contig.c 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 1998-2003 Hewlett-Packard Co
  7. * David Mosberger-Tang <davidm@hpl.hp.com>
  8. * Stephane Eranian <eranian@hpl.hp.com>
  9. * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
  10. * Copyright (C) 1999 VA Linux Systems
  11. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  12. * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
  13. *
  14. * Routines used by ia64 machines with contiguous (or virtually contiguous)
  15. * memory.
  16. */
  17. #include <linux/bootmem.h>
  18. #include <linux/efi.h>
  19. #include <linux/mm.h>
  20. #include <linux/swap.h>
  21. #include <asm/meminit.h>
  22. #include <asm/pgalloc.h>
  23. #include <asm/pgtable.h>
  24. #include <asm/sections.h>
  25. #include <asm/mca.h>
  26. #ifdef CONFIG_VIRTUAL_MEM_MAP
  27. static unsigned long num_dma_physpages;
  28. static unsigned long max_gap;
  29. #endif
  30. /**
  31. * show_mem - display a memory statistics summary
  32. *
  33. * Just walks the pages in the system and describes where they're allocated.
  34. */
  35. void
  36. show_mem (void)
  37. {
  38. int i, total = 0, reserved = 0;
  39. int shared = 0, cached = 0;
  40. printk("Mem-info:\n");
  41. show_free_areas();
  42. printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
  43. i = max_mapnr;
  44. for (i = 0; i < max_mapnr; i++) {
  45. if (!pfn_valid(i)) {
  46. #ifdef CONFIG_VIRTUAL_MEM_MAP
  47. if (max_gap < LARGE_GAP)
  48. continue;
  49. i = vmemmap_find_next_valid_pfn(0, i) - 1;
  50. #endif
  51. continue;
  52. }
  53. total++;
  54. if (PageReserved(mem_map+i))
  55. reserved++;
  56. else if (PageSwapCache(mem_map+i))
  57. cached++;
  58. else if (page_count(mem_map + i))
  59. shared += page_count(mem_map + i) - 1;
  60. }
  61. printk("%d pages of RAM\n", total);
  62. printk("%d reserved pages\n", reserved);
  63. printk("%d pages shared\n", shared);
  64. printk("%d pages swap cached\n", cached);
  65. printk("%ld pages in page table cache\n",
  66. pgtable_quicklist_total_size());
  67. }
  68. /* physical address where the bootmem map is located */
  69. unsigned long bootmap_start;
  70. /**
  71. * find_max_pfn - adjust the maximum page number callback
  72. * @start: start of range
  73. * @end: end of range
  74. * @arg: address of pointer to global max_pfn variable
  75. *
  76. * Passed as a callback function to efi_memmap_walk() to determine the highest
  77. * available page frame number in the system.
  78. */
  79. int
  80. find_max_pfn (unsigned long start, unsigned long end, void *arg)
  81. {
  82. unsigned long *max_pfnp = arg, pfn;
  83. pfn = (PAGE_ALIGN(end - 1) - PAGE_OFFSET) >> PAGE_SHIFT;
  84. if (pfn > *max_pfnp)
  85. *max_pfnp = pfn;
  86. return 0;
  87. }
  88. /**
  89. * find_bootmap_location - callback to find a memory area for the bootmap
  90. * @start: start of region
  91. * @end: end of region
  92. * @arg: unused callback data
  93. *
  94. * Find a place to put the bootmap and return its starting address in
  95. * bootmap_start. This address must be page-aligned.
  96. */
  97. static int __init
  98. find_bootmap_location (unsigned long start, unsigned long end, void *arg)
  99. {
  100. unsigned long needed = *(unsigned long *)arg;
  101. unsigned long range_start, range_end, free_start;
  102. int i;
  103. #if IGNORE_PFN0
  104. if (start == PAGE_OFFSET) {
  105. start += PAGE_SIZE;
  106. if (start >= end)
  107. return 0;
  108. }
  109. #endif
  110. free_start = PAGE_OFFSET;
  111. for (i = 0; i < num_rsvd_regions; i++) {
  112. range_start = max(start, free_start);
  113. range_end = min(end, rsvd_region[i].start & PAGE_MASK);
  114. free_start = PAGE_ALIGN(rsvd_region[i].end);
  115. if (range_end <= range_start)
  116. continue; /* skip over empty range */
  117. if (range_end - range_start >= needed) {
  118. bootmap_start = __pa(range_start);
  119. return -1; /* done */
  120. }
  121. /* nothing more available in this segment */
  122. if (range_end == end)
  123. return 0;
  124. }
  125. return 0;
  126. }
  127. /**
  128. * find_memory - setup memory map
  129. *
  130. * Walk the EFI memory map and find usable memory for the system, taking
  131. * into account reserved areas.
  132. */
  133. void __init
  134. find_memory (void)
  135. {
  136. unsigned long bootmap_size;
  137. reserve_memory();
  138. /* first find highest page frame number */
  139. max_pfn = 0;
  140. efi_memmap_walk(find_max_pfn, &max_pfn);
  141. /* how many bytes to cover all the pages */
  142. bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
  143. /* look for a location to hold the bootmap */
  144. bootmap_start = ~0UL;
  145. efi_memmap_walk(find_bootmap_location, &bootmap_size);
  146. if (bootmap_start == ~0UL)
  147. panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
  148. bootmap_size = init_bootmem(bootmap_start >> PAGE_SHIFT, max_pfn);
  149. /* Free all available memory, then mark bootmem-map as being in use. */
  150. efi_memmap_walk(filter_rsvd_memory, free_bootmem);
  151. reserve_bootmem(bootmap_start, bootmap_size);
  152. find_initrd();
  153. }
  154. #ifdef CONFIG_SMP
  155. /**
  156. * per_cpu_init - setup per-cpu variables
  157. *
  158. * Allocate and setup per-cpu data areas.
  159. */
  160. void * __cpuinit
  161. per_cpu_init (void)
  162. {
  163. void *cpu_data;
  164. int cpu;
  165. static int first_time=1;
  166. /*
  167. * get_free_pages() cannot be used before cpu_init() done. BSP
  168. * allocates "NR_CPUS" pages for all CPUs to avoid that AP calls
  169. * get_zeroed_page().
  170. */
  171. if (first_time) {
  172. first_time=0;
  173. cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * NR_CPUS,
  174. PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
  175. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  176. memcpy(cpu_data, __phys_per_cpu_start, __per_cpu_end - __per_cpu_start);
  177. __per_cpu_offset[cpu] = (char *) cpu_data - __per_cpu_start;
  178. cpu_data += PERCPU_PAGE_SIZE;
  179. per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
  180. }
  181. }
  182. return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
  183. }
  184. #endif /* CONFIG_SMP */
  185. static int
  186. count_pages (u64 start, u64 end, void *arg)
  187. {
  188. unsigned long *count = arg;
  189. *count += (end - start) >> PAGE_SHIFT;
  190. return 0;
  191. }
  192. #ifdef CONFIG_VIRTUAL_MEM_MAP
  193. static int
  194. count_dma_pages (u64 start, u64 end, void *arg)
  195. {
  196. unsigned long *count = arg;
  197. if (start < MAX_DMA_ADDRESS)
  198. *count += (min(end, MAX_DMA_ADDRESS) - start) >> PAGE_SHIFT;
  199. return 0;
  200. }
  201. #endif
  202. /*
  203. * Set up the page tables.
  204. */
  205. void __init
  206. paging_init (void)
  207. {
  208. unsigned long max_dma;
  209. unsigned long zones_size[MAX_NR_ZONES];
  210. #ifdef CONFIG_VIRTUAL_MEM_MAP
  211. unsigned long zholes_size[MAX_NR_ZONES];
  212. #endif
  213. /* initialize mem_map[] */
  214. memset(zones_size, 0, sizeof(zones_size));
  215. num_physpages = 0;
  216. efi_memmap_walk(count_pages, &num_physpages);
  217. max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
  218. #ifdef CONFIG_VIRTUAL_MEM_MAP
  219. memset(zholes_size, 0, sizeof(zholes_size));
  220. num_dma_physpages = 0;
  221. efi_memmap_walk(count_dma_pages, &num_dma_physpages);
  222. if (max_low_pfn < max_dma) {
  223. zones_size[ZONE_DMA] = max_low_pfn;
  224. zholes_size[ZONE_DMA] = max_low_pfn - num_dma_physpages;
  225. } else {
  226. zones_size[ZONE_DMA] = max_dma;
  227. zholes_size[ZONE_DMA] = max_dma - num_dma_physpages;
  228. if (num_physpages > num_dma_physpages) {
  229. zones_size[ZONE_NORMAL] = max_low_pfn - max_dma;
  230. zholes_size[ZONE_NORMAL] =
  231. ((max_low_pfn - max_dma) -
  232. (num_physpages - num_dma_physpages));
  233. }
  234. }
  235. efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
  236. if (max_gap < LARGE_GAP) {
  237. vmem_map = (struct page *) 0;
  238. free_area_init_node(0, NODE_DATA(0), zones_size, 0,
  239. zholes_size);
  240. } else {
  241. unsigned long map_size;
  242. /* allocate virtual_mem_map */
  243. map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
  244. sizeof(struct page));
  245. vmalloc_end -= map_size;
  246. vmem_map = (struct page *) vmalloc_end;
  247. efi_memmap_walk(create_mem_map_page_table, NULL);
  248. NODE_DATA(0)->node_mem_map = vmem_map;
  249. free_area_init_node(0, NODE_DATA(0), zones_size,
  250. 0, zholes_size);
  251. printk("Virtual mem_map starts at 0x%p\n", mem_map);
  252. }
  253. #else /* !CONFIG_VIRTUAL_MEM_MAP */
  254. if (max_low_pfn < max_dma)
  255. zones_size[ZONE_DMA] = max_low_pfn;
  256. else {
  257. zones_size[ZONE_DMA] = max_dma;
  258. zones_size[ZONE_NORMAL] = max_low_pfn - max_dma;
  259. }
  260. free_area_init(zones_size);
  261. #endif /* !CONFIG_VIRTUAL_MEM_MAP */
  262. zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
  263. }