vfpmodule.c 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308
  1. /*
  2. * linux/arch/arm/vfp/vfpmodule.c
  3. *
  4. * Copyright (C) 2004 ARM Limited.
  5. * Written by Deep Blue Solutions Limited.
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/types.h>
  13. #include <linux/kernel.h>
  14. #include <linux/signal.h>
  15. #include <linux/sched.h>
  16. #include <linux/init.h>
  17. #include <asm/thread_notify.h>
  18. #include <asm/vfp.h>
  19. #include "vfpinstr.h"
  20. #include "vfp.h"
  21. /*
  22. * Our undef handlers (in entry.S)
  23. */
  24. void vfp_testing_entry(void);
  25. void vfp_support_entry(void);
  26. void (*vfp_vector)(void) = vfp_testing_entry;
  27. union vfp_state *last_VFP_context;
  28. /*
  29. * Dual-use variable.
  30. * Used in startup: set to non-zero if VFP checks fail
  31. * After startup, holds VFP architecture
  32. */
  33. unsigned int VFP_arch;
  34. static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
  35. {
  36. struct thread_info *thread = v;
  37. union vfp_state *vfp = &thread->vfpstate;
  38. switch (cmd) {
  39. case THREAD_NOTIFY_FLUSH:
  40. /*
  41. * Per-thread VFP initialisation.
  42. */
  43. memset(vfp, 0, sizeof(union vfp_state));
  44. vfp->hard.fpexc = FPEXC_ENABLE;
  45. vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
  46. /*
  47. * Disable VFP to ensure we initialise it first.
  48. */
  49. fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_ENABLE);
  50. /*
  51. * FALLTHROUGH: Ensure we don't try to overwrite our newly
  52. * initialised state information on the first fault.
  53. */
  54. case THREAD_NOTIFY_RELEASE:
  55. /*
  56. * Per-thread VFP cleanup.
  57. */
  58. if (last_VFP_context == vfp)
  59. last_VFP_context = NULL;
  60. break;
  61. case THREAD_NOTIFY_SWITCH:
  62. /*
  63. * Always disable VFP so we can lazily save/restore the
  64. * old state.
  65. */
  66. fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_ENABLE);
  67. break;
  68. }
  69. return NOTIFY_DONE;
  70. }
  71. static struct notifier_block vfp_notifier_block = {
  72. .notifier_call = vfp_notifier,
  73. };
  74. /*
  75. * Raise a SIGFPE for the current process.
  76. * sicode describes the signal being raised.
  77. */
  78. void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
  79. {
  80. siginfo_t info;
  81. memset(&info, 0, sizeof(info));
  82. info.si_signo = SIGFPE;
  83. info.si_code = sicode;
  84. info.si_addr = (void *)(instruction_pointer(regs) - 4);
  85. /*
  86. * This is the same as NWFPE, because it's not clear what
  87. * this is used for
  88. */
  89. current->thread.error_code = 0;
  90. current->thread.trap_no = 6;
  91. send_sig_info(SIGFPE, &info, current);
  92. }
  93. static void vfp_panic(char *reason)
  94. {
  95. int i;
  96. printk(KERN_ERR "VFP: Error: %s\n", reason);
  97. printk(KERN_ERR "VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
  98. fmrx(FPEXC), fmrx(FPSCR), fmrx(FPINST));
  99. for (i = 0; i < 32; i += 2)
  100. printk(KERN_ERR "VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
  101. i, vfp_get_float(i), i+1, vfp_get_float(i+1));
  102. }
  103. /*
  104. * Process bitmask of exception conditions.
  105. */
  106. static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
  107. {
  108. int si_code = 0;
  109. pr_debug("VFP: raising exceptions %08x\n", exceptions);
  110. if (exceptions == VFP_EXCEPTION_ERROR) {
  111. vfp_panic("unhandled bounce");
  112. vfp_raise_sigfpe(0, regs);
  113. return;
  114. }
  115. /*
  116. * If any of the status flags are set, update the FPSCR.
  117. * Comparison instructions always return at least one of
  118. * these flags set.
  119. */
  120. if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
  121. fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
  122. fpscr |= exceptions;
  123. fmxr(FPSCR, fpscr);
  124. #define RAISE(stat,en,sig) \
  125. if (exceptions & stat && fpscr & en) \
  126. si_code = sig;
  127. /*
  128. * These are arranged in priority order, least to highest.
  129. */
  130. RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
  131. RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
  132. RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
  133. RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
  134. if (si_code)
  135. vfp_raise_sigfpe(si_code, regs);
  136. }
  137. /*
  138. * Emulate a VFP instruction.
  139. */
  140. static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
  141. {
  142. u32 exceptions = VFP_EXCEPTION_ERROR;
  143. pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
  144. if (INST_CPRTDO(inst)) {
  145. if (!INST_CPRT(inst)) {
  146. /*
  147. * CPDO
  148. */
  149. if (vfp_single(inst)) {
  150. exceptions = vfp_single_cpdo(inst, fpscr);
  151. } else {
  152. exceptions = vfp_double_cpdo(inst, fpscr);
  153. }
  154. } else {
  155. /*
  156. * A CPRT instruction can not appear in FPINST2, nor
  157. * can it cause an exception. Therefore, we do not
  158. * have to emulate it.
  159. */
  160. }
  161. } else {
  162. /*
  163. * A CPDT instruction can not appear in FPINST2, nor can
  164. * it cause an exception. Therefore, we do not have to
  165. * emulate it.
  166. */
  167. }
  168. return exceptions & ~VFP_NAN_FLAG;
  169. }
  170. /*
  171. * Package up a bounce condition.
  172. */
  173. void VFP9_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
  174. {
  175. u32 fpscr, orig_fpscr, exceptions, inst;
  176. pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
  177. /*
  178. * Enable access to the VFP so we can handle the bounce.
  179. */
  180. fmxr(FPEXC, fpexc & ~(FPEXC_EXCEPTION|FPEXC_INV|FPEXC_UFC|FPEXC_IOC));
  181. orig_fpscr = fpscr = fmrx(FPSCR);
  182. /*
  183. * If we are running with inexact exceptions enabled, we need to
  184. * emulate the trigger instruction. Note that as we're emulating
  185. * the trigger instruction, we need to increment PC.
  186. */
  187. if (fpscr & FPSCR_IXE) {
  188. regs->ARM_pc += 4;
  189. goto emulate;
  190. }
  191. barrier();
  192. /*
  193. * Modify fpscr to indicate the number of iterations remaining
  194. */
  195. if (fpexc & FPEXC_EXCEPTION) {
  196. u32 len;
  197. len = fpexc + (1 << FPEXC_LENGTH_BIT);
  198. fpscr &= ~FPSCR_LENGTH_MASK;
  199. fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
  200. }
  201. /*
  202. * Handle the first FP instruction. We used to take note of the
  203. * FPEXC bounce reason, but this appears to be unreliable.
  204. * Emulate the bounced instruction instead.
  205. */
  206. inst = fmrx(FPINST);
  207. exceptions = vfp_emulate_instruction(inst, fpscr, regs);
  208. if (exceptions)
  209. vfp_raise_exceptions(exceptions, inst, orig_fpscr, regs);
  210. /*
  211. * If there isn't a second FP instruction, exit now.
  212. */
  213. if (!(fpexc & FPEXC_FPV2))
  214. return;
  215. /*
  216. * The barrier() here prevents fpinst2 being read
  217. * before the condition above.
  218. */
  219. barrier();
  220. trigger = fmrx(FPINST2);
  221. orig_fpscr = fpscr = fmrx(FPSCR);
  222. emulate:
  223. exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
  224. if (exceptions)
  225. vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
  226. }
  227. /*
  228. * VFP support code initialisation.
  229. */
  230. static int __init vfp_init(void)
  231. {
  232. unsigned int vfpsid;
  233. /*
  234. * First check that there is a VFP that we can use.
  235. * The handler is already setup to just log calls, so
  236. * we just need to read the VFPSID register.
  237. */
  238. vfpsid = fmrx(FPSID);
  239. printk(KERN_INFO "VFP support v0.3: ");
  240. if (VFP_arch) {
  241. printk("not present\n");
  242. } else if (vfpsid & FPSID_NODOUBLE) {
  243. printk("no double precision support\n");
  244. } else {
  245. VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT; /* Extract the architecture version */
  246. printk("implementor %02x architecture %d part %02x variant %x rev %x\n",
  247. (vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
  248. (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT,
  249. (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
  250. (vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
  251. (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
  252. vfp_vector = vfp_support_entry;
  253. thread_register_notifier(&vfp_notifier_block);
  254. }
  255. return 0;
  256. }
  257. late_initcall(vfp_init);