skge.c 91 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535
  1. /*
  2. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Based on earlier sk98lin, e100 and
  4. * FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License, or
  15. * (at your option) any later version.
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/in.h>
  27. #include <linux/kernel.h>
  28. #include <linux/module.h>
  29. #include <linux/moduleparam.h>
  30. #include <linux/netdevice.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/ethtool.h>
  33. #include <linux/pci.h>
  34. #include <linux/if_vlan.h>
  35. #include <linux/ip.h>
  36. #include <linux/delay.h>
  37. #include <linux/crc32.h>
  38. #include <linux/dma-mapping.h>
  39. #include <linux/mii.h>
  40. #include <asm/irq.h>
  41. #include "skge.h"
  42. #define DRV_NAME "skge"
  43. #define DRV_VERSION "1.7"
  44. #define PFX DRV_NAME " "
  45. #define DEFAULT_TX_RING_SIZE 128
  46. #define DEFAULT_RX_RING_SIZE 512
  47. #define MAX_TX_RING_SIZE 1024
  48. #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
  49. #define MAX_RX_RING_SIZE 4096
  50. #define RX_COPY_THRESHOLD 128
  51. #define RX_BUF_SIZE 1536
  52. #define PHY_RETRIES 1000
  53. #define ETH_JUMBO_MTU 9000
  54. #define TX_WATCHDOG (5 * HZ)
  55. #define NAPI_WEIGHT 64
  56. #define BLINK_MS 250
  57. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  58. MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
  59. MODULE_LICENSE("GPL");
  60. MODULE_VERSION(DRV_VERSION);
  61. static const u32 default_msg
  62. = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
  63. | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
  64. static int debug = -1; /* defaults above */
  65. module_param(debug, int, 0);
  66. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  67. static const struct pci_device_id skge_id_table[] = {
  68. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
  69. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
  70. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
  71. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
  72. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
  73. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
  74. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
  75. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
  76. { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
  77. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
  78. { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
  79. { 0 }
  80. };
  81. MODULE_DEVICE_TABLE(pci, skge_id_table);
  82. static int skge_up(struct net_device *dev);
  83. static int skge_down(struct net_device *dev);
  84. static void skge_phy_reset(struct skge_port *skge);
  85. static void skge_tx_clean(struct skge_port *skge);
  86. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  87. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  88. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  89. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  90. static void yukon_init(struct skge_hw *hw, int port);
  91. static void genesis_mac_init(struct skge_hw *hw, int port);
  92. static void genesis_link_up(struct skge_port *skge);
  93. /* Avoid conditionals by using array */
  94. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  95. static const int rxqaddr[] = { Q_R1, Q_R2 };
  96. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  97. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  98. static int skge_get_regs_len(struct net_device *dev)
  99. {
  100. return 0x4000;
  101. }
  102. /*
  103. * Returns copy of whole control register region
  104. * Note: skip RAM address register because accessing it will
  105. * cause bus hangs!
  106. */
  107. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  108. void *p)
  109. {
  110. const struct skge_port *skge = netdev_priv(dev);
  111. const void __iomem *io = skge->hw->regs;
  112. regs->version = 1;
  113. memset(p, 0, regs->len);
  114. memcpy_fromio(p, io, B3_RAM_ADDR);
  115. memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
  116. regs->len - B3_RI_WTO_R1);
  117. }
  118. /* Wake on Lan only supported on Yukon chips with rev 1 or above */
  119. static int wol_supported(const struct skge_hw *hw)
  120. {
  121. return !((hw->chip_id == CHIP_ID_GENESIS ||
  122. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)));
  123. }
  124. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  125. {
  126. struct skge_port *skge = netdev_priv(dev);
  127. wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
  128. wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
  129. }
  130. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  131. {
  132. struct skge_port *skge = netdev_priv(dev);
  133. struct skge_hw *hw = skge->hw;
  134. if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
  135. return -EOPNOTSUPP;
  136. if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
  137. return -EOPNOTSUPP;
  138. skge->wol = wol->wolopts == WAKE_MAGIC;
  139. if (skge->wol) {
  140. memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);
  141. skge_write16(hw, WOL_CTRL_STAT,
  142. WOL_CTL_ENA_PME_ON_MAGIC_PKT |
  143. WOL_CTL_ENA_MAGIC_PKT_UNIT);
  144. } else
  145. skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);
  146. return 0;
  147. }
  148. /* Determine supported/advertised modes based on hardware.
  149. * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
  150. */
  151. static u32 skge_supported_modes(const struct skge_hw *hw)
  152. {
  153. u32 supported;
  154. if (hw->copper) {
  155. supported = SUPPORTED_10baseT_Half
  156. | SUPPORTED_10baseT_Full
  157. | SUPPORTED_100baseT_Half
  158. | SUPPORTED_100baseT_Full
  159. | SUPPORTED_1000baseT_Half
  160. | SUPPORTED_1000baseT_Full
  161. | SUPPORTED_Autoneg| SUPPORTED_TP;
  162. if (hw->chip_id == CHIP_ID_GENESIS)
  163. supported &= ~(SUPPORTED_10baseT_Half
  164. | SUPPORTED_10baseT_Full
  165. | SUPPORTED_100baseT_Half
  166. | SUPPORTED_100baseT_Full);
  167. else if (hw->chip_id == CHIP_ID_YUKON)
  168. supported &= ~SUPPORTED_1000baseT_Half;
  169. } else
  170. supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
  171. | SUPPORTED_Autoneg;
  172. return supported;
  173. }
  174. static int skge_get_settings(struct net_device *dev,
  175. struct ethtool_cmd *ecmd)
  176. {
  177. struct skge_port *skge = netdev_priv(dev);
  178. struct skge_hw *hw = skge->hw;
  179. ecmd->transceiver = XCVR_INTERNAL;
  180. ecmd->supported = skge_supported_modes(hw);
  181. if (hw->copper) {
  182. ecmd->port = PORT_TP;
  183. ecmd->phy_address = hw->phy_addr;
  184. } else
  185. ecmd->port = PORT_FIBRE;
  186. ecmd->advertising = skge->advertising;
  187. ecmd->autoneg = skge->autoneg;
  188. ecmd->speed = skge->speed;
  189. ecmd->duplex = skge->duplex;
  190. return 0;
  191. }
  192. static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  193. {
  194. struct skge_port *skge = netdev_priv(dev);
  195. const struct skge_hw *hw = skge->hw;
  196. u32 supported = skge_supported_modes(hw);
  197. if (ecmd->autoneg == AUTONEG_ENABLE) {
  198. ecmd->advertising = supported;
  199. skge->duplex = -1;
  200. skge->speed = -1;
  201. } else {
  202. u32 setting;
  203. switch (ecmd->speed) {
  204. case SPEED_1000:
  205. if (ecmd->duplex == DUPLEX_FULL)
  206. setting = SUPPORTED_1000baseT_Full;
  207. else if (ecmd->duplex == DUPLEX_HALF)
  208. setting = SUPPORTED_1000baseT_Half;
  209. else
  210. return -EINVAL;
  211. break;
  212. case SPEED_100:
  213. if (ecmd->duplex == DUPLEX_FULL)
  214. setting = SUPPORTED_100baseT_Full;
  215. else if (ecmd->duplex == DUPLEX_HALF)
  216. setting = SUPPORTED_100baseT_Half;
  217. else
  218. return -EINVAL;
  219. break;
  220. case SPEED_10:
  221. if (ecmd->duplex == DUPLEX_FULL)
  222. setting = SUPPORTED_10baseT_Full;
  223. else if (ecmd->duplex == DUPLEX_HALF)
  224. setting = SUPPORTED_10baseT_Half;
  225. else
  226. return -EINVAL;
  227. break;
  228. default:
  229. return -EINVAL;
  230. }
  231. if ((setting & supported) == 0)
  232. return -EINVAL;
  233. skge->speed = ecmd->speed;
  234. skge->duplex = ecmd->duplex;
  235. }
  236. skge->autoneg = ecmd->autoneg;
  237. skge->advertising = ecmd->advertising;
  238. if (netif_running(dev))
  239. skge_phy_reset(skge);
  240. return (0);
  241. }
  242. static void skge_get_drvinfo(struct net_device *dev,
  243. struct ethtool_drvinfo *info)
  244. {
  245. struct skge_port *skge = netdev_priv(dev);
  246. strcpy(info->driver, DRV_NAME);
  247. strcpy(info->version, DRV_VERSION);
  248. strcpy(info->fw_version, "N/A");
  249. strcpy(info->bus_info, pci_name(skge->hw->pdev));
  250. }
  251. static const struct skge_stat {
  252. char name[ETH_GSTRING_LEN];
  253. u16 xmac_offset;
  254. u16 gma_offset;
  255. } skge_stats[] = {
  256. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  257. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  258. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  259. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  260. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  261. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  262. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  263. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  264. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  265. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  266. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  267. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  268. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  269. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  270. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  271. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  272. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  273. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  274. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  275. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  276. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  277. };
  278. static int skge_get_stats_count(struct net_device *dev)
  279. {
  280. return ARRAY_SIZE(skge_stats);
  281. }
  282. static void skge_get_ethtool_stats(struct net_device *dev,
  283. struct ethtool_stats *stats, u64 *data)
  284. {
  285. struct skge_port *skge = netdev_priv(dev);
  286. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  287. genesis_get_stats(skge, data);
  288. else
  289. yukon_get_stats(skge, data);
  290. }
  291. /* Use hardware MIB variables for critical path statistics and
  292. * transmit feedback not reported at interrupt.
  293. * Other errors are accounted for in interrupt handler.
  294. */
  295. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  296. {
  297. struct skge_port *skge = netdev_priv(dev);
  298. u64 data[ARRAY_SIZE(skge_stats)];
  299. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  300. genesis_get_stats(skge, data);
  301. else
  302. yukon_get_stats(skge, data);
  303. skge->net_stats.tx_bytes = data[0];
  304. skge->net_stats.rx_bytes = data[1];
  305. skge->net_stats.tx_packets = data[2] + data[4] + data[6];
  306. skge->net_stats.rx_packets = data[3] + data[5] + data[7];
  307. skge->net_stats.multicast = data[3] + data[5];
  308. skge->net_stats.collisions = data[10];
  309. skge->net_stats.tx_aborted_errors = data[12];
  310. return &skge->net_stats;
  311. }
  312. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  313. {
  314. int i;
  315. switch (stringset) {
  316. case ETH_SS_STATS:
  317. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  318. memcpy(data + i * ETH_GSTRING_LEN,
  319. skge_stats[i].name, ETH_GSTRING_LEN);
  320. break;
  321. }
  322. }
  323. static void skge_get_ring_param(struct net_device *dev,
  324. struct ethtool_ringparam *p)
  325. {
  326. struct skge_port *skge = netdev_priv(dev);
  327. p->rx_max_pending = MAX_RX_RING_SIZE;
  328. p->tx_max_pending = MAX_TX_RING_SIZE;
  329. p->rx_mini_max_pending = 0;
  330. p->rx_jumbo_max_pending = 0;
  331. p->rx_pending = skge->rx_ring.count;
  332. p->tx_pending = skge->tx_ring.count;
  333. p->rx_mini_pending = 0;
  334. p->rx_jumbo_pending = 0;
  335. }
  336. static int skge_set_ring_param(struct net_device *dev,
  337. struct ethtool_ringparam *p)
  338. {
  339. struct skge_port *skge = netdev_priv(dev);
  340. int err;
  341. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  342. p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
  343. return -EINVAL;
  344. skge->rx_ring.count = p->rx_pending;
  345. skge->tx_ring.count = p->tx_pending;
  346. if (netif_running(dev)) {
  347. skge_down(dev);
  348. err = skge_up(dev);
  349. if (err)
  350. dev_close(dev);
  351. }
  352. return 0;
  353. }
  354. static u32 skge_get_msglevel(struct net_device *netdev)
  355. {
  356. struct skge_port *skge = netdev_priv(netdev);
  357. return skge->msg_enable;
  358. }
  359. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  360. {
  361. struct skge_port *skge = netdev_priv(netdev);
  362. skge->msg_enable = value;
  363. }
  364. static int skge_nway_reset(struct net_device *dev)
  365. {
  366. struct skge_port *skge = netdev_priv(dev);
  367. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  368. return -EINVAL;
  369. skge_phy_reset(skge);
  370. return 0;
  371. }
  372. static int skge_set_sg(struct net_device *dev, u32 data)
  373. {
  374. struct skge_port *skge = netdev_priv(dev);
  375. struct skge_hw *hw = skge->hw;
  376. if (hw->chip_id == CHIP_ID_GENESIS && data)
  377. return -EOPNOTSUPP;
  378. return ethtool_op_set_sg(dev, data);
  379. }
  380. static int skge_set_tx_csum(struct net_device *dev, u32 data)
  381. {
  382. struct skge_port *skge = netdev_priv(dev);
  383. struct skge_hw *hw = skge->hw;
  384. if (hw->chip_id == CHIP_ID_GENESIS && data)
  385. return -EOPNOTSUPP;
  386. return ethtool_op_set_tx_csum(dev, data);
  387. }
  388. static u32 skge_get_rx_csum(struct net_device *dev)
  389. {
  390. struct skge_port *skge = netdev_priv(dev);
  391. return skge->rx_csum;
  392. }
  393. /* Only Yukon supports checksum offload. */
  394. static int skge_set_rx_csum(struct net_device *dev, u32 data)
  395. {
  396. struct skge_port *skge = netdev_priv(dev);
  397. if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
  398. return -EOPNOTSUPP;
  399. skge->rx_csum = data;
  400. return 0;
  401. }
  402. static void skge_get_pauseparam(struct net_device *dev,
  403. struct ethtool_pauseparam *ecmd)
  404. {
  405. struct skge_port *skge = netdev_priv(dev);
  406. ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND)
  407. || (skge->flow_control == FLOW_MODE_SYMMETRIC);
  408. ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND)
  409. || (skge->flow_control == FLOW_MODE_SYMMETRIC);
  410. ecmd->autoneg = skge->autoneg;
  411. }
  412. static int skge_set_pauseparam(struct net_device *dev,
  413. struct ethtool_pauseparam *ecmd)
  414. {
  415. struct skge_port *skge = netdev_priv(dev);
  416. skge->autoneg = ecmd->autoneg;
  417. if (ecmd->rx_pause && ecmd->tx_pause)
  418. skge->flow_control = FLOW_MODE_SYMMETRIC;
  419. else if (ecmd->rx_pause && !ecmd->tx_pause)
  420. skge->flow_control = FLOW_MODE_REM_SEND;
  421. else if (!ecmd->rx_pause && ecmd->tx_pause)
  422. skge->flow_control = FLOW_MODE_LOC_SEND;
  423. else
  424. skge->flow_control = FLOW_MODE_NONE;
  425. if (netif_running(dev))
  426. skge_phy_reset(skge);
  427. return 0;
  428. }
  429. /* Chip internal frequency for clock calculations */
  430. static inline u32 hwkhz(const struct skge_hw *hw)
  431. {
  432. return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
  433. }
  434. /* Chip HZ to microseconds */
  435. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  436. {
  437. return (ticks * 1000) / hwkhz(hw);
  438. }
  439. /* Microseconds to chip HZ */
  440. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  441. {
  442. return hwkhz(hw) * usec / 1000;
  443. }
  444. static int skge_get_coalesce(struct net_device *dev,
  445. struct ethtool_coalesce *ecmd)
  446. {
  447. struct skge_port *skge = netdev_priv(dev);
  448. struct skge_hw *hw = skge->hw;
  449. int port = skge->port;
  450. ecmd->rx_coalesce_usecs = 0;
  451. ecmd->tx_coalesce_usecs = 0;
  452. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  453. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  454. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  455. if (msk & rxirqmask[port])
  456. ecmd->rx_coalesce_usecs = delay;
  457. if (msk & txirqmask[port])
  458. ecmd->tx_coalesce_usecs = delay;
  459. }
  460. return 0;
  461. }
  462. /* Note: interrupt timer is per board, but can turn on/off per port */
  463. static int skge_set_coalesce(struct net_device *dev,
  464. struct ethtool_coalesce *ecmd)
  465. {
  466. struct skge_port *skge = netdev_priv(dev);
  467. struct skge_hw *hw = skge->hw;
  468. int port = skge->port;
  469. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  470. u32 delay = 25;
  471. if (ecmd->rx_coalesce_usecs == 0)
  472. msk &= ~rxirqmask[port];
  473. else if (ecmd->rx_coalesce_usecs < 25 ||
  474. ecmd->rx_coalesce_usecs > 33333)
  475. return -EINVAL;
  476. else {
  477. msk |= rxirqmask[port];
  478. delay = ecmd->rx_coalesce_usecs;
  479. }
  480. if (ecmd->tx_coalesce_usecs == 0)
  481. msk &= ~txirqmask[port];
  482. else if (ecmd->tx_coalesce_usecs < 25 ||
  483. ecmd->tx_coalesce_usecs > 33333)
  484. return -EINVAL;
  485. else {
  486. msk |= txirqmask[port];
  487. delay = min(delay, ecmd->rx_coalesce_usecs);
  488. }
  489. skge_write32(hw, B2_IRQM_MSK, msk);
  490. if (msk == 0)
  491. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  492. else {
  493. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  494. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  495. }
  496. return 0;
  497. }
  498. enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
  499. static void skge_led(struct skge_port *skge, enum led_mode mode)
  500. {
  501. struct skge_hw *hw = skge->hw;
  502. int port = skge->port;
  503. mutex_lock(&hw->phy_mutex);
  504. if (hw->chip_id == CHIP_ID_GENESIS) {
  505. switch (mode) {
  506. case LED_MODE_OFF:
  507. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
  508. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  509. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  510. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  511. break;
  512. case LED_MODE_ON:
  513. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  514. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  515. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  516. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  517. break;
  518. case LED_MODE_TST:
  519. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  520. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  521. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  522. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
  523. break;
  524. }
  525. } else {
  526. switch (mode) {
  527. case LED_MODE_OFF:
  528. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  529. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  530. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  531. PHY_M_LED_MO_10(MO_LED_OFF) |
  532. PHY_M_LED_MO_100(MO_LED_OFF) |
  533. PHY_M_LED_MO_1000(MO_LED_OFF) |
  534. PHY_M_LED_MO_RX(MO_LED_OFF));
  535. break;
  536. case LED_MODE_ON:
  537. gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
  538. PHY_M_LED_PULS_DUR(PULS_170MS) |
  539. PHY_M_LED_BLINK_RT(BLINK_84MS) |
  540. PHY_M_LEDC_TX_CTRL |
  541. PHY_M_LEDC_DP_CTRL);
  542. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  543. PHY_M_LED_MO_RX(MO_LED_OFF) |
  544. (skge->speed == SPEED_100 ?
  545. PHY_M_LED_MO_100(MO_LED_ON) : 0));
  546. break;
  547. case LED_MODE_TST:
  548. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  549. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  550. PHY_M_LED_MO_DUP(MO_LED_ON) |
  551. PHY_M_LED_MO_10(MO_LED_ON) |
  552. PHY_M_LED_MO_100(MO_LED_ON) |
  553. PHY_M_LED_MO_1000(MO_LED_ON) |
  554. PHY_M_LED_MO_RX(MO_LED_ON));
  555. }
  556. }
  557. mutex_unlock(&hw->phy_mutex);
  558. }
  559. /* blink LED's for finding board */
  560. static int skge_phys_id(struct net_device *dev, u32 data)
  561. {
  562. struct skge_port *skge = netdev_priv(dev);
  563. unsigned long ms;
  564. enum led_mode mode = LED_MODE_TST;
  565. if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
  566. ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
  567. else
  568. ms = data * 1000;
  569. while (ms > 0) {
  570. skge_led(skge, mode);
  571. mode ^= LED_MODE_TST;
  572. if (msleep_interruptible(BLINK_MS))
  573. break;
  574. ms -= BLINK_MS;
  575. }
  576. /* back to regular LED state */
  577. skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
  578. return 0;
  579. }
  580. static struct ethtool_ops skge_ethtool_ops = {
  581. .get_settings = skge_get_settings,
  582. .set_settings = skge_set_settings,
  583. .get_drvinfo = skge_get_drvinfo,
  584. .get_regs_len = skge_get_regs_len,
  585. .get_regs = skge_get_regs,
  586. .get_wol = skge_get_wol,
  587. .set_wol = skge_set_wol,
  588. .get_msglevel = skge_get_msglevel,
  589. .set_msglevel = skge_set_msglevel,
  590. .nway_reset = skge_nway_reset,
  591. .get_link = ethtool_op_get_link,
  592. .get_ringparam = skge_get_ring_param,
  593. .set_ringparam = skge_set_ring_param,
  594. .get_pauseparam = skge_get_pauseparam,
  595. .set_pauseparam = skge_set_pauseparam,
  596. .get_coalesce = skge_get_coalesce,
  597. .set_coalesce = skge_set_coalesce,
  598. .get_sg = ethtool_op_get_sg,
  599. .set_sg = skge_set_sg,
  600. .get_tx_csum = ethtool_op_get_tx_csum,
  601. .set_tx_csum = skge_set_tx_csum,
  602. .get_rx_csum = skge_get_rx_csum,
  603. .set_rx_csum = skge_set_rx_csum,
  604. .get_strings = skge_get_strings,
  605. .phys_id = skge_phys_id,
  606. .get_stats_count = skge_get_stats_count,
  607. .get_ethtool_stats = skge_get_ethtool_stats,
  608. .get_perm_addr = ethtool_op_get_perm_addr,
  609. };
  610. /*
  611. * Allocate ring elements and chain them together
  612. * One-to-one association of board descriptors with ring elements
  613. */
  614. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
  615. {
  616. struct skge_tx_desc *d;
  617. struct skge_element *e;
  618. int i;
  619. ring->start = kcalloc(sizeof(*e), ring->count, GFP_KERNEL);
  620. if (!ring->start)
  621. return -ENOMEM;
  622. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  623. e->desc = d;
  624. if (i == ring->count - 1) {
  625. e->next = ring->start;
  626. d->next_offset = base;
  627. } else {
  628. e->next = e + 1;
  629. d->next_offset = base + (i+1) * sizeof(*d);
  630. }
  631. }
  632. ring->to_use = ring->to_clean = ring->start;
  633. return 0;
  634. }
  635. /* Allocate and setup a new buffer for receiving */
  636. static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
  637. struct sk_buff *skb, unsigned int bufsize)
  638. {
  639. struct skge_rx_desc *rd = e->desc;
  640. u64 map;
  641. map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
  642. PCI_DMA_FROMDEVICE);
  643. rd->dma_lo = map;
  644. rd->dma_hi = map >> 32;
  645. e->skb = skb;
  646. rd->csum1_start = ETH_HLEN;
  647. rd->csum2_start = ETH_HLEN;
  648. rd->csum1 = 0;
  649. rd->csum2 = 0;
  650. wmb();
  651. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  652. pci_unmap_addr_set(e, mapaddr, map);
  653. pci_unmap_len_set(e, maplen, bufsize);
  654. }
  655. /* Resume receiving using existing skb,
  656. * Note: DMA address is not changed by chip.
  657. * MTU not changed while receiver active.
  658. */
  659. static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
  660. {
  661. struct skge_rx_desc *rd = e->desc;
  662. rd->csum2 = 0;
  663. rd->csum2_start = ETH_HLEN;
  664. wmb();
  665. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
  666. }
  667. /* Free all buffers in receive ring, assumes receiver stopped */
  668. static void skge_rx_clean(struct skge_port *skge)
  669. {
  670. struct skge_hw *hw = skge->hw;
  671. struct skge_ring *ring = &skge->rx_ring;
  672. struct skge_element *e;
  673. e = ring->start;
  674. do {
  675. struct skge_rx_desc *rd = e->desc;
  676. rd->control = 0;
  677. if (e->skb) {
  678. pci_unmap_single(hw->pdev,
  679. pci_unmap_addr(e, mapaddr),
  680. pci_unmap_len(e, maplen),
  681. PCI_DMA_FROMDEVICE);
  682. dev_kfree_skb(e->skb);
  683. e->skb = NULL;
  684. }
  685. } while ((e = e->next) != ring->start);
  686. }
  687. /* Allocate buffers for receive ring
  688. * For receive: to_clean is next received frame.
  689. */
  690. static int skge_rx_fill(struct net_device *dev)
  691. {
  692. struct skge_port *skge = netdev_priv(dev);
  693. struct skge_ring *ring = &skge->rx_ring;
  694. struct skge_element *e;
  695. e = ring->start;
  696. do {
  697. struct sk_buff *skb;
  698. skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
  699. GFP_KERNEL);
  700. if (!skb)
  701. return -ENOMEM;
  702. skb_reserve(skb, NET_IP_ALIGN);
  703. skge_rx_setup(skge, e, skb, skge->rx_buf_size);
  704. } while ( (e = e->next) != ring->start);
  705. ring->to_clean = ring->start;
  706. return 0;
  707. }
  708. static void skge_link_up(struct skge_port *skge)
  709. {
  710. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
  711. LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
  712. netif_carrier_on(skge->netdev);
  713. netif_wake_queue(skge->netdev);
  714. if (netif_msg_link(skge))
  715. printk(KERN_INFO PFX
  716. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  717. skge->netdev->name, skge->speed,
  718. skge->duplex == DUPLEX_FULL ? "full" : "half",
  719. (skge->flow_control == FLOW_MODE_NONE) ? "none" :
  720. (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" :
  721. (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" :
  722. (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" :
  723. "unknown");
  724. }
  725. static void skge_link_down(struct skge_port *skge)
  726. {
  727. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  728. netif_carrier_off(skge->netdev);
  729. netif_stop_queue(skge->netdev);
  730. if (netif_msg_link(skge))
  731. printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
  732. }
  733. static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  734. {
  735. int i;
  736. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  737. *val = xm_read16(hw, port, XM_PHY_DATA);
  738. for (i = 0; i < PHY_RETRIES; i++) {
  739. if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
  740. goto ready;
  741. udelay(1);
  742. }
  743. return -ETIMEDOUT;
  744. ready:
  745. *val = xm_read16(hw, port, XM_PHY_DATA);
  746. return 0;
  747. }
  748. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  749. {
  750. u16 v = 0;
  751. if (__xm_phy_read(hw, port, reg, &v))
  752. printk(KERN_WARNING PFX "%s: phy read timed out\n",
  753. hw->dev[port]->name);
  754. return v;
  755. }
  756. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  757. {
  758. int i;
  759. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  760. for (i = 0; i < PHY_RETRIES; i++) {
  761. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  762. goto ready;
  763. udelay(1);
  764. }
  765. return -EIO;
  766. ready:
  767. xm_write16(hw, port, XM_PHY_DATA, val);
  768. for (i = 0; i < PHY_RETRIES; i++) {
  769. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  770. return 0;
  771. udelay(1);
  772. }
  773. return -ETIMEDOUT;
  774. }
  775. static void genesis_init(struct skge_hw *hw)
  776. {
  777. /* set blink source counter */
  778. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  779. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  780. /* configure mac arbiter */
  781. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  782. /* configure mac arbiter timeout values */
  783. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  784. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  785. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  786. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  787. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  788. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  789. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  790. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  791. /* configure packet arbiter timeout */
  792. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  793. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  794. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  795. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  796. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  797. }
  798. static void genesis_reset(struct skge_hw *hw, int port)
  799. {
  800. const u8 zero[8] = { 0 };
  801. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  802. /* reset the statistics module */
  803. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  804. xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
  805. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  806. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  807. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  808. /* disable Broadcom PHY IRQ */
  809. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  810. xm_outhash(hw, port, XM_HSM, zero);
  811. }
  812. /* Convert mode to MII values */
  813. static const u16 phy_pause_map[] = {
  814. [FLOW_MODE_NONE] = 0,
  815. [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
  816. [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
  817. [FLOW_MODE_REM_SEND] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
  818. };
  819. /* Check status of Broadcom phy link */
  820. static void bcom_check_link(struct skge_hw *hw, int port)
  821. {
  822. struct net_device *dev = hw->dev[port];
  823. struct skge_port *skge = netdev_priv(dev);
  824. u16 status;
  825. /* read twice because of latch */
  826. (void) xm_phy_read(hw, port, PHY_BCOM_STAT);
  827. status = xm_phy_read(hw, port, PHY_BCOM_STAT);
  828. if ((status & PHY_ST_LSYNC) == 0) {
  829. u16 cmd = xm_read16(hw, port, XM_MMU_CMD);
  830. cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  831. xm_write16(hw, port, XM_MMU_CMD, cmd);
  832. /* dummy read to ensure writing */
  833. (void) xm_read16(hw, port, XM_MMU_CMD);
  834. if (netif_carrier_ok(dev))
  835. skge_link_down(skge);
  836. } else {
  837. if (skge->autoneg == AUTONEG_ENABLE &&
  838. (status & PHY_ST_AN_OVER)) {
  839. u16 lpa = xm_phy_read(hw, port, PHY_BCOM_AUNE_LP);
  840. u16 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  841. if (lpa & PHY_B_AN_RF) {
  842. printk(KERN_NOTICE PFX "%s: remote fault\n",
  843. dev->name);
  844. return;
  845. }
  846. /* Check Duplex mismatch */
  847. switch (aux & PHY_B_AS_AN_RES_MSK) {
  848. case PHY_B_RES_1000FD:
  849. skge->duplex = DUPLEX_FULL;
  850. break;
  851. case PHY_B_RES_1000HD:
  852. skge->duplex = DUPLEX_HALF;
  853. break;
  854. default:
  855. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  856. dev->name);
  857. return;
  858. }
  859. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  860. switch (aux & PHY_B_AS_PAUSE_MSK) {
  861. case PHY_B_AS_PAUSE_MSK:
  862. skge->flow_control = FLOW_MODE_SYMMETRIC;
  863. break;
  864. case PHY_B_AS_PRR:
  865. skge->flow_control = FLOW_MODE_REM_SEND;
  866. break;
  867. case PHY_B_AS_PRT:
  868. skge->flow_control = FLOW_MODE_LOC_SEND;
  869. break;
  870. default:
  871. skge->flow_control = FLOW_MODE_NONE;
  872. }
  873. skge->speed = SPEED_1000;
  874. }
  875. if (!netif_carrier_ok(dev))
  876. genesis_link_up(skge);
  877. }
  878. }
  879. /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
  880. * Phy on for 100 or 10Mbit operation
  881. */
  882. static void bcom_phy_init(struct skge_port *skge, int jumbo)
  883. {
  884. struct skge_hw *hw = skge->hw;
  885. int port = skge->port;
  886. int i;
  887. u16 id1, r, ext, ctl;
  888. /* magic workaround patterns for Broadcom */
  889. static const struct {
  890. u16 reg;
  891. u16 val;
  892. } A1hack[] = {
  893. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  894. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  895. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  896. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  897. }, C0hack[] = {
  898. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  899. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  900. };
  901. /* read Id from external PHY (all have the same address) */
  902. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  903. /* Optimize MDIO transfer by suppressing preamble. */
  904. r = xm_read16(hw, port, XM_MMU_CMD);
  905. r |= XM_MMU_NO_PRE;
  906. xm_write16(hw, port, XM_MMU_CMD,r);
  907. switch (id1) {
  908. case PHY_BCOM_ID1_C0:
  909. /*
  910. * Workaround BCOM Errata for the C0 type.
  911. * Write magic patterns to reserved registers.
  912. */
  913. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  914. xm_phy_write(hw, port,
  915. C0hack[i].reg, C0hack[i].val);
  916. break;
  917. case PHY_BCOM_ID1_A1:
  918. /*
  919. * Workaround BCOM Errata for the A1 type.
  920. * Write magic patterns to reserved registers.
  921. */
  922. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  923. xm_phy_write(hw, port,
  924. A1hack[i].reg, A1hack[i].val);
  925. break;
  926. }
  927. /*
  928. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  929. * Disable Power Management after reset.
  930. */
  931. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  932. r |= PHY_B_AC_DIS_PM;
  933. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
  934. /* Dummy read */
  935. xm_read16(hw, port, XM_ISRC);
  936. ext = PHY_B_PEC_EN_LTR; /* enable tx led */
  937. ctl = PHY_CT_SP1000; /* always 1000mbit */
  938. if (skge->autoneg == AUTONEG_ENABLE) {
  939. /*
  940. * Workaround BCOM Errata #1 for the C5 type.
  941. * 1000Base-T Link Acquisition Failure in Slave Mode
  942. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  943. */
  944. u16 adv = PHY_B_1000C_RD;
  945. if (skge->advertising & ADVERTISED_1000baseT_Half)
  946. adv |= PHY_B_1000C_AHD;
  947. if (skge->advertising & ADVERTISED_1000baseT_Full)
  948. adv |= PHY_B_1000C_AFD;
  949. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
  950. ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  951. } else {
  952. if (skge->duplex == DUPLEX_FULL)
  953. ctl |= PHY_CT_DUP_MD;
  954. /* Force to slave */
  955. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
  956. }
  957. /* Set autonegotiation pause parameters */
  958. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
  959. phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
  960. /* Handle Jumbo frames */
  961. if (jumbo) {
  962. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  963. PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
  964. ext |= PHY_B_PEC_HIGH_LA;
  965. }
  966. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
  967. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
  968. /* Use link status change interrupt */
  969. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  970. bcom_check_link(hw, port);
  971. }
  972. static void genesis_mac_init(struct skge_hw *hw, int port)
  973. {
  974. struct net_device *dev = hw->dev[port];
  975. struct skge_port *skge = netdev_priv(dev);
  976. int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
  977. int i;
  978. u32 r;
  979. const u8 zero[6] = { 0 };
  980. for (i = 0; i < 10; i++) {
  981. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  982. MFF_SET_MAC_RST);
  983. if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
  984. goto reset_ok;
  985. udelay(1);
  986. }
  987. printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
  988. reset_ok:
  989. /* Unreset the XMAC. */
  990. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  991. /*
  992. * Perform additional initialization for external PHYs,
  993. * namely for the 1000baseTX cards that use the XMAC's
  994. * GMII mode.
  995. */
  996. /* Take external Phy out of reset */
  997. r = skge_read32(hw, B2_GP_IO);
  998. if (port == 0)
  999. r |= GP_DIR_0|GP_IO_0;
  1000. else
  1001. r |= GP_DIR_2|GP_IO_2;
  1002. skge_write32(hw, B2_GP_IO, r);
  1003. /* Enable GMII interface */
  1004. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  1005. bcom_phy_init(skge, jumbo);
  1006. /* Set Station Address */
  1007. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  1008. /* We don't use match addresses so clear */
  1009. for (i = 1; i < 16; i++)
  1010. xm_outaddr(hw, port, XM_EXM(i), zero);
  1011. /* Clear MIB counters */
  1012. xm_write16(hw, port, XM_STAT_CMD,
  1013. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1014. /* Clear two times according to Errata #3 */
  1015. xm_write16(hw, port, XM_STAT_CMD,
  1016. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1017. /* configure Rx High Water Mark (XM_RX_HI_WM) */
  1018. xm_write16(hw, port, XM_RX_HI_WM, 1450);
  1019. /* We don't need the FCS appended to the packet. */
  1020. r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
  1021. if (jumbo)
  1022. r |= XM_RX_BIG_PK_OK;
  1023. if (skge->duplex == DUPLEX_HALF) {
  1024. /*
  1025. * If in manual half duplex mode the other side might be in
  1026. * full duplex mode, so ignore if a carrier extension is not seen
  1027. * on frames received
  1028. */
  1029. r |= XM_RX_DIS_CEXT;
  1030. }
  1031. xm_write16(hw, port, XM_RX_CMD, r);
  1032. /* We want short frames padded to 60 bytes. */
  1033. xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
  1034. /*
  1035. * Bump up the transmit threshold. This helps hold off transmit
  1036. * underruns when we're blasting traffic from both ports at once.
  1037. */
  1038. xm_write16(hw, port, XM_TX_THR, 512);
  1039. /*
  1040. * Enable the reception of all error frames. This is is
  1041. * a necessary evil due to the design of the XMAC. The
  1042. * XMAC's receive FIFO is only 8K in size, however jumbo
  1043. * frames can be up to 9000 bytes in length. When bad
  1044. * frame filtering is enabled, the XMAC's RX FIFO operates
  1045. * in 'store and forward' mode. For this to work, the
  1046. * entire frame has to fit into the FIFO, but that means
  1047. * that jumbo frames larger than 8192 bytes will be
  1048. * truncated. Disabling all bad frame filtering causes
  1049. * the RX FIFO to operate in streaming mode, in which
  1050. * case the XMAC will start transferring frames out of the
  1051. * RX FIFO as soon as the FIFO threshold is reached.
  1052. */
  1053. xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
  1054. /*
  1055. * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
  1056. * - Enable all bits excepting 'Octets Rx OK Low CntOv'
  1057. * and 'Octets Rx OK Hi Cnt Ov'.
  1058. */
  1059. xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
  1060. /*
  1061. * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
  1062. * - Enable all bits excepting 'Octets Tx OK Low CntOv'
  1063. * and 'Octets Tx OK Hi Cnt Ov'.
  1064. */
  1065. xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
  1066. /* Configure MAC arbiter */
  1067. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  1068. /* configure timeout values */
  1069. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  1070. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  1071. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  1072. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  1073. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  1074. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  1075. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  1076. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  1077. /* Configure Rx MAC FIFO */
  1078. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  1079. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  1080. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  1081. /* Configure Tx MAC FIFO */
  1082. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  1083. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  1084. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  1085. if (jumbo) {
  1086. /* Enable frame flushing if jumbo frames used */
  1087. skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
  1088. } else {
  1089. /* enable timeout timers if normal frames */
  1090. skge_write16(hw, B3_PA_CTRL,
  1091. (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  1092. }
  1093. }
  1094. static void genesis_stop(struct skge_port *skge)
  1095. {
  1096. struct skge_hw *hw = skge->hw;
  1097. int port = skge->port;
  1098. u32 reg;
  1099. genesis_reset(hw, port);
  1100. /* Clear Tx packet arbiter timeout IRQ */
  1101. skge_write16(hw, B3_PA_CTRL,
  1102. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1103. /*
  1104. * If the transfer sticks at the MAC the STOP command will not
  1105. * terminate if we don't flush the XMAC's transmit FIFO !
  1106. */
  1107. xm_write32(hw, port, XM_MODE,
  1108. xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
  1109. /* Reset the MAC */
  1110. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1111. /* For external PHYs there must be special handling */
  1112. reg = skge_read32(hw, B2_GP_IO);
  1113. if (port == 0) {
  1114. reg |= GP_DIR_0;
  1115. reg &= ~GP_IO_0;
  1116. } else {
  1117. reg |= GP_DIR_2;
  1118. reg &= ~GP_IO_2;
  1119. }
  1120. skge_write32(hw, B2_GP_IO, reg);
  1121. skge_read32(hw, B2_GP_IO);
  1122. xm_write16(hw, port, XM_MMU_CMD,
  1123. xm_read16(hw, port, XM_MMU_CMD)
  1124. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1125. xm_read16(hw, port, XM_MMU_CMD);
  1126. }
  1127. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1128. {
  1129. struct skge_hw *hw = skge->hw;
  1130. int port = skge->port;
  1131. int i;
  1132. unsigned long timeout = jiffies + HZ;
  1133. xm_write16(hw, port,
  1134. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1135. /* wait for update to complete */
  1136. while (xm_read16(hw, port, XM_STAT_CMD)
  1137. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1138. if (time_after(jiffies, timeout))
  1139. break;
  1140. udelay(10);
  1141. }
  1142. /* special case for 64 bit octet counter */
  1143. data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1144. | xm_read32(hw, port, XM_TXO_OK_LO);
  1145. data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1146. | xm_read32(hw, port, XM_RXO_OK_LO);
  1147. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1148. data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
  1149. }
  1150. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1151. {
  1152. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1153. u16 status = xm_read16(hw, port, XM_ISRC);
  1154. if (netif_msg_intr(skge))
  1155. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1156. skge->netdev->name, status);
  1157. if (status & XM_IS_TXF_UR) {
  1158. xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1159. ++skge->net_stats.tx_fifo_errors;
  1160. }
  1161. if (status & XM_IS_RXF_OV) {
  1162. xm_write32(hw, port, XM_MODE, XM_MD_FRF);
  1163. ++skge->net_stats.rx_fifo_errors;
  1164. }
  1165. }
  1166. static void genesis_link_up(struct skge_port *skge)
  1167. {
  1168. struct skge_hw *hw = skge->hw;
  1169. int port = skge->port;
  1170. u16 cmd;
  1171. u32 mode, msk;
  1172. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1173. /*
  1174. * enabling pause frame reception is required for 1000BT
  1175. * because the XMAC is not reset if the link is going down
  1176. */
  1177. if (skge->flow_control == FLOW_MODE_NONE ||
  1178. skge->flow_control == FLOW_MODE_LOC_SEND)
  1179. /* Disable Pause Frame Reception */
  1180. cmd |= XM_MMU_IGN_PF;
  1181. else
  1182. /* Enable Pause Frame Reception */
  1183. cmd &= ~XM_MMU_IGN_PF;
  1184. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1185. mode = xm_read32(hw, port, XM_MODE);
  1186. if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1187. skge->flow_control == FLOW_MODE_LOC_SEND) {
  1188. /*
  1189. * Configure Pause Frame Generation
  1190. * Use internal and external Pause Frame Generation.
  1191. * Sending pause frames is edge triggered.
  1192. * Send a Pause frame with the maximum pause time if
  1193. * internal oder external FIFO full condition occurs.
  1194. * Send a zero pause time frame to re-start transmission.
  1195. */
  1196. /* XM_PAUSE_DA = '010000C28001' (default) */
  1197. /* XM_MAC_PTIME = 0xffff (maximum) */
  1198. /* remember this value is defined in big endian (!) */
  1199. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1200. mode |= XM_PAUSE_MODE;
  1201. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1202. } else {
  1203. /*
  1204. * disable pause frame generation is required for 1000BT
  1205. * because the XMAC is not reset if the link is going down
  1206. */
  1207. /* Disable Pause Mode in Mode Register */
  1208. mode &= ~XM_PAUSE_MODE;
  1209. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1210. }
  1211. xm_write32(hw, port, XM_MODE, mode);
  1212. msk = XM_DEF_MSK;
  1213. /* disable GP0 interrupt bit for external Phy */
  1214. msk |= XM_IS_INP_ASS;
  1215. xm_write16(hw, port, XM_IMSK, msk);
  1216. xm_read16(hw, port, XM_ISRC);
  1217. /* get MMU Command Reg. */
  1218. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1219. if (skge->duplex == DUPLEX_FULL)
  1220. cmd |= XM_MMU_GMII_FD;
  1221. /*
  1222. * Workaround BCOM Errata (#10523) for all BCom Phys
  1223. * Enable Power Management after link up
  1224. */
  1225. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1226. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1227. & ~PHY_B_AC_DIS_PM);
  1228. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1229. /* enable Rx/Tx */
  1230. xm_write16(hw, port, XM_MMU_CMD,
  1231. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1232. skge_link_up(skge);
  1233. }
  1234. static inline void bcom_phy_intr(struct skge_port *skge)
  1235. {
  1236. struct skge_hw *hw = skge->hw;
  1237. int port = skge->port;
  1238. u16 isrc;
  1239. isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1240. if (netif_msg_intr(skge))
  1241. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
  1242. skge->netdev->name, isrc);
  1243. if (isrc & PHY_B_IS_PSE)
  1244. printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
  1245. hw->dev[port]->name);
  1246. /* Workaround BCom Errata:
  1247. * enable and disable loopback mode if "NO HCD" occurs.
  1248. */
  1249. if (isrc & PHY_B_IS_NO_HDCL) {
  1250. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1251. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1252. ctrl | PHY_CT_LOOP);
  1253. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1254. ctrl & ~PHY_CT_LOOP);
  1255. }
  1256. if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
  1257. bcom_check_link(hw, port);
  1258. }
  1259. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1260. {
  1261. int i;
  1262. gma_write16(hw, port, GM_SMI_DATA, val);
  1263. gma_write16(hw, port, GM_SMI_CTRL,
  1264. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1265. for (i = 0; i < PHY_RETRIES; i++) {
  1266. udelay(1);
  1267. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1268. return 0;
  1269. }
  1270. printk(KERN_WARNING PFX "%s: phy write timeout\n",
  1271. hw->dev[port]->name);
  1272. return -EIO;
  1273. }
  1274. static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  1275. {
  1276. int i;
  1277. gma_write16(hw, port, GM_SMI_CTRL,
  1278. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1279. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1280. for (i = 0; i < PHY_RETRIES; i++) {
  1281. udelay(1);
  1282. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1283. goto ready;
  1284. }
  1285. return -ETIMEDOUT;
  1286. ready:
  1287. *val = gma_read16(hw, port, GM_SMI_DATA);
  1288. return 0;
  1289. }
  1290. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1291. {
  1292. u16 v = 0;
  1293. if (__gm_phy_read(hw, port, reg, &v))
  1294. printk(KERN_WARNING PFX "%s: phy read timeout\n",
  1295. hw->dev[port]->name);
  1296. return v;
  1297. }
  1298. /* Marvell Phy Initialization */
  1299. static void yukon_init(struct skge_hw *hw, int port)
  1300. {
  1301. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1302. u16 ctrl, ct1000, adv;
  1303. if (skge->autoneg == AUTONEG_ENABLE) {
  1304. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1305. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1306. PHY_M_EC_MAC_S_MSK);
  1307. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1308. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1309. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1310. }
  1311. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1312. if (skge->autoneg == AUTONEG_DISABLE)
  1313. ctrl &= ~PHY_CT_ANE;
  1314. ctrl |= PHY_CT_RESET;
  1315. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1316. ctrl = 0;
  1317. ct1000 = 0;
  1318. adv = PHY_AN_CSMA;
  1319. if (skge->autoneg == AUTONEG_ENABLE) {
  1320. if (hw->copper) {
  1321. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1322. ct1000 |= PHY_M_1000C_AFD;
  1323. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1324. ct1000 |= PHY_M_1000C_AHD;
  1325. if (skge->advertising & ADVERTISED_100baseT_Full)
  1326. adv |= PHY_M_AN_100_FD;
  1327. if (skge->advertising & ADVERTISED_100baseT_Half)
  1328. adv |= PHY_M_AN_100_HD;
  1329. if (skge->advertising & ADVERTISED_10baseT_Full)
  1330. adv |= PHY_M_AN_10_FD;
  1331. if (skge->advertising & ADVERTISED_10baseT_Half)
  1332. adv |= PHY_M_AN_10_HD;
  1333. } else /* special defines for FIBER (88E1011S only) */
  1334. adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
  1335. /* Set Flow-control capabilities */
  1336. adv |= phy_pause_map[skge->flow_control];
  1337. /* Restart Auto-negotiation */
  1338. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1339. } else {
  1340. /* forced speed/duplex settings */
  1341. ct1000 = PHY_M_1000C_MSE;
  1342. if (skge->duplex == DUPLEX_FULL)
  1343. ctrl |= PHY_CT_DUP_MD;
  1344. switch (skge->speed) {
  1345. case SPEED_1000:
  1346. ctrl |= PHY_CT_SP1000;
  1347. break;
  1348. case SPEED_100:
  1349. ctrl |= PHY_CT_SP100;
  1350. break;
  1351. }
  1352. ctrl |= PHY_CT_RESET;
  1353. }
  1354. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1355. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1356. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1357. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1358. if (skge->autoneg == AUTONEG_ENABLE)
  1359. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
  1360. else
  1361. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1362. }
  1363. static void yukon_reset(struct skge_hw *hw, int port)
  1364. {
  1365. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1366. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1367. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1368. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1369. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1370. gma_write16(hw, port, GM_RX_CTRL,
  1371. gma_read16(hw, port, GM_RX_CTRL)
  1372. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1373. }
  1374. /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
  1375. static int is_yukon_lite_a0(struct skge_hw *hw)
  1376. {
  1377. u32 reg;
  1378. int ret;
  1379. if (hw->chip_id != CHIP_ID_YUKON)
  1380. return 0;
  1381. reg = skge_read32(hw, B2_FAR);
  1382. skge_write8(hw, B2_FAR + 3, 0xff);
  1383. ret = (skge_read8(hw, B2_FAR + 3) != 0);
  1384. skge_write32(hw, B2_FAR, reg);
  1385. return ret;
  1386. }
  1387. static void yukon_mac_init(struct skge_hw *hw, int port)
  1388. {
  1389. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1390. int i;
  1391. u32 reg;
  1392. const u8 *addr = hw->dev[port]->dev_addr;
  1393. /* WA code for COMA mode -- set PHY reset */
  1394. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1395. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1396. reg = skge_read32(hw, B2_GP_IO);
  1397. reg |= GP_DIR_9 | GP_IO_9;
  1398. skge_write32(hw, B2_GP_IO, reg);
  1399. }
  1400. /* hard reset */
  1401. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1402. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1403. /* WA code for COMA mode -- clear PHY reset */
  1404. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1405. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1406. reg = skge_read32(hw, B2_GP_IO);
  1407. reg |= GP_DIR_9;
  1408. reg &= ~GP_IO_9;
  1409. skge_write32(hw, B2_GP_IO, reg);
  1410. }
  1411. /* Set hardware config mode */
  1412. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1413. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1414. reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1415. /* Clear GMC reset */
  1416. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1417. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1418. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1419. if (skge->autoneg == AUTONEG_DISABLE) {
  1420. reg = GM_GPCR_AU_ALL_DIS;
  1421. gma_write16(hw, port, GM_GP_CTRL,
  1422. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1423. switch (skge->speed) {
  1424. case SPEED_1000:
  1425. reg &= ~GM_GPCR_SPEED_100;
  1426. reg |= GM_GPCR_SPEED_1000;
  1427. break;
  1428. case SPEED_100:
  1429. reg &= ~GM_GPCR_SPEED_1000;
  1430. reg |= GM_GPCR_SPEED_100;
  1431. break;
  1432. case SPEED_10:
  1433. reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
  1434. break;
  1435. }
  1436. if (skge->duplex == DUPLEX_FULL)
  1437. reg |= GM_GPCR_DUP_FULL;
  1438. } else
  1439. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1440. switch (skge->flow_control) {
  1441. case FLOW_MODE_NONE:
  1442. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1443. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1444. break;
  1445. case FLOW_MODE_LOC_SEND:
  1446. /* disable Rx flow-control */
  1447. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1448. }
  1449. gma_write16(hw, port, GM_GP_CTRL, reg);
  1450. skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  1451. yukon_init(hw, port);
  1452. /* MIB clear */
  1453. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1454. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1455. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1456. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1457. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1458. /* transmit control */
  1459. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1460. /* receive control reg: unicast + multicast + no FCS */
  1461. gma_write16(hw, port, GM_RX_CTRL,
  1462. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1463. /* transmit flow control */
  1464. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1465. /* transmit parameter */
  1466. gma_write16(hw, port, GM_TX_PARAM,
  1467. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1468. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1469. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1470. /* serial mode register */
  1471. reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  1472. if (hw->dev[port]->mtu > 1500)
  1473. reg |= GM_SMOD_JUMBO_ENA;
  1474. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1475. /* physical address: used for pause frames */
  1476. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1477. /* virtual address for data */
  1478. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1479. /* enable interrupt mask for counter overflows */
  1480. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1481. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1482. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1483. /* Initialize Mac Fifo */
  1484. /* Configure Rx MAC FIFO */
  1485. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1486. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1487. /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
  1488. if (is_yukon_lite_a0(hw))
  1489. reg &= ~GMF_RX_F_FL_ON;
  1490. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1491. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1492. /*
  1493. * because Pause Packet Truncation in GMAC is not working
  1494. * we have to increase the Flush Threshold to 64 bytes
  1495. * in order to flush pause packets in Rx FIFO on Yukon-1
  1496. */
  1497. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
  1498. /* Configure Tx MAC FIFO */
  1499. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1500. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1501. }
  1502. /* Go into power down mode */
  1503. static void yukon_suspend(struct skge_hw *hw, int port)
  1504. {
  1505. u16 ctrl;
  1506. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  1507. ctrl |= PHY_M_PC_POL_R_DIS;
  1508. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  1509. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1510. ctrl |= PHY_CT_RESET;
  1511. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1512. /* switch IEEE compatible power down mode on */
  1513. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1514. ctrl |= PHY_CT_PDOWN;
  1515. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1516. }
  1517. static void yukon_stop(struct skge_port *skge)
  1518. {
  1519. struct skge_hw *hw = skge->hw;
  1520. int port = skge->port;
  1521. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  1522. yukon_reset(hw, port);
  1523. gma_write16(hw, port, GM_GP_CTRL,
  1524. gma_read16(hw, port, GM_GP_CTRL)
  1525. & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
  1526. gma_read16(hw, port, GM_GP_CTRL);
  1527. yukon_suspend(hw, port);
  1528. /* set GPHY Control reset */
  1529. skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1530. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1531. }
  1532. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1533. {
  1534. struct skge_hw *hw = skge->hw;
  1535. int port = skge->port;
  1536. int i;
  1537. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1538. | gma_read32(hw, port, GM_TXO_OK_LO);
  1539. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1540. | gma_read32(hw, port, GM_RXO_OK_LO);
  1541. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1542. data[i] = gma_read32(hw, port,
  1543. skge_stats[i].gma_offset);
  1544. }
  1545. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1546. {
  1547. struct net_device *dev = hw->dev[port];
  1548. struct skge_port *skge = netdev_priv(dev);
  1549. u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1550. if (netif_msg_intr(skge))
  1551. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1552. dev->name, status);
  1553. if (status & GM_IS_RX_FF_OR) {
  1554. ++skge->net_stats.rx_fifo_errors;
  1555. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1556. }
  1557. if (status & GM_IS_TX_FF_UR) {
  1558. ++skge->net_stats.tx_fifo_errors;
  1559. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1560. }
  1561. }
  1562. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1563. {
  1564. switch (aux & PHY_M_PS_SPEED_MSK) {
  1565. case PHY_M_PS_SPEED_1000:
  1566. return SPEED_1000;
  1567. case PHY_M_PS_SPEED_100:
  1568. return SPEED_100;
  1569. default:
  1570. return SPEED_10;
  1571. }
  1572. }
  1573. static void yukon_link_up(struct skge_port *skge)
  1574. {
  1575. struct skge_hw *hw = skge->hw;
  1576. int port = skge->port;
  1577. u16 reg;
  1578. /* Enable Transmit FIFO Underrun */
  1579. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1580. reg = gma_read16(hw, port, GM_GP_CTRL);
  1581. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1582. reg |= GM_GPCR_DUP_FULL;
  1583. /* enable Rx/Tx */
  1584. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1585. gma_write16(hw, port, GM_GP_CTRL, reg);
  1586. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1587. skge_link_up(skge);
  1588. }
  1589. static void yukon_link_down(struct skge_port *skge)
  1590. {
  1591. struct skge_hw *hw = skge->hw;
  1592. int port = skge->port;
  1593. u16 ctrl;
  1594. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  1595. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1596. ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1597. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1598. if (skge->flow_control == FLOW_MODE_REM_SEND) {
  1599. /* restore Asymmetric Pause bit */
  1600. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  1601. gm_phy_read(hw, port,
  1602. PHY_MARV_AUNE_ADV)
  1603. | PHY_M_AN_ASP);
  1604. }
  1605. yukon_reset(hw, port);
  1606. skge_link_down(skge);
  1607. yukon_init(hw, port);
  1608. }
  1609. static void yukon_phy_intr(struct skge_port *skge)
  1610. {
  1611. struct skge_hw *hw = skge->hw;
  1612. int port = skge->port;
  1613. const char *reason = NULL;
  1614. u16 istatus, phystat;
  1615. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1616. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1617. if (netif_msg_intr(skge))
  1618. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
  1619. skge->netdev->name, istatus, phystat);
  1620. if (istatus & PHY_M_IS_AN_COMPL) {
  1621. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1622. & PHY_M_AN_RF) {
  1623. reason = "remote fault";
  1624. goto failed;
  1625. }
  1626. if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1627. reason = "master/slave fault";
  1628. goto failed;
  1629. }
  1630. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1631. reason = "speed/duplex";
  1632. goto failed;
  1633. }
  1634. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1635. ? DUPLEX_FULL : DUPLEX_HALF;
  1636. skge->speed = yukon_speed(hw, phystat);
  1637. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1638. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1639. case PHY_M_PS_PAUSE_MSK:
  1640. skge->flow_control = FLOW_MODE_SYMMETRIC;
  1641. break;
  1642. case PHY_M_PS_RX_P_EN:
  1643. skge->flow_control = FLOW_MODE_REM_SEND;
  1644. break;
  1645. case PHY_M_PS_TX_P_EN:
  1646. skge->flow_control = FLOW_MODE_LOC_SEND;
  1647. break;
  1648. default:
  1649. skge->flow_control = FLOW_MODE_NONE;
  1650. }
  1651. if (skge->flow_control == FLOW_MODE_NONE ||
  1652. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1653. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1654. else
  1655. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1656. yukon_link_up(skge);
  1657. return;
  1658. }
  1659. if (istatus & PHY_M_IS_LSP_CHANGE)
  1660. skge->speed = yukon_speed(hw, phystat);
  1661. if (istatus & PHY_M_IS_DUP_CHANGE)
  1662. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1663. if (istatus & PHY_M_IS_LST_CHANGE) {
  1664. if (phystat & PHY_M_PS_LINK_UP)
  1665. yukon_link_up(skge);
  1666. else
  1667. yukon_link_down(skge);
  1668. }
  1669. return;
  1670. failed:
  1671. printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
  1672. skge->netdev->name, reason);
  1673. /* XXX restart autonegotiation? */
  1674. }
  1675. static void skge_phy_reset(struct skge_port *skge)
  1676. {
  1677. struct skge_hw *hw = skge->hw;
  1678. int port = skge->port;
  1679. netif_stop_queue(skge->netdev);
  1680. netif_carrier_off(skge->netdev);
  1681. mutex_lock(&hw->phy_mutex);
  1682. if (hw->chip_id == CHIP_ID_GENESIS) {
  1683. genesis_reset(hw, port);
  1684. genesis_mac_init(hw, port);
  1685. } else {
  1686. yukon_reset(hw, port);
  1687. yukon_init(hw, port);
  1688. }
  1689. mutex_unlock(&hw->phy_mutex);
  1690. }
  1691. /* Basic MII support */
  1692. static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  1693. {
  1694. struct mii_ioctl_data *data = if_mii(ifr);
  1695. struct skge_port *skge = netdev_priv(dev);
  1696. struct skge_hw *hw = skge->hw;
  1697. int err = -EOPNOTSUPP;
  1698. if (!netif_running(dev))
  1699. return -ENODEV; /* Phy still in reset */
  1700. switch(cmd) {
  1701. case SIOCGMIIPHY:
  1702. data->phy_id = hw->phy_addr;
  1703. /* fallthru */
  1704. case SIOCGMIIREG: {
  1705. u16 val = 0;
  1706. mutex_lock(&hw->phy_mutex);
  1707. if (hw->chip_id == CHIP_ID_GENESIS)
  1708. err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  1709. else
  1710. err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  1711. mutex_unlock(&hw->phy_mutex);
  1712. data->val_out = val;
  1713. break;
  1714. }
  1715. case SIOCSMIIREG:
  1716. if (!capable(CAP_NET_ADMIN))
  1717. return -EPERM;
  1718. mutex_lock(&hw->phy_mutex);
  1719. if (hw->chip_id == CHIP_ID_GENESIS)
  1720. err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  1721. data->val_in);
  1722. else
  1723. err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  1724. data->val_in);
  1725. mutex_unlock(&hw->phy_mutex);
  1726. break;
  1727. }
  1728. return err;
  1729. }
  1730. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  1731. {
  1732. u32 end;
  1733. start /= 8;
  1734. len /= 8;
  1735. end = start + len - 1;
  1736. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  1737. skge_write32(hw, RB_ADDR(q, RB_START), start);
  1738. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  1739. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  1740. skge_write32(hw, RB_ADDR(q, RB_END), end);
  1741. if (q == Q_R1 || q == Q_R2) {
  1742. /* Set thresholds on receive queue's */
  1743. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  1744. start + (2*len)/3);
  1745. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  1746. start + (len/3));
  1747. } else {
  1748. /* Enable store & forward on Tx queue's because
  1749. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  1750. */
  1751. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  1752. }
  1753. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  1754. }
  1755. /* Setup Bus Memory Interface */
  1756. static void skge_qset(struct skge_port *skge, u16 q,
  1757. const struct skge_element *e)
  1758. {
  1759. struct skge_hw *hw = skge->hw;
  1760. u32 watermark = 0x600;
  1761. u64 base = skge->dma + (e->desc - skge->mem);
  1762. /* optimization to reduce window on 32bit/33mhz */
  1763. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  1764. watermark /= 2;
  1765. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  1766. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  1767. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  1768. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  1769. }
  1770. static int skge_up(struct net_device *dev)
  1771. {
  1772. struct skge_port *skge = netdev_priv(dev);
  1773. struct skge_hw *hw = skge->hw;
  1774. int port = skge->port;
  1775. u32 chunk, ram_addr;
  1776. size_t rx_size, tx_size;
  1777. int err;
  1778. if (netif_msg_ifup(skge))
  1779. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  1780. if (dev->mtu > RX_BUF_SIZE)
  1781. skge->rx_buf_size = dev->mtu + ETH_HLEN;
  1782. else
  1783. skge->rx_buf_size = RX_BUF_SIZE;
  1784. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  1785. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  1786. skge->mem_size = tx_size + rx_size;
  1787. skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
  1788. if (!skge->mem)
  1789. return -ENOMEM;
  1790. BUG_ON(skge->dma & 7);
  1791. if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
  1792. printk(KERN_ERR PFX "pci_alloc_consistent region crosses 4G boundary\n");
  1793. err = -EINVAL;
  1794. goto free_pci_mem;
  1795. }
  1796. memset(skge->mem, 0, skge->mem_size);
  1797. err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
  1798. if (err)
  1799. goto free_pci_mem;
  1800. err = skge_rx_fill(dev);
  1801. if (err)
  1802. goto free_rx_ring;
  1803. err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  1804. skge->dma + rx_size);
  1805. if (err)
  1806. goto free_rx_ring;
  1807. /* Initialize MAC */
  1808. mutex_lock(&hw->phy_mutex);
  1809. if (hw->chip_id == CHIP_ID_GENESIS)
  1810. genesis_mac_init(hw, port);
  1811. else
  1812. yukon_mac_init(hw, port);
  1813. mutex_unlock(&hw->phy_mutex);
  1814. /* Configure RAMbuffers */
  1815. chunk = hw->ram_size / ((hw->ports + 1)*2);
  1816. ram_addr = hw->ram_offset + 2 * chunk * port;
  1817. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  1818. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  1819. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  1820. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  1821. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  1822. /* Start receiver BMU */
  1823. wmb();
  1824. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  1825. skge_led(skge, LED_MODE_ON);
  1826. netif_poll_enable(dev);
  1827. return 0;
  1828. free_rx_ring:
  1829. skge_rx_clean(skge);
  1830. kfree(skge->rx_ring.start);
  1831. free_pci_mem:
  1832. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  1833. skge->mem = NULL;
  1834. return err;
  1835. }
  1836. static int skge_down(struct net_device *dev)
  1837. {
  1838. struct skge_port *skge = netdev_priv(dev);
  1839. struct skge_hw *hw = skge->hw;
  1840. int port = skge->port;
  1841. if (skge->mem == NULL)
  1842. return 0;
  1843. if (netif_msg_ifdown(skge))
  1844. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  1845. netif_stop_queue(dev);
  1846. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  1847. if (hw->chip_id == CHIP_ID_GENESIS)
  1848. genesis_stop(skge);
  1849. else
  1850. yukon_stop(skge);
  1851. /* Stop transmitter */
  1852. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  1853. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  1854. RB_RST_SET|RB_DIS_OP_MD);
  1855. /* Disable Force Sync bit and Enable Alloc bit */
  1856. skge_write8(hw, SK_REG(port, TXA_CTRL),
  1857. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  1858. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  1859. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  1860. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  1861. /* Reset PCI FIFO */
  1862. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  1863. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  1864. /* Reset the RAM Buffer async Tx queue */
  1865. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  1866. /* stop receiver */
  1867. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  1868. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  1869. RB_RST_SET|RB_DIS_OP_MD);
  1870. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  1871. if (hw->chip_id == CHIP_ID_GENESIS) {
  1872. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  1873. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  1874. } else {
  1875. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  1876. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  1877. }
  1878. skge_led(skge, LED_MODE_OFF);
  1879. netif_poll_disable(dev);
  1880. skge_tx_clean(skge);
  1881. skge_rx_clean(skge);
  1882. kfree(skge->rx_ring.start);
  1883. kfree(skge->tx_ring.start);
  1884. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  1885. skge->mem = NULL;
  1886. return 0;
  1887. }
  1888. static inline int skge_avail(const struct skge_ring *ring)
  1889. {
  1890. return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
  1891. + (ring->to_clean - ring->to_use) - 1;
  1892. }
  1893. static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  1894. {
  1895. struct skge_port *skge = netdev_priv(dev);
  1896. struct skge_hw *hw = skge->hw;
  1897. struct skge_element *e;
  1898. struct skge_tx_desc *td;
  1899. int i;
  1900. u32 control, len;
  1901. u64 map;
  1902. unsigned long flags;
  1903. if (skb_padto(skb, ETH_ZLEN))
  1904. return NETDEV_TX_OK;
  1905. if (!spin_trylock_irqsave(&skge->tx_lock, flags))
  1906. /* Collision - tell upper layer to requeue */
  1907. return NETDEV_TX_LOCKED;
  1908. if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1)) {
  1909. if (!netif_queue_stopped(dev)) {
  1910. netif_stop_queue(dev);
  1911. printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
  1912. dev->name);
  1913. }
  1914. spin_unlock_irqrestore(&skge->tx_lock, flags);
  1915. return NETDEV_TX_BUSY;
  1916. }
  1917. e = skge->tx_ring.to_use;
  1918. td = e->desc;
  1919. BUG_ON(td->control & BMU_OWN);
  1920. e->skb = skb;
  1921. len = skb_headlen(skb);
  1922. map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1923. pci_unmap_addr_set(e, mapaddr, map);
  1924. pci_unmap_len_set(e, maplen, len);
  1925. td->dma_lo = map;
  1926. td->dma_hi = map >> 32;
  1927. if (skb->ip_summed == CHECKSUM_HW) {
  1928. int offset = skb->h.raw - skb->data;
  1929. /* This seems backwards, but it is what the sk98lin
  1930. * does. Looks like hardware is wrong?
  1931. */
  1932. if (skb->h.ipiph->protocol == IPPROTO_UDP
  1933. && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
  1934. control = BMU_TCP_CHECK;
  1935. else
  1936. control = BMU_UDP_CHECK;
  1937. td->csum_offs = 0;
  1938. td->csum_start = offset;
  1939. td->csum_write = offset + skb->csum;
  1940. } else
  1941. control = BMU_CHECK;
  1942. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  1943. control |= BMU_EOF| BMU_IRQ_EOF;
  1944. else {
  1945. struct skge_tx_desc *tf = td;
  1946. control |= BMU_STFWD;
  1947. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1948. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1949. map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  1950. frag->size, PCI_DMA_TODEVICE);
  1951. e = e->next;
  1952. e->skb = skb;
  1953. tf = e->desc;
  1954. BUG_ON(tf->control & BMU_OWN);
  1955. tf->dma_lo = map;
  1956. tf->dma_hi = (u64) map >> 32;
  1957. pci_unmap_addr_set(e, mapaddr, map);
  1958. pci_unmap_len_set(e, maplen, frag->size);
  1959. tf->control = BMU_OWN | BMU_SW | control | frag->size;
  1960. }
  1961. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  1962. }
  1963. /* Make sure all the descriptors written */
  1964. wmb();
  1965. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  1966. wmb();
  1967. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  1968. if (unlikely(netif_msg_tx_queued(skge)))
  1969. printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
  1970. dev->name, e - skge->tx_ring.start, skb->len);
  1971. skge->tx_ring.to_use = e->next;
  1972. if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
  1973. pr_debug("%s: transmit queue full\n", dev->name);
  1974. netif_stop_queue(dev);
  1975. }
  1976. spin_unlock_irqrestore(&skge->tx_lock, flags);
  1977. dev->trans_start = jiffies;
  1978. return NETDEV_TX_OK;
  1979. }
  1980. /* Free resources associated with this reing element */
  1981. static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
  1982. u32 control)
  1983. {
  1984. struct pci_dev *pdev = skge->hw->pdev;
  1985. BUG_ON(!e->skb);
  1986. /* skb header vs. fragment */
  1987. if (control & BMU_STF)
  1988. pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
  1989. pci_unmap_len(e, maplen),
  1990. PCI_DMA_TODEVICE);
  1991. else
  1992. pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
  1993. pci_unmap_len(e, maplen),
  1994. PCI_DMA_TODEVICE);
  1995. if (control & BMU_EOF) {
  1996. if (unlikely(netif_msg_tx_done(skge)))
  1997. printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
  1998. skge->netdev->name, e - skge->tx_ring.start);
  1999. dev_kfree_skb_any(e->skb);
  2000. }
  2001. e->skb = NULL;
  2002. }
  2003. /* Free all buffers in transmit ring */
  2004. static void skge_tx_clean(struct skge_port *skge)
  2005. {
  2006. struct skge_element *e;
  2007. unsigned long flags;
  2008. spin_lock_irqsave(&skge->tx_lock, flags);
  2009. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  2010. struct skge_tx_desc *td = e->desc;
  2011. skge_tx_free(skge, e, td->control);
  2012. td->control = 0;
  2013. }
  2014. skge->tx_ring.to_clean = e;
  2015. netif_wake_queue(skge->netdev);
  2016. spin_unlock_irqrestore(&skge->tx_lock, flags);
  2017. }
  2018. static void skge_tx_timeout(struct net_device *dev)
  2019. {
  2020. struct skge_port *skge = netdev_priv(dev);
  2021. if (netif_msg_timer(skge))
  2022. printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
  2023. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  2024. skge_tx_clean(skge);
  2025. }
  2026. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  2027. {
  2028. int err;
  2029. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  2030. return -EINVAL;
  2031. if (!netif_running(dev)) {
  2032. dev->mtu = new_mtu;
  2033. return 0;
  2034. }
  2035. skge_down(dev);
  2036. dev->mtu = new_mtu;
  2037. err = skge_up(dev);
  2038. if (err)
  2039. dev_close(dev);
  2040. return err;
  2041. }
  2042. static void genesis_set_multicast(struct net_device *dev)
  2043. {
  2044. struct skge_port *skge = netdev_priv(dev);
  2045. struct skge_hw *hw = skge->hw;
  2046. int port = skge->port;
  2047. int i, count = dev->mc_count;
  2048. struct dev_mc_list *list = dev->mc_list;
  2049. u32 mode;
  2050. u8 filter[8];
  2051. mode = xm_read32(hw, port, XM_MODE);
  2052. mode |= XM_MD_ENA_HASH;
  2053. if (dev->flags & IFF_PROMISC)
  2054. mode |= XM_MD_ENA_PROM;
  2055. else
  2056. mode &= ~XM_MD_ENA_PROM;
  2057. if (dev->flags & IFF_ALLMULTI)
  2058. memset(filter, 0xff, sizeof(filter));
  2059. else {
  2060. memset(filter, 0, sizeof(filter));
  2061. for (i = 0; list && i < count; i++, list = list->next) {
  2062. u32 crc, bit;
  2063. crc = ether_crc_le(ETH_ALEN, list->dmi_addr);
  2064. bit = ~crc & 0x3f;
  2065. filter[bit/8] |= 1 << (bit%8);
  2066. }
  2067. }
  2068. xm_write32(hw, port, XM_MODE, mode);
  2069. xm_outhash(hw, port, XM_HSM, filter);
  2070. }
  2071. static void yukon_set_multicast(struct net_device *dev)
  2072. {
  2073. struct skge_port *skge = netdev_priv(dev);
  2074. struct skge_hw *hw = skge->hw;
  2075. int port = skge->port;
  2076. struct dev_mc_list *list = dev->mc_list;
  2077. u16 reg;
  2078. u8 filter[8];
  2079. memset(filter, 0, sizeof(filter));
  2080. reg = gma_read16(hw, port, GM_RX_CTRL);
  2081. reg |= GM_RXCR_UCF_ENA;
  2082. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2083. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2084. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  2085. memset(filter, 0xff, sizeof(filter));
  2086. else if (dev->mc_count == 0) /* no multicast */
  2087. reg &= ~GM_RXCR_MCF_ENA;
  2088. else {
  2089. int i;
  2090. reg |= GM_RXCR_MCF_ENA;
  2091. for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
  2092. u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
  2093. filter[bit/8] |= 1 << (bit%8);
  2094. }
  2095. }
  2096. gma_write16(hw, port, GM_MC_ADDR_H1,
  2097. (u16)filter[0] | ((u16)filter[1] << 8));
  2098. gma_write16(hw, port, GM_MC_ADDR_H2,
  2099. (u16)filter[2] | ((u16)filter[3] << 8));
  2100. gma_write16(hw, port, GM_MC_ADDR_H3,
  2101. (u16)filter[4] | ((u16)filter[5] << 8));
  2102. gma_write16(hw, port, GM_MC_ADDR_H4,
  2103. (u16)filter[6] | ((u16)filter[7] << 8));
  2104. gma_write16(hw, port, GM_RX_CTRL, reg);
  2105. }
  2106. static inline u16 phy_length(const struct skge_hw *hw, u32 status)
  2107. {
  2108. if (hw->chip_id == CHIP_ID_GENESIS)
  2109. return status >> XMR_FS_LEN_SHIFT;
  2110. else
  2111. return status >> GMR_FS_LEN_SHIFT;
  2112. }
  2113. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2114. {
  2115. if (hw->chip_id == CHIP_ID_GENESIS)
  2116. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2117. else
  2118. return (status & GMR_FS_ANY_ERR) ||
  2119. (status & GMR_FS_RX_OK) == 0;
  2120. }
  2121. /* Get receive buffer from descriptor.
  2122. * Handles copy of small buffers and reallocation failures
  2123. */
  2124. static struct sk_buff *skge_rx_get(struct net_device *dev,
  2125. struct skge_element *e,
  2126. u32 control, u32 status, u16 csum)
  2127. {
  2128. struct skge_port *skge = netdev_priv(dev);
  2129. struct sk_buff *skb;
  2130. u16 len = control & BMU_BBC;
  2131. if (unlikely(netif_msg_rx_status(skge)))
  2132. printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
  2133. dev->name, e - skge->rx_ring.start,
  2134. status, len);
  2135. if (len > skge->rx_buf_size)
  2136. goto error;
  2137. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
  2138. goto error;
  2139. if (bad_phy_status(skge->hw, status))
  2140. goto error;
  2141. if (phy_length(skge->hw, status) != len)
  2142. goto error;
  2143. if (len < RX_COPY_THRESHOLD) {
  2144. skb = netdev_alloc_skb(dev, len + 2);
  2145. if (!skb)
  2146. goto resubmit;
  2147. skb_reserve(skb, 2);
  2148. pci_dma_sync_single_for_cpu(skge->hw->pdev,
  2149. pci_unmap_addr(e, mapaddr),
  2150. len, PCI_DMA_FROMDEVICE);
  2151. memcpy(skb->data, e->skb->data, len);
  2152. pci_dma_sync_single_for_device(skge->hw->pdev,
  2153. pci_unmap_addr(e, mapaddr),
  2154. len, PCI_DMA_FROMDEVICE);
  2155. skge_rx_reuse(e, skge->rx_buf_size);
  2156. } else {
  2157. struct sk_buff *nskb;
  2158. nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN);
  2159. if (!nskb)
  2160. goto resubmit;
  2161. skb_reserve(nskb, NET_IP_ALIGN);
  2162. pci_unmap_single(skge->hw->pdev,
  2163. pci_unmap_addr(e, mapaddr),
  2164. pci_unmap_len(e, maplen),
  2165. PCI_DMA_FROMDEVICE);
  2166. skb = e->skb;
  2167. prefetch(skb->data);
  2168. skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
  2169. }
  2170. skb_put(skb, len);
  2171. if (skge->rx_csum) {
  2172. skb->csum = csum;
  2173. skb->ip_summed = CHECKSUM_HW;
  2174. }
  2175. skb->protocol = eth_type_trans(skb, dev);
  2176. return skb;
  2177. error:
  2178. if (netif_msg_rx_err(skge))
  2179. printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
  2180. dev->name, e - skge->rx_ring.start,
  2181. control, status);
  2182. if (skge->hw->chip_id == CHIP_ID_GENESIS) {
  2183. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2184. skge->net_stats.rx_length_errors++;
  2185. if (status & XMR_FS_FRA_ERR)
  2186. skge->net_stats.rx_frame_errors++;
  2187. if (status & XMR_FS_FCS_ERR)
  2188. skge->net_stats.rx_crc_errors++;
  2189. } else {
  2190. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2191. skge->net_stats.rx_length_errors++;
  2192. if (status & GMR_FS_FRAGMENT)
  2193. skge->net_stats.rx_frame_errors++;
  2194. if (status & GMR_FS_CRC_ERR)
  2195. skge->net_stats.rx_crc_errors++;
  2196. }
  2197. resubmit:
  2198. skge_rx_reuse(e, skge->rx_buf_size);
  2199. return NULL;
  2200. }
  2201. /* Free all buffers in Tx ring which are no longer owned by device */
  2202. static void skge_txirq(struct net_device *dev)
  2203. {
  2204. struct skge_port *skge = netdev_priv(dev);
  2205. struct skge_ring *ring = &skge->tx_ring;
  2206. struct skge_element *e;
  2207. rmb();
  2208. spin_lock(&skge->tx_lock);
  2209. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  2210. struct skge_tx_desc *td = e->desc;
  2211. if (td->control & BMU_OWN)
  2212. break;
  2213. skge_tx_free(skge, e, td->control);
  2214. }
  2215. skge->tx_ring.to_clean = e;
  2216. if (netif_queue_stopped(skge->netdev)
  2217. && skge_avail(&skge->tx_ring) > TX_LOW_WATER)
  2218. netif_wake_queue(skge->netdev);
  2219. spin_unlock(&skge->tx_lock);
  2220. }
  2221. static int skge_poll(struct net_device *dev, int *budget)
  2222. {
  2223. struct skge_port *skge = netdev_priv(dev);
  2224. struct skge_hw *hw = skge->hw;
  2225. struct skge_ring *ring = &skge->rx_ring;
  2226. struct skge_element *e;
  2227. int to_do = min(dev->quota, *budget);
  2228. int work_done = 0;
  2229. for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
  2230. struct skge_rx_desc *rd = e->desc;
  2231. struct sk_buff *skb;
  2232. u32 control;
  2233. rmb();
  2234. control = rd->control;
  2235. if (control & BMU_OWN)
  2236. break;
  2237. skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
  2238. if (likely(skb)) {
  2239. dev->last_rx = jiffies;
  2240. netif_receive_skb(skb);
  2241. ++work_done;
  2242. }
  2243. }
  2244. ring->to_clean = e;
  2245. /* restart receiver */
  2246. wmb();
  2247. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
  2248. *budget -= work_done;
  2249. dev->quota -= work_done;
  2250. if (work_done >= to_do)
  2251. return 1; /* not done */
  2252. netif_rx_complete(dev);
  2253. spin_lock_irq(&hw->hw_lock);
  2254. hw->intr_mask |= rxirqmask[skge->port];
  2255. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2256. skge_read32(hw, B0_IMSK);
  2257. spin_unlock_irq(&hw->hw_lock);
  2258. return 0;
  2259. }
  2260. /* Parity errors seem to happen when Genesis is connected to a switch
  2261. * with no other ports present. Heartbeat error??
  2262. */
  2263. static void skge_mac_parity(struct skge_hw *hw, int port)
  2264. {
  2265. struct net_device *dev = hw->dev[port];
  2266. if (dev) {
  2267. struct skge_port *skge = netdev_priv(dev);
  2268. ++skge->net_stats.tx_heartbeat_errors;
  2269. }
  2270. if (hw->chip_id == CHIP_ID_GENESIS)
  2271. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  2272. MFF_CLR_PERR);
  2273. else
  2274. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2275. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
  2276. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  2277. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2278. }
  2279. static void skge_mac_intr(struct skge_hw *hw, int port)
  2280. {
  2281. if (hw->chip_id == CHIP_ID_GENESIS)
  2282. genesis_mac_intr(hw, port);
  2283. else
  2284. yukon_mac_intr(hw, port);
  2285. }
  2286. /* Handle device specific framing and timeout interrupts */
  2287. static void skge_error_irq(struct skge_hw *hw)
  2288. {
  2289. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2290. if (hw->chip_id == CHIP_ID_GENESIS) {
  2291. /* clear xmac errors */
  2292. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2293. skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
  2294. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2295. skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
  2296. } else {
  2297. /* Timestamp (unused) overflow */
  2298. if (hwstatus & IS_IRQ_TIST_OV)
  2299. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2300. }
  2301. if (hwstatus & IS_RAM_RD_PAR) {
  2302. printk(KERN_ERR PFX "Ram read data parity error\n");
  2303. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2304. }
  2305. if (hwstatus & IS_RAM_WR_PAR) {
  2306. printk(KERN_ERR PFX "Ram write data parity error\n");
  2307. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2308. }
  2309. if (hwstatus & IS_M1_PAR_ERR)
  2310. skge_mac_parity(hw, 0);
  2311. if (hwstatus & IS_M2_PAR_ERR)
  2312. skge_mac_parity(hw, 1);
  2313. if (hwstatus & IS_R1_PAR_ERR) {
  2314. printk(KERN_ERR PFX "%s: receive queue parity error\n",
  2315. hw->dev[0]->name);
  2316. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2317. }
  2318. if (hwstatus & IS_R2_PAR_ERR) {
  2319. printk(KERN_ERR PFX "%s: receive queue parity error\n",
  2320. hw->dev[1]->name);
  2321. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2322. }
  2323. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2324. u16 pci_status, pci_cmd;
  2325. pci_read_config_word(hw->pdev, PCI_COMMAND, &pci_cmd);
  2326. pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
  2327. printk(KERN_ERR PFX "%s: PCI error cmd=%#x status=%#x\n",
  2328. pci_name(hw->pdev), pci_cmd, pci_status);
  2329. /* Write the error bits back to clear them. */
  2330. pci_status &= PCI_STATUS_ERROR_BITS;
  2331. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2332. pci_write_config_word(hw->pdev, PCI_COMMAND,
  2333. pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  2334. pci_write_config_word(hw->pdev, PCI_STATUS, pci_status);
  2335. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2336. /* if error still set then just ignore it */
  2337. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2338. if (hwstatus & IS_IRQ_STAT) {
  2339. printk(KERN_INFO PFX "unable to clear error (so ignoring them)\n");
  2340. hw->intr_mask &= ~IS_HW_ERR;
  2341. }
  2342. }
  2343. }
  2344. /*
  2345. * Interrupt from PHY are handled in work queue
  2346. * because accessing phy registers requires spin wait which might
  2347. * cause excess interrupt latency.
  2348. */
  2349. static void skge_extirq(void *arg)
  2350. {
  2351. struct skge_hw *hw = arg;
  2352. int port;
  2353. mutex_lock(&hw->phy_mutex);
  2354. for (port = 0; port < hw->ports; port++) {
  2355. struct net_device *dev = hw->dev[port];
  2356. struct skge_port *skge = netdev_priv(dev);
  2357. if (netif_running(dev)) {
  2358. if (hw->chip_id != CHIP_ID_GENESIS)
  2359. yukon_phy_intr(skge);
  2360. else
  2361. bcom_phy_intr(skge);
  2362. }
  2363. }
  2364. mutex_unlock(&hw->phy_mutex);
  2365. spin_lock_irq(&hw->hw_lock);
  2366. hw->intr_mask |= IS_EXT_REG;
  2367. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2368. skge_read32(hw, B0_IMSK);
  2369. spin_unlock_irq(&hw->hw_lock);
  2370. }
  2371. static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
  2372. {
  2373. struct skge_hw *hw = dev_id;
  2374. u32 status;
  2375. /* Reading this register masks IRQ */
  2376. status = skge_read32(hw, B0_SP_ISRC);
  2377. if (status == 0)
  2378. return IRQ_NONE;
  2379. spin_lock(&hw->hw_lock);
  2380. status &= hw->intr_mask;
  2381. if (status & IS_EXT_REG) {
  2382. hw->intr_mask &= ~IS_EXT_REG;
  2383. schedule_work(&hw->phy_work);
  2384. }
  2385. if (status & IS_XA1_F) {
  2386. skge_write8(hw, Q_ADDR(Q_XA1, Q_CSR), CSR_IRQ_CL_F);
  2387. skge_txirq(hw->dev[0]);
  2388. }
  2389. if (status & IS_R1_F) {
  2390. skge_write8(hw, Q_ADDR(Q_R1, Q_CSR), CSR_IRQ_CL_F);
  2391. hw->intr_mask &= ~IS_R1_F;
  2392. netif_rx_schedule(hw->dev[0]);
  2393. }
  2394. if (status & IS_PA_TO_TX1)
  2395. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
  2396. if (status & IS_PA_TO_RX1) {
  2397. struct skge_port *skge = netdev_priv(hw->dev[0]);
  2398. ++skge->net_stats.rx_over_errors;
  2399. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
  2400. }
  2401. if (status & IS_MAC1)
  2402. skge_mac_intr(hw, 0);
  2403. if (hw->dev[1]) {
  2404. if (status & IS_XA2_F) {
  2405. skge_write8(hw, Q_ADDR(Q_XA2, Q_CSR), CSR_IRQ_CL_F);
  2406. skge_txirq(hw->dev[1]);
  2407. }
  2408. if (status & IS_R2_F) {
  2409. skge_write8(hw, Q_ADDR(Q_R2, Q_CSR), CSR_IRQ_CL_F);
  2410. hw->intr_mask &= ~IS_R2_F;
  2411. netif_rx_schedule(hw->dev[1]);
  2412. }
  2413. if (status & IS_PA_TO_RX2) {
  2414. struct skge_port *skge = netdev_priv(hw->dev[1]);
  2415. ++skge->net_stats.rx_over_errors;
  2416. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
  2417. }
  2418. if (status & IS_PA_TO_TX2)
  2419. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
  2420. if (status & IS_MAC2)
  2421. skge_mac_intr(hw, 1);
  2422. }
  2423. if (status & IS_HW_ERR)
  2424. skge_error_irq(hw);
  2425. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2426. skge_read32(hw, B0_IMSK);
  2427. spin_unlock(&hw->hw_lock);
  2428. return IRQ_HANDLED;
  2429. }
  2430. #ifdef CONFIG_NET_POLL_CONTROLLER
  2431. static void skge_netpoll(struct net_device *dev)
  2432. {
  2433. struct skge_port *skge = netdev_priv(dev);
  2434. disable_irq(dev->irq);
  2435. skge_intr(dev->irq, skge->hw, NULL);
  2436. enable_irq(dev->irq);
  2437. }
  2438. #endif
  2439. static int skge_set_mac_address(struct net_device *dev, void *p)
  2440. {
  2441. struct skge_port *skge = netdev_priv(dev);
  2442. struct skge_hw *hw = skge->hw;
  2443. unsigned port = skge->port;
  2444. const struct sockaddr *addr = p;
  2445. if (!is_valid_ether_addr(addr->sa_data))
  2446. return -EADDRNOTAVAIL;
  2447. mutex_lock(&hw->phy_mutex);
  2448. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2449. memcpy_toio(hw->regs + B2_MAC_1 + port*8,
  2450. dev->dev_addr, ETH_ALEN);
  2451. memcpy_toio(hw->regs + B2_MAC_2 + port*8,
  2452. dev->dev_addr, ETH_ALEN);
  2453. if (hw->chip_id == CHIP_ID_GENESIS)
  2454. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  2455. else {
  2456. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2457. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2458. }
  2459. mutex_unlock(&hw->phy_mutex);
  2460. return 0;
  2461. }
  2462. static const struct {
  2463. u8 id;
  2464. const char *name;
  2465. } skge_chips[] = {
  2466. { CHIP_ID_GENESIS, "Genesis" },
  2467. { CHIP_ID_YUKON, "Yukon" },
  2468. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2469. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2470. };
  2471. static const char *skge_board_name(const struct skge_hw *hw)
  2472. {
  2473. int i;
  2474. static char buf[16];
  2475. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2476. if (skge_chips[i].id == hw->chip_id)
  2477. return skge_chips[i].name;
  2478. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  2479. return buf;
  2480. }
  2481. /*
  2482. * Setup the board data structure, but don't bring up
  2483. * the port(s)
  2484. */
  2485. static int skge_reset(struct skge_hw *hw)
  2486. {
  2487. u32 reg;
  2488. u16 ctst, pci_status;
  2489. u8 t8, mac_cfg, pmd_type, phy_type;
  2490. int i;
  2491. ctst = skge_read16(hw, B0_CTST);
  2492. /* do a SW reset */
  2493. skge_write8(hw, B0_CTST, CS_RST_SET);
  2494. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2495. /* clear PCI errors, if any */
  2496. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2497. skge_write8(hw, B2_TST_CTRL2, 0);
  2498. pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
  2499. pci_write_config_word(hw->pdev, PCI_STATUS,
  2500. pci_status | PCI_STATUS_ERROR_BITS);
  2501. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2502. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2503. /* restore CLK_RUN bits (for Yukon-Lite) */
  2504. skge_write16(hw, B0_CTST,
  2505. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2506. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2507. phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2508. pmd_type = skge_read8(hw, B2_PMD_TYP);
  2509. hw->copper = (pmd_type == 'T' || pmd_type == '1');
  2510. switch (hw->chip_id) {
  2511. case CHIP_ID_GENESIS:
  2512. switch (phy_type) {
  2513. case SK_PHY_BCOM:
  2514. hw->phy_addr = PHY_ADDR_BCOM;
  2515. break;
  2516. default:
  2517. printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
  2518. pci_name(hw->pdev), phy_type);
  2519. return -EOPNOTSUPP;
  2520. }
  2521. break;
  2522. case CHIP_ID_YUKON:
  2523. case CHIP_ID_YUKON_LITE:
  2524. case CHIP_ID_YUKON_LP:
  2525. if (phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
  2526. hw->copper = 1;
  2527. hw->phy_addr = PHY_ADDR_MARV;
  2528. break;
  2529. default:
  2530. printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
  2531. pci_name(hw->pdev), hw->chip_id);
  2532. return -EOPNOTSUPP;
  2533. }
  2534. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2535. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  2536. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  2537. /* read the adapters RAM size */
  2538. t8 = skge_read8(hw, B2_E_0);
  2539. if (hw->chip_id == CHIP_ID_GENESIS) {
  2540. if (t8 == 3) {
  2541. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2542. hw->ram_size = 0x100000;
  2543. hw->ram_offset = 0x80000;
  2544. } else
  2545. hw->ram_size = t8 * 512;
  2546. }
  2547. else if (t8 == 0)
  2548. hw->ram_size = 0x20000;
  2549. else
  2550. hw->ram_size = t8 * 4096;
  2551. hw->intr_mask = IS_HW_ERR | IS_EXT_REG | IS_PORT_1;
  2552. if (hw->ports > 1)
  2553. hw->intr_mask |= IS_PORT_2;
  2554. if (hw->chip_id == CHIP_ID_GENESIS)
  2555. genesis_init(hw);
  2556. else {
  2557. /* switch power to VCC (WA for VAUX problem) */
  2558. skge_write8(hw, B0_POWER_CTRL,
  2559. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2560. /* avoid boards with stuck Hardware error bits */
  2561. if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
  2562. (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
  2563. printk(KERN_WARNING PFX "stuck hardware sensor bit\n");
  2564. hw->intr_mask &= ~IS_HW_ERR;
  2565. }
  2566. /* Clear PHY COMA */
  2567. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2568. pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
  2569. reg &= ~PCI_PHY_COMA;
  2570. pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
  2571. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2572. for (i = 0; i < hw->ports; i++) {
  2573. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2574. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2575. }
  2576. }
  2577. /* turn off hardware timer (unused) */
  2578. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2579. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2580. skge_write8(hw, B0_LED, LED_STAT_ON);
  2581. /* enable the Tx Arbiters */
  2582. for (i = 0; i < hw->ports; i++)
  2583. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2584. /* Initialize ram interface */
  2585. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2586. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2587. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2588. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2589. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2590. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2591. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  2592. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  2593. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  2594. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  2595. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  2596. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  2597. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  2598. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  2599. /* Set interrupt moderation for Transmit only
  2600. * Receive interrupts avoided by NAPI
  2601. */
  2602. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  2603. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  2604. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  2605. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2606. mutex_lock(&hw->phy_mutex);
  2607. for (i = 0; i < hw->ports; i++) {
  2608. if (hw->chip_id == CHIP_ID_GENESIS)
  2609. genesis_reset(hw, i);
  2610. else
  2611. yukon_reset(hw, i);
  2612. }
  2613. mutex_unlock(&hw->phy_mutex);
  2614. return 0;
  2615. }
  2616. /* Initialize network device */
  2617. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  2618. int highmem)
  2619. {
  2620. struct skge_port *skge;
  2621. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  2622. if (!dev) {
  2623. printk(KERN_ERR "skge etherdev alloc failed");
  2624. return NULL;
  2625. }
  2626. SET_MODULE_OWNER(dev);
  2627. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  2628. dev->open = skge_up;
  2629. dev->stop = skge_down;
  2630. dev->do_ioctl = skge_ioctl;
  2631. dev->hard_start_xmit = skge_xmit_frame;
  2632. dev->get_stats = skge_get_stats;
  2633. if (hw->chip_id == CHIP_ID_GENESIS)
  2634. dev->set_multicast_list = genesis_set_multicast;
  2635. else
  2636. dev->set_multicast_list = yukon_set_multicast;
  2637. dev->set_mac_address = skge_set_mac_address;
  2638. dev->change_mtu = skge_change_mtu;
  2639. SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
  2640. dev->tx_timeout = skge_tx_timeout;
  2641. dev->watchdog_timeo = TX_WATCHDOG;
  2642. dev->poll = skge_poll;
  2643. dev->weight = NAPI_WEIGHT;
  2644. #ifdef CONFIG_NET_POLL_CONTROLLER
  2645. dev->poll_controller = skge_netpoll;
  2646. #endif
  2647. dev->irq = hw->pdev->irq;
  2648. dev->features = NETIF_F_LLTX;
  2649. if (highmem)
  2650. dev->features |= NETIF_F_HIGHDMA;
  2651. skge = netdev_priv(dev);
  2652. skge->netdev = dev;
  2653. skge->hw = hw;
  2654. skge->msg_enable = netif_msg_init(debug, default_msg);
  2655. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  2656. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  2657. /* Auto speed and flow control */
  2658. skge->autoneg = AUTONEG_ENABLE;
  2659. skge->flow_control = FLOW_MODE_SYMMETRIC;
  2660. skge->duplex = -1;
  2661. skge->speed = -1;
  2662. skge->advertising = skge_supported_modes(hw);
  2663. hw->dev[port] = dev;
  2664. skge->port = port;
  2665. spin_lock_init(&skge->tx_lock);
  2666. if (hw->chip_id != CHIP_ID_GENESIS) {
  2667. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  2668. skge->rx_csum = 1;
  2669. }
  2670. /* read the mac address */
  2671. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  2672. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  2673. /* device is off until link detection */
  2674. netif_carrier_off(dev);
  2675. netif_stop_queue(dev);
  2676. return dev;
  2677. }
  2678. static void __devinit skge_show_addr(struct net_device *dev)
  2679. {
  2680. const struct skge_port *skge = netdev_priv(dev);
  2681. if (netif_msg_probe(skge))
  2682. printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  2683. dev->name,
  2684. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2685. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2686. }
  2687. static int __devinit skge_probe(struct pci_dev *pdev,
  2688. const struct pci_device_id *ent)
  2689. {
  2690. struct net_device *dev, *dev1;
  2691. struct skge_hw *hw;
  2692. int err, using_dac = 0;
  2693. err = pci_enable_device(pdev);
  2694. if (err) {
  2695. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  2696. pci_name(pdev));
  2697. goto err_out;
  2698. }
  2699. err = pci_request_regions(pdev, DRV_NAME);
  2700. if (err) {
  2701. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  2702. pci_name(pdev));
  2703. goto err_out_disable_pdev;
  2704. }
  2705. pci_set_master(pdev);
  2706. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  2707. using_dac = 1;
  2708. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  2709. } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  2710. using_dac = 0;
  2711. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  2712. }
  2713. if (err) {
  2714. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  2715. pci_name(pdev));
  2716. goto err_out_free_regions;
  2717. }
  2718. #ifdef __BIG_ENDIAN
  2719. /* byte swap descriptors in hardware */
  2720. {
  2721. u32 reg;
  2722. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  2723. reg |= PCI_REV_DESC;
  2724. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  2725. }
  2726. #endif
  2727. err = -ENOMEM;
  2728. hw = kzalloc(sizeof(*hw), GFP_KERNEL);
  2729. if (!hw) {
  2730. printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
  2731. pci_name(pdev));
  2732. goto err_out_free_regions;
  2733. }
  2734. hw->pdev = pdev;
  2735. mutex_init(&hw->phy_mutex);
  2736. INIT_WORK(&hw->phy_work, skge_extirq, hw);
  2737. spin_lock_init(&hw->hw_lock);
  2738. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  2739. if (!hw->regs) {
  2740. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  2741. pci_name(pdev));
  2742. goto err_out_free_hw;
  2743. }
  2744. err = skge_reset(hw);
  2745. if (err)
  2746. goto err_out_iounmap;
  2747. printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
  2748. (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
  2749. skge_board_name(hw), hw->chip_rev);
  2750. dev = skge_devinit(hw, 0, using_dac);
  2751. if (!dev)
  2752. goto err_out_led_off;
  2753. if (!is_valid_ether_addr(dev->dev_addr)) {
  2754. printk(KERN_ERR PFX "%s: bad (zero?) ethernet address in rom\n",
  2755. pci_name(pdev));
  2756. err = -EIO;
  2757. goto err_out_free_netdev;
  2758. }
  2759. err = register_netdev(dev);
  2760. if (err) {
  2761. printk(KERN_ERR PFX "%s: cannot register net device\n",
  2762. pci_name(pdev));
  2763. goto err_out_free_netdev;
  2764. }
  2765. err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw);
  2766. if (err) {
  2767. printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
  2768. dev->name, pdev->irq);
  2769. goto err_out_unregister;
  2770. }
  2771. skge_show_addr(dev);
  2772. if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
  2773. if (register_netdev(dev1) == 0)
  2774. skge_show_addr(dev1);
  2775. else {
  2776. /* Failure to register second port need not be fatal */
  2777. printk(KERN_WARNING PFX "register of second port failed\n");
  2778. hw->dev[1] = NULL;
  2779. free_netdev(dev1);
  2780. }
  2781. }
  2782. pci_set_drvdata(pdev, hw);
  2783. return 0;
  2784. err_out_unregister:
  2785. unregister_netdev(dev);
  2786. err_out_free_netdev:
  2787. free_netdev(dev);
  2788. err_out_led_off:
  2789. skge_write16(hw, B0_LED, LED_STAT_OFF);
  2790. err_out_iounmap:
  2791. iounmap(hw->regs);
  2792. err_out_free_hw:
  2793. kfree(hw);
  2794. err_out_free_regions:
  2795. pci_release_regions(pdev);
  2796. err_out_disable_pdev:
  2797. pci_disable_device(pdev);
  2798. pci_set_drvdata(pdev, NULL);
  2799. err_out:
  2800. return err;
  2801. }
  2802. static void __devexit skge_remove(struct pci_dev *pdev)
  2803. {
  2804. struct skge_hw *hw = pci_get_drvdata(pdev);
  2805. struct net_device *dev0, *dev1;
  2806. if (!hw)
  2807. return;
  2808. if ((dev1 = hw->dev[1]))
  2809. unregister_netdev(dev1);
  2810. dev0 = hw->dev[0];
  2811. unregister_netdev(dev0);
  2812. spin_lock_irq(&hw->hw_lock);
  2813. hw->intr_mask = 0;
  2814. skge_write32(hw, B0_IMSK, 0);
  2815. skge_read32(hw, B0_IMSK);
  2816. spin_unlock_irq(&hw->hw_lock);
  2817. skge_write16(hw, B0_LED, LED_STAT_OFF);
  2818. skge_write8(hw, B0_CTST, CS_RST_SET);
  2819. flush_scheduled_work();
  2820. free_irq(pdev->irq, hw);
  2821. pci_release_regions(pdev);
  2822. pci_disable_device(pdev);
  2823. if (dev1)
  2824. free_netdev(dev1);
  2825. free_netdev(dev0);
  2826. iounmap(hw->regs);
  2827. kfree(hw);
  2828. pci_set_drvdata(pdev, NULL);
  2829. }
  2830. #ifdef CONFIG_PM
  2831. static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
  2832. {
  2833. struct skge_hw *hw = pci_get_drvdata(pdev);
  2834. int i, wol = 0;
  2835. pci_save_state(pdev);
  2836. for (i = 0; i < hw->ports; i++) {
  2837. struct net_device *dev = hw->dev[i];
  2838. if (netif_running(dev)) {
  2839. struct skge_port *skge = netdev_priv(dev);
  2840. netif_carrier_off(dev);
  2841. if (skge->wol)
  2842. netif_stop_queue(dev);
  2843. else
  2844. skge_down(dev);
  2845. wol |= skge->wol;
  2846. }
  2847. netif_device_detach(dev);
  2848. }
  2849. skge_write32(hw, B0_IMSK, 0);
  2850. pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
  2851. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  2852. return 0;
  2853. }
  2854. static int skge_resume(struct pci_dev *pdev)
  2855. {
  2856. struct skge_hw *hw = pci_get_drvdata(pdev);
  2857. int i, err;
  2858. pci_set_power_state(pdev, PCI_D0);
  2859. pci_restore_state(pdev);
  2860. pci_enable_wake(pdev, PCI_D0, 0);
  2861. err = skge_reset(hw);
  2862. if (err)
  2863. goto out;
  2864. for (i = 0; i < hw->ports; i++) {
  2865. struct net_device *dev = hw->dev[i];
  2866. netif_device_attach(dev);
  2867. if (netif_running(dev)) {
  2868. err = skge_up(dev);
  2869. if (err) {
  2870. printk(KERN_ERR PFX "%s: could not up: %d\n",
  2871. dev->name, err);
  2872. dev_close(dev);
  2873. goto out;
  2874. }
  2875. }
  2876. }
  2877. out:
  2878. return err;
  2879. }
  2880. #endif
  2881. static struct pci_driver skge_driver = {
  2882. .name = DRV_NAME,
  2883. .id_table = skge_id_table,
  2884. .probe = skge_probe,
  2885. .remove = __devexit_p(skge_remove),
  2886. #ifdef CONFIG_PM
  2887. .suspend = skge_suspend,
  2888. .resume = skge_resume,
  2889. #endif
  2890. };
  2891. static int __init skge_init_module(void)
  2892. {
  2893. return pci_register_driver(&skge_driver);
  2894. }
  2895. static void __exit skge_cleanup_module(void)
  2896. {
  2897. pci_unregister_driver(&skge_driver);
  2898. }
  2899. module_init(skge_init_module);
  2900. module_exit(skge_cleanup_module);