i915_gem.c 103 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/shmem_fs.h>
  34. #include <linux/slab.h>
  35. #include <linux/swap.h>
  36. #include <linux/pci.h>
  37. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  39. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  40. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  41. unsigned alignment,
  42. bool map_and_fenceable);
  43. static void i915_gem_clear_fence_reg(struct drm_device *dev,
  44. struct drm_i915_fence_reg *reg);
  45. static int i915_gem_phys_pwrite(struct drm_device *dev,
  46. struct drm_i915_gem_object *obj,
  47. struct drm_i915_gem_pwrite *args,
  48. struct drm_file *file);
  49. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  50. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  51. struct shrink_control *sc);
  52. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  53. /* some bookkeeping */
  54. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  55. size_t size)
  56. {
  57. dev_priv->mm.object_count++;
  58. dev_priv->mm.object_memory += size;
  59. }
  60. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  61. size_t size)
  62. {
  63. dev_priv->mm.object_count--;
  64. dev_priv->mm.object_memory -= size;
  65. }
  66. static int
  67. i915_gem_wait_for_error(struct drm_device *dev)
  68. {
  69. struct drm_i915_private *dev_priv = dev->dev_private;
  70. struct completion *x = &dev_priv->error_completion;
  71. unsigned long flags;
  72. int ret;
  73. if (!atomic_read(&dev_priv->mm.wedged))
  74. return 0;
  75. ret = wait_for_completion_interruptible(x);
  76. if (ret)
  77. return ret;
  78. if (atomic_read(&dev_priv->mm.wedged)) {
  79. /* GPU is hung, bump the completion count to account for
  80. * the token we just consumed so that we never hit zero and
  81. * end up waiting upon a subsequent completion event that
  82. * will never happen.
  83. */
  84. spin_lock_irqsave(&x->wait.lock, flags);
  85. x->done++;
  86. spin_unlock_irqrestore(&x->wait.lock, flags);
  87. }
  88. return 0;
  89. }
  90. int i915_mutex_lock_interruptible(struct drm_device *dev)
  91. {
  92. int ret;
  93. ret = i915_gem_wait_for_error(dev);
  94. if (ret)
  95. return ret;
  96. ret = mutex_lock_interruptible(&dev->struct_mutex);
  97. if (ret)
  98. return ret;
  99. WARN_ON(i915_verify_lists(dev));
  100. return 0;
  101. }
  102. static inline bool
  103. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  104. {
  105. return obj->gtt_space && !obj->active && obj->pin_count == 0;
  106. }
  107. int
  108. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  109. struct drm_file *file)
  110. {
  111. struct drm_i915_gem_init *args = data;
  112. if (args->gtt_start >= args->gtt_end ||
  113. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  114. return -EINVAL;
  115. /* GEM with user mode setting was never supported on ilk and later. */
  116. if (INTEL_INFO(dev)->gen >= 5)
  117. return -ENODEV;
  118. mutex_lock(&dev->struct_mutex);
  119. i915_gem_init_global_gtt(dev, args->gtt_start,
  120. args->gtt_end, args->gtt_end);
  121. mutex_unlock(&dev->struct_mutex);
  122. return 0;
  123. }
  124. int
  125. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  126. struct drm_file *file)
  127. {
  128. struct drm_i915_private *dev_priv = dev->dev_private;
  129. struct drm_i915_gem_get_aperture *args = data;
  130. struct drm_i915_gem_object *obj;
  131. size_t pinned;
  132. if (!(dev->driver->driver_features & DRIVER_GEM))
  133. return -ENODEV;
  134. pinned = 0;
  135. mutex_lock(&dev->struct_mutex);
  136. list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
  137. pinned += obj->gtt_space->size;
  138. mutex_unlock(&dev->struct_mutex);
  139. args->aper_size = dev_priv->mm.gtt_total;
  140. args->aper_available_size = args->aper_size - pinned;
  141. return 0;
  142. }
  143. static int
  144. i915_gem_create(struct drm_file *file,
  145. struct drm_device *dev,
  146. uint64_t size,
  147. uint32_t *handle_p)
  148. {
  149. struct drm_i915_gem_object *obj;
  150. int ret;
  151. u32 handle;
  152. size = roundup(size, PAGE_SIZE);
  153. if (size == 0)
  154. return -EINVAL;
  155. /* Allocate the new object */
  156. obj = i915_gem_alloc_object(dev, size);
  157. if (obj == NULL)
  158. return -ENOMEM;
  159. ret = drm_gem_handle_create(file, &obj->base, &handle);
  160. if (ret) {
  161. drm_gem_object_release(&obj->base);
  162. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  163. kfree(obj);
  164. return ret;
  165. }
  166. /* drop reference from allocate - handle holds it now */
  167. drm_gem_object_unreference(&obj->base);
  168. trace_i915_gem_object_create(obj);
  169. *handle_p = handle;
  170. return 0;
  171. }
  172. int
  173. i915_gem_dumb_create(struct drm_file *file,
  174. struct drm_device *dev,
  175. struct drm_mode_create_dumb *args)
  176. {
  177. /* have to work out size/pitch and return them */
  178. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  179. args->size = args->pitch * args->height;
  180. return i915_gem_create(file, dev,
  181. args->size, &args->handle);
  182. }
  183. int i915_gem_dumb_destroy(struct drm_file *file,
  184. struct drm_device *dev,
  185. uint32_t handle)
  186. {
  187. return drm_gem_handle_delete(file, handle);
  188. }
  189. /**
  190. * Creates a new mm object and returns a handle to it.
  191. */
  192. int
  193. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  194. struct drm_file *file)
  195. {
  196. struct drm_i915_gem_create *args = data;
  197. return i915_gem_create(file, dev,
  198. args->size, &args->handle);
  199. }
  200. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  201. {
  202. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  203. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  204. obj->tiling_mode != I915_TILING_NONE;
  205. }
  206. static inline int
  207. __copy_to_user_swizzled(char __user *cpu_vaddr,
  208. const char *gpu_vaddr, int gpu_offset,
  209. int length)
  210. {
  211. int ret, cpu_offset = 0;
  212. while (length > 0) {
  213. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  214. int this_length = min(cacheline_end - gpu_offset, length);
  215. int swizzled_gpu_offset = gpu_offset ^ 64;
  216. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  217. gpu_vaddr + swizzled_gpu_offset,
  218. this_length);
  219. if (ret)
  220. return ret + length;
  221. cpu_offset += this_length;
  222. gpu_offset += this_length;
  223. length -= this_length;
  224. }
  225. return 0;
  226. }
  227. static inline int
  228. __copy_from_user_swizzled(char __user *gpu_vaddr, int gpu_offset,
  229. const char *cpu_vaddr,
  230. int length)
  231. {
  232. int ret, cpu_offset = 0;
  233. while (length > 0) {
  234. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  235. int this_length = min(cacheline_end - gpu_offset, length);
  236. int swizzled_gpu_offset = gpu_offset ^ 64;
  237. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  238. cpu_vaddr + cpu_offset,
  239. this_length);
  240. if (ret)
  241. return ret + length;
  242. cpu_offset += this_length;
  243. gpu_offset += this_length;
  244. length -= this_length;
  245. }
  246. return 0;
  247. }
  248. /* Per-page copy function for the shmem pread fastpath.
  249. * Flushes invalid cachelines before reading the target if
  250. * needs_clflush is set. */
  251. static int
  252. shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
  253. char __user *user_data,
  254. bool page_do_bit17_swizzling, bool needs_clflush)
  255. {
  256. char *vaddr;
  257. int ret;
  258. if (unlikely(page_do_bit17_swizzling))
  259. return -EINVAL;
  260. vaddr = kmap_atomic(page);
  261. if (needs_clflush)
  262. drm_clflush_virt_range(vaddr + shmem_page_offset,
  263. page_length);
  264. ret = __copy_to_user_inatomic(user_data,
  265. vaddr + shmem_page_offset,
  266. page_length);
  267. kunmap_atomic(vaddr);
  268. return ret;
  269. }
  270. static void
  271. shmem_clflush_swizzled_range(char *addr, unsigned long length,
  272. bool swizzled)
  273. {
  274. if (unlikely(swizzled)) {
  275. unsigned long start = (unsigned long) addr;
  276. unsigned long end = (unsigned long) addr + length;
  277. /* For swizzling simply ensure that we always flush both
  278. * channels. Lame, but simple and it works. Swizzled
  279. * pwrite/pread is far from a hotpath - current userspace
  280. * doesn't use it at all. */
  281. start = round_down(start, 128);
  282. end = round_up(end, 128);
  283. drm_clflush_virt_range((void *)start, end - start);
  284. } else {
  285. drm_clflush_virt_range(addr, length);
  286. }
  287. }
  288. /* Only difference to the fast-path function is that this can handle bit17
  289. * and uses non-atomic copy and kmap functions. */
  290. static int
  291. shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
  292. char __user *user_data,
  293. bool page_do_bit17_swizzling, bool needs_clflush)
  294. {
  295. char *vaddr;
  296. int ret;
  297. vaddr = kmap(page);
  298. if (needs_clflush)
  299. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  300. page_length,
  301. page_do_bit17_swizzling);
  302. if (page_do_bit17_swizzling)
  303. ret = __copy_to_user_swizzled(user_data,
  304. vaddr, shmem_page_offset,
  305. page_length);
  306. else
  307. ret = __copy_to_user(user_data,
  308. vaddr + shmem_page_offset,
  309. page_length);
  310. kunmap(page);
  311. return ret;
  312. }
  313. static int
  314. i915_gem_shmem_pread(struct drm_device *dev,
  315. struct drm_i915_gem_object *obj,
  316. struct drm_i915_gem_pread *args,
  317. struct drm_file *file)
  318. {
  319. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  320. char __user *user_data;
  321. ssize_t remain;
  322. loff_t offset;
  323. int shmem_page_offset, page_length, ret = 0;
  324. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  325. int hit_slowpath = 0;
  326. int prefaulted = 0;
  327. int needs_clflush = 0;
  328. int release_page;
  329. user_data = (char __user *) (uintptr_t) args->data_ptr;
  330. remain = args->size;
  331. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  332. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  333. /* If we're not in the cpu read domain, set ourself into the gtt
  334. * read domain and manually flush cachelines (if required). This
  335. * optimizes for the case when the gpu will dirty the data
  336. * anyway again before the next pread happens. */
  337. if (obj->cache_level == I915_CACHE_NONE)
  338. needs_clflush = 1;
  339. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  340. if (ret)
  341. return ret;
  342. }
  343. offset = args->offset;
  344. while (remain > 0) {
  345. struct page *page;
  346. /* Operation in this page
  347. *
  348. * shmem_page_offset = offset within page in shmem file
  349. * page_length = bytes to copy for this page
  350. */
  351. shmem_page_offset = offset_in_page(offset);
  352. page_length = remain;
  353. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  354. page_length = PAGE_SIZE - shmem_page_offset;
  355. if (obj->pages) {
  356. page = obj->pages[offset >> PAGE_SHIFT];
  357. release_page = 0;
  358. } else {
  359. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  360. if (IS_ERR(page)) {
  361. ret = PTR_ERR(page);
  362. goto out;
  363. }
  364. release_page = 1;
  365. }
  366. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  367. (page_to_phys(page) & (1 << 17)) != 0;
  368. ret = shmem_pread_fast(page, shmem_page_offset, page_length,
  369. user_data, page_do_bit17_swizzling,
  370. needs_clflush);
  371. if (ret == 0)
  372. goto next_page;
  373. hit_slowpath = 1;
  374. page_cache_get(page);
  375. mutex_unlock(&dev->struct_mutex);
  376. if (!prefaulted) {
  377. ret = fault_in_multipages_writeable(user_data, remain);
  378. /* Userspace is tricking us, but we've already clobbered
  379. * its pages with the prefault and promised to write the
  380. * data up to the first fault. Hence ignore any errors
  381. * and just continue. */
  382. (void)ret;
  383. prefaulted = 1;
  384. }
  385. ret = shmem_pread_slow(page, shmem_page_offset, page_length,
  386. user_data, page_do_bit17_swizzling,
  387. needs_clflush);
  388. mutex_lock(&dev->struct_mutex);
  389. page_cache_release(page);
  390. next_page:
  391. mark_page_accessed(page);
  392. if (release_page)
  393. page_cache_release(page);
  394. if (ret) {
  395. ret = -EFAULT;
  396. goto out;
  397. }
  398. remain -= page_length;
  399. user_data += page_length;
  400. offset += page_length;
  401. }
  402. out:
  403. if (hit_slowpath) {
  404. /* Fixup: Kill any reinstated backing storage pages */
  405. if (obj->madv == __I915_MADV_PURGED)
  406. i915_gem_object_truncate(obj);
  407. }
  408. return ret;
  409. }
  410. /**
  411. * Reads data from the object referenced by handle.
  412. *
  413. * On error, the contents of *data are undefined.
  414. */
  415. int
  416. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  417. struct drm_file *file)
  418. {
  419. struct drm_i915_gem_pread *args = data;
  420. struct drm_i915_gem_object *obj;
  421. int ret = 0;
  422. if (args->size == 0)
  423. return 0;
  424. if (!access_ok(VERIFY_WRITE,
  425. (char __user *)(uintptr_t)args->data_ptr,
  426. args->size))
  427. return -EFAULT;
  428. ret = i915_mutex_lock_interruptible(dev);
  429. if (ret)
  430. return ret;
  431. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  432. if (&obj->base == NULL) {
  433. ret = -ENOENT;
  434. goto unlock;
  435. }
  436. /* Bounds check source. */
  437. if (args->offset > obj->base.size ||
  438. args->size > obj->base.size - args->offset) {
  439. ret = -EINVAL;
  440. goto out;
  441. }
  442. trace_i915_gem_object_pread(obj, args->offset, args->size);
  443. ret = i915_gem_shmem_pread(dev, obj, args, file);
  444. out:
  445. drm_gem_object_unreference(&obj->base);
  446. unlock:
  447. mutex_unlock(&dev->struct_mutex);
  448. return ret;
  449. }
  450. /* This is the fast write path which cannot handle
  451. * page faults in the source data
  452. */
  453. static inline int
  454. fast_user_write(struct io_mapping *mapping,
  455. loff_t page_base, int page_offset,
  456. char __user *user_data,
  457. int length)
  458. {
  459. char *vaddr_atomic;
  460. unsigned long unwritten;
  461. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  462. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  463. user_data, length);
  464. io_mapping_unmap_atomic(vaddr_atomic);
  465. return unwritten;
  466. }
  467. /**
  468. * This is the fast pwrite path, where we copy the data directly from the
  469. * user into the GTT, uncached.
  470. */
  471. static int
  472. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  473. struct drm_i915_gem_object *obj,
  474. struct drm_i915_gem_pwrite *args,
  475. struct drm_file *file)
  476. {
  477. drm_i915_private_t *dev_priv = dev->dev_private;
  478. ssize_t remain;
  479. loff_t offset, page_base;
  480. char __user *user_data;
  481. int page_offset, page_length, ret;
  482. ret = i915_gem_object_pin(obj, 0, true);
  483. if (ret)
  484. goto out;
  485. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  486. if (ret)
  487. goto out_unpin;
  488. ret = i915_gem_object_put_fence(obj);
  489. if (ret)
  490. goto out_unpin;
  491. user_data = (char __user *) (uintptr_t) args->data_ptr;
  492. remain = args->size;
  493. offset = obj->gtt_offset + args->offset;
  494. while (remain > 0) {
  495. /* Operation in this page
  496. *
  497. * page_base = page offset within aperture
  498. * page_offset = offset within page
  499. * page_length = bytes to copy for this page
  500. */
  501. page_base = offset & PAGE_MASK;
  502. page_offset = offset_in_page(offset);
  503. page_length = remain;
  504. if ((page_offset + remain) > PAGE_SIZE)
  505. page_length = PAGE_SIZE - page_offset;
  506. /* If we get a fault while copying data, then (presumably) our
  507. * source page isn't available. Return the error and we'll
  508. * retry in the slow path.
  509. */
  510. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  511. page_offset, user_data, page_length)) {
  512. ret = -EFAULT;
  513. goto out_unpin;
  514. }
  515. remain -= page_length;
  516. user_data += page_length;
  517. offset += page_length;
  518. }
  519. out_unpin:
  520. i915_gem_object_unpin(obj);
  521. out:
  522. return ret;
  523. }
  524. /* Per-page copy function for the shmem pwrite fastpath.
  525. * Flushes invalid cachelines before writing to the target if
  526. * needs_clflush_before is set and flushes out any written cachelines after
  527. * writing if needs_clflush is set. */
  528. static int
  529. shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
  530. char __user *user_data,
  531. bool page_do_bit17_swizzling,
  532. bool needs_clflush_before,
  533. bool needs_clflush_after)
  534. {
  535. char *vaddr;
  536. int ret;
  537. if (unlikely(page_do_bit17_swizzling))
  538. return -EINVAL;
  539. vaddr = kmap_atomic(page);
  540. if (needs_clflush_before)
  541. drm_clflush_virt_range(vaddr + shmem_page_offset,
  542. page_length);
  543. ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
  544. user_data,
  545. page_length);
  546. if (needs_clflush_after)
  547. drm_clflush_virt_range(vaddr + shmem_page_offset,
  548. page_length);
  549. kunmap_atomic(vaddr);
  550. return ret;
  551. }
  552. /* Only difference to the fast-path function is that this can handle bit17
  553. * and uses non-atomic copy and kmap functions. */
  554. static int
  555. shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
  556. char __user *user_data,
  557. bool page_do_bit17_swizzling,
  558. bool needs_clflush_before,
  559. bool needs_clflush_after)
  560. {
  561. char *vaddr;
  562. int ret;
  563. vaddr = kmap(page);
  564. if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
  565. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  566. page_length,
  567. page_do_bit17_swizzling);
  568. if (page_do_bit17_swizzling)
  569. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  570. user_data,
  571. page_length);
  572. else
  573. ret = __copy_from_user(vaddr + shmem_page_offset,
  574. user_data,
  575. page_length);
  576. if (needs_clflush_after)
  577. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  578. page_length,
  579. page_do_bit17_swizzling);
  580. kunmap(page);
  581. return ret;
  582. }
  583. static int
  584. i915_gem_shmem_pwrite(struct drm_device *dev,
  585. struct drm_i915_gem_object *obj,
  586. struct drm_i915_gem_pwrite *args,
  587. struct drm_file *file)
  588. {
  589. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  590. ssize_t remain;
  591. loff_t offset;
  592. char __user *user_data;
  593. int shmem_page_offset, page_length, ret = 0;
  594. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  595. int hit_slowpath = 0;
  596. int needs_clflush_after = 0;
  597. int needs_clflush_before = 0;
  598. int release_page;
  599. user_data = (char __user *) (uintptr_t) args->data_ptr;
  600. remain = args->size;
  601. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  602. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  603. /* If we're not in the cpu write domain, set ourself into the gtt
  604. * write domain and manually flush cachelines (if required). This
  605. * optimizes for the case when the gpu will use the data
  606. * right away and we therefore have to clflush anyway. */
  607. if (obj->cache_level == I915_CACHE_NONE)
  608. needs_clflush_after = 1;
  609. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  610. if (ret)
  611. return ret;
  612. }
  613. /* Same trick applies for invalidate partially written cachelines before
  614. * writing. */
  615. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
  616. && obj->cache_level == I915_CACHE_NONE)
  617. needs_clflush_before = 1;
  618. offset = args->offset;
  619. obj->dirty = 1;
  620. while (remain > 0) {
  621. struct page *page;
  622. int partial_cacheline_write;
  623. /* Operation in this page
  624. *
  625. * shmem_page_offset = offset within page in shmem file
  626. * page_length = bytes to copy for this page
  627. */
  628. shmem_page_offset = offset_in_page(offset);
  629. page_length = remain;
  630. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  631. page_length = PAGE_SIZE - shmem_page_offset;
  632. /* If we don't overwrite a cacheline completely we need to be
  633. * careful to have up-to-date data by first clflushing. Don't
  634. * overcomplicate things and flush the entire patch. */
  635. partial_cacheline_write = needs_clflush_before &&
  636. ((shmem_page_offset | page_length)
  637. & (boot_cpu_data.x86_clflush_size - 1));
  638. if (obj->pages) {
  639. page = obj->pages[offset >> PAGE_SHIFT];
  640. release_page = 0;
  641. } else {
  642. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  643. if (IS_ERR(page)) {
  644. ret = PTR_ERR(page);
  645. goto out;
  646. }
  647. release_page = 1;
  648. }
  649. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  650. (page_to_phys(page) & (1 << 17)) != 0;
  651. ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
  652. user_data, page_do_bit17_swizzling,
  653. partial_cacheline_write,
  654. needs_clflush_after);
  655. if (ret == 0)
  656. goto next_page;
  657. hit_slowpath = 1;
  658. page_cache_get(page);
  659. mutex_unlock(&dev->struct_mutex);
  660. ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
  661. user_data, page_do_bit17_swizzling,
  662. partial_cacheline_write,
  663. needs_clflush_after);
  664. mutex_lock(&dev->struct_mutex);
  665. page_cache_release(page);
  666. next_page:
  667. set_page_dirty(page);
  668. mark_page_accessed(page);
  669. if (release_page)
  670. page_cache_release(page);
  671. if (ret) {
  672. ret = -EFAULT;
  673. goto out;
  674. }
  675. remain -= page_length;
  676. user_data += page_length;
  677. offset += page_length;
  678. }
  679. out:
  680. if (hit_slowpath) {
  681. /* Fixup: Kill any reinstated backing storage pages */
  682. if (obj->madv == __I915_MADV_PURGED)
  683. i915_gem_object_truncate(obj);
  684. /* and flush dirty cachelines in case the object isn't in the cpu write
  685. * domain anymore. */
  686. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  687. i915_gem_clflush_object(obj);
  688. intel_gtt_chipset_flush();
  689. }
  690. }
  691. if (needs_clflush_after)
  692. intel_gtt_chipset_flush();
  693. return ret;
  694. }
  695. /**
  696. * Writes data to the object referenced by handle.
  697. *
  698. * On error, the contents of the buffer that were to be modified are undefined.
  699. */
  700. int
  701. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  702. struct drm_file *file)
  703. {
  704. struct drm_i915_gem_pwrite *args = data;
  705. struct drm_i915_gem_object *obj;
  706. int ret;
  707. if (args->size == 0)
  708. return 0;
  709. if (!access_ok(VERIFY_READ,
  710. (char __user *)(uintptr_t)args->data_ptr,
  711. args->size))
  712. return -EFAULT;
  713. ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
  714. args->size);
  715. if (ret)
  716. return -EFAULT;
  717. ret = i915_mutex_lock_interruptible(dev);
  718. if (ret)
  719. return ret;
  720. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  721. if (&obj->base == NULL) {
  722. ret = -ENOENT;
  723. goto unlock;
  724. }
  725. /* Bounds check destination. */
  726. if (args->offset > obj->base.size ||
  727. args->size > obj->base.size - args->offset) {
  728. ret = -EINVAL;
  729. goto out;
  730. }
  731. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  732. ret = -EFAULT;
  733. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  734. * it would end up going through the fenced access, and we'll get
  735. * different detiling behavior between reading and writing.
  736. * pread/pwrite currently are reading and writing from the CPU
  737. * perspective, requiring manual detiling by the client.
  738. */
  739. if (obj->phys_obj) {
  740. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  741. goto out;
  742. }
  743. if (obj->gtt_space &&
  744. obj->cache_level == I915_CACHE_NONE &&
  745. obj->map_and_fenceable &&
  746. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  747. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  748. /* Note that the gtt paths might fail with non-page-backed user
  749. * pointers (e.g. gtt mappings when moving data between
  750. * textures). Fallback to the shmem path in that case. */
  751. }
  752. if (ret == -EFAULT)
  753. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  754. out:
  755. drm_gem_object_unreference(&obj->base);
  756. unlock:
  757. mutex_unlock(&dev->struct_mutex);
  758. return ret;
  759. }
  760. /**
  761. * Called when user space prepares to use an object with the CPU, either
  762. * through the mmap ioctl's mapping or a GTT mapping.
  763. */
  764. int
  765. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  766. struct drm_file *file)
  767. {
  768. struct drm_i915_gem_set_domain *args = data;
  769. struct drm_i915_gem_object *obj;
  770. uint32_t read_domains = args->read_domains;
  771. uint32_t write_domain = args->write_domain;
  772. int ret;
  773. if (!(dev->driver->driver_features & DRIVER_GEM))
  774. return -ENODEV;
  775. /* Only handle setting domains to types used by the CPU. */
  776. if (write_domain & I915_GEM_GPU_DOMAINS)
  777. return -EINVAL;
  778. if (read_domains & I915_GEM_GPU_DOMAINS)
  779. return -EINVAL;
  780. /* Having something in the write domain implies it's in the read
  781. * domain, and only that read domain. Enforce that in the request.
  782. */
  783. if (write_domain != 0 && read_domains != write_domain)
  784. return -EINVAL;
  785. ret = i915_mutex_lock_interruptible(dev);
  786. if (ret)
  787. return ret;
  788. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  789. if (&obj->base == NULL) {
  790. ret = -ENOENT;
  791. goto unlock;
  792. }
  793. if (read_domains & I915_GEM_DOMAIN_GTT) {
  794. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  795. /* Silently promote "you're not bound, there was nothing to do"
  796. * to success, since the client was just asking us to
  797. * make sure everything was done.
  798. */
  799. if (ret == -EINVAL)
  800. ret = 0;
  801. } else {
  802. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  803. }
  804. drm_gem_object_unreference(&obj->base);
  805. unlock:
  806. mutex_unlock(&dev->struct_mutex);
  807. return ret;
  808. }
  809. /**
  810. * Called when user space has done writes to this buffer
  811. */
  812. int
  813. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  814. struct drm_file *file)
  815. {
  816. struct drm_i915_gem_sw_finish *args = data;
  817. struct drm_i915_gem_object *obj;
  818. int ret = 0;
  819. if (!(dev->driver->driver_features & DRIVER_GEM))
  820. return -ENODEV;
  821. ret = i915_mutex_lock_interruptible(dev);
  822. if (ret)
  823. return ret;
  824. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  825. if (&obj->base == NULL) {
  826. ret = -ENOENT;
  827. goto unlock;
  828. }
  829. /* Pinned buffers may be scanout, so flush the cache */
  830. if (obj->pin_count)
  831. i915_gem_object_flush_cpu_write_domain(obj);
  832. drm_gem_object_unreference(&obj->base);
  833. unlock:
  834. mutex_unlock(&dev->struct_mutex);
  835. return ret;
  836. }
  837. /**
  838. * Maps the contents of an object, returning the address it is mapped
  839. * into.
  840. *
  841. * While the mapping holds a reference on the contents of the object, it doesn't
  842. * imply a ref on the object itself.
  843. */
  844. int
  845. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  846. struct drm_file *file)
  847. {
  848. struct drm_i915_gem_mmap *args = data;
  849. struct drm_gem_object *obj;
  850. unsigned long addr;
  851. if (!(dev->driver->driver_features & DRIVER_GEM))
  852. return -ENODEV;
  853. obj = drm_gem_object_lookup(dev, file, args->handle);
  854. if (obj == NULL)
  855. return -ENOENT;
  856. down_write(&current->mm->mmap_sem);
  857. addr = do_mmap(obj->filp, 0, args->size,
  858. PROT_READ | PROT_WRITE, MAP_SHARED,
  859. args->offset);
  860. up_write(&current->mm->mmap_sem);
  861. drm_gem_object_unreference_unlocked(obj);
  862. if (IS_ERR((void *)addr))
  863. return addr;
  864. args->addr_ptr = (uint64_t) addr;
  865. return 0;
  866. }
  867. /**
  868. * i915_gem_fault - fault a page into the GTT
  869. * vma: VMA in question
  870. * vmf: fault info
  871. *
  872. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  873. * from userspace. The fault handler takes care of binding the object to
  874. * the GTT (if needed), allocating and programming a fence register (again,
  875. * only if needed based on whether the old reg is still valid or the object
  876. * is tiled) and inserting a new PTE into the faulting process.
  877. *
  878. * Note that the faulting process may involve evicting existing objects
  879. * from the GTT and/or fence registers to make room. So performance may
  880. * suffer if the GTT working set is large or there are few fence registers
  881. * left.
  882. */
  883. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  884. {
  885. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  886. struct drm_device *dev = obj->base.dev;
  887. drm_i915_private_t *dev_priv = dev->dev_private;
  888. pgoff_t page_offset;
  889. unsigned long pfn;
  890. int ret = 0;
  891. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  892. /* We don't use vmf->pgoff since that has the fake offset */
  893. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  894. PAGE_SHIFT;
  895. ret = i915_mutex_lock_interruptible(dev);
  896. if (ret)
  897. goto out;
  898. trace_i915_gem_object_fault(obj, page_offset, true, write);
  899. /* Now bind it into the GTT if needed */
  900. if (!obj->map_and_fenceable) {
  901. ret = i915_gem_object_unbind(obj);
  902. if (ret)
  903. goto unlock;
  904. }
  905. if (!obj->gtt_space) {
  906. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  907. if (ret)
  908. goto unlock;
  909. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  910. if (ret)
  911. goto unlock;
  912. }
  913. if (!obj->has_global_gtt_mapping)
  914. i915_gem_gtt_bind_object(obj, obj->cache_level);
  915. if (obj->tiling_mode == I915_TILING_NONE)
  916. ret = i915_gem_object_put_fence(obj);
  917. else
  918. ret = i915_gem_object_get_fence(obj, NULL);
  919. if (ret)
  920. goto unlock;
  921. if (i915_gem_object_is_inactive(obj))
  922. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  923. obj->fault_mappable = true;
  924. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  925. page_offset;
  926. /* Finally, remap it using the new GTT offset */
  927. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  928. unlock:
  929. mutex_unlock(&dev->struct_mutex);
  930. out:
  931. switch (ret) {
  932. case -EIO:
  933. case -EAGAIN:
  934. /* Give the error handler a chance to run and move the
  935. * objects off the GPU active list. Next time we service the
  936. * fault, we should be able to transition the page into the
  937. * GTT without touching the GPU (and so avoid further
  938. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  939. * with coherency, just lost writes.
  940. */
  941. set_need_resched();
  942. case 0:
  943. case -ERESTARTSYS:
  944. case -EINTR:
  945. return VM_FAULT_NOPAGE;
  946. case -ENOMEM:
  947. return VM_FAULT_OOM;
  948. default:
  949. return VM_FAULT_SIGBUS;
  950. }
  951. }
  952. /**
  953. * i915_gem_release_mmap - remove physical page mappings
  954. * @obj: obj in question
  955. *
  956. * Preserve the reservation of the mmapping with the DRM core code, but
  957. * relinquish ownership of the pages back to the system.
  958. *
  959. * It is vital that we remove the page mapping if we have mapped a tiled
  960. * object through the GTT and then lose the fence register due to
  961. * resource pressure. Similarly if the object has been moved out of the
  962. * aperture, than pages mapped into userspace must be revoked. Removing the
  963. * mapping will then trigger a page fault on the next user access, allowing
  964. * fixup by i915_gem_fault().
  965. */
  966. void
  967. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  968. {
  969. if (!obj->fault_mappable)
  970. return;
  971. if (obj->base.dev->dev_mapping)
  972. unmap_mapping_range(obj->base.dev->dev_mapping,
  973. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  974. obj->base.size, 1);
  975. obj->fault_mappable = false;
  976. }
  977. static uint32_t
  978. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  979. {
  980. uint32_t gtt_size;
  981. if (INTEL_INFO(dev)->gen >= 4 ||
  982. tiling_mode == I915_TILING_NONE)
  983. return size;
  984. /* Previous chips need a power-of-two fence region when tiling */
  985. if (INTEL_INFO(dev)->gen == 3)
  986. gtt_size = 1024*1024;
  987. else
  988. gtt_size = 512*1024;
  989. while (gtt_size < size)
  990. gtt_size <<= 1;
  991. return gtt_size;
  992. }
  993. /**
  994. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  995. * @obj: object to check
  996. *
  997. * Return the required GTT alignment for an object, taking into account
  998. * potential fence register mapping.
  999. */
  1000. static uint32_t
  1001. i915_gem_get_gtt_alignment(struct drm_device *dev,
  1002. uint32_t size,
  1003. int tiling_mode)
  1004. {
  1005. /*
  1006. * Minimum alignment is 4k (GTT page size), but might be greater
  1007. * if a fence register is needed for the object.
  1008. */
  1009. if (INTEL_INFO(dev)->gen >= 4 ||
  1010. tiling_mode == I915_TILING_NONE)
  1011. return 4096;
  1012. /*
  1013. * Previous chips need to be aligned to the size of the smallest
  1014. * fence register that can contain the object.
  1015. */
  1016. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1017. }
  1018. /**
  1019. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1020. * unfenced object
  1021. * @dev: the device
  1022. * @size: size of the object
  1023. * @tiling_mode: tiling mode of the object
  1024. *
  1025. * Return the required GTT alignment for an object, only taking into account
  1026. * unfenced tiled surface requirements.
  1027. */
  1028. uint32_t
  1029. i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
  1030. uint32_t size,
  1031. int tiling_mode)
  1032. {
  1033. /*
  1034. * Minimum alignment is 4k (GTT page size) for sane hw.
  1035. */
  1036. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1037. tiling_mode == I915_TILING_NONE)
  1038. return 4096;
  1039. /* Previous hardware however needs to be aligned to a power-of-two
  1040. * tile height. The simplest method for determining this is to reuse
  1041. * the power-of-tile object size.
  1042. */
  1043. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1044. }
  1045. int
  1046. i915_gem_mmap_gtt(struct drm_file *file,
  1047. struct drm_device *dev,
  1048. uint32_t handle,
  1049. uint64_t *offset)
  1050. {
  1051. struct drm_i915_private *dev_priv = dev->dev_private;
  1052. struct drm_i915_gem_object *obj;
  1053. int ret;
  1054. if (!(dev->driver->driver_features & DRIVER_GEM))
  1055. return -ENODEV;
  1056. ret = i915_mutex_lock_interruptible(dev);
  1057. if (ret)
  1058. return ret;
  1059. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1060. if (&obj->base == NULL) {
  1061. ret = -ENOENT;
  1062. goto unlock;
  1063. }
  1064. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1065. ret = -E2BIG;
  1066. goto out;
  1067. }
  1068. if (obj->madv != I915_MADV_WILLNEED) {
  1069. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1070. ret = -EINVAL;
  1071. goto out;
  1072. }
  1073. if (!obj->base.map_list.map) {
  1074. ret = drm_gem_create_mmap_offset(&obj->base);
  1075. if (ret)
  1076. goto out;
  1077. }
  1078. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1079. out:
  1080. drm_gem_object_unreference(&obj->base);
  1081. unlock:
  1082. mutex_unlock(&dev->struct_mutex);
  1083. return ret;
  1084. }
  1085. /**
  1086. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1087. * @dev: DRM device
  1088. * @data: GTT mapping ioctl data
  1089. * @file: GEM object info
  1090. *
  1091. * Simply returns the fake offset to userspace so it can mmap it.
  1092. * The mmap call will end up in drm_gem_mmap(), which will set things
  1093. * up so we can get faults in the handler above.
  1094. *
  1095. * The fault handler will take care of binding the object into the GTT
  1096. * (since it may have been evicted to make room for something), allocating
  1097. * a fence register, and mapping the appropriate aperture address into
  1098. * userspace.
  1099. */
  1100. int
  1101. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1102. struct drm_file *file)
  1103. {
  1104. struct drm_i915_gem_mmap_gtt *args = data;
  1105. if (!(dev->driver->driver_features & DRIVER_GEM))
  1106. return -ENODEV;
  1107. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1108. }
  1109. static int
  1110. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1111. gfp_t gfpmask)
  1112. {
  1113. int page_count, i;
  1114. struct address_space *mapping;
  1115. struct inode *inode;
  1116. struct page *page;
  1117. /* Get the list of pages out of our struct file. They'll be pinned
  1118. * at this point until we release them.
  1119. */
  1120. page_count = obj->base.size / PAGE_SIZE;
  1121. BUG_ON(obj->pages != NULL);
  1122. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1123. if (obj->pages == NULL)
  1124. return -ENOMEM;
  1125. inode = obj->base.filp->f_path.dentry->d_inode;
  1126. mapping = inode->i_mapping;
  1127. gfpmask |= mapping_gfp_mask(mapping);
  1128. for (i = 0; i < page_count; i++) {
  1129. page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
  1130. if (IS_ERR(page))
  1131. goto err_pages;
  1132. obj->pages[i] = page;
  1133. }
  1134. if (i915_gem_object_needs_bit17_swizzle(obj))
  1135. i915_gem_object_do_bit_17_swizzle(obj);
  1136. return 0;
  1137. err_pages:
  1138. while (i--)
  1139. page_cache_release(obj->pages[i]);
  1140. drm_free_large(obj->pages);
  1141. obj->pages = NULL;
  1142. return PTR_ERR(page);
  1143. }
  1144. static void
  1145. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1146. {
  1147. int page_count = obj->base.size / PAGE_SIZE;
  1148. int i;
  1149. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1150. if (i915_gem_object_needs_bit17_swizzle(obj))
  1151. i915_gem_object_save_bit_17_swizzle(obj);
  1152. if (obj->madv == I915_MADV_DONTNEED)
  1153. obj->dirty = 0;
  1154. for (i = 0; i < page_count; i++) {
  1155. if (obj->dirty)
  1156. set_page_dirty(obj->pages[i]);
  1157. if (obj->madv == I915_MADV_WILLNEED)
  1158. mark_page_accessed(obj->pages[i]);
  1159. page_cache_release(obj->pages[i]);
  1160. }
  1161. obj->dirty = 0;
  1162. drm_free_large(obj->pages);
  1163. obj->pages = NULL;
  1164. }
  1165. void
  1166. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1167. struct intel_ring_buffer *ring,
  1168. u32 seqno)
  1169. {
  1170. struct drm_device *dev = obj->base.dev;
  1171. struct drm_i915_private *dev_priv = dev->dev_private;
  1172. BUG_ON(ring == NULL);
  1173. obj->ring = ring;
  1174. /* Add a reference if we're newly entering the active list. */
  1175. if (!obj->active) {
  1176. drm_gem_object_reference(&obj->base);
  1177. obj->active = 1;
  1178. }
  1179. /* Move from whatever list we were on to the tail of execution. */
  1180. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1181. list_move_tail(&obj->ring_list, &ring->active_list);
  1182. obj->last_rendering_seqno = seqno;
  1183. if (obj->fenced_gpu_access) {
  1184. obj->last_fenced_seqno = seqno;
  1185. obj->last_fenced_ring = ring;
  1186. /* Bump MRU to take account of the delayed flush */
  1187. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1188. struct drm_i915_fence_reg *reg;
  1189. reg = &dev_priv->fence_regs[obj->fence_reg];
  1190. list_move_tail(&reg->lru_list,
  1191. &dev_priv->mm.fence_list);
  1192. }
  1193. }
  1194. }
  1195. static void
  1196. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1197. {
  1198. list_del_init(&obj->ring_list);
  1199. obj->last_rendering_seqno = 0;
  1200. }
  1201. static void
  1202. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1203. {
  1204. struct drm_device *dev = obj->base.dev;
  1205. drm_i915_private_t *dev_priv = dev->dev_private;
  1206. BUG_ON(!obj->active);
  1207. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1208. i915_gem_object_move_off_active(obj);
  1209. }
  1210. static void
  1211. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1212. {
  1213. struct drm_device *dev = obj->base.dev;
  1214. struct drm_i915_private *dev_priv = dev->dev_private;
  1215. if (obj->pin_count != 0)
  1216. list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
  1217. else
  1218. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1219. BUG_ON(!list_empty(&obj->gpu_write_list));
  1220. BUG_ON(!obj->active);
  1221. obj->ring = NULL;
  1222. i915_gem_object_move_off_active(obj);
  1223. obj->fenced_gpu_access = false;
  1224. obj->active = 0;
  1225. obj->pending_gpu_write = false;
  1226. drm_gem_object_unreference(&obj->base);
  1227. WARN_ON(i915_verify_lists(dev));
  1228. }
  1229. /* Immediately discard the backing storage */
  1230. static void
  1231. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1232. {
  1233. struct inode *inode;
  1234. /* Our goal here is to return as much of the memory as
  1235. * is possible back to the system as we are called from OOM.
  1236. * To do this we must instruct the shmfs to drop all of its
  1237. * backing pages, *now*.
  1238. */
  1239. inode = obj->base.filp->f_path.dentry->d_inode;
  1240. shmem_truncate_range(inode, 0, (loff_t)-1);
  1241. if (obj->base.map_list.map)
  1242. drm_gem_free_mmap_offset(&obj->base);
  1243. obj->madv = __I915_MADV_PURGED;
  1244. }
  1245. static inline int
  1246. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1247. {
  1248. return obj->madv == I915_MADV_DONTNEED;
  1249. }
  1250. static void
  1251. i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
  1252. uint32_t flush_domains)
  1253. {
  1254. struct drm_i915_gem_object *obj, *next;
  1255. list_for_each_entry_safe(obj, next,
  1256. &ring->gpu_write_list,
  1257. gpu_write_list) {
  1258. if (obj->base.write_domain & flush_domains) {
  1259. uint32_t old_write_domain = obj->base.write_domain;
  1260. obj->base.write_domain = 0;
  1261. list_del_init(&obj->gpu_write_list);
  1262. i915_gem_object_move_to_active(obj, ring,
  1263. i915_gem_next_request_seqno(ring));
  1264. trace_i915_gem_object_change_domain(obj,
  1265. obj->base.read_domains,
  1266. old_write_domain);
  1267. }
  1268. }
  1269. }
  1270. static u32
  1271. i915_gem_get_seqno(struct drm_device *dev)
  1272. {
  1273. drm_i915_private_t *dev_priv = dev->dev_private;
  1274. u32 seqno = dev_priv->next_seqno;
  1275. /* reserve 0 for non-seqno */
  1276. if (++dev_priv->next_seqno == 0)
  1277. dev_priv->next_seqno = 1;
  1278. return seqno;
  1279. }
  1280. u32
  1281. i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
  1282. {
  1283. if (ring->outstanding_lazy_request == 0)
  1284. ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
  1285. return ring->outstanding_lazy_request;
  1286. }
  1287. int
  1288. i915_add_request(struct intel_ring_buffer *ring,
  1289. struct drm_file *file,
  1290. struct drm_i915_gem_request *request)
  1291. {
  1292. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1293. uint32_t seqno;
  1294. u32 request_ring_position;
  1295. int was_empty;
  1296. int ret;
  1297. BUG_ON(request == NULL);
  1298. seqno = i915_gem_next_request_seqno(ring);
  1299. /* Record the position of the start of the request so that
  1300. * should we detect the updated seqno part-way through the
  1301. * GPU processing the request, we never over-estimate the
  1302. * position of the head.
  1303. */
  1304. request_ring_position = intel_ring_get_tail(ring);
  1305. ret = ring->add_request(ring, &seqno);
  1306. if (ret)
  1307. return ret;
  1308. trace_i915_gem_request_add(ring, seqno);
  1309. request->seqno = seqno;
  1310. request->ring = ring;
  1311. request->tail = request_ring_position;
  1312. request->emitted_jiffies = jiffies;
  1313. was_empty = list_empty(&ring->request_list);
  1314. list_add_tail(&request->list, &ring->request_list);
  1315. if (file) {
  1316. struct drm_i915_file_private *file_priv = file->driver_priv;
  1317. spin_lock(&file_priv->mm.lock);
  1318. request->file_priv = file_priv;
  1319. list_add_tail(&request->client_list,
  1320. &file_priv->mm.request_list);
  1321. spin_unlock(&file_priv->mm.lock);
  1322. }
  1323. ring->outstanding_lazy_request = 0;
  1324. if (!dev_priv->mm.suspended) {
  1325. if (i915_enable_hangcheck) {
  1326. mod_timer(&dev_priv->hangcheck_timer,
  1327. jiffies +
  1328. msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1329. }
  1330. if (was_empty)
  1331. queue_delayed_work(dev_priv->wq,
  1332. &dev_priv->mm.retire_work, HZ);
  1333. }
  1334. return 0;
  1335. }
  1336. static inline void
  1337. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1338. {
  1339. struct drm_i915_file_private *file_priv = request->file_priv;
  1340. if (!file_priv)
  1341. return;
  1342. spin_lock(&file_priv->mm.lock);
  1343. if (request->file_priv) {
  1344. list_del(&request->client_list);
  1345. request->file_priv = NULL;
  1346. }
  1347. spin_unlock(&file_priv->mm.lock);
  1348. }
  1349. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1350. struct intel_ring_buffer *ring)
  1351. {
  1352. while (!list_empty(&ring->request_list)) {
  1353. struct drm_i915_gem_request *request;
  1354. request = list_first_entry(&ring->request_list,
  1355. struct drm_i915_gem_request,
  1356. list);
  1357. list_del(&request->list);
  1358. i915_gem_request_remove_from_client(request);
  1359. kfree(request);
  1360. }
  1361. while (!list_empty(&ring->active_list)) {
  1362. struct drm_i915_gem_object *obj;
  1363. obj = list_first_entry(&ring->active_list,
  1364. struct drm_i915_gem_object,
  1365. ring_list);
  1366. obj->base.write_domain = 0;
  1367. list_del_init(&obj->gpu_write_list);
  1368. i915_gem_object_move_to_inactive(obj);
  1369. }
  1370. }
  1371. static void i915_gem_reset_fences(struct drm_device *dev)
  1372. {
  1373. struct drm_i915_private *dev_priv = dev->dev_private;
  1374. int i;
  1375. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1376. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1377. struct drm_i915_gem_object *obj = reg->obj;
  1378. if (!obj)
  1379. continue;
  1380. if (obj->tiling_mode)
  1381. i915_gem_release_mmap(obj);
  1382. reg->obj->fence_reg = I915_FENCE_REG_NONE;
  1383. reg->obj->fenced_gpu_access = false;
  1384. reg->obj->last_fenced_seqno = 0;
  1385. reg->obj->last_fenced_ring = NULL;
  1386. i915_gem_clear_fence_reg(dev, reg);
  1387. }
  1388. }
  1389. void i915_gem_reset(struct drm_device *dev)
  1390. {
  1391. struct drm_i915_private *dev_priv = dev->dev_private;
  1392. struct drm_i915_gem_object *obj;
  1393. int i;
  1394. for (i = 0; i < I915_NUM_RINGS; i++)
  1395. i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
  1396. /* Remove anything from the flushing lists. The GPU cache is likely
  1397. * to be lost on reset along with the data, so simply move the
  1398. * lost bo to the inactive list.
  1399. */
  1400. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1401. obj = list_first_entry(&dev_priv->mm.flushing_list,
  1402. struct drm_i915_gem_object,
  1403. mm_list);
  1404. obj->base.write_domain = 0;
  1405. list_del_init(&obj->gpu_write_list);
  1406. i915_gem_object_move_to_inactive(obj);
  1407. }
  1408. /* Move everything out of the GPU domains to ensure we do any
  1409. * necessary invalidation upon reuse.
  1410. */
  1411. list_for_each_entry(obj,
  1412. &dev_priv->mm.inactive_list,
  1413. mm_list)
  1414. {
  1415. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1416. }
  1417. /* The fence registers are invalidated so clear them out */
  1418. i915_gem_reset_fences(dev);
  1419. }
  1420. /**
  1421. * This function clears the request list as sequence numbers are passed.
  1422. */
  1423. void
  1424. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1425. {
  1426. uint32_t seqno;
  1427. int i;
  1428. if (list_empty(&ring->request_list))
  1429. return;
  1430. WARN_ON(i915_verify_lists(ring->dev));
  1431. seqno = ring->get_seqno(ring);
  1432. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1433. if (seqno >= ring->sync_seqno[i])
  1434. ring->sync_seqno[i] = 0;
  1435. while (!list_empty(&ring->request_list)) {
  1436. struct drm_i915_gem_request *request;
  1437. request = list_first_entry(&ring->request_list,
  1438. struct drm_i915_gem_request,
  1439. list);
  1440. if (!i915_seqno_passed(seqno, request->seqno))
  1441. break;
  1442. trace_i915_gem_request_retire(ring, request->seqno);
  1443. /* We know the GPU must have read the request to have
  1444. * sent us the seqno + interrupt, so use the position
  1445. * of tail of the request to update the last known position
  1446. * of the GPU head.
  1447. */
  1448. ring->last_retired_head = request->tail;
  1449. list_del(&request->list);
  1450. i915_gem_request_remove_from_client(request);
  1451. kfree(request);
  1452. }
  1453. /* Move any buffers on the active list that are no longer referenced
  1454. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1455. */
  1456. while (!list_empty(&ring->active_list)) {
  1457. struct drm_i915_gem_object *obj;
  1458. obj = list_first_entry(&ring->active_list,
  1459. struct drm_i915_gem_object,
  1460. ring_list);
  1461. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1462. break;
  1463. if (obj->base.write_domain != 0)
  1464. i915_gem_object_move_to_flushing(obj);
  1465. else
  1466. i915_gem_object_move_to_inactive(obj);
  1467. }
  1468. if (unlikely(ring->trace_irq_seqno &&
  1469. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1470. ring->irq_put(ring);
  1471. ring->trace_irq_seqno = 0;
  1472. }
  1473. WARN_ON(i915_verify_lists(ring->dev));
  1474. }
  1475. void
  1476. i915_gem_retire_requests(struct drm_device *dev)
  1477. {
  1478. drm_i915_private_t *dev_priv = dev->dev_private;
  1479. int i;
  1480. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1481. struct drm_i915_gem_object *obj, *next;
  1482. /* We must be careful that during unbind() we do not
  1483. * accidentally infinitely recurse into retire requests.
  1484. * Currently:
  1485. * retire -> free -> unbind -> wait -> retire_ring
  1486. */
  1487. list_for_each_entry_safe(obj, next,
  1488. &dev_priv->mm.deferred_free_list,
  1489. mm_list)
  1490. i915_gem_free_object_tail(obj);
  1491. }
  1492. for (i = 0; i < I915_NUM_RINGS; i++)
  1493. i915_gem_retire_requests_ring(&dev_priv->ring[i]);
  1494. }
  1495. static void
  1496. i915_gem_retire_work_handler(struct work_struct *work)
  1497. {
  1498. drm_i915_private_t *dev_priv;
  1499. struct drm_device *dev;
  1500. bool idle;
  1501. int i;
  1502. dev_priv = container_of(work, drm_i915_private_t,
  1503. mm.retire_work.work);
  1504. dev = dev_priv->dev;
  1505. /* Come back later if the device is busy... */
  1506. if (!mutex_trylock(&dev->struct_mutex)) {
  1507. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1508. return;
  1509. }
  1510. i915_gem_retire_requests(dev);
  1511. /* Send a periodic flush down the ring so we don't hold onto GEM
  1512. * objects indefinitely.
  1513. */
  1514. idle = true;
  1515. for (i = 0; i < I915_NUM_RINGS; i++) {
  1516. struct intel_ring_buffer *ring = &dev_priv->ring[i];
  1517. if (!list_empty(&ring->gpu_write_list)) {
  1518. struct drm_i915_gem_request *request;
  1519. int ret;
  1520. ret = i915_gem_flush_ring(ring,
  1521. 0, I915_GEM_GPU_DOMAINS);
  1522. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1523. if (ret || request == NULL ||
  1524. i915_add_request(ring, NULL, request))
  1525. kfree(request);
  1526. }
  1527. idle &= list_empty(&ring->request_list);
  1528. }
  1529. if (!dev_priv->mm.suspended && !idle)
  1530. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1531. mutex_unlock(&dev->struct_mutex);
  1532. }
  1533. /**
  1534. * Waits for a sequence number to be signaled, and cleans up the
  1535. * request and object lists appropriately for that event.
  1536. */
  1537. int
  1538. i915_wait_request(struct intel_ring_buffer *ring,
  1539. uint32_t seqno,
  1540. bool do_retire)
  1541. {
  1542. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1543. u32 ier;
  1544. int ret = 0;
  1545. BUG_ON(seqno == 0);
  1546. if (atomic_read(&dev_priv->mm.wedged)) {
  1547. struct completion *x = &dev_priv->error_completion;
  1548. bool recovery_complete;
  1549. unsigned long flags;
  1550. /* Give the error handler a chance to run. */
  1551. spin_lock_irqsave(&x->wait.lock, flags);
  1552. recovery_complete = x->done > 0;
  1553. spin_unlock_irqrestore(&x->wait.lock, flags);
  1554. return recovery_complete ? -EIO : -EAGAIN;
  1555. }
  1556. if (seqno == ring->outstanding_lazy_request) {
  1557. struct drm_i915_gem_request *request;
  1558. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1559. if (request == NULL)
  1560. return -ENOMEM;
  1561. ret = i915_add_request(ring, NULL, request);
  1562. if (ret) {
  1563. kfree(request);
  1564. return ret;
  1565. }
  1566. seqno = request->seqno;
  1567. }
  1568. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1569. if (HAS_PCH_SPLIT(ring->dev))
  1570. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1571. else if (IS_VALLEYVIEW(ring->dev))
  1572. ier = I915_READ(GTIER) | I915_READ(VLV_IER);
  1573. else
  1574. ier = I915_READ(IER);
  1575. if (!ier) {
  1576. DRM_ERROR("something (likely vbetool) disabled "
  1577. "interrupts, re-enabling\n");
  1578. ring->dev->driver->irq_preinstall(ring->dev);
  1579. ring->dev->driver->irq_postinstall(ring->dev);
  1580. }
  1581. trace_i915_gem_request_wait_begin(ring, seqno);
  1582. ring->waiting_seqno = seqno;
  1583. if (ring->irq_get(ring)) {
  1584. if (dev_priv->mm.interruptible)
  1585. ret = wait_event_interruptible(ring->irq_queue,
  1586. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1587. || atomic_read(&dev_priv->mm.wedged));
  1588. else
  1589. wait_event(ring->irq_queue,
  1590. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1591. || atomic_read(&dev_priv->mm.wedged));
  1592. ring->irq_put(ring);
  1593. } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
  1594. seqno) ||
  1595. atomic_read(&dev_priv->mm.wedged), 3000))
  1596. ret = -EBUSY;
  1597. ring->waiting_seqno = 0;
  1598. trace_i915_gem_request_wait_end(ring, seqno);
  1599. }
  1600. if (atomic_read(&dev_priv->mm.wedged))
  1601. ret = -EAGAIN;
  1602. /* Directly dispatch request retiring. While we have the work queue
  1603. * to handle this, the waiter on a request often wants an associated
  1604. * buffer to have made it to the inactive list, and we would need
  1605. * a separate wait queue to handle that.
  1606. */
  1607. if (ret == 0 && do_retire)
  1608. i915_gem_retire_requests_ring(ring);
  1609. return ret;
  1610. }
  1611. /**
  1612. * Ensures that all rendering to the object has completed and the object is
  1613. * safe to unbind from the GTT or access from the CPU.
  1614. */
  1615. int
  1616. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
  1617. {
  1618. int ret;
  1619. /* This function only exists to support waiting for existing rendering,
  1620. * not for emitting required flushes.
  1621. */
  1622. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1623. /* If there is rendering queued on the buffer being evicted, wait for
  1624. * it.
  1625. */
  1626. if (obj->active) {
  1627. ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
  1628. true);
  1629. if (ret)
  1630. return ret;
  1631. }
  1632. return 0;
  1633. }
  1634. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  1635. {
  1636. u32 old_write_domain, old_read_domains;
  1637. /* Act a barrier for all accesses through the GTT */
  1638. mb();
  1639. /* Force a pagefault for domain tracking on next user access */
  1640. i915_gem_release_mmap(obj);
  1641. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  1642. return;
  1643. old_read_domains = obj->base.read_domains;
  1644. old_write_domain = obj->base.write_domain;
  1645. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  1646. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  1647. trace_i915_gem_object_change_domain(obj,
  1648. old_read_domains,
  1649. old_write_domain);
  1650. }
  1651. /**
  1652. * Unbinds an object from the GTT aperture.
  1653. */
  1654. int
  1655. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1656. {
  1657. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  1658. int ret = 0;
  1659. if (obj->gtt_space == NULL)
  1660. return 0;
  1661. if (obj->pin_count != 0) {
  1662. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1663. return -EINVAL;
  1664. }
  1665. ret = i915_gem_object_finish_gpu(obj);
  1666. if (ret == -ERESTARTSYS)
  1667. return ret;
  1668. /* Continue on if we fail due to EIO, the GPU is hung so we
  1669. * should be safe and we need to cleanup or else we might
  1670. * cause memory corruption through use-after-free.
  1671. */
  1672. i915_gem_object_finish_gtt(obj);
  1673. /* Move the object to the CPU domain to ensure that
  1674. * any possible CPU writes while it's not in the GTT
  1675. * are flushed when we go to remap it.
  1676. */
  1677. if (ret == 0)
  1678. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1679. if (ret == -ERESTARTSYS)
  1680. return ret;
  1681. if (ret) {
  1682. /* In the event of a disaster, abandon all caches and
  1683. * hope for the best.
  1684. */
  1685. i915_gem_clflush_object(obj);
  1686. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1687. }
  1688. /* release the fence reg _after_ flushing */
  1689. ret = i915_gem_object_put_fence(obj);
  1690. if (ret == -ERESTARTSYS)
  1691. return ret;
  1692. trace_i915_gem_object_unbind(obj);
  1693. if (obj->has_global_gtt_mapping)
  1694. i915_gem_gtt_unbind_object(obj);
  1695. if (obj->has_aliasing_ppgtt_mapping) {
  1696. i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
  1697. obj->has_aliasing_ppgtt_mapping = 0;
  1698. }
  1699. i915_gem_gtt_finish_object(obj);
  1700. i915_gem_object_put_pages_gtt(obj);
  1701. list_del_init(&obj->gtt_list);
  1702. list_del_init(&obj->mm_list);
  1703. /* Avoid an unnecessary call to unbind on rebind. */
  1704. obj->map_and_fenceable = true;
  1705. drm_mm_put_block(obj->gtt_space);
  1706. obj->gtt_space = NULL;
  1707. obj->gtt_offset = 0;
  1708. if (i915_gem_object_is_purgeable(obj))
  1709. i915_gem_object_truncate(obj);
  1710. return ret;
  1711. }
  1712. int
  1713. i915_gem_flush_ring(struct intel_ring_buffer *ring,
  1714. uint32_t invalidate_domains,
  1715. uint32_t flush_domains)
  1716. {
  1717. int ret;
  1718. if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
  1719. return 0;
  1720. trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
  1721. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1722. if (ret)
  1723. return ret;
  1724. if (flush_domains & I915_GEM_GPU_DOMAINS)
  1725. i915_gem_process_flushing_list(ring, flush_domains);
  1726. return 0;
  1727. }
  1728. static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
  1729. {
  1730. int ret;
  1731. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1732. return 0;
  1733. if (!list_empty(&ring->gpu_write_list)) {
  1734. ret = i915_gem_flush_ring(ring,
  1735. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1736. if (ret)
  1737. return ret;
  1738. }
  1739. return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
  1740. do_retire);
  1741. }
  1742. int i915_gpu_idle(struct drm_device *dev, bool do_retire)
  1743. {
  1744. drm_i915_private_t *dev_priv = dev->dev_private;
  1745. int ret, i;
  1746. /* Flush everything onto the inactive list. */
  1747. for (i = 0; i < I915_NUM_RINGS; i++) {
  1748. ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
  1749. if (ret)
  1750. return ret;
  1751. }
  1752. return 0;
  1753. }
  1754. static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
  1755. struct intel_ring_buffer *pipelined)
  1756. {
  1757. struct drm_device *dev = obj->base.dev;
  1758. drm_i915_private_t *dev_priv = dev->dev_private;
  1759. u32 size = obj->gtt_space->size;
  1760. int regnum = obj->fence_reg;
  1761. uint64_t val;
  1762. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1763. 0xfffff000) << 32;
  1764. val |= obj->gtt_offset & 0xfffff000;
  1765. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1766. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1767. if (obj->tiling_mode == I915_TILING_Y)
  1768. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1769. val |= I965_FENCE_REG_VALID;
  1770. if (pipelined) {
  1771. int ret = intel_ring_begin(pipelined, 6);
  1772. if (ret)
  1773. return ret;
  1774. intel_ring_emit(pipelined, MI_NOOP);
  1775. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1776. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
  1777. intel_ring_emit(pipelined, (u32)val);
  1778. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
  1779. intel_ring_emit(pipelined, (u32)(val >> 32));
  1780. intel_ring_advance(pipelined);
  1781. } else
  1782. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
  1783. return 0;
  1784. }
  1785. static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
  1786. struct intel_ring_buffer *pipelined)
  1787. {
  1788. struct drm_device *dev = obj->base.dev;
  1789. drm_i915_private_t *dev_priv = dev->dev_private;
  1790. u32 size = obj->gtt_space->size;
  1791. int regnum = obj->fence_reg;
  1792. uint64_t val;
  1793. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1794. 0xfffff000) << 32;
  1795. val |= obj->gtt_offset & 0xfffff000;
  1796. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1797. if (obj->tiling_mode == I915_TILING_Y)
  1798. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1799. val |= I965_FENCE_REG_VALID;
  1800. if (pipelined) {
  1801. int ret = intel_ring_begin(pipelined, 6);
  1802. if (ret)
  1803. return ret;
  1804. intel_ring_emit(pipelined, MI_NOOP);
  1805. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1806. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
  1807. intel_ring_emit(pipelined, (u32)val);
  1808. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
  1809. intel_ring_emit(pipelined, (u32)(val >> 32));
  1810. intel_ring_advance(pipelined);
  1811. } else
  1812. I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
  1813. return 0;
  1814. }
  1815. static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
  1816. struct intel_ring_buffer *pipelined)
  1817. {
  1818. struct drm_device *dev = obj->base.dev;
  1819. drm_i915_private_t *dev_priv = dev->dev_private;
  1820. u32 size = obj->gtt_space->size;
  1821. u32 fence_reg, val, pitch_val;
  1822. int tile_width;
  1823. if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1824. (size & -size) != size ||
  1825. (obj->gtt_offset & (size - 1)),
  1826. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1827. obj->gtt_offset, obj->map_and_fenceable, size))
  1828. return -EINVAL;
  1829. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1830. tile_width = 128;
  1831. else
  1832. tile_width = 512;
  1833. /* Note: pitch better be a power of two tile widths */
  1834. pitch_val = obj->stride / tile_width;
  1835. pitch_val = ffs(pitch_val) - 1;
  1836. val = obj->gtt_offset;
  1837. if (obj->tiling_mode == I915_TILING_Y)
  1838. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1839. val |= I915_FENCE_SIZE_BITS(size);
  1840. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1841. val |= I830_FENCE_REG_VALID;
  1842. fence_reg = obj->fence_reg;
  1843. if (fence_reg < 8)
  1844. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  1845. else
  1846. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  1847. if (pipelined) {
  1848. int ret = intel_ring_begin(pipelined, 4);
  1849. if (ret)
  1850. return ret;
  1851. intel_ring_emit(pipelined, MI_NOOP);
  1852. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1853. intel_ring_emit(pipelined, fence_reg);
  1854. intel_ring_emit(pipelined, val);
  1855. intel_ring_advance(pipelined);
  1856. } else
  1857. I915_WRITE(fence_reg, val);
  1858. return 0;
  1859. }
  1860. static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
  1861. struct intel_ring_buffer *pipelined)
  1862. {
  1863. struct drm_device *dev = obj->base.dev;
  1864. drm_i915_private_t *dev_priv = dev->dev_private;
  1865. u32 size = obj->gtt_space->size;
  1866. int regnum = obj->fence_reg;
  1867. uint32_t val;
  1868. uint32_t pitch_val;
  1869. if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  1870. (size & -size) != size ||
  1871. (obj->gtt_offset & (size - 1)),
  1872. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  1873. obj->gtt_offset, size))
  1874. return -EINVAL;
  1875. pitch_val = obj->stride / 128;
  1876. pitch_val = ffs(pitch_val) - 1;
  1877. val = obj->gtt_offset;
  1878. if (obj->tiling_mode == I915_TILING_Y)
  1879. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1880. val |= I830_FENCE_SIZE_BITS(size);
  1881. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1882. val |= I830_FENCE_REG_VALID;
  1883. if (pipelined) {
  1884. int ret = intel_ring_begin(pipelined, 4);
  1885. if (ret)
  1886. return ret;
  1887. intel_ring_emit(pipelined, MI_NOOP);
  1888. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1889. intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
  1890. intel_ring_emit(pipelined, val);
  1891. intel_ring_advance(pipelined);
  1892. } else
  1893. I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
  1894. return 0;
  1895. }
  1896. static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
  1897. {
  1898. return i915_seqno_passed(ring->get_seqno(ring), seqno);
  1899. }
  1900. static int
  1901. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
  1902. struct intel_ring_buffer *pipelined)
  1903. {
  1904. int ret;
  1905. if (obj->fenced_gpu_access) {
  1906. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  1907. ret = i915_gem_flush_ring(obj->last_fenced_ring,
  1908. 0, obj->base.write_domain);
  1909. if (ret)
  1910. return ret;
  1911. }
  1912. obj->fenced_gpu_access = false;
  1913. }
  1914. if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
  1915. if (!ring_passed_seqno(obj->last_fenced_ring,
  1916. obj->last_fenced_seqno)) {
  1917. ret = i915_wait_request(obj->last_fenced_ring,
  1918. obj->last_fenced_seqno,
  1919. true);
  1920. if (ret)
  1921. return ret;
  1922. }
  1923. obj->last_fenced_seqno = 0;
  1924. obj->last_fenced_ring = NULL;
  1925. }
  1926. /* Ensure that all CPU reads are completed before installing a fence
  1927. * and all writes before removing the fence.
  1928. */
  1929. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  1930. mb();
  1931. return 0;
  1932. }
  1933. int
  1934. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  1935. {
  1936. int ret;
  1937. if (obj->tiling_mode)
  1938. i915_gem_release_mmap(obj);
  1939. ret = i915_gem_object_flush_fence(obj, NULL);
  1940. if (ret)
  1941. return ret;
  1942. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1943. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1944. WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count);
  1945. i915_gem_clear_fence_reg(obj->base.dev,
  1946. &dev_priv->fence_regs[obj->fence_reg]);
  1947. obj->fence_reg = I915_FENCE_REG_NONE;
  1948. }
  1949. return 0;
  1950. }
  1951. static struct drm_i915_fence_reg *
  1952. i915_find_fence_reg(struct drm_device *dev,
  1953. struct intel_ring_buffer *pipelined)
  1954. {
  1955. struct drm_i915_private *dev_priv = dev->dev_private;
  1956. struct drm_i915_fence_reg *reg, *first, *avail;
  1957. int i;
  1958. /* First try to find a free reg */
  1959. avail = NULL;
  1960. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1961. reg = &dev_priv->fence_regs[i];
  1962. if (!reg->obj)
  1963. return reg;
  1964. if (!reg->pin_count)
  1965. avail = reg;
  1966. }
  1967. if (avail == NULL)
  1968. return NULL;
  1969. /* None available, try to steal one or wait for a user to finish */
  1970. avail = first = NULL;
  1971. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  1972. if (reg->pin_count)
  1973. continue;
  1974. if (first == NULL)
  1975. first = reg;
  1976. if (!pipelined ||
  1977. !reg->obj->last_fenced_ring ||
  1978. reg->obj->last_fenced_ring == pipelined) {
  1979. avail = reg;
  1980. break;
  1981. }
  1982. }
  1983. if (avail == NULL)
  1984. avail = first;
  1985. return avail;
  1986. }
  1987. /**
  1988. * i915_gem_object_get_fence - set up a fence reg for an object
  1989. * @obj: object to map through a fence reg
  1990. * @pipelined: ring on which to queue the change, or NULL for CPU access
  1991. * @interruptible: must we wait uninterruptibly for the register to retire?
  1992. *
  1993. * When mapping objects through the GTT, userspace wants to be able to write
  1994. * to them without having to worry about swizzling if the object is tiled.
  1995. *
  1996. * This function walks the fence regs looking for a free one for @obj,
  1997. * stealing one if it can't find any.
  1998. *
  1999. * It then sets up the reg based on the object's properties: address, pitch
  2000. * and tiling format.
  2001. */
  2002. int
  2003. i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
  2004. struct intel_ring_buffer *pipelined)
  2005. {
  2006. struct drm_device *dev = obj->base.dev;
  2007. struct drm_i915_private *dev_priv = dev->dev_private;
  2008. struct drm_i915_fence_reg *reg;
  2009. int ret;
  2010. /* XXX disable pipelining. There are bugs. Shocking. */
  2011. pipelined = NULL;
  2012. /* Just update our place in the LRU if our fence is getting reused. */
  2013. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2014. reg = &dev_priv->fence_regs[obj->fence_reg];
  2015. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2016. if (obj->tiling_changed) {
  2017. ret = i915_gem_object_flush_fence(obj, pipelined);
  2018. if (ret)
  2019. return ret;
  2020. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  2021. pipelined = NULL;
  2022. if (pipelined) {
  2023. reg->setup_seqno =
  2024. i915_gem_next_request_seqno(pipelined);
  2025. obj->last_fenced_seqno = reg->setup_seqno;
  2026. obj->last_fenced_ring = pipelined;
  2027. }
  2028. goto update;
  2029. }
  2030. if (!pipelined) {
  2031. if (reg->setup_seqno) {
  2032. if (!ring_passed_seqno(obj->last_fenced_ring,
  2033. reg->setup_seqno)) {
  2034. ret = i915_wait_request(obj->last_fenced_ring,
  2035. reg->setup_seqno,
  2036. true);
  2037. if (ret)
  2038. return ret;
  2039. }
  2040. reg->setup_seqno = 0;
  2041. }
  2042. } else if (obj->last_fenced_ring &&
  2043. obj->last_fenced_ring != pipelined) {
  2044. ret = i915_gem_object_flush_fence(obj, pipelined);
  2045. if (ret)
  2046. return ret;
  2047. }
  2048. return 0;
  2049. }
  2050. reg = i915_find_fence_reg(dev, pipelined);
  2051. if (reg == NULL)
  2052. return -EDEADLK;
  2053. ret = i915_gem_object_flush_fence(obj, pipelined);
  2054. if (ret)
  2055. return ret;
  2056. if (reg->obj) {
  2057. struct drm_i915_gem_object *old = reg->obj;
  2058. drm_gem_object_reference(&old->base);
  2059. if (old->tiling_mode)
  2060. i915_gem_release_mmap(old);
  2061. ret = i915_gem_object_flush_fence(old, pipelined);
  2062. if (ret) {
  2063. drm_gem_object_unreference(&old->base);
  2064. return ret;
  2065. }
  2066. if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
  2067. pipelined = NULL;
  2068. old->fence_reg = I915_FENCE_REG_NONE;
  2069. old->last_fenced_ring = pipelined;
  2070. old->last_fenced_seqno =
  2071. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2072. drm_gem_object_unreference(&old->base);
  2073. } else if (obj->last_fenced_seqno == 0)
  2074. pipelined = NULL;
  2075. reg->obj = obj;
  2076. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2077. obj->fence_reg = reg - dev_priv->fence_regs;
  2078. obj->last_fenced_ring = pipelined;
  2079. reg->setup_seqno =
  2080. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2081. obj->last_fenced_seqno = reg->setup_seqno;
  2082. update:
  2083. obj->tiling_changed = false;
  2084. switch (INTEL_INFO(dev)->gen) {
  2085. case 7:
  2086. case 6:
  2087. ret = sandybridge_write_fence_reg(obj, pipelined);
  2088. break;
  2089. case 5:
  2090. case 4:
  2091. ret = i965_write_fence_reg(obj, pipelined);
  2092. break;
  2093. case 3:
  2094. ret = i915_write_fence_reg(obj, pipelined);
  2095. break;
  2096. case 2:
  2097. ret = i830_write_fence_reg(obj, pipelined);
  2098. break;
  2099. }
  2100. return ret;
  2101. }
  2102. /**
  2103. * i915_gem_clear_fence_reg - clear out fence register info
  2104. * @obj: object to clear
  2105. *
  2106. * Zeroes out the fence register itself and clears out the associated
  2107. * data structures in dev_priv and obj.
  2108. */
  2109. static void
  2110. i915_gem_clear_fence_reg(struct drm_device *dev,
  2111. struct drm_i915_fence_reg *reg)
  2112. {
  2113. drm_i915_private_t *dev_priv = dev->dev_private;
  2114. uint32_t fence_reg = reg - dev_priv->fence_regs;
  2115. switch (INTEL_INFO(dev)->gen) {
  2116. case 7:
  2117. case 6:
  2118. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
  2119. break;
  2120. case 5:
  2121. case 4:
  2122. I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
  2123. break;
  2124. case 3:
  2125. if (fence_reg >= 8)
  2126. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2127. else
  2128. case 2:
  2129. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2130. I915_WRITE(fence_reg, 0);
  2131. break;
  2132. }
  2133. list_del_init(&reg->lru_list);
  2134. reg->obj = NULL;
  2135. reg->setup_seqno = 0;
  2136. reg->pin_count = 0;
  2137. }
  2138. /**
  2139. * Finds free space in the GTT aperture and binds the object there.
  2140. */
  2141. static int
  2142. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2143. unsigned alignment,
  2144. bool map_and_fenceable)
  2145. {
  2146. struct drm_device *dev = obj->base.dev;
  2147. drm_i915_private_t *dev_priv = dev->dev_private;
  2148. struct drm_mm_node *free_space;
  2149. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2150. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2151. bool mappable, fenceable;
  2152. int ret;
  2153. if (obj->madv != I915_MADV_WILLNEED) {
  2154. DRM_ERROR("Attempting to bind a purgeable object\n");
  2155. return -EINVAL;
  2156. }
  2157. fence_size = i915_gem_get_gtt_size(dev,
  2158. obj->base.size,
  2159. obj->tiling_mode);
  2160. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2161. obj->base.size,
  2162. obj->tiling_mode);
  2163. unfenced_alignment =
  2164. i915_gem_get_unfenced_gtt_alignment(dev,
  2165. obj->base.size,
  2166. obj->tiling_mode);
  2167. if (alignment == 0)
  2168. alignment = map_and_fenceable ? fence_alignment :
  2169. unfenced_alignment;
  2170. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2171. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2172. return -EINVAL;
  2173. }
  2174. size = map_and_fenceable ? fence_size : obj->base.size;
  2175. /* If the object is bigger than the entire aperture, reject it early
  2176. * before evicting everything in a vain attempt to find space.
  2177. */
  2178. if (obj->base.size >
  2179. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2180. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2181. return -E2BIG;
  2182. }
  2183. search_free:
  2184. if (map_and_fenceable)
  2185. free_space =
  2186. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2187. size, alignment, 0,
  2188. dev_priv->mm.gtt_mappable_end,
  2189. 0);
  2190. else
  2191. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2192. size, alignment, 0);
  2193. if (free_space != NULL) {
  2194. if (map_and_fenceable)
  2195. obj->gtt_space =
  2196. drm_mm_get_block_range_generic(free_space,
  2197. size, alignment, 0,
  2198. dev_priv->mm.gtt_mappable_end,
  2199. 0);
  2200. else
  2201. obj->gtt_space =
  2202. drm_mm_get_block(free_space, size, alignment);
  2203. }
  2204. if (obj->gtt_space == NULL) {
  2205. /* If the gtt is empty and we're still having trouble
  2206. * fitting our object in, we're out of memory.
  2207. */
  2208. ret = i915_gem_evict_something(dev, size, alignment,
  2209. map_and_fenceable);
  2210. if (ret)
  2211. return ret;
  2212. goto search_free;
  2213. }
  2214. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2215. if (ret) {
  2216. drm_mm_put_block(obj->gtt_space);
  2217. obj->gtt_space = NULL;
  2218. if (ret == -ENOMEM) {
  2219. /* first try to reclaim some memory by clearing the GTT */
  2220. ret = i915_gem_evict_everything(dev, false);
  2221. if (ret) {
  2222. /* now try to shrink everyone else */
  2223. if (gfpmask) {
  2224. gfpmask = 0;
  2225. goto search_free;
  2226. }
  2227. return -ENOMEM;
  2228. }
  2229. goto search_free;
  2230. }
  2231. return ret;
  2232. }
  2233. ret = i915_gem_gtt_prepare_object(obj);
  2234. if (ret) {
  2235. i915_gem_object_put_pages_gtt(obj);
  2236. drm_mm_put_block(obj->gtt_space);
  2237. obj->gtt_space = NULL;
  2238. if (i915_gem_evict_everything(dev, false))
  2239. return ret;
  2240. goto search_free;
  2241. }
  2242. if (!dev_priv->mm.aliasing_ppgtt)
  2243. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2244. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2245. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2246. /* Assert that the object is not currently in any GPU domain. As it
  2247. * wasn't in the GTT, there shouldn't be any way it could have been in
  2248. * a GPU cache
  2249. */
  2250. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2251. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2252. obj->gtt_offset = obj->gtt_space->start;
  2253. fenceable =
  2254. obj->gtt_space->size == fence_size &&
  2255. (obj->gtt_space->start & (fence_alignment - 1)) == 0;
  2256. mappable =
  2257. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2258. obj->map_and_fenceable = mappable && fenceable;
  2259. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2260. return 0;
  2261. }
  2262. void
  2263. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2264. {
  2265. /* If we don't have a page list set up, then we're not pinned
  2266. * to GPU, and we can ignore the cache flush because it'll happen
  2267. * again at bind time.
  2268. */
  2269. if (obj->pages == NULL)
  2270. return;
  2271. /* If the GPU is snooping the contents of the CPU cache,
  2272. * we do not need to manually clear the CPU cache lines. However,
  2273. * the caches are only snooped when the render cache is
  2274. * flushed/invalidated. As we always have to emit invalidations
  2275. * and flushes when moving into and out of the RENDER domain, correct
  2276. * snooping behaviour occurs naturally as the result of our domain
  2277. * tracking.
  2278. */
  2279. if (obj->cache_level != I915_CACHE_NONE)
  2280. return;
  2281. trace_i915_gem_object_clflush(obj);
  2282. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2283. }
  2284. /** Flushes any GPU write domain for the object if it's dirty. */
  2285. static int
  2286. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2287. {
  2288. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2289. return 0;
  2290. /* Queue the GPU write cache flushing we need. */
  2291. return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2292. }
  2293. /** Flushes the GTT write domain for the object if it's dirty. */
  2294. static void
  2295. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2296. {
  2297. uint32_t old_write_domain;
  2298. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2299. return;
  2300. /* No actual flushing is required for the GTT write domain. Writes
  2301. * to it immediately go to main memory as far as we know, so there's
  2302. * no chipset flush. It also doesn't land in render cache.
  2303. *
  2304. * However, we do have to enforce the order so that all writes through
  2305. * the GTT land before any writes to the device, such as updates to
  2306. * the GATT itself.
  2307. */
  2308. wmb();
  2309. old_write_domain = obj->base.write_domain;
  2310. obj->base.write_domain = 0;
  2311. trace_i915_gem_object_change_domain(obj,
  2312. obj->base.read_domains,
  2313. old_write_domain);
  2314. }
  2315. /** Flushes the CPU write domain for the object if it's dirty. */
  2316. static void
  2317. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2318. {
  2319. uint32_t old_write_domain;
  2320. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2321. return;
  2322. i915_gem_clflush_object(obj);
  2323. intel_gtt_chipset_flush();
  2324. old_write_domain = obj->base.write_domain;
  2325. obj->base.write_domain = 0;
  2326. trace_i915_gem_object_change_domain(obj,
  2327. obj->base.read_domains,
  2328. old_write_domain);
  2329. }
  2330. /**
  2331. * Moves a single object to the GTT read, and possibly write domain.
  2332. *
  2333. * This function returns when the move is complete, including waiting on
  2334. * flushes to occur.
  2335. */
  2336. int
  2337. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2338. {
  2339. uint32_t old_write_domain, old_read_domains;
  2340. int ret;
  2341. /* Not valid to be called on unbound objects. */
  2342. if (obj->gtt_space == NULL)
  2343. return -EINVAL;
  2344. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2345. return 0;
  2346. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2347. if (ret)
  2348. return ret;
  2349. if (obj->pending_gpu_write || write) {
  2350. ret = i915_gem_object_wait_rendering(obj);
  2351. if (ret)
  2352. return ret;
  2353. }
  2354. i915_gem_object_flush_cpu_write_domain(obj);
  2355. old_write_domain = obj->base.write_domain;
  2356. old_read_domains = obj->base.read_domains;
  2357. /* It should now be out of any other write domains, and we can update
  2358. * the domain values for our changes.
  2359. */
  2360. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2361. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2362. if (write) {
  2363. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2364. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2365. obj->dirty = 1;
  2366. }
  2367. trace_i915_gem_object_change_domain(obj,
  2368. old_read_domains,
  2369. old_write_domain);
  2370. return 0;
  2371. }
  2372. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2373. enum i915_cache_level cache_level)
  2374. {
  2375. struct drm_device *dev = obj->base.dev;
  2376. drm_i915_private_t *dev_priv = dev->dev_private;
  2377. int ret;
  2378. if (obj->cache_level == cache_level)
  2379. return 0;
  2380. if (obj->pin_count) {
  2381. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2382. return -EBUSY;
  2383. }
  2384. if (obj->gtt_space) {
  2385. ret = i915_gem_object_finish_gpu(obj);
  2386. if (ret)
  2387. return ret;
  2388. i915_gem_object_finish_gtt(obj);
  2389. /* Before SandyBridge, you could not use tiling or fence
  2390. * registers with snooped memory, so relinquish any fences
  2391. * currently pointing to our region in the aperture.
  2392. */
  2393. if (INTEL_INFO(obj->base.dev)->gen < 6) {
  2394. ret = i915_gem_object_put_fence(obj);
  2395. if (ret)
  2396. return ret;
  2397. }
  2398. if (obj->has_global_gtt_mapping)
  2399. i915_gem_gtt_bind_object(obj, cache_level);
  2400. if (obj->has_aliasing_ppgtt_mapping)
  2401. i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
  2402. obj, cache_level);
  2403. }
  2404. if (cache_level == I915_CACHE_NONE) {
  2405. u32 old_read_domains, old_write_domain;
  2406. /* If we're coming from LLC cached, then we haven't
  2407. * actually been tracking whether the data is in the
  2408. * CPU cache or not, since we only allow one bit set
  2409. * in obj->write_domain and have been skipping the clflushes.
  2410. * Just set it to the CPU cache for now.
  2411. */
  2412. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2413. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2414. old_read_domains = obj->base.read_domains;
  2415. old_write_domain = obj->base.write_domain;
  2416. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2417. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2418. trace_i915_gem_object_change_domain(obj,
  2419. old_read_domains,
  2420. old_write_domain);
  2421. }
  2422. obj->cache_level = cache_level;
  2423. return 0;
  2424. }
  2425. /*
  2426. * Prepare buffer for display plane (scanout, cursors, etc).
  2427. * Can be called from an uninterruptible phase (modesetting) and allows
  2428. * any flushes to be pipelined (for pageflips).
  2429. *
  2430. * For the display plane, we want to be in the GTT but out of any write
  2431. * domains. So in many ways this looks like set_to_gtt_domain() apart from the
  2432. * ability to pipeline the waits, pinning and any additional subtleties
  2433. * that may differentiate the display plane from ordinary buffers.
  2434. */
  2435. int
  2436. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2437. u32 alignment,
  2438. struct intel_ring_buffer *pipelined)
  2439. {
  2440. u32 old_read_domains, old_write_domain;
  2441. int ret;
  2442. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2443. if (ret)
  2444. return ret;
  2445. if (pipelined != obj->ring) {
  2446. ret = i915_gem_object_wait_rendering(obj);
  2447. if (ret == -ERESTARTSYS)
  2448. return ret;
  2449. }
  2450. /* The display engine is not coherent with the LLC cache on gen6. As
  2451. * a result, we make sure that the pinning that is about to occur is
  2452. * done with uncached PTEs. This is lowest common denominator for all
  2453. * chipsets.
  2454. *
  2455. * However for gen6+, we could do better by using the GFDT bit instead
  2456. * of uncaching, which would allow us to flush all the LLC-cached data
  2457. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2458. */
  2459. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2460. if (ret)
  2461. return ret;
  2462. /* As the user may map the buffer once pinned in the display plane
  2463. * (e.g. libkms for the bootup splash), we have to ensure that we
  2464. * always use map_and_fenceable for all scanout buffers.
  2465. */
  2466. ret = i915_gem_object_pin(obj, alignment, true);
  2467. if (ret)
  2468. return ret;
  2469. i915_gem_object_flush_cpu_write_domain(obj);
  2470. old_write_domain = obj->base.write_domain;
  2471. old_read_domains = obj->base.read_domains;
  2472. /* It should now be out of any other write domains, and we can update
  2473. * the domain values for our changes.
  2474. */
  2475. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2476. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2477. trace_i915_gem_object_change_domain(obj,
  2478. old_read_domains,
  2479. old_write_domain);
  2480. return 0;
  2481. }
  2482. int
  2483. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2484. {
  2485. int ret;
  2486. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2487. return 0;
  2488. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2489. ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2490. if (ret)
  2491. return ret;
  2492. }
  2493. ret = i915_gem_object_wait_rendering(obj);
  2494. if (ret)
  2495. return ret;
  2496. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2497. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2498. return 0;
  2499. }
  2500. /**
  2501. * Moves a single object to the CPU read, and possibly write domain.
  2502. *
  2503. * This function returns when the move is complete, including waiting on
  2504. * flushes to occur.
  2505. */
  2506. int
  2507. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2508. {
  2509. uint32_t old_write_domain, old_read_domains;
  2510. int ret;
  2511. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2512. return 0;
  2513. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2514. if (ret)
  2515. return ret;
  2516. ret = i915_gem_object_wait_rendering(obj);
  2517. if (ret)
  2518. return ret;
  2519. i915_gem_object_flush_gtt_write_domain(obj);
  2520. old_write_domain = obj->base.write_domain;
  2521. old_read_domains = obj->base.read_domains;
  2522. /* Flush the CPU cache if it's still invalid. */
  2523. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2524. i915_gem_clflush_object(obj);
  2525. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2526. }
  2527. /* It should now be out of any other write domains, and we can update
  2528. * the domain values for our changes.
  2529. */
  2530. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2531. /* If we're writing through the CPU, then the GPU read domains will
  2532. * need to be invalidated at next use.
  2533. */
  2534. if (write) {
  2535. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2536. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2537. }
  2538. trace_i915_gem_object_change_domain(obj,
  2539. old_read_domains,
  2540. old_write_domain);
  2541. return 0;
  2542. }
  2543. /* Throttle our rendering by waiting until the ring has completed our requests
  2544. * emitted over 20 msec ago.
  2545. *
  2546. * Note that if we were to use the current jiffies each time around the loop,
  2547. * we wouldn't escape the function with any frames outstanding if the time to
  2548. * render a frame was over 20ms.
  2549. *
  2550. * This should get us reasonable parallelism between CPU and GPU but also
  2551. * relatively low latency when blocking on a particular request to finish.
  2552. */
  2553. static int
  2554. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2555. {
  2556. struct drm_i915_private *dev_priv = dev->dev_private;
  2557. struct drm_i915_file_private *file_priv = file->driver_priv;
  2558. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2559. struct drm_i915_gem_request *request;
  2560. struct intel_ring_buffer *ring = NULL;
  2561. u32 seqno = 0;
  2562. int ret;
  2563. if (atomic_read(&dev_priv->mm.wedged))
  2564. return -EIO;
  2565. spin_lock(&file_priv->mm.lock);
  2566. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2567. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2568. break;
  2569. ring = request->ring;
  2570. seqno = request->seqno;
  2571. }
  2572. spin_unlock(&file_priv->mm.lock);
  2573. if (seqno == 0)
  2574. return 0;
  2575. ret = 0;
  2576. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  2577. /* And wait for the seqno passing without holding any locks and
  2578. * causing extra latency for others. This is safe as the irq
  2579. * generation is designed to be run atomically and so is
  2580. * lockless.
  2581. */
  2582. if (ring->irq_get(ring)) {
  2583. ret = wait_event_interruptible(ring->irq_queue,
  2584. i915_seqno_passed(ring->get_seqno(ring), seqno)
  2585. || atomic_read(&dev_priv->mm.wedged));
  2586. ring->irq_put(ring);
  2587. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2588. ret = -EIO;
  2589. } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
  2590. seqno) ||
  2591. atomic_read(&dev_priv->mm.wedged), 3000)) {
  2592. ret = -EBUSY;
  2593. }
  2594. }
  2595. if (ret == 0)
  2596. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2597. return ret;
  2598. }
  2599. int
  2600. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2601. uint32_t alignment,
  2602. bool map_and_fenceable)
  2603. {
  2604. struct drm_device *dev = obj->base.dev;
  2605. struct drm_i915_private *dev_priv = dev->dev_private;
  2606. int ret;
  2607. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2608. WARN_ON(i915_verify_lists(dev));
  2609. if (obj->gtt_space != NULL) {
  2610. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2611. (map_and_fenceable && !obj->map_and_fenceable)) {
  2612. WARN(obj->pin_count,
  2613. "bo is already pinned with incorrect alignment:"
  2614. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2615. " obj->map_and_fenceable=%d\n",
  2616. obj->gtt_offset, alignment,
  2617. map_and_fenceable,
  2618. obj->map_and_fenceable);
  2619. ret = i915_gem_object_unbind(obj);
  2620. if (ret)
  2621. return ret;
  2622. }
  2623. }
  2624. if (obj->gtt_space == NULL) {
  2625. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2626. map_and_fenceable);
  2627. if (ret)
  2628. return ret;
  2629. }
  2630. if (!obj->has_global_gtt_mapping && map_and_fenceable)
  2631. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2632. if (obj->pin_count++ == 0) {
  2633. if (!obj->active)
  2634. list_move_tail(&obj->mm_list,
  2635. &dev_priv->mm.pinned_list);
  2636. }
  2637. obj->pin_mappable |= map_and_fenceable;
  2638. WARN_ON(i915_verify_lists(dev));
  2639. return 0;
  2640. }
  2641. void
  2642. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2643. {
  2644. struct drm_device *dev = obj->base.dev;
  2645. drm_i915_private_t *dev_priv = dev->dev_private;
  2646. WARN_ON(i915_verify_lists(dev));
  2647. BUG_ON(obj->pin_count == 0);
  2648. BUG_ON(obj->gtt_space == NULL);
  2649. if (--obj->pin_count == 0) {
  2650. if (!obj->active)
  2651. list_move_tail(&obj->mm_list,
  2652. &dev_priv->mm.inactive_list);
  2653. obj->pin_mappable = false;
  2654. }
  2655. WARN_ON(i915_verify_lists(dev));
  2656. }
  2657. int
  2658. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2659. struct drm_file *file)
  2660. {
  2661. struct drm_i915_gem_pin *args = data;
  2662. struct drm_i915_gem_object *obj;
  2663. int ret;
  2664. ret = i915_mutex_lock_interruptible(dev);
  2665. if (ret)
  2666. return ret;
  2667. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2668. if (&obj->base == NULL) {
  2669. ret = -ENOENT;
  2670. goto unlock;
  2671. }
  2672. if (obj->madv != I915_MADV_WILLNEED) {
  2673. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2674. ret = -EINVAL;
  2675. goto out;
  2676. }
  2677. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2678. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2679. args->handle);
  2680. ret = -EINVAL;
  2681. goto out;
  2682. }
  2683. obj->user_pin_count++;
  2684. obj->pin_filp = file;
  2685. if (obj->user_pin_count == 1) {
  2686. ret = i915_gem_object_pin(obj, args->alignment, true);
  2687. if (ret)
  2688. goto out;
  2689. }
  2690. /* XXX - flush the CPU caches for pinned objects
  2691. * as the X server doesn't manage domains yet
  2692. */
  2693. i915_gem_object_flush_cpu_write_domain(obj);
  2694. args->offset = obj->gtt_offset;
  2695. out:
  2696. drm_gem_object_unreference(&obj->base);
  2697. unlock:
  2698. mutex_unlock(&dev->struct_mutex);
  2699. return ret;
  2700. }
  2701. int
  2702. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2703. struct drm_file *file)
  2704. {
  2705. struct drm_i915_gem_pin *args = data;
  2706. struct drm_i915_gem_object *obj;
  2707. int ret;
  2708. ret = i915_mutex_lock_interruptible(dev);
  2709. if (ret)
  2710. return ret;
  2711. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2712. if (&obj->base == NULL) {
  2713. ret = -ENOENT;
  2714. goto unlock;
  2715. }
  2716. if (obj->pin_filp != file) {
  2717. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2718. args->handle);
  2719. ret = -EINVAL;
  2720. goto out;
  2721. }
  2722. obj->user_pin_count--;
  2723. if (obj->user_pin_count == 0) {
  2724. obj->pin_filp = NULL;
  2725. i915_gem_object_unpin(obj);
  2726. }
  2727. out:
  2728. drm_gem_object_unreference(&obj->base);
  2729. unlock:
  2730. mutex_unlock(&dev->struct_mutex);
  2731. return ret;
  2732. }
  2733. int
  2734. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2735. struct drm_file *file)
  2736. {
  2737. struct drm_i915_gem_busy *args = data;
  2738. struct drm_i915_gem_object *obj;
  2739. int ret;
  2740. ret = i915_mutex_lock_interruptible(dev);
  2741. if (ret)
  2742. return ret;
  2743. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2744. if (&obj->base == NULL) {
  2745. ret = -ENOENT;
  2746. goto unlock;
  2747. }
  2748. /* Count all active objects as busy, even if they are currently not used
  2749. * by the gpu. Users of this interface expect objects to eventually
  2750. * become non-busy without any further actions, therefore emit any
  2751. * necessary flushes here.
  2752. */
  2753. args->busy = obj->active;
  2754. if (args->busy) {
  2755. /* Unconditionally flush objects, even when the gpu still uses this
  2756. * object. Userspace calling this function indicates that it wants to
  2757. * use this buffer rather sooner than later, so issuing the required
  2758. * flush earlier is beneficial.
  2759. */
  2760. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2761. ret = i915_gem_flush_ring(obj->ring,
  2762. 0, obj->base.write_domain);
  2763. } else if (obj->ring->outstanding_lazy_request ==
  2764. obj->last_rendering_seqno) {
  2765. struct drm_i915_gem_request *request;
  2766. /* This ring is not being cleared by active usage,
  2767. * so emit a request to do so.
  2768. */
  2769. request = kzalloc(sizeof(*request), GFP_KERNEL);
  2770. if (request) {
  2771. ret = i915_add_request(obj->ring, NULL, request);
  2772. if (ret)
  2773. kfree(request);
  2774. } else
  2775. ret = -ENOMEM;
  2776. }
  2777. /* Update the active list for the hardware's current position.
  2778. * Otherwise this only updates on a delayed timer or when irqs
  2779. * are actually unmasked, and our working set ends up being
  2780. * larger than required.
  2781. */
  2782. i915_gem_retire_requests_ring(obj->ring);
  2783. args->busy = obj->active;
  2784. }
  2785. drm_gem_object_unreference(&obj->base);
  2786. unlock:
  2787. mutex_unlock(&dev->struct_mutex);
  2788. return ret;
  2789. }
  2790. int
  2791. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2792. struct drm_file *file_priv)
  2793. {
  2794. return i915_gem_ring_throttle(dev, file_priv);
  2795. }
  2796. int
  2797. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2798. struct drm_file *file_priv)
  2799. {
  2800. struct drm_i915_gem_madvise *args = data;
  2801. struct drm_i915_gem_object *obj;
  2802. int ret;
  2803. switch (args->madv) {
  2804. case I915_MADV_DONTNEED:
  2805. case I915_MADV_WILLNEED:
  2806. break;
  2807. default:
  2808. return -EINVAL;
  2809. }
  2810. ret = i915_mutex_lock_interruptible(dev);
  2811. if (ret)
  2812. return ret;
  2813. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2814. if (&obj->base == NULL) {
  2815. ret = -ENOENT;
  2816. goto unlock;
  2817. }
  2818. if (obj->pin_count) {
  2819. ret = -EINVAL;
  2820. goto out;
  2821. }
  2822. if (obj->madv != __I915_MADV_PURGED)
  2823. obj->madv = args->madv;
  2824. /* if the object is no longer bound, discard its backing storage */
  2825. if (i915_gem_object_is_purgeable(obj) &&
  2826. obj->gtt_space == NULL)
  2827. i915_gem_object_truncate(obj);
  2828. args->retained = obj->madv != __I915_MADV_PURGED;
  2829. out:
  2830. drm_gem_object_unreference(&obj->base);
  2831. unlock:
  2832. mutex_unlock(&dev->struct_mutex);
  2833. return ret;
  2834. }
  2835. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2836. size_t size)
  2837. {
  2838. struct drm_i915_private *dev_priv = dev->dev_private;
  2839. struct drm_i915_gem_object *obj;
  2840. struct address_space *mapping;
  2841. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2842. if (obj == NULL)
  2843. return NULL;
  2844. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2845. kfree(obj);
  2846. return NULL;
  2847. }
  2848. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  2849. mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
  2850. i915_gem_info_add_obj(dev_priv, size);
  2851. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2852. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2853. if (HAS_LLC(dev)) {
  2854. /* On some devices, we can have the GPU use the LLC (the CPU
  2855. * cache) for about a 10% performance improvement
  2856. * compared to uncached. Graphics requests other than
  2857. * display scanout are coherent with the CPU in
  2858. * accessing this cache. This means in this mode we
  2859. * don't need to clflush on the CPU side, and on the
  2860. * GPU side we only need to flush internal caches to
  2861. * get data visible to the CPU.
  2862. *
  2863. * However, we maintain the display planes as UC, and so
  2864. * need to rebind when first used as such.
  2865. */
  2866. obj->cache_level = I915_CACHE_LLC;
  2867. } else
  2868. obj->cache_level = I915_CACHE_NONE;
  2869. obj->base.driver_private = NULL;
  2870. obj->fence_reg = I915_FENCE_REG_NONE;
  2871. INIT_LIST_HEAD(&obj->mm_list);
  2872. INIT_LIST_HEAD(&obj->gtt_list);
  2873. INIT_LIST_HEAD(&obj->ring_list);
  2874. INIT_LIST_HEAD(&obj->exec_list);
  2875. INIT_LIST_HEAD(&obj->gpu_write_list);
  2876. obj->madv = I915_MADV_WILLNEED;
  2877. /* Avoid an unnecessary call to unbind on the first bind. */
  2878. obj->map_and_fenceable = true;
  2879. return obj;
  2880. }
  2881. int i915_gem_init_object(struct drm_gem_object *obj)
  2882. {
  2883. BUG();
  2884. return 0;
  2885. }
  2886. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
  2887. {
  2888. struct drm_device *dev = obj->base.dev;
  2889. drm_i915_private_t *dev_priv = dev->dev_private;
  2890. int ret;
  2891. ret = i915_gem_object_unbind(obj);
  2892. if (ret == -ERESTARTSYS) {
  2893. list_move(&obj->mm_list,
  2894. &dev_priv->mm.deferred_free_list);
  2895. return;
  2896. }
  2897. trace_i915_gem_object_destroy(obj);
  2898. if (obj->base.map_list.map)
  2899. drm_gem_free_mmap_offset(&obj->base);
  2900. drm_gem_object_release(&obj->base);
  2901. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  2902. kfree(obj->bit_17);
  2903. kfree(obj);
  2904. }
  2905. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  2906. {
  2907. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  2908. struct drm_device *dev = obj->base.dev;
  2909. while (obj->pin_count > 0)
  2910. i915_gem_object_unpin(obj);
  2911. if (obj->phys_obj)
  2912. i915_gem_detach_phys_object(dev, obj);
  2913. i915_gem_free_object_tail(obj);
  2914. }
  2915. int
  2916. i915_gem_idle(struct drm_device *dev)
  2917. {
  2918. drm_i915_private_t *dev_priv = dev->dev_private;
  2919. int ret;
  2920. mutex_lock(&dev->struct_mutex);
  2921. if (dev_priv->mm.suspended) {
  2922. mutex_unlock(&dev->struct_mutex);
  2923. return 0;
  2924. }
  2925. ret = i915_gpu_idle(dev, true);
  2926. if (ret) {
  2927. mutex_unlock(&dev->struct_mutex);
  2928. return ret;
  2929. }
  2930. /* Under UMS, be paranoid and evict. */
  2931. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  2932. ret = i915_gem_evict_inactive(dev, false);
  2933. if (ret) {
  2934. mutex_unlock(&dev->struct_mutex);
  2935. return ret;
  2936. }
  2937. }
  2938. i915_gem_reset_fences(dev);
  2939. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  2940. * We need to replace this with a semaphore, or something.
  2941. * And not confound mm.suspended!
  2942. */
  2943. dev_priv->mm.suspended = 1;
  2944. del_timer_sync(&dev_priv->hangcheck_timer);
  2945. i915_kernel_lost_context(dev);
  2946. i915_gem_cleanup_ringbuffer(dev);
  2947. mutex_unlock(&dev->struct_mutex);
  2948. /* Cancel the retire work handler, which should be idle now. */
  2949. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  2950. return 0;
  2951. }
  2952. void i915_gem_init_swizzling(struct drm_device *dev)
  2953. {
  2954. drm_i915_private_t *dev_priv = dev->dev_private;
  2955. if (INTEL_INFO(dev)->gen < 5 ||
  2956. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  2957. return;
  2958. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  2959. DISP_TILE_SURFACE_SWIZZLING);
  2960. if (IS_GEN5(dev))
  2961. return;
  2962. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  2963. if (IS_GEN6(dev))
  2964. I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_SNB));
  2965. else
  2966. I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_IVB));
  2967. }
  2968. void i915_gem_init_ppgtt(struct drm_device *dev)
  2969. {
  2970. drm_i915_private_t *dev_priv = dev->dev_private;
  2971. uint32_t pd_offset;
  2972. struct intel_ring_buffer *ring;
  2973. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  2974. uint32_t __iomem *pd_addr;
  2975. uint32_t pd_entry;
  2976. int i;
  2977. if (!dev_priv->mm.aliasing_ppgtt)
  2978. return;
  2979. pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
  2980. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  2981. dma_addr_t pt_addr;
  2982. if (dev_priv->mm.gtt->needs_dmar)
  2983. pt_addr = ppgtt->pt_dma_addr[i];
  2984. else
  2985. pt_addr = page_to_phys(ppgtt->pt_pages[i]);
  2986. pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
  2987. pd_entry |= GEN6_PDE_VALID;
  2988. writel(pd_entry, pd_addr + i);
  2989. }
  2990. readl(pd_addr);
  2991. pd_offset = ppgtt->pd_offset;
  2992. pd_offset /= 64; /* in cachelines, */
  2993. pd_offset <<= 16;
  2994. if (INTEL_INFO(dev)->gen == 6) {
  2995. uint32_t ecochk = I915_READ(GAM_ECOCHK);
  2996. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  2997. ECOCHK_PPGTT_CACHE64B);
  2998. I915_WRITE(GFX_MODE, GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
  2999. } else if (INTEL_INFO(dev)->gen >= 7) {
  3000. I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
  3001. /* GFX_MODE is per-ring on gen7+ */
  3002. }
  3003. for (i = 0; i < I915_NUM_RINGS; i++) {
  3004. ring = &dev_priv->ring[i];
  3005. if (INTEL_INFO(dev)->gen >= 7)
  3006. I915_WRITE(RING_MODE_GEN7(ring),
  3007. GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
  3008. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  3009. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  3010. }
  3011. }
  3012. int
  3013. i915_gem_init_hw(struct drm_device *dev)
  3014. {
  3015. drm_i915_private_t *dev_priv = dev->dev_private;
  3016. int ret;
  3017. i915_gem_init_swizzling(dev);
  3018. ret = intel_init_render_ring_buffer(dev);
  3019. if (ret)
  3020. return ret;
  3021. if (HAS_BSD(dev)) {
  3022. ret = intel_init_bsd_ring_buffer(dev);
  3023. if (ret)
  3024. goto cleanup_render_ring;
  3025. }
  3026. if (HAS_BLT(dev)) {
  3027. ret = intel_init_blt_ring_buffer(dev);
  3028. if (ret)
  3029. goto cleanup_bsd_ring;
  3030. }
  3031. dev_priv->next_seqno = 1;
  3032. i915_gem_init_ppgtt(dev);
  3033. return 0;
  3034. cleanup_bsd_ring:
  3035. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3036. cleanup_render_ring:
  3037. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3038. return ret;
  3039. }
  3040. void
  3041. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3042. {
  3043. drm_i915_private_t *dev_priv = dev->dev_private;
  3044. int i;
  3045. for (i = 0; i < I915_NUM_RINGS; i++)
  3046. intel_cleanup_ring_buffer(&dev_priv->ring[i]);
  3047. }
  3048. int
  3049. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3050. struct drm_file *file_priv)
  3051. {
  3052. drm_i915_private_t *dev_priv = dev->dev_private;
  3053. int ret, i;
  3054. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3055. return 0;
  3056. if (atomic_read(&dev_priv->mm.wedged)) {
  3057. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3058. atomic_set(&dev_priv->mm.wedged, 0);
  3059. }
  3060. mutex_lock(&dev->struct_mutex);
  3061. dev_priv->mm.suspended = 0;
  3062. ret = i915_gem_init_hw(dev);
  3063. if (ret != 0) {
  3064. mutex_unlock(&dev->struct_mutex);
  3065. return ret;
  3066. }
  3067. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3068. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3069. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3070. for (i = 0; i < I915_NUM_RINGS; i++) {
  3071. BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
  3072. BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
  3073. }
  3074. mutex_unlock(&dev->struct_mutex);
  3075. ret = drm_irq_install(dev);
  3076. if (ret)
  3077. goto cleanup_ringbuffer;
  3078. return 0;
  3079. cleanup_ringbuffer:
  3080. mutex_lock(&dev->struct_mutex);
  3081. i915_gem_cleanup_ringbuffer(dev);
  3082. dev_priv->mm.suspended = 1;
  3083. mutex_unlock(&dev->struct_mutex);
  3084. return ret;
  3085. }
  3086. int
  3087. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3088. struct drm_file *file_priv)
  3089. {
  3090. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3091. return 0;
  3092. drm_irq_uninstall(dev);
  3093. return i915_gem_idle(dev);
  3094. }
  3095. void
  3096. i915_gem_lastclose(struct drm_device *dev)
  3097. {
  3098. int ret;
  3099. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3100. return;
  3101. ret = i915_gem_idle(dev);
  3102. if (ret)
  3103. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3104. }
  3105. static void
  3106. init_ring_lists(struct intel_ring_buffer *ring)
  3107. {
  3108. INIT_LIST_HEAD(&ring->active_list);
  3109. INIT_LIST_HEAD(&ring->request_list);
  3110. INIT_LIST_HEAD(&ring->gpu_write_list);
  3111. }
  3112. void
  3113. i915_gem_load(struct drm_device *dev)
  3114. {
  3115. int i;
  3116. drm_i915_private_t *dev_priv = dev->dev_private;
  3117. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3118. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3119. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3120. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3121. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3122. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3123. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3124. for (i = 0; i < I915_NUM_RINGS; i++)
  3125. init_ring_lists(&dev_priv->ring[i]);
  3126. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3127. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3128. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3129. i915_gem_retire_work_handler);
  3130. init_completion(&dev_priv->error_completion);
  3131. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3132. if (IS_GEN3(dev)) {
  3133. u32 tmp = I915_READ(MI_ARB_STATE);
  3134. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3135. /* arb state is a masked write, so set bit + bit in mask */
  3136. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3137. I915_WRITE(MI_ARB_STATE, tmp);
  3138. }
  3139. }
  3140. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3141. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3142. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3143. dev_priv->fence_reg_start = 3;
  3144. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3145. dev_priv->num_fence_regs = 16;
  3146. else
  3147. dev_priv->num_fence_regs = 8;
  3148. /* Initialize fence registers to zero */
  3149. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  3150. i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
  3151. }
  3152. i915_gem_detect_bit_6_swizzle(dev);
  3153. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3154. dev_priv->mm.interruptible = true;
  3155. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3156. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3157. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3158. }
  3159. /*
  3160. * Create a physically contiguous memory object for this object
  3161. * e.g. for cursor + overlay regs
  3162. */
  3163. static int i915_gem_init_phys_object(struct drm_device *dev,
  3164. int id, int size, int align)
  3165. {
  3166. drm_i915_private_t *dev_priv = dev->dev_private;
  3167. struct drm_i915_gem_phys_object *phys_obj;
  3168. int ret;
  3169. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3170. return 0;
  3171. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3172. if (!phys_obj)
  3173. return -ENOMEM;
  3174. phys_obj->id = id;
  3175. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3176. if (!phys_obj->handle) {
  3177. ret = -ENOMEM;
  3178. goto kfree_obj;
  3179. }
  3180. #ifdef CONFIG_X86
  3181. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3182. #endif
  3183. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3184. return 0;
  3185. kfree_obj:
  3186. kfree(phys_obj);
  3187. return ret;
  3188. }
  3189. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3190. {
  3191. drm_i915_private_t *dev_priv = dev->dev_private;
  3192. struct drm_i915_gem_phys_object *phys_obj;
  3193. if (!dev_priv->mm.phys_objs[id - 1])
  3194. return;
  3195. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3196. if (phys_obj->cur_obj) {
  3197. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3198. }
  3199. #ifdef CONFIG_X86
  3200. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3201. #endif
  3202. drm_pci_free(dev, phys_obj->handle);
  3203. kfree(phys_obj);
  3204. dev_priv->mm.phys_objs[id - 1] = NULL;
  3205. }
  3206. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3207. {
  3208. int i;
  3209. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3210. i915_gem_free_phys_object(dev, i);
  3211. }
  3212. void i915_gem_detach_phys_object(struct drm_device *dev,
  3213. struct drm_i915_gem_object *obj)
  3214. {
  3215. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3216. char *vaddr;
  3217. int i;
  3218. int page_count;
  3219. if (!obj->phys_obj)
  3220. return;
  3221. vaddr = obj->phys_obj->handle->vaddr;
  3222. page_count = obj->base.size / PAGE_SIZE;
  3223. for (i = 0; i < page_count; i++) {
  3224. struct page *page = shmem_read_mapping_page(mapping, i);
  3225. if (!IS_ERR(page)) {
  3226. char *dst = kmap_atomic(page);
  3227. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3228. kunmap_atomic(dst);
  3229. drm_clflush_pages(&page, 1);
  3230. set_page_dirty(page);
  3231. mark_page_accessed(page);
  3232. page_cache_release(page);
  3233. }
  3234. }
  3235. intel_gtt_chipset_flush();
  3236. obj->phys_obj->cur_obj = NULL;
  3237. obj->phys_obj = NULL;
  3238. }
  3239. int
  3240. i915_gem_attach_phys_object(struct drm_device *dev,
  3241. struct drm_i915_gem_object *obj,
  3242. int id,
  3243. int align)
  3244. {
  3245. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3246. drm_i915_private_t *dev_priv = dev->dev_private;
  3247. int ret = 0;
  3248. int page_count;
  3249. int i;
  3250. if (id > I915_MAX_PHYS_OBJECT)
  3251. return -EINVAL;
  3252. if (obj->phys_obj) {
  3253. if (obj->phys_obj->id == id)
  3254. return 0;
  3255. i915_gem_detach_phys_object(dev, obj);
  3256. }
  3257. /* create a new object */
  3258. if (!dev_priv->mm.phys_objs[id - 1]) {
  3259. ret = i915_gem_init_phys_object(dev, id,
  3260. obj->base.size, align);
  3261. if (ret) {
  3262. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3263. id, obj->base.size);
  3264. return ret;
  3265. }
  3266. }
  3267. /* bind to the object */
  3268. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3269. obj->phys_obj->cur_obj = obj;
  3270. page_count = obj->base.size / PAGE_SIZE;
  3271. for (i = 0; i < page_count; i++) {
  3272. struct page *page;
  3273. char *dst, *src;
  3274. page = shmem_read_mapping_page(mapping, i);
  3275. if (IS_ERR(page))
  3276. return PTR_ERR(page);
  3277. src = kmap_atomic(page);
  3278. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3279. memcpy(dst, src, PAGE_SIZE);
  3280. kunmap_atomic(src);
  3281. mark_page_accessed(page);
  3282. page_cache_release(page);
  3283. }
  3284. return 0;
  3285. }
  3286. static int
  3287. i915_gem_phys_pwrite(struct drm_device *dev,
  3288. struct drm_i915_gem_object *obj,
  3289. struct drm_i915_gem_pwrite *args,
  3290. struct drm_file *file_priv)
  3291. {
  3292. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3293. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3294. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3295. unsigned long unwritten;
  3296. /* The physical object once assigned is fixed for the lifetime
  3297. * of the obj, so we can safely drop the lock and continue
  3298. * to access vaddr.
  3299. */
  3300. mutex_unlock(&dev->struct_mutex);
  3301. unwritten = copy_from_user(vaddr, user_data, args->size);
  3302. mutex_lock(&dev->struct_mutex);
  3303. if (unwritten)
  3304. return -EFAULT;
  3305. }
  3306. intel_gtt_chipset_flush();
  3307. return 0;
  3308. }
  3309. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3310. {
  3311. struct drm_i915_file_private *file_priv = file->driver_priv;
  3312. /* Clean up our request list when the client is going away, so that
  3313. * later retire_requests won't dereference our soon-to-be-gone
  3314. * file_priv.
  3315. */
  3316. spin_lock(&file_priv->mm.lock);
  3317. while (!list_empty(&file_priv->mm.request_list)) {
  3318. struct drm_i915_gem_request *request;
  3319. request = list_first_entry(&file_priv->mm.request_list,
  3320. struct drm_i915_gem_request,
  3321. client_list);
  3322. list_del(&request->client_list);
  3323. request->file_priv = NULL;
  3324. }
  3325. spin_unlock(&file_priv->mm.lock);
  3326. }
  3327. static int
  3328. i915_gpu_is_active(struct drm_device *dev)
  3329. {
  3330. drm_i915_private_t *dev_priv = dev->dev_private;
  3331. int lists_empty;
  3332. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3333. list_empty(&dev_priv->mm.active_list);
  3334. return !lists_empty;
  3335. }
  3336. static int
  3337. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3338. {
  3339. struct drm_i915_private *dev_priv =
  3340. container_of(shrinker,
  3341. struct drm_i915_private,
  3342. mm.inactive_shrinker);
  3343. struct drm_device *dev = dev_priv->dev;
  3344. struct drm_i915_gem_object *obj, *next;
  3345. int nr_to_scan = sc->nr_to_scan;
  3346. int cnt;
  3347. if (!mutex_trylock(&dev->struct_mutex))
  3348. return 0;
  3349. /* "fast-path" to count number of available objects */
  3350. if (nr_to_scan == 0) {
  3351. cnt = 0;
  3352. list_for_each_entry(obj,
  3353. &dev_priv->mm.inactive_list,
  3354. mm_list)
  3355. cnt++;
  3356. mutex_unlock(&dev->struct_mutex);
  3357. return cnt / 100 * sysctl_vfs_cache_pressure;
  3358. }
  3359. rescan:
  3360. /* first scan for clean buffers */
  3361. i915_gem_retire_requests(dev);
  3362. list_for_each_entry_safe(obj, next,
  3363. &dev_priv->mm.inactive_list,
  3364. mm_list) {
  3365. if (i915_gem_object_is_purgeable(obj)) {
  3366. if (i915_gem_object_unbind(obj) == 0 &&
  3367. --nr_to_scan == 0)
  3368. break;
  3369. }
  3370. }
  3371. /* second pass, evict/count anything still on the inactive list */
  3372. cnt = 0;
  3373. list_for_each_entry_safe(obj, next,
  3374. &dev_priv->mm.inactive_list,
  3375. mm_list) {
  3376. if (nr_to_scan &&
  3377. i915_gem_object_unbind(obj) == 0)
  3378. nr_to_scan--;
  3379. else
  3380. cnt++;
  3381. }
  3382. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3383. /*
  3384. * We are desperate for pages, so as a last resort, wait
  3385. * for the GPU to finish and discard whatever we can.
  3386. * This has a dramatic impact to reduce the number of
  3387. * OOM-killer events whilst running the GPU aggressively.
  3388. */
  3389. if (i915_gpu_idle(dev, true) == 0)
  3390. goto rescan;
  3391. }
  3392. mutex_unlock(&dev->struct_mutex);
  3393. return cnt / 100 * sysctl_vfs_cache_pressure;
  3394. }