;
  354. nr_to_write = global_page_state(NR_FILE_DIRTY) +
  355. global_page_state(NR_UNSTABLE_NFS) +
  356. (inodes_stat.nr_inodes - inodes_stat.nr_unused);
  357. while (nr_to_write > 0) {
  358. wbc.encountered_congestion = 0;
  359. wbc.nr_to_write = MAX_WRITEBACK_PAGES;
  360. writeback_inodes(&wbc);
  361. if (wbc.nr_to_write > 0) {
  362. if (wbc.encountered_congestion)
  363. blk_congestion_wait(WRITE, HZ/10);
  364. else
  365. break; /* All the old data is written */
  366. }
  367. nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
  368. }
  369. if (time_before(next_jif, jiffies + HZ))
  370. next_jif = jiffies + HZ;
  371. if (dirty_writeback_interval)
  372. mod_timer(&wb_timer, next_jif);
  373. }
  374. /*
  375. * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
  376. */
  377. int dirty_writeback_centisecs_handler(ctl_table *table, int write,
  378. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  379. {
  380. proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
  381. if (dirty_writeback_interval) {
  382. mod_timer(&wb_timer,
  383. jiffies + dirty_writeback_interval);
  384. } else {
  385. del_timer(&wb_timer);
  386. }
  387. return 0;
  388. }
  389. static void wb_timer_fn(unsigned long unused)
  390. {
  391. if (pdflush_operation(wb_kupdate, 0) < 0)
  392. mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
  393. }
  394. static void laptop_flush(unsigned long unused)
  395. {
  396. sys_sync();
  397. }
  398. static void laptop_timer_fn(unsigned long unused)
  399. {
  400. pdflush_operation(laptop_flush, 0);
  401. }
  402. /*
  403. * We've spun up the disk and we're in laptop mode: schedule writeback
  404. * of all dirty data a few seconds from now. If the flush is already scheduled
  405. * then push it back - the user is still using the disk.
  406. */
  407. void laptop_io_completion(void)
  408. {
  409. mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
  410. }
  411. /*
  412. * We're in laptop mode and we've just synced. The sync's writes will have
  413. * caused another writeback to be scheduled by laptop_io_completion.
  414. * Nothing needs to be written back anymore, so we unschedule the writeback.
  415. */
  416. void laptop_sync_completion(void)
  417. {
  418. del_timer(&laptop_mode_wb_timer);
  419. }
  420. /*
  421. * If ratelimit_pages is too high then we can get into dirty-data overload
  422. * if a large number of processes all perform writes at the same time.
  423. * If it is too low then SMP machines will call the (expensive)
  424. * get_writeback_state too often.
  425. *
  426. * Here we set ratelimit_pages to a level which ensures that when all CPUs are
  427. * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
  428. * thresholds before writeback cuts in.
  429. *
  430. * But the limit should not be set too high. Because it also controls the
  431. * amount of memory which the balance_dirty_pages() caller has to write back.
  432. * If this is too large then the caller will block on the IO queue all the
  433. * time. So limit it to four megabytes - the balance_dirty_pages() caller
  434. * will write six megabyte chunks, max.
  435. */
  436. static void set_ratelimit(void)
  437. {
  438. ratelimit_pages = total_pages / (num_online_cpus() * 32);
  439. if (ratelimit_pages < 16)
  440. ratelimit_pages = 16;
  441. if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
  442. ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
  443. }
  444. static int __cpuinit
  445. ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
  446. {
  447. set_ratelimit();
  448. return 0;
  449. }
  450. static struct notifier_block __cpuinitdata ratelimit_nb = {
  451. .notifier_call = ratelimit_handler,
  452. .next = NULL,
  453. };
  454. /*
  455. * If the machine has a large highmem:lowmem ratio then scale back the default
  456. * dirty memory thresholds: allowing too much dirty highmem pins an excessive
  457. * number of buffer_heads.
  458. */
  459. void __init page_writeback_init(void)
  460. {
  461. long buffer_pages = nr_free_buffer_pages();
  462. long correction;
  463. total_pages = nr_free_pagecache_pages();
  464. correction = (100 * 4 * buffer_pages) / total_pages;
  465. if (correction < 100) {
  466. dirty_background_ratio *= correction;
  467. dirty_background_ratio /= 100;
  468. vm_dirty_ratio *= correction;
  469. vm_dirty_ratio /= 100;
  470. if (dirty_background_ratio <= 0)
  471. dirty_background_ratio = 1;
  472. if (vm_dirty_ratio <= 0)
  473. vm_dirty_ratio = 1;
  474. }
  475. mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
  476. set_ratelimit();
  477. register_cpu_notifier(&ratelimit_nb);
  478. }
  479. int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
  480. {
  481. int ret;
  482. if (wbc->nr_to_write <= 0)
  483. return 0;
  484. wbc->for_writepages = 1;
  485. if (mapping->a_ops->writepages)
  486. ret = mapping->a_ops->writepages(mapping, wbc);
  487. else
  488. ret = generic_writepages(mapping, wbc);
  489. wbc->for_writepages = 0;
  490. return ret;
  491. }
  492. /**
  493. * write_one_page - write out a single page and optionally wait on I/O
  494. *
  495. * @page: the page to write
  496. * @wait: if true, wait on writeout
  497. *
  498. * The page must be locked by the caller and will be unlocked upon return.
  499. *
  500. * write_one_page() returns a negative error code if I/O failed.
  501. */
  502. int write_one_page(struct page *page, int wait)
  503. {
  504. struct address_space *mapping = page->mapping;
  505. int ret = 0;
  506. struct writeback_control wbc = {
  507. .sync_mode = WB_SYNC_ALL,
  508. .nr_to_write = 1,
  509. };
  510. BUG_ON(!PageLocked(page));
  511. if (wait)
  512. wait_on_page_writeback(page);
  513. if (clear_page_dirty_for_io(page)) {
  514. page_cache_get(page);
  515. ret = mapping->a_ops->writepage(page, &wbc);
  516. if (ret == 0 && wait) {
  517. wait_on_page_writeback(page);
  518. if (PageError(page))
  519. ret = -EIO;
  520. }
  521. page_cache_release(page);
  522. } else {
  523. unlock_page(page);
  524. }
  525. return ret;
  526. }
  527. EXPORT_SYMBOL(write_one_page);
  528. /*
  529. * For address_spaces which do not use buffers. Just tag the page as dirty in
  530. * its radix tree.
  531. *
  532. * This is also used when a single buffer is being dirtied: we want to set the
  533. * page dirty in that case, but not all the buffers. This is a "bottom-up"
  534. * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
  535. *
  536. * Most callers have locked the page, which pins the address_space in memory.
  537. * But zap_pte_range() does not lock the page, however in that case the
  538. * mapping is pinned by the vma's ->vm_file reference.
  539. *
  540. * We take care to handle the case where the page was truncated from the
  541. * mapping by re-checking page_mapping() insode tree_lock.
  542. */
  543. int __set_page_dirty_nobuffers(struct page *page)
  544. {
  545. if (!TestSetPageDirty(page)) {
  546. struct address_space *mapping = page_mapping(page);
  547. struct address_space *mapping2;
  548. if (mapping) {
  549. write_lock_irq(&mapping->tree_lock);
  550. mapping2 = page_mapping(page);
  551. if (mapping2) { /* Race with truncate? */
  552. BUG_ON(mapping2 != mapping);
  553. if (mapping_cap_account_dirty(mapping))
  554. __inc_zone_page_state(page,
  555. NR_FILE_DIRTY);
  556. radix_tree_tag_set(&mapping->page_tree,
  557. page_index(page), PAGECACHE_TAG_DIRTY);
  558. }
  559. write_unlock_irq(&mapping->tree_lock);
  560. if (mapping->host) {
  561. /* !PageAnon && !swapper_space */
  562. __mark_inode_dirty(mapping->host,
  563. I_DIRTY_PAGES);
  564. }
  565. }
  566. return 1;
  567. }
  568. return 0;
  569. }
  570. EXPORT_SYMBOL(__set_page_dirty_nobuffers);
  571. /*
  572. * When a writepage implementation decides that it doesn't want to write this
  573. * page for some reason, it should redirty the locked page via
  574. * redirty_page_for_writepage() and it should then unlock the page and return 0
  575. */
  576. int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
  577. {
  578. wbc->pages_skipped++;
  579. return __set_page_dirty_nobuffers(page);
  580. }
  581. EXPORT_SYMBOL(redirty_page_for_writepage);
  582. /*
  583. * If the mapping doesn't provide a set_page_dirty a_op, then
  584. * just fall through and assume that it wants buffer_heads.
  585. */
  586. int fastcall set_page_dirty(struct page *page)
  587. {
  588. struct address_space *mapping = page_mapping(page);
  589. if (likely(mapping)) {
  590. int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
  591. if (spd)
  592. return (*spd)(page);
  593. return __set_page_dirty_buffers(page);
  594. }
  595. if (!PageDirty(page)) {
  596. if (!TestSetPageDirty(page))
  597. return 1;
  598. }
  599. return 0;
  600. }
  601. EXPORT_SYMBOL(set_page_dirty);
  602. /*
  603. * set_page_dirty() is racy if the caller has no reference against
  604. * page->mapping->host, and if the page is unlocked. This is because another
  605. * CPU could truncate the page off the mapping and then free the mapping.
  606. *
  607. * Usually, the page _is_ locked, or the caller is a user-space process which
  608. * holds a reference on the inode by having an open file.
  609. *
  610. * In other cases, the page should be locked before running set_page_dirty().
  611. */
  612. int set_page_dirty_lock(struct page *page)
  613. {
  614. int ret;
  615. lock_page(page);
  616. ret = set_page_dirty(page);
  617. unlock_page(page);
  618. return ret;
  619. }
  620. EXPORT_SYMBOL(set_page_dirty_lock);
  621. /*
  622. * Clear a page's dirty flag, while caring for dirty memory accounting.
  623. * Returns true if the page was previously dirty.
  624. */
  625. int test_clear_page_dirty(struct page *page)
  626. {
  627. struct address_space *mapping = page_mapping(page);
  628. unsigned long flags;
  629. if (mapping) {
  630. write_lock_irqsave(&mapping->tree_lock, flags);
  631. if (TestClearPageDirty(page)) {
  632. radix_tree_tag_clear(&mapping->page_tree,
  633. page_index(page),
  634. PAGECACHE_TAG_DIRTY);
  635. if (mapping_cap_account_dirty(mapping))
  636. __dec_zone_page_state(page, NR_FILE_DIRTY);
  637. write_unlock_irqrestore(&mapping->tree_lock, flags);
  638. return 1;
  639. }
  640. write_unlock_irqrestore(&mapping->tree_lock, flags);
  641. return 0;
  642. }
  643. return TestClearPageDirty(page);
  644. }
  645. EXPORT_SYMBOL(test_clear_page_dirty);
  646. /*
  647. * Clear a page's dirty flag, while caring for dirty memory accounting.
  648. * Returns true if the page was previously dirty.
  649. *
  650. * This is for preparing to put the page under writeout. We leave the page
  651. * tagged as dirty in the radix tree so that a concurrent write-for-sync
  652. * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
  653. * implementation will run either set_page_writeback() or set_page_dirty(),
  654. * at which stage we bring the page's dirty flag and radix-tree dirty tag
  655. * back into sync.
  656. *
  657. * This incoherency between the page's dirty flag and radix-tree tag is
  658. * unfortunate, but it only exists while the page is locked.
  659. */
  660. int clear_page_dirty_for_io(struct page *page)
  661. {
  662. struct address_space *mapping = page_mapping(page);
  663. if (mapping) {
  664. if (TestClearPageDirty(page)) {
  665. if (mapping_cap_account_dirty(mapping))
  666. dec_zone_page_state(page, NR_FILE_DIRTY);
  667. return 1;
  668. }
  669. return 0;
  670. }
  671. return TestClearPageDirty(page);
  672. }
  673. EXPORT_SYMBOL(clear_page_dirty_for_io);
  674. int test_clear_page_writeback(struct page *page)
  675. {
  676. struct address_space *mapping = page_mapping(page);
  677. int ret;
  678. if (mapping) {
  679. unsigned long flags;
  680. write_lock_irqsave(&mapping->tree_lock, flags);
  681. ret = TestClearPageWriteback(page);
  682. if (ret)
  683. radix_tree_tag_clear(&mapping->page_tree,
  684. page_index(page),
  685. PAGECACHE_TAG_WRITEBACK);
  686. write_unlock_irqrestore(&mapping->tree_lock, flags);
  687. } else {
  688. ret = TestClearPageWriteback(page);
  689. }
  690. return ret;
  691. }
  692. int test_set_page_writeback(struct page *page)
  693. {
  694. struct address_space *mapping = page_mapping(page);
  695. int ret;
  696. if (mapping) {
  697. unsigned long flags;
  698. write_lock_irqsave(&mapping->tree_lock, flags);
  699. ret = TestSetPageWriteback(page);
  700. if (!ret)
  701. radix_tree_tag_set(&mapping->page_tree,
  702. page_index(page),
  703. PAGECACHE_TAG_WRITEBACK);
  704. if (!PageDirty(page))
  705. radix_tree_tag_clear(&mapping->page_tree,
  706. page_index(page),
  707. PAGECACHE_TAG_DIRTY);
  708. write_unlock_irqrestore(&mapping->tree_lock, flags);
  709. } else {
  710. ret = TestSetPageWriteback(page);
  711. }
  712. return ret;
  713. }
  714. EXPORT_SYMBOL(test_set_page_writeback);
  715. /*
  716. * Return true if any of the pages in the mapping are marged with the
  717. * passed tag.
  718. */
  719. int mapping_tagged(struct address_space *mapping, int tag)
  720. {
  721. unsigned long flags;
  722. int ret;
  723. read_lock_irqsave(&mapping->tree_lock, flags);
  724. ret = radix_tree_tagged(&mapping->page_tree, tag);
  725. read_unlock_irqrestore(&mapping->tree_lock, flags);
  726. return ret;
  727. }
  728. EXPORT_SYMBOL(mapping_tagged);