clock.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807
  1. //kernel/linux-omap-fsample/arch/arm/mach-omap1/clock.c#2 - edit change 3808 (text)
  2. /*
  3. * linux/arch/arm/mach-omap1/clock.c
  4. *
  5. * Copyright (C) 2004 - 2005 Nokia corporation
  6. * Written by Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com>
  7. *
  8. * Modified to use omap shared clock framework by
  9. * Tony Lindgren <tony@atomide.com>
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License version 2 as
  13. * published by the Free Software Foundation.
  14. */
  15. #include <linux/module.h>
  16. #include <linux/kernel.h>
  17. #include <linux/list.h>
  18. #include <linux/errno.h>
  19. #include <linux/err.h>
  20. #include <linux/clk.h>
  21. #include <asm/io.h>
  22. #include <asm/arch/cpu.h>
  23. #include <asm/arch/usb.h>
  24. #include <asm/arch/clock.h>
  25. #include <asm/arch/sram.h>
  26. #include "clock.h"
  27. __u32 arm_idlect1_mask;
  28. /*-------------------------------------------------------------------------
  29. * Omap1 specific clock functions
  30. *-------------------------------------------------------------------------*/
  31. static void omap1_watchdog_recalc(struct clk * clk)
  32. {
  33. clk->rate = clk->parent->rate / 14;
  34. }
  35. static void omap1_uart_recalc(struct clk * clk)
  36. {
  37. unsigned int val = omap_readl(clk->enable_reg);
  38. if (val & clk->enable_bit)
  39. clk->rate = 48000000;
  40. else
  41. clk->rate = 12000000;
  42. }
  43. static int omap1_clk_enable_dsp_domain(struct clk *clk)
  44. {
  45. int retval;
  46. retval = omap1_clk_enable(&api_ck.clk);
  47. if (!retval) {
  48. retval = omap1_clk_enable_generic(clk);
  49. omap1_clk_disable(&api_ck.clk);
  50. }
  51. return retval;
  52. }
  53. static void omap1_clk_disable_dsp_domain(struct clk *clk)
  54. {
  55. if (omap1_clk_enable(&api_ck.clk) == 0) {
  56. omap1_clk_disable_generic(clk);
  57. omap1_clk_disable(&api_ck.clk);
  58. }
  59. }
  60. static int omap1_clk_enable_uart_functional(struct clk *clk)
  61. {
  62. int ret;
  63. struct uart_clk *uclk;
  64. ret = omap1_clk_enable_generic(clk);
  65. if (ret == 0) {
  66. /* Set smart idle acknowledgement mode */
  67. uclk = (struct uart_clk *)clk;
  68. omap_writeb((omap_readb(uclk->sysc_addr) & ~0x10) | 8,
  69. uclk->sysc_addr);
  70. }
  71. return ret;
  72. }
  73. static void omap1_clk_disable_uart_functional(struct clk *clk)
  74. {
  75. struct uart_clk *uclk;
  76. /* Set force idle acknowledgement mode */
  77. uclk = (struct uart_clk *)clk;
  78. omap_writeb((omap_readb(uclk->sysc_addr) & ~0x18), uclk->sysc_addr);
  79. omap1_clk_disable_generic(clk);
  80. }
  81. static void omap1_clk_allow_idle(struct clk *clk)
  82. {
  83. struct arm_idlect1_clk * iclk = (struct arm_idlect1_clk *)clk;
  84. if (!(clk->flags & CLOCK_IDLE_CONTROL))
  85. return;
  86. if (iclk->no_idle_count > 0 && !(--iclk->no_idle_count))
  87. arm_idlect1_mask |= 1 << iclk->idlect_shift;
  88. }
  89. static void omap1_clk_deny_idle(struct clk *clk)
  90. {
  91. struct arm_idlect1_clk * iclk = (struct arm_idlect1_clk *)clk;
  92. if (!(clk->flags & CLOCK_IDLE_CONTROL))
  93. return;
  94. if (iclk->no_idle_count++ == 0)
  95. arm_idlect1_mask &= ~(1 << iclk->idlect_shift);
  96. }
  97. static __u16 verify_ckctl_value(__u16 newval)
  98. {
  99. /* This function checks for following limitations set
  100. * by the hardware (all conditions must be true):
  101. * DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2
  102. * ARM_CK >= TC_CK
  103. * DSP_CK >= TC_CK
  104. * DSPMMU_CK >= TC_CK
  105. *
  106. * In addition following rules are enforced:
  107. * LCD_CK <= TC_CK
  108. * ARMPER_CK <= TC_CK
  109. *
  110. * However, maximum frequencies are not checked for!
  111. */
  112. __u8 per_exp;
  113. __u8 lcd_exp;
  114. __u8 arm_exp;
  115. __u8 dsp_exp;
  116. __u8 tc_exp;
  117. __u8 dspmmu_exp;
  118. per_exp = (newval >> CKCTL_PERDIV_OFFSET) & 3;
  119. lcd_exp = (newval >> CKCTL_LCDDIV_OFFSET) & 3;
  120. arm_exp = (newval >> CKCTL_ARMDIV_OFFSET) & 3;
  121. dsp_exp = (newval >> CKCTL_DSPDIV_OFFSET) & 3;
  122. tc_exp = (newval >> CKCTL_TCDIV_OFFSET) & 3;
  123. dspmmu_exp = (newval >> CKCTL_DSPMMUDIV_OFFSET) & 3;
  124. if (dspmmu_exp < dsp_exp)
  125. dspmmu_exp = dsp_exp;
  126. if (dspmmu_exp > dsp_exp+1)
  127. dspmmu_exp = dsp_exp+1;
  128. if (tc_exp < arm_exp)
  129. tc_exp = arm_exp;
  130. if (tc_exp < dspmmu_exp)
  131. tc_exp = dspmmu_exp;
  132. if (tc_exp > lcd_exp)
  133. lcd_exp = tc_exp;
  134. if (tc_exp > per_exp)
  135. per_exp = tc_exp;
  136. newval &= 0xf000;
  137. newval |= per_exp << CKCTL_PERDIV_OFFSET;
  138. newval |= lcd_exp << CKCTL_LCDDIV_OFFSET;
  139. newval |= arm_exp << CKCTL_ARMDIV_OFFSET;
  140. newval |= dsp_exp << CKCTL_DSPDIV_OFFSET;
  141. newval |= tc_exp << CKCTL_TCDIV_OFFSET;
  142. newval |= dspmmu_exp << CKCTL_DSPMMUDIV_OFFSET;
  143. return newval;
  144. }
  145. static int calc_dsor_exp(struct clk *clk, unsigned long rate)
  146. {
  147. /* Note: If target frequency is too low, this function will return 4,
  148. * which is invalid value. Caller must check for this value and act
  149. * accordingly.
  150. *
  151. * Note: This function does not check for following limitations set
  152. * by the hardware (all conditions must be true):
  153. * DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2
  154. * ARM_CK >= TC_CK
  155. * DSP_CK >= TC_CK
  156. * DSPMMU_CK >= TC_CK
  157. */
  158. unsigned long realrate;
  159. struct clk * parent;
  160. unsigned dsor_exp;
  161. if (unlikely(!(clk->flags & RATE_CKCTL)))
  162. return -EINVAL;
  163. parent = clk->parent;
  164. if (unlikely(parent == 0))
  165. return -EIO;
  166. realrate = parent->rate;
  167. for (dsor_exp=0; dsor_exp<4; dsor_exp++) {
  168. if (realrate <= rate)
  169. break;
  170. realrate /= 2;
  171. }
  172. return dsor_exp;
  173. }
  174. static void omap1_ckctl_recalc(struct clk * clk)
  175. {
  176. int dsor;
  177. /* Calculate divisor encoded as 2-bit exponent */
  178. dsor = 1 << (3 & (omap_readw(ARM_CKCTL) >> clk->rate_offset));
  179. if (unlikely(clk->rate == clk->parent->rate / dsor))
  180. return; /* No change, quick exit */
  181. clk->rate = clk->parent->rate / dsor;
  182. if (unlikely(clk->flags & RATE_PROPAGATES))
  183. propagate_rate(clk);
  184. }
  185. static void omap1_ckctl_recalc_dsp_domain(struct clk * clk)
  186. {
  187. int dsor;
  188. /* Calculate divisor encoded as 2-bit exponent
  189. *
  190. * The clock control bits are in DSP domain,
  191. * so api_ck is needed for access.
  192. * Note that DSP_CKCTL virt addr = phys addr, so
  193. * we must use __raw_readw() instead of omap_readw().
  194. */
  195. omap1_clk_enable(&api_ck.clk);
  196. dsor = 1 << (3 & (__raw_readw(DSP_CKCTL) >> clk->rate_offset));
  197. omap1_clk_disable(&api_ck.clk);
  198. if (unlikely(clk->rate == clk->parent->rate / dsor))
  199. return; /* No change, quick exit */
  200. clk->rate = clk->parent->rate / dsor;
  201. if (unlikely(clk->flags & RATE_PROPAGATES))
  202. propagate_rate(clk);
  203. }
  204. /* MPU virtual clock functions */
  205. static int omap1_select_table_rate(struct clk * clk, unsigned long rate)
  206. {
  207. /* Find the highest supported frequency <= rate and switch to it */
  208. struct mpu_rate * ptr;
  209. if (clk != &virtual_ck_mpu)
  210. return -EINVAL;
  211. for (ptr = rate_table; ptr->rate; ptr++) {
  212. if (ptr->xtal != ck_ref.rate)
  213. continue;
  214. /* DPLL1 cannot be reprogrammed without risking system crash */
  215. if (likely(ck_dpll1.rate!=0) && ptr->pll_rate != ck_dpll1.rate)
  216. continue;
  217. /* Can check only after xtal frequency check */
  218. if (ptr->rate <= rate)
  219. break;
  220. }
  221. if (!ptr->rate)
  222. return -EINVAL;
  223. /*
  224. * In most cases we should not need to reprogram DPLL.
  225. * Reprogramming the DPLL is tricky, it must be done from SRAM.
  226. * (on 730, bit 13 must always be 1)
  227. */
  228. if (cpu_is_omap730())
  229. omap_sram_reprogram_clock(ptr->dpllctl_val, ptr->ckctl_val | 0x2000);
  230. else
  231. omap_sram_reprogram_clock(ptr->dpllctl_val, ptr->ckctl_val);
  232. ck_dpll1.rate = ptr->pll_rate;
  233. propagate_rate(&ck_dpll1);
  234. return 0;
  235. }
  236. static int omap1_clk_set_rate_dsp_domain(struct clk *clk, unsigned long rate)
  237. {
  238. int ret = -EINVAL;
  239. int dsor_exp;
  240. __u16 regval;
  241. if (clk->flags & RATE_CKCTL) {
  242. dsor_exp = calc_dsor_exp(clk, rate);
  243. if (dsor_exp > 3)
  244. dsor_exp = -EINVAL;
  245. if (dsor_exp < 0)
  246. return dsor_exp;
  247. regval = __raw_readw(DSP_CKCTL);
  248. regval &= ~(3 << clk->rate_offset);
  249. regval |= dsor_exp << clk->rate_offset;
  250. __raw_writew(regval, DSP_CKCTL);
  251. clk->rate = clk->parent->rate / (1 << dsor_exp);
  252. ret = 0;
  253. }
  254. if (unlikely(ret == 0 && (clk->flags & RATE_PROPAGATES)))
  255. propagate_rate(clk);
  256. return ret;
  257. }
  258. static long omap1_round_to_table_rate(struct clk * clk, unsigned long rate)
  259. {
  260. /* Find the highest supported frequency <= rate */
  261. struct mpu_rate * ptr;
  262. long highest_rate;
  263. if (clk != &virtual_ck_mpu)
  264. return -EINVAL;
  265. highest_rate = -EINVAL;
  266. for (ptr = rate_table; ptr->rate; ptr++) {
  267. if (ptr->xtal != ck_ref.rate)
  268. continue;
  269. highest_rate = ptr->rate;
  270. /* Can check only after xtal frequency check */
  271. if (ptr->rate <= rate)
  272. break;
  273. }
  274. return highest_rate;
  275. }
  276. static unsigned calc_ext_dsor(unsigned long rate)
  277. {
  278. unsigned dsor;
  279. /* MCLK and BCLK divisor selection is not linear:
  280. * freq = 96MHz / dsor
  281. *
  282. * RATIO_SEL range: dsor <-> RATIO_SEL
  283. * 0..6: (RATIO_SEL+2) <-> (dsor-2)
  284. * 6..48: (8+(RATIO_SEL-6)*2) <-> ((dsor-8)/2+6)
  285. * Minimum dsor is 2 and maximum is 96. Odd divisors starting from 9
  286. * can not be used.
  287. */
  288. for (dsor = 2; dsor < 96; ++dsor) {
  289. if ((dsor & 1) && dsor > 8)
  290. continue;
  291. if (rate >= 96000000 / dsor)
  292. break;
  293. }
  294. return dsor;
  295. }
  296. /* Only needed on 1510 */
  297. static int omap1_set_uart_rate(struct clk * clk, unsigned long rate)
  298. {
  299. unsigned int val;
  300. val = omap_readl(clk->enable_reg);
  301. if (rate == 12000000)
  302. val &= ~(1 << clk->enable_bit);
  303. else if (rate == 48000000)
  304. val |= (1 << clk->enable_bit);
  305. else
  306. return -EINVAL;
  307. omap_writel(val, clk->enable_reg);
  308. clk->rate = rate;
  309. return 0;
  310. }
  311. /* External clock (MCLK & BCLK) functions */
  312. static int omap1_set_ext_clk_rate(struct clk * clk, unsigned long rate)
  313. {
  314. unsigned dsor;
  315. __u16 ratio_bits;
  316. dsor = calc_ext_dsor(rate);
  317. clk->rate = 96000000 / dsor;
  318. if (dsor > 8)
  319. ratio_bits = ((dsor - 8) / 2 + 6) << 2;
  320. else
  321. ratio_bits = (dsor - 2) << 2;
  322. ratio_bits |= omap_readw(clk->enable_reg) & ~0xfd;
  323. omap_writew(ratio_bits, clk->enable_reg);
  324. return 0;
  325. }
  326. static long omap1_round_ext_clk_rate(struct clk * clk, unsigned long rate)
  327. {
  328. return 96000000 / calc_ext_dsor(rate);
  329. }
  330. static void omap1_init_ext_clk(struct clk * clk)
  331. {
  332. unsigned dsor;
  333. __u16 ratio_bits;
  334. /* Determine current rate and ensure clock is based on 96MHz APLL */
  335. ratio_bits = omap_readw(clk->enable_reg) & ~1;
  336. omap_writew(ratio_bits, clk->enable_reg);
  337. ratio_bits = (ratio_bits & 0xfc) >> 2;
  338. if (ratio_bits > 6)
  339. dsor = (ratio_bits - 6) * 2 + 8;
  340. else
  341. dsor = ratio_bits + 2;
  342. clk-> rate = 96000000 / dsor;
  343. }
  344. static int omap1_clk_enable(struct clk *clk)
  345. {
  346. int ret = 0;
  347. if (clk->usecount++ == 0) {
  348. if (likely(clk->parent)) {
  349. ret = omap1_clk_enable(clk->parent);
  350. if (unlikely(ret != 0)) {
  351. clk->usecount--;
  352. return ret;
  353. }
  354. if (clk->flags & CLOCK_NO_IDLE_PARENT)
  355. if (!cpu_is_omap24xx())
  356. omap1_clk_deny_idle(clk->parent);
  357. }
  358. ret = clk->enable(clk);
  359. if (unlikely(ret != 0) && clk->parent) {
  360. omap1_clk_disable(clk->parent);
  361. clk->usecount--;
  362. }
  363. }
  364. return ret;
  365. }
  366. static void omap1_clk_disable(struct clk *clk)
  367. {
  368. if (clk->usecount > 0 && !(--clk->usecount)) {
  369. clk->disable(clk);
  370. if (likely(clk->parent)) {
  371. omap1_clk_disable(clk->parent);
  372. if (clk->flags & CLOCK_NO_IDLE_PARENT)
  373. if (!cpu_is_omap24xx())
  374. omap1_clk_allow_idle(clk->parent);
  375. }
  376. }
  377. }
  378. static int omap1_clk_enable_generic(struct clk *clk)
  379. {
  380. __u16 regval16;
  381. __u32 regval32;
  382. if (clk->flags & ALWAYS_ENABLED)
  383. return 0;
  384. if (unlikely(clk->enable_reg == 0)) {
  385. printk(KERN_ERR "clock.c: Enable for %s without enable code\n",
  386. clk->name);
  387. return 0;
  388. }
  389. if (clk->flags & ENABLE_REG_32BIT) {
  390. if (clk->flags & VIRTUAL_IO_ADDRESS) {
  391. regval32 = __raw_readl(clk->enable_reg);
  392. regval32 |= (1 << clk->enable_bit);
  393. __raw_writel(regval32, clk->enable_reg);
  394. } else {
  395. regval32 = omap_readl(clk->enable_reg);
  396. regval32 |= (1 << clk->enable_bit);
  397. omap_writel(regval32, clk->enable_reg);
  398. }
  399. } else {
  400. if (clk->flags & VIRTUAL_IO_ADDRESS) {
  401. regval16 = __raw_readw(clk->enable_reg);
  402. regval16 |= (1 << clk->enable_bit);
  403. __raw_writew(regval16, clk->enable_reg);
  404. } else {
  405. regval16 = omap_readw(clk->enable_reg);
  406. regval16 |= (1 << clk->enable_bit);
  407. omap_writew(regval16, clk->enable_reg);
  408. }
  409. }
  410. return 0;
  411. }
  412. static void omap1_clk_disable_generic(struct clk *clk)
  413. {
  414. __u16 regval16;
  415. __u32 regval32;
  416. if (clk->enable_reg == 0)
  417. return;
  418. if (clk->flags & ENABLE_REG_32BIT) {
  419. if (clk->flags & VIRTUAL_IO_ADDRESS) {
  420. regval32 = __raw_readl(clk->enable_reg);
  421. regval32 &= ~(1 << clk->enable_bit);
  422. __raw_writel(regval32, clk->enable_reg);
  423. } else {
  424. regval32 = omap_readl(clk->enable_reg);
  425. regval32 &= ~(1 << clk->enable_bit);
  426. omap_writel(regval32, clk->enable_reg);
  427. }
  428. } else {
  429. if (clk->flags & VIRTUAL_IO_ADDRESS) {
  430. regval16 = __raw_readw(clk->enable_reg);
  431. regval16 &= ~(1 << clk->enable_bit);
  432. __raw_writew(regval16, clk->enable_reg);
  433. } else {
  434. regval16 = omap_readw(clk->enable_reg);
  435. regval16 &= ~(1 << clk->enable_bit);
  436. omap_writew(regval16, clk->enable_reg);
  437. }
  438. }
  439. }
  440. static long omap1_clk_round_rate(struct clk *clk, unsigned long rate)
  441. {
  442. int dsor_exp;
  443. if (clk->flags & RATE_FIXED)
  444. return clk->rate;
  445. if (clk->flags & RATE_CKCTL) {
  446. dsor_exp = calc_dsor_exp(clk, rate);
  447. if (dsor_exp < 0)
  448. return dsor_exp;
  449. if (dsor_exp > 3)
  450. dsor_exp = 3;
  451. return clk->parent->rate / (1 << dsor_exp);
  452. }
  453. if(clk->round_rate != 0)
  454. return clk->round_rate(clk, rate);
  455. return clk->rate;
  456. }
  457. static int omap1_clk_set_rate(struct clk *clk, unsigned long rate)
  458. {
  459. int ret = -EINVAL;
  460. int dsor_exp;
  461. __u16 regval;
  462. if (clk->set_rate)
  463. ret = clk->set_rate(clk, rate);
  464. else if (clk->flags & RATE_CKCTL) {
  465. dsor_exp = calc_dsor_exp(clk, rate);
  466. if (dsor_exp > 3)
  467. dsor_exp = -EINVAL;
  468. if (dsor_exp < 0)
  469. return dsor_exp;
  470. regval = omap_readw(ARM_CKCTL);
  471. regval &= ~(3 << clk->rate_offset);
  472. regval |= dsor_exp << clk->rate_offset;
  473. regval = verify_ckctl_value(regval);
  474. omap_writew(regval, ARM_CKCTL);
  475. clk->rate = clk->parent->rate / (1 << dsor_exp);
  476. ret = 0;
  477. }
  478. if (unlikely(ret == 0 && (clk->flags & RATE_PROPAGATES)))
  479. propagate_rate(clk);
  480. return ret;
  481. }
  482. /*-------------------------------------------------------------------------
  483. * Omap1 clock reset and init functions
  484. *-------------------------------------------------------------------------*/
  485. #ifdef CONFIG_OMAP_RESET_CLOCKS
  486. /*
  487. * Resets some clocks that may be left on from bootloader,
  488. * but leaves serial clocks on. See also omap_late_clk_reset().
  489. */
  490. static inline void omap1_early_clk_reset(void)
  491. {
  492. //omap_writel(0x3 << 29, MOD_CONF_CTRL_0);
  493. }
  494. static int __init omap1_late_clk_reset(void)
  495. {
  496. /* Turn off all unused clocks */
  497. struct clk *p;
  498. __u32 regval32;
  499. /* USB_REQ_EN will be disabled later if necessary (usb_dc_ck) */
  500. regval32 = omap_readw(SOFT_REQ_REG) & (1 << 4);
  501. omap_writew(regval32, SOFT_REQ_REG);
  502. omap_writew(0, SOFT_REQ_REG2);
  503. list_for_each_entry(p, &clocks, node) {
  504. if (p->usecount > 0 || (p->flags & ALWAYS_ENABLED) ||
  505. p->enable_reg == 0)
  506. continue;
  507. /* Clocks in the DSP domain need api_ck. Just assume bootloader
  508. * has not enabled any DSP clocks */
  509. if ((u32)p->enable_reg == DSP_IDLECT2) {
  510. printk(KERN_INFO "Skipping reset check for DSP domain "
  511. "clock \"%s\"\n", p->name);
  512. continue;
  513. }
  514. /* Is the clock already disabled? */
  515. if (p->flags & ENABLE_REG_32BIT) {
  516. if (p->flags & VIRTUAL_IO_ADDRESS)
  517. regval32 = __raw_readl(p->enable_reg);
  518. else
  519. regval32 = omap_readl(p->enable_reg);
  520. } else {
  521. if (p->flags & VIRTUAL_IO_ADDRESS)
  522. regval32 = __raw_readw(p->enable_reg);
  523. else
  524. regval32 = omap_readw(p->enable_reg);
  525. }
  526. if ((regval32 & (1 << p->enable_bit)) == 0)
  527. continue;
  528. /* FIXME: This clock seems to be necessary but no-one
  529. * has asked for its activation. */
  530. if (p == &tc2_ck // FIX: pm.c (SRAM), CCP, Camera
  531. || p == &ck_dpll1out.clk // FIX: SoSSI, SSR
  532. || p == &arm_gpio_ck // FIX: GPIO code for 1510
  533. ) {
  534. printk(KERN_INFO "FIXME: Clock \"%s\" seems unused\n",
  535. p->name);
  536. continue;
  537. }
  538. printk(KERN_INFO "Disabling unused clock \"%s\"... ", p->name);
  539. p->disable(p);
  540. printk(" done\n");
  541. }
  542. return 0;
  543. }
  544. late_initcall(omap1_late_clk_reset);
  545. #else
  546. #define omap1_early_clk_reset() {}
  547. #endif
  548. static struct clk_functions omap1_clk_functions = {
  549. .clk_enable = omap1_clk_enable,
  550. .clk_disable = omap1_clk_disable,
  551. .clk_round_rate = omap1_clk_round_rate,
  552. .clk_set_rate = omap1_clk_set_rate,
  553. };
  554. int __init omap1_clk_init(void)
  555. {
  556. struct clk ** clkp;
  557. const struct omap_clock_config *info;
  558. int crystal_type = 0; /* Default 12 MHz */
  559. omap1_early_clk_reset();
  560. clk_init(&omap1_clk_functions);
  561. /* By default all idlect1 clocks are allowed to idle */
  562. arm_idlect1_mask = ~0;
  563. for (clkp = onchip_clks; clkp < onchip_clks+ARRAY_SIZE(onchip_clks); clkp++) {
  564. if (((*clkp)->flags &CLOCK_IN_OMAP1510) && cpu_is_omap1510()) {
  565. clk_register(*clkp);
  566. continue;
  567. }
  568. if (((*clkp)->flags &CLOCK_IN_OMAP16XX) && cpu_is_omap16xx()) {
  569. clk_register(*clkp);
  570. continue;
  571. }
  572. if (((*clkp)->flags &CLOCK_IN_OMAP730) && cpu_is_omap730()) {
  573. clk_register(*clkp);
  574. continue;
  575. }
  576. if (((*clkp)->flags &CLOCK_IN_OMAP310) && cpu_is_omap310()) {
  577. clk_register(*clkp);
  578. continue;
  579. }
  580. }
  581. info = omap_get_config(OMAP_TAG_CLOCK, struct omap_clock_config);
  582. if (info != NULL) {
  583. if (!cpu_is_omap1510())
  584. crystal_type = info->system_clock_type;
  585. }
  586. #if defined(CONFIG_ARCH_OMAP730)
  587. ck_ref.rate = 13000000;
  588. #elif defined(CONFIG_ARCH_OMAP16XX)
  589. if (crystal_type == 2)
  590. ck_ref.rate = 19200000;
  591. #endif
  592. printk("Clocks: ARM_SYSST: 0x%04x DPLL_CTL: 0x%04x ARM_CKCTL: 0x%04x\n",
  593. omap_readw(ARM_SYSST), omap_readw(DPLL_CTL),
  594. omap_readw(ARM_CKCTL));
  595. /* We want to be in syncronous scalable mode */
  596. omap_writew(0x1000, ARM_SYSST);
  597. #ifdef CONFIG_OMAP_CLOCKS_SET_BY_BOOTLOADER
  598. /* Use values set by bootloader. Determine PLL rate and recalculate
  599. * dependent clocks as if kernel had changed PLL or divisors.
  600. */
  601. {
  602. unsigned pll_ctl_val = omap_readw(DPLL_CTL);
  603. ck_dpll1.rate = ck_ref.rate; /* Base xtal rate */
  604. if (pll_ctl_val & 0x10) {
  605. /* PLL enabled, apply multiplier and divisor */
  606. if (pll_ctl_val & 0xf80)
  607. ck_dpll1.rate *= (pll_ctl_val & 0xf80) >> 7;
  608. ck_dpll1.rate /= ((pll_ctl_val & 0x60) >> 5) + 1;
  609. } else {
  610. /* PLL disabled, apply bypass divisor */
  611. switch (pll_ctl_val & 0xc) {
  612. case 0:
  613. break;
  614. case 0x4:
  615. ck_dpll1.rate /= 2;
  616. break;
  617. default:
  618. ck_dpll1.rate /= 4;
  619. break;
  620. }
  621. }
  622. }
  623. propagate_rate(&ck_dpll1);
  624. #else
  625. /* Find the highest supported frequency and enable it */
  626. if (omap1_select_table_rate(&virtual_ck_mpu, ~0)) {
  627. printk(KERN_ERR "System frequencies not set. Check your config.\n");
  628. /* Guess sane values (60MHz) */
  629. omap_writew(0x2290, DPLL_CTL);
  630. omap_writew(cpu_is_omap730() ? 0x3005 : 0x1005, ARM_CKCTL);
  631. ck_dpll1.rate = 60000000;
  632. propagate_rate(&ck_dpll1);
  633. }
  634. #endif
  635. /* Cache rates for clocks connected to ck_ref (not dpll1) */
  636. propagate_rate(&ck_ref);
  637. printk(KERN_INFO "Clocking rate (xtal/DPLL1/MPU): "
  638. "%ld.%01ld/%ld.%01ld/%ld.%01ld MHz\n",
  639. ck_ref.rate / 1000000, (ck_ref.rate / 100000) % 10,
  640. ck_dpll1.rate / 1000000, (ck_dpll1.rate / 100000) % 10,
  641. arm_ck.rate / 1000000, (arm_ck.rate / 100000) % 10);
  642. #if defined(CONFIG_MACH_OMAP_PERSEUS2) || defined(CONFIG_MACH_OMAP_FSAMPLE)
  643. /* Select slicer output as OMAP input clock */
  644. omap_writew(omap_readw(OMAP730_PCC_UPLD_CTRL) & ~0x1, OMAP730_PCC_UPLD_CTRL);
  645. #endif
  646. /* Turn off DSP and ARM_TIMXO. Make sure ARM_INTHCK is not divided */
  647. /* (on 730, bit 13 must not be cleared) */
  648. if (cpu_is_omap730())
  649. omap_writew(omap_readw(ARM_CKCTL) & 0x2fff, ARM_CKCTL);
  650. else
  651. omap_writew(omap_readw(ARM_CKCTL) & 0x0fff, ARM_CKCTL);
  652. /* Put DSP/MPUI into reset until needed */
  653. omap_writew(0, ARM_RSTCT1);
  654. omap_writew(1, ARM_RSTCT2);
  655. omap_writew(0x400, ARM_IDLECT1);
  656. /*
  657. * According to OMAP5910 Erratum SYS_DMA_1, bit DMACK_REQ (bit 8)
  658. * of the ARM_IDLECT2 register must be set to zero. The power-on
  659. * default value of this bit is one.
  660. */
  661. omap_writew(0x0000, ARM_IDLECT2); /* Turn LCD clock off also */
  662. /*
  663. * Only enable those clocks we will need, let the drivers
  664. * enable other clocks as necessary
  665. */
  666. clk_enable(&armper_ck.clk);
  667. clk_enable(&armxor_ck.clk);
  668. clk_enable(&armtim_ck.clk); /* This should be done by timer code */
  669. if (cpu_is_omap15xx())
  670. clk_enable(&arm_gpio_ck);
  671. return 0;
  672. }