init.c 26 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028
  1. /*
  2. * linux/arch/parisc/mm/init.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. * Copyright 1999 SuSE GmbH
  6. * changed by Philipp Rumpf
  7. * Copyright 1999 Philipp Rumpf (prumpf@tux.org)
  8. * Copyright 2004 Randolph Chung (tausq@debian.org)
  9. * Copyright 2006 Helge Deller (deller@gmx.de)
  10. *
  11. */
  12. #include <linux/module.h>
  13. #include <linux/mm.h>
  14. #include <linux/bootmem.h>
  15. #include <linux/delay.h>
  16. #include <linux/init.h>
  17. #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */
  18. #include <linux/initrd.h>
  19. #include <linux/swap.h>
  20. #include <linux/unistd.h>
  21. #include <linux/nodemask.h> /* for node_online_map */
  22. #include <linux/pagemap.h> /* for release_pages and page_cache_release */
  23. #include <asm/pgalloc.h>
  24. #include <asm/tlb.h>
  25. #include <asm/pdc_chassis.h>
  26. #include <asm/mmzone.h>
  27. #include <asm/sections.h>
  28. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  29. extern char _text; /* start of kernel code, defined by linker */
  30. extern int data_start;
  31. extern char _end; /* end of BSS, defined by linker */
  32. extern char __init_begin, __init_end;
  33. #ifdef CONFIG_DISCONTIGMEM
  34. struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
  35. bootmem_data_t bmem_data[MAX_NUMNODES] __read_mostly;
  36. unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
  37. #endif
  38. static struct resource data_resource = {
  39. .name = "Kernel data",
  40. .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
  41. };
  42. static struct resource code_resource = {
  43. .name = "Kernel code",
  44. .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
  45. };
  46. static struct resource pdcdata_resource = {
  47. .name = "PDC data (Page Zero)",
  48. .start = 0,
  49. .end = 0x9ff,
  50. .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
  51. };
  52. static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
  53. /* The following array is initialized from the firmware specific
  54. * information retrieved in kernel/inventory.c.
  55. */
  56. physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
  57. int npmem_ranges __read_mostly;
  58. #ifdef __LP64__
  59. #define MAX_MEM (~0UL)
  60. #else /* !__LP64__ */
  61. #define MAX_MEM (3584U*1024U*1024U)
  62. #endif /* !__LP64__ */
  63. static unsigned long mem_limit __read_mostly = MAX_MEM;
  64. static void __init mem_limit_func(void)
  65. {
  66. char *cp, *end;
  67. unsigned long limit;
  68. extern char saved_command_line[];
  69. /* We need this before __setup() functions are called */
  70. limit = MAX_MEM;
  71. for (cp = saved_command_line; *cp; ) {
  72. if (memcmp(cp, "mem=", 4) == 0) {
  73. cp += 4;
  74. limit = memparse(cp, &end);
  75. if (end != cp)
  76. break;
  77. cp = end;
  78. } else {
  79. while (*cp != ' ' && *cp)
  80. ++cp;
  81. while (*cp == ' ')
  82. ++cp;
  83. }
  84. }
  85. if (limit < mem_limit)
  86. mem_limit = limit;
  87. }
  88. #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
  89. static void __init setup_bootmem(void)
  90. {
  91. unsigned long bootmap_size;
  92. unsigned long mem_max;
  93. unsigned long bootmap_pages;
  94. unsigned long bootmap_start_pfn;
  95. unsigned long bootmap_pfn;
  96. #ifndef CONFIG_DISCONTIGMEM
  97. physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
  98. int npmem_holes;
  99. #endif
  100. int i, sysram_resource_count;
  101. disable_sr_hashing(); /* Turn off space register hashing */
  102. /*
  103. * Sort the ranges. Since the number of ranges is typically
  104. * small, and performance is not an issue here, just do
  105. * a simple insertion sort.
  106. */
  107. for (i = 1; i < npmem_ranges; i++) {
  108. int j;
  109. for (j = i; j > 0; j--) {
  110. unsigned long tmp;
  111. if (pmem_ranges[j-1].start_pfn <
  112. pmem_ranges[j].start_pfn) {
  113. break;
  114. }
  115. tmp = pmem_ranges[j-1].start_pfn;
  116. pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
  117. pmem_ranges[j].start_pfn = tmp;
  118. tmp = pmem_ranges[j-1].pages;
  119. pmem_ranges[j-1].pages = pmem_ranges[j].pages;
  120. pmem_ranges[j].pages = tmp;
  121. }
  122. }
  123. #ifndef CONFIG_DISCONTIGMEM
  124. /*
  125. * Throw out ranges that are too far apart (controlled by
  126. * MAX_GAP).
  127. */
  128. for (i = 1; i < npmem_ranges; i++) {
  129. if (pmem_ranges[i].start_pfn -
  130. (pmem_ranges[i-1].start_pfn +
  131. pmem_ranges[i-1].pages) > MAX_GAP) {
  132. npmem_ranges = i;
  133. printk("Large gap in memory detected (%ld pages). "
  134. "Consider turning on CONFIG_DISCONTIGMEM\n",
  135. pmem_ranges[i].start_pfn -
  136. (pmem_ranges[i-1].start_pfn +
  137. pmem_ranges[i-1].pages));
  138. break;
  139. }
  140. }
  141. #endif
  142. if (npmem_ranges > 1) {
  143. /* Print the memory ranges */
  144. printk(KERN_INFO "Memory Ranges:\n");
  145. for (i = 0; i < npmem_ranges; i++) {
  146. unsigned long start;
  147. unsigned long size;
  148. size = (pmem_ranges[i].pages << PAGE_SHIFT);
  149. start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
  150. printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
  151. i,start, start + (size - 1), size >> 20);
  152. }
  153. }
  154. sysram_resource_count = npmem_ranges;
  155. for (i = 0; i < sysram_resource_count; i++) {
  156. struct resource *res = &sysram_resources[i];
  157. res->name = "System RAM";
  158. res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
  159. res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
  160. res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  161. request_resource(&iomem_resource, res);
  162. }
  163. /*
  164. * For 32 bit kernels we limit the amount of memory we can
  165. * support, in order to preserve enough kernel address space
  166. * for other purposes. For 64 bit kernels we don't normally
  167. * limit the memory, but this mechanism can be used to
  168. * artificially limit the amount of memory (and it is written
  169. * to work with multiple memory ranges).
  170. */
  171. mem_limit_func(); /* check for "mem=" argument */
  172. mem_max = 0;
  173. num_physpages = 0;
  174. for (i = 0; i < npmem_ranges; i++) {
  175. unsigned long rsize;
  176. rsize = pmem_ranges[i].pages << PAGE_SHIFT;
  177. if ((mem_max + rsize) > mem_limit) {
  178. printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
  179. if (mem_max == mem_limit)
  180. npmem_ranges = i;
  181. else {
  182. pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT)
  183. - (mem_max >> PAGE_SHIFT);
  184. npmem_ranges = i + 1;
  185. mem_max = mem_limit;
  186. }
  187. num_physpages += pmem_ranges[i].pages;
  188. break;
  189. }
  190. num_physpages += pmem_ranges[i].pages;
  191. mem_max += rsize;
  192. }
  193. printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
  194. #ifndef CONFIG_DISCONTIGMEM
  195. /* Merge the ranges, keeping track of the holes */
  196. {
  197. unsigned long end_pfn;
  198. unsigned long hole_pages;
  199. npmem_holes = 0;
  200. end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
  201. for (i = 1; i < npmem_ranges; i++) {
  202. hole_pages = pmem_ranges[i].start_pfn - end_pfn;
  203. if (hole_pages) {
  204. pmem_holes[npmem_holes].start_pfn = end_pfn;
  205. pmem_holes[npmem_holes++].pages = hole_pages;
  206. end_pfn += hole_pages;
  207. }
  208. end_pfn += pmem_ranges[i].pages;
  209. }
  210. pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
  211. npmem_ranges = 1;
  212. }
  213. #endif
  214. bootmap_pages = 0;
  215. for (i = 0; i < npmem_ranges; i++)
  216. bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
  217. bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
  218. #ifdef CONFIG_DISCONTIGMEM
  219. for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
  220. memset(NODE_DATA(i), 0, sizeof(pg_data_t));
  221. NODE_DATA(i)->bdata = &bmem_data[i];
  222. }
  223. memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
  224. for (i = 0; i < npmem_ranges; i++)
  225. node_set_online(i);
  226. #endif
  227. /*
  228. * Initialize and free the full range of memory in each range.
  229. * Note that the only writing these routines do are to the bootmap,
  230. * and we've made sure to locate the bootmap properly so that they
  231. * won't be writing over anything important.
  232. */
  233. bootmap_pfn = bootmap_start_pfn;
  234. max_pfn = 0;
  235. for (i = 0; i < npmem_ranges; i++) {
  236. unsigned long start_pfn;
  237. unsigned long npages;
  238. start_pfn = pmem_ranges[i].start_pfn;
  239. npages = pmem_ranges[i].pages;
  240. bootmap_size = init_bootmem_node(NODE_DATA(i),
  241. bootmap_pfn,
  242. start_pfn,
  243. (start_pfn + npages) );
  244. free_bootmem_node(NODE_DATA(i),
  245. (start_pfn << PAGE_SHIFT),
  246. (npages << PAGE_SHIFT) );
  247. bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  248. if ((start_pfn + npages) > max_pfn)
  249. max_pfn = start_pfn + npages;
  250. }
  251. /* IOMMU is always used to access "high mem" on those boxes
  252. * that can support enough mem that a PCI device couldn't
  253. * directly DMA to any physical addresses.
  254. * ISA DMA support will need to revisit this.
  255. */
  256. max_low_pfn = max_pfn;
  257. if ((bootmap_pfn - bootmap_start_pfn) != bootmap_pages) {
  258. printk(KERN_WARNING "WARNING! bootmap sizing is messed up!\n");
  259. BUG();
  260. }
  261. /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
  262. #define PDC_CONSOLE_IO_IODC_SIZE 32768
  263. reserve_bootmem_node(NODE_DATA(0), 0UL,
  264. (unsigned long)(PAGE0->mem_free + PDC_CONSOLE_IO_IODC_SIZE));
  265. reserve_bootmem_node(NODE_DATA(0),__pa((unsigned long)&_text),
  266. (unsigned long)(&_end - &_text));
  267. reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
  268. ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT));
  269. #ifndef CONFIG_DISCONTIGMEM
  270. /* reserve the holes */
  271. for (i = 0; i < npmem_holes; i++) {
  272. reserve_bootmem_node(NODE_DATA(0),
  273. (pmem_holes[i].start_pfn << PAGE_SHIFT),
  274. (pmem_holes[i].pages << PAGE_SHIFT));
  275. }
  276. #endif
  277. #ifdef CONFIG_BLK_DEV_INITRD
  278. if (initrd_start) {
  279. printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
  280. if (__pa(initrd_start) < mem_max) {
  281. unsigned long initrd_reserve;
  282. if (__pa(initrd_end) > mem_max) {
  283. initrd_reserve = mem_max - __pa(initrd_start);
  284. } else {
  285. initrd_reserve = initrd_end - initrd_start;
  286. }
  287. initrd_below_start_ok = 1;
  288. printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
  289. reserve_bootmem_node(NODE_DATA(0),__pa(initrd_start), initrd_reserve);
  290. }
  291. }
  292. #endif
  293. data_resource.start = virt_to_phys(&data_start);
  294. data_resource.end = virt_to_phys(&_end)-1;
  295. code_resource.start = virt_to_phys(&_text);
  296. code_resource.end = virt_to_phys(&data_start)-1;
  297. /* We don't know which region the kernel will be in, so try
  298. * all of them.
  299. */
  300. for (i = 0; i < sysram_resource_count; i++) {
  301. struct resource *res = &sysram_resources[i];
  302. request_resource(res, &code_resource);
  303. request_resource(res, &data_resource);
  304. }
  305. request_resource(&sysram_resources[0], &pdcdata_resource);
  306. }
  307. void free_initmem(void)
  308. {
  309. unsigned long addr, init_begin, init_end;
  310. printk(KERN_INFO "Freeing unused kernel memory: ");
  311. #ifdef CONFIG_DEBUG_KERNEL
  312. /* Attempt to catch anyone trying to execute code here
  313. * by filling the page with BRK insns.
  314. *
  315. * If we disable interrupts for all CPUs, then IPI stops working.
  316. * Kinda breaks the global cache flushing.
  317. */
  318. local_irq_disable();
  319. memset(&__init_begin, 0x00,
  320. (unsigned long)&__init_end - (unsigned long)&__init_begin);
  321. flush_data_cache();
  322. asm volatile("sync" : : );
  323. flush_icache_range((unsigned long)&__init_begin, (unsigned long)&__init_end);
  324. asm volatile("sync" : : );
  325. local_irq_enable();
  326. #endif
  327. /* align __init_begin and __init_end to page size,
  328. ignoring linker script where we might have tried to save RAM */
  329. init_begin = PAGE_ALIGN((unsigned long)(&__init_begin));
  330. init_end = PAGE_ALIGN((unsigned long)(&__init_end));
  331. for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) {
  332. ClearPageReserved(virt_to_page(addr));
  333. init_page_count(virt_to_page(addr));
  334. free_page(addr);
  335. num_physpages++;
  336. totalram_pages++;
  337. }
  338. /* set up a new led state on systems shipped LED State panel */
  339. pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
  340. printk("%luk freed\n", (init_end - init_begin) >> 10);
  341. }
  342. #ifdef CONFIG_DEBUG_RODATA
  343. void mark_rodata_ro(void)
  344. {
  345. /* rodata memory was already mapped with KERNEL_RO access rights by
  346. pagetable_init() and map_pages(). No need to do additional stuff here */
  347. printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
  348. (unsigned long)(__end_rodata - __start_rodata) >> 10);
  349. }
  350. #endif
  351. /*
  352. * Just an arbitrary offset to serve as a "hole" between mapping areas
  353. * (between top of physical memory and a potential pcxl dma mapping
  354. * area, and below the vmalloc mapping area).
  355. *
  356. * The current 32K value just means that there will be a 32K "hole"
  357. * between mapping areas. That means that any out-of-bounds memory
  358. * accesses will hopefully be caught. The vmalloc() routines leaves
  359. * a hole of 4kB between each vmalloced area for the same reason.
  360. */
  361. /* Leave room for gateway page expansion */
  362. #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
  363. #error KERNEL_MAP_START is in gateway reserved region
  364. #endif
  365. #define MAP_START (KERNEL_MAP_START)
  366. #define VM_MAP_OFFSET (32*1024)
  367. #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
  368. & ~(VM_MAP_OFFSET-1)))
  369. void *vmalloc_start __read_mostly;
  370. EXPORT_SYMBOL(vmalloc_start);
  371. #ifdef CONFIG_PA11
  372. unsigned long pcxl_dma_start __read_mostly;
  373. #endif
  374. void __init mem_init(void)
  375. {
  376. high_memory = __va((max_pfn << PAGE_SHIFT));
  377. #ifndef CONFIG_DISCONTIGMEM
  378. max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
  379. totalram_pages += free_all_bootmem();
  380. #else
  381. {
  382. int i;
  383. for (i = 0; i < npmem_ranges; i++)
  384. totalram_pages += free_all_bootmem_node(NODE_DATA(i));
  385. }
  386. #endif
  387. printk(KERN_INFO "Memory: %luk available\n", num_physpages << (PAGE_SHIFT-10));
  388. #ifdef CONFIG_PA11
  389. if (hppa_dma_ops == &pcxl_dma_ops) {
  390. pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
  391. vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start + PCXL_DMA_MAP_SIZE);
  392. } else {
  393. pcxl_dma_start = 0;
  394. vmalloc_start = SET_MAP_OFFSET(MAP_START);
  395. }
  396. #else
  397. vmalloc_start = SET_MAP_OFFSET(MAP_START);
  398. #endif
  399. }
  400. unsigned long *empty_zero_page __read_mostly;
  401. void show_mem(void)
  402. {
  403. int i,free = 0,total = 0,reserved = 0;
  404. int shared = 0, cached = 0;
  405. printk(KERN_INFO "Mem-info:\n");
  406. show_free_areas();
  407. printk(KERN_INFO "Free swap: %6ldkB\n",
  408. nr_swap_pages<<(PAGE_SHIFT-10));
  409. #ifndef CONFIG_DISCONTIGMEM
  410. i = max_mapnr;
  411. while (i-- > 0) {
  412. total++;
  413. if (PageReserved(mem_map+i))
  414. reserved++;
  415. else if (PageSwapCache(mem_map+i))
  416. cached++;
  417. else if (!page_count(&mem_map[i]))
  418. free++;
  419. else
  420. shared += page_count(&mem_map[i]) - 1;
  421. }
  422. #else
  423. for (i = 0; i < npmem_ranges; i++) {
  424. int j;
  425. for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
  426. struct page *p;
  427. unsigned long flags;
  428. pgdat_resize_lock(NODE_DATA(i), &flags);
  429. p = nid_page_nr(i, j) - node_start_pfn(i);
  430. total++;
  431. if (PageReserved(p))
  432. reserved++;
  433. else if (PageSwapCache(p))
  434. cached++;
  435. else if (!page_count(p))
  436. free++;
  437. else
  438. shared += page_count(p) - 1;
  439. pgdat_resize_unlock(NODE_DATA(i), &flags);
  440. }
  441. }
  442. #endif
  443. printk(KERN_INFO "%d pages of RAM\n", total);
  444. printk(KERN_INFO "%d reserved pages\n", reserved);
  445. printk(KERN_INFO "%d pages shared\n", shared);
  446. printk(KERN_INFO "%d pages swap cached\n", cached);
  447. #ifdef CONFIG_DISCONTIGMEM
  448. {
  449. struct zonelist *zl;
  450. int i, j, k;
  451. for (i = 0; i < npmem_ranges; i++) {
  452. for (j = 0; j < MAX_NR_ZONES; j++) {
  453. zl = NODE_DATA(i)->node_zonelists + j;
  454. printk("Zone list for zone %d on node %d: ", j, i);
  455. for (k = 0; zl->zones[k] != NULL; k++)
  456. printk("[%d/%s] ", zl->zones[k]->zone_pgdat->node_id, zl->zones[k]->name);
  457. printk("\n");
  458. }
  459. }
  460. }
  461. #endif
  462. }
  463. static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot)
  464. {
  465. pgd_t *pg_dir;
  466. pmd_t *pmd;
  467. pte_t *pg_table;
  468. unsigned long end_paddr;
  469. unsigned long start_pmd;
  470. unsigned long start_pte;
  471. unsigned long tmp1;
  472. unsigned long tmp2;
  473. unsigned long address;
  474. unsigned long ro_start;
  475. unsigned long ro_end;
  476. unsigned long fv_addr;
  477. unsigned long gw_addr;
  478. extern const unsigned long fault_vector_20;
  479. extern void * const linux_gateway_page;
  480. ro_start = __pa((unsigned long)&_text);
  481. ro_end = __pa((unsigned long)&data_start);
  482. fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
  483. gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
  484. end_paddr = start_paddr + size;
  485. pg_dir = pgd_offset_k(start_vaddr);
  486. #if PTRS_PER_PMD == 1
  487. start_pmd = 0;
  488. #else
  489. start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
  490. #endif
  491. start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
  492. address = start_paddr;
  493. while (address < end_paddr) {
  494. #if PTRS_PER_PMD == 1
  495. pmd = (pmd_t *)__pa(pg_dir);
  496. #else
  497. pmd = (pmd_t *)pgd_address(*pg_dir);
  498. /*
  499. * pmd is physical at this point
  500. */
  501. if (!pmd) {
  502. pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE << PMD_ORDER);
  503. pmd = (pmd_t *) __pa(pmd);
  504. }
  505. pgd_populate(NULL, pg_dir, __va(pmd));
  506. #endif
  507. pg_dir++;
  508. /* now change pmd to kernel virtual addresses */
  509. pmd = (pmd_t *)__va(pmd) + start_pmd;
  510. for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) {
  511. /*
  512. * pg_table is physical at this point
  513. */
  514. pg_table = (pte_t *)pmd_address(*pmd);
  515. if (!pg_table) {
  516. pg_table = (pte_t *)
  517. alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE);
  518. pg_table = (pte_t *) __pa(pg_table);
  519. }
  520. pmd_populate_kernel(NULL, pmd, __va(pg_table));
  521. /* now change pg_table to kernel virtual addresses */
  522. pg_table = (pte_t *) __va(pg_table) + start_pte;
  523. for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) {
  524. pte_t pte;
  525. /*
  526. * Map the fault vector writable so we can
  527. * write the HPMC checksum.
  528. */
  529. #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
  530. if (address >= ro_start && address < ro_end
  531. && address != fv_addr
  532. && address != gw_addr)
  533. pte = __mk_pte(address, PAGE_KERNEL_RO);
  534. else
  535. #endif
  536. pte = __mk_pte(address, pgprot);
  537. if (address >= end_paddr)
  538. pte_val(pte) = 0;
  539. set_pte(pg_table, pte);
  540. address += PAGE_SIZE;
  541. }
  542. start_pte = 0;
  543. if (address >= end_paddr)
  544. break;
  545. }
  546. start_pmd = 0;
  547. }
  548. }
  549. /*
  550. * pagetable_init() sets up the page tables
  551. *
  552. * Note that gateway_init() places the Linux gateway page at page 0.
  553. * Since gateway pages cannot be dereferenced this has the desirable
  554. * side effect of trapping those pesky NULL-reference errors in the
  555. * kernel.
  556. */
  557. static void __init pagetable_init(void)
  558. {
  559. int range;
  560. /* Map each physical memory range to its kernel vaddr */
  561. for (range = 0; range < npmem_ranges; range++) {
  562. unsigned long start_paddr;
  563. unsigned long end_paddr;
  564. unsigned long size;
  565. start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
  566. end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
  567. size = pmem_ranges[range].pages << PAGE_SHIFT;
  568. map_pages((unsigned long)__va(start_paddr), start_paddr,
  569. size, PAGE_KERNEL);
  570. }
  571. #ifdef CONFIG_BLK_DEV_INITRD
  572. if (initrd_end && initrd_end > mem_limit) {
  573. printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
  574. map_pages(initrd_start, __pa(initrd_start),
  575. initrd_end - initrd_start, PAGE_KERNEL);
  576. }
  577. #endif
  578. empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
  579. memset(empty_zero_page, 0, PAGE_SIZE);
  580. }
  581. static void __init gateway_init(void)
  582. {
  583. unsigned long linux_gateway_page_addr;
  584. /* FIXME: This is 'const' in order to trick the compiler
  585. into not treating it as DP-relative data. */
  586. extern void * const linux_gateway_page;
  587. linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
  588. /*
  589. * Setup Linux Gateway page.
  590. *
  591. * The Linux gateway page will reside in kernel space (on virtual
  592. * page 0), so it doesn't need to be aliased into user space.
  593. */
  594. map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
  595. PAGE_SIZE, PAGE_GATEWAY);
  596. }
  597. #ifdef CONFIG_HPUX
  598. void
  599. map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
  600. {
  601. pgd_t *pg_dir;
  602. pmd_t *pmd;
  603. pte_t *pg_table;
  604. unsigned long start_pmd;
  605. unsigned long start_pte;
  606. unsigned long address;
  607. unsigned long hpux_gw_page_addr;
  608. /* FIXME: This is 'const' in order to trick the compiler
  609. into not treating it as DP-relative data. */
  610. extern void * const hpux_gateway_page;
  611. hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
  612. /*
  613. * Setup HP-UX Gateway page.
  614. *
  615. * The HP-UX gateway page resides in the user address space,
  616. * so it needs to be aliased into each process.
  617. */
  618. pg_dir = pgd_offset(mm,hpux_gw_page_addr);
  619. #if PTRS_PER_PMD == 1
  620. start_pmd = 0;
  621. #else
  622. start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
  623. #endif
  624. start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
  625. address = __pa(&hpux_gateway_page);
  626. #if PTRS_PER_PMD == 1
  627. pmd = (pmd_t *)__pa(pg_dir);
  628. #else
  629. pmd = (pmd_t *) pgd_address(*pg_dir);
  630. /*
  631. * pmd is physical at this point
  632. */
  633. if (!pmd) {
  634. pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
  635. pmd = (pmd_t *) __pa(pmd);
  636. }
  637. __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
  638. #endif
  639. /* now change pmd to kernel virtual addresses */
  640. pmd = (pmd_t *)__va(pmd) + start_pmd;
  641. /*
  642. * pg_table is physical at this point
  643. */
  644. pg_table = (pte_t *) pmd_address(*pmd);
  645. if (!pg_table)
  646. pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
  647. __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
  648. /* now change pg_table to kernel virtual addresses */
  649. pg_table = (pte_t *) __va(pg_table) + start_pte;
  650. set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
  651. }
  652. EXPORT_SYMBOL(map_hpux_gateway_page);
  653. #endif
  654. void __init paging_init(void)
  655. {
  656. int i;
  657. setup_bootmem();
  658. pagetable_init();
  659. gateway_init();
  660. flush_cache_all_local(); /* start with known state */
  661. flush_tlb_all_local(NULL);
  662. for (i = 0; i < npmem_ranges; i++) {
  663. unsigned long zones_size[MAX_NR_ZONES] = { 0, 0, 0 };
  664. /* We have an IOMMU, so all memory can go into a single
  665. ZONE_DMA zone. */
  666. zones_size[ZONE_DMA] = pmem_ranges[i].pages;
  667. #ifdef CONFIG_DISCONTIGMEM
  668. /* Need to initialize the pfnnid_map before we can initialize
  669. the zone */
  670. {
  671. int j;
  672. for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
  673. j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
  674. j++) {
  675. pfnnid_map[j] = i;
  676. }
  677. }
  678. #endif
  679. free_area_init_node(i, NODE_DATA(i), zones_size,
  680. pmem_ranges[i].start_pfn, NULL);
  681. }
  682. }
  683. #ifdef CONFIG_PA20
  684. /*
  685. * Currently, all PA20 chips have 18 bit protection id's, which is the
  686. * limiting factor (space ids are 32 bits).
  687. */
  688. #define NR_SPACE_IDS 262144
  689. #else
  690. /*
  691. * Currently we have a one-to-one relationship between space id's and
  692. * protection id's. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
  693. * support 15 bit protection id's, so that is the limiting factor.
  694. * PCXT' has 18 bit protection id's, but only 16 bit spaceids, so it's
  695. * probably not worth the effort for a special case here.
  696. */
  697. #define NR_SPACE_IDS 32768
  698. #endif /* !CONFIG_PA20 */
  699. #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
  700. #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long)))
  701. static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
  702. static unsigned long dirty_space_id[SID_ARRAY_SIZE];
  703. static unsigned long space_id_index;
  704. static unsigned long free_space_ids = NR_SPACE_IDS - 1;
  705. static unsigned long dirty_space_ids = 0;
  706. static DEFINE_SPINLOCK(sid_lock);
  707. unsigned long alloc_sid(void)
  708. {
  709. unsigned long index;
  710. spin_lock(&sid_lock);
  711. if (free_space_ids == 0) {
  712. if (dirty_space_ids != 0) {
  713. spin_unlock(&sid_lock);
  714. flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
  715. spin_lock(&sid_lock);
  716. }
  717. BUG_ON(free_space_ids == 0);
  718. }
  719. free_space_ids--;
  720. index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
  721. space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
  722. space_id_index = index;
  723. spin_unlock(&sid_lock);
  724. return index << SPACEID_SHIFT;
  725. }
  726. void free_sid(unsigned long spaceid)
  727. {
  728. unsigned long index = spaceid >> SPACEID_SHIFT;
  729. unsigned long *dirty_space_offset;
  730. dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
  731. index &= (BITS_PER_LONG - 1);
  732. spin_lock(&sid_lock);
  733. BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
  734. *dirty_space_offset |= (1L << index);
  735. dirty_space_ids++;
  736. spin_unlock(&sid_lock);
  737. }
  738. #ifdef CONFIG_SMP
  739. static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
  740. {
  741. int i;
  742. /* NOTE: sid_lock must be held upon entry */
  743. *ndirtyptr = dirty_space_ids;
  744. if (dirty_space_ids != 0) {
  745. for (i = 0; i < SID_ARRAY_SIZE; i++) {
  746. dirty_array[i] = dirty_space_id[i];
  747. dirty_space_id[i] = 0;
  748. }
  749. dirty_space_ids = 0;
  750. }
  751. return;
  752. }
  753. static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
  754. {
  755. int i;
  756. /* NOTE: sid_lock must be held upon entry */
  757. if (ndirty != 0) {
  758. for (i = 0; i < SID_ARRAY_SIZE; i++) {
  759. space_id[i] ^= dirty_array[i];
  760. }
  761. free_space_ids += ndirty;
  762. space_id_index = 0;
  763. }
  764. }
  765. #else /* CONFIG_SMP */
  766. static void recycle_sids(void)
  767. {
  768. int i;
  769. /* NOTE: sid_lock must be held upon entry */
  770. if (dirty_space_ids != 0) {
  771. for (i = 0; i < SID_ARRAY_SIZE; i++) {
  772. space_id[i] ^= dirty_space_id[i];
  773. dirty_space_id[i] = 0;
  774. }
  775. free_space_ids += dirty_space_ids;
  776. dirty_space_ids = 0;
  777. space_id_index = 0;
  778. }
  779. }
  780. #endif
  781. /*
  782. * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
  783. * purged, we can safely reuse the space ids that were released but
  784. * not flushed from the tlb.
  785. */
  786. #ifdef CONFIG_SMP
  787. static unsigned long recycle_ndirty;
  788. static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
  789. static unsigned int recycle_inuse;
  790. void flush_tlb_all(void)
  791. {
  792. int do_recycle;
  793. do_recycle = 0;
  794. spin_lock(&sid_lock);
  795. if (dirty_space_ids > RECYCLE_THRESHOLD) {
  796. BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */
  797. get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
  798. recycle_inuse++;
  799. do_recycle++;
  800. }
  801. spin_unlock(&sid_lock);
  802. on_each_cpu(flush_tlb_all_local, NULL, 1, 1);
  803. if (do_recycle) {
  804. spin_lock(&sid_lock);
  805. recycle_sids(recycle_ndirty,recycle_dirty_array);
  806. recycle_inuse = 0;
  807. spin_unlock(&sid_lock);
  808. }
  809. }
  810. #else
  811. void flush_tlb_all(void)
  812. {
  813. spin_lock(&sid_lock);
  814. flush_tlb_all_local(NULL);
  815. recycle_sids();
  816. spin_unlock(&sid_lock);
  817. }
  818. #endif
  819. #ifdef CONFIG_BLK_DEV_INITRD
  820. void free_initrd_mem(unsigned long start, unsigned long end)
  821. {
  822. if (start >= end)
  823. return;
  824. printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
  825. for (; start < end; start += PAGE_SIZE) {
  826. ClearPageReserved(virt_to_page(start));
  827. init_page_count(virt_to_page(start));
  828. free_page(start);
  829. num_physpages++;
  830. totalram_pages++;
  831. }
  832. }
  833. #endif