memcontrol.c 146 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625
  1. /* memcontrol.c - Memory Controller
  2. *
  3. * Copyright IBM Corporation, 2007
  4. * Author Balbir Singh <balbir@linux.vnet.ibm.com>
  5. *
  6. * Copyright 2007 OpenVZ SWsoft Inc
  7. * Author: Pavel Emelianov <xemul@openvz.org>
  8. *
  9. * Memory thresholds
  10. * Copyright (C) 2009 Nokia Corporation
  11. * Author: Kirill A. Shutemov
  12. *
  13. * This program is free software; you can redistribute it and/or modify
  14. * it under the terms of the GNU General Public License as published by
  15. * the Free Software Foundation; either version 2 of the License, or
  16. * (at your option) any later version.
  17. *
  18. * This program is distributed in the hope that it will be useful,
  19. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  21. * GNU General Public License for more details.
  22. */
  23. #include <linux/res_counter.h>
  24. #include <linux/memcontrol.h>
  25. #include <linux/cgroup.h>
  26. #include <linux/mm.h>
  27. #include <linux/hugetlb.h>
  28. #include <linux/pagemap.h>
  29. #include <linux/smp.h>
  30. #include <linux/page-flags.h>
  31. #include <linux/backing-dev.h>
  32. #include <linux/bit_spinlock.h>
  33. #include <linux/rcupdate.h>
  34. #include <linux/limits.h>
  35. #include <linux/export.h>
  36. #include <linux/mutex.h>
  37. #include <linux/rbtree.h>
  38. #include <linux/slab.h>
  39. #include <linux/swap.h>
  40. #include <linux/swapops.h>
  41. #include <linux/spinlock.h>
  42. #include <linux/eventfd.h>
  43. #include <linux/sort.h>
  44. #include <linux/fs.h>
  45. #include <linux/seq_file.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/mm_inline.h>
  48. #include <linux/page_cgroup.h>
  49. #include <linux/cpu.h>
  50. #include <linux/oom.h>
  51. #include "internal.h"
  52. #include <net/sock.h>
  53. #include <net/tcp_memcontrol.h>
  54. #include <asm/uaccess.h>
  55. #include <trace/events/vmscan.h>
  56. struct cgroup_subsys mem_cgroup_subsys __read_mostly;
  57. #define MEM_CGROUP_RECLAIM_RETRIES 5
  58. static struct mem_cgroup *root_mem_cgroup __read_mostly;
  59. #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
  60. /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
  61. int do_swap_account __read_mostly;
  62. /* for remember boot option*/
  63. #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
  64. static int really_do_swap_account __initdata = 1;
  65. #else
  66. static int really_do_swap_account __initdata = 0;
  67. #endif
  68. #else
  69. #define do_swap_account 0
  70. #endif
  71. /*
  72. * Statistics for memory cgroup.
  73. */
  74. enum mem_cgroup_stat_index {
  75. /*
  76. * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
  77. */
  78. MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
  79. MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
  80. MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
  81. MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
  82. MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
  83. MEM_CGROUP_STAT_NSTATS,
  84. };
  85. enum mem_cgroup_events_index {
  86. MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
  87. MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
  88. MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
  89. MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
  90. MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
  91. MEM_CGROUP_EVENTS_NSTATS,
  92. };
  93. /*
  94. * Per memcg event counter is incremented at every pagein/pageout. With THP,
  95. * it will be incremated by the number of pages. This counter is used for
  96. * for trigger some periodic events. This is straightforward and better
  97. * than using jiffies etc. to handle periodic memcg event.
  98. */
  99. enum mem_cgroup_events_target {
  100. MEM_CGROUP_TARGET_THRESH,
  101. MEM_CGROUP_TARGET_SOFTLIMIT,
  102. MEM_CGROUP_TARGET_NUMAINFO,
  103. MEM_CGROUP_NTARGETS,
  104. };
  105. #define THRESHOLDS_EVENTS_TARGET 128
  106. #define SOFTLIMIT_EVENTS_TARGET 1024
  107. #define NUMAINFO_EVENTS_TARGET 1024
  108. struct mem_cgroup_stat_cpu {
  109. long count[MEM_CGROUP_STAT_NSTATS];
  110. unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
  111. unsigned long targets[MEM_CGROUP_NTARGETS];
  112. };
  113. struct mem_cgroup_reclaim_iter {
  114. /* css_id of the last scanned hierarchy member */
  115. int position;
  116. /* scan generation, increased every round-trip */
  117. unsigned int generation;
  118. };
  119. /*
  120. * per-zone information in memory controller.
  121. */
  122. struct mem_cgroup_per_zone {
  123. struct lruvec lruvec;
  124. unsigned long lru_size[NR_LRU_LISTS];
  125. struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
  126. struct rb_node tree_node; /* RB tree node */
  127. unsigned long long usage_in_excess;/* Set to the value by which */
  128. /* the soft limit is exceeded*/
  129. bool on_tree;
  130. struct mem_cgroup *memcg; /* Back pointer, we cannot */
  131. /* use container_of */
  132. };
  133. struct mem_cgroup_per_node {
  134. struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
  135. };
  136. struct mem_cgroup_lru_info {
  137. struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
  138. };
  139. /*
  140. * Cgroups above their limits are maintained in a RB-Tree, independent of
  141. * their hierarchy representation
  142. */
  143. struct mem_cgroup_tree_per_zone {
  144. struct rb_root rb_root;
  145. spinlock_t lock;
  146. };
  147. struct mem_cgroup_tree_per_node {
  148. struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
  149. };
  150. struct mem_cgroup_tree {
  151. struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
  152. };
  153. static struct mem_cgroup_tree soft_limit_tree __read_mostly;
  154. struct mem_cgroup_threshold {
  155. struct eventfd_ctx *eventfd;
  156. u64 threshold;
  157. };
  158. /* For threshold */
  159. struct mem_cgroup_threshold_ary {
  160. /* An array index points to threshold just below or equal to usage. */
  161. int current_threshold;
  162. /* Size of entries[] */
  163. unsigned int size;
  164. /* Array of thresholds */
  165. struct mem_cgroup_threshold entries[0];
  166. };
  167. struct mem_cgroup_thresholds {
  168. /* Primary thresholds array */
  169. struct mem_cgroup_threshold_ary *primary;
  170. /*
  171. * Spare threshold array.
  172. * This is needed to make mem_cgroup_unregister_event() "never fail".
  173. * It must be able to store at least primary->size - 1 entries.
  174. */
  175. struct mem_cgroup_threshold_ary *spare;
  176. };
  177. /* for OOM */
  178. struct mem_cgroup_eventfd_list {
  179. struct list_head list;
  180. struct eventfd_ctx *eventfd;
  181. };
  182. static void mem_cgroup_threshold(struct mem_cgroup *memcg);
  183. static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
  184. /*
  185. * The memory controller data structure. The memory controller controls both
  186. * page cache and RSS per cgroup. We would eventually like to provide
  187. * statistics based on the statistics developed by Rik Van Riel for clock-pro,
  188. * to help the administrator determine what knobs to tune.
  189. *
  190. * TODO: Add a water mark for the memory controller. Reclaim will begin when
  191. * we hit the water mark. May be even add a low water mark, such that
  192. * no reclaim occurs from a cgroup at it's low water mark, this is
  193. * a feature that will be implemented much later in the future.
  194. */
  195. struct mem_cgroup {
  196. struct cgroup_subsys_state css;
  197. /*
  198. * the counter to account for memory usage
  199. */
  200. struct res_counter res;
  201. union {
  202. /*
  203. * the counter to account for mem+swap usage.
  204. */
  205. struct res_counter memsw;
  206. /*
  207. * rcu_freeing is used only when freeing struct mem_cgroup,
  208. * so put it into a union to avoid wasting more memory.
  209. * It must be disjoint from the css field. It could be
  210. * in a union with the res field, but res plays a much
  211. * larger part in mem_cgroup life than memsw, and might
  212. * be of interest, even at time of free, when debugging.
  213. * So share rcu_head with the less interesting memsw.
  214. */
  215. struct rcu_head rcu_freeing;
  216. /*
  217. * But when using vfree(), that cannot be done at
  218. * interrupt time, so we must then queue the work.
  219. */
  220. struct work_struct work_freeing;
  221. };
  222. /*
  223. * Per cgroup active and inactive list, similar to the
  224. * per zone LRU lists.
  225. */
  226. struct mem_cgroup_lru_info info;
  227. int last_scanned_node;
  228. #if MAX_NUMNODES > 1
  229. nodemask_t scan_nodes;
  230. atomic_t numainfo_events;
  231. atomic_t numainfo_updating;
  232. #endif
  233. /*
  234. * Should the accounting and control be hierarchical, per subtree?
  235. */
  236. bool use_hierarchy;
  237. bool oom_lock;
  238. atomic_t under_oom;
  239. atomic_t refcnt;
  240. int swappiness;
  241. /* OOM-Killer disable */
  242. int oom_kill_disable;
  243. /* set when res.limit == memsw.limit */
  244. bool memsw_is_minimum;
  245. /* protect arrays of thresholds */
  246. struct mutex thresholds_lock;
  247. /* thresholds for memory usage. RCU-protected */
  248. struct mem_cgroup_thresholds thresholds;
  249. /* thresholds for mem+swap usage. RCU-protected */
  250. struct mem_cgroup_thresholds memsw_thresholds;
  251. /* For oom notifier event fd */
  252. struct list_head oom_notify;
  253. /*
  254. * Should we move charges of a task when a task is moved into this
  255. * mem_cgroup ? And what type of charges should we move ?
  256. */
  257. unsigned long move_charge_at_immigrate;
  258. /*
  259. * set > 0 if pages under this cgroup are moving to other cgroup.
  260. */
  261. atomic_t moving_account;
  262. /* taken only while moving_account > 0 */
  263. spinlock_t move_lock;
  264. /*
  265. * percpu counter.
  266. */
  267. struct mem_cgroup_stat_cpu __percpu *stat;
  268. /*
  269. * used when a cpu is offlined or other synchronizations
  270. * See mem_cgroup_read_stat().
  271. */
  272. struct mem_cgroup_stat_cpu nocpu_base;
  273. spinlock_t pcp_counter_lock;
  274. #ifdef CONFIG_INET
  275. struct tcp_memcontrol tcp_mem;
  276. #endif
  277. };
  278. /* Stuffs for move charges at task migration. */
  279. /*
  280. * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
  281. * left-shifted bitmap of these types.
  282. */
  283. enum move_type {
  284. MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
  285. MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
  286. NR_MOVE_TYPE,
  287. };
  288. /* "mc" and its members are protected by cgroup_mutex */
  289. static struct move_charge_struct {
  290. spinlock_t lock; /* for from, to */
  291. struct mem_cgroup *from;
  292. struct mem_cgroup *to;
  293. unsigned long precharge;
  294. unsigned long moved_charge;
  295. unsigned long moved_swap;
  296. struct task_struct *moving_task; /* a task moving charges */
  297. wait_queue_head_t waitq; /* a waitq for other context */
  298. } mc = {
  299. .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
  300. .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
  301. };
  302. static bool move_anon(void)
  303. {
  304. return test_bit(MOVE_CHARGE_TYPE_ANON,
  305. &mc.to->move_charge_at_immigrate);
  306. }
  307. static bool move_file(void)
  308. {
  309. return test_bit(MOVE_CHARGE_TYPE_FILE,
  310. &mc.to->move_charge_at_immigrate);
  311. }
  312. /*
  313. * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
  314. * limit reclaim to prevent infinite loops, if they ever occur.
  315. */
  316. #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
  317. #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
  318. enum charge_type {
  319. MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
  320. MEM_CGROUP_CHARGE_TYPE_MAPPED,
  321. MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
  322. MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
  323. MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
  324. MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
  325. NR_CHARGE_TYPE,
  326. };
  327. /* for encoding cft->private value on file */
  328. #define _MEM (0)
  329. #define _MEMSWAP (1)
  330. #define _OOM_TYPE (2)
  331. #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
  332. #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
  333. #define MEMFILE_ATTR(val) ((val) & 0xffff)
  334. /* Used for OOM nofiier */
  335. #define OOM_CONTROL (0)
  336. /*
  337. * Reclaim flags for mem_cgroup_hierarchical_reclaim
  338. */
  339. #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
  340. #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
  341. #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
  342. #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
  343. static void mem_cgroup_get(struct mem_cgroup *memcg);
  344. static void mem_cgroup_put(struct mem_cgroup *memcg);
  345. /* Writing them here to avoid exposing memcg's inner layout */
  346. #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
  347. #include <net/sock.h>
  348. #include <net/ip.h>
  349. static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
  350. void sock_update_memcg(struct sock *sk)
  351. {
  352. if (mem_cgroup_sockets_enabled) {
  353. struct mem_cgroup *memcg;
  354. BUG_ON(!sk->sk_prot->proto_cgroup);
  355. /* Socket cloning can throw us here with sk_cgrp already
  356. * filled. It won't however, necessarily happen from
  357. * process context. So the test for root memcg given
  358. * the current task's memcg won't help us in this case.
  359. *
  360. * Respecting the original socket's memcg is a better
  361. * decision in this case.
  362. */
  363. if (sk->sk_cgrp) {
  364. BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
  365. mem_cgroup_get(sk->sk_cgrp->memcg);
  366. return;
  367. }
  368. rcu_read_lock();
  369. memcg = mem_cgroup_from_task(current);
  370. if (!mem_cgroup_is_root(memcg)) {
  371. mem_cgroup_get(memcg);
  372. sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
  373. }
  374. rcu_read_unlock();
  375. }
  376. }
  377. EXPORT_SYMBOL(sock_update_memcg);
  378. void sock_release_memcg(struct sock *sk)
  379. {
  380. if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
  381. struct mem_cgroup *memcg;
  382. WARN_ON(!sk->sk_cgrp->memcg);
  383. memcg = sk->sk_cgrp->memcg;
  384. mem_cgroup_put(memcg);
  385. }
  386. }
  387. #ifdef CONFIG_INET
  388. struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
  389. {
  390. if (!memcg || mem_cgroup_is_root(memcg))
  391. return NULL;
  392. return &memcg->tcp_mem.cg_proto;
  393. }
  394. EXPORT_SYMBOL(tcp_proto_cgroup);
  395. #endif /* CONFIG_INET */
  396. #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
  397. static void drain_all_stock_async(struct mem_cgroup *memcg);
  398. static struct mem_cgroup_per_zone *
  399. mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
  400. {
  401. return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
  402. }
  403. struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
  404. {
  405. return &memcg->css;
  406. }
  407. static struct mem_cgroup_per_zone *
  408. page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
  409. {
  410. int nid = page_to_nid(page);
  411. int zid = page_zonenum(page);
  412. return mem_cgroup_zoneinfo(memcg, nid, zid);
  413. }
  414. static struct mem_cgroup_tree_per_zone *
  415. soft_limit_tree_node_zone(int nid, int zid)
  416. {
  417. return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
  418. }
  419. static struct mem_cgroup_tree_per_zone *
  420. soft_limit_tree_from_page(struct page *page)
  421. {
  422. int nid = page_to_nid(page);
  423. int zid = page_zonenum(page);
  424. return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
  425. }
  426. static void
  427. __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
  428. struct mem_cgroup_per_zone *mz,
  429. struct mem_cgroup_tree_per_zone *mctz,
  430. unsigned long long new_usage_in_excess)
  431. {
  432. struct rb_node **p = &mctz->rb_root.rb_node;
  433. struct rb_node *parent = NULL;
  434. struct mem_cgroup_per_zone *mz_node;
  435. if (mz->on_tree)
  436. return;
  437. mz->usage_in_excess = new_usage_in_excess;
  438. if (!mz->usage_in_excess)
  439. return;
  440. while (*p) {
  441. parent = *p;
  442. mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
  443. tree_node);
  444. if (mz->usage_in_excess < mz_node->usage_in_excess)
  445. p = &(*p)->rb_left;
  446. /*
  447. * We can't avoid mem cgroups that are over their soft
  448. * limit by the same amount
  449. */
  450. else if (mz->usage_in_excess >= mz_node->usage_in_excess)
  451. p = &(*p)->rb_right;
  452. }
  453. rb_link_node(&mz->tree_node, parent, p);
  454. rb_insert_color(&mz->tree_node, &mctz->rb_root);
  455. mz->on_tree = true;
  456. }
  457. static void
  458. __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
  459. struct mem_cgroup_per_zone *mz,
  460. struct mem_cgroup_tree_per_zone *mctz)
  461. {
  462. if (!mz->on_tree)
  463. return;
  464. rb_erase(&mz->tree_node, &mctz->rb_root);
  465. mz->on_tree = false;
  466. }
  467. static void
  468. mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
  469. struct mem_cgroup_per_zone *mz,
  470. struct mem_cgroup_tree_per_zone *mctz)
  471. {
  472. spin_lock(&mctz->lock);
  473. __mem_cgroup_remove_exceeded(memcg, mz, mctz);
  474. spin_unlock(&mctz->lock);
  475. }
  476. static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
  477. {
  478. unsigned long long excess;
  479. struct mem_cgroup_per_zone *mz;
  480. struct mem_cgroup_tree_per_zone *mctz;
  481. int nid = page_to_nid(page);
  482. int zid = page_zonenum(page);
  483. mctz = soft_limit_tree_from_page(page);
  484. /*
  485. * Necessary to update all ancestors when hierarchy is used.
  486. * because their event counter is not touched.
  487. */
  488. for (; memcg; memcg = parent_mem_cgroup(memcg)) {
  489. mz = mem_cgroup_zoneinfo(memcg, nid, zid);
  490. excess = res_counter_soft_limit_excess(&memcg->res);
  491. /*
  492. * We have to update the tree if mz is on RB-tree or
  493. * mem is over its softlimit.
  494. */
  495. if (excess || mz->on_tree) {
  496. spin_lock(&mctz->lock);
  497. /* if on-tree, remove it */
  498. if (mz->on_tree)
  499. __mem_cgroup_remove_exceeded(memcg, mz, mctz);
  500. /*
  501. * Insert again. mz->usage_in_excess will be updated.
  502. * If excess is 0, no tree ops.
  503. */
  504. __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
  505. spin_unlock(&mctz->lock);
  506. }
  507. }
  508. }
  509. static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
  510. {
  511. int node, zone;
  512. struct mem_cgroup_per_zone *mz;
  513. struct mem_cgroup_tree_per_zone *mctz;
  514. for_each_node(node) {
  515. for (zone = 0; zone < MAX_NR_ZONES; zone++) {
  516. mz = mem_cgroup_zoneinfo(memcg, node, zone);
  517. mctz = soft_limit_tree_node_zone(node, zone);
  518. mem_cgroup_remove_exceeded(memcg, mz, mctz);
  519. }
  520. }
  521. }
  522. static struct mem_cgroup_per_zone *
  523. __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
  524. {
  525. struct rb_node *rightmost = NULL;
  526. struct mem_cgroup_per_zone *mz;
  527. retry:
  528. mz = NULL;
  529. rightmost = rb_last(&mctz->rb_root);
  530. if (!rightmost)
  531. goto done; /* Nothing to reclaim from */
  532. mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
  533. /*
  534. * Remove the node now but someone else can add it back,
  535. * we will to add it back at the end of reclaim to its correct
  536. * position in the tree.
  537. */
  538. __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
  539. if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
  540. !css_tryget(&mz->memcg->css))
  541. goto retry;
  542. done:
  543. return mz;
  544. }
  545. static struct mem_cgroup_per_zone *
  546. mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
  547. {
  548. struct mem_cgroup_per_zone *mz;
  549. spin_lock(&mctz->lock);
  550. mz = __mem_cgroup_largest_soft_limit_node(mctz);
  551. spin_unlock(&mctz->lock);
  552. return mz;
  553. }
  554. /*
  555. * Implementation Note: reading percpu statistics for memcg.
  556. *
  557. * Both of vmstat[] and percpu_counter has threshold and do periodic
  558. * synchronization to implement "quick" read. There are trade-off between
  559. * reading cost and precision of value. Then, we may have a chance to implement
  560. * a periodic synchronizion of counter in memcg's counter.
  561. *
  562. * But this _read() function is used for user interface now. The user accounts
  563. * memory usage by memory cgroup and he _always_ requires exact value because
  564. * he accounts memory. Even if we provide quick-and-fuzzy read, we always
  565. * have to visit all online cpus and make sum. So, for now, unnecessary
  566. * synchronization is not implemented. (just implemented for cpu hotplug)
  567. *
  568. * If there are kernel internal actions which can make use of some not-exact
  569. * value, and reading all cpu value can be performance bottleneck in some
  570. * common workload, threashold and synchonization as vmstat[] should be
  571. * implemented.
  572. */
  573. static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
  574. enum mem_cgroup_stat_index idx)
  575. {
  576. long val = 0;
  577. int cpu;
  578. get_online_cpus();
  579. for_each_online_cpu(cpu)
  580. val += per_cpu(memcg->stat->count[idx], cpu);
  581. #ifdef CONFIG_HOTPLUG_CPU
  582. spin_lock(&memcg->pcp_counter_lock);
  583. val += memcg->nocpu_base.count[idx];
  584. spin_unlock(&memcg->pcp_counter_lock);
  585. #endif
  586. put_online_cpus();
  587. return val;
  588. }
  589. static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
  590. bool charge)
  591. {
  592. int val = (charge) ? 1 : -1;
  593. this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
  594. }
  595. static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
  596. enum mem_cgroup_events_index idx)
  597. {
  598. unsigned long val = 0;
  599. int cpu;
  600. for_each_online_cpu(cpu)
  601. val += per_cpu(memcg->stat->events[idx], cpu);
  602. #ifdef CONFIG_HOTPLUG_CPU
  603. spin_lock(&memcg->pcp_counter_lock);
  604. val += memcg->nocpu_base.events[idx];
  605. spin_unlock(&memcg->pcp_counter_lock);
  606. #endif
  607. return val;
  608. }
  609. static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
  610. bool anon, int nr_pages)
  611. {
  612. preempt_disable();
  613. /*
  614. * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
  615. * counted as CACHE even if it's on ANON LRU.
  616. */
  617. if (anon)
  618. __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
  619. nr_pages);
  620. else
  621. __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
  622. nr_pages);
  623. /* pagein of a big page is an event. So, ignore page size */
  624. if (nr_pages > 0)
  625. __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
  626. else {
  627. __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
  628. nr_pages = -nr_pages; /* for event */
  629. }
  630. __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
  631. preempt_enable();
  632. }
  633. unsigned long
  634. mem_cgroup_get_lruvec_size(struct lruvec *lruvec, enum lru_list lru)
  635. {
  636. struct mem_cgroup_per_zone *mz;
  637. mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
  638. return mz->lru_size[lru];
  639. }
  640. static unsigned long
  641. mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
  642. unsigned int lru_mask)
  643. {
  644. struct mem_cgroup_per_zone *mz;
  645. enum lru_list lru;
  646. unsigned long ret = 0;
  647. mz = mem_cgroup_zoneinfo(memcg, nid, zid);
  648. for_each_lru(lru) {
  649. if (BIT(lru) & lru_mask)
  650. ret += mz->lru_size[lru];
  651. }
  652. return ret;
  653. }
  654. static unsigned long
  655. mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
  656. int nid, unsigned int lru_mask)
  657. {
  658. u64 total = 0;
  659. int zid;
  660. for (zid = 0; zid < MAX_NR_ZONES; zid++)
  661. total += mem_cgroup_zone_nr_lru_pages(memcg,
  662. nid, zid, lru_mask);
  663. return total;
  664. }
  665. static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
  666. unsigned int lru_mask)
  667. {
  668. int nid;
  669. u64 total = 0;
  670. for_each_node_state(nid, N_HIGH_MEMORY)
  671. total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
  672. return total;
  673. }
  674. static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
  675. enum mem_cgroup_events_target target)
  676. {
  677. unsigned long val, next;
  678. val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
  679. next = __this_cpu_read(memcg->stat->targets[target]);
  680. /* from time_after() in jiffies.h */
  681. if ((long)next - (long)val < 0) {
  682. switch (target) {
  683. case MEM_CGROUP_TARGET_THRESH:
  684. next = val + THRESHOLDS_EVENTS_TARGET;
  685. break;
  686. case MEM_CGROUP_TARGET_SOFTLIMIT:
  687. next = val + SOFTLIMIT_EVENTS_TARGET;
  688. break;
  689. case MEM_CGROUP_TARGET_NUMAINFO:
  690. next = val + NUMAINFO_EVENTS_TARGET;
  691. break;
  692. default:
  693. break;
  694. }
  695. __this_cpu_write(memcg->stat->targets[target], next);
  696. return true;
  697. }
  698. return false;
  699. }
  700. /*
  701. * Check events in order.
  702. *
  703. */
  704. static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
  705. {
  706. preempt_disable();
  707. /* threshold event is triggered in finer grain than soft limit */
  708. if (unlikely(mem_cgroup_event_ratelimit(memcg,
  709. MEM_CGROUP_TARGET_THRESH))) {
  710. bool do_softlimit;
  711. bool do_numainfo __maybe_unused;
  712. do_softlimit = mem_cgroup_event_ratelimit(memcg,
  713. MEM_CGROUP_TARGET_SOFTLIMIT);
  714. #if MAX_NUMNODES > 1
  715. do_numainfo = mem_cgroup_event_ratelimit(memcg,
  716. MEM_CGROUP_TARGET_NUMAINFO);
  717. #endif
  718. preempt_enable();
  719. mem_cgroup_threshold(memcg);
  720. if (unlikely(do_softlimit))
  721. mem_cgroup_update_tree(memcg, page);
  722. #if MAX_NUMNODES > 1
  723. if (unlikely(do_numainfo))
  724. atomic_inc(&memcg->numainfo_events);
  725. #endif
  726. } else
  727. preempt_enable();
  728. }
  729. struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
  730. {
  731. return container_of(cgroup_subsys_state(cont,
  732. mem_cgroup_subsys_id), struct mem_cgroup,
  733. css);
  734. }
  735. struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
  736. {
  737. /*
  738. * mm_update_next_owner() may clear mm->owner to NULL
  739. * if it races with swapoff, page migration, etc.
  740. * So this can be called with p == NULL.
  741. */
  742. if (unlikely(!p))
  743. return NULL;
  744. return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
  745. struct mem_cgroup, css);
  746. }
  747. struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
  748. {
  749. struct mem_cgroup *memcg = NULL;
  750. if (!mm)
  751. return NULL;
  752. /*
  753. * Because we have no locks, mm->owner's may be being moved to other
  754. * cgroup. We use css_tryget() here even if this looks
  755. * pessimistic (rather than adding locks here).
  756. */
  757. rcu_read_lock();
  758. do {
  759. memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
  760. if (unlikely(!memcg))
  761. break;
  762. } while (!css_tryget(&memcg->css));
  763. rcu_read_unlock();
  764. return memcg;
  765. }
  766. /**
  767. * mem_cgroup_iter - iterate over memory cgroup hierarchy
  768. * @root: hierarchy root
  769. * @prev: previously returned memcg, NULL on first invocation
  770. * @reclaim: cookie for shared reclaim walks, NULL for full walks
  771. *
  772. * Returns references to children of the hierarchy below @root, or
  773. * @root itself, or %NULL after a full round-trip.
  774. *
  775. * Caller must pass the return value in @prev on subsequent
  776. * invocations for reference counting, or use mem_cgroup_iter_break()
  777. * to cancel a hierarchy walk before the round-trip is complete.
  778. *
  779. * Reclaimers can specify a zone and a priority level in @reclaim to
  780. * divide up the memcgs in the hierarchy among all concurrent
  781. * reclaimers operating on the same zone and priority.
  782. */
  783. struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
  784. struct mem_cgroup *prev,
  785. struct mem_cgroup_reclaim_cookie *reclaim)
  786. {
  787. struct mem_cgroup *memcg = NULL;
  788. int id = 0;
  789. if (mem_cgroup_disabled())
  790. return NULL;
  791. if (!root)
  792. root = root_mem_cgroup;
  793. if (prev && !reclaim)
  794. id = css_id(&prev->css);
  795. if (prev && prev != root)
  796. css_put(&prev->css);
  797. if (!root->use_hierarchy && root != root_mem_cgroup) {
  798. if (prev)
  799. return NULL;
  800. return root;
  801. }
  802. while (!memcg) {
  803. struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
  804. struct cgroup_subsys_state *css;
  805. if (reclaim) {
  806. int nid = zone_to_nid(reclaim->zone);
  807. int zid = zone_idx(reclaim->zone);
  808. struct mem_cgroup_per_zone *mz;
  809. mz = mem_cgroup_zoneinfo(root, nid, zid);
  810. iter = &mz->reclaim_iter[reclaim->priority];
  811. if (prev && reclaim->generation != iter->generation)
  812. return NULL;
  813. id = iter->position;
  814. }
  815. rcu_read_lock();
  816. css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
  817. if (css) {
  818. if (css == &root->css || css_tryget(css))
  819. memcg = container_of(css,
  820. struct mem_cgroup, css);
  821. } else
  822. id = 0;
  823. rcu_read_unlock();
  824. if (reclaim) {
  825. iter->position = id;
  826. if (!css)
  827. iter->generation++;
  828. else if (!prev && memcg)
  829. reclaim->generation = iter->generation;
  830. }
  831. if (prev && !css)
  832. return NULL;
  833. }
  834. return memcg;
  835. }
  836. /**
  837. * mem_cgroup_iter_break - abort a hierarchy walk prematurely
  838. * @root: hierarchy root
  839. * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
  840. */
  841. void mem_cgroup_iter_break(struct mem_cgroup *root,
  842. struct mem_cgroup *prev)
  843. {
  844. if (!root)
  845. root = root_mem_cgroup;
  846. if (prev && prev != root)
  847. css_put(&prev->css);
  848. }
  849. /*
  850. * Iteration constructs for visiting all cgroups (under a tree). If
  851. * loops are exited prematurely (break), mem_cgroup_iter_break() must
  852. * be used for reference counting.
  853. */
  854. #define for_each_mem_cgroup_tree(iter, root) \
  855. for (iter = mem_cgroup_iter(root, NULL, NULL); \
  856. iter != NULL; \
  857. iter = mem_cgroup_iter(root, iter, NULL))
  858. #define for_each_mem_cgroup(iter) \
  859. for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
  860. iter != NULL; \
  861. iter = mem_cgroup_iter(NULL, iter, NULL))
  862. static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
  863. {
  864. return (memcg == root_mem_cgroup);
  865. }
  866. void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
  867. {
  868. struct mem_cgroup *memcg;
  869. if (!mm)
  870. return;
  871. rcu_read_lock();
  872. memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
  873. if (unlikely(!memcg))
  874. goto out;
  875. switch (idx) {
  876. case PGFAULT:
  877. this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
  878. break;
  879. case PGMAJFAULT:
  880. this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
  881. break;
  882. default:
  883. BUG();
  884. }
  885. out:
  886. rcu_read_unlock();
  887. }
  888. EXPORT_SYMBOL(mem_cgroup_count_vm_event);
  889. /**
  890. * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
  891. * @zone: zone of the wanted lruvec
  892. * @mem: memcg of the wanted lruvec
  893. *
  894. * Returns the lru list vector holding pages for the given @zone and
  895. * @mem. This can be the global zone lruvec, if the memory controller
  896. * is disabled.
  897. */
  898. struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
  899. struct mem_cgroup *memcg)
  900. {
  901. struct mem_cgroup_per_zone *mz;
  902. if (mem_cgroup_disabled())
  903. return &zone->lruvec;
  904. mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
  905. return &mz->lruvec;
  906. }
  907. /*
  908. * Following LRU functions are allowed to be used without PCG_LOCK.
  909. * Operations are called by routine of global LRU independently from memcg.
  910. * What we have to take care of here is validness of pc->mem_cgroup.
  911. *
  912. * Changes to pc->mem_cgroup happens when
  913. * 1. charge
  914. * 2. moving account
  915. * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
  916. * It is added to LRU before charge.
  917. * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
  918. * When moving account, the page is not on LRU. It's isolated.
  919. */
  920. /**
  921. * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
  922. * @zone: zone of the page
  923. * @page: the page
  924. * @lru: current lru
  925. *
  926. * This function accounts for @page being added to @lru, and returns
  927. * the lruvec for the given @zone and the memcg @page is charged to.
  928. *
  929. * The callsite is then responsible for physically linking the page to
  930. * the returned lruvec->lists[@lru].
  931. */
  932. struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
  933. enum lru_list lru)
  934. {
  935. struct mem_cgroup_per_zone *mz;
  936. struct mem_cgroup *memcg;
  937. struct page_cgroup *pc;
  938. if (mem_cgroup_disabled())
  939. return &zone->lruvec;
  940. pc = lookup_page_cgroup(page);
  941. memcg = pc->mem_cgroup;
  942. /*
  943. * Surreptitiously switch any uncharged page to root:
  944. * an uncharged page off lru does nothing to secure
  945. * its former mem_cgroup from sudden removal.
  946. *
  947. * Our caller holds lru_lock, and PageCgroupUsed is updated
  948. * under page_cgroup lock: between them, they make all uses
  949. * of pc->mem_cgroup safe.
  950. */
  951. if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
  952. pc->mem_cgroup = memcg = root_mem_cgroup;
  953. mz = page_cgroup_zoneinfo(memcg, page);
  954. /* compound_order() is stabilized through lru_lock */
  955. mz->lru_size[lru] += 1 << compound_order(page);
  956. return &mz->lruvec;
  957. }
  958. /**
  959. * mem_cgroup_lru_del_list - account for removing an lru page
  960. * @page: the page
  961. * @lru: target lru
  962. *
  963. * This function accounts for @page being removed from @lru.
  964. *
  965. * The callsite is then responsible for physically unlinking
  966. * @page->lru.
  967. */
  968. void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
  969. {
  970. struct mem_cgroup_per_zone *mz;
  971. struct mem_cgroup *memcg;
  972. struct page_cgroup *pc;
  973. if (mem_cgroup_disabled())
  974. return;
  975. pc = lookup_page_cgroup(page);
  976. memcg = pc->mem_cgroup;
  977. VM_BUG_ON(!memcg);
  978. mz = page_cgroup_zoneinfo(memcg, page);
  979. /* huge page split is done under lru_lock. so, we have no races. */
  980. VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
  981. mz->lru_size[lru] -= 1 << compound_order(page);
  982. }
  983. /**
  984. * mem_cgroup_lru_move_lists - account for moving a page between lrus
  985. * @zone: zone of the page
  986. * @page: the page
  987. * @from: current lru
  988. * @to: target lru
  989. *
  990. * This function accounts for @page being moved between the lrus @from
  991. * and @to, and returns the lruvec for the given @zone and the memcg
  992. * @page is charged to.
  993. *
  994. * The callsite is then responsible for physically relinking
  995. * @page->lru to the returned lruvec->lists[@to].
  996. */
  997. struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
  998. struct page *page,
  999. enum lru_list from,
  1000. enum lru_list to)
  1001. {
  1002. /* XXX: Optimize this, especially for @from == @to */
  1003. mem_cgroup_lru_del_list(page, from);
  1004. return mem_cgroup_lru_add_list(zone, page, to);
  1005. }
  1006. /*
  1007. * Checks whether given mem is same or in the root_mem_cgroup's
  1008. * hierarchy subtree
  1009. */
  1010. bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
  1011. struct mem_cgroup *memcg)
  1012. {
  1013. if (root_memcg == memcg)
  1014. return true;
  1015. if (!root_memcg->use_hierarchy)
  1016. return false;
  1017. return css_is_ancestor(&memcg->css, &root_memcg->css);
  1018. }
  1019. static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
  1020. struct mem_cgroup *memcg)
  1021. {
  1022. bool ret;
  1023. rcu_read_lock();
  1024. ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
  1025. rcu_read_unlock();
  1026. return ret;
  1027. }
  1028. int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
  1029. {
  1030. int ret;
  1031. struct mem_cgroup *curr = NULL;
  1032. struct task_struct *p;
  1033. p = find_lock_task_mm(task);
  1034. if (p) {
  1035. curr = try_get_mem_cgroup_from_mm(p->mm);
  1036. task_unlock(p);
  1037. } else {
  1038. /*
  1039. * All threads may have already detached their mm's, but the oom
  1040. * killer still needs to detect if they have already been oom
  1041. * killed to prevent needlessly killing additional tasks.
  1042. */
  1043. task_lock(task);
  1044. curr = mem_cgroup_from_task(task);
  1045. if (curr)
  1046. css_get(&curr->css);
  1047. task_unlock(task);
  1048. }
  1049. if (!curr)
  1050. return 0;
  1051. /*
  1052. * We should check use_hierarchy of "memcg" not "curr". Because checking
  1053. * use_hierarchy of "curr" here make this function true if hierarchy is
  1054. * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
  1055. * hierarchy(even if use_hierarchy is disabled in "memcg").
  1056. */
  1057. ret = mem_cgroup_same_or_subtree(memcg, curr);
  1058. css_put(&curr->css);
  1059. return ret;
  1060. }
  1061. int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
  1062. {
  1063. unsigned long inactive_ratio;
  1064. unsigned long inactive;
  1065. unsigned long active;
  1066. unsigned long gb;
  1067. inactive = mem_cgroup_get_lruvec_size(lruvec, LRU_INACTIVE_ANON);
  1068. active = mem_cgroup_get_lruvec_size(lruvec, LRU_ACTIVE_ANON);
  1069. gb = (inactive + active) >> (30 - PAGE_SHIFT);
  1070. if (gb)
  1071. inactive_ratio = int_sqrt(10 * gb);
  1072. else
  1073. inactive_ratio = 1;
  1074. return inactive * inactive_ratio < active;
  1075. }
  1076. int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
  1077. {
  1078. unsigned long active;
  1079. unsigned long inactive;
  1080. inactive = mem_cgroup_get_lruvec_size(lruvec, LRU_INACTIVE_FILE);
  1081. active = mem_cgroup_get_lruvec_size(lruvec, LRU_ACTIVE_FILE);
  1082. return (active > inactive);
  1083. }
  1084. struct zone_reclaim_stat *
  1085. mem_cgroup_get_reclaim_stat_from_page(struct page *page)
  1086. {
  1087. struct page_cgroup *pc;
  1088. struct mem_cgroup_per_zone *mz;
  1089. if (mem_cgroup_disabled())
  1090. return NULL;
  1091. pc = lookup_page_cgroup(page);
  1092. if (!PageCgroupUsed(pc))
  1093. return NULL;
  1094. /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
  1095. smp_rmb();
  1096. mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
  1097. return &mz->lruvec.reclaim_stat;
  1098. }
  1099. #define mem_cgroup_from_res_counter(counter, member) \
  1100. container_of(counter, struct mem_cgroup, member)
  1101. /**
  1102. * mem_cgroup_margin - calculate chargeable space of a memory cgroup
  1103. * @mem: the memory cgroup
  1104. *
  1105. * Returns the maximum amount of memory @mem can be charged with, in
  1106. * pages.
  1107. */
  1108. static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
  1109. {
  1110. unsigned long long margin;
  1111. margin = res_counter_margin(&memcg->res);
  1112. if (do_swap_account)
  1113. margin = min(margin, res_counter_margin(&memcg->memsw));
  1114. return margin >> PAGE_SHIFT;
  1115. }
  1116. int mem_cgroup_swappiness(struct mem_cgroup *memcg)
  1117. {
  1118. struct cgroup *cgrp = memcg->css.cgroup;
  1119. /* root ? */
  1120. if (cgrp->parent == NULL)
  1121. return vm_swappiness;
  1122. return memcg->swappiness;
  1123. }
  1124. /*
  1125. * memcg->moving_account is used for checking possibility that some thread is
  1126. * calling move_account(). When a thread on CPU-A starts moving pages under
  1127. * a memcg, other threads should check memcg->moving_account under
  1128. * rcu_read_lock(), like this:
  1129. *
  1130. * CPU-A CPU-B
  1131. * rcu_read_lock()
  1132. * memcg->moving_account+1 if (memcg->mocing_account)
  1133. * take heavy locks.
  1134. * synchronize_rcu() update something.
  1135. * rcu_read_unlock()
  1136. * start move here.
  1137. */
  1138. /* for quick checking without looking up memcg */
  1139. atomic_t memcg_moving __read_mostly;
  1140. static void mem_cgroup_start_move(struct mem_cgroup *memcg)
  1141. {
  1142. atomic_inc(&memcg_moving);
  1143. atomic_inc(&memcg->moving_account);
  1144. synchronize_rcu();
  1145. }
  1146. static void mem_cgroup_end_move(struct mem_cgroup *memcg)
  1147. {
  1148. /*
  1149. * Now, mem_cgroup_clear_mc() may call this function with NULL.
  1150. * We check NULL in callee rather than caller.
  1151. */
  1152. if (memcg) {
  1153. atomic_dec(&memcg_moving);
  1154. atomic_dec(&memcg->moving_account);
  1155. }
  1156. }
  1157. /*
  1158. * 2 routines for checking "mem" is under move_account() or not.
  1159. *
  1160. * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
  1161. * is used for avoiding races in accounting. If true,
  1162. * pc->mem_cgroup may be overwritten.
  1163. *
  1164. * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
  1165. * under hierarchy of moving cgroups. This is for
  1166. * waiting at hith-memory prressure caused by "move".
  1167. */
  1168. static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
  1169. {
  1170. VM_BUG_ON(!rcu_read_lock_held());
  1171. return atomic_read(&memcg->moving_account) > 0;
  1172. }
  1173. static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
  1174. {
  1175. struct mem_cgroup *from;
  1176. struct mem_cgroup *to;
  1177. bool ret = false;
  1178. /*
  1179. * Unlike task_move routines, we access mc.to, mc.from not under
  1180. * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
  1181. */
  1182. spin_lock(&mc.lock);
  1183. from = mc.from;
  1184. to = mc.to;
  1185. if (!from)
  1186. goto unlock;
  1187. ret = mem_cgroup_same_or_subtree(memcg, from)
  1188. || mem_cgroup_same_or_subtree(memcg, to);
  1189. unlock:
  1190. spin_unlock(&mc.lock);
  1191. return ret;
  1192. }
  1193. static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
  1194. {
  1195. if (mc.moving_task && current != mc.moving_task) {
  1196. if (mem_cgroup_under_move(memcg)) {
  1197. DEFINE_WAIT(wait);
  1198. prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
  1199. /* moving charge context might have finished. */
  1200. if (mc.moving_task)
  1201. schedule();
  1202. finish_wait(&mc.waitq, &wait);
  1203. return true;
  1204. }
  1205. }
  1206. return false;
  1207. }
  1208. /*
  1209. * Take this lock when
  1210. * - a code tries to modify page's memcg while it's USED.
  1211. * - a code tries to modify page state accounting in a memcg.
  1212. * see mem_cgroup_stolen(), too.
  1213. */
  1214. static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
  1215. unsigned long *flags)
  1216. {
  1217. spin_lock_irqsave(&memcg->move_lock, *flags);
  1218. }
  1219. static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
  1220. unsigned long *flags)
  1221. {
  1222. spin_unlock_irqrestore(&memcg->move_lock, *flags);
  1223. }
  1224. /**
  1225. * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
  1226. * @memcg: The memory cgroup that went over limit
  1227. * @p: Task that is going to be killed
  1228. *
  1229. * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
  1230. * enabled
  1231. */
  1232. void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
  1233. {
  1234. struct cgroup *task_cgrp;
  1235. struct cgroup *mem_cgrp;
  1236. /*
  1237. * Need a buffer in BSS, can't rely on allocations. The code relies
  1238. * on the assumption that OOM is serialized for memory controller.
  1239. * If this assumption is broken, revisit this code.
  1240. */
  1241. static char memcg_name[PATH_MAX];
  1242. int ret;
  1243. if (!memcg || !p)
  1244. return;
  1245. rcu_read_lock();
  1246. mem_cgrp = memcg->css.cgroup;
  1247. task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
  1248. ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
  1249. if (ret < 0) {
  1250. /*
  1251. * Unfortunately, we are unable to convert to a useful name
  1252. * But we'll still print out the usage information
  1253. */
  1254. rcu_read_unlock();
  1255. goto done;
  1256. }
  1257. rcu_read_unlock();
  1258. printk(KERN_INFO "Task in %s killed", memcg_name);
  1259. rcu_read_lock();
  1260. ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
  1261. if (ret < 0) {
  1262. rcu_read_unlock();
  1263. goto done;
  1264. }
  1265. rcu_read_unlock();
  1266. /*
  1267. * Continues from above, so we don't need an KERN_ level
  1268. */
  1269. printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
  1270. done:
  1271. printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
  1272. res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
  1273. res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
  1274. res_counter_read_u64(&memcg->res, RES_FAILCNT));
  1275. printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
  1276. "failcnt %llu\n",
  1277. res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
  1278. res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
  1279. res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
  1280. }
  1281. /*
  1282. * This function returns the number of memcg under hierarchy tree. Returns
  1283. * 1(self count) if no children.
  1284. */
  1285. static int mem_cgroup_count_children(struct mem_cgroup *memcg)
  1286. {
  1287. int num = 0;
  1288. struct mem_cgroup *iter;
  1289. for_each_mem_cgroup_tree(iter, memcg)
  1290. num++;
  1291. return num;
  1292. }
  1293. /*
  1294. * Return the memory (and swap, if configured) limit for a memcg.
  1295. */
  1296. u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
  1297. {
  1298. u64 limit;
  1299. u64 memsw;
  1300. limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
  1301. limit += total_swap_pages << PAGE_SHIFT;
  1302. memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
  1303. /*
  1304. * If memsw is finite and limits the amount of swap space available
  1305. * to this memcg, return that limit.
  1306. */
  1307. return min(limit, memsw);
  1308. }
  1309. static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
  1310. gfp_t gfp_mask,
  1311. unsigned long flags)
  1312. {
  1313. unsigned long total = 0;
  1314. bool noswap = false;
  1315. int loop;
  1316. if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
  1317. noswap = true;
  1318. if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
  1319. noswap = true;
  1320. for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
  1321. if (loop)
  1322. drain_all_stock_async(memcg);
  1323. total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
  1324. /*
  1325. * Allow limit shrinkers, which are triggered directly
  1326. * by userspace, to catch signals and stop reclaim
  1327. * after minimal progress, regardless of the margin.
  1328. */
  1329. if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
  1330. break;
  1331. if (mem_cgroup_margin(memcg))
  1332. break;
  1333. /*
  1334. * If nothing was reclaimed after two attempts, there
  1335. * may be no reclaimable pages in this hierarchy.
  1336. */
  1337. if (loop && !total)
  1338. break;
  1339. }
  1340. return total;
  1341. }
  1342. /**
  1343. * test_mem_cgroup_node_reclaimable
  1344. * @mem: the target memcg
  1345. * @nid: the node ID to be checked.
  1346. * @noswap : specify true here if the user wants flle only information.
  1347. *
  1348. * This function returns whether the specified memcg contains any
  1349. * reclaimable pages on a node. Returns true if there are any reclaimable
  1350. * pages in the node.
  1351. */
  1352. static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
  1353. int nid, bool noswap)
  1354. {
  1355. if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
  1356. return true;
  1357. if (noswap || !total_swap_pages)
  1358. return false;
  1359. if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
  1360. return true;
  1361. return false;
  1362. }
  1363. #if MAX_NUMNODES > 1
  1364. /*
  1365. * Always updating the nodemask is not very good - even if we have an empty
  1366. * list or the wrong list here, we can start from some node and traverse all
  1367. * nodes based on the zonelist. So update the list loosely once per 10 secs.
  1368. *
  1369. */
  1370. static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
  1371. {
  1372. int nid;
  1373. /*
  1374. * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
  1375. * pagein/pageout changes since the last update.
  1376. */
  1377. if (!atomic_read(&memcg->numainfo_events))
  1378. return;
  1379. if (atomic_inc_return(&memcg->numainfo_updating) > 1)
  1380. return;
  1381. /* make a nodemask where this memcg uses memory from */
  1382. memcg->scan_nodes = node_states[N_HIGH_MEMORY];
  1383. for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
  1384. if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
  1385. node_clear(nid, memcg->scan_nodes);
  1386. }
  1387. atomic_set(&memcg->numainfo_events, 0);
  1388. atomic_set(&memcg->numainfo_updating, 0);
  1389. }
  1390. /*
  1391. * Selecting a node where we start reclaim from. Because what we need is just
  1392. * reducing usage counter, start from anywhere is O,K. Considering
  1393. * memory reclaim from current node, there are pros. and cons.
  1394. *
  1395. * Freeing memory from current node means freeing memory from a node which
  1396. * we'll use or we've used. So, it may make LRU bad. And if several threads
  1397. * hit limits, it will see a contention on a node. But freeing from remote
  1398. * node means more costs for memory reclaim because of memory latency.
  1399. *
  1400. * Now, we use round-robin. Better algorithm is welcomed.
  1401. */
  1402. int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
  1403. {
  1404. int node;
  1405. mem_cgroup_may_update_nodemask(memcg);
  1406. node = memcg->last_scanned_node;
  1407. node = next_node(node, memcg->scan_nodes);
  1408. if (node == MAX_NUMNODES)
  1409. node = first_node(memcg->scan_nodes);
  1410. /*
  1411. * We call this when we hit limit, not when pages are added to LRU.
  1412. * No LRU may hold pages because all pages are UNEVICTABLE or
  1413. * memcg is too small and all pages are not on LRU. In that case,
  1414. * we use curret node.
  1415. */
  1416. if (unlikely(node == MAX_NUMNODES))
  1417. node = numa_node_id();
  1418. memcg->last_scanned_node = node;
  1419. return node;
  1420. }
  1421. /*
  1422. * Check all nodes whether it contains reclaimable pages or not.
  1423. * For quick scan, we make use of scan_nodes. This will allow us to skip
  1424. * unused nodes. But scan_nodes is lazily updated and may not cotain
  1425. * enough new information. We need to do double check.
  1426. */
  1427. static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
  1428. {
  1429. int nid;
  1430. /*
  1431. * quick check...making use of scan_node.
  1432. * We can skip unused nodes.
  1433. */
  1434. if (!nodes_empty(memcg->scan_nodes)) {
  1435. for (nid = first_node(memcg->scan_nodes);
  1436. nid < MAX_NUMNODES;
  1437. nid = next_node(nid, memcg->scan_nodes)) {
  1438. if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
  1439. return true;
  1440. }
  1441. }
  1442. /*
  1443. * Check rest of nodes.
  1444. */
  1445. for_each_node_state(nid, N_HIGH_MEMORY) {
  1446. if (node_isset(nid, memcg->scan_nodes))
  1447. continue;
  1448. if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
  1449. return true;
  1450. }
  1451. return false;
  1452. }
  1453. #else
  1454. int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
  1455. {
  1456. return 0;
  1457. }
  1458. static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
  1459. {
  1460. return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
  1461. }
  1462. #endif
  1463. static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
  1464. struct zone *zone,
  1465. gfp_t gfp_mask,
  1466. unsigned long *total_scanned)
  1467. {
  1468. struct mem_cgroup *victim = NULL;
  1469. int total = 0;
  1470. int loop = 0;
  1471. unsigned long excess;
  1472. unsigned long nr_scanned;
  1473. struct mem_cgroup_reclaim_cookie reclaim = {
  1474. .zone = zone,
  1475. .priority = 0,
  1476. };
  1477. excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
  1478. while (1) {
  1479. victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
  1480. if (!victim) {
  1481. loop++;
  1482. if (loop >= 2) {
  1483. /*
  1484. * If we have not been able to reclaim
  1485. * anything, it might because there are
  1486. * no reclaimable pages under this hierarchy
  1487. */
  1488. if (!total)
  1489. break;
  1490. /*
  1491. * We want to do more targeted reclaim.
  1492. * excess >> 2 is not to excessive so as to
  1493. * reclaim too much, nor too less that we keep
  1494. * coming back to reclaim from this cgroup
  1495. */
  1496. if (total >= (excess >> 2) ||
  1497. (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
  1498. break;
  1499. }
  1500. continue;
  1501. }
  1502. if (!mem_cgroup_reclaimable(victim, false))
  1503. continue;
  1504. total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
  1505. zone, &nr_scanned);
  1506. *total_scanned += nr_scanned;
  1507. if (!res_counter_soft_limit_excess(&root_memcg->res))
  1508. break;
  1509. }
  1510. mem_cgroup_iter_break(root_memcg, victim);
  1511. return total;
  1512. }
  1513. /*
  1514. * Check OOM-Killer is already running under our hierarchy.
  1515. * If someone is running, return false.
  1516. * Has to be called with memcg_oom_lock
  1517. */
  1518. static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
  1519. {
  1520. struct mem_cgroup *iter, *failed = NULL;
  1521. for_each_mem_cgroup_tree(iter, memcg) {
  1522. if (iter->oom_lock) {
  1523. /*
  1524. * this subtree of our hierarchy is already locked
  1525. * so we cannot give a lock.
  1526. */
  1527. failed = iter;
  1528. mem_cgroup_iter_break(memcg, iter);
  1529. break;
  1530. } else
  1531. iter->oom_lock = true;
  1532. }
  1533. if (!failed)
  1534. return true;
  1535. /*
  1536. * OK, we failed to lock the whole subtree so we have to clean up
  1537. * what we set up to the failing subtree
  1538. */
  1539. for_each_mem_cgroup_tree(iter, memcg) {
  1540. if (iter == failed) {
  1541. mem_cgroup_iter_break(memcg, iter);
  1542. break;
  1543. }
  1544. iter->oom_lock = false;
  1545. }
  1546. return false;
  1547. }
  1548. /*
  1549. * Has to be called with memcg_oom_lock
  1550. */
  1551. static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
  1552. {
  1553. struct mem_cgroup *iter;
  1554. for_each_mem_cgroup_tree(iter, memcg)
  1555. iter->oom_lock = false;
  1556. return 0;
  1557. }
  1558. static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
  1559. {
  1560. struct mem_cgroup *iter;
  1561. for_each_mem_cgroup_tree(iter, memcg)
  1562. atomic_inc(&iter->under_oom);
  1563. }
  1564. static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
  1565. {
  1566. struct mem_cgroup *iter;
  1567. /*
  1568. * When a new child is created while the hierarchy is under oom,
  1569. * mem_cgroup_oom_lock() may not be called. We have to use
  1570. * atomic_add_unless() here.
  1571. */
  1572. for_each_mem_cgroup_tree(iter, memcg)
  1573. atomic_add_unless(&iter->under_oom, -1, 0);
  1574. }
  1575. static DEFINE_SPINLOCK(memcg_oom_lock);
  1576. static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
  1577. struct oom_wait_info {
  1578. struct mem_cgroup *memcg;
  1579. wait_queue_t wait;
  1580. };
  1581. static int memcg_oom_wake_function(wait_queue_t *wait,
  1582. unsigned mode, int sync, void *arg)
  1583. {
  1584. struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
  1585. struct mem_cgroup *oom_wait_memcg;
  1586. struct oom_wait_info *oom_wait_info;
  1587. oom_wait_info = container_of(wait, struct oom_wait_info, wait);
  1588. oom_wait_memcg = oom_wait_info->memcg;
  1589. /*
  1590. * Both of oom_wait_info->memcg and wake_memcg are stable under us.
  1591. * Then we can use css_is_ancestor without taking care of RCU.
  1592. */
  1593. if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
  1594. && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
  1595. return 0;
  1596. return autoremove_wake_function(wait, mode, sync, arg);
  1597. }
  1598. static void memcg_wakeup_oom(struct mem_cgroup *memcg)
  1599. {
  1600. /* for filtering, pass "memcg" as argument. */
  1601. __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
  1602. }
  1603. static void memcg_oom_recover(struct mem_cgroup *memcg)
  1604. {
  1605. if (memcg && atomic_read(&memcg->under_oom))
  1606. memcg_wakeup_oom(memcg);
  1607. }
  1608. /*
  1609. * try to call OOM killer. returns false if we should exit memory-reclaim loop.
  1610. */
  1611. static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
  1612. int order)
  1613. {
  1614. struct oom_wait_info owait;
  1615. bool locked, need_to_kill;
  1616. owait.memcg = memcg;
  1617. owait.wait.flags = 0;
  1618. owait.wait.func = memcg_oom_wake_function;
  1619. owait.wait.private = current;
  1620. INIT_LIST_HEAD(&owait.wait.task_list);
  1621. need_to_kill = true;
  1622. mem_cgroup_mark_under_oom(memcg);
  1623. /* At first, try to OOM lock hierarchy under memcg.*/
  1624. spin_lock(&memcg_oom_lock);
  1625. locked = mem_cgroup_oom_lock(memcg);
  1626. /*
  1627. * Even if signal_pending(), we can't quit charge() loop without
  1628. * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
  1629. * under OOM is always welcomed, use TASK_KILLABLE here.
  1630. */
  1631. prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
  1632. if (!locked || memcg->oom_kill_disable)
  1633. need_to_kill = false;
  1634. if (locked)
  1635. mem_cgroup_oom_notify(memcg);
  1636. spin_unlock(&memcg_oom_lock);
  1637. if (need_to_kill) {
  1638. finish_wait(&memcg_oom_waitq, &owait.wait);
  1639. mem_cgroup_out_of_memory(memcg, mask, order);
  1640. } else {
  1641. schedule();
  1642. finish_wait(&memcg_oom_waitq, &owait.wait);
  1643. }
  1644. spin_lock(&memcg_oom_lock);
  1645. if (locked)
  1646. mem_cgroup_oom_unlock(memcg);
  1647. memcg_wakeup_oom(memcg);
  1648. spin_unlock(&memcg_oom_lock);
  1649. mem_cgroup_unmark_under_oom(memcg);
  1650. if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
  1651. return false;
  1652. /* Give chance to dying process */
  1653. schedule_timeout_uninterruptible(1);
  1654. return true;
  1655. }
  1656. /*
  1657. * Currently used to update mapped file statistics, but the routine can be
  1658. * generalized to update other statistics as well.
  1659. *
  1660. * Notes: Race condition
  1661. *
  1662. * We usually use page_cgroup_lock() for accessing page_cgroup member but
  1663. * it tends to be costly. But considering some conditions, we doesn't need
  1664. * to do so _always_.
  1665. *
  1666. * Considering "charge", lock_page_cgroup() is not required because all
  1667. * file-stat operations happen after a page is attached to radix-tree. There
  1668. * are no race with "charge".
  1669. *
  1670. * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
  1671. * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
  1672. * if there are race with "uncharge". Statistics itself is properly handled
  1673. * by flags.
  1674. *
  1675. * Considering "move", this is an only case we see a race. To make the race
  1676. * small, we check mm->moving_account and detect there are possibility of race
  1677. * If there is, we take a lock.
  1678. */
  1679. void __mem_cgroup_begin_update_page_stat(struct page *page,
  1680. bool *locked, unsigned long *flags)
  1681. {
  1682. struct mem_cgroup *memcg;
  1683. struct page_cgroup *pc;
  1684. pc = lookup_page_cgroup(page);
  1685. again:
  1686. memcg = pc->mem_cgroup;
  1687. if (unlikely(!memcg || !PageCgroupUsed(pc)))
  1688. return;
  1689. /*
  1690. * If this memory cgroup is not under account moving, we don't
  1691. * need to take move_lock_page_cgroup(). Because we already hold
  1692. * rcu_read_lock(), any calls to move_account will be delayed until
  1693. * rcu_read_unlock() if mem_cgroup_stolen() == true.
  1694. */
  1695. if (!mem_cgroup_stolen(memcg))
  1696. return;
  1697. move_lock_mem_cgroup(memcg, flags);
  1698. if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
  1699. move_unlock_mem_cgroup(memcg, flags);
  1700. goto again;
  1701. }
  1702. *locked = true;
  1703. }
  1704. void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
  1705. {
  1706. struct page_cgroup *pc = lookup_page_cgroup(page);
  1707. /*
  1708. * It's guaranteed that pc->mem_cgroup never changes while
  1709. * lock is held because a routine modifies pc->mem_cgroup
  1710. * should take move_lock_page_cgroup().
  1711. */
  1712. move_unlock_mem_cgroup(pc->mem_cgroup, flags);
  1713. }
  1714. void mem_cgroup_update_page_stat(struct page *page,
  1715. enum mem_cgroup_page_stat_item idx, int val)
  1716. {
  1717. struct mem_cgroup *memcg;
  1718. struct page_cgroup *pc = lookup_page_cgroup(page);
  1719. unsigned long uninitialized_var(flags);
  1720. if (mem_cgroup_disabled())
  1721. return;
  1722. memcg = pc->mem_cgroup;
  1723. if (unlikely(!memcg || !PageCgroupUsed(pc)))
  1724. return;
  1725. switch (idx) {
  1726. case MEMCG_NR_FILE_MAPPED:
  1727. idx = MEM_CGROUP_STAT_FILE_MAPPED;
  1728. break;
  1729. default:
  1730. BUG();
  1731. }
  1732. this_cpu_add(memcg->stat->count[idx], val);
  1733. }
  1734. /*
  1735. * size of first charge trial. "32" comes from vmscan.c's magic value.
  1736. * TODO: maybe necessary to use big numbers in big irons.
  1737. */
  1738. #define CHARGE_BATCH 32U
  1739. struct memcg_stock_pcp {
  1740. struct mem_cgroup *cached; /* this never be root cgroup */
  1741. unsigned int nr_pages;
  1742. struct work_struct work;
  1743. unsigned long flags;
  1744. #define FLUSHING_CACHED_CHARGE 0
  1745. };
  1746. static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
  1747. static DEFINE_MUTEX(percpu_charge_mutex);
  1748. /*
  1749. * Try to consume stocked charge on this cpu. If success, one page is consumed
  1750. * from local stock and true is returned. If the stock is 0 or charges from a
  1751. * cgroup which is not current target, returns false. This stock will be
  1752. * refilled.
  1753. */
  1754. static bool consume_stock(struct mem_cgroup *memcg)
  1755. {
  1756. struct memcg_stock_pcp *stock;
  1757. bool ret = true;
  1758. stock = &get_cpu_var(memcg_stock);
  1759. if (memcg == stock->cached && stock->nr_pages)
  1760. stock->nr_pages--;
  1761. else /* need to call res_counter_charge */
  1762. ret = false;
  1763. put_cpu_var(memcg_stock);
  1764. return ret;
  1765. }
  1766. /*
  1767. * Returns stocks cached in percpu to res_counter and reset cached information.
  1768. */
  1769. static void drain_stock(struct memcg_stock_pcp *stock)
  1770. {
  1771. struct mem_cgroup *old = stock->cached;
  1772. if (stock->nr_pages) {
  1773. unsigned long bytes = stock->nr_pages * PAGE_SIZE;
  1774. res_counter_uncharge(&old->res, bytes);
  1775. if (do_swap_account)
  1776. res_counter_uncharge(&old->memsw, bytes);
  1777. stock->nr_pages = 0;
  1778. }
  1779. stock->cached = NULL;
  1780. }
  1781. /*
  1782. * This must be called under preempt disabled or must be called by
  1783. * a thread which is pinned to local cpu.
  1784. */
  1785. static void drain_local_stock(struct work_struct *dummy)
  1786. {
  1787. struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
  1788. drain_stock(stock);
  1789. clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
  1790. }
  1791. /*
  1792. * Cache charges(val) which is from res_counter, to local per_cpu area.
  1793. * This will be consumed by consume_stock() function, later.
  1794. */
  1795. static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
  1796. {
  1797. struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
  1798. if (stock->cached != memcg) { /* reset if necessary */
  1799. drain_stock(stock);
  1800. stock->cached = memcg;
  1801. }
  1802. stock->nr_pages += nr_pages;
  1803. put_cpu_var(memcg_stock);
  1804. }
  1805. /*
  1806. * Drains all per-CPU charge caches for given root_memcg resp. subtree
  1807. * of the hierarchy under it. sync flag says whether we should block
  1808. * until the work is done.
  1809. */
  1810. static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
  1811. {
  1812. int cpu, curcpu;
  1813. /* Notify other cpus that system-wide "drain" is running */
  1814. get_online_cpus();
  1815. curcpu = get_cpu();
  1816. for_each_online_cpu(cpu) {
  1817. struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
  1818. struct mem_cgroup *memcg;
  1819. memcg = stock->cached;
  1820. if (!memcg || !stock->nr_pages)
  1821. continue;
  1822. if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
  1823. continue;
  1824. if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
  1825. if (cpu == curcpu)
  1826. drain_local_stock(&stock->work);
  1827. else
  1828. schedule_work_on(cpu, &stock->work);
  1829. }
  1830. }
  1831. put_cpu();
  1832. if (!sync)
  1833. goto out;
  1834. for_each_online_cpu(cpu) {
  1835. struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
  1836. if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
  1837. flush_work(&stock->work);
  1838. }
  1839. out:
  1840. put_online_cpus();
  1841. }
  1842. /*
  1843. * Tries to drain stocked charges in other cpus. This function is asynchronous
  1844. * and just put a work per cpu for draining localy on each cpu. Caller can
  1845. * expects some charges will be back to res_counter later but cannot wait for
  1846. * it.
  1847. */
  1848. static void drain_all_stock_async(struct mem_cgroup *root_memcg)
  1849. {
  1850. /*
  1851. * If someone calls draining, avoid adding more kworker runs.
  1852. */
  1853. if (!mutex_trylock(&percpu_charge_mutex))
  1854. return;
  1855. drain_all_stock(root_memcg, false);
  1856. mutex_unlock(&percpu_charge_mutex);
  1857. }
  1858. /* This is a synchronous drain interface. */
  1859. static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
  1860. {
  1861. /* called when force_empty is called */
  1862. mutex_lock(&percpu_charge_mutex);
  1863. drain_all_stock(root_memcg, true);
  1864. mutex_unlock(&percpu_charge_mutex);
  1865. }
  1866. /*
  1867. * This function drains percpu counter value from DEAD cpu and
  1868. * move it to local cpu. Note that this function can be preempted.
  1869. */
  1870. static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
  1871. {
  1872. int i;
  1873. spin_lock(&memcg->pcp_counter_lock);
  1874. for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
  1875. long x = per_cpu(memcg->stat->count[i], cpu);
  1876. per_cpu(memcg->stat->count[i], cpu) = 0;
  1877. memcg->nocpu_base.count[i] += x;
  1878. }
  1879. for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
  1880. unsigned long x = per_cpu(memcg->stat->events[i], cpu);
  1881. per_cpu(memcg->stat->events[i], cpu) = 0;
  1882. memcg->nocpu_base.events[i] += x;
  1883. }
  1884. spin_unlock(&memcg->pcp_counter_lock);
  1885. }
  1886. static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
  1887. unsigned long action,
  1888. void *hcpu)
  1889. {
  1890. int cpu = (unsigned long)hcpu;
  1891. struct memcg_stock_pcp *stock;
  1892. struct mem_cgroup *iter;
  1893. if (action == CPU_ONLINE)
  1894. return NOTIFY_OK;
  1895. if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
  1896. return NOTIFY_OK;
  1897. for_each_mem_cgroup(iter)
  1898. mem_cgroup_drain_pcp_counter(iter, cpu);
  1899. stock = &per_cpu(memcg_stock, cpu);
  1900. drain_stock(stock);
  1901. return NOTIFY_OK;
  1902. }
  1903. /* See __mem_cgroup_try_charge() for details */
  1904. enum {
  1905. CHARGE_OK, /* success */
  1906. CHARGE_RETRY, /* need to retry but retry is not bad */
  1907. CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
  1908. CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
  1909. CHARGE_OOM_DIE, /* the current is killed because of OOM */
  1910. };
  1911. static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
  1912. unsigned int nr_pages, bool oom_check)
  1913. {
  1914. unsigned long csize = nr_pages * PAGE_SIZE;
  1915. struct mem_cgroup *mem_over_limit;
  1916. struct res_counter *fail_res;
  1917. unsigned long flags = 0;
  1918. int ret;
  1919. ret = res_counter_charge(&memcg->res, csize, &fail_res);
  1920. if (likely(!ret)) {
  1921. if (!do_swap_account)
  1922. return CHARGE_OK;
  1923. ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
  1924. if (likely(!ret))
  1925. return CHARGE_OK;
  1926. res_counter_uncharge(&memcg->res, csize);
  1927. mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
  1928. flags |= MEM_CGROUP_RECLAIM_NOSWAP;
  1929. } else
  1930. mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
  1931. /*
  1932. * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
  1933. * of regular pages (CHARGE_BATCH), or a single regular page (1).
  1934. *
  1935. * Never reclaim on behalf of optional batching, retry with a
  1936. * single page instead.
  1937. */
  1938. if (nr_pages == CHARGE_BATCH)
  1939. return CHARGE_RETRY;
  1940. if (!(gfp_mask & __GFP_WAIT))
  1941. return CHARGE_WOULDBLOCK;
  1942. ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
  1943. if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
  1944. return CHARGE_RETRY;
  1945. /*
  1946. * Even though the limit is exceeded at this point, reclaim
  1947. * may have been able to free some pages. Retry the charge
  1948. * before killing the task.
  1949. *
  1950. * Only for regular pages, though: huge pages are rather
  1951. * unlikely to succeed so close to the limit, and we fall back
  1952. * to regular pages anyway in case of failure.
  1953. */
  1954. if (nr_pages == 1 && ret)
  1955. return CHARGE_RETRY;
  1956. /*
  1957. * At task move, charge accounts can be doubly counted. So, it's
  1958. * better to wait until the end of task_move if something is going on.
  1959. */
  1960. if (mem_cgroup_wait_acct_move(mem_over_limit))
  1961. return CHARGE_RETRY;
  1962. /* If we don't need to call oom-killer at el, return immediately */
  1963. if (!oom_check)
  1964. return CHARGE_NOMEM;
  1965. /* check OOM */
  1966. if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
  1967. return CHARGE_OOM_DIE;
  1968. return CHARGE_RETRY;
  1969. }
  1970. /*
  1971. * __mem_cgroup_try_charge() does
  1972. * 1. detect memcg to be charged against from passed *mm and *ptr,
  1973. * 2. update res_counter
  1974. * 3. call memory reclaim if necessary.
  1975. *
  1976. * In some special case, if the task is fatal, fatal_signal_pending() or
  1977. * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
  1978. * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
  1979. * as possible without any hazards. 2: all pages should have a valid
  1980. * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
  1981. * pointer, that is treated as a charge to root_mem_cgroup.
  1982. *
  1983. * So __mem_cgroup_try_charge() will return
  1984. * 0 ... on success, filling *ptr with a valid memcg pointer.
  1985. * -ENOMEM ... charge failure because of resource limits.
  1986. * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
  1987. *
  1988. * Unlike the exported interface, an "oom" parameter is added. if oom==true,
  1989. * the oom-killer can be invoked.
  1990. */
  1991. static int __mem_cgroup_try_charge(struct mm_struct *mm,
  1992. gfp_t gfp_mask,
  1993. unsigned int nr_pages,
  1994. struct mem_cgroup **ptr,
  1995. bool oom)
  1996. {
  1997. unsigned int batch = max(CHARGE_BATCH, nr_pages);
  1998. int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
  1999. struct mem_cgroup *memcg = NULL;
  2000. int ret;
  2001. /*
  2002. * Unlike gloval-vm's OOM-kill, we're not in memory shortage
  2003. * in system level. So, allow to go ahead dying process in addition to
  2004. * MEMDIE process.
  2005. */
  2006. if (unlikely(test_thread_flag(TIF_MEMDIE)
  2007. || fatal_signal_pending(current)))
  2008. goto bypass;
  2009. /*
  2010. * We always charge the cgroup the mm_struct belongs to.
  2011. * The mm_struct's mem_cgroup changes on task migration if the
  2012. * thread group leader migrates. It's possible that mm is not
  2013. * set, if so charge the init_mm (happens for pagecache usage).
  2014. */
  2015. if (!*ptr && !mm)
  2016. *ptr = root_mem_cgroup;
  2017. again:
  2018. if (*ptr) { /* css should be a valid one */
  2019. memcg = *ptr;
  2020. VM_BUG_ON(css_is_removed(&memcg->css));
  2021. if (mem_cgroup_is_root(memcg))
  2022. goto done;
  2023. if (nr_pages == 1 && consume_stock(memcg))
  2024. goto done;
  2025. css_get(&memcg->css);
  2026. } else {
  2027. struct task_struct *p;
  2028. rcu_read_lock();
  2029. p = rcu_dereference(mm->owner);
  2030. /*
  2031. * Because we don't have task_lock(), "p" can exit.
  2032. * In that case, "memcg" can point to root or p can be NULL with
  2033. * race with swapoff. Then, we have small risk of mis-accouning.
  2034. * But such kind of mis-account by race always happens because
  2035. * we don't have cgroup_mutex(). It's overkill and we allo that
  2036. * small race, here.
  2037. * (*) swapoff at el will charge against mm-struct not against
  2038. * task-struct. So, mm->owner can be NULL.
  2039. */
  2040. memcg = mem_cgroup_from_task(p);
  2041. if (!memcg)
  2042. memcg = root_mem_cgroup;
  2043. if (mem_cgroup_is_root(memcg)) {
  2044. rcu_read_unlock();
  2045. goto done;
  2046. }
  2047. if (nr_pages == 1 && consume_stock(memcg)) {
  2048. /*
  2049. * It seems dagerous to access memcg without css_get().
  2050. * But considering how consume_stok works, it's not
  2051. * necessary. If consume_stock success, some charges
  2052. * from this memcg are cached on this cpu. So, we
  2053. * don't need to call css_get()/css_tryget() before
  2054. * calling consume_stock().
  2055. */
  2056. rcu_read_unlock();
  2057. goto done;
  2058. }
  2059. /* after here, we may be blocked. we need to get refcnt */
  2060. if (!css_tryget(&memcg->css)) {
  2061. rcu_read_unlock();
  2062. goto again;
  2063. }
  2064. rcu_read_unlock();
  2065. }
  2066. do {
  2067. bool oom_check;
  2068. /* If killed, bypass charge */
  2069. if (fatal_signal_pending(current)) {
  2070. css_put(&memcg->css);
  2071. goto bypass;
  2072. }
  2073. oom_check = false;
  2074. if (oom && !nr_oom_retries) {
  2075. oom_check = true;
  2076. nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
  2077. }
  2078. ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
  2079. switch (ret) {
  2080. case CHARGE_OK:
  2081. break;
  2082. case CHARGE_RETRY: /* not in OOM situation but retry */
  2083. batch = nr_pages;
  2084. css_put(&memcg->css);
  2085. memcg = NULL;
  2086. goto again;
  2087. case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
  2088. css_put(&memcg->css);
  2089. goto nomem;
  2090. case CHARGE_NOMEM: /* OOM routine works */
  2091. if (!oom) {
  2092. css_put(&memcg->css);
  2093. goto nomem;
  2094. }
  2095. /* If oom, we never return -ENOMEM */
  2096. nr_oom_retries--;
  2097. break;
  2098. case CHARGE_OOM_DIE: /* Killed by OOM Killer */
  2099. css_put(&memcg->css);
  2100. goto bypass;
  2101. }
  2102. } while (ret != CHARGE_OK);
  2103. if (batch > nr_pages)
  2104. refill_stock(memcg, batch - nr_pages);
  2105. css_put(&memcg->css);
  2106. done:
  2107. *ptr = memcg;
  2108. return 0;
  2109. nomem:
  2110. *ptr = NULL;
  2111. return -ENOMEM;
  2112. bypass:
  2113. *ptr = root_mem_cgroup;
  2114. return -EINTR;
  2115. }
  2116. /*
  2117. * Somemtimes we have to undo a charge we got by try_charge().
  2118. * This function is for that and do uncharge, put css's refcnt.
  2119. * gotten by try_charge().
  2120. */
  2121. static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
  2122. unsigned int nr_pages)
  2123. {
  2124. if (!mem_cgroup_is_root(memcg)) {
  2125. unsigned long bytes = nr_pages * PAGE_SIZE;
  2126. res_counter_uncharge(&memcg->res, bytes);
  2127. if (do_swap_account)
  2128. res_counter_uncharge(&memcg->memsw, bytes);
  2129. }
  2130. }
  2131. /*
  2132. * A helper function to get mem_cgroup from ID. must be called under
  2133. * rcu_read_lock(). The caller must check css_is_removed() or some if
  2134. * it's concern. (dropping refcnt from swap can be called against removed
  2135. * memcg.)
  2136. */
  2137. static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
  2138. {
  2139. struct cgroup_subsys_state *css;
  2140. /* ID 0 is unused ID */
  2141. if (!id)
  2142. return NULL;
  2143. css = css_lookup(&mem_cgroup_subsys, id);
  2144. if (!css)
  2145. return NULL;
  2146. return container_of(css, struct mem_cgroup, css);
  2147. }
  2148. struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
  2149. {
  2150. struct mem_cgroup *memcg = NULL;
  2151. struct page_cgroup *pc;
  2152. unsigned short id;
  2153. swp_entry_t ent;
  2154. VM_BUG_ON(!PageLocked(page));
  2155. pc = lookup_page_cgroup(page);
  2156. lock_page_cgroup(pc);
  2157. if (PageCgroupUsed(pc)) {
  2158. memcg = pc->mem_cgroup;
  2159. if (memcg && !css_tryget(&memcg->css))
  2160. memcg = NULL;
  2161. } else if (PageSwapCache(page)) {
  2162. ent.val = page_private(page);
  2163. id = lookup_swap_cgroup_id(ent);
  2164. rcu_read_lock();
  2165. memcg = mem_cgroup_lookup(id);
  2166. if (memcg && !css_tryget(&memcg->css))
  2167. memcg = NULL;
  2168. rcu_read_unlock();
  2169. }
  2170. unlock_page_cgroup(pc);
  2171. return memcg;
  2172. }
  2173. static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
  2174. struct page *page,
  2175. unsigned int nr_pages,
  2176. enum charge_type ctype,
  2177. bool lrucare)
  2178. {
  2179. struct page_cgroup *pc = lookup_page_cgroup(page);
  2180. struct zone *uninitialized_var(zone);
  2181. bool was_on_lru = false;
  2182. bool anon;
  2183. lock_page_cgroup(pc);
  2184. if (unlikely(PageCgroupUsed(pc))) {
  2185. unlock_page_cgroup(pc);
  2186. __mem_cgroup_cancel_charge(memcg, nr_pages);
  2187. return;
  2188. }
  2189. /*
  2190. * we don't need page_cgroup_lock about tail pages, becase they are not
  2191. * accessed by any other context at this point.
  2192. */
  2193. /*
  2194. * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
  2195. * may already be on some other mem_cgroup's LRU. Take care of it.
  2196. */
  2197. if (lrucare) {
  2198. zone = page_zone(page);
  2199. spin_lock_irq(&zone->lru_lock);
  2200. if (PageLRU(page)) {
  2201. ClearPageLRU(page);
  2202. del_page_from_lru_list(zone, page, page_lru(page));
  2203. was_on_lru = true;
  2204. }
  2205. }
  2206. pc->mem_cgroup = memcg;
  2207. /*
  2208. * We access a page_cgroup asynchronously without lock_page_cgroup().
  2209. * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
  2210. * is accessed after testing USED bit. To make pc->mem_cgroup visible
  2211. * before USED bit, we need memory barrier here.
  2212. * See mem_cgroup_add_lru_list(), etc.
  2213. */
  2214. smp_wmb();
  2215. SetPageCgroupUsed(pc);
  2216. if (lrucare) {
  2217. if (was_on_lru) {
  2218. VM_BUG_ON(PageLRU(page));
  2219. SetPageLRU(page);
  2220. add_page_to_lru_list(zone, page, page_lru(page));
  2221. }
  2222. spin_unlock_irq(&zone->lru_lock);
  2223. }
  2224. if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
  2225. anon = true;
  2226. else
  2227. anon = false;
  2228. mem_cgroup_charge_statistics(memcg, anon, nr_pages);
  2229. unlock_page_cgroup(pc);
  2230. /*
  2231. * "charge_statistics" updated event counter. Then, check it.
  2232. * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
  2233. * if they exceeds softlimit.
  2234. */
  2235. memcg_check_events(memcg, page);
  2236. }
  2237. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  2238. #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
  2239. /*
  2240. * Because tail pages are not marked as "used", set it. We're under
  2241. * zone->lru_lock, 'splitting on pmd' and compound_lock.
  2242. * charge/uncharge will be never happen and move_account() is done under
  2243. * compound_lock(), so we don't have to take care of races.
  2244. */
  2245. void mem_cgroup_split_huge_fixup(struct page *head)
  2246. {
  2247. struct page_cgroup *head_pc = lookup_page_cgroup(head);
  2248. struct page_cgroup *pc;
  2249. int i;
  2250. if (mem_cgroup_disabled())
  2251. return;
  2252. for (i = 1; i < HPAGE_PMD_NR; i++) {
  2253. pc = head_pc + i;
  2254. pc->mem_cgroup = head_pc->mem_cgroup;
  2255. smp_wmb();/* see __commit_charge() */
  2256. pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
  2257. }
  2258. }
  2259. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  2260. /**
  2261. * mem_cgroup_move_account - move account of the page
  2262. * @page: the page
  2263. * @nr_pages: number of regular pages (>1 for huge pages)
  2264. * @pc: page_cgroup of the page.
  2265. * @from: mem_cgroup which the page is moved from.
  2266. * @to: mem_cgroup which the page is moved to. @from != @to.
  2267. * @uncharge: whether we should call uncharge and css_put against @from.
  2268. *
  2269. * The caller must confirm following.
  2270. * - page is not on LRU (isolate_page() is useful.)
  2271. * - compound_lock is held when nr_pages > 1
  2272. *
  2273. * This function doesn't do "charge" nor css_get to new cgroup. It should be
  2274. * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
  2275. * true, this function does "uncharge" from old cgroup, but it doesn't if
  2276. * @uncharge is false, so a caller should do "uncharge".
  2277. */
  2278. static int mem_cgroup_move_account(struct page *page,
  2279. unsigned int nr_pages,
  2280. struct page_cgroup *pc,
  2281. struct mem_cgroup *from,
  2282. struct mem_cgroup *to,
  2283. bool uncharge)
  2284. {
  2285. unsigned long flags;
  2286. int ret;
  2287. bool anon = PageAnon(page);
  2288. VM_BUG_ON(from == to);
  2289. VM_BUG_ON(PageLRU(page));
  2290. /*
  2291. * The page is isolated from LRU. So, collapse function
  2292. * will not handle this page. But page splitting can happen.
  2293. * Do this check under compound_page_lock(). The caller should
  2294. * hold it.
  2295. */
  2296. ret = -EBUSY;
  2297. if (nr_pages > 1 && !PageTransHuge(page))
  2298. goto out;
  2299. lock_page_cgroup(pc);
  2300. ret = -EINVAL;
  2301. if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
  2302. goto unlock;
  2303. move_lock_mem_cgroup(from, &flags);
  2304. if (!anon && page_mapped(page)) {
  2305. /* Update mapped_file data for mem_cgroup */
  2306. preempt_disable();
  2307. __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
  2308. __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
  2309. preempt_enable();
  2310. }
  2311. mem_cgroup_charge_statistics(from, anon, -nr_pages);
  2312. if (uncharge)
  2313. /* This is not "cancel", but cancel_charge does all we need. */
  2314. __mem_cgroup_cancel_charge(from, nr_pages);
  2315. /* caller should have done css_get */
  2316. pc->mem_cgroup = to;
  2317. mem_cgroup_charge_statistics(to, anon, nr_pages);
  2318. /*
  2319. * We charges against "to" which may not have any tasks. Then, "to"
  2320. * can be under rmdir(). But in current implementation, caller of
  2321. * this function is just force_empty() and move charge, so it's
  2322. * guaranteed that "to" is never removed. So, we don't check rmdir
  2323. * status here.
  2324. */
  2325. move_unlock_mem_cgroup(from, &flags);
  2326. ret = 0;
  2327. unlock:
  2328. unlock_page_cgroup(pc);
  2329. /*
  2330. * check events
  2331. */
  2332. memcg_check_events(to, page);
  2333. memcg_check_events(from, page);
  2334. out:
  2335. return ret;
  2336. }
  2337. /*
  2338. * move charges to its parent.
  2339. */
  2340. static int mem_cgroup_move_parent(struct page *page,
  2341. struct page_cgroup *pc,
  2342. struct mem_cgroup *child,
  2343. gfp_t gfp_mask)
  2344. {
  2345. struct cgroup *cg = child->css.cgroup;
  2346. struct cgroup *pcg = cg->parent;
  2347. struct mem_cgroup *parent;
  2348. unsigned int nr_pages;
  2349. unsigned long uninitialized_var(flags);
  2350. int ret;
  2351. /* Is ROOT ? */
  2352. if (!pcg)
  2353. return -EINVAL;
  2354. ret = -EBUSY;
  2355. if (!get_page_unless_zero(page))
  2356. goto out;
  2357. if (isolate_lru_page(page))
  2358. goto put;
  2359. nr_pages = hpage_nr_pages(page);
  2360. parent = mem_cgroup_from_cont(pcg);
  2361. ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
  2362. if (ret)
  2363. goto put_back;
  2364. if (nr_pages > 1)
  2365. flags = compound_lock_irqsave(page);
  2366. ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
  2367. if (ret)
  2368. __mem_cgroup_cancel_charge(parent, nr_pages);
  2369. if (nr_pages > 1)
  2370. compound_unlock_irqrestore(page, flags);
  2371. put_back:
  2372. putback_lru_page(page);
  2373. put:
  2374. put_page(page);
  2375. out:
  2376. return ret;
  2377. }
  2378. /*
  2379. * Charge the memory controller for page usage.
  2380. * Return
  2381. * 0 if the charge was successful
  2382. * < 0 if the cgroup is over its limit
  2383. */
  2384. static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
  2385. gfp_t gfp_mask, enum charge_type ctype)
  2386. {
  2387. struct mem_cgroup *memcg = NULL;
  2388. unsigned int nr_pages = 1;
  2389. bool oom = true;
  2390. int ret;
  2391. if (PageTransHuge(page)) {
  2392. nr_pages <<= compound_order(page);
  2393. VM_BUG_ON(!PageTransHuge(page));
  2394. /*
  2395. * Never OOM-kill a process for a huge page. The
  2396. * fault handler will fall back to regular pages.
  2397. */
  2398. oom = false;
  2399. }
  2400. ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
  2401. if (ret == -ENOMEM)
  2402. return ret;
  2403. __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
  2404. return 0;
  2405. }
  2406. int mem_cgroup_newpage_charge(struct page *page,
  2407. struct mm_struct *mm, gfp_t gfp_mask)
  2408. {
  2409. if (mem_cgroup_disabled())
  2410. return 0;
  2411. VM_BUG_ON(page_mapped(page));
  2412. VM_BUG_ON(page->mapping && !PageAnon(page));
  2413. VM_BUG_ON(!mm);
  2414. return mem_cgroup_charge_common(page, mm, gfp_mask,
  2415. MEM_CGROUP_CHARGE_TYPE_MAPPED);
  2416. }
  2417. static void
  2418. __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
  2419. enum charge_type ctype);
  2420. int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
  2421. gfp_t gfp_mask)
  2422. {
  2423. struct mem_cgroup *memcg = NULL;
  2424. enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
  2425. int ret;
  2426. if (mem_cgroup_disabled())
  2427. return 0;
  2428. if (PageCompound(page))
  2429. return 0;
  2430. if (unlikely(!mm))
  2431. mm = &init_mm;
  2432. if (!page_is_file_cache(page))
  2433. type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
  2434. if (!PageSwapCache(page))
  2435. ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
  2436. else { /* page is swapcache/shmem */
  2437. ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
  2438. if (!ret)
  2439. __mem_cgroup_commit_charge_swapin(page, memcg, type);
  2440. }
  2441. return ret;
  2442. }
  2443. /*
  2444. * While swap-in, try_charge -> commit or cancel, the page is locked.
  2445. * And when try_charge() successfully returns, one refcnt to memcg without
  2446. * struct page_cgroup is acquired. This refcnt will be consumed by
  2447. * "commit()" or removed by "cancel()"
  2448. */
  2449. int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
  2450. struct page *page,
  2451. gfp_t mask, struct mem_cgroup **memcgp)
  2452. {
  2453. struct mem_cgroup *memcg;
  2454. int ret;
  2455. *memcgp = NULL;
  2456. if (mem_cgroup_disabled())
  2457. return 0;
  2458. if (!do_swap_account)
  2459. goto charge_cur_mm;
  2460. /*
  2461. * A racing thread's fault, or swapoff, may have already updated
  2462. * the pte, and even removed page from swap cache: in those cases
  2463. * do_swap_page()'s pte_same() test will fail; but there's also a
  2464. * KSM case which does need to charge the page.
  2465. */
  2466. if (!PageSwapCache(page))
  2467. goto charge_cur_mm;
  2468. memcg = try_get_mem_cgroup_from_page(page);
  2469. if (!memcg)
  2470. goto charge_cur_mm;
  2471. *memcgp = memcg;
  2472. ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
  2473. css_put(&memcg->css);
  2474. if (ret == -EINTR)
  2475. ret = 0;
  2476. return ret;
  2477. charge_cur_mm:
  2478. if (unlikely(!mm))
  2479. mm = &init_mm;
  2480. ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
  2481. if (ret == -EINTR)
  2482. ret = 0;
  2483. return ret;
  2484. }
  2485. static void
  2486. __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
  2487. enum charge_type ctype)
  2488. {
  2489. if (mem_cgroup_disabled())
  2490. return;
  2491. if (!memcg)
  2492. return;
  2493. cgroup_exclude_rmdir(&memcg->css);
  2494. __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
  2495. /*
  2496. * Now swap is on-memory. This means this page may be
  2497. * counted both as mem and swap....double count.
  2498. * Fix it by uncharging from memsw. Basically, this SwapCache is stable
  2499. * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
  2500. * may call delete_from_swap_cache() before reach here.
  2501. */
  2502. if (do_swap_account && PageSwapCache(page)) {
  2503. swp_entry_t ent = {.val = page_private(page)};
  2504. mem_cgroup_uncharge_swap(ent);
  2505. }
  2506. /*
  2507. * At swapin, we may charge account against cgroup which has no tasks.
  2508. * So, rmdir()->pre_destroy() can be called while we do this charge.
  2509. * In that case, we need to call pre_destroy() again. check it here.
  2510. */
  2511. cgroup_release_and_wakeup_rmdir(&memcg->css);
  2512. }
  2513. void mem_cgroup_commit_charge_swapin(struct page *page,
  2514. struct mem_cgroup *memcg)
  2515. {
  2516. __mem_cgroup_commit_charge_swapin(page, memcg,
  2517. MEM_CGROUP_CHARGE_TYPE_MAPPED);
  2518. }
  2519. void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
  2520. {
  2521. if (mem_cgroup_disabled())
  2522. return;
  2523. if (!memcg)
  2524. return;
  2525. __mem_cgroup_cancel_charge(memcg, 1);
  2526. }
  2527. static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
  2528. unsigned int nr_pages,
  2529. const enum charge_type ctype)
  2530. {
  2531. struct memcg_batch_info *batch = NULL;
  2532. bool uncharge_memsw = true;
  2533. /* If swapout, usage of swap doesn't decrease */
  2534. if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
  2535. uncharge_memsw = false;
  2536. batch = &current->memcg_batch;
  2537. /*
  2538. * In usual, we do css_get() when we remember memcg pointer.
  2539. * But in this case, we keep res->usage until end of a series of
  2540. * uncharges. Then, it's ok to ignore memcg's refcnt.
  2541. */
  2542. if (!batch->memcg)
  2543. batch->memcg = memcg;
  2544. /*
  2545. * do_batch > 0 when unmapping pages or inode invalidate/truncate.
  2546. * In those cases, all pages freed continuously can be expected to be in
  2547. * the same cgroup and we have chance to coalesce uncharges.
  2548. * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
  2549. * because we want to do uncharge as soon as possible.
  2550. */
  2551. if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
  2552. goto direct_uncharge;
  2553. if (nr_pages > 1)
  2554. goto direct_uncharge;
  2555. /*
  2556. * In typical case, batch->memcg == mem. This means we can
  2557. * merge a series of uncharges to an uncharge of res_counter.
  2558. * If not, we uncharge res_counter ony by one.
  2559. */
  2560. if (batch->memcg != memcg)
  2561. goto direct_uncharge;
  2562. /* remember freed charge and uncharge it later */
  2563. batch->nr_pages++;
  2564. if (uncharge_memsw)
  2565. batch->memsw_nr_pages++;
  2566. return;
  2567. direct_uncharge:
  2568. res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
  2569. if (uncharge_memsw)
  2570. res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
  2571. if (unlikely(batch->memcg != memcg))
  2572. memcg_oom_recover(memcg);
  2573. }
  2574. /*
  2575. * uncharge if !page_mapped(page)
  2576. */
  2577. static struct mem_cgroup *
  2578. __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
  2579. {
  2580. struct mem_cgroup *memcg = NULL;
  2581. unsigned int nr_pages = 1;
  2582. struct page_cgroup *pc;
  2583. bool anon;
  2584. if (mem_cgroup_disabled())
  2585. return NULL;
  2586. if (PageSwapCache(page))
  2587. return NULL;
  2588. if (PageTransHuge(page)) {
  2589. nr_pages <<= compound_order(page);
  2590. VM_BUG_ON(!PageTransHuge(page));
  2591. }
  2592. /*
  2593. * Check if our page_cgroup is valid
  2594. */
  2595. pc = lookup_page_cgroup(page);
  2596. if (unlikely(!PageCgroupUsed(pc)))
  2597. return NULL;
  2598. lock_page_cgroup(pc);
  2599. memcg = pc->mem_cgroup;
  2600. if (!PageCgroupUsed(pc))
  2601. goto unlock_out;
  2602. anon = PageAnon(page);
  2603. switch (ctype) {
  2604. case MEM_CGROUP_CHARGE_TYPE_MAPPED:
  2605. /*
  2606. * Generally PageAnon tells if it's the anon statistics to be
  2607. * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
  2608. * used before page reached the stage of being marked PageAnon.
  2609. */
  2610. anon = true;
  2611. /* fallthrough */
  2612. case MEM_CGROUP_CHARGE_TYPE_DROP:
  2613. /* See mem_cgroup_prepare_migration() */
  2614. if (page_mapped(page) || PageCgroupMigration(pc))
  2615. goto unlock_out;
  2616. break;
  2617. case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
  2618. if (!PageAnon(page)) { /* Shared memory */
  2619. if (page->mapping && !page_is_file_cache(page))
  2620. goto unlock_out;
  2621. } else if (page_mapped(page)) /* Anon */
  2622. goto unlock_out;
  2623. break;
  2624. default:
  2625. break;
  2626. }
  2627. mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
  2628. ClearPageCgroupUsed(pc);
  2629. /*
  2630. * pc->mem_cgroup is not cleared here. It will be accessed when it's
  2631. * freed from LRU. This is safe because uncharged page is expected not
  2632. * to be reused (freed soon). Exception is SwapCache, it's handled by
  2633. * special functions.
  2634. */
  2635. unlock_page_cgroup(pc);
  2636. /*
  2637. * even after unlock, we have memcg->res.usage here and this memcg
  2638. * will never be freed.
  2639. */
  2640. memcg_check_events(memcg, page);
  2641. if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
  2642. mem_cgroup_swap_statistics(memcg, true);
  2643. mem_cgroup_get(memcg);
  2644. }
  2645. if (!mem_cgroup_is_root(memcg))
  2646. mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
  2647. return memcg;
  2648. unlock_out:
  2649. unlock_page_cgroup(pc);
  2650. return NULL;
  2651. }
  2652. void mem_cgroup_uncharge_page(struct page *page)
  2653. {
  2654. /* early check. */
  2655. if (page_mapped(page))
  2656. return;
  2657. VM_BUG_ON(page->mapping && !PageAnon(page));
  2658. __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
  2659. }
  2660. void mem_cgroup_uncharge_cache_page(struct page *page)
  2661. {
  2662. VM_BUG_ON(page_mapped(page));
  2663. VM_BUG_ON(page->mapping);
  2664. __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
  2665. }
  2666. /*
  2667. * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
  2668. * In that cases, pages are freed continuously and we can expect pages
  2669. * are in the same memcg. All these calls itself limits the number of
  2670. * pages freed at once, then uncharge_start/end() is called properly.
  2671. * This may be called prural(2) times in a context,
  2672. */
  2673. void mem_cgroup_uncharge_start(void)
  2674. {
  2675. current->memcg_batch.do_batch++;
  2676. /* We can do nest. */
  2677. if (current->memcg_batch.do_batch == 1) {
  2678. current->memcg_batch.memcg = NULL;
  2679. current->memcg_batch.nr_pages = 0;
  2680. current->memcg_batch.memsw_nr_pages = 0;
  2681. }
  2682. }
  2683. void mem_cgroup_uncharge_end(void)
  2684. {
  2685. struct memcg_batch_info *batch = &current->memcg_batch;
  2686. if (!batch->do_batch)
  2687. return;
  2688. batch->do_batch--;
  2689. if (batch->do_batch) /* If stacked, do nothing. */
  2690. return;
  2691. if (!batch->memcg)
  2692. return;
  2693. /*
  2694. * This "batch->memcg" is valid without any css_get/put etc...
  2695. * bacause we hide charges behind us.
  2696. */
  2697. if (batch->nr_pages)
  2698. res_counter_uncharge(&batch->memcg->res,
  2699. batch->nr_pages * PAGE_SIZE);
  2700. if (batch->memsw_nr_pages)
  2701. res_counter_uncharge(&batch->memcg->memsw,
  2702. batch->memsw_nr_pages * PAGE_SIZE);
  2703. memcg_oom_recover(batch->memcg);
  2704. /* forget this pointer (for sanity check) */
  2705. batch->memcg = NULL;
  2706. }
  2707. #ifdef CONFIG_SWAP
  2708. /*
  2709. * called after __delete_from_swap_cache() and drop "page" account.
  2710. * memcg information is recorded to swap_cgroup of "ent"
  2711. */
  2712. void
  2713. mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
  2714. {
  2715. struct mem_cgroup *memcg;
  2716. int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
  2717. if (!swapout) /* this was a swap cache but the swap is unused ! */
  2718. ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
  2719. memcg = __mem_cgroup_uncharge_common(page, ctype);
  2720. /*
  2721. * record memcg information, if swapout && memcg != NULL,
  2722. * mem_cgroup_get() was called in uncharge().
  2723. */
  2724. if (do_swap_account && swapout && memcg)
  2725. swap_cgroup_record(ent, css_id(&memcg->css));
  2726. }
  2727. #endif
  2728. #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
  2729. /*
  2730. * called from swap_entry_free(). remove record in swap_cgroup and
  2731. * uncharge "memsw" account.
  2732. */
  2733. void mem_cgroup_uncharge_swap(swp_entry_t ent)
  2734. {
  2735. struct mem_cgroup *memcg;
  2736. unsigned short id;
  2737. if (!do_swap_account)
  2738. return;
  2739. id = swap_cgroup_record(ent, 0);
  2740. rcu_read_lock();
  2741. memcg = mem_cgroup_lookup(id);
  2742. if (memcg) {
  2743. /*
  2744. * We uncharge this because swap is freed.
  2745. * This memcg can be obsolete one. We avoid calling css_tryget
  2746. */
  2747. if (!mem_cgroup_is_root(memcg))
  2748. res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
  2749. mem_cgroup_swap_statistics(memcg, false);
  2750. mem_cgroup_put(memcg);
  2751. }
  2752. rcu_read_unlock();
  2753. }
  2754. /**
  2755. * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
  2756. * @entry: swap entry to be moved
  2757. * @from: mem_cgroup which the entry is moved from
  2758. * @to: mem_cgroup which the entry is moved to
  2759. *
  2760. * It succeeds only when the swap_cgroup's record for this entry is the same
  2761. * as the mem_cgroup's id of @from.
  2762. *
  2763. * Returns 0 on success, -EINVAL on failure.
  2764. *
  2765. * The caller must have charged to @to, IOW, called res_counter_charge() about
  2766. * both res and memsw, and called css_get().
  2767. */
  2768. static int mem_cgroup_move_swap_account(swp_entry_t entry,
  2769. struct mem_cgroup *from, struct mem_cgroup *to)
  2770. {
  2771. unsigned short old_id, new_id;
  2772. old_id = css_id(&from->css);
  2773. new_id = css_id(&to->css);
  2774. if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
  2775. mem_cgroup_swap_statistics(from, false);
  2776. mem_cgroup_swap_statistics(to, true);
  2777. /*
  2778. * This function is only called from task migration context now.
  2779. * It postpones res_counter and refcount handling till the end
  2780. * of task migration(mem_cgroup_clear_mc()) for performance
  2781. * improvement. But we cannot postpone mem_cgroup_get(to)
  2782. * because if the process that has been moved to @to does
  2783. * swap-in, the refcount of @to might be decreased to 0.
  2784. */
  2785. mem_cgroup_get(to);
  2786. return 0;
  2787. }
  2788. return -EINVAL;
  2789. }
  2790. #else
  2791. static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
  2792. struct mem_cgroup *from, struct mem_cgroup *to)
  2793. {
  2794. return -EINVAL;
  2795. }
  2796. #endif
  2797. /*
  2798. * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
  2799. * page belongs to.
  2800. */
  2801. int mem_cgroup_prepare_migration(struct page *page,
  2802. struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
  2803. {
  2804. struct mem_cgroup *memcg = NULL;
  2805. struct page_cgroup *pc;
  2806. enum charge_type ctype;
  2807. int ret = 0;
  2808. *memcgp = NULL;
  2809. VM_BUG_ON(PageTransHuge(page));
  2810. if (mem_cgroup_disabled())
  2811. return 0;
  2812. pc = lookup_page_cgroup(page);
  2813. lock_page_cgroup(pc);
  2814. if (PageCgroupUsed(pc)) {
  2815. memcg = pc->mem_cgroup;
  2816. css_get(&memcg->css);
  2817. /*
  2818. * At migrating an anonymous page, its mapcount goes down
  2819. * to 0 and uncharge() will be called. But, even if it's fully
  2820. * unmapped, migration may fail and this page has to be
  2821. * charged again. We set MIGRATION flag here and delay uncharge
  2822. * until end_migration() is called
  2823. *
  2824. * Corner Case Thinking
  2825. * A)
  2826. * When the old page was mapped as Anon and it's unmap-and-freed
  2827. * while migration was ongoing.
  2828. * If unmap finds the old page, uncharge() of it will be delayed
  2829. * until end_migration(). If unmap finds a new page, it's
  2830. * uncharged when it make mapcount to be 1->0. If unmap code
  2831. * finds swap_migration_entry, the new page will not be mapped
  2832. * and end_migration() will find it(mapcount==0).
  2833. *
  2834. * B)
  2835. * When the old page was mapped but migraion fails, the kernel
  2836. * remaps it. A charge for it is kept by MIGRATION flag even
  2837. * if mapcount goes down to 0. We can do remap successfully
  2838. * without charging it again.
  2839. *
  2840. * C)
  2841. * The "old" page is under lock_page() until the end of
  2842. * migration, so, the old page itself will not be swapped-out.
  2843. * If the new page is swapped out before end_migraton, our
  2844. * hook to usual swap-out path will catch the event.
  2845. */
  2846. if (PageAnon(page))
  2847. SetPageCgroupMigration(pc);
  2848. }
  2849. unlock_page_cgroup(pc);
  2850. /*
  2851. * If the page is not charged at this point,
  2852. * we return here.
  2853. */
  2854. if (!memcg)
  2855. return 0;
  2856. *memcgp = memcg;
  2857. ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
  2858. css_put(&memcg->css);/* drop extra refcnt */
  2859. if (ret) {
  2860. if (PageAnon(page)) {
  2861. lock_page_cgroup(pc);
  2862. ClearPageCgroupMigration(pc);
  2863. unlock_page_cgroup(pc);
  2864. /*
  2865. * The old page may be fully unmapped while we kept it.
  2866. */
  2867. mem_cgroup_uncharge_page(page);
  2868. }
  2869. /* we'll need to revisit this error code (we have -EINTR) */
  2870. return -ENOMEM;
  2871. }
  2872. /*
  2873. * We charge new page before it's used/mapped. So, even if unlock_page()
  2874. * is called before end_migration, we can catch all events on this new
  2875. * page. In the case new page is migrated but not remapped, new page's
  2876. * mapcount will be finally 0 and we call uncharge in end_migration().
  2877. */
  2878. if (PageAnon(page))
  2879. ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
  2880. else if (page_is_file_cache(page))
  2881. ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
  2882. else
  2883. ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
  2884. __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
  2885. return ret;
  2886. }
  2887. /* remove redundant charge if migration failed*/
  2888. void mem_cgroup_end_migration(struct mem_cgroup *memcg,
  2889. struct page *oldpage, struct page *newpage, bool migration_ok)
  2890. {
  2891. struct page *used, *unused;
  2892. struct page_cgroup *pc;
  2893. bool anon;
  2894. if (!memcg)
  2895. return;
  2896. /* blocks rmdir() */
  2897. cgroup_exclude_rmdir(&memcg->css);
  2898. if (!migration_ok) {
  2899. used = oldpage;
  2900. unused = newpage;
  2901. } else {
  2902. used = newpage;
  2903. unused = oldpage;
  2904. }
  2905. /*
  2906. * We disallowed uncharge of pages under migration because mapcount
  2907. * of the page goes down to zero, temporarly.
  2908. * Clear the flag and check the page should be charged.
  2909. */
  2910. pc = lookup_page_cgroup(oldpage);
  2911. lock_page_cgroup(pc);
  2912. ClearPageCgroupMigration(pc);
  2913. unlock_page_cgroup(pc);
  2914. anon = PageAnon(used);
  2915. __mem_cgroup_uncharge_common(unused,
  2916. anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
  2917. : MEM_CGROUP_CHARGE_TYPE_CACHE);
  2918. /*
  2919. * If a page is a file cache, radix-tree replacement is very atomic
  2920. * and we can skip this check. When it was an Anon page, its mapcount
  2921. * goes down to 0. But because we added MIGRATION flage, it's not
  2922. * uncharged yet. There are several case but page->mapcount check
  2923. * and USED bit check in mem_cgroup_uncharge_page() will do enough
  2924. * check. (see prepare_charge() also)
  2925. */
  2926. if (anon)
  2927. mem_cgroup_uncharge_page(used);
  2928. /*
  2929. * At migration, we may charge account against cgroup which has no
  2930. * tasks.
  2931. * So, rmdir()->pre_destroy() can be called while we do this charge.
  2932. * In that case, we need to call pre_destroy() again. check it here.
  2933. */
  2934. cgroup_release_and_wakeup_rmdir(&memcg->css);
  2935. }
  2936. /*
  2937. * At replace page cache, newpage is not under any memcg but it's on
  2938. * LRU. So, this function doesn't touch res_counter but handles LRU
  2939. * in correct way. Both pages are locked so we cannot race with uncharge.
  2940. */
  2941. void mem_cgroup_replace_page_cache(struct page *oldpage,
  2942. struct page *newpage)
  2943. {
  2944. struct mem_cgroup *memcg = NULL;
  2945. struct page_cgroup *pc;
  2946. enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
  2947. if (mem_cgroup_disabled())
  2948. return;
  2949. pc = lookup_page_cgroup(oldpage);
  2950. /* fix accounting on old pages */
  2951. lock_page_cgroup(pc);
  2952. if (PageCgroupUsed(pc)) {
  2953. memcg = pc->mem_cgroup;
  2954. mem_cgroup_charge_statistics(memcg, false, -1);
  2955. ClearPageCgroupUsed(pc);
  2956. }
  2957. unlock_page_cgroup(pc);
  2958. /*
  2959. * When called from shmem_replace_page(), in some cases the
  2960. * oldpage has already been charged, and in some cases not.
  2961. */
  2962. if (!memcg)
  2963. return;
  2964. if (PageSwapBacked(oldpage))
  2965. type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
  2966. /*
  2967. * Even if newpage->mapping was NULL before starting replacement,
  2968. * the newpage may be on LRU(or pagevec for LRU) already. We lock
  2969. * LRU while we overwrite pc->mem_cgroup.
  2970. */
  2971. __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
  2972. }
  2973. #ifdef CONFIG_DEBUG_VM
  2974. static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
  2975. {
  2976. struct page_cgroup *pc;
  2977. pc = lookup_page_cgroup(page);
  2978. /*
  2979. * Can be NULL while feeding pages into the page allocator for
  2980. * the first time, i.e. during boot or memory hotplug;
  2981. * or when mem_cgroup_disabled().
  2982. */
  2983. if (likely(pc) && PageCgroupUsed(pc))
  2984. return pc;
  2985. return NULL;
  2986. }
  2987. bool mem_cgroup_bad_page_check(struct page *page)
  2988. {
  2989. if (mem_cgroup_disabled())
  2990. return false;
  2991. return lookup_page_cgroup_used(page) != NULL;
  2992. }
  2993. void mem_cgroup_print_bad_page(struct page *page)
  2994. {
  2995. struct page_cgroup *pc;
  2996. pc = lookup_page_cgroup_used(page);
  2997. if (pc) {
  2998. printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
  2999. pc, pc->flags, pc->mem_cgroup);
  3000. }
  3001. }
  3002. #endif
  3003. static DEFINE_MUTEX(set_limit_mutex);
  3004. static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
  3005. unsigned long long val)
  3006. {
  3007. int retry_count;
  3008. u64 memswlimit, memlimit;
  3009. int ret = 0;
  3010. int children = mem_cgroup_count_children(memcg);
  3011. u64 curusage, oldusage;
  3012. int enlarge;
  3013. /*
  3014. * For keeping hierarchical_reclaim simple, how long we should retry
  3015. * is depends on callers. We set our retry-count to be function
  3016. * of # of children which we should visit in this loop.
  3017. */
  3018. retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
  3019. oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
  3020. enlarge = 0;
  3021. while (retry_count) {
  3022. if (signal_pending(current)) {
  3023. ret = -EINTR;
  3024. break;
  3025. }
  3026. /*
  3027. * Rather than hide all in some function, I do this in
  3028. * open coded manner. You see what this really does.
  3029. * We have to guarantee memcg->res.limit < memcg->memsw.limit.
  3030. */
  3031. mutex_lock(&set_limit_mutex);
  3032. memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
  3033. if (memswlimit < val) {
  3034. ret = -EINVAL;
  3035. mutex_unlock(&set_limit_mutex);
  3036. break;
  3037. }
  3038. memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
  3039. if (memlimit < val)
  3040. enlarge = 1;
  3041. ret = res_counter_set_limit(&memcg->res, val);
  3042. if (!ret) {
  3043. if (memswlimit == val)
  3044. memcg->memsw_is_minimum = true;
  3045. else
  3046. memcg->memsw_is_minimum = false;
  3047. }
  3048. mutex_unlock(&set_limit_mutex);
  3049. if (!ret)
  3050. break;
  3051. mem_cgroup_reclaim(memcg, GFP_KERNEL,
  3052. MEM_CGROUP_RECLAIM_SHRINK);
  3053. curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
  3054. /* Usage is reduced ? */
  3055. if (curusage >= oldusage)
  3056. retry_count--;
  3057. else
  3058. oldusage = curusage;
  3059. }
  3060. if (!ret && enlarge)
  3061. memcg_oom_recover(memcg);
  3062. return ret;
  3063. }
  3064. static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
  3065. unsigned long long val)
  3066. {
  3067. int retry_count;
  3068. u64 memlimit, memswlimit, oldusage, curusage;
  3069. int children = mem_cgroup_count_children(memcg);
  3070. int ret = -EBUSY;
  3071. int enlarge = 0;
  3072. /* see mem_cgroup_resize_res_limit */
  3073. retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
  3074. oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
  3075. while (retry_count) {
  3076. if (signal_pending(current)) {
  3077. ret = -EINTR;
  3078. break;
  3079. }
  3080. /*
  3081. * Rather than hide all in some function, I do this in
  3082. * open coded manner. You see what this really does.
  3083. * We have to guarantee memcg->res.limit < memcg->memsw.limit.
  3084. */
  3085. mutex_lock(&set_limit_mutex);
  3086. memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
  3087. if (memlimit > val) {
  3088. ret = -EINVAL;
  3089. mutex_unlock(&set_limit_mutex);
  3090. break;
  3091. }
  3092. memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
  3093. if (memswlimit < val)
  3094. enlarge = 1;
  3095. ret = res_counter_set_limit(&memcg->memsw, val);
  3096. if (!ret) {
  3097. if (memlimit == val)
  3098. memcg->memsw_is_minimum = true;
  3099. else
  3100. memcg->memsw_is_minimum = false;
  3101. }
  3102. mutex_unlock(&set_limit_mutex);
  3103. if (!ret)
  3104. break;
  3105. mem_cgroup_reclaim(memcg, GFP_KERNEL,
  3106. MEM_CGROUP_RECLAIM_NOSWAP |
  3107. MEM_CGROUP_RECLAIM_SHRINK);
  3108. curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
  3109. /* Usage is reduced ? */
  3110. if (curusage >= oldusage)
  3111. retry_count--;
  3112. else
  3113. oldusage = curusage;
  3114. }
  3115. if (!ret && enlarge)
  3116. memcg_oom_recover(memcg);
  3117. return ret;
  3118. }
  3119. unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
  3120. gfp_t gfp_mask,
  3121. unsigned long *total_scanned)
  3122. {
  3123. unsigned long nr_reclaimed = 0;
  3124. struct mem_cgroup_per_zone *mz, *next_mz = NULL;
  3125. unsigned long reclaimed;
  3126. int loop = 0;
  3127. struct mem_cgroup_tree_per_zone *mctz;
  3128. unsigned long long excess;
  3129. unsigned long nr_scanned;
  3130. if (order > 0)
  3131. return 0;
  3132. mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
  3133. /*
  3134. * This loop can run a while, specially if mem_cgroup's continuously
  3135. * keep exceeding their soft limit and putting the system under
  3136. * pressure
  3137. */
  3138. do {
  3139. if (next_mz)
  3140. mz = next_mz;
  3141. else
  3142. mz = mem_cgroup_largest_soft_limit_node(mctz);
  3143. if (!mz)
  3144. break;
  3145. nr_scanned = 0;
  3146. reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
  3147. gfp_mask, &nr_scanned);
  3148. nr_reclaimed += reclaimed;
  3149. *total_scanned += nr_scanned;
  3150. spin_lock(&mctz->lock);
  3151. /*
  3152. * If we failed to reclaim anything from this memory cgroup
  3153. * it is time to move on to the next cgroup
  3154. */
  3155. next_mz = NULL;
  3156. if (!reclaimed) {
  3157. do {
  3158. /*
  3159. * Loop until we find yet another one.
  3160. *
  3161. * By the time we get the soft_limit lock
  3162. * again, someone might have aded the
  3163. * group back on the RB tree. Iterate to
  3164. * make sure we get a different mem.
  3165. * mem_cgroup_largest_soft_limit_node returns
  3166. * NULL if no other cgroup is present on
  3167. * the tree
  3168. */
  3169. next_mz =
  3170. __mem_cgroup_largest_soft_limit_node(mctz);
  3171. if (next_mz == mz)
  3172. css_put(&next_mz->memcg->css);
  3173. else /* next_mz == NULL or other memcg */
  3174. break;
  3175. } while (1);
  3176. }
  3177. __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
  3178. excess = res_counter_soft_limit_excess(&mz->memcg->res);
  3179. /*
  3180. * One school of thought says that we should not add
  3181. * back the node to the tree if reclaim returns 0.
  3182. * But our reclaim could return 0, simply because due
  3183. * to priority we are exposing a smaller subset of
  3184. * memory to reclaim from. Consider this as a longer
  3185. * term TODO.
  3186. */
  3187. /* If excess == 0, no tree ops */
  3188. __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
  3189. spin_unlock(&mctz->lock);
  3190. css_put(&mz->memcg->css);
  3191. loop++;
  3192. /*
  3193. * Could not reclaim anything and there are no more
  3194. * mem cgroups to try or we seem to be looping without
  3195. * reclaiming anything.
  3196. */
  3197. if (!nr_reclaimed &&
  3198. (next_mz == NULL ||
  3199. loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
  3200. break;
  3201. } while (!nr_reclaimed);
  3202. if (next_mz)
  3203. css_put(&next_mz->memcg->css);
  3204. return nr_reclaimed;
  3205. }
  3206. /*
  3207. * This routine traverse page_cgroup in given list and drop them all.
  3208. * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
  3209. */
  3210. static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
  3211. int node, int zid, enum lru_list lru)
  3212. {
  3213. struct mem_cgroup_per_zone *mz;
  3214. unsigned long flags, loop;
  3215. struct list_head *list;
  3216. struct page *busy;
  3217. struct zone *zone;
  3218. int ret = 0;
  3219. zone = &NODE_DATA(node)->node_zones[zid];
  3220. mz = mem_cgroup_zoneinfo(memcg, node, zid);
  3221. list = &mz->lruvec.lists[lru];
  3222. loop = mz->lru_size[lru];
  3223. /* give some margin against EBUSY etc...*/
  3224. loop += 256;
  3225. busy = NULL;
  3226. while (loop--) {
  3227. struct page_cgroup *pc;
  3228. struct page *page;
  3229. ret = 0;
  3230. spin_lock_irqsave(&zone->lru_lock, flags);
  3231. if (list_empty(list)) {
  3232. spin_unlock_irqrestore(&zone->lru_lock, flags);
  3233. break;
  3234. }
  3235. page = list_entry(list->prev, struct page, lru);
  3236. if (busy == page) {
  3237. list_move(&page->lru, list);
  3238. busy = NULL;
  3239. spin_unlock_irqrestore(&zone->lru_lock, flags);
  3240. continue;
  3241. }
  3242. spin_unlock_irqrestore(&zone->lru_lock, flags);
  3243. pc = lookup_page_cgroup(page);
  3244. ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
  3245. if (ret == -ENOMEM || ret == -EINTR)
  3246. break;
  3247. if (ret == -EBUSY || ret == -EINVAL) {
  3248. /* found lock contention or "pc" is obsolete. */
  3249. busy = page;
  3250. cond_resched();
  3251. } else
  3252. busy = NULL;
  3253. }
  3254. if (!ret && !list_empty(list))
  3255. return -EBUSY;
  3256. return ret;
  3257. }
  3258. /*
  3259. * make mem_cgroup's charge to be 0 if there is no task.
  3260. * This enables deleting this mem_cgroup.
  3261. */
  3262. static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
  3263. {
  3264. int ret;
  3265. int node, zid, shrink;
  3266. int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
  3267. struct cgroup *cgrp = memcg->css.cgroup;
  3268. css_get(&memcg->css);
  3269. shrink = 0;
  3270. /* should free all ? */
  3271. if (free_all)
  3272. goto try_to_free;
  3273. move_account:
  3274. do {
  3275. ret = -EBUSY;
  3276. if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
  3277. goto out;
  3278. ret = -EINTR;
  3279. if (signal_pending(current))
  3280. goto out;
  3281. /* This is for making all *used* pages to be on LRU. */
  3282. lru_add_drain_all();
  3283. drain_all_stock_sync(memcg);
  3284. ret = 0;
  3285. mem_cgroup_start_move(memcg);
  3286. for_each_node_state(node, N_HIGH_MEMORY) {
  3287. for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
  3288. enum lru_list lru;
  3289. for_each_lru(lru) {
  3290. ret = mem_cgroup_force_empty_list(memcg,
  3291. node, zid, lru);
  3292. if (ret)
  3293. break;
  3294. }
  3295. }
  3296. if (ret)
  3297. break;
  3298. }
  3299. mem_cgroup_end_move(memcg);
  3300. memcg_oom_recover(memcg);
  3301. /* it seems parent cgroup doesn't have enough mem */
  3302. if (ret == -ENOMEM)
  3303. goto try_to_free;
  3304. cond_resched();
  3305. /* "ret" should also be checked to ensure all lists are empty. */
  3306. } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
  3307. out:
  3308. css_put(&memcg->css);
  3309. return ret;
  3310. try_to_free:
  3311. /* returns EBUSY if there is a task or if we come here twice. */
  3312. if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
  3313. ret = -EBUSY;
  3314. goto out;
  3315. }
  3316. /* we call try-to-free pages for make this cgroup empty */
  3317. lru_add_drain_all();
  3318. /* try to free all pages in this cgroup */
  3319. shrink = 1;
  3320. while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
  3321. int progress;
  3322. if (signal_pending(current)) {
  3323. ret = -EINTR;
  3324. goto out;
  3325. }
  3326. progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
  3327. false);
  3328. if (!progress) {
  3329. nr_retries--;
  3330. /* maybe some writeback is necessary */
  3331. congestion_wait(BLK_RW_ASYNC, HZ/10);
  3332. }
  3333. }
  3334. lru_add_drain();
  3335. /* try move_account...there may be some *locked* pages. */
  3336. goto move_account;
  3337. }
  3338. static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
  3339. {
  3340. return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
  3341. }
  3342. static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
  3343. {
  3344. return mem_cgroup_from_cont(cont)->use_hierarchy;
  3345. }
  3346. static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
  3347. u64 val)
  3348. {
  3349. int retval = 0;
  3350. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  3351. struct cgroup *parent = cont->parent;
  3352. struct mem_cgroup *parent_memcg = NULL;
  3353. if (parent)
  3354. parent_memcg = mem_cgroup_from_cont(parent);
  3355. cgroup_lock();
  3356. /*
  3357. * If parent's use_hierarchy is set, we can't make any modifications
  3358. * in the child subtrees. If it is unset, then the change can
  3359. * occur, provided the current cgroup has no children.
  3360. *
  3361. * For the root cgroup, parent_mem is NULL, we allow value to be
  3362. * set if there are no children.
  3363. */
  3364. if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
  3365. (val == 1 || val == 0)) {
  3366. if (list_empty(&cont->children))
  3367. memcg->use_hierarchy = val;
  3368. else
  3369. retval = -EBUSY;
  3370. } else
  3371. retval = -EINVAL;
  3372. cgroup_unlock();
  3373. return retval;
  3374. }
  3375. static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
  3376. enum mem_cgroup_stat_index idx)
  3377. {
  3378. struct mem_cgroup *iter;
  3379. long val = 0;
  3380. /* Per-cpu values can be negative, use a signed accumulator */
  3381. for_each_mem_cgroup_tree(iter, memcg)
  3382. val += mem_cgroup_read_stat(iter, idx);
  3383. if (val < 0) /* race ? */
  3384. val = 0;
  3385. return val;
  3386. }
  3387. static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
  3388. {
  3389. u64 val;
  3390. if (!mem_cgroup_is_root(memcg)) {
  3391. if (!swap)
  3392. return res_counter_read_u64(&memcg->res, RES_USAGE);
  3393. else
  3394. return res_counter_read_u64(&memcg->memsw, RES_USAGE);
  3395. }
  3396. val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
  3397. val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
  3398. if (swap)
  3399. val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
  3400. return val << PAGE_SHIFT;
  3401. }
  3402. static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
  3403. struct file *file, char __user *buf,
  3404. size_t nbytes, loff_t *ppos)
  3405. {
  3406. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  3407. char str[64];
  3408. u64 val;
  3409. int type, name, len;
  3410. type = MEMFILE_TYPE(cft->private);
  3411. name = MEMFILE_ATTR(cft->private);
  3412. if (!do_swap_account && type == _MEMSWAP)
  3413. return -EOPNOTSUPP;
  3414. switch (type) {
  3415. case _MEM:
  3416. if (name == RES_USAGE)
  3417. val = mem_cgroup_usage(memcg, false);
  3418. else
  3419. val = res_counter_read_u64(&memcg->res, name);
  3420. break;
  3421. case _MEMSWAP:
  3422. if (name == RES_USAGE)
  3423. val = mem_cgroup_usage(memcg, true);
  3424. else
  3425. val = res_counter_read_u64(&memcg->memsw, name);
  3426. break;
  3427. default:
  3428. BUG();
  3429. }
  3430. len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
  3431. return simple_read_from_buffer(buf, nbytes, ppos, str, len);
  3432. }
  3433. /*
  3434. * The user of this function is...
  3435. * RES_LIMIT.
  3436. */
  3437. static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
  3438. const char *buffer)
  3439. {
  3440. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  3441. int type, name;
  3442. unsigned long long val;
  3443. int ret;
  3444. type = MEMFILE_TYPE(cft->private);
  3445. name = MEMFILE_ATTR(cft->private);
  3446. if (!do_swap_account && type == _MEMSWAP)
  3447. return -EOPNOTSUPP;
  3448. switch (name) {
  3449. case RES_LIMIT:
  3450. if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
  3451. ret = -EINVAL;
  3452. break;
  3453. }
  3454. /* This function does all necessary parse...reuse it */
  3455. ret = res_counter_memparse_write_strategy(buffer, &val);
  3456. if (ret)
  3457. break;
  3458. if (type == _MEM)
  3459. ret = mem_cgroup_resize_limit(memcg, val);
  3460. else
  3461. ret = mem_cgroup_resize_memsw_limit(memcg, val);
  3462. break;
  3463. case RES_SOFT_LIMIT:
  3464. ret = res_counter_memparse_write_strategy(buffer, &val);
  3465. if (ret)
  3466. break;
  3467. /*
  3468. * For memsw, soft limits are hard to implement in terms
  3469. * of semantics, for now, we support soft limits for
  3470. * control without swap
  3471. */
  3472. if (type == _MEM)
  3473. ret = res_counter_set_soft_limit(&memcg->res, val);
  3474. else
  3475. ret = -EINVAL;
  3476. break;
  3477. default:
  3478. ret = -EINVAL; /* should be BUG() ? */
  3479. break;
  3480. }
  3481. return ret;
  3482. }
  3483. static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
  3484. unsigned long long *mem_limit, unsigned long long *memsw_limit)
  3485. {
  3486. struct cgroup *cgroup;
  3487. unsigned long long min_limit, min_memsw_limit, tmp;
  3488. min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
  3489. min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
  3490. cgroup = memcg->css.cgroup;
  3491. if (!memcg->use_hierarchy)
  3492. goto out;
  3493. while (cgroup->parent) {
  3494. cgroup = cgroup->parent;
  3495. memcg = mem_cgroup_from_cont(cgroup);
  3496. if (!memcg->use_hierarchy)
  3497. break;
  3498. tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
  3499. min_limit = min(min_limit, tmp);
  3500. tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
  3501. min_memsw_limit = min(min_memsw_limit, tmp);
  3502. }
  3503. out:
  3504. *mem_limit = min_limit;
  3505. *memsw_limit = min_memsw_limit;
  3506. }
  3507. static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
  3508. {
  3509. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  3510. int type, name;
  3511. type = MEMFILE_TYPE(event);
  3512. name = MEMFILE_ATTR(event);
  3513. if (!do_swap_account && type == _MEMSWAP)
  3514. return -EOPNOTSUPP;
  3515. switch (name) {
  3516. case RES_MAX_USAGE:
  3517. if (type == _MEM)
  3518. res_counter_reset_max(&memcg->res);
  3519. else
  3520. res_counter_reset_max(&memcg->memsw);
  3521. break;
  3522. case RES_FAILCNT:
  3523. if (type == _MEM)
  3524. res_counter_reset_failcnt(&memcg->res);
  3525. else
  3526. res_counter_reset_failcnt(&memcg->memsw);
  3527. break;
  3528. }
  3529. return 0;
  3530. }
  3531. static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
  3532. struct cftype *cft)
  3533. {
  3534. return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
  3535. }
  3536. #ifdef CONFIG_MMU
  3537. static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
  3538. struct cftype *cft, u64 val)
  3539. {
  3540. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  3541. if (val >= (1 << NR_MOVE_TYPE))
  3542. return -EINVAL;
  3543. /*
  3544. * We check this value several times in both in can_attach() and
  3545. * attach(), so we need cgroup lock to prevent this value from being
  3546. * inconsistent.
  3547. */
  3548. cgroup_lock();
  3549. memcg->move_charge_at_immigrate = val;
  3550. cgroup_unlock();
  3551. return 0;
  3552. }
  3553. #else
  3554. static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
  3555. struct cftype *cft, u64 val)
  3556. {
  3557. return -ENOSYS;
  3558. }
  3559. #endif
  3560. /* For read statistics */
  3561. enum {
  3562. MCS_CACHE,
  3563. MCS_RSS,
  3564. MCS_FILE_MAPPED,
  3565. MCS_PGPGIN,
  3566. MCS_PGPGOUT,
  3567. MCS_SWAP,
  3568. MCS_PGFAULT,
  3569. MCS_PGMAJFAULT,
  3570. MCS_INACTIVE_ANON,
  3571. MCS_ACTIVE_ANON,
  3572. MCS_INACTIVE_FILE,
  3573. MCS_ACTIVE_FILE,
  3574. MCS_UNEVICTABLE,
  3575. NR_MCS_STAT,
  3576. };
  3577. struct mcs_total_stat {
  3578. s64 stat[NR_MCS_STAT];
  3579. };
  3580. static struct {
  3581. char *local_name;
  3582. char *total_name;
  3583. } memcg_stat_strings[NR_MCS_STAT] = {
  3584. {"cache", "total_cache"},
  3585. {"rss", "total_rss"},
  3586. {"mapped_file", "total_mapped_file"},
  3587. {"pgpgin", "total_pgpgin"},
  3588. {"pgpgout", "total_pgpgout"},
  3589. {"swap", "total_swap"},
  3590. {"pgfault", "total_pgfault"},
  3591. {"pgmajfault", "total_pgmajfault"},
  3592. {"inactive_anon", "total_inactive_anon"},
  3593. {"active_anon", "total_active_anon"},
  3594. {"inactive_file", "total_inactive_file"},
  3595. {"active_file", "total_active_file"},
  3596. {"unevictable", "total_unevictable"}
  3597. };
  3598. static void
  3599. mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
  3600. {
  3601. s64 val;
  3602. /* per cpu stat */
  3603. val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
  3604. s->stat[MCS_CACHE] += val * PAGE_SIZE;
  3605. val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
  3606. s->stat[MCS_RSS] += val * PAGE_SIZE;
  3607. val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
  3608. s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
  3609. val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
  3610. s->stat[MCS_PGPGIN] += val;
  3611. val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
  3612. s->stat[MCS_PGPGOUT] += val;
  3613. if (do_swap_account) {
  3614. val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
  3615. s->stat[MCS_SWAP] += val * PAGE_SIZE;
  3616. }
  3617. val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
  3618. s->stat[MCS_PGFAULT] += val;
  3619. val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
  3620. s->stat[MCS_PGMAJFAULT] += val;
  3621. /* per zone stat */
  3622. val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
  3623. s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
  3624. val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
  3625. s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
  3626. val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
  3627. s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
  3628. val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
  3629. s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
  3630. val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
  3631. s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
  3632. }
  3633. static void
  3634. mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
  3635. {
  3636. struct mem_cgroup *iter;
  3637. for_each_mem_cgroup_tree(iter, memcg)
  3638. mem_cgroup_get_local_stat(iter, s);
  3639. }
  3640. #ifdef CONFIG_NUMA
  3641. static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
  3642. {
  3643. int nid;
  3644. unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
  3645. unsigned long node_nr;
  3646. struct cgroup *cont = m->private;
  3647. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  3648. total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
  3649. seq_printf(m, "total=%lu", total_nr);
  3650. for_each_node_state(nid, N_HIGH_MEMORY) {
  3651. node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
  3652. seq_printf(m, " N%d=%lu", nid, node_nr);
  3653. }
  3654. seq_putc(m, '\n');
  3655. file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
  3656. seq_printf(m, "file=%lu", file_nr);
  3657. for_each_node_state(nid, N_HIGH_MEMORY) {
  3658. node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
  3659. LRU_ALL_FILE);
  3660. seq_printf(m, " N%d=%lu", nid, node_nr);
  3661. }
  3662. seq_putc(m, '\n');
  3663. anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
  3664. seq_printf(m, "anon=%lu", anon_nr);
  3665. for_each_node_state(nid, N_HIGH_MEMORY) {
  3666. node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
  3667. LRU_ALL_ANON);
  3668. seq_printf(m, " N%d=%lu", nid, node_nr);
  3669. }
  3670. seq_putc(m, '\n');
  3671. unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
  3672. seq_printf(m, "unevictable=%lu", unevictable_nr);
  3673. for_each_node_state(nid, N_HIGH_MEMORY) {
  3674. node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
  3675. BIT(LRU_UNEVICTABLE));
  3676. seq_printf(m, " N%d=%lu", nid, node_nr);
  3677. }
  3678. seq_putc(m, '\n');
  3679. return 0;
  3680. }
  3681. #endif /* CONFIG_NUMA */
  3682. static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
  3683. struct cgroup_map_cb *cb)
  3684. {
  3685. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  3686. struct mcs_total_stat mystat;
  3687. int i;
  3688. memset(&mystat, 0, sizeof(mystat));
  3689. mem_cgroup_get_local_stat(memcg, &mystat);
  3690. for (i = 0; i < NR_MCS_STAT; i++) {
  3691. if (i == MCS_SWAP && !do_swap_account)
  3692. continue;
  3693. cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
  3694. }
  3695. /* Hierarchical information */
  3696. {
  3697. unsigned long long limit, memsw_limit;
  3698. memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
  3699. cb->fill(cb, "hierarchical_memory_limit", limit);
  3700. if (do_swap_account)
  3701. cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
  3702. }
  3703. memset(&mystat, 0, sizeof(mystat));
  3704. mem_cgroup_get_total_stat(memcg, &mystat);
  3705. for (i = 0; i < NR_MCS_STAT; i++) {
  3706. if (i == MCS_SWAP && !do_swap_account)
  3707. continue;
  3708. cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
  3709. }
  3710. #ifdef CONFIG_DEBUG_VM
  3711. {
  3712. int nid, zid;
  3713. struct mem_cgroup_per_zone *mz;
  3714. struct zone_reclaim_stat *rstat;
  3715. unsigned long recent_rotated[2] = {0, 0};
  3716. unsigned long recent_scanned[2] = {0, 0};
  3717. for_each_online_node(nid)
  3718. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  3719. mz = mem_cgroup_zoneinfo(memcg, nid, zid);
  3720. rstat = &mz->lruvec.reclaim_stat;
  3721. recent_rotated[0] += rstat->recent_rotated[0];
  3722. recent_rotated[1] += rstat->recent_rotated[1];
  3723. recent_scanned[0] += rstat->recent_scanned[0];
  3724. recent_scanned[1] += rstat->recent_scanned[1];
  3725. }
  3726. cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
  3727. cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
  3728. cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
  3729. cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
  3730. }
  3731. #endif
  3732. return 0;
  3733. }
  3734. static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
  3735. {
  3736. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  3737. return mem_cgroup_swappiness(memcg);
  3738. }
  3739. static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
  3740. u64 val)
  3741. {
  3742. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  3743. struct mem_cgroup *parent;
  3744. if (val > 100)
  3745. return -EINVAL;
  3746. if (cgrp->parent == NULL)
  3747. return -EINVAL;
  3748. parent = mem_cgroup_from_cont(cgrp->parent);
  3749. cgroup_lock();
  3750. /* If under hierarchy, only empty-root can set this value */
  3751. if ((parent->use_hierarchy) ||
  3752. (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
  3753. cgroup_unlock();
  3754. return -EINVAL;
  3755. }
  3756. memcg->swappiness = val;
  3757. cgroup_unlock();
  3758. return 0;
  3759. }
  3760. static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
  3761. {
  3762. struct mem_cgroup_threshold_ary *t;
  3763. u64 usage;
  3764. int i;
  3765. rcu_read_lock();
  3766. if (!swap)
  3767. t = rcu_dereference(memcg->thresholds.primary);
  3768. else
  3769. t = rcu_dereference(memcg->memsw_thresholds.primary);
  3770. if (!t)
  3771. goto unlock;
  3772. usage = mem_cgroup_usage(memcg, swap);
  3773. /*
  3774. * current_threshold points to threshold just below or equal to usage.
  3775. * If it's not true, a threshold was crossed after last
  3776. * call of __mem_cgroup_threshold().
  3777. */
  3778. i = t->current_threshold;
  3779. /*
  3780. * Iterate backward over array of thresholds starting from
  3781. * current_threshold and check if a threshold is crossed.
  3782. * If none of thresholds below usage is crossed, we read
  3783. * only one element of the array here.
  3784. */
  3785. for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
  3786. eventfd_signal(t->entries[i].eventfd, 1);
  3787. /* i = current_threshold + 1 */
  3788. i++;
  3789. /*
  3790. * Iterate forward over array of thresholds starting from
  3791. * current_threshold+1 and check if a threshold is crossed.
  3792. * If none of thresholds above usage is crossed, we read
  3793. * only one element of the array here.
  3794. */
  3795. for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
  3796. eventfd_signal(t->entries[i].eventfd, 1);
  3797. /* Update current_threshold */
  3798. t->current_threshold = i - 1;
  3799. unlock:
  3800. rcu_read_unlock();
  3801. }
  3802. static void mem_cgroup_threshold(struct mem_cgroup *memcg)
  3803. {
  3804. while (memcg) {
  3805. __mem_cgroup_threshold(memcg, false);
  3806. if (do_swap_account)
  3807. __mem_cgroup_threshold(memcg, true);
  3808. memcg = parent_mem_cgroup(memcg);
  3809. }
  3810. }
  3811. static int compare_thresholds(const void *a, const void *b)
  3812. {
  3813. const struct mem_cgroup_threshold *_a = a;
  3814. const struct mem_cgroup_threshold *_b = b;
  3815. return _a->threshold - _b->threshold;
  3816. }
  3817. static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
  3818. {
  3819. struct mem_cgroup_eventfd_list *ev;
  3820. list_for_each_entry(ev, &memcg->oom_notify, list)
  3821. eventfd_signal(ev->eventfd, 1);
  3822. return 0;
  3823. }
  3824. static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
  3825. {
  3826. struct mem_cgroup *iter;
  3827. for_each_mem_cgroup_tree(iter, memcg)
  3828. mem_cgroup_oom_notify_cb(iter);
  3829. }
  3830. static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
  3831. struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
  3832. {
  3833. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  3834. struct mem_cgroup_thresholds *thresholds;
  3835. struct mem_cgroup_threshold_ary *new;
  3836. int type = MEMFILE_TYPE(cft->private);
  3837. u64 threshold, usage;
  3838. int i, size, ret;
  3839. ret = res_counter_memparse_write_strategy(args, &threshold);
  3840. if (ret)
  3841. return ret;
  3842. mutex_lock(&memcg->thresholds_lock);
  3843. if (type == _MEM)
  3844. thresholds = &memcg->thresholds;
  3845. else if (type == _MEMSWAP)
  3846. thresholds = &memcg->memsw_thresholds;
  3847. else
  3848. BUG();
  3849. usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
  3850. /* Check if a threshold crossed before adding a new one */
  3851. if (thresholds->primary)
  3852. __mem_cgroup_threshold(memcg, type == _MEMSWAP);
  3853. size = thresholds->primary ? thresholds->primary->size + 1 : 1;
  3854. /* Allocate memory for new array of thresholds */
  3855. new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
  3856. GFP_KERNEL);
  3857. if (!new) {
  3858. ret = -ENOMEM;
  3859. goto unlock;
  3860. }
  3861. new->size = size;
  3862. /* Copy thresholds (if any) to new array */
  3863. if (thresholds->primary) {
  3864. memcpy(new->entries, thresholds->primary->entries, (size - 1) *
  3865. sizeof(struct mem_cgroup_threshold));
  3866. }
  3867. /* Add new threshold */
  3868. new->entries[size - 1].eventfd = eventfd;
  3869. new->entries[size - 1].threshold = threshold;
  3870. /* Sort thresholds. Registering of new threshold isn't time-critical */
  3871. sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
  3872. compare_thresholds, NULL);
  3873. /* Find current threshold */
  3874. new->current_threshold = -1;
  3875. for (i = 0; i < size; i++) {
  3876. if (new->entries[i].threshold <= usage) {
  3877. /*
  3878. * new->current_threshold will not be used until
  3879. * rcu_assign_pointer(), so it's safe to increment
  3880. * it here.
  3881. */
  3882. ++new->current_threshold;
  3883. } else
  3884. break;
  3885. }
  3886. /* Free old spare buffer and save old primary buffer as spare */
  3887. kfree(thresholds->spare);
  3888. thresholds->spare = thresholds->primary;
  3889. rcu_assign_pointer(thresholds->primary, new);
  3890. /* To be sure that nobody uses thresholds */
  3891. synchronize_rcu();
  3892. unlock:
  3893. mutex_unlock(&memcg->thresholds_lock);
  3894. return ret;
  3895. }
  3896. static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
  3897. struct cftype *cft, struct eventfd_ctx *eventfd)
  3898. {
  3899. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  3900. struct mem_cgroup_thresholds *thresholds;
  3901. struct mem_cgroup_threshold_ary *new;
  3902. int type = MEMFILE_TYPE(cft->private);
  3903. u64 usage;
  3904. int i, j, size;
  3905. mutex_lock(&memcg->thresholds_lock);
  3906. if (type == _MEM)
  3907. thresholds = &memcg->thresholds;
  3908. else if (type == _MEMSWAP)
  3909. thresholds = &memcg->memsw_thresholds;
  3910. else
  3911. BUG();
  3912. if (!thresholds->primary)
  3913. goto unlock;
  3914. usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
  3915. /* Check if a threshold crossed before removing */
  3916. __mem_cgroup_threshold(memcg, type == _MEMSWAP);
  3917. /* Calculate new number of threshold */
  3918. size = 0;
  3919. for (i = 0; i < thresholds->primary->size; i++) {
  3920. if (thresholds->primary->entries[i].eventfd != eventfd)
  3921. size++;
  3922. }
  3923. new = thresholds->spare;
  3924. /* Set thresholds array to NULL if we don't have thresholds */
  3925. if (!size) {
  3926. kfree(new);
  3927. new = NULL;
  3928. goto swap_buffers;
  3929. }
  3930. new->size = size;
  3931. /* Copy thresholds and find current threshold */
  3932. new->current_threshold = -1;
  3933. for (i = 0, j = 0; i < thresholds->primary->size; i++) {
  3934. if (thresholds->primary->entries[i].eventfd == eventfd)
  3935. continue;
  3936. new->entries[j] = thresholds->primary->entries[i];
  3937. if (new->entries[j].threshold <= usage) {
  3938. /*
  3939. * new->current_threshold will not be used
  3940. * until rcu_assign_pointer(), so it's safe to increment
  3941. * it here.
  3942. */
  3943. ++new->current_threshold;
  3944. }
  3945. j++;
  3946. }
  3947. swap_buffers:
  3948. /* Swap primary and spare array */
  3949. thresholds->spare = thresholds->primary;
  3950. /* If all events are unregistered, free the spare array */
  3951. if (!new) {
  3952. kfree(thresholds->spare);
  3953. thresholds->spare = NULL;
  3954. }
  3955. rcu_assign_pointer(thresholds->primary, new);
  3956. /* To be sure that nobody uses thresholds */
  3957. synchronize_rcu();
  3958. unlock:
  3959. mutex_unlock(&memcg->thresholds_lock);
  3960. }
  3961. static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
  3962. struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
  3963. {
  3964. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  3965. struct mem_cgroup_eventfd_list *event;
  3966. int type = MEMFILE_TYPE(cft->private);
  3967. BUG_ON(type != _OOM_TYPE);
  3968. event = kmalloc(sizeof(*event), GFP_KERNEL);
  3969. if (!event)
  3970. return -ENOMEM;
  3971. spin_lock(&memcg_oom_lock);
  3972. event->eventfd = eventfd;
  3973. list_add(&event->list, &memcg->oom_notify);
  3974. /* already in OOM ? */
  3975. if (atomic_read(&memcg->under_oom))
  3976. eventfd_signal(eventfd, 1);
  3977. spin_unlock(&memcg_oom_lock);
  3978. return 0;
  3979. }
  3980. static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
  3981. struct cftype *cft, struct eventfd_ctx *eventfd)
  3982. {
  3983. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  3984. struct mem_cgroup_eventfd_list *ev, *tmp;
  3985. int type = MEMFILE_TYPE(cft->private);
  3986. BUG_ON(type != _OOM_TYPE);
  3987. spin_lock(&memcg_oom_lock);
  3988. list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
  3989. if (ev->eventfd == eventfd) {
  3990. list_del(&ev->list);
  3991. kfree(ev);
  3992. }
  3993. }
  3994. spin_unlock(&memcg_oom_lock);
  3995. }
  3996. static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
  3997. struct cftype *cft, struct cgroup_map_cb *cb)
  3998. {
  3999. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  4000. cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
  4001. if (atomic_read(&memcg->under_oom))
  4002. cb->fill(cb, "under_oom", 1);
  4003. else
  4004. cb->fill(cb, "under_oom", 0);
  4005. return 0;
  4006. }
  4007. static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
  4008. struct cftype *cft, u64 val)
  4009. {
  4010. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
  4011. struct mem_cgroup *parent;
  4012. /* cannot set to root cgroup and only 0 and 1 are allowed */
  4013. if (!cgrp->parent || !((val == 0) || (val == 1)))
  4014. return -EINVAL;
  4015. parent = mem_cgroup_from_cont(cgrp->parent);
  4016. cgroup_lock();
  4017. /* oom-kill-disable is a flag for subhierarchy. */
  4018. if ((parent->use_hierarchy) ||
  4019. (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
  4020. cgroup_unlock();
  4021. return -EINVAL;
  4022. }
  4023. memcg->oom_kill_disable = val;
  4024. if (!val)
  4025. memcg_oom_recover(memcg);
  4026. cgroup_unlock();
  4027. return 0;
  4028. }
  4029. #ifdef CONFIG_NUMA
  4030. static const struct file_operations mem_control_numa_stat_file_operations = {
  4031. .read = seq_read,
  4032. .llseek = seq_lseek,
  4033. .release = single_release,
  4034. };
  4035. static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
  4036. {
  4037. struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
  4038. file->f_op = &mem_control_numa_stat_file_operations;
  4039. return single_open(file, mem_control_numa_stat_show, cont);
  4040. }
  4041. #endif /* CONFIG_NUMA */
  4042. #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
  4043. static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  4044. {
  4045. return mem_cgroup_sockets_init(memcg, ss);
  4046. };
  4047. static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
  4048. {
  4049. mem_cgroup_sockets_destroy(memcg);
  4050. }
  4051. #else
  4052. static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  4053. {
  4054. return 0;
  4055. }
  4056. static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
  4057. {
  4058. }
  4059. #endif
  4060. static struct cftype mem_cgroup_files[] = {
  4061. {
  4062. .name = "usage_in_bytes",
  4063. .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
  4064. .read = mem_cgroup_read,
  4065. .register_event = mem_cgroup_usage_register_event,
  4066. .unregister_event = mem_cgroup_usage_unregister_event,
  4067. },
  4068. {
  4069. .name = "max_usage_in_bytes",
  4070. .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
  4071. .trigger = mem_cgroup_reset,
  4072. .read = mem_cgroup_read,
  4073. },
  4074. {
  4075. .name = "limit_in_bytes",
  4076. .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
  4077. .write_string = mem_cgroup_write,
  4078. .read = mem_cgroup_read,
  4079. },
  4080. {
  4081. .name = "soft_limit_in_bytes",
  4082. .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
  4083. .write_string = mem_cgroup_write,
  4084. .read = mem_cgroup_read,
  4085. },
  4086. {
  4087. .name = "failcnt",
  4088. .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
  4089. .trigger = mem_cgroup_reset,
  4090. .read = mem_cgroup_read,
  4091. },
  4092. {
  4093. .name = "stat",
  4094. .read_map = mem_control_stat_show,
  4095. },
  4096. {
  4097. .name = "force_empty",
  4098. .trigger = mem_cgroup_force_empty_write,
  4099. },
  4100. {
  4101. .name = "use_hierarchy",
  4102. .write_u64 = mem_cgroup_hierarchy_write,
  4103. .read_u64 = mem_cgroup_hierarchy_read,
  4104. },
  4105. {
  4106. .name = "swappiness",
  4107. .read_u64 = mem_cgroup_swappiness_read,
  4108. .write_u64 = mem_cgroup_swappiness_write,
  4109. },
  4110. {
  4111. .name = "move_charge_at_immigrate",
  4112. .read_u64 = mem_cgroup_move_charge_read,
  4113. .write_u64 = mem_cgroup_move_charge_write,
  4114. },
  4115. {
  4116. .name = "oom_control",
  4117. .read_map = mem_cgroup_oom_control_read,
  4118. .write_u64 = mem_cgroup_oom_control_write,
  4119. .register_event = mem_cgroup_oom_register_event,
  4120. .unregister_event = mem_cgroup_oom_unregister_event,
  4121. .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
  4122. },
  4123. #ifdef CONFIG_NUMA
  4124. {
  4125. .name = "numa_stat",
  4126. .open = mem_control_numa_stat_open,
  4127. .mode = S_IRUGO,
  4128. },
  4129. #endif
  4130. #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
  4131. {
  4132. .name = "memsw.usage_in_bytes",
  4133. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
  4134. .read = mem_cgroup_read,
  4135. .register_event = mem_cgroup_usage_register_event,
  4136. .unregister_event = mem_cgroup_usage_unregister_event,
  4137. },
  4138. {
  4139. .name = "memsw.max_usage_in_bytes",
  4140. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
  4141. .trigger = mem_cgroup_reset,
  4142. .read = mem_cgroup_read,
  4143. },
  4144. {
  4145. .name = "memsw.limit_in_bytes",
  4146. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
  4147. .write_string = mem_cgroup_write,
  4148. .read = mem_cgroup_read,
  4149. },
  4150. {
  4151. .name = "memsw.failcnt",
  4152. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
  4153. .trigger = mem_cgroup_reset,
  4154. .read = mem_cgroup_read,
  4155. },
  4156. #endif
  4157. { }, /* terminate */
  4158. };
  4159. static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
  4160. {
  4161. struct mem_cgroup_per_node *pn;
  4162. struct mem_cgroup_per_zone *mz;
  4163. int zone, tmp = node;
  4164. /*
  4165. * This routine is called against possible nodes.
  4166. * But it's BUG to call kmalloc() against offline node.
  4167. *
  4168. * TODO: this routine can waste much memory for nodes which will
  4169. * never be onlined. It's better to use memory hotplug callback
  4170. * function.
  4171. */
  4172. if (!node_state(node, N_NORMAL_MEMORY))
  4173. tmp = -1;
  4174. pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
  4175. if (!pn)
  4176. return 1;
  4177. for (zone = 0; zone < MAX_NR_ZONES; zone++) {
  4178. mz = &pn->zoneinfo[zone];
  4179. lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
  4180. mz->usage_in_excess = 0;
  4181. mz->on_tree = false;
  4182. mz->memcg = memcg;
  4183. }
  4184. memcg->info.nodeinfo[node] = pn;
  4185. return 0;
  4186. }
  4187. static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
  4188. {
  4189. kfree(memcg->info.nodeinfo[node]);
  4190. }
  4191. static struct mem_cgroup *mem_cgroup_alloc(void)
  4192. {
  4193. struct mem_cgroup *memcg;
  4194. int size = sizeof(struct mem_cgroup);
  4195. /* Can be very big if MAX_NUMNODES is very big */
  4196. if (size < PAGE_SIZE)
  4197. memcg = kzalloc(size, GFP_KERNEL);
  4198. else
  4199. memcg = vzalloc(size);
  4200. if (!memcg)
  4201. return NULL;
  4202. memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
  4203. if (!memcg->stat)
  4204. goto out_free;
  4205. spin_lock_init(&memcg->pcp_counter_lock);
  4206. return memcg;
  4207. out_free:
  4208. if (size < PAGE_SIZE)
  4209. kfree(memcg);
  4210. else
  4211. vfree(memcg);
  4212. return NULL;
  4213. }
  4214. /*
  4215. * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
  4216. * but in process context. The work_freeing structure is overlaid
  4217. * on the rcu_freeing structure, which itself is overlaid on memsw.
  4218. */
  4219. static void vfree_work(struct work_struct *work)
  4220. {
  4221. struct mem_cgroup *memcg;
  4222. memcg = container_of(work, struct mem_cgroup, work_freeing);
  4223. vfree(memcg);
  4224. }
  4225. static void vfree_rcu(struct rcu_head *rcu_head)
  4226. {
  4227. struct mem_cgroup *memcg;
  4228. memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
  4229. INIT_WORK(&memcg->work_freeing, vfree_work);
  4230. schedule_work(&memcg->work_freeing);
  4231. }
  4232. /*
  4233. * At destroying mem_cgroup, references from swap_cgroup can remain.
  4234. * (scanning all at force_empty is too costly...)
  4235. *
  4236. * Instead of clearing all references at force_empty, we remember
  4237. * the number of reference from swap_cgroup and free mem_cgroup when
  4238. * it goes down to 0.
  4239. *
  4240. * Removal of cgroup itself succeeds regardless of refs from swap.
  4241. */
  4242. static void __mem_cgroup_free(struct mem_cgroup *memcg)
  4243. {
  4244. int node;
  4245. mem_cgroup_remove_from_trees(memcg);
  4246. free_css_id(&mem_cgroup_subsys, &memcg->css);
  4247. for_each_node(node)
  4248. free_mem_cgroup_per_zone_info(memcg, node);
  4249. free_percpu(memcg->stat);
  4250. if (sizeof(struct mem_cgroup) < PAGE_SIZE)
  4251. kfree_rcu(memcg, rcu_freeing);
  4252. else
  4253. call_rcu(&memcg->rcu_freeing, vfree_rcu);
  4254. }
  4255. static void mem_cgroup_get(struct mem_cgroup *memcg)
  4256. {
  4257. atomic_inc(&memcg->refcnt);
  4258. }
  4259. static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
  4260. {
  4261. if (atomic_sub_and_test(count, &memcg->refcnt)) {
  4262. struct mem_cgroup *parent = parent_mem_cgroup(memcg);
  4263. __mem_cgroup_free(memcg);
  4264. if (parent)
  4265. mem_cgroup_put(parent);
  4266. }
  4267. }
  4268. static void mem_cgroup_put(struct mem_cgroup *memcg)
  4269. {
  4270. __mem_cgroup_put(memcg, 1);
  4271. }
  4272. /*
  4273. * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
  4274. */
  4275. struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
  4276. {
  4277. if (!memcg->res.parent)
  4278. return NULL;
  4279. return mem_cgroup_from_res_counter(memcg->res.parent, res);
  4280. }
  4281. EXPORT_SYMBOL(parent_mem_cgroup);
  4282. #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
  4283. static void __init enable_swap_cgroup(void)
  4284. {
  4285. if (!mem_cgroup_disabled() && really_do_swap_account)
  4286. do_swap_account = 1;
  4287. }
  4288. #else
  4289. static void __init enable_swap_cgroup(void)
  4290. {
  4291. }
  4292. #endif
  4293. static int mem_cgroup_soft_limit_tree_init(void)
  4294. {
  4295. struct mem_cgroup_tree_per_node *rtpn;
  4296. struct mem_cgroup_tree_per_zone *rtpz;
  4297. int tmp, node, zone;
  4298. for_each_node(node) {
  4299. tmp = node;
  4300. if (!node_state(node, N_NORMAL_MEMORY))
  4301. tmp = -1;
  4302. rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
  4303. if (!rtpn)
  4304. goto err_cleanup;
  4305. soft_limit_tree.rb_tree_per_node[node] = rtpn;
  4306. for (zone = 0; zone < MAX_NR_ZONES; zone++) {
  4307. rtpz = &rtpn->rb_tree_per_zone[zone];
  4308. rtpz->rb_root = RB_ROOT;
  4309. spin_lock_init(&rtpz->lock);
  4310. }
  4311. }
  4312. return 0;
  4313. err_cleanup:
  4314. for_each_node(node) {
  4315. if (!soft_limit_tree.rb_tree_per_node[node])
  4316. break;
  4317. kfree(soft_limit_tree.rb_tree_per_node[node]);
  4318. soft_limit_tree.rb_tree_per_node[node] = NULL;
  4319. }
  4320. return 1;
  4321. }
  4322. static struct cgroup_subsys_state * __ref
  4323. mem_cgroup_create(struct cgroup *cont)
  4324. {
  4325. struct mem_cgroup *memcg, *parent;
  4326. long error = -ENOMEM;
  4327. int node;
  4328. memcg = mem_cgroup_alloc();
  4329. if (!memcg)
  4330. return ERR_PTR(error);
  4331. for_each_node(node)
  4332. if (alloc_mem_cgroup_per_zone_info(memcg, node))
  4333. goto free_out;
  4334. /* root ? */
  4335. if (cont->parent == NULL) {
  4336. int cpu;
  4337. enable_swap_cgroup();
  4338. parent = NULL;
  4339. if (mem_cgroup_soft_limit_tree_init())
  4340. goto free_out;
  4341. root_mem_cgroup = memcg;
  4342. for_each_possible_cpu(cpu) {
  4343. struct memcg_stock_pcp *stock =
  4344. &per_cpu(memcg_stock, cpu);
  4345. INIT_WORK(&stock->work, drain_local_stock);
  4346. }
  4347. hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
  4348. } else {
  4349. parent = mem_cgroup_from_cont(cont->parent);
  4350. memcg->use_hierarchy = parent->use_hierarchy;
  4351. memcg->oom_kill_disable = parent->oom_kill_disable;
  4352. }
  4353. if (parent && parent->use_hierarchy) {
  4354. res_counter_init(&memcg->res, &parent->res);
  4355. res_counter_init(&memcg->memsw, &parent->memsw);
  4356. /*
  4357. * We increment refcnt of the parent to ensure that we can
  4358. * safely access it on res_counter_charge/uncharge.
  4359. * This refcnt will be decremented when freeing this
  4360. * mem_cgroup(see mem_cgroup_put).
  4361. */
  4362. mem_cgroup_get(parent);
  4363. } else {
  4364. res_counter_init(&memcg->res, NULL);
  4365. res_counter_init(&memcg->memsw, NULL);
  4366. }
  4367. memcg->last_scanned_node = MAX_NUMNODES;
  4368. INIT_LIST_HEAD(&memcg->oom_notify);
  4369. if (parent)
  4370. memcg->swappiness = mem_cgroup_swappiness(parent);
  4371. atomic_set(&memcg->refcnt, 1);
  4372. memcg->move_charge_at_immigrate = 0;
  4373. mutex_init(&memcg->thresholds_lock);
  4374. spin_lock_init(&memcg->move_lock);
  4375. error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
  4376. if (error) {
  4377. /*
  4378. * We call put now because our (and parent's) refcnts
  4379. * are already in place. mem_cgroup_put() will internally
  4380. * call __mem_cgroup_free, so return directly
  4381. */
  4382. mem_cgroup_put(memcg);
  4383. return ERR_PTR(error);
  4384. }
  4385. return &memcg->css;
  4386. free_out:
  4387. __mem_cgroup_free(memcg);
  4388. return ERR_PTR(error);
  4389. }
  4390. static int mem_cgroup_pre_destroy(struct cgroup *cont)
  4391. {
  4392. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  4393. return mem_cgroup_force_empty(memcg, false);
  4394. }
  4395. static void mem_cgroup_destroy(struct cgroup *cont)
  4396. {
  4397. struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
  4398. kmem_cgroup_destroy(memcg);
  4399. mem_cgroup_put(memcg);
  4400. }
  4401. #ifdef CONFIG_MMU
  4402. /* Handlers for move charge at task migration. */
  4403. #define PRECHARGE_COUNT_AT_ONCE 256
  4404. static int mem_cgroup_do_precharge(unsigned long count)
  4405. {
  4406. int ret = 0;
  4407. int batch_count = PRECHARGE_COUNT_AT_ONCE;
  4408. struct mem_cgroup *memcg = mc.to;
  4409. if (mem_cgroup_is_root(memcg)) {
  4410. mc.precharge += count;
  4411. /* we don't need css_get for root */
  4412. return ret;
  4413. }
  4414. /* try to charge at once */
  4415. if (count > 1) {
  4416. struct res_counter *dummy;
  4417. /*
  4418. * "memcg" cannot be under rmdir() because we've already checked
  4419. * by cgroup_lock_live_cgroup() that it is not removed and we
  4420. * are still under the same cgroup_mutex. So we can postpone
  4421. * css_get().
  4422. */
  4423. if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
  4424. goto one_by_one;
  4425. if (do_swap_account && res_counter_charge(&memcg->memsw,
  4426. PAGE_SIZE * count, &dummy)) {
  4427. res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
  4428. goto one_by_one;
  4429. }
  4430. mc.precharge += count;
  4431. return ret;
  4432. }
  4433. one_by_one:
  4434. /* fall back to one by one charge */
  4435. while (count--) {
  4436. if (signal_pending(current)) {
  4437. ret = -EINTR;
  4438. break;
  4439. }
  4440. if (!batch_count--) {
  4441. batch_count = PRECHARGE_COUNT_AT_ONCE;
  4442. cond_resched();
  4443. }
  4444. ret = __mem_cgroup_try_charge(NULL,
  4445. GFP_KERNEL, 1, &memcg, false);
  4446. if (ret)
  4447. /* mem_cgroup_clear_mc() will do uncharge later */
  4448. return ret;
  4449. mc.precharge++;
  4450. }
  4451. return ret;
  4452. }
  4453. /**
  4454. * get_mctgt_type - get target type of moving charge
  4455. * @vma: the vma the pte to be checked belongs
  4456. * @addr: the address corresponding to the pte to be checked
  4457. * @ptent: the pte to be checked
  4458. * @target: the pointer the target page or swap ent will be stored(can be NULL)
  4459. *
  4460. * Returns
  4461. * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
  4462. * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
  4463. * move charge. if @target is not NULL, the page is stored in target->page
  4464. * with extra refcnt got(Callers should handle it).
  4465. * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
  4466. * target for charge migration. if @target is not NULL, the entry is stored
  4467. * in target->ent.
  4468. *
  4469. * Called with pte lock held.
  4470. */
  4471. union mc_target {
  4472. struct page *page;
  4473. swp_entry_t ent;
  4474. };
  4475. enum mc_target_type {
  4476. MC_TARGET_NONE = 0,
  4477. MC_TARGET_PAGE,
  4478. MC_TARGET_SWAP,
  4479. };
  4480. static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
  4481. unsigned long addr, pte_t ptent)
  4482. {
  4483. struct page *page = vm_normal_page(vma, addr, ptent);
  4484. if (!page || !page_mapped(page))
  4485. return NULL;
  4486. if (PageAnon(page)) {
  4487. /* we don't move shared anon */
  4488. if (!move_anon())
  4489. return NULL;
  4490. } else if (!move_file())
  4491. /* we ignore mapcount for file pages */
  4492. return NULL;
  4493. if (!get_page_unless_zero(page))
  4494. return NULL;
  4495. return page;
  4496. }
  4497. #ifdef CONFIG_SWAP
  4498. static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
  4499. unsigned long addr, pte_t ptent, swp_entry_t *entry)
  4500. {
  4501. struct page *page = NULL;
  4502. swp_entry_t ent = pte_to_swp_entry(ptent);
  4503. if (!move_anon() || non_swap_entry(ent))
  4504. return NULL;
  4505. /*
  4506. * Because lookup_swap_cache() updates some statistics counter,
  4507. * we call find_get_page() with swapper_space directly.
  4508. */
  4509. page = find_get_page(&swapper_space, ent.val);
  4510. if (do_swap_account)
  4511. entry->val = ent.val;
  4512. return page;
  4513. }
  4514. #else
  4515. static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
  4516. unsigned long addr, pte_t ptent, swp_entry_t *entry)
  4517. {
  4518. return NULL;
  4519. }
  4520. #endif
  4521. static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
  4522. unsigned long addr, pte_t ptent, swp_entry_t *entry)
  4523. {
  4524. struct page *page = NULL;
  4525. struct address_space *mapping;
  4526. pgoff_t pgoff;
  4527. if (!vma->vm_file) /* anonymous vma */
  4528. return NULL;
  4529. if (!move_file())
  4530. return NULL;
  4531. mapping = vma->vm_file->f_mapping;
  4532. if (pte_none(ptent))
  4533. pgoff = linear_page_index(vma, addr);
  4534. else /* pte_file(ptent) is true */
  4535. pgoff = pte_to_pgoff(ptent);
  4536. /* page is moved even if it's not RSS of this task(page-faulted). */
  4537. page = find_get_page(mapping, pgoff);
  4538. #ifdef CONFIG_SWAP
  4539. /* shmem/tmpfs may report page out on swap: account for that too. */
  4540. if (radix_tree_exceptional_entry(page)) {
  4541. swp_entry_t swap = radix_to_swp_entry(page);
  4542. if (do_swap_account)
  4543. *entry = swap;
  4544. page = find_get_page(&swapper_space, swap.val);
  4545. }
  4546. #endif
  4547. return page;
  4548. }
  4549. static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
  4550. unsigned long addr, pte_t ptent, union mc_target *target)
  4551. {
  4552. struct page *page = NULL;
  4553. struct page_cgroup *pc;
  4554. enum mc_target_type ret = MC_TARGET_NONE;
  4555. swp_entry_t ent = { .val = 0 };
  4556. if (pte_present(ptent))
  4557. page = mc_handle_present_pte(vma, addr, ptent);
  4558. else if (is_swap_pte(ptent))
  4559. page = mc_handle_swap_pte(vma, addr, ptent, &ent);
  4560. else if (pte_none(ptent) || pte_file(ptent))
  4561. page = mc_handle_file_pte(vma, addr, ptent, &ent);
  4562. if (!page && !ent.val)
  4563. return ret;
  4564. if (page) {
  4565. pc = lookup_page_cgroup(page);
  4566. /*
  4567. * Do only loose check w/o page_cgroup lock.
  4568. * mem_cgroup_move_account() checks the pc is valid or not under
  4569. * the lock.
  4570. */
  4571. if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
  4572. ret = MC_TARGET_PAGE;
  4573. if (target)
  4574. target->page = page;
  4575. }
  4576. if (!ret || !target)
  4577. put_page(page);
  4578. }
  4579. /* There is a swap entry and a page doesn't exist or isn't charged */
  4580. if (ent.val && !ret &&
  4581. css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
  4582. ret = MC_TARGET_SWAP;
  4583. if (target)
  4584. target->ent = ent;
  4585. }
  4586. return ret;
  4587. }
  4588. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  4589. /*
  4590. * We don't consider swapping or file mapped pages because THP does not
  4591. * support them for now.
  4592. * Caller should make sure that pmd_trans_huge(pmd) is true.
  4593. */
  4594. static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
  4595. unsigned long addr, pmd_t pmd, union mc_target *target)
  4596. {
  4597. struct page *page = NULL;
  4598. struct page_cgroup *pc;
  4599. enum mc_target_type ret = MC_TARGET_NONE;
  4600. page = pmd_page(pmd);
  4601. VM_BUG_ON(!page || !PageHead(page));
  4602. if (!move_anon())
  4603. return ret;
  4604. pc = lookup_page_cgroup(page);
  4605. if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
  4606. ret = MC_TARGET_PAGE;
  4607. if (target) {
  4608. get_page(page);
  4609. target->page = page;
  4610. }
  4611. }
  4612. return ret;
  4613. }
  4614. #else
  4615. static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
  4616. unsigned long addr, pmd_t pmd, union mc_target *target)
  4617. {
  4618. return MC_TARGET_NONE;
  4619. }
  4620. #endif
  4621. static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
  4622. unsigned long addr, unsigned long end,
  4623. struct mm_walk *walk)
  4624. {
  4625. struct vm_area_struct *vma = walk->private;
  4626. pte_t *pte;
  4627. spinlock_t *ptl;
  4628. if (pmd_trans_huge_lock(pmd, vma) == 1) {
  4629. if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
  4630. mc.precharge += HPAGE_PMD_NR;
  4631. spin_unlock(&vma->vm_mm->page_table_lock);
  4632. return 0;
  4633. }
  4634. if (pmd_trans_unstable(pmd))
  4635. return 0;
  4636. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  4637. for (; addr != end; pte++, addr += PAGE_SIZE)
  4638. if (get_mctgt_type(vma, addr, *pte, NULL))
  4639. mc.precharge++; /* increment precharge temporarily */
  4640. pte_unmap_unlock(pte - 1, ptl);
  4641. cond_resched();
  4642. return 0;
  4643. }
  4644. static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
  4645. {
  4646. unsigned long precharge;
  4647. struct vm_area_struct *vma;
  4648. down_read(&mm->mmap_sem);
  4649. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  4650. struct mm_walk mem_cgroup_count_precharge_walk = {
  4651. .pmd_entry = mem_cgroup_count_precharge_pte_range,
  4652. .mm = mm,
  4653. .private = vma,
  4654. };
  4655. if (is_vm_hugetlb_page(vma))
  4656. continue;
  4657. walk_page_range(vma->vm_start, vma->vm_end,
  4658. &mem_cgroup_count_precharge_walk);
  4659. }
  4660. up_read(&mm->mmap_sem);
  4661. precharge = mc.precharge;
  4662. mc.precharge = 0;
  4663. return precharge;
  4664. }
  4665. static int mem_cgroup_precharge_mc(struct mm_struct *mm)
  4666. {
  4667. unsigned long precharge = mem_cgroup_count_precharge(mm);
  4668. VM_BUG_ON(mc.moving_task);
  4669. mc.moving_task = current;
  4670. return mem_cgroup_do_precharge(precharge);
  4671. }
  4672. /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
  4673. static void __mem_cgroup_clear_mc(void)
  4674. {
  4675. struct mem_cgroup *from = mc.from;
  4676. struct mem_cgroup *to = mc.to;
  4677. /* we must uncharge all the leftover precharges from mc.to */
  4678. if (mc.precharge) {
  4679. __mem_cgroup_cancel_charge(mc.to, mc.precharge);
  4680. mc.precharge = 0;
  4681. }
  4682. /*
  4683. * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
  4684. * we must uncharge here.
  4685. */
  4686. if (mc.moved_charge) {
  4687. __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
  4688. mc.moved_charge = 0;
  4689. }
  4690. /* we must fixup refcnts and charges */
  4691. if (mc.moved_swap) {
  4692. /* uncharge swap account from the old cgroup */
  4693. if (!mem_cgroup_is_root(mc.from))
  4694. res_counter_uncharge(&mc.from->memsw,
  4695. PAGE_SIZE * mc.moved_swap);
  4696. __mem_cgroup_put(mc.from, mc.moved_swap);
  4697. if (!mem_cgroup_is_root(mc.to)) {
  4698. /*
  4699. * we charged both to->res and to->memsw, so we should
  4700. * uncharge to->res.
  4701. */
  4702. res_counter_uncharge(&mc.to->res,
  4703. PAGE_SIZE * mc.moved_swap);
  4704. }
  4705. /* we've already done mem_cgroup_get(mc.to) */
  4706. mc.moved_swap = 0;
  4707. }
  4708. memcg_oom_recover(from);
  4709. memcg_oom_recover(to);
  4710. wake_up_all(&mc.waitq);
  4711. }
  4712. static void mem_cgroup_clear_mc(void)
  4713. {
  4714. struct mem_cgroup *from = mc.from;
  4715. /*
  4716. * we must clear moving_task before waking up waiters at the end of
  4717. * task migration.
  4718. */
  4719. mc.moving_task = NULL;
  4720. __mem_cgroup_clear_mc();
  4721. spin_lock(&mc.lock);
  4722. mc.from = NULL;
  4723. mc.to = NULL;
  4724. spin_unlock(&mc.lock);
  4725. mem_cgroup_end_move(from);
  4726. }
  4727. static int mem_cgroup_can_attach(struct cgroup *cgroup,
  4728. struct cgroup_taskset *tset)
  4729. {
  4730. struct task_struct *p = cgroup_taskset_first(tset);
  4731. int ret = 0;
  4732. struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
  4733. if (memcg->move_charge_at_immigrate) {
  4734. struct mm_struct *mm;
  4735. struct mem_cgroup *from = mem_cgroup_from_task(p);
  4736. VM_BUG_ON(from == memcg);
  4737. mm = get_task_mm(p);
  4738. if (!mm)
  4739. return 0;
  4740. /* We move charges only when we move a owner of the mm */
  4741. if (mm->owner == p) {
  4742. VM_BUG_ON(mc.from);
  4743. VM_BUG_ON(mc.to);
  4744. VM_BUG_ON(mc.precharge);
  4745. VM_BUG_ON(mc.moved_charge);
  4746. VM_BUG_ON(mc.moved_swap);
  4747. mem_cgroup_start_move(from);
  4748. spin_lock(&mc.lock);
  4749. mc.from = from;
  4750. mc.to = memcg;
  4751. spin_unlock(&mc.lock);
  4752. /* We set mc.moving_task later */
  4753. ret = mem_cgroup_precharge_mc(mm);
  4754. if (ret)
  4755. mem_cgroup_clear_mc();
  4756. }
  4757. mmput(mm);
  4758. }
  4759. return ret;
  4760. }
  4761. static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
  4762. struct cgroup_taskset *tset)
  4763. {
  4764. mem_cgroup_clear_mc();
  4765. }
  4766. static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
  4767. unsigned long addr, unsigned long end,
  4768. struct mm_walk *walk)
  4769. {
  4770. int ret = 0;
  4771. struct vm_area_struct *vma = walk->private;
  4772. pte_t *pte;
  4773. spinlock_t *ptl;
  4774. enum mc_target_type target_type;
  4775. union mc_target target;
  4776. struct page *page;
  4777. struct page_cgroup *pc;
  4778. /*
  4779. * We don't take compound_lock() here but no race with splitting thp
  4780. * happens because:
  4781. * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
  4782. * under splitting, which means there's no concurrent thp split,
  4783. * - if another thread runs into split_huge_page() just after we
  4784. * entered this if-block, the thread must wait for page table lock
  4785. * to be unlocked in __split_huge_page_splitting(), where the main
  4786. * part of thp split is not executed yet.
  4787. */
  4788. if (pmd_trans_huge_lock(pmd, vma) == 1) {
  4789. if (mc.precharge < HPAGE_PMD_NR) {
  4790. spin_unlock(&vma->vm_mm->page_table_lock);
  4791. return 0;
  4792. }
  4793. target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
  4794. if (target_type == MC_TARGET_PAGE) {
  4795. page = target.page;
  4796. if (!isolate_lru_page(page)) {
  4797. pc = lookup_page_cgroup(page);
  4798. if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
  4799. pc, mc.from, mc.to,
  4800. false)) {
  4801. mc.precharge -= HPAGE_PMD_NR;
  4802. mc.moved_charge += HPAGE_PMD_NR;
  4803. }
  4804. putback_lru_page(page);
  4805. }
  4806. put_page(page);
  4807. }
  4808. spin_unlock(&vma->vm_mm->page_table_lock);
  4809. return 0;
  4810. }
  4811. if (pmd_trans_unstable(pmd))
  4812. return 0;
  4813. retry:
  4814. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  4815. for (; addr != end; addr += PAGE_SIZE) {
  4816. pte_t ptent = *(pte++);
  4817. swp_entry_t ent;
  4818. if (!mc.precharge)
  4819. break;
  4820. switch (get_mctgt_type(vma, addr, ptent, &target)) {
  4821. case MC_TARGET_PAGE:
  4822. page = target.page;
  4823. if (isolate_lru_page(page))
  4824. goto put;
  4825. pc = lookup_page_cgroup(page);
  4826. if (!mem_cgroup_move_account(page, 1, pc,
  4827. mc.from, mc.to, false)) {
  4828. mc.precharge--;
  4829. /* we uncharge from mc.from later. */
  4830. mc.moved_charge++;
  4831. }
  4832. putback_lru_page(page);
  4833. put: /* get_mctgt_type() gets the page */
  4834. put_page(page);
  4835. break;
  4836. case MC_TARGET_SWAP:
  4837. ent = target.ent;
  4838. if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
  4839. mc.precharge--;
  4840. /* we fixup refcnts and charges later. */
  4841. mc.moved_swap++;
  4842. }
  4843. break;
  4844. default:
  4845. break;
  4846. }
  4847. }
  4848. pte_unmap_unlock(pte - 1, ptl);
  4849. cond_resched();
  4850. if (addr != end) {
  4851. /*
  4852. * We have consumed all precharges we got in can_attach().
  4853. * We try charge one by one, but don't do any additional
  4854. * charges to mc.to if we have failed in charge once in attach()
  4855. * phase.
  4856. */
  4857. ret = mem_cgroup_do_precharge(1);
  4858. if (!ret)
  4859. goto retry;
  4860. }
  4861. return ret;
  4862. }
  4863. static void mem_cgroup_move_charge(struct mm_struct *mm)
  4864. {
  4865. struct vm_area_struct *vma;
  4866. lru_add_drain_all();
  4867. retry:
  4868. if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
  4869. /*
  4870. * Someone who are holding the mmap_sem might be waiting in
  4871. * waitq. So we cancel all extra charges, wake up all waiters,
  4872. * and retry. Because we cancel precharges, we might not be able
  4873. * to move enough charges, but moving charge is a best-effort
  4874. * feature anyway, so it wouldn't be a big problem.
  4875. */
  4876. __mem_cgroup_clear_mc();
  4877. cond_resched();
  4878. goto retry;
  4879. }
  4880. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  4881. int ret;
  4882. struct mm_walk mem_cgroup_move_charge_walk = {
  4883. .pmd_entry = mem_cgroup_move_charge_pte_range,
  4884. .mm = mm,
  4885. .private = vma,
  4886. };
  4887. if (is_vm_hugetlb_page(vma))
  4888. continue;
  4889. ret = walk_page_range(vma->vm_start, vma->vm_end,
  4890. &mem_cgroup_move_charge_walk);
  4891. if (ret)
  4892. /*
  4893. * means we have consumed all precharges and failed in
  4894. * doing additional charge. Just abandon here.
  4895. */
  4896. break;
  4897. }
  4898. up_read(&mm->mmap_sem);
  4899. }
  4900. static void mem_cgroup_move_task(struct cgroup *cont,
  4901. struct cgroup_taskset *tset)
  4902. {
  4903. struct task_struct *p = cgroup_taskset_first(tset);
  4904. struct mm_struct *mm = get_task_mm(p);
  4905. if (mm) {
  4906. if (mc.to)
  4907. mem_cgroup_move_charge(mm);
  4908. mmput(mm);
  4909. }
  4910. if (mc.to)
  4911. mem_cgroup_clear_mc();
  4912. }
  4913. #else /* !CONFIG_MMU */
  4914. static int mem_cgroup_can_attach(struct cgroup *cgroup,
  4915. struct cgroup_taskset *tset)
  4916. {
  4917. return 0;
  4918. }
  4919. static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
  4920. struct cgroup_taskset *tset)
  4921. {
  4922. }
  4923. static void mem_cgroup_move_task(struct cgroup *cont,
  4924. struct cgroup_taskset *tset)
  4925. {
  4926. }
  4927. #endif
  4928. struct cgroup_subsys mem_cgroup_subsys = {
  4929. .name = "memory",
  4930. .subsys_id = mem_cgroup_subsys_id,
  4931. .create = mem_cgroup_create,
  4932. .pre_destroy = mem_cgroup_pre_destroy,
  4933. .destroy = mem_cgroup_destroy,
  4934. .can_attach = mem_cgroup_can_attach,
  4935. .cancel_attach = mem_cgroup_cancel_attach,
  4936. .attach = mem_cgroup_move_task,
  4937. .base_cftypes = mem_cgroup_files,
  4938. .early_init = 0,
  4939. .use_id = 1,
  4940. .__DEPRECATED_clear_css_refs = true,
  4941. };
  4942. #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
  4943. static int __init enable_swap_account(char *s)
  4944. {
  4945. /* consider enabled if no parameter or 1 is given */
  4946. if (!strcmp(s, "1"))
  4947. really_do_swap_account = 1;
  4948. else if (!strcmp(s, "0"))
  4949. really_do_swap_account = 0;
  4950. return 1;
  4951. }
  4952. __setup("swapaccount=", enable_swap_account);
  4953. #endif