head.S 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218
  1. /*
  2. * Here is where the ball gets rolling as far as the kernel is concerned.
  3. * When control is transferred to _start, the bootload has already
  4. * loaded us to the correct address. All that's left to do here is
  5. * to set up the kernel's global pointer and jump to the kernel
  6. * entry point.
  7. *
  8. * Copyright (C) 1998-2001, 2003, 2005 Hewlett-Packard Co
  9. * David Mosberger-Tang <davidm@hpl.hp.com>
  10. * Stephane Eranian <eranian@hpl.hp.com>
  11. * Copyright (C) 1999 VA Linux Systems
  12. * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  13. * Copyright (C) 1999 Intel Corp.
  14. * Copyright (C) 1999 Asit Mallick <Asit.K.Mallick@intel.com>
  15. * Copyright (C) 1999 Don Dugger <Don.Dugger@intel.com>
  16. * Copyright (C) 2002 Fenghua Yu <fenghua.yu@intel.com>
  17. * -Optimize __ia64_save_fpu() and __ia64_load_fpu() for Itanium 2.
  18. * Copyright (C) 2004 Ashok Raj <ashok.raj@intel.com>
  19. * Support for CPU Hotplug
  20. */
  21. #include <asm/asmmacro.h>
  22. #include <asm/fpu.h>
  23. #include <asm/kregs.h>
  24. #include <asm/mmu_context.h>
  25. #include <asm/asm-offsets.h>
  26. #include <asm/pal.h>
  27. #include <asm/pgtable.h>
  28. #include <asm/processor.h>
  29. #include <asm/ptrace.h>
  30. #include <asm/system.h>
  31. #include <asm/mca_asm.h>
  32. #ifdef CONFIG_HOTPLUG_CPU
  33. #define SAL_PSR_BITS_TO_SET \
  34. (IA64_PSR_AC | IA64_PSR_BN | IA64_PSR_MFH | IA64_PSR_MFL)
  35. #define SAVE_FROM_REG(src, ptr, dest) \
  36. mov dest=src;; \
  37. st8 [ptr]=dest,0x08
  38. #define RESTORE_REG(reg, ptr, _tmp) \
  39. ld8 _tmp=[ptr],0x08;; \
  40. mov reg=_tmp
  41. #define SAVE_BREAK_REGS(ptr, _idx, _breg, _dest)\
  42. mov ar.lc=IA64_NUM_DBG_REGS-1;; \
  43. mov _idx=0;; \
  44. 1: \
  45. SAVE_FROM_REG(_breg[_idx], ptr, _dest);; \
  46. add _idx=1,_idx;; \
  47. br.cloop.sptk.many 1b
  48. #define RESTORE_BREAK_REGS(ptr, _idx, _breg, _tmp, _lbl)\
  49. mov ar.lc=IA64_NUM_DBG_REGS-1;; \
  50. mov _idx=0;; \
  51. _lbl: RESTORE_REG(_breg[_idx], ptr, _tmp);; \
  52. add _idx=1, _idx;; \
  53. br.cloop.sptk.many _lbl
  54. #define SAVE_ONE_RR(num, _reg, _tmp) \
  55. movl _tmp=(num<<61);; \
  56. mov _reg=rr[_tmp]
  57. #define SAVE_REGION_REGS(_tmp, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7) \
  58. SAVE_ONE_RR(0,_r0, _tmp);; \
  59. SAVE_ONE_RR(1,_r1, _tmp);; \
  60. SAVE_ONE_RR(2,_r2, _tmp);; \
  61. SAVE_ONE_RR(3,_r3, _tmp);; \
  62. SAVE_ONE_RR(4,_r4, _tmp);; \
  63. SAVE_ONE_RR(5,_r5, _tmp);; \
  64. SAVE_ONE_RR(6,_r6, _tmp);; \
  65. SAVE_ONE_RR(7,_r7, _tmp);;
  66. #define STORE_REGION_REGS(ptr, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7) \
  67. st8 [ptr]=_r0, 8;; \
  68. st8 [ptr]=_r1, 8;; \
  69. st8 [ptr]=_r2, 8;; \
  70. st8 [ptr]=_r3, 8;; \
  71. st8 [ptr]=_r4, 8;; \
  72. st8 [ptr]=_r5, 8;; \
  73. st8 [ptr]=_r6, 8;; \
  74. st8 [ptr]=_r7, 8;;
  75. #define RESTORE_REGION_REGS(ptr, _idx1, _idx2, _tmp) \
  76. mov ar.lc=0x08-1;; \
  77. movl _idx1=0x00;; \
  78. RestRR: \
  79. dep.z _idx2=_idx1,61,3;; \
  80. ld8 _tmp=[ptr],8;; \
  81. mov rr[_idx2]=_tmp;; \
  82. srlz.d;; \
  83. add _idx1=1,_idx1;; \
  84. br.cloop.sptk.few RestRR
  85. #define SET_AREA_FOR_BOOTING_CPU(reg1, reg2) \
  86. movl reg1=sal_state_for_booting_cpu;; \
  87. ld8 reg2=[reg1];;
  88. /*
  89. * Adjust region registers saved before starting to save
  90. * break regs and rest of the states that need to be preserved.
  91. */
  92. #define SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(_reg1,_reg2,_pred) \
  93. SAVE_FROM_REG(b0,_reg1,_reg2);; \
  94. SAVE_FROM_REG(b1,_reg1,_reg2);; \
  95. SAVE_FROM_REG(b2,_reg1,_reg2);; \
  96. SAVE_FROM_REG(b3,_reg1,_reg2);; \
  97. SAVE_FROM_REG(b4,_reg1,_reg2);; \
  98. SAVE_FROM_REG(b5,_reg1,_reg2);; \
  99. st8 [_reg1]=r1,0x08;; \
  100. st8 [_reg1]=r12,0x08;; \
  101. st8 [_reg1]=r13,0x08;; \
  102. SAVE_FROM_REG(ar.fpsr,_reg1,_reg2);; \
  103. SAVE_FROM_REG(ar.pfs,_reg1,_reg2);; \
  104. SAVE_FROM_REG(ar.rnat,_reg1,_reg2);; \
  105. SAVE_FROM_REG(ar.unat,_reg1,_reg2);; \
  106. SAVE_FROM_REG(ar.bspstore,_reg1,_reg2);; \
  107. SAVE_FROM_REG(cr.dcr,_reg1,_reg2);; \
  108. SAVE_FROM_REG(cr.iva,_reg1,_reg2);; \
  109. SAVE_FROM_REG(cr.pta,_reg1,_reg2);; \
  110. SAVE_FROM_REG(cr.itv,_reg1,_reg2);; \
  111. SAVE_FROM_REG(cr.pmv,_reg1,_reg2);; \
  112. SAVE_FROM_REG(cr.cmcv,_reg1,_reg2);; \
  113. SAVE_FROM_REG(cr.lrr0,_reg1,_reg2);; \
  114. SAVE_FROM_REG(cr.lrr1,_reg1,_reg2);; \
  115. st8 [_reg1]=r4,0x08;; \
  116. st8 [_reg1]=r5,0x08;; \
  117. st8 [_reg1]=r6,0x08;; \
  118. st8 [_reg1]=r7,0x08;; \
  119. st8 [_reg1]=_pred,0x08;; \
  120. SAVE_FROM_REG(ar.lc, _reg1, _reg2);; \
  121. stf.spill.nta [_reg1]=f2,16;; \
  122. stf.spill.nta [_reg1]=f3,16;; \
  123. stf.spill.nta [_reg1]=f4,16;; \
  124. stf.spill.nta [_reg1]=f5,16;; \
  125. stf.spill.nta [_reg1]=f16,16;; \
  126. stf.spill.nta [_reg1]=f17,16;; \
  127. stf.spill.nta [_reg1]=f18,16;; \
  128. stf.spill.nta [_reg1]=f19,16;; \
  129. stf.spill.nta [_reg1]=f20,16;; \
  130. stf.spill.nta [_reg1]=f21,16;; \
  131. stf.spill.nta [_reg1]=f22,16;; \
  132. stf.spill.nta [_reg1]=f23,16;; \
  133. stf.spill.nta [_reg1]=f24,16;; \
  134. stf.spill.nta [_reg1]=f25,16;; \
  135. stf.spill.nta [_reg1]=f26,16;; \
  136. stf.spill.nta [_reg1]=f27,16;; \
  137. stf.spill.nta [_reg1]=f28,16;; \
  138. stf.spill.nta [_reg1]=f29,16;; \
  139. stf.spill.nta [_reg1]=f30,16;; \
  140. stf.spill.nta [_reg1]=f31,16;;
  141. #else
  142. #define SET_AREA_FOR_BOOTING_CPU(a1, a2)
  143. #define SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(a1,a2, a3)
  144. #define SAVE_REGION_REGS(_tmp, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7)
  145. #define STORE_REGION_REGS(ptr, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7)
  146. #endif
  147. #define SET_ONE_RR(num, pgsize, _tmp1, _tmp2, vhpt) \
  148. movl _tmp1=(num << 61);; \
  149. mov _tmp2=((ia64_rid(IA64_REGION_ID_KERNEL, (num<<61)) << 8) | (pgsize << 2) | vhpt);; \
  150. mov rr[_tmp1]=_tmp2
  151. .section __special_page_section,"ax"
  152. .global empty_zero_page
  153. empty_zero_page:
  154. .skip PAGE_SIZE
  155. .global swapper_pg_dir
  156. swapper_pg_dir:
  157. .skip PAGE_SIZE
  158. .rodata
  159. halt_msg:
  160. stringz "Halting kernel\n"
  161. .text
  162. .global start_ap
  163. /*
  164. * Start the kernel. When the bootloader passes control to _start(), r28
  165. * points to the address of the boot parameter area. Execution reaches
  166. * here in physical mode.
  167. */
  168. GLOBAL_ENTRY(_start)
  169. start_ap:
  170. .prologue
  171. .save rp, r0 // terminate unwind chain with a NULL rp
  172. .body
  173. rsm psr.i | psr.ic
  174. ;;
  175. srlz.i
  176. ;;
  177. /*
  178. * Save the region registers, predicate before they get clobbered
  179. */
  180. SAVE_REGION_REGS(r2, r8,r9,r10,r11,r12,r13,r14,r15);
  181. mov r25=pr;;
  182. /*
  183. * Initialize kernel region registers:
  184. * rr[0]: VHPT enabled, page size = PAGE_SHIFT
  185. * rr[1]: VHPT enabled, page size = PAGE_SHIFT
  186. * rr[2]: VHPT enabled, page size = PAGE_SHIFT
  187. * rr[3]: VHPT enabled, page size = PAGE_SHIFT
  188. * rr[4]: VHPT enabled, page size = PAGE_SHIFT
  189. * rr[5]: VHPT enabled, page size = PAGE_SHIFT
  190. * rr[6]: VHPT disabled, page size = IA64_GRANULE_SHIFT
  191. * rr[7]: VHPT disabled, page size = IA64_GRANULE_SHIFT
  192. * We initialize all of them to prevent inadvertently assuming
  193. * something about the state of address translation early in boot.
  194. */
  195. SET_ONE_RR(0, PAGE_SHIFT, r2, r16, 1);;
  196. SET_ONE_RR(1, PAGE_SHIFT, r2, r16, 1);;
  197. SET_ONE_RR(2, PAGE_SHIFT, r2, r16, 1);;
  198. SET_ONE_RR(3, PAGE_SHIFT, r2, r16, 1);;
  199. SET_ONE_RR(4, PAGE_SHIFT, r2, r16, 1);;
  200. SET_ONE_RR(5, PAGE_SHIFT, r2, r16, 1);;
  201. SET_ONE_RR(6, IA64_GRANULE_SHIFT, r2, r16, 0);;
  202. SET_ONE_RR(7, IA64_GRANULE_SHIFT, r2, r16, 0);;
  203. /*
  204. * Now pin mappings into the TLB for kernel text and data
  205. */
  206. mov r18=KERNEL_TR_PAGE_SHIFT<<2
  207. movl r17=KERNEL_START
  208. ;;
  209. mov cr.itir=r18
  210. mov cr.ifa=r17
  211. mov r16=IA64_TR_KERNEL
  212. mov r3=ip
  213. movl r18=PAGE_KERNEL
  214. ;;
  215. dep r2=0,r3,0,KERNEL_TR_PAGE_SHIFT
  216. ;;
  217. or r18=r2,r18
  218. ;;
  219. srlz.i
  220. ;;
  221. itr.i itr[r16]=r18
  222. ;;
  223. itr.d dtr[r16]=r18
  224. ;;
  225. srlz.i
  226. /*
  227. * Switch into virtual mode:
  228. */
  229. movl r16=(IA64_PSR_IT|IA64_PSR_IC|IA64_PSR_DT|IA64_PSR_RT|IA64_PSR_DFH|IA64_PSR_BN \
  230. |IA64_PSR_DI)
  231. ;;
  232. mov cr.ipsr=r16
  233. movl r17=1f
  234. ;;
  235. mov cr.iip=r17
  236. mov cr.ifs=r0
  237. ;;
  238. rfi
  239. ;;
  240. 1: // now we are in virtual mode
  241. SET_AREA_FOR_BOOTING_CPU(r2, r16);
  242. STORE_REGION_REGS(r16, r8,r9,r10,r11,r12,r13,r14,r15);
  243. SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(r16,r17,r25)
  244. ;;
  245. // set IVT entry point---can't access I/O ports without it
  246. movl r3=ia64_ivt
  247. ;;
  248. mov cr.iva=r3
  249. movl r2=FPSR_DEFAULT
  250. ;;
  251. srlz.i
  252. movl gp=__gp
  253. mov ar.fpsr=r2
  254. ;;
  255. #define isAP p2 // are we an Application Processor?
  256. #define isBP p3 // are we the Bootstrap Processor?
  257. #ifdef CONFIG_SMP
  258. /*
  259. * Find the init_task for the currently booting CPU. At poweron, and in
  260. * UP mode, task_for_booting_cpu is NULL.
  261. */
  262. movl r3=task_for_booting_cpu
  263. ;;
  264. ld8 r3=[r3]
  265. movl r2=init_task
  266. ;;
  267. cmp.eq isBP,isAP=r3,r0
  268. ;;
  269. (isAP) mov r2=r3
  270. #else
  271. movl r2=init_task
  272. cmp.eq isBP,isAP=r0,r0
  273. #endif
  274. ;;
  275. tpa r3=r2 // r3 == phys addr of task struct
  276. mov r16=-1
  277. (isBP) br.cond.dpnt .load_current // BP stack is on region 5 --- no need to map it
  278. // load mapping for stack (virtaddr in r2, physaddr in r3)
  279. rsm psr.ic
  280. movl r17=PAGE_KERNEL
  281. ;;
  282. srlz.d
  283. dep r18=0,r3,0,12
  284. ;;
  285. or r18=r17,r18
  286. dep r2=-1,r3,61,3 // IMVA of task
  287. ;;
  288. mov r17=rr[r2]
  289. shr.u r16=r3,IA64_GRANULE_SHIFT
  290. ;;
  291. dep r17=0,r17,8,24
  292. ;;
  293. mov cr.itir=r17
  294. mov cr.ifa=r2
  295. mov r19=IA64_TR_CURRENT_STACK
  296. ;;
  297. itr.d dtr[r19]=r18
  298. ;;
  299. ssm psr.ic
  300. srlz.d
  301. ;;
  302. .load_current:
  303. // load the "current" pointer (r13) and ar.k6 with the current task
  304. mov IA64_KR(CURRENT)=r2 // virtual address
  305. mov IA64_KR(CURRENT_STACK)=r16
  306. mov r13=r2
  307. /*
  308. * Reserve space at the top of the stack for "struct pt_regs". Kernel
  309. * threads don't store interesting values in that structure, but the space
  310. * still needs to be there because time-critical stuff such as the context
  311. * switching can be implemented more efficiently (for example, __switch_to()
  312. * always sets the psr.dfh bit of the task it is switching to).
  313. */
  314. addl r12=IA64_STK_OFFSET-IA64_PT_REGS_SIZE-16,r2
  315. addl r2=IA64_RBS_OFFSET,r2 // initialize the RSE
  316. mov ar.rsc=0 // place RSE in enforced lazy mode
  317. ;;
  318. loadrs // clear the dirty partition
  319. mov IA64_KR(PER_CPU_DATA)=r0 // clear physical per-CPU base
  320. ;;
  321. mov ar.bspstore=r2 // establish the new RSE stack
  322. ;;
  323. mov ar.rsc=0x3 // place RSE in eager mode
  324. (isBP) dep r28=-1,r28,61,3 // make address virtual
  325. (isBP) movl r2=ia64_boot_param
  326. ;;
  327. (isBP) st8 [r2]=r28 // save the address of the boot param area passed by the bootloader
  328. #ifdef CONFIG_SMP
  329. (isAP) br.call.sptk.many rp=start_secondary
  330. .ret0:
  331. (isAP) br.cond.sptk self
  332. #endif
  333. // This is executed by the bootstrap processor (bsp) only:
  334. #ifdef CONFIG_IA64_FW_EMU
  335. // initialize PAL & SAL emulator:
  336. br.call.sptk.many rp=sys_fw_init
  337. .ret1:
  338. #endif
  339. br.call.sptk.many rp=start_kernel
  340. .ret2: addl r3=@ltoff(halt_msg),gp
  341. ;;
  342. alloc r2=ar.pfs,8,0,2,0
  343. ;;
  344. ld8 out0=[r3]
  345. br.call.sptk.many b0=console_print
  346. self: hint @pause
  347. br.sptk.many self // endless loop
  348. END(_start)
  349. GLOBAL_ENTRY(ia64_save_debug_regs)
  350. alloc r16=ar.pfs,1,0,0,0
  351. mov r20=ar.lc // preserve ar.lc
  352. mov ar.lc=IA64_NUM_DBG_REGS-1
  353. mov r18=0
  354. add r19=IA64_NUM_DBG_REGS*8,in0
  355. ;;
  356. 1: mov r16=dbr[r18]
  357. #ifdef CONFIG_ITANIUM
  358. ;;
  359. srlz.d
  360. #endif
  361. mov r17=ibr[r18]
  362. add r18=1,r18
  363. ;;
  364. st8.nta [in0]=r16,8
  365. st8.nta [r19]=r17,8
  366. br.cloop.sptk.many 1b
  367. ;;
  368. mov ar.lc=r20 // restore ar.lc
  369. br.ret.sptk.many rp
  370. END(ia64_save_debug_regs)
  371. GLOBAL_ENTRY(ia64_load_debug_regs)
  372. alloc r16=ar.pfs,1,0,0,0
  373. lfetch.nta [in0]
  374. mov r20=ar.lc // preserve ar.lc
  375. add r19=IA64_NUM_DBG_REGS*8,in0
  376. mov ar.lc=IA64_NUM_DBG_REGS-1
  377. mov r18=-1
  378. ;;
  379. 1: ld8.nta r16=[in0],8
  380. ld8.nta r17=[r19],8
  381. add r18=1,r18
  382. ;;
  383. mov dbr[r18]=r16
  384. #ifdef CONFIG_ITANIUM
  385. ;;
  386. srlz.d // Errata 132 (NoFix status)
  387. #endif
  388. mov ibr[r18]=r17
  389. br.cloop.sptk.many 1b
  390. ;;
  391. mov ar.lc=r20 // restore ar.lc
  392. br.ret.sptk.many rp
  393. END(ia64_load_debug_regs)
  394. GLOBAL_ENTRY(__ia64_save_fpu)
  395. alloc r2=ar.pfs,1,4,0,0
  396. adds loc0=96*16-16,in0
  397. adds loc1=96*16-16-128,in0
  398. ;;
  399. stf.spill.nta [loc0]=f127,-256
  400. stf.spill.nta [loc1]=f119,-256
  401. ;;
  402. stf.spill.nta [loc0]=f111,-256
  403. stf.spill.nta [loc1]=f103,-256
  404. ;;
  405. stf.spill.nta [loc0]=f95,-256
  406. stf.spill.nta [loc1]=f87,-256
  407. ;;
  408. stf.spill.nta [loc0]=f79,-256
  409. stf.spill.nta [loc1]=f71,-256
  410. ;;
  411. stf.spill.nta [loc0]=f63,-256
  412. stf.spill.nta [loc1]=f55,-256
  413. adds loc2=96*16-32,in0
  414. ;;
  415. stf.spill.nta [loc0]=f47,-256
  416. stf.spill.nta [loc1]=f39,-256
  417. adds loc3=96*16-32-128,in0
  418. ;;
  419. stf.spill.nta [loc2]=f126,-256
  420. stf.spill.nta [loc3]=f118,-256
  421. ;;
  422. stf.spill.nta [loc2]=f110,-256
  423. stf.spill.nta [loc3]=f102,-256
  424. ;;
  425. stf.spill.nta [loc2]=f94,-256
  426. stf.spill.nta [loc3]=f86,-256
  427. ;;
  428. stf.spill.nta [loc2]=f78,-256
  429. stf.spill.nta [loc3]=f70,-256
  430. ;;
  431. stf.spill.nta [loc2]=f62,-256
  432. stf.spill.nta [loc3]=f54,-256
  433. adds loc0=96*16-48,in0
  434. ;;
  435. stf.spill.nta [loc2]=f46,-256
  436. stf.spill.nta [loc3]=f38,-256
  437. adds loc1=96*16-48-128,in0
  438. ;;
  439. stf.spill.nta [loc0]=f125,-256
  440. stf.spill.nta [loc1]=f117,-256
  441. ;;
  442. stf.spill.nta [loc0]=f109,-256
  443. stf.spill.nta [loc1]=f101,-256
  444. ;;
  445. stf.spill.nta [loc0]=f93,-256
  446. stf.spill.nta [loc1]=f85,-256
  447. ;;
  448. stf.spill.nta [loc0]=f77,-256
  449. stf.spill.nta [loc1]=f69,-256
  450. ;;
  451. stf.spill.nta [loc0]=f61,-256
  452. stf.spill.nta [loc1]=f53,-256
  453. adds loc2=96*16-64,in0
  454. ;;
  455. stf.spill.nta [loc0]=f45,-256
  456. stf.spill.nta [loc1]=f37,-256
  457. adds loc3=96*16-64-128,in0
  458. ;;
  459. stf.spill.nta [loc2]=f124,-256
  460. stf.spill.nta [loc3]=f116,-256
  461. ;;
  462. stf.spill.nta [loc2]=f108,-256
  463. stf.spill.nta [loc3]=f100,-256
  464. ;;
  465. stf.spill.nta [loc2]=f92,-256
  466. stf.spill.nta [loc3]=f84,-256
  467. ;;
  468. stf.spill.nta [loc2]=f76,-256
  469. stf.spill.nta [loc3]=f68,-256
  470. ;;
  471. stf.spill.nta [loc2]=f60,-256
  472. stf.spill.nta [loc3]=f52,-256
  473. adds loc0=96*16-80,in0
  474. ;;
  475. stf.spill.nta [loc2]=f44,-256
  476. stf.spill.nta [loc3]=f36,-256
  477. adds loc1=96*16-80-128,in0
  478. ;;
  479. stf.spill.nta [loc0]=f123,-256
  480. stf.spill.nta [loc1]=f115,-256
  481. ;;
  482. stf.spill.nta [loc0]=f107,-256
  483. stf.spill.nta [loc1]=f99,-256
  484. ;;
  485. stf.spill.nta [loc0]=f91,-256
  486. stf.spill.nta [loc1]=f83,-256
  487. ;;
  488. stf.spill.nta [loc0]=f75,-256
  489. stf.spill.nta [loc1]=f67,-256
  490. ;;
  491. stf.spill.nta [loc0]=f59,-256
  492. stf.spill.nta [loc1]=f51,-256
  493. adds loc2=96*16-96,in0
  494. ;;
  495. stf.spill.nta [loc0]=f43,-256
  496. stf.spill.nta [loc1]=f35,-256
  497. adds loc3=96*16-96-128,in0
  498. ;;
  499. stf.spill.nta [loc2]=f122,-256
  500. stf.spill.nta [loc3]=f114,-256
  501. ;;
  502. stf.spill.nta [loc2]=f106,-256
  503. stf.spill.nta [loc3]=f98,-256
  504. ;;
  505. stf.spill.nta [loc2]=f90,-256
  506. stf.spill.nta [loc3]=f82,-256
  507. ;;
  508. stf.spill.nta [loc2]=f74,-256
  509. stf.spill.nta [loc3]=f66,-256
  510. ;;
  511. stf.spill.nta [loc2]=f58,-256
  512. stf.spill.nta [loc3]=f50,-256
  513. adds loc0=96*16-112,in0
  514. ;;
  515. stf.spill.nta [loc2]=f42,-256
  516. stf.spill.nta [loc3]=f34,-256
  517. adds loc1=96*16-112-128,in0
  518. ;;
  519. stf.spill.nta [loc0]=f121,-256
  520. stf.spill.nta [loc1]=f113,-256
  521. ;;
  522. stf.spill.nta [loc0]=f105,-256
  523. stf.spill.nta [loc1]=f97,-256
  524. ;;
  525. stf.spill.nta [loc0]=f89,-256
  526. stf.spill.nta [loc1]=f81,-256
  527. ;;
  528. stf.spill.nta [loc0]=f73,-256
  529. stf.spill.nta [loc1]=f65,-256
  530. ;;
  531. stf.spill.nta [loc0]=f57,-256
  532. stf.spill.nta [loc1]=f49,-256
  533. adds loc2=96*16-128,in0
  534. ;;
  535. stf.spill.nta [loc0]=f41,-256
  536. stf.spill.nta [loc1]=f33,-256
  537. adds loc3=96*16-128-128,in0
  538. ;;
  539. stf.spill.nta [loc2]=f120,-256
  540. stf.spill.nta [loc3]=f112,-256
  541. ;;
  542. stf.spill.nta [loc2]=f104,-256
  543. stf.spill.nta [loc3]=f96,-256
  544. ;;
  545. stf.spill.nta [loc2]=f88,-256
  546. stf.spill.nta [loc3]=f80,-256
  547. ;;
  548. stf.spill.nta [loc2]=f72,-256
  549. stf.spill.nta [loc3]=f64,-256
  550. ;;
  551. stf.spill.nta [loc2]=f56,-256
  552. stf.spill.nta [loc3]=f48,-256
  553. ;;
  554. stf.spill.nta [loc2]=f40
  555. stf.spill.nta [loc3]=f32
  556. br.ret.sptk.many rp
  557. END(__ia64_save_fpu)
  558. GLOBAL_ENTRY(__ia64_load_fpu)
  559. alloc r2=ar.pfs,1,2,0,0
  560. adds r3=128,in0
  561. adds r14=256,in0
  562. adds r15=384,in0
  563. mov loc0=512
  564. mov loc1=-1024+16
  565. ;;
  566. ldf.fill.nta f32=[in0],loc0
  567. ldf.fill.nta f40=[ r3],loc0
  568. ldf.fill.nta f48=[r14],loc0
  569. ldf.fill.nta f56=[r15],loc0
  570. ;;
  571. ldf.fill.nta f64=[in0],loc0
  572. ldf.fill.nta f72=[ r3],loc0
  573. ldf.fill.nta f80=[r14],loc0
  574. ldf.fill.nta f88=[r15],loc0
  575. ;;
  576. ldf.fill.nta f96=[in0],loc1
  577. ldf.fill.nta f104=[ r3],loc1
  578. ldf.fill.nta f112=[r14],loc1
  579. ldf.fill.nta f120=[r15],loc1
  580. ;;
  581. ldf.fill.nta f33=[in0],loc0
  582. ldf.fill.nta f41=[ r3],loc0
  583. ldf.fill.nta f49=[r14],loc0
  584. ldf.fill.nta f57=[r15],loc0
  585. ;;
  586. ldf.fill.nta f65=[in0],loc0
  587. ldf.fill.nta f73=[ r3],loc0
  588. ldf.fill.nta f81=[r14],loc0
  589. ldf.fill.nta f89=[r15],loc0
  590. ;;
  591. ldf.fill.nta f97=[in0],loc1
  592. ldf.fill.nta f105=[ r3],loc1
  593. ldf.fill.nta f113=[r14],loc1
  594. ldf.fill.nta f121=[r15],loc1
  595. ;;
  596. ldf.fill.nta f34=[in0],loc0
  597. ldf.fill.nta f42=[ r3],loc0
  598. ldf.fill.nta f50=[r14],loc0
  599. ldf.fill.nta f58=[r15],loc0
  600. ;;
  601. ldf.fill.nta f66=[in0],loc0
  602. ldf.fill.nta f74=[ r3],loc0
  603. ldf.fill.nta f82=[r14],loc0
  604. ldf.fill.nta f90=[r15],loc0
  605. ;;
  606. ldf.fill.nta f98=[in0],loc1
  607. ldf.fill.nta f106=[ r3],loc1
  608. ldf.fill.nta f114=[r14],loc1
  609. ldf.fill.nta f122=[r15],loc1
  610. ;;
  611. ldf.fill.nta f35=[in0],loc0
  612. ldf.fill.nta f43=[ r3],loc0
  613. ldf.fill.nta f51=[r14],loc0
  614. ldf.fill.nta f59=[r15],loc0
  615. ;;
  616. ldf.fill.nta f67=[in0],loc0
  617. ldf.fill.nta f75=[ r3],loc0
  618. ldf.fill.nta f83=[r14],loc0
  619. ldf.fill.nta f91=[r15],loc0
  620. ;;
  621. ldf.fill.nta f99=[in0],loc1
  622. ldf.fill.nta f107=[ r3],loc1
  623. ldf.fill.nta f115=[r14],loc1
  624. ldf.fill.nta f123=[r15],loc1
  625. ;;
  626. ldf.fill.nta f36=[in0],loc0
  627. ldf.fill.nta f44=[ r3],loc0
  628. ldf.fill.nta f52=[r14],loc0
  629. ldf.fill.nta f60=[r15],loc0
  630. ;;
  631. ldf.fill.nta f68=[in0],loc0
  632. ldf.fill.nta f76=[ r3],loc0
  633. ldf.fill.nta f84=[r14],loc0
  634. ldf.fill.nta f92=[r15],loc0
  635. ;;
  636. ldf.fill.nta f100=[in0],loc1
  637. ldf.fill.nta f108=[ r3],loc1
  638. ldf.fill.nta f116=[r14],loc1
  639. ldf.fill.nta f124=[r15],loc1
  640. ;;
  641. ldf.fill.nta f37=[in0],loc0
  642. ldf.fill.nta f45=[ r3],loc0
  643. ldf.fill.nta f53=[r14],loc0
  644. ldf.fill.nta f61=[r15],loc0
  645. ;;
  646. ldf.fill.nta f69=[in0],loc0
  647. ldf.fill.nta f77=[ r3],loc0
  648. ldf.fill.nta f85=[r14],loc0
  649. ldf.fill.nta f93=[r15],loc0
  650. ;;
  651. ldf.fill.nta f101=[in0],loc1
  652. ldf.fill.nta f109=[ r3],loc1
  653. ldf.fill.nta f117=[r14],loc1
  654. ldf.fill.nta f125=[r15],loc1
  655. ;;
  656. ldf.fill.nta f38 =[in0],loc0
  657. ldf.fill.nta f46 =[ r3],loc0
  658. ldf.fill.nta f54 =[r14],loc0
  659. ldf.fill.nta f62 =[r15],loc0
  660. ;;
  661. ldf.fill.nta f70 =[in0],loc0
  662. ldf.fill.nta f78 =[ r3],loc0
  663. ldf.fill.nta f86 =[r14],loc0
  664. ldf.fill.nta f94 =[r15],loc0
  665. ;;
  666. ldf.fill.nta f102=[in0],loc1
  667. ldf.fill.nta f110=[ r3],loc1
  668. ldf.fill.nta f118=[r14],loc1
  669. ldf.fill.nta f126=[r15],loc1
  670. ;;
  671. ldf.fill.nta f39 =[in0],loc0
  672. ldf.fill.nta f47 =[ r3],loc0
  673. ldf.fill.nta f55 =[r14],loc0
  674. ldf.fill.nta f63 =[r15],loc0
  675. ;;
  676. ldf.fill.nta f71 =[in0],loc0
  677. ldf.fill.nta f79 =[ r3],loc0
  678. ldf.fill.nta f87 =[r14],loc0
  679. ldf.fill.nta f95 =[r15],loc0
  680. ;;
  681. ldf.fill.nta f103=[in0]
  682. ldf.fill.nta f111=[ r3]
  683. ldf.fill.nta f119=[r14]
  684. ldf.fill.nta f127=[r15]
  685. br.ret.sptk.many rp
  686. END(__ia64_load_fpu)
  687. GLOBAL_ENTRY(__ia64_init_fpu)
  688. stf.spill [sp]=f0 // M3
  689. mov f32=f0 // F
  690. nop.b 0
  691. ldfps f33,f34=[sp] // M0
  692. ldfps f35,f36=[sp] // M1
  693. mov f37=f0 // F
  694. ;;
  695. setf.s f38=r0 // M2
  696. setf.s f39=r0 // M3
  697. mov f40=f0 // F
  698. ldfps f41,f42=[sp] // M0
  699. ldfps f43,f44=[sp] // M1
  700. mov f45=f0 // F
  701. setf.s f46=r0 // M2
  702. setf.s f47=r0 // M3
  703. mov f48=f0 // F
  704. ldfps f49,f50=[sp] // M0
  705. ldfps f51,f52=[sp] // M1
  706. mov f53=f0 // F
  707. setf.s f54=r0 // M2
  708. setf.s f55=r0 // M3
  709. mov f56=f0 // F
  710. ldfps f57,f58=[sp] // M0
  711. ldfps f59,f60=[sp] // M1
  712. mov f61=f0 // F
  713. setf.s f62=r0 // M2
  714. setf.s f63=r0 // M3
  715. mov f64=f0 // F
  716. ldfps f65,f66=[sp] // M0
  717. ldfps f67,f68=[sp] // M1
  718. mov f69=f0 // F
  719. setf.s f70=r0 // M2
  720. setf.s f71=r0 // M3
  721. mov f72=f0 // F
  722. ldfps f73,f74=[sp] // M0
  723. ldfps f75,f76=[sp] // M1
  724. mov f77=f0 // F
  725. setf.s f78=r0 // M2
  726. setf.s f79=r0 // M3
  727. mov f80=f0 // F
  728. ldfps f81,f82=[sp] // M0
  729. ldfps f83,f84=[sp] // M1
  730. mov f85=f0 // F
  731. setf.s f86=r0 // M2
  732. setf.s f87=r0 // M3
  733. mov f88=f0 // F
  734. /*
  735. * When the instructions are cached, it would be faster to initialize
  736. * the remaining registers with simply mov instructions (F-unit).
  737. * This gets the time down to ~29 cycles. However, this would use up
  738. * 33 bundles, whereas continuing with the above pattern yields
  739. * 10 bundles and ~30 cycles.
  740. */
  741. ldfps f89,f90=[sp] // M0
  742. ldfps f91,f92=[sp] // M1
  743. mov f93=f0 // F
  744. setf.s f94=r0 // M2
  745. setf.s f95=r0 // M3
  746. mov f96=f0 // F
  747. ldfps f97,f98=[sp] // M0
  748. ldfps f99,f100=[sp] // M1
  749. mov f101=f0 // F
  750. setf.s f102=r0 // M2
  751. setf.s f103=r0 // M3
  752. mov f104=f0 // F
  753. ldfps f105,f106=[sp] // M0
  754. ldfps f107,f108=[sp] // M1
  755. mov f109=f0 // F
  756. setf.s f110=r0 // M2
  757. setf.s f111=r0 // M3
  758. mov f112=f0 // F
  759. ldfps f113,f114=[sp] // M0
  760. ldfps f115,f116=[sp] // M1
  761. mov f117=f0 // F
  762. setf.s f118=r0 // M2
  763. setf.s f119=r0 // M3
  764. mov f120=f0 // F
  765. ldfps f121,f122=[sp] // M0
  766. ldfps f123,f124=[sp] // M1
  767. mov f125=f0 // F
  768. setf.s f126=r0 // M2
  769. setf.s f127=r0 // M3
  770. br.ret.sptk.many rp // F
  771. END(__ia64_init_fpu)
  772. /*
  773. * Switch execution mode from virtual to physical
  774. *
  775. * Inputs:
  776. * r16 = new psr to establish
  777. * Output:
  778. * r19 = old virtual address of ar.bsp
  779. * r20 = old virtual address of sp
  780. *
  781. * Note: RSE must already be in enforced lazy mode
  782. */
  783. GLOBAL_ENTRY(ia64_switch_mode_phys)
  784. {
  785. rsm psr.i | psr.ic // disable interrupts and interrupt collection
  786. mov r15=ip
  787. }
  788. ;;
  789. {
  790. flushrs // must be first insn in group
  791. srlz.i
  792. }
  793. ;;
  794. mov cr.ipsr=r16 // set new PSR
  795. add r3=1f-ia64_switch_mode_phys,r15
  796. mov r19=ar.bsp
  797. mov r20=sp
  798. mov r14=rp // get return address into a general register
  799. ;;
  800. // going to physical mode, use tpa to translate virt->phys
  801. tpa r17=r19
  802. tpa r3=r3
  803. tpa sp=sp
  804. tpa r14=r14
  805. ;;
  806. mov r18=ar.rnat // save ar.rnat
  807. mov ar.bspstore=r17 // this steps on ar.rnat
  808. mov cr.iip=r3
  809. mov cr.ifs=r0
  810. ;;
  811. mov ar.rnat=r18 // restore ar.rnat
  812. rfi // must be last insn in group
  813. ;;
  814. 1: mov rp=r14
  815. br.ret.sptk.many rp
  816. END(ia64_switch_mode_phys)
  817. /*
  818. * Switch execution mode from physical to virtual
  819. *
  820. * Inputs:
  821. * r16 = new psr to establish
  822. * r19 = new bspstore to establish
  823. * r20 = new sp to establish
  824. *
  825. * Note: RSE must already be in enforced lazy mode
  826. */
  827. GLOBAL_ENTRY(ia64_switch_mode_virt)
  828. {
  829. rsm psr.i | psr.ic // disable interrupts and interrupt collection
  830. mov r15=ip
  831. }
  832. ;;
  833. {
  834. flushrs // must be first insn in group
  835. srlz.i
  836. }
  837. ;;
  838. mov cr.ipsr=r16 // set new PSR
  839. add r3=1f-ia64_switch_mode_virt,r15
  840. mov r14=rp // get return address into a general register
  841. ;;
  842. // going to virtual
  843. // - for code addresses, set upper bits of addr to KERNEL_START
  844. // - for stack addresses, copy from input argument
  845. movl r18=KERNEL_START
  846. dep r3=0,r3,KERNEL_TR_PAGE_SHIFT,64-KERNEL_TR_PAGE_SHIFT
  847. dep r14=0,r14,KERNEL_TR_PAGE_SHIFT,64-KERNEL_TR_PAGE_SHIFT
  848. mov sp=r20
  849. ;;
  850. or r3=r3,r18
  851. or r14=r14,r18
  852. ;;
  853. mov r18=ar.rnat // save ar.rnat
  854. mov ar.bspstore=r19 // this steps on ar.rnat
  855. mov cr.iip=r3
  856. mov cr.ifs=r0
  857. ;;
  858. mov ar.rnat=r18 // restore ar.rnat
  859. rfi // must be last insn in group
  860. ;;
  861. 1: mov rp=r14
  862. br.ret.sptk.many rp
  863. END(ia64_switch_mode_virt)
  864. GLOBAL_ENTRY(ia64_delay_loop)
  865. .prologue
  866. { nop 0 // work around GAS unwind info generation bug...
  867. .save ar.lc,r2
  868. mov r2=ar.lc
  869. .body
  870. ;;
  871. mov ar.lc=r32
  872. }
  873. ;;
  874. // force loop to be 32-byte aligned (GAS bug means we cannot use .align
  875. // inside function body without corrupting unwind info).
  876. { nop 0 }
  877. 1: br.cloop.sptk.few 1b
  878. ;;
  879. mov ar.lc=r2
  880. br.ret.sptk.many rp
  881. END(ia64_delay_loop)
  882. /*
  883. * Return a CPU-local timestamp in nano-seconds. This timestamp is
  884. * NOT synchronized across CPUs its return value must never be
  885. * compared against the values returned on another CPU. The usage in
  886. * kernel/sched.c ensures that.
  887. *
  888. * The return-value of sched_clock() is NOT supposed to wrap-around.
  889. * If it did, it would cause some scheduling hiccups (at the worst).
  890. * Fortunately, with a 64-bit cycle-counter ticking at 100GHz, even
  891. * that would happen only once every 5+ years.
  892. *
  893. * The code below basically calculates:
  894. *
  895. * (ia64_get_itc() * local_cpu_data->nsec_per_cyc) >> IA64_NSEC_PER_CYC_SHIFT
  896. *
  897. * except that the multiplication and the shift are done with 128-bit
  898. * intermediate precision so that we can produce a full 64-bit result.
  899. */
  900. GLOBAL_ENTRY(sched_clock)
  901. addl r8=THIS_CPU(cpu_info) + IA64_CPUINFO_NSEC_PER_CYC_OFFSET,r0
  902. mov.m r9=ar.itc // fetch cycle-counter (35 cyc)
  903. ;;
  904. ldf8 f8=[r8]
  905. ;;
  906. setf.sig f9=r9 // certain to stall, so issue it _after_ ldf8...
  907. ;;
  908. xmpy.lu f10=f9,f8 // calculate low 64 bits of 128-bit product (4 cyc)
  909. xmpy.hu f11=f9,f8 // calculate high 64 bits of 128-bit product
  910. ;;
  911. getf.sig r8=f10 // (5 cyc)
  912. getf.sig r9=f11
  913. ;;
  914. shrp r8=r9,r8,IA64_NSEC_PER_CYC_SHIFT
  915. br.ret.sptk.many rp
  916. END(sched_clock)
  917. GLOBAL_ENTRY(start_kernel_thread)
  918. .prologue
  919. .save rp, r0 // this is the end of the call-chain
  920. .body
  921. alloc r2 = ar.pfs, 0, 0, 2, 0
  922. mov out0 = r9
  923. mov out1 = r11;;
  924. br.call.sptk.many rp = kernel_thread_helper;;
  925. mov out0 = r8
  926. br.call.sptk.many rp = sys_exit;;
  927. 1: br.sptk.few 1b // not reached
  928. END(start_kernel_thread)
  929. #ifdef CONFIG_IA64_BRL_EMU
  930. /*
  931. * Assembly routines used by brl_emu.c to set preserved register state.
  932. */
  933. #define SET_REG(reg) \
  934. GLOBAL_ENTRY(ia64_set_##reg); \
  935. alloc r16=ar.pfs,1,0,0,0; \
  936. mov reg=r32; \
  937. ;; \
  938. br.ret.sptk.many rp; \
  939. END(ia64_set_##reg)
  940. SET_REG(b1);
  941. SET_REG(b2);
  942. SET_REG(b3);
  943. SET_REG(b4);
  944. SET_REG(b5);
  945. #endif /* CONFIG_IA64_BRL_EMU */
  946. #ifdef CONFIG_SMP
  947. /*
  948. * This routine handles spinlock contention. It uses a non-standard calling
  949. * convention to avoid converting leaf routines into interior routines. Because
  950. * of this special convention, there are several restrictions:
  951. *
  952. * - do not use gp relative variables, this code is called from the kernel
  953. * and from modules, r1 is undefined.
  954. * - do not use stacked registers, the caller owns them.
  955. * - do not use the scratch stack space, the caller owns it.
  956. * - do not use any registers other than the ones listed below
  957. *
  958. * Inputs:
  959. * ar.pfs - saved CFM of caller
  960. * ar.ccv - 0 (and available for use)
  961. * r27 - flags from spin_lock_irqsave or 0. Must be preserved.
  962. * r28 - available for use.
  963. * r29 - available for use.
  964. * r30 - available for use.
  965. * r31 - address of lock, available for use.
  966. * b6 - return address
  967. * p14 - available for use.
  968. * p15 - used to track flag status.
  969. *
  970. * If you patch this code to use more registers, do not forget to update
  971. * the clobber lists for spin_lock() in include/asm-ia64/spinlock.h.
  972. */
  973. #if (__GNUC__ == 3 && __GNUC_MINOR__ < 3)
  974. GLOBAL_ENTRY(ia64_spinlock_contention_pre3_4)
  975. .prologue
  976. .save ar.pfs, r0 // this code effectively has a zero frame size
  977. .save rp, r28
  978. .body
  979. nop 0
  980. tbit.nz p15,p0=r27,IA64_PSR_I_BIT
  981. .restore sp // pop existing prologue after next insn
  982. mov b6 = r28
  983. .prologue
  984. .save ar.pfs, r0
  985. .altrp b6
  986. .body
  987. ;;
  988. (p15) ssm psr.i // reenable interrupts if they were on
  989. // DavidM says that srlz.d is slow and is not required in this case
  990. .wait:
  991. // exponential backoff, kdb, lockmeter etc. go in here
  992. hint @pause
  993. ld4 r30=[r31] // don't use ld4.bias; if it's contended, we won't write the word
  994. nop 0
  995. ;;
  996. cmp4.ne p14,p0=r30,r0
  997. (p14) br.cond.sptk.few .wait
  998. (p15) rsm psr.i // disable interrupts if we reenabled them
  999. br.cond.sptk.few b6 // lock is now free, try to acquire
  1000. .global ia64_spinlock_contention_pre3_4_end // for kernprof
  1001. ia64_spinlock_contention_pre3_4_end:
  1002. END(ia64_spinlock_contention_pre3_4)
  1003. #else
  1004. GLOBAL_ENTRY(ia64_spinlock_contention)
  1005. .prologue
  1006. .altrp b6
  1007. .body
  1008. tbit.nz p15,p0=r27,IA64_PSR_I_BIT
  1009. ;;
  1010. .wait:
  1011. (p15) ssm psr.i // reenable interrupts if they were on
  1012. // DavidM says that srlz.d is slow and is not required in this case
  1013. .wait2:
  1014. // exponential backoff, kdb, lockmeter etc. go in here
  1015. hint @pause
  1016. ld4 r30=[r31] // don't use ld4.bias; if it's contended, we won't write the word
  1017. ;;
  1018. cmp4.ne p14,p0=r30,r0
  1019. mov r30 = 1
  1020. (p14) br.cond.sptk.few .wait2
  1021. (p15) rsm psr.i // disable interrupts if we reenabled them
  1022. ;;
  1023. cmpxchg4.acq r30=[r31], r30, ar.ccv
  1024. ;;
  1025. cmp4.ne p14,p0=r0,r30
  1026. (p14) br.cond.sptk.few .wait
  1027. br.ret.sptk.many b6 // lock is now taken
  1028. END(ia64_spinlock_contention)
  1029. #endif
  1030. #ifdef CONFIG_HOTPLUG_CPU
  1031. GLOBAL_ENTRY(ia64_jump_to_sal)
  1032. alloc r16=ar.pfs,1,0,0,0;;
  1033. rsm psr.i | psr.ic
  1034. {
  1035. flushrs
  1036. srlz.i
  1037. }
  1038. tpa r25=in0
  1039. movl r18=tlb_purge_done;;
  1040. DATA_VA_TO_PA(r18);;
  1041. mov b1=r18 // Return location
  1042. movl r18=ia64_do_tlb_purge;;
  1043. DATA_VA_TO_PA(r18);;
  1044. mov b2=r18 // doing tlb_flush work
  1045. mov ar.rsc=0 // Put RSE in enforced lazy, LE mode
  1046. movl r17=1f;;
  1047. DATA_VA_TO_PA(r17);;
  1048. mov cr.iip=r17
  1049. movl r16=SAL_PSR_BITS_TO_SET;;
  1050. mov cr.ipsr=r16
  1051. mov cr.ifs=r0;;
  1052. rfi;;
  1053. 1:
  1054. /*
  1055. * Invalidate all TLB data/inst
  1056. */
  1057. br.sptk.many b2;; // jump to tlb purge code
  1058. tlb_purge_done:
  1059. RESTORE_REGION_REGS(r25, r17,r18,r19);;
  1060. RESTORE_REG(b0, r25, r17);;
  1061. RESTORE_REG(b1, r25, r17);;
  1062. RESTORE_REG(b2, r25, r17);;
  1063. RESTORE_REG(b3, r25, r17);;
  1064. RESTORE_REG(b4, r25, r17);;
  1065. RESTORE_REG(b5, r25, r17);;
  1066. ld8 r1=[r25],0x08;;
  1067. ld8 r12=[r25],0x08;;
  1068. ld8 r13=[r25],0x08;;
  1069. RESTORE_REG(ar.fpsr, r25, r17);;
  1070. RESTORE_REG(ar.pfs, r25, r17);;
  1071. RESTORE_REG(ar.rnat, r25, r17);;
  1072. RESTORE_REG(ar.unat, r25, r17);;
  1073. RESTORE_REG(ar.bspstore, r25, r17);;
  1074. RESTORE_REG(cr.dcr, r25, r17);;
  1075. RESTORE_REG(cr.iva, r25, r17);;
  1076. RESTORE_REG(cr.pta, r25, r17);;
  1077. RESTORE_REG(cr.itv, r25, r17);;
  1078. RESTORE_REG(cr.pmv, r25, r17);;
  1079. RESTORE_REG(cr.cmcv, r25, r17);;
  1080. RESTORE_REG(cr.lrr0, r25, r17);;
  1081. RESTORE_REG(cr.lrr1, r25, r17);;
  1082. ld8 r4=[r25],0x08;;
  1083. ld8 r5=[r25],0x08;;
  1084. ld8 r6=[r25],0x08;;
  1085. ld8 r7=[r25],0x08;;
  1086. ld8 r17=[r25],0x08;;
  1087. mov pr=r17,-1;;
  1088. RESTORE_REG(ar.lc, r25, r17);;
  1089. /*
  1090. * Now Restore floating point regs
  1091. */
  1092. ldf.fill.nta f2=[r25],16;;
  1093. ldf.fill.nta f3=[r25],16;;
  1094. ldf.fill.nta f4=[r25],16;;
  1095. ldf.fill.nta f5=[r25],16;;
  1096. ldf.fill.nta f16=[r25],16;;
  1097. ldf.fill.nta f17=[r25],16;;
  1098. ldf.fill.nta f18=[r25],16;;
  1099. ldf.fill.nta f19=[r25],16;;
  1100. ldf.fill.nta f20=[r25],16;;
  1101. ldf.fill.nta f21=[r25],16;;
  1102. ldf.fill.nta f22=[r25],16;;
  1103. ldf.fill.nta f23=[r25],16;;
  1104. ldf.fill.nta f24=[r25],16;;
  1105. ldf.fill.nta f25=[r25],16;;
  1106. ldf.fill.nta f26=[r25],16;;
  1107. ldf.fill.nta f27=[r25],16;;
  1108. ldf.fill.nta f28=[r25],16;;
  1109. ldf.fill.nta f29=[r25],16;;
  1110. ldf.fill.nta f30=[r25],16;;
  1111. ldf.fill.nta f31=[r25],16;;
  1112. /*
  1113. * Now that we have done all the register restores
  1114. * we are now ready for the big DIVE to SAL Land
  1115. */
  1116. ssm psr.ic;;
  1117. srlz.d;;
  1118. br.ret.sptk.many b0;;
  1119. END(ia64_jump_to_sal)
  1120. #endif /* CONFIG_HOTPLUG_CPU */
  1121. #endif /* CONFIG_SMP */