gpmi-lib.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109
  1. /*
  2. * Freescale GPMI NAND Flash Driver
  3. *
  4. * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
  5. * Copyright (C) 2008 Embedded Alley Solutions, Inc.
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along
  18. * with this program; if not, write to the Free Software Foundation, Inc.,
  19. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  20. */
  21. #include <linux/mtd/gpmi-nand.h>
  22. #include <linux/delay.h>
  23. #include <linux/clk.h>
  24. #include "gpmi-nand.h"
  25. #include "gpmi-regs.h"
  26. #include "bch-regs.h"
  27. static struct timing_threshod timing_default_threshold = {
  28. .max_data_setup_cycles = (BM_GPMI_TIMING0_DATA_SETUP >>
  29. BP_GPMI_TIMING0_DATA_SETUP),
  30. .internal_data_setup_in_ns = 0,
  31. .max_sample_delay_factor = (BM_GPMI_CTRL1_RDN_DELAY >>
  32. BP_GPMI_CTRL1_RDN_DELAY),
  33. .max_dll_clock_period_in_ns = 32,
  34. .max_dll_delay_in_ns = 16,
  35. };
  36. #define MXS_SET_ADDR 0x4
  37. #define MXS_CLR_ADDR 0x8
  38. /*
  39. * Clear the bit and poll it cleared. This is usually called with
  40. * a reset address and mask being either SFTRST(bit 31) or CLKGATE
  41. * (bit 30).
  42. */
  43. static int clear_poll_bit(void __iomem *addr, u32 mask)
  44. {
  45. int timeout = 0x400;
  46. /* clear the bit */
  47. writel(mask, addr + MXS_CLR_ADDR);
  48. /*
  49. * SFTRST needs 3 GPMI clocks to settle, the reference manual
  50. * recommends to wait 1us.
  51. */
  52. udelay(1);
  53. /* poll the bit becoming clear */
  54. while ((readl(addr) & mask) && --timeout)
  55. /* nothing */;
  56. return !timeout;
  57. }
  58. #define MODULE_CLKGATE (1 << 30)
  59. #define MODULE_SFTRST (1 << 31)
  60. /*
  61. * The current mxs_reset_block() will do two things:
  62. * [1] enable the module.
  63. * [2] reset the module.
  64. *
  65. * In most of the cases, it's ok.
  66. * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
  67. * If you try to soft reset the BCH block, it becomes unusable until
  68. * the next hard reset. This case occurs in the NAND boot mode. When the board
  69. * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
  70. * So If the driver tries to reset the BCH again, the BCH will not work anymore.
  71. * You will see a DMA timeout in this case. The bug has been fixed
  72. * in the following chips, such as MX28.
  73. *
  74. * To avoid this bug, just add a new parameter `just_enable` for
  75. * the mxs_reset_block(), and rewrite it here.
  76. */
  77. static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
  78. {
  79. int ret;
  80. int timeout = 0x400;
  81. /* clear and poll SFTRST */
  82. ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
  83. if (unlikely(ret))
  84. goto error;
  85. /* clear CLKGATE */
  86. writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
  87. if (!just_enable) {
  88. /* set SFTRST to reset the block */
  89. writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
  90. udelay(1);
  91. /* poll CLKGATE becoming set */
  92. while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
  93. /* nothing */;
  94. if (unlikely(!timeout))
  95. goto error;
  96. }
  97. /* clear and poll SFTRST */
  98. ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
  99. if (unlikely(ret))
  100. goto error;
  101. /* clear and poll CLKGATE */
  102. ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
  103. if (unlikely(ret))
  104. goto error;
  105. return 0;
  106. error:
  107. pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
  108. return -ETIMEDOUT;
  109. }
  110. static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
  111. {
  112. struct clk *clk;
  113. int ret;
  114. int i;
  115. for (i = 0; i < GPMI_CLK_MAX; i++) {
  116. clk = this->resources.clock[i];
  117. if (!clk)
  118. break;
  119. if (v) {
  120. ret = clk_prepare_enable(clk);
  121. if (ret)
  122. goto err_clk;
  123. } else {
  124. clk_disable_unprepare(clk);
  125. }
  126. }
  127. return 0;
  128. err_clk:
  129. for (; i > 0; i--)
  130. clk_disable_unprepare(this->resources.clock[i - 1]);
  131. return ret;
  132. }
  133. #define gpmi_enable_clk(x) __gpmi_enable_clk(x, true)
  134. #define gpmi_disable_clk(x) __gpmi_enable_clk(x, false)
  135. int gpmi_init(struct gpmi_nand_data *this)
  136. {
  137. struct resources *r = &this->resources;
  138. int ret;
  139. ret = gpmi_enable_clk(this);
  140. if (ret)
  141. goto err_out;
  142. ret = gpmi_reset_block(r->gpmi_regs, false);
  143. if (ret)
  144. goto err_out;
  145. /* Choose NAND mode. */
  146. writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
  147. /* Set the IRQ polarity. */
  148. writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
  149. r->gpmi_regs + HW_GPMI_CTRL1_SET);
  150. /* Disable Write-Protection. */
  151. writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
  152. /* Select BCH ECC. */
  153. writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
  154. gpmi_disable_clk(this);
  155. return 0;
  156. err_out:
  157. return ret;
  158. }
  159. /* This function is very useful. It is called only when the bug occur. */
  160. void gpmi_dump_info(struct gpmi_nand_data *this)
  161. {
  162. struct resources *r = &this->resources;
  163. struct bch_geometry *geo = &this->bch_geometry;
  164. u32 reg;
  165. int i;
  166. pr_err("Show GPMI registers :\n");
  167. for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
  168. reg = readl(r->gpmi_regs + i * 0x10);
  169. pr_err("offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
  170. }
  171. /* start to print out the BCH info */
  172. pr_err("BCH Geometry :\n");
  173. pr_err("GF length : %u\n", geo->gf_len);
  174. pr_err("ECC Strength : %u\n", geo->ecc_strength);
  175. pr_err("Page Size in Bytes : %u\n", geo->page_size);
  176. pr_err("Metadata Size in Bytes : %u\n", geo->metadata_size);
  177. pr_err("ECC Chunk Size in Bytes: %u\n", geo->ecc_chunk_size);
  178. pr_err("ECC Chunk Count : %u\n", geo->ecc_chunk_count);
  179. pr_err("Payload Size in Bytes : %u\n", geo->payload_size);
  180. pr_err("Auxiliary Size in Bytes: %u\n", geo->auxiliary_size);
  181. pr_err("Auxiliary Status Offset: %u\n", geo->auxiliary_status_offset);
  182. pr_err("Block Mark Byte Offset : %u\n", geo->block_mark_byte_offset);
  183. pr_err("Block Mark Bit Offset : %u\n", geo->block_mark_bit_offset);
  184. }
  185. /* Configures the geometry for BCH. */
  186. int bch_set_geometry(struct gpmi_nand_data *this)
  187. {
  188. struct resources *r = &this->resources;
  189. struct bch_geometry *bch_geo = &this->bch_geometry;
  190. unsigned int block_count;
  191. unsigned int block_size;
  192. unsigned int metadata_size;
  193. unsigned int ecc_strength;
  194. unsigned int page_size;
  195. int ret;
  196. if (common_nfc_set_geometry(this))
  197. return !0;
  198. block_count = bch_geo->ecc_chunk_count - 1;
  199. block_size = bch_geo->ecc_chunk_size;
  200. metadata_size = bch_geo->metadata_size;
  201. ecc_strength = bch_geo->ecc_strength >> 1;
  202. page_size = bch_geo->page_size;
  203. ret = gpmi_enable_clk(this);
  204. if (ret)
  205. goto err_out;
  206. /*
  207. * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
  208. * chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
  209. * On the other hand, the MX28 needs the reset, because one case has been
  210. * seen where the BCH produced ECC errors constantly after 10000
  211. * consecutive reboots. The latter case has not been seen on the MX23 yet,
  212. * still we don't know if it could happen there as well.
  213. */
  214. ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this));
  215. if (ret)
  216. goto err_out;
  217. /* Configure layout 0. */
  218. writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count)
  219. | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size)
  220. | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this)
  221. | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this),
  222. r->bch_regs + HW_BCH_FLASH0LAYOUT0);
  223. writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size)
  224. | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this)
  225. | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this),
  226. r->bch_regs + HW_BCH_FLASH0LAYOUT1);
  227. /* Set *all* chip selects to use layout 0. */
  228. writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
  229. /* Enable interrupts. */
  230. writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
  231. r->bch_regs + HW_BCH_CTRL_SET);
  232. gpmi_disable_clk(this);
  233. return 0;
  234. err_out:
  235. return ret;
  236. }
  237. /* Converts time in nanoseconds to cycles. */
  238. static unsigned int ns_to_cycles(unsigned int time,
  239. unsigned int period, unsigned int min)
  240. {
  241. unsigned int k;
  242. k = (time + period - 1) / period;
  243. return max(k, min);
  244. }
  245. #define DEF_MIN_PROP_DELAY 5
  246. #define DEF_MAX_PROP_DELAY 9
  247. /* Apply timing to current hardware conditions. */
  248. static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this,
  249. struct gpmi_nfc_hardware_timing *hw)
  250. {
  251. struct timing_threshod *nfc = &timing_default_threshold;
  252. struct resources *r = &this->resources;
  253. struct nand_chip *nand = &this->nand;
  254. struct nand_timing target = this->timing;
  255. bool improved_timing_is_available;
  256. unsigned long clock_frequency_in_hz;
  257. unsigned int clock_period_in_ns;
  258. bool dll_use_half_periods;
  259. unsigned int dll_delay_shift;
  260. unsigned int max_sample_delay_in_ns;
  261. unsigned int address_setup_in_cycles;
  262. unsigned int data_setup_in_ns;
  263. unsigned int data_setup_in_cycles;
  264. unsigned int data_hold_in_cycles;
  265. int ideal_sample_delay_in_ns;
  266. unsigned int sample_delay_factor;
  267. int tEYE;
  268. unsigned int min_prop_delay_in_ns = DEF_MIN_PROP_DELAY;
  269. unsigned int max_prop_delay_in_ns = DEF_MAX_PROP_DELAY;
  270. /*
  271. * If there are multiple chips, we need to relax the timings to allow
  272. * for signal distortion due to higher capacitance.
  273. */
  274. if (nand->numchips > 2) {
  275. target.data_setup_in_ns += 10;
  276. target.data_hold_in_ns += 10;
  277. target.address_setup_in_ns += 10;
  278. } else if (nand->numchips > 1) {
  279. target.data_setup_in_ns += 5;
  280. target.data_hold_in_ns += 5;
  281. target.address_setup_in_ns += 5;
  282. }
  283. /* Check if improved timing information is available. */
  284. improved_timing_is_available =
  285. (target.tREA_in_ns >= 0) &&
  286. (target.tRLOH_in_ns >= 0) &&
  287. (target.tRHOH_in_ns >= 0) ;
  288. /* Inspect the clock. */
  289. nfc->clock_frequency_in_hz = clk_get_rate(r->clock[0]);
  290. clock_frequency_in_hz = nfc->clock_frequency_in_hz;
  291. clock_period_in_ns = NSEC_PER_SEC / clock_frequency_in_hz;
  292. /*
  293. * The NFC quantizes setup and hold parameters in terms of clock cycles.
  294. * Here, we quantize the setup and hold timing parameters to the
  295. * next-highest clock period to make sure we apply at least the
  296. * specified times.
  297. *
  298. * For data setup and data hold, the hardware interprets a value of zero
  299. * as the largest possible delay. This is not what's intended by a zero
  300. * in the input parameter, so we impose a minimum of one cycle.
  301. */
  302. data_setup_in_cycles = ns_to_cycles(target.data_setup_in_ns,
  303. clock_period_in_ns, 1);
  304. data_hold_in_cycles = ns_to_cycles(target.data_hold_in_ns,
  305. clock_period_in_ns, 1);
  306. address_setup_in_cycles = ns_to_cycles(target.address_setup_in_ns,
  307. clock_period_in_ns, 0);
  308. /*
  309. * The clock's period affects the sample delay in a number of ways:
  310. *
  311. * (1) The NFC HAL tells us the maximum clock period the sample delay
  312. * DLL can tolerate. If the clock period is greater than half that
  313. * maximum, we must configure the DLL to be driven by half periods.
  314. *
  315. * (2) We need to convert from an ideal sample delay, in ns, to a
  316. * "sample delay factor," which the NFC uses. This factor depends on
  317. * whether we're driving the DLL with full or half periods.
  318. * Paraphrasing the reference manual:
  319. *
  320. * AD = SDF x 0.125 x RP
  321. *
  322. * where:
  323. *
  324. * AD is the applied delay, in ns.
  325. * SDF is the sample delay factor, which is dimensionless.
  326. * RP is the reference period, in ns, which is a full clock period
  327. * if the DLL is being driven by full periods, or half that if
  328. * the DLL is being driven by half periods.
  329. *
  330. * Let's re-arrange this in a way that's more useful to us:
  331. *
  332. * 8
  333. * SDF = AD x ----
  334. * RP
  335. *
  336. * The reference period is either the clock period or half that, so this
  337. * is:
  338. *
  339. * 8 AD x DDF
  340. * SDF = AD x ----- = --------
  341. * f x P P
  342. *
  343. * where:
  344. *
  345. * f is 1 or 1/2, depending on how we're driving the DLL.
  346. * P is the clock period.
  347. * DDF is the DLL Delay Factor, a dimensionless value that
  348. * incorporates all the constants in the conversion.
  349. *
  350. * DDF will be either 8 or 16, both of which are powers of two. We can
  351. * reduce the cost of this conversion by using bit shifts instead of
  352. * multiplication or division. Thus:
  353. *
  354. * AD << DDS
  355. * SDF = ---------
  356. * P
  357. *
  358. * or
  359. *
  360. * AD = (SDF >> DDS) x P
  361. *
  362. * where:
  363. *
  364. * DDS is the DLL Delay Shift, the logarithm to base 2 of the DDF.
  365. */
  366. if (clock_period_in_ns > (nfc->max_dll_clock_period_in_ns >> 1)) {
  367. dll_use_half_periods = true;
  368. dll_delay_shift = 3 + 1;
  369. } else {
  370. dll_use_half_periods = false;
  371. dll_delay_shift = 3;
  372. }
  373. /*
  374. * Compute the maximum sample delay the NFC allows, under current
  375. * conditions. If the clock is running too slowly, no sample delay is
  376. * possible.
  377. */
  378. if (clock_period_in_ns > nfc->max_dll_clock_period_in_ns)
  379. max_sample_delay_in_ns = 0;
  380. else {
  381. /*
  382. * Compute the delay implied by the largest sample delay factor
  383. * the NFC allows.
  384. */
  385. max_sample_delay_in_ns =
  386. (nfc->max_sample_delay_factor * clock_period_in_ns) >>
  387. dll_delay_shift;
  388. /*
  389. * Check if the implied sample delay larger than the NFC
  390. * actually allows.
  391. */
  392. if (max_sample_delay_in_ns > nfc->max_dll_delay_in_ns)
  393. max_sample_delay_in_ns = nfc->max_dll_delay_in_ns;
  394. }
  395. /*
  396. * Check if improved timing information is available. If not, we have to
  397. * use a less-sophisticated algorithm.
  398. */
  399. if (!improved_timing_is_available) {
  400. /*
  401. * Fold the read setup time required by the NFC into the ideal
  402. * sample delay.
  403. */
  404. ideal_sample_delay_in_ns = target.gpmi_sample_delay_in_ns +
  405. nfc->internal_data_setup_in_ns;
  406. /*
  407. * The ideal sample delay may be greater than the maximum
  408. * allowed by the NFC. If so, we can trade off sample delay time
  409. * for more data setup time.
  410. *
  411. * In each iteration of the following loop, we add a cycle to
  412. * the data setup time and subtract a corresponding amount from
  413. * the sample delay until we've satisified the constraints or
  414. * can't do any better.
  415. */
  416. while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
  417. (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
  418. data_setup_in_cycles++;
  419. ideal_sample_delay_in_ns -= clock_period_in_ns;
  420. if (ideal_sample_delay_in_ns < 0)
  421. ideal_sample_delay_in_ns = 0;
  422. }
  423. /*
  424. * Compute the sample delay factor that corresponds most closely
  425. * to the ideal sample delay. If the result is too large for the
  426. * NFC, use the maximum value.
  427. *
  428. * Notice that we use the ns_to_cycles function to compute the
  429. * sample delay factor. We do this because the form of the
  430. * computation is the same as that for calculating cycles.
  431. */
  432. sample_delay_factor =
  433. ns_to_cycles(
  434. ideal_sample_delay_in_ns << dll_delay_shift,
  435. clock_period_in_ns, 0);
  436. if (sample_delay_factor > nfc->max_sample_delay_factor)
  437. sample_delay_factor = nfc->max_sample_delay_factor;
  438. /* Skip to the part where we return our results. */
  439. goto return_results;
  440. }
  441. /*
  442. * If control arrives here, we have more detailed timing information,
  443. * so we can use a better algorithm.
  444. */
  445. /*
  446. * Fold the read setup time required by the NFC into the maximum
  447. * propagation delay.
  448. */
  449. max_prop_delay_in_ns += nfc->internal_data_setup_in_ns;
  450. /*
  451. * Earlier, we computed the number of clock cycles required to satisfy
  452. * the data setup time. Now, we need to know the actual nanoseconds.
  453. */
  454. data_setup_in_ns = clock_period_in_ns * data_setup_in_cycles;
  455. /*
  456. * Compute tEYE, the width of the data eye when reading from the NAND
  457. * Flash. The eye width is fundamentally determined by the data setup
  458. * time, perturbed by propagation delays and some characteristics of the
  459. * NAND Flash device.
  460. *
  461. * start of the eye = max_prop_delay + tREA
  462. * end of the eye = min_prop_delay + tRHOH + data_setup
  463. */
  464. tEYE = (int)min_prop_delay_in_ns + (int)target.tRHOH_in_ns +
  465. (int)data_setup_in_ns;
  466. tEYE -= (int)max_prop_delay_in_ns + (int)target.tREA_in_ns;
  467. /*
  468. * The eye must be open. If it's not, we can try to open it by
  469. * increasing its main forcer, the data setup time.
  470. *
  471. * In each iteration of the following loop, we increase the data setup
  472. * time by a single clock cycle. We do this until either the eye is
  473. * open or we run into NFC limits.
  474. */
  475. while ((tEYE <= 0) &&
  476. (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
  477. /* Give a cycle to data setup. */
  478. data_setup_in_cycles++;
  479. /* Synchronize the data setup time with the cycles. */
  480. data_setup_in_ns += clock_period_in_ns;
  481. /* Adjust tEYE accordingly. */
  482. tEYE += clock_period_in_ns;
  483. }
  484. /*
  485. * When control arrives here, the eye is open. The ideal time to sample
  486. * the data is in the center of the eye:
  487. *
  488. * end of the eye + start of the eye
  489. * --------------------------------- - data_setup
  490. * 2
  491. *
  492. * After some algebra, this simplifies to the code immediately below.
  493. */
  494. ideal_sample_delay_in_ns =
  495. ((int)max_prop_delay_in_ns +
  496. (int)target.tREA_in_ns +
  497. (int)min_prop_delay_in_ns +
  498. (int)target.tRHOH_in_ns -
  499. (int)data_setup_in_ns) >> 1;
  500. /*
  501. * The following figure illustrates some aspects of a NAND Flash read:
  502. *
  503. *
  504. * __ _____________________________________
  505. * RDN \_________________/
  506. *
  507. * <---- tEYE ----->
  508. * /-----------------\
  509. * Read Data ----------------------------< >---------
  510. * \-----------------/
  511. * ^ ^ ^ ^
  512. * | | | |
  513. * |<--Data Setup -->|<--Delay Time -->| |
  514. * | | | |
  515. * | | |
  516. * | |<-- Quantized Delay Time -->|
  517. * | | |
  518. *
  519. *
  520. * We have some issues we must now address:
  521. *
  522. * (1) The *ideal* sample delay time must not be negative. If it is, we
  523. * jam it to zero.
  524. *
  525. * (2) The *ideal* sample delay time must not be greater than that
  526. * allowed by the NFC. If it is, we can increase the data setup
  527. * time, which will reduce the delay between the end of the data
  528. * setup and the center of the eye. It will also make the eye
  529. * larger, which might help with the next issue...
  530. *
  531. * (3) The *quantized* sample delay time must not fall either before the
  532. * eye opens or after it closes (the latter is the problem
  533. * illustrated in the above figure).
  534. */
  535. /* Jam a negative ideal sample delay to zero. */
  536. if (ideal_sample_delay_in_ns < 0)
  537. ideal_sample_delay_in_ns = 0;
  538. /*
  539. * Extend the data setup as needed to reduce the ideal sample delay
  540. * below the maximum permitted by the NFC.
  541. */
  542. while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
  543. (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
  544. /* Give a cycle to data setup. */
  545. data_setup_in_cycles++;
  546. /* Synchronize the data setup time with the cycles. */
  547. data_setup_in_ns += clock_period_in_ns;
  548. /* Adjust tEYE accordingly. */
  549. tEYE += clock_period_in_ns;
  550. /*
  551. * Decrease the ideal sample delay by one half cycle, to keep it
  552. * in the middle of the eye.
  553. */
  554. ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
  555. /* Jam a negative ideal sample delay to zero. */
  556. if (ideal_sample_delay_in_ns < 0)
  557. ideal_sample_delay_in_ns = 0;
  558. }
  559. /*
  560. * Compute the sample delay factor that corresponds to the ideal sample
  561. * delay. If the result is too large, then use the maximum allowed
  562. * value.
  563. *
  564. * Notice that we use the ns_to_cycles function to compute the sample
  565. * delay factor. We do this because the form of the computation is the
  566. * same as that for calculating cycles.
  567. */
  568. sample_delay_factor =
  569. ns_to_cycles(ideal_sample_delay_in_ns << dll_delay_shift,
  570. clock_period_in_ns, 0);
  571. if (sample_delay_factor > nfc->max_sample_delay_factor)
  572. sample_delay_factor = nfc->max_sample_delay_factor;
  573. /*
  574. * These macros conveniently encapsulate a computation we'll use to
  575. * continuously evaluate whether or not the data sample delay is inside
  576. * the eye.
  577. */
  578. #define IDEAL_DELAY ((int) ideal_sample_delay_in_ns)
  579. #define QUANTIZED_DELAY \
  580. ((int) ((sample_delay_factor * clock_period_in_ns) >> \
  581. dll_delay_shift))
  582. #define DELAY_ERROR (abs(QUANTIZED_DELAY - IDEAL_DELAY))
  583. #define SAMPLE_IS_NOT_WITHIN_THE_EYE (DELAY_ERROR > (tEYE >> 1))
  584. /*
  585. * While the quantized sample time falls outside the eye, reduce the
  586. * sample delay or extend the data setup to move the sampling point back
  587. * toward the eye. Do not allow the number of data setup cycles to
  588. * exceed the maximum allowed by the NFC.
  589. */
  590. while (SAMPLE_IS_NOT_WITHIN_THE_EYE &&
  591. (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
  592. /*
  593. * If control arrives here, the quantized sample delay falls
  594. * outside the eye. Check if it's before the eye opens, or after
  595. * the eye closes.
  596. */
  597. if (QUANTIZED_DELAY > IDEAL_DELAY) {
  598. /*
  599. * If control arrives here, the quantized sample delay
  600. * falls after the eye closes. Decrease the quantized
  601. * delay time and then go back to re-evaluate.
  602. */
  603. if (sample_delay_factor != 0)
  604. sample_delay_factor--;
  605. continue;
  606. }
  607. /*
  608. * If control arrives here, the quantized sample delay falls
  609. * before the eye opens. Shift the sample point by increasing
  610. * data setup time. This will also make the eye larger.
  611. */
  612. /* Give a cycle to data setup. */
  613. data_setup_in_cycles++;
  614. /* Synchronize the data setup time with the cycles. */
  615. data_setup_in_ns += clock_period_in_ns;
  616. /* Adjust tEYE accordingly. */
  617. tEYE += clock_period_in_ns;
  618. /*
  619. * Decrease the ideal sample delay by one half cycle, to keep it
  620. * in the middle of the eye.
  621. */
  622. ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
  623. /* ...and one less period for the delay time. */
  624. ideal_sample_delay_in_ns -= clock_period_in_ns;
  625. /* Jam a negative ideal sample delay to zero. */
  626. if (ideal_sample_delay_in_ns < 0)
  627. ideal_sample_delay_in_ns = 0;
  628. /*
  629. * We have a new ideal sample delay, so re-compute the quantized
  630. * delay.
  631. */
  632. sample_delay_factor =
  633. ns_to_cycles(
  634. ideal_sample_delay_in_ns << dll_delay_shift,
  635. clock_period_in_ns, 0);
  636. if (sample_delay_factor > nfc->max_sample_delay_factor)
  637. sample_delay_factor = nfc->max_sample_delay_factor;
  638. }
  639. /* Control arrives here when we're ready to return our results. */
  640. return_results:
  641. hw->data_setup_in_cycles = data_setup_in_cycles;
  642. hw->data_hold_in_cycles = data_hold_in_cycles;
  643. hw->address_setup_in_cycles = address_setup_in_cycles;
  644. hw->use_half_periods = dll_use_half_periods;
  645. hw->sample_delay_factor = sample_delay_factor;
  646. hw->device_busy_timeout = GPMI_DEFAULT_BUSY_TIMEOUT;
  647. hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
  648. /* Return success. */
  649. return 0;
  650. }
  651. /* Begin the I/O */
  652. void gpmi_begin(struct gpmi_nand_data *this)
  653. {
  654. struct resources *r = &this->resources;
  655. void __iomem *gpmi_regs = r->gpmi_regs;
  656. unsigned int clock_period_in_ns;
  657. uint32_t reg;
  658. unsigned int dll_wait_time_in_us;
  659. struct gpmi_nfc_hardware_timing hw;
  660. int ret;
  661. /* Enable the clock. */
  662. ret = gpmi_enable_clk(this);
  663. if (ret) {
  664. pr_err("We failed in enable the clk\n");
  665. goto err_out;
  666. }
  667. gpmi_nfc_compute_hardware_timing(this, &hw);
  668. /* [1] Set HW_GPMI_TIMING0 */
  669. reg = BF_GPMI_TIMING0_ADDRESS_SETUP(hw.address_setup_in_cycles) |
  670. BF_GPMI_TIMING0_DATA_HOLD(hw.data_hold_in_cycles) |
  671. BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles) ;
  672. writel(reg, gpmi_regs + HW_GPMI_TIMING0);
  673. /* [2] Set HW_GPMI_TIMING1 */
  674. writel(BF_GPMI_TIMING1_BUSY_TIMEOUT(hw.device_busy_timeout),
  675. gpmi_regs + HW_GPMI_TIMING1);
  676. /* [3] The following code is to set the HW_GPMI_CTRL1. */
  677. /* Set the WRN_DLY_SEL */
  678. writel(BM_GPMI_CTRL1_WRN_DLY_SEL, gpmi_regs + HW_GPMI_CTRL1_CLR);
  679. writel(BF_GPMI_CTRL1_WRN_DLY_SEL(hw.wrn_dly_sel),
  680. gpmi_regs + HW_GPMI_CTRL1_SET);
  681. /* DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD. */
  682. writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR);
  683. /* Clear out the DLL control fields. */
  684. reg = BM_GPMI_CTRL1_RDN_DELAY | BM_GPMI_CTRL1_HALF_PERIOD;
  685. writel(reg, gpmi_regs + HW_GPMI_CTRL1_CLR);
  686. /* If no sample delay is called for, return immediately. */
  687. if (!hw.sample_delay_factor)
  688. return;
  689. /* Set RDN_DELAY or HALF_PERIOD. */
  690. reg = ((hw.use_half_periods) ? BM_GPMI_CTRL1_HALF_PERIOD : 0)
  691. | BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor);
  692. writel(reg, gpmi_regs + HW_GPMI_CTRL1_SET);
  693. /* At last, we enable the DLL. */
  694. writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_SET);
  695. /*
  696. * After we enable the GPMI DLL, we have to wait 64 clock cycles before
  697. * we can use the GPMI. Calculate the amount of time we need to wait,
  698. * in microseconds.
  699. */
  700. clock_period_in_ns = NSEC_PER_SEC / clk_get_rate(r->clock[0]);
  701. dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000;
  702. if (!dll_wait_time_in_us)
  703. dll_wait_time_in_us = 1;
  704. /* Wait for the DLL to settle. */
  705. udelay(dll_wait_time_in_us);
  706. err_out:
  707. return;
  708. }
  709. void gpmi_end(struct gpmi_nand_data *this)
  710. {
  711. gpmi_disable_clk(this);
  712. }
  713. /* Clears a BCH interrupt. */
  714. void gpmi_clear_bch(struct gpmi_nand_data *this)
  715. {
  716. struct resources *r = &this->resources;
  717. writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
  718. }
  719. /* Returns the Ready/Busy status of the given chip. */
  720. int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip)
  721. {
  722. struct resources *r = &this->resources;
  723. uint32_t mask = 0;
  724. uint32_t reg = 0;
  725. if (GPMI_IS_MX23(this)) {
  726. mask = MX23_BM_GPMI_DEBUG_READY0 << chip;
  727. reg = readl(r->gpmi_regs + HW_GPMI_DEBUG);
  728. } else if (GPMI_IS_MX28(this) || GPMI_IS_MX6Q(this)) {
  729. /* MX28 shares the same R/B register as MX6Q. */
  730. mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip);
  731. reg = readl(r->gpmi_regs + HW_GPMI_STAT);
  732. } else
  733. pr_err("unknow arch.\n");
  734. return reg & mask;
  735. }
  736. static inline void set_dma_type(struct gpmi_nand_data *this,
  737. enum dma_ops_type type)
  738. {
  739. this->last_dma_type = this->dma_type;
  740. this->dma_type = type;
  741. }
  742. int gpmi_send_command(struct gpmi_nand_data *this)
  743. {
  744. struct dma_chan *channel = get_dma_chan(this);
  745. struct dma_async_tx_descriptor *desc;
  746. struct scatterlist *sgl;
  747. int chip = this->current_chip;
  748. u32 pio[3];
  749. /* [1] send out the PIO words */
  750. pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
  751. | BM_GPMI_CTRL0_WORD_LENGTH
  752. | BF_GPMI_CTRL0_CS(chip, this)
  753. | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
  754. | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
  755. | BM_GPMI_CTRL0_ADDRESS_INCREMENT
  756. | BF_GPMI_CTRL0_XFER_COUNT(this->command_length);
  757. pio[1] = pio[2] = 0;
  758. desc = dmaengine_prep_slave_sg(channel,
  759. (struct scatterlist *)pio,
  760. ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
  761. if (!desc) {
  762. pr_err("step 1 error\n");
  763. return -1;
  764. }
  765. /* [2] send out the COMMAND + ADDRESS string stored in @buffer */
  766. sgl = &this->cmd_sgl;
  767. sg_init_one(sgl, this->cmd_buffer, this->command_length);
  768. dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
  769. desc = dmaengine_prep_slave_sg(channel,
  770. sgl, 1, DMA_MEM_TO_DEV,
  771. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  772. if (!desc) {
  773. pr_err("step 2 error\n");
  774. return -1;
  775. }
  776. /* [3] submit the DMA */
  777. set_dma_type(this, DMA_FOR_COMMAND);
  778. return start_dma_without_bch_irq(this, desc);
  779. }
  780. int gpmi_send_data(struct gpmi_nand_data *this)
  781. {
  782. struct dma_async_tx_descriptor *desc;
  783. struct dma_chan *channel = get_dma_chan(this);
  784. int chip = this->current_chip;
  785. uint32_t command_mode;
  786. uint32_t address;
  787. u32 pio[2];
  788. /* [1] PIO */
  789. command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
  790. address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
  791. pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
  792. | BM_GPMI_CTRL0_WORD_LENGTH
  793. | BF_GPMI_CTRL0_CS(chip, this)
  794. | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
  795. | BF_GPMI_CTRL0_ADDRESS(address)
  796. | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
  797. pio[1] = 0;
  798. desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio,
  799. ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
  800. if (!desc) {
  801. pr_err("step 1 error\n");
  802. return -1;
  803. }
  804. /* [2] send DMA request */
  805. prepare_data_dma(this, DMA_TO_DEVICE);
  806. desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
  807. 1, DMA_MEM_TO_DEV,
  808. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  809. if (!desc) {
  810. pr_err("step 2 error\n");
  811. return -1;
  812. }
  813. /* [3] submit the DMA */
  814. set_dma_type(this, DMA_FOR_WRITE_DATA);
  815. return start_dma_without_bch_irq(this, desc);
  816. }
  817. int gpmi_read_data(struct gpmi_nand_data *this)
  818. {
  819. struct dma_async_tx_descriptor *desc;
  820. struct dma_chan *channel = get_dma_chan(this);
  821. int chip = this->current_chip;
  822. u32 pio[2];
  823. /* [1] : send PIO */
  824. pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
  825. | BM_GPMI_CTRL0_WORD_LENGTH
  826. | BF_GPMI_CTRL0_CS(chip, this)
  827. | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
  828. | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
  829. | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
  830. pio[1] = 0;
  831. desc = dmaengine_prep_slave_sg(channel,
  832. (struct scatterlist *)pio,
  833. ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
  834. if (!desc) {
  835. pr_err("step 1 error\n");
  836. return -1;
  837. }
  838. /* [2] : send DMA request */
  839. prepare_data_dma(this, DMA_FROM_DEVICE);
  840. desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
  841. 1, DMA_DEV_TO_MEM,
  842. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  843. if (!desc) {
  844. pr_err("step 2 error\n");
  845. return -1;
  846. }
  847. /* [3] : submit the DMA */
  848. set_dma_type(this, DMA_FOR_READ_DATA);
  849. return start_dma_without_bch_irq(this, desc);
  850. }
  851. int gpmi_send_page(struct gpmi_nand_data *this,
  852. dma_addr_t payload, dma_addr_t auxiliary)
  853. {
  854. struct bch_geometry *geo = &this->bch_geometry;
  855. uint32_t command_mode;
  856. uint32_t address;
  857. uint32_t ecc_command;
  858. uint32_t buffer_mask;
  859. struct dma_async_tx_descriptor *desc;
  860. struct dma_chan *channel = get_dma_chan(this);
  861. int chip = this->current_chip;
  862. u32 pio[6];
  863. /* A DMA descriptor that does an ECC page read. */
  864. command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
  865. address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
  866. ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE;
  867. buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
  868. BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
  869. pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
  870. | BM_GPMI_CTRL0_WORD_LENGTH
  871. | BF_GPMI_CTRL0_CS(chip, this)
  872. | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
  873. | BF_GPMI_CTRL0_ADDRESS(address)
  874. | BF_GPMI_CTRL0_XFER_COUNT(0);
  875. pio[1] = 0;
  876. pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
  877. | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
  878. | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
  879. pio[3] = geo->page_size;
  880. pio[4] = payload;
  881. pio[5] = auxiliary;
  882. desc = dmaengine_prep_slave_sg(channel,
  883. (struct scatterlist *)pio,
  884. ARRAY_SIZE(pio), DMA_TRANS_NONE,
  885. DMA_CTRL_ACK);
  886. if (!desc) {
  887. pr_err("step 2 error\n");
  888. return -1;
  889. }
  890. set_dma_type(this, DMA_FOR_WRITE_ECC_PAGE);
  891. return start_dma_with_bch_irq(this, desc);
  892. }
  893. int gpmi_read_page(struct gpmi_nand_data *this,
  894. dma_addr_t payload, dma_addr_t auxiliary)
  895. {
  896. struct bch_geometry *geo = &this->bch_geometry;
  897. uint32_t command_mode;
  898. uint32_t address;
  899. uint32_t ecc_command;
  900. uint32_t buffer_mask;
  901. struct dma_async_tx_descriptor *desc;
  902. struct dma_chan *channel = get_dma_chan(this);
  903. int chip = this->current_chip;
  904. u32 pio[6];
  905. /* [1] Wait for the chip to report ready. */
  906. command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
  907. address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
  908. pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
  909. | BM_GPMI_CTRL0_WORD_LENGTH
  910. | BF_GPMI_CTRL0_CS(chip, this)
  911. | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
  912. | BF_GPMI_CTRL0_ADDRESS(address)
  913. | BF_GPMI_CTRL0_XFER_COUNT(0);
  914. pio[1] = 0;
  915. desc = dmaengine_prep_slave_sg(channel,
  916. (struct scatterlist *)pio, 2,
  917. DMA_TRANS_NONE, 0);
  918. if (!desc) {
  919. pr_err("step 1 error\n");
  920. return -1;
  921. }
  922. /* [2] Enable the BCH block and read. */
  923. command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ;
  924. address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
  925. ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE;
  926. buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
  927. | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
  928. pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
  929. | BM_GPMI_CTRL0_WORD_LENGTH
  930. | BF_GPMI_CTRL0_CS(chip, this)
  931. | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
  932. | BF_GPMI_CTRL0_ADDRESS(address)
  933. | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
  934. pio[1] = 0;
  935. pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
  936. | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
  937. | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
  938. pio[3] = geo->page_size;
  939. pio[4] = payload;
  940. pio[5] = auxiliary;
  941. desc = dmaengine_prep_slave_sg(channel,
  942. (struct scatterlist *)pio,
  943. ARRAY_SIZE(pio), DMA_TRANS_NONE,
  944. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  945. if (!desc) {
  946. pr_err("step 2 error\n");
  947. return -1;
  948. }
  949. /* [3] Disable the BCH block */
  950. command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
  951. address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
  952. pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
  953. | BM_GPMI_CTRL0_WORD_LENGTH
  954. | BF_GPMI_CTRL0_CS(chip, this)
  955. | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
  956. | BF_GPMI_CTRL0_ADDRESS(address)
  957. | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
  958. pio[1] = 0;
  959. pio[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */
  960. desc = dmaengine_prep_slave_sg(channel,
  961. (struct scatterlist *)pio, 3,
  962. DMA_TRANS_NONE,
  963. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  964. if (!desc) {
  965. pr_err("step 3 error\n");
  966. return -1;
  967. }
  968. /* [4] submit the DMA */
  969. set_dma_type(this, DMA_FOR_READ_ECC_PAGE);
  970. return start_dma_with_bch_irq(this, desc);
  971. }