bootmem.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463
  1. /*
  2. * linux/mm/bootmem.c
  3. *
  4. * Copyright (C) 1999 Ingo Molnar
  5. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  6. *
  7. * simple boot-time physical memory area allocator and
  8. * free memory collector. It's used to deal with reserved
  9. * system memory and memory holes as well.
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/kernel_stat.h>
  13. #include <linux/swap.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/init.h>
  16. #include <linux/bootmem.h>
  17. #include <linux/mmzone.h>
  18. #include <linux/module.h>
  19. #include <asm/dma.h>
  20. #include <asm/io.h>
  21. #include "internal.h"
  22. /*
  23. * Access to this subsystem has to be serialized externally. (this is
  24. * true for the boot process anyway)
  25. */
  26. unsigned long max_low_pfn;
  27. unsigned long min_low_pfn;
  28. unsigned long max_pfn;
  29. EXPORT_UNUSED_SYMBOL(max_pfn); /* June 2006 */
  30. static LIST_HEAD(bdata_list);
  31. #ifdef CONFIG_CRASH_DUMP
  32. /*
  33. * If we have booted due to a crash, max_pfn will be a very low value. We need
  34. * to know the amount of memory that the previous kernel used.
  35. */
  36. unsigned long saved_max_pfn;
  37. #endif
  38. /* return the number of _pages_ that will be allocated for the boot bitmap */
  39. unsigned long __init bootmem_bootmap_pages (unsigned long pages)
  40. {
  41. unsigned long mapsize;
  42. mapsize = (pages+7)/8;
  43. mapsize = (mapsize + ~PAGE_MASK) & PAGE_MASK;
  44. mapsize >>= PAGE_SHIFT;
  45. return mapsize;
  46. }
  47. /*
  48. * link bdata in order
  49. */
  50. static void link_bootmem(bootmem_data_t *bdata)
  51. {
  52. bootmem_data_t *ent;
  53. if (list_empty(&bdata_list)) {
  54. list_add(&bdata->list, &bdata_list);
  55. return;
  56. }
  57. /* insert in order */
  58. list_for_each_entry(ent, &bdata_list, list) {
  59. if (bdata->node_boot_start < ent->node_boot_start) {
  60. list_add_tail(&bdata->list, &ent->list);
  61. return;
  62. }
  63. }
  64. list_add_tail(&bdata->list, &bdata_list);
  65. return;
  66. }
  67. /*
  68. * Called once to set up the allocator itself.
  69. */
  70. static unsigned long __init init_bootmem_core (pg_data_t *pgdat,
  71. unsigned long mapstart, unsigned long start, unsigned long end)
  72. {
  73. bootmem_data_t *bdata = pgdat->bdata;
  74. unsigned long mapsize = ((end - start)+7)/8;
  75. mapsize = ALIGN(mapsize, sizeof(long));
  76. bdata->node_bootmem_map = phys_to_virt(mapstart << PAGE_SHIFT);
  77. bdata->node_boot_start = (start << PAGE_SHIFT);
  78. bdata->node_low_pfn = end;
  79. link_bootmem(bdata);
  80. /*
  81. * Initially all pages are reserved - setup_arch() has to
  82. * register free RAM areas explicitly.
  83. */
  84. memset(bdata->node_bootmem_map, 0xff, mapsize);
  85. return mapsize;
  86. }
  87. /*
  88. * Marks a particular physical memory range as unallocatable. Usable RAM
  89. * might be used for boot-time allocations - or it might get added
  90. * to the free page pool later on.
  91. */
  92. static void __init reserve_bootmem_core(bootmem_data_t *bdata, unsigned long addr, unsigned long size)
  93. {
  94. unsigned long i;
  95. /*
  96. * round up, partially reserved pages are considered
  97. * fully reserved.
  98. */
  99. unsigned long sidx = (addr - bdata->node_boot_start)/PAGE_SIZE;
  100. unsigned long eidx = (addr + size - bdata->node_boot_start +
  101. PAGE_SIZE-1)/PAGE_SIZE;
  102. unsigned long end = (addr + size + PAGE_SIZE-1)/PAGE_SIZE;
  103. BUG_ON(!size);
  104. BUG_ON(sidx >= eidx);
  105. BUG_ON((addr >> PAGE_SHIFT) >= bdata->node_low_pfn);
  106. BUG_ON(end > bdata->node_low_pfn);
  107. for (i = sidx; i < eidx; i++)
  108. if (test_and_set_bit(i, bdata->node_bootmem_map)) {
  109. #ifdef CONFIG_DEBUG_BOOTMEM
  110. printk("hm, page %08lx reserved twice.\n", i*PAGE_SIZE);
  111. #endif
  112. }
  113. }
  114. static void __init free_bootmem_core(bootmem_data_t *bdata, unsigned long addr, unsigned long size)
  115. {
  116. unsigned long i;
  117. unsigned long start;
  118. /*
  119. * round down end of usable mem, partially free pages are
  120. * considered reserved.
  121. */
  122. unsigned long sidx;
  123. unsigned long eidx = (addr + size - bdata->node_boot_start)/PAGE_SIZE;
  124. unsigned long end = (addr + size)/PAGE_SIZE;
  125. BUG_ON(!size);
  126. BUG_ON(end > bdata->node_low_pfn);
  127. if (addr < bdata->last_success)
  128. bdata->last_success = addr;
  129. /*
  130. * Round up the beginning of the address.
  131. */
  132. start = (addr + PAGE_SIZE-1) / PAGE_SIZE;
  133. sidx = start - (bdata->node_boot_start/PAGE_SIZE);
  134. for (i = sidx; i < eidx; i++) {
  135. if (unlikely(!test_and_clear_bit(i, bdata->node_bootmem_map)))
  136. BUG();
  137. }
  138. }
  139. /*
  140. * We 'merge' subsequent allocations to save space. We might 'lose'
  141. * some fraction of a page if allocations cannot be satisfied due to
  142. * size constraints on boxes where there is physical RAM space
  143. * fragmentation - in these cases (mostly large memory boxes) this
  144. * is not a problem.
  145. *
  146. * On low memory boxes we get it right in 100% of the cases.
  147. *
  148. * alignment has to be a power of 2 value.
  149. *
  150. * NOTE: This function is _not_ reentrant.
  151. */
  152. void * __init
  153. __alloc_bootmem_core(struct bootmem_data *bdata, unsigned long size,
  154. unsigned long align, unsigned long goal, unsigned long limit)
  155. {
  156. unsigned long offset, remaining_size, areasize, preferred;
  157. unsigned long i, start = 0, incr, eidx, end_pfn = bdata->node_low_pfn;
  158. void *ret;
  159. if(!size) {
  160. printk("__alloc_bootmem_core(): zero-sized request\n");
  161. BUG();
  162. }
  163. BUG_ON(align & (align-1));
  164. if (limit && bdata->node_boot_start >= limit)
  165. return NULL;
  166. limit >>=PAGE_SHIFT;
  167. if (limit && end_pfn > limit)
  168. end_pfn = limit;
  169. eidx = end_pfn - (bdata->node_boot_start >> PAGE_SHIFT);
  170. offset = 0;
  171. if (align &&
  172. (bdata->node_boot_start & (align - 1UL)) != 0)
  173. offset = (align - (bdata->node_boot_start & (align - 1UL)));
  174. offset >>= PAGE_SHIFT;
  175. /*
  176. * We try to allocate bootmem pages above 'goal'
  177. * first, then we try to allocate lower pages.
  178. */
  179. if (goal && (goal >= bdata->node_boot_start) &&
  180. ((goal >> PAGE_SHIFT) < end_pfn)) {
  181. preferred = goal - bdata->node_boot_start;
  182. if (bdata->last_success >= preferred)
  183. if (!limit || (limit && limit > bdata->last_success))
  184. preferred = bdata->last_success;
  185. } else
  186. preferred = 0;
  187. preferred = ALIGN(preferred, align) >> PAGE_SHIFT;
  188. preferred += offset;
  189. areasize = (size+PAGE_SIZE-1)/PAGE_SIZE;
  190. incr = align >> PAGE_SHIFT ? : 1;
  191. restart_scan:
  192. for (i = preferred; i < eidx; i += incr) {
  193. unsigned long j;
  194. i = find_next_zero_bit(bdata->node_bootmem_map, eidx, i);
  195. i = ALIGN(i, incr);
  196. if (i >= eidx)
  197. break;
  198. if (test_bit(i, bdata->node_bootmem_map))
  199. continue;
  200. for (j = i + 1; j < i + areasize; ++j) {
  201. if (j >= eidx)
  202. goto fail_block;
  203. if (test_bit (j, bdata->node_bootmem_map))
  204. goto fail_block;
  205. }
  206. start = i;
  207. goto found;
  208. fail_block:
  209. i = ALIGN(j, incr);
  210. }
  211. if (preferred > offset) {
  212. preferred = offset;
  213. goto restart_scan;
  214. }
  215. return NULL;
  216. found:
  217. bdata->last_success = start << PAGE_SHIFT;
  218. BUG_ON(start >= eidx);
  219. /*
  220. * Is the next page of the previous allocation-end the start
  221. * of this allocation's buffer? If yes then we can 'merge'
  222. * the previous partial page with this allocation.
  223. */
  224. if (align < PAGE_SIZE &&
  225. bdata->last_offset && bdata->last_pos+1 == start) {
  226. offset = ALIGN(bdata->last_offset, align);
  227. BUG_ON(offset > PAGE_SIZE);
  228. remaining_size = PAGE_SIZE-offset;
  229. if (size < remaining_size) {
  230. areasize = 0;
  231. /* last_pos unchanged */
  232. bdata->last_offset = offset+size;
  233. ret = phys_to_virt(bdata->last_pos*PAGE_SIZE + offset +
  234. bdata->node_boot_start);
  235. } else {
  236. remaining_size = size - remaining_size;
  237. areasize = (remaining_size+PAGE_SIZE-1)/PAGE_SIZE;
  238. ret = phys_to_virt(bdata->last_pos*PAGE_SIZE + offset +
  239. bdata->node_boot_start);
  240. bdata->last_pos = start+areasize-1;
  241. bdata->last_offset = remaining_size;
  242. }
  243. bdata->last_offset &= ~PAGE_MASK;
  244. } else {
  245. bdata->last_pos = start + areasize - 1;
  246. bdata->last_offset = size & ~PAGE_MASK;
  247. ret = phys_to_virt(start * PAGE_SIZE + bdata->node_boot_start);
  248. }
  249. /*
  250. * Reserve the area now:
  251. */
  252. for (i = start; i < start+areasize; i++)
  253. if (unlikely(test_and_set_bit(i, bdata->node_bootmem_map)))
  254. BUG();
  255. memset(ret, 0, size);
  256. return ret;
  257. }
  258. static unsigned long __init free_all_bootmem_core(pg_data_t *pgdat)
  259. {
  260. struct page *page;
  261. unsigned long pfn;
  262. bootmem_data_t *bdata = pgdat->bdata;
  263. unsigned long i, count, total = 0;
  264. unsigned long idx;
  265. unsigned long *map;
  266. int gofast = 0;
  267. BUG_ON(!bdata->node_bootmem_map);
  268. count = 0;
  269. /* first extant page of the node */
  270. pfn = bdata->node_boot_start >> PAGE_SHIFT;
  271. idx = bdata->node_low_pfn - (bdata->node_boot_start >> PAGE_SHIFT);
  272. map = bdata->node_bootmem_map;
  273. /* Check physaddr is O(LOG2(BITS_PER_LONG)) page aligned */
  274. if (bdata->node_boot_start == 0 ||
  275. ffs(bdata->node_boot_start) - PAGE_SHIFT > ffs(BITS_PER_LONG))
  276. gofast = 1;
  277. for (i = 0; i < idx; ) {
  278. unsigned long v = ~map[i / BITS_PER_LONG];
  279. if (gofast && v == ~0UL) {
  280. int order;
  281. page = pfn_to_page(pfn);
  282. count += BITS_PER_LONG;
  283. order = ffs(BITS_PER_LONG) - 1;
  284. __free_pages_bootmem(page, order);
  285. i += BITS_PER_LONG;
  286. page += BITS_PER_LONG;
  287. } else if (v) {
  288. unsigned long m;
  289. page = pfn_to_page(pfn);
  290. for (m = 1; m && i < idx; m<<=1, page++, i++) {
  291. if (v & m) {
  292. count++;
  293. __free_pages_bootmem(page, 0);
  294. }
  295. }
  296. } else {
  297. i+=BITS_PER_LONG;
  298. }
  299. pfn += BITS_PER_LONG;
  300. }
  301. total += count;
  302. /*
  303. * Now free the allocator bitmap itself, it's not
  304. * needed anymore:
  305. */
  306. page = virt_to_page(bdata->node_bootmem_map);
  307. count = 0;
  308. for (i = 0; i < ((bdata->node_low_pfn-(bdata->node_boot_start >> PAGE_SHIFT))/8 + PAGE_SIZE-1)/PAGE_SIZE; i++,page++) {
  309. count++;
  310. __free_pages_bootmem(page, 0);
  311. }
  312. total += count;
  313. bdata->node_bootmem_map = NULL;
  314. return total;
  315. }
  316. unsigned long __init init_bootmem_node (pg_data_t *pgdat, unsigned long freepfn, unsigned long startpfn, unsigned long endpfn)
  317. {
  318. return(init_bootmem_core(pgdat, freepfn, startpfn, endpfn));
  319. }
  320. void __init reserve_bootmem_node (pg_data_t *pgdat, unsigned long physaddr, unsigned long size)
  321. {
  322. reserve_bootmem_core(pgdat->bdata, physaddr, size);
  323. }
  324. void __init free_bootmem_node (pg_data_t *pgdat, unsigned long physaddr, unsigned long size)
  325. {
  326. free_bootmem_core(pgdat->bdata, physaddr, size);
  327. }
  328. unsigned long __init free_all_bootmem_node (pg_data_t *pgdat)
  329. {
  330. return(free_all_bootmem_core(pgdat));
  331. }
  332. unsigned long __init init_bootmem (unsigned long start, unsigned long pages)
  333. {
  334. max_low_pfn = pages;
  335. min_low_pfn = start;
  336. return(init_bootmem_core(NODE_DATA(0), start, 0, pages));
  337. }
  338. #ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE
  339. void __init reserve_bootmem (unsigned long addr, unsigned long size)
  340. {
  341. reserve_bootmem_core(NODE_DATA(0)->bdata, addr, size);
  342. }
  343. #endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */
  344. void __init free_bootmem (unsigned long addr, unsigned long size)
  345. {
  346. free_bootmem_core(NODE_DATA(0)->bdata, addr, size);
  347. }
  348. unsigned long __init free_all_bootmem (void)
  349. {
  350. return(free_all_bootmem_core(NODE_DATA(0)));
  351. }
  352. void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align, unsigned long goal)
  353. {
  354. bootmem_data_t *bdata;
  355. void *ptr;
  356. list_for_each_entry(bdata, &bdata_list, list)
  357. if ((ptr = __alloc_bootmem_core(bdata, size, align, goal, 0)))
  358. return(ptr);
  359. return NULL;
  360. }
  361. void * __init __alloc_bootmem(unsigned long size, unsigned long align, unsigned long goal)
  362. {
  363. void *mem = __alloc_bootmem_nopanic(size,align,goal);
  364. if (mem)
  365. return mem;
  366. /*
  367. * Whoops, we cannot satisfy the allocation request.
  368. */
  369. printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
  370. panic("Out of memory");
  371. return NULL;
  372. }
  373. void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size, unsigned long align,
  374. unsigned long goal)
  375. {
  376. void *ptr;
  377. ptr = __alloc_bootmem_core(pgdat->bdata, size, align, goal, 0);
  378. if (ptr)
  379. return (ptr);
  380. return __alloc_bootmem(size, align, goal);
  381. }
  382. #define LOW32LIMIT 0xffffffff
  383. void * __init __alloc_bootmem_low(unsigned long size, unsigned long align, unsigned long goal)
  384. {
  385. bootmem_data_t *bdata;
  386. void *ptr;
  387. list_for_each_entry(bdata, &bdata_list, list)
  388. if ((ptr = __alloc_bootmem_core(bdata, size,
  389. align, goal, LOW32LIMIT)))
  390. return(ptr);
  391. /*
  392. * Whoops, we cannot satisfy the allocation request.
  393. */
  394. printk(KERN_ALERT "low bootmem alloc of %lu bytes failed!\n", size);
  395. panic("Out of low memory");
  396. return NULL;
  397. }
  398. void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
  399. unsigned long align, unsigned long goal)
  400. {
  401. return __alloc_bootmem_core(pgdat->bdata, size, align, goal, LOW32LIMIT);
  402. }