direct.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882
  1. /*
  2. * linux/fs/nfs/direct.c
  3. *
  4. * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
  5. *
  6. * High-performance uncached I/O for the Linux NFS client
  7. *
  8. * There are important applications whose performance or correctness
  9. * depends on uncached access to file data. Database clusters
  10. * (multiple copies of the same instance running on separate hosts)
  11. * implement their own cache coherency protocol that subsumes file
  12. * system cache protocols. Applications that process datasets
  13. * considerably larger than the client's memory do not always benefit
  14. * from a local cache. A streaming video server, for instance, has no
  15. * need to cache the contents of a file.
  16. *
  17. * When an application requests uncached I/O, all read and write requests
  18. * are made directly to the server; data stored or fetched via these
  19. * requests is not cached in the Linux page cache. The client does not
  20. * correct unaligned requests from applications. All requested bytes are
  21. * held on permanent storage before a direct write system call returns to
  22. * an application.
  23. *
  24. * Solaris implements an uncached I/O facility called directio() that
  25. * is used for backups and sequential I/O to very large files. Solaris
  26. * also supports uncaching whole NFS partitions with "-o forcedirectio,"
  27. * an undocumented mount option.
  28. *
  29. * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
  30. * help from Andrew Morton.
  31. *
  32. * 18 Dec 2001 Initial implementation for 2.4 --cel
  33. * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
  34. * 08 Jun 2003 Port to 2.5 APIs --cel
  35. * 31 Mar 2004 Handle direct I/O without VFS support --cel
  36. * 15 Sep 2004 Parallel async reads --cel
  37. * 04 May 2005 support O_DIRECT with aio --cel
  38. *
  39. */
  40. #include <linux/errno.h>
  41. #include <linux/sched.h>
  42. #include <linux/kernel.h>
  43. #include <linux/smp_lock.h>
  44. #include <linux/file.h>
  45. #include <linux/pagemap.h>
  46. #include <linux/kref.h>
  47. #include <linux/nfs_fs.h>
  48. #include <linux/nfs_page.h>
  49. #include <linux/sunrpc/clnt.h>
  50. #include <asm/system.h>
  51. #include <asm/uaccess.h>
  52. #include <asm/atomic.h>
  53. #include "iostat.h"
  54. #define NFSDBG_FACILITY NFSDBG_VFS
  55. static kmem_cache_t *nfs_direct_cachep;
  56. /*
  57. * This represents a set of asynchronous requests that we're waiting on
  58. */
  59. struct nfs_direct_req {
  60. struct kref kref; /* release manager */
  61. /* I/O parameters */
  62. struct nfs_open_context *ctx; /* file open context info */
  63. struct kiocb * iocb; /* controlling i/o request */
  64. struct inode * inode; /* target file of i/o */
  65. /* completion state */
  66. atomic_t io_count; /* i/os we're waiting for */
  67. spinlock_t lock; /* protect completion state */
  68. ssize_t count, /* bytes actually processed */
  69. error; /* any reported error */
  70. struct completion completion; /* wait for i/o completion */
  71. /* commit state */
  72. struct list_head rewrite_list; /* saved nfs_write_data structs */
  73. struct nfs_write_data * commit_data; /* special write_data for commits */
  74. int flags;
  75. #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
  76. #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
  77. struct nfs_writeverf verf; /* unstable write verifier */
  78. };
  79. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
  80. static const struct rpc_call_ops nfs_write_direct_ops;
  81. static inline void get_dreq(struct nfs_direct_req *dreq)
  82. {
  83. atomic_inc(&dreq->io_count);
  84. }
  85. static inline int put_dreq(struct nfs_direct_req *dreq)
  86. {
  87. return atomic_dec_and_test(&dreq->io_count);
  88. }
  89. /*
  90. * "size" is never larger than rsize or wsize.
  91. */
  92. static inline int nfs_direct_count_pages(unsigned long user_addr, size_t size)
  93. {
  94. int page_count;
  95. page_count = (user_addr + size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  96. page_count -= user_addr >> PAGE_SHIFT;
  97. BUG_ON(page_count < 0);
  98. return page_count;
  99. }
  100. static inline unsigned int nfs_max_pages(unsigned int size)
  101. {
  102. return (size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  103. }
  104. /**
  105. * nfs_direct_IO - NFS address space operation for direct I/O
  106. * @rw: direction (read or write)
  107. * @iocb: target I/O control block
  108. * @iov: array of vectors that define I/O buffer
  109. * @pos: offset in file to begin the operation
  110. * @nr_segs: size of iovec array
  111. *
  112. * The presence of this routine in the address space ops vector means
  113. * the NFS client supports direct I/O. However, we shunt off direct
  114. * read and write requests before the VFS gets them, so this method
  115. * should never be called.
  116. */
  117. ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
  118. {
  119. dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
  120. iocb->ki_filp->f_dentry->d_name.name,
  121. (long long) pos, nr_segs);
  122. return -EINVAL;
  123. }
  124. static void nfs_direct_dirty_pages(struct page **pages, int npages)
  125. {
  126. int i;
  127. for (i = 0; i < npages; i++) {
  128. struct page *page = pages[i];
  129. if (!PageCompound(page))
  130. set_page_dirty_lock(page);
  131. }
  132. }
  133. static void nfs_direct_release_pages(struct page **pages, int npages)
  134. {
  135. int i;
  136. for (i = 0; i < npages; i++)
  137. page_cache_release(pages[i]);
  138. }
  139. static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
  140. {
  141. struct nfs_direct_req *dreq;
  142. dreq = kmem_cache_alloc(nfs_direct_cachep, SLAB_KERNEL);
  143. if (!dreq)
  144. return NULL;
  145. kref_init(&dreq->kref);
  146. kref_get(&dreq->kref);
  147. init_completion(&dreq->completion);
  148. INIT_LIST_HEAD(&dreq->rewrite_list);
  149. dreq->iocb = NULL;
  150. dreq->ctx = NULL;
  151. spin_lock_init(&dreq->lock);
  152. atomic_set(&dreq->io_count, 0);
  153. dreq->count = 0;
  154. dreq->error = 0;
  155. dreq->flags = 0;
  156. return dreq;
  157. }
  158. static void nfs_direct_req_release(struct kref *kref)
  159. {
  160. struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
  161. if (dreq->ctx != NULL)
  162. put_nfs_open_context(dreq->ctx);
  163. kmem_cache_free(nfs_direct_cachep, dreq);
  164. }
  165. /*
  166. * Collects and returns the final error value/byte-count.
  167. */
  168. static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
  169. {
  170. ssize_t result = -EIOCBQUEUED;
  171. /* Async requests don't wait here */
  172. if (dreq->iocb)
  173. goto out;
  174. result = wait_for_completion_interruptible(&dreq->completion);
  175. if (!result)
  176. result = dreq->error;
  177. if (!result)
  178. result = dreq->count;
  179. out:
  180. kref_put(&dreq->kref, nfs_direct_req_release);
  181. return (ssize_t) result;
  182. }
  183. /*
  184. * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
  185. * the iocb is still valid here if this is a synchronous request.
  186. */
  187. static void nfs_direct_complete(struct nfs_direct_req *dreq)
  188. {
  189. if (dreq->iocb) {
  190. long res = (long) dreq->error;
  191. if (!res)
  192. res = (long) dreq->count;
  193. aio_complete(dreq->iocb, res, 0);
  194. }
  195. complete_all(&dreq->completion);
  196. kref_put(&dreq->kref, nfs_direct_req_release);
  197. }
  198. /*
  199. * We must hold a reference to all the pages in this direct read request
  200. * until the RPCs complete. This could be long *after* we are woken up in
  201. * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
  202. */
  203. static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
  204. {
  205. struct nfs_read_data *data = calldata;
  206. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  207. if (nfs_readpage_result(task, data) != 0)
  208. return;
  209. nfs_direct_dirty_pages(data->pagevec, data->npages);
  210. nfs_direct_release_pages(data->pagevec, data->npages);
  211. spin_lock(&dreq->lock);
  212. if (likely(task->tk_status >= 0))
  213. dreq->count += data->res.count;
  214. else
  215. dreq->error = task->tk_status;
  216. spin_unlock(&dreq->lock);
  217. if (put_dreq(dreq))
  218. nfs_direct_complete(dreq);
  219. }
  220. static const struct rpc_call_ops nfs_read_direct_ops = {
  221. .rpc_call_done = nfs_direct_read_result,
  222. .rpc_release = nfs_readdata_release,
  223. };
  224. /*
  225. * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
  226. * operation. If nfs_readdata_alloc() or get_user_pages() fails,
  227. * bail and stop sending more reads. Read length accounting is
  228. * handled automatically by nfs_direct_read_result(). Otherwise, if
  229. * no requests have been sent, just return an error.
  230. */
  231. static ssize_t nfs_direct_read_schedule(struct nfs_direct_req *dreq, unsigned long user_addr, size_t count, loff_t pos)
  232. {
  233. struct nfs_open_context *ctx = dreq->ctx;
  234. struct inode *inode = ctx->dentry->d_inode;
  235. size_t rsize = NFS_SERVER(inode)->rsize;
  236. unsigned int rpages = nfs_max_pages(rsize);
  237. unsigned int pgbase;
  238. int result;
  239. ssize_t started = 0;
  240. get_dreq(dreq);
  241. pgbase = user_addr & ~PAGE_MASK;
  242. do {
  243. struct nfs_read_data *data;
  244. size_t bytes;
  245. result = -ENOMEM;
  246. data = nfs_readdata_alloc(rpages);
  247. if (unlikely(!data))
  248. break;
  249. bytes = rsize;
  250. if (count < rsize)
  251. bytes = count;
  252. data->npages = nfs_direct_count_pages(user_addr, bytes);
  253. down_read(&current->mm->mmap_sem);
  254. result = get_user_pages(current, current->mm, user_addr,
  255. data->npages, 1, 0, data->pagevec, NULL);
  256. up_read(&current->mm->mmap_sem);
  257. if (unlikely(result < data->npages)) {
  258. if (result > 0)
  259. nfs_direct_release_pages(data->pagevec, result);
  260. nfs_readdata_release(data);
  261. break;
  262. }
  263. get_dreq(dreq);
  264. data->req = (struct nfs_page *) dreq;
  265. data->inode = inode;
  266. data->cred = ctx->cred;
  267. data->args.fh = NFS_FH(inode);
  268. data->args.context = ctx;
  269. data->args.offset = pos;
  270. data->args.pgbase = pgbase;
  271. data->args.pages = data->pagevec;
  272. data->args.count = bytes;
  273. data->res.fattr = &data->fattr;
  274. data->res.eof = 0;
  275. data->res.count = bytes;
  276. rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
  277. &nfs_read_direct_ops, data);
  278. NFS_PROTO(inode)->read_setup(data);
  279. data->task.tk_cookie = (unsigned long) inode;
  280. lock_kernel();
  281. rpc_execute(&data->task);
  282. unlock_kernel();
  283. dfprintk(VFS, "NFS: %5u initiated direct read call (req %s/%Ld, %zu bytes @ offset %Lu)\n",
  284. data->task.tk_pid,
  285. inode->i_sb->s_id,
  286. (long long)NFS_FILEID(inode),
  287. bytes,
  288. (unsigned long long)data->args.offset);
  289. started += bytes;
  290. user_addr += bytes;
  291. pos += bytes;
  292. pgbase += bytes;
  293. pgbase &= ~PAGE_MASK;
  294. count -= bytes;
  295. } while (count != 0);
  296. if (put_dreq(dreq))
  297. nfs_direct_complete(dreq);
  298. if (started)
  299. return 0;
  300. return result < 0 ? (ssize_t) result : -EFAULT;
  301. }
  302. static ssize_t nfs_direct_read(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t pos)
  303. {
  304. ssize_t result = 0;
  305. sigset_t oldset;
  306. struct inode *inode = iocb->ki_filp->f_mapping->host;
  307. struct rpc_clnt *clnt = NFS_CLIENT(inode);
  308. struct nfs_direct_req *dreq;
  309. dreq = nfs_direct_req_alloc();
  310. if (!dreq)
  311. return -ENOMEM;
  312. dreq->inode = inode;
  313. dreq->ctx = get_nfs_open_context((struct nfs_open_context *)iocb->ki_filp->private_data);
  314. if (!is_sync_kiocb(iocb))
  315. dreq->iocb = iocb;
  316. nfs_add_stats(inode, NFSIOS_DIRECTREADBYTES, count);
  317. rpc_clnt_sigmask(clnt, &oldset);
  318. result = nfs_direct_read_schedule(dreq, user_addr, count, pos);
  319. if (!result)
  320. result = nfs_direct_wait(dreq);
  321. rpc_clnt_sigunmask(clnt, &oldset);
  322. return result;
  323. }
  324. static void nfs_direct_free_writedata(struct nfs_direct_req *dreq)
  325. {
  326. while (!list_empty(&dreq->rewrite_list)) {
  327. struct nfs_write_data *data = list_entry(dreq->rewrite_list.next, struct nfs_write_data, pages);
  328. list_del(&data->pages);
  329. nfs_direct_release_pages(data->pagevec, data->npages);
  330. nfs_writedata_release(data);
  331. }
  332. }
  333. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  334. static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
  335. {
  336. struct inode *inode = dreq->inode;
  337. struct list_head *p;
  338. struct nfs_write_data *data;
  339. dreq->count = 0;
  340. get_dreq(dreq);
  341. list_for_each(p, &dreq->rewrite_list) {
  342. data = list_entry(p, struct nfs_write_data, pages);
  343. get_dreq(dreq);
  344. /*
  345. * Reset data->res.
  346. */
  347. nfs_fattr_init(&data->fattr);
  348. data->res.count = data->args.count;
  349. memset(&data->verf, 0, sizeof(data->verf));
  350. /*
  351. * Reuse data->task; data->args should not have changed
  352. * since the original request was sent.
  353. */
  354. rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
  355. &nfs_write_direct_ops, data);
  356. NFS_PROTO(inode)->write_setup(data, FLUSH_STABLE);
  357. data->task.tk_priority = RPC_PRIORITY_NORMAL;
  358. data->task.tk_cookie = (unsigned long) inode;
  359. /*
  360. * We're called via an RPC callback, so BKL is already held.
  361. */
  362. rpc_execute(&data->task);
  363. dprintk("NFS: %5u rescheduled direct write call (req %s/%Ld, %u bytes @ offset %Lu)\n",
  364. data->task.tk_pid,
  365. inode->i_sb->s_id,
  366. (long long)NFS_FILEID(inode),
  367. data->args.count,
  368. (unsigned long long)data->args.offset);
  369. }
  370. if (put_dreq(dreq))
  371. nfs_direct_write_complete(dreq, inode);
  372. }
  373. static void nfs_direct_commit_result(struct rpc_task *task, void *calldata)
  374. {
  375. struct nfs_write_data *data = calldata;
  376. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  377. /* Call the NFS version-specific code */
  378. if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
  379. return;
  380. if (unlikely(task->tk_status < 0)) {
  381. dreq->error = task->tk_status;
  382. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  383. }
  384. if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
  385. dprintk("NFS: %5u commit verify failed\n", task->tk_pid);
  386. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  387. }
  388. dprintk("NFS: %5u commit returned %d\n", task->tk_pid, task->tk_status);
  389. nfs_direct_write_complete(dreq, data->inode);
  390. }
  391. static const struct rpc_call_ops nfs_commit_direct_ops = {
  392. .rpc_call_done = nfs_direct_commit_result,
  393. .rpc_release = nfs_commit_release,
  394. };
  395. static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
  396. {
  397. struct nfs_write_data *data = dreq->commit_data;
  398. data->inode = dreq->inode;
  399. data->cred = dreq->ctx->cred;
  400. data->args.fh = NFS_FH(data->inode);
  401. data->args.offset = 0;
  402. data->args.count = 0;
  403. data->res.count = 0;
  404. data->res.fattr = &data->fattr;
  405. data->res.verf = &data->verf;
  406. rpc_init_task(&data->task, NFS_CLIENT(dreq->inode), RPC_TASK_ASYNC,
  407. &nfs_commit_direct_ops, data);
  408. NFS_PROTO(data->inode)->commit_setup(data, 0);
  409. data->task.tk_priority = RPC_PRIORITY_NORMAL;
  410. data->task.tk_cookie = (unsigned long)data->inode;
  411. /* Note: task.tk_ops->rpc_release will free dreq->commit_data */
  412. dreq->commit_data = NULL;
  413. dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
  414. lock_kernel();
  415. rpc_execute(&data->task);
  416. unlock_kernel();
  417. }
  418. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
  419. {
  420. int flags = dreq->flags;
  421. dreq->flags = 0;
  422. switch (flags) {
  423. case NFS_ODIRECT_DO_COMMIT:
  424. nfs_direct_commit_schedule(dreq);
  425. break;
  426. case NFS_ODIRECT_RESCHED_WRITES:
  427. nfs_direct_write_reschedule(dreq);
  428. break;
  429. default:
  430. nfs_end_data_update(inode);
  431. if (dreq->commit_data != NULL)
  432. nfs_commit_free(dreq->commit_data);
  433. nfs_direct_free_writedata(dreq);
  434. nfs_direct_complete(dreq);
  435. }
  436. }
  437. static void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
  438. {
  439. dreq->commit_data = nfs_commit_alloc(0);
  440. if (dreq->commit_data != NULL)
  441. dreq->commit_data->req = (struct nfs_page *) dreq;
  442. }
  443. #else
  444. static inline void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
  445. {
  446. dreq->commit_data = NULL;
  447. }
  448. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
  449. {
  450. nfs_end_data_update(inode);
  451. nfs_direct_free_writedata(dreq);
  452. nfs_direct_complete(dreq);
  453. }
  454. #endif
  455. static void nfs_direct_write_result(struct rpc_task *task, void *calldata)
  456. {
  457. struct nfs_write_data *data = calldata;
  458. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  459. int status = task->tk_status;
  460. if (nfs_writeback_done(task, data) != 0)
  461. return;
  462. spin_lock(&dreq->lock);
  463. if (likely(status >= 0))
  464. dreq->count += data->res.count;
  465. else
  466. dreq->error = task->tk_status;
  467. if (data->res.verf->committed != NFS_FILE_SYNC) {
  468. switch (dreq->flags) {
  469. case 0:
  470. memcpy(&dreq->verf, &data->verf, sizeof(dreq->verf));
  471. dreq->flags = NFS_ODIRECT_DO_COMMIT;
  472. break;
  473. case NFS_ODIRECT_DO_COMMIT:
  474. if (memcmp(&dreq->verf, &data->verf, sizeof(dreq->verf))) {
  475. dprintk("NFS: %5u write verify failed\n", task->tk_pid);
  476. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  477. }
  478. }
  479. }
  480. spin_unlock(&dreq->lock);
  481. }
  482. /*
  483. * NB: Return the value of the first error return code. Subsequent
  484. * errors after the first one are ignored.
  485. */
  486. static void nfs_direct_write_release(void *calldata)
  487. {
  488. struct nfs_write_data *data = calldata;
  489. struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
  490. if (put_dreq(dreq))
  491. nfs_direct_write_complete(dreq, data->inode);
  492. }
  493. static const struct rpc_call_ops nfs_write_direct_ops = {
  494. .rpc_call_done = nfs_direct_write_result,
  495. .rpc_release = nfs_direct_write_release,
  496. };
  497. /*
  498. * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
  499. * operation. If nfs_writedata_alloc() or get_user_pages() fails,
  500. * bail and stop sending more writes. Write length accounting is
  501. * handled automatically by nfs_direct_write_result(). Otherwise, if
  502. * no requests have been sent, just return an error.
  503. */
  504. static ssize_t nfs_direct_write_schedule(struct nfs_direct_req *dreq, unsigned long user_addr, size_t count, loff_t pos, int sync)
  505. {
  506. struct nfs_open_context *ctx = dreq->ctx;
  507. struct inode *inode = ctx->dentry->d_inode;
  508. size_t wsize = NFS_SERVER(inode)->wsize;
  509. unsigned int wpages = nfs_max_pages(wsize);
  510. unsigned int pgbase;
  511. int result;
  512. ssize_t started = 0;
  513. get_dreq(dreq);
  514. pgbase = user_addr & ~PAGE_MASK;
  515. do {
  516. struct nfs_write_data *data;
  517. size_t bytes;
  518. result = -ENOMEM;
  519. data = nfs_writedata_alloc(wpages);
  520. if (unlikely(!data))
  521. break;
  522. bytes = wsize;
  523. if (count < wsize)
  524. bytes = count;
  525. data->npages = nfs_direct_count_pages(user_addr, bytes);
  526. down_read(&current->mm->mmap_sem);
  527. result = get_user_pages(current, current->mm, user_addr,
  528. data->npages, 0, 0, data->pagevec, NULL);
  529. up_read(&current->mm->mmap_sem);
  530. if (unlikely(result < data->npages)) {
  531. if (result > 0)
  532. nfs_direct_release_pages(data->pagevec, result);
  533. nfs_writedata_release(data);
  534. break;
  535. }
  536. get_dreq(dreq);
  537. list_move_tail(&data->pages, &dreq->rewrite_list);
  538. data->req = (struct nfs_page *) dreq;
  539. data->inode = inode;
  540. data->cred = ctx->cred;
  541. data->args.fh = NFS_FH(inode);
  542. data->args.context = ctx;
  543. data->args.offset = pos;
  544. data->args.pgbase = pgbase;
  545. data->args.pages = data->pagevec;
  546. data->args.count = bytes;
  547. data->res.fattr = &data->fattr;
  548. data->res.count = bytes;
  549. data->res.verf = &data->verf;
  550. rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
  551. &nfs_write_direct_ops, data);
  552. NFS_PROTO(inode)->write_setup(data, sync);
  553. data->task.tk_priority = RPC_PRIORITY_NORMAL;
  554. data->task.tk_cookie = (unsigned long) inode;
  555. lock_kernel();
  556. rpc_execute(&data->task);
  557. unlock_kernel();
  558. dfprintk(VFS, "NFS: %5u initiated direct write call (req %s/%Ld, %zu bytes @ offset %Lu)\n",
  559. data->task.tk_pid,
  560. inode->i_sb->s_id,
  561. (long long)NFS_FILEID(inode),
  562. bytes,
  563. (unsigned long long)data->args.offset);
  564. started += bytes;
  565. user_addr += bytes;
  566. pos += bytes;
  567. pgbase += bytes;
  568. pgbase &= ~PAGE_MASK;
  569. count -= bytes;
  570. } while (count != 0);
  571. if (put_dreq(dreq))
  572. nfs_direct_write_complete(dreq, inode);
  573. if (started)
  574. return 0;
  575. return result < 0 ? (ssize_t) result : -EFAULT;
  576. }
  577. static ssize_t nfs_direct_write(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t pos)
  578. {
  579. ssize_t result = 0;
  580. sigset_t oldset;
  581. struct inode *inode = iocb->ki_filp->f_mapping->host;
  582. struct rpc_clnt *clnt = NFS_CLIENT(inode);
  583. struct nfs_direct_req *dreq;
  584. size_t wsize = NFS_SERVER(inode)->wsize;
  585. int sync = 0;
  586. dreq = nfs_direct_req_alloc();
  587. if (!dreq)
  588. return -ENOMEM;
  589. nfs_alloc_commit_data(dreq);
  590. if (dreq->commit_data == NULL || count < wsize)
  591. sync = FLUSH_STABLE;
  592. dreq->inode = inode;
  593. dreq->ctx = get_nfs_open_context((struct nfs_open_context *)iocb->ki_filp->private_data);
  594. if (!is_sync_kiocb(iocb))
  595. dreq->iocb = iocb;
  596. nfs_add_stats(inode, NFSIOS_DIRECTWRITTENBYTES, count);
  597. nfs_begin_data_update(inode);
  598. rpc_clnt_sigmask(clnt, &oldset);
  599. result = nfs_direct_write_schedule(dreq, user_addr, count, pos, sync);
  600. if (!result)
  601. result = nfs_direct_wait(dreq);
  602. rpc_clnt_sigunmask(clnt, &oldset);
  603. return result;
  604. }
  605. /**
  606. * nfs_file_direct_read - file direct read operation for NFS files
  607. * @iocb: target I/O control block
  608. * @buf: user's buffer into which to read data
  609. * @count: number of bytes to read
  610. * @pos: byte offset in file where reading starts
  611. *
  612. * We use this function for direct reads instead of calling
  613. * generic_file_aio_read() in order to avoid gfar's check to see if
  614. * the request starts before the end of the file. For that check
  615. * to work, we must generate a GETATTR before each direct read, and
  616. * even then there is a window between the GETATTR and the subsequent
  617. * READ where the file size could change. Our preference is simply
  618. * to do all reads the application wants, and the server will take
  619. * care of managing the end of file boundary.
  620. *
  621. * This function also eliminates unnecessarily updating the file's
  622. * atime locally, as the NFS server sets the file's atime, and this
  623. * client must read the updated atime from the server back into its
  624. * cache.
  625. */
  626. ssize_t nfs_file_direct_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
  627. {
  628. ssize_t retval = -EINVAL;
  629. struct file *file = iocb->ki_filp;
  630. struct address_space *mapping = file->f_mapping;
  631. dprintk("nfs: direct read(%s/%s, %lu@%Ld)\n",
  632. file->f_dentry->d_parent->d_name.name,
  633. file->f_dentry->d_name.name,
  634. (unsigned long) count, (long long) pos);
  635. if (count < 0)
  636. goto out;
  637. retval = -EFAULT;
  638. if (!access_ok(VERIFY_WRITE, buf, count))
  639. goto out;
  640. retval = 0;
  641. if (!count)
  642. goto out;
  643. retval = nfs_sync_mapping(mapping);
  644. if (retval)
  645. goto out;
  646. retval = nfs_direct_read(iocb, (unsigned long) buf, count, pos);
  647. if (retval > 0)
  648. iocb->ki_pos = pos + retval;
  649. out:
  650. return retval;
  651. }
  652. /**
  653. * nfs_file_direct_write - file direct write operation for NFS files
  654. * @iocb: target I/O control block
  655. * @buf: user's buffer from which to write data
  656. * @count: number of bytes to write
  657. * @pos: byte offset in file where writing starts
  658. *
  659. * We use this function for direct writes instead of calling
  660. * generic_file_aio_write() in order to avoid taking the inode
  661. * semaphore and updating the i_size. The NFS server will set
  662. * the new i_size and this client must read the updated size
  663. * back into its cache. We let the server do generic write
  664. * parameter checking and report problems.
  665. *
  666. * We also avoid an unnecessary invocation of generic_osync_inode(),
  667. * as it is fairly meaningless to sync the metadata of an NFS file.
  668. *
  669. * We eliminate local atime updates, see direct read above.
  670. *
  671. * We avoid unnecessary page cache invalidations for normal cached
  672. * readers of this file.
  673. *
  674. * Note that O_APPEND is not supported for NFS direct writes, as there
  675. * is no atomic O_APPEND write facility in the NFS protocol.
  676. */
  677. ssize_t nfs_file_direct_write(struct kiocb *iocb, const char __user *buf, size_t count, loff_t pos)
  678. {
  679. ssize_t retval;
  680. struct file *file = iocb->ki_filp;
  681. struct address_space *mapping = file->f_mapping;
  682. dfprintk(VFS, "nfs: direct write(%s/%s, %lu@%Ld)\n",
  683. file->f_dentry->d_parent->d_name.name,
  684. file->f_dentry->d_name.name,
  685. (unsigned long) count, (long long) pos);
  686. retval = generic_write_checks(file, &pos, &count, 0);
  687. if (retval)
  688. goto out;
  689. retval = -EINVAL;
  690. if ((ssize_t) count < 0)
  691. goto out;
  692. retval = 0;
  693. if (!count)
  694. goto out;
  695. retval = -EFAULT;
  696. if (!access_ok(VERIFY_READ, buf, count))
  697. goto out;
  698. retval = nfs_sync_mapping(mapping);
  699. if (retval)
  700. goto out;
  701. retval = nfs_direct_write(iocb, (unsigned long) buf, count, pos);
  702. /*
  703. * XXX: nfs_end_data_update() already ensures this file's
  704. * cached data is subsequently invalidated. Do we really
  705. * need to call invalidate_inode_pages2() again here?
  706. *
  707. * For aio writes, this invalidation will almost certainly
  708. * occur before the writes complete. Kind of racey.
  709. */
  710. if (mapping->nrpages)
  711. invalidate_inode_pages2(mapping);
  712. if (retval > 0)
  713. iocb->ki_pos = pos + retval;
  714. out:
  715. return retval;
  716. }
  717. /**
  718. * nfs_init_directcache - create a slab cache for nfs_direct_req structures
  719. *
  720. */
  721. int __init nfs_init_directcache(void)
  722. {
  723. nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
  724. sizeof(struct nfs_direct_req),
  725. 0, (SLAB_RECLAIM_ACCOUNT|
  726. SLAB_MEM_SPREAD),
  727. NULL, NULL);
  728. if (nfs_direct_cachep == NULL)
  729. return -ENOMEM;
  730. return 0;
  731. }
  732. /**
  733. * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
  734. *
  735. */
  736. void nfs_destroy_directcache(void)
  737. {
  738. if (kmem_cache_destroy(nfs_direct_cachep))
  739. printk(KERN_INFO "nfs_direct_cache: not all structures were freed\n");
  740. }