skge.c 86 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315
  1. /*
  2. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Based on earlier sk98lin, e100 and
  4. * FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License, or
  15. * (at your option) any later version.
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/config.h>
  27. #include <linux/kernel.h>
  28. #include <linux/module.h>
  29. #include <linux/moduleparam.h>
  30. #include <linux/netdevice.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/ethtool.h>
  33. #include <linux/pci.h>
  34. #include <linux/if_vlan.h>
  35. #include <linux/ip.h>
  36. #include <linux/delay.h>
  37. #include <linux/crc32.h>
  38. #include <linux/dma-mapping.h>
  39. #include <asm/irq.h>
  40. #include "skge.h"
  41. #define DRV_NAME "skge"
  42. #define DRV_VERSION "0.6"
  43. #define PFX DRV_NAME " "
  44. #define DEFAULT_TX_RING_SIZE 128
  45. #define DEFAULT_RX_RING_SIZE 512
  46. #define MAX_TX_RING_SIZE 1024
  47. #define MAX_RX_RING_SIZE 4096
  48. #define PHY_RETRIES 1000
  49. #define ETH_JUMBO_MTU 9000
  50. #define TX_WATCHDOG (5 * HZ)
  51. #define NAPI_WEIGHT 64
  52. #define BLINK_HZ (HZ/4)
  53. #define LINK_POLL_HZ (HZ/10)
  54. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  55. MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
  56. MODULE_LICENSE("GPL");
  57. MODULE_VERSION(DRV_VERSION);
  58. static const u32 default_msg
  59. = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
  60. | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
  61. static int debug = -1; /* defaults above */
  62. module_param(debug, int, 0);
  63. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  64. static const struct pci_device_id skge_id_table[] = {
  65. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
  66. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
  67. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
  68. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
  69. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9E00) }, /* SK-9Exx */
  70. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
  71. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
  72. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
  73. { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
  74. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1032) },
  75. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
  76. { 0 }
  77. };
  78. MODULE_DEVICE_TABLE(pci, skge_id_table);
  79. static int skge_up(struct net_device *dev);
  80. static int skge_down(struct net_device *dev);
  81. static void skge_tx_clean(struct skge_port *skge);
  82. static void xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  83. static void gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  84. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  85. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  86. static void yukon_init(struct skge_hw *hw, int port);
  87. static void yukon_reset(struct skge_hw *hw, int port);
  88. static void genesis_mac_init(struct skge_hw *hw, int port);
  89. static void genesis_reset(struct skge_hw *hw, int port);
  90. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  91. static const int rxqaddr[] = { Q_R1, Q_R2 };
  92. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  93. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  94. /* Don't need to look at whole 16K.
  95. * last interesting register is descriptor poll timer.
  96. */
  97. #define SKGE_REGS_LEN (29*128)
  98. static int skge_get_regs_len(struct net_device *dev)
  99. {
  100. return SKGE_REGS_LEN;
  101. }
  102. /*
  103. * Returns copy of control register region
  104. * I/O region is divided into banks and certain regions are unreadable
  105. */
  106. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  107. void *p)
  108. {
  109. const struct skge_port *skge = netdev_priv(dev);
  110. unsigned long offs;
  111. const void __iomem *io = skge->hw->regs;
  112. static const unsigned long bankmap
  113. = (1<<0) | (1<<2) | (1<<8) | (1<<9)
  114. | (1<<12) | (1<<13) | (1<<14) | (1<<15) | (1<<16)
  115. | (1<<17) | (1<<20) | (1<<21) | (1<<22) | (1<<23)
  116. | (1<<24) | (1<<25) | (1<<26) | (1<<27) | (1<<28);
  117. regs->version = 1;
  118. for (offs = 0; offs < regs->len; offs += 128) {
  119. u32 len = min_t(u32, 128, regs->len - offs);
  120. if (bankmap & (1<<(offs/128)))
  121. memcpy_fromio(p + offs, io + offs, len);
  122. else
  123. memset(p + offs, 0, len);
  124. }
  125. }
  126. /* Wake on Lan only supported on Yukon chps with rev 1 or above */
  127. static int wol_supported(const struct skge_hw *hw)
  128. {
  129. return !((hw->chip_id == CHIP_ID_GENESIS ||
  130. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)));
  131. }
  132. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  133. {
  134. struct skge_port *skge = netdev_priv(dev);
  135. wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
  136. wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
  137. }
  138. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  139. {
  140. struct skge_port *skge = netdev_priv(dev);
  141. struct skge_hw *hw = skge->hw;
  142. if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
  143. return -EOPNOTSUPP;
  144. if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
  145. return -EOPNOTSUPP;
  146. skge->wol = wol->wolopts == WAKE_MAGIC;
  147. if (skge->wol) {
  148. memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);
  149. skge_write16(hw, WOL_CTRL_STAT,
  150. WOL_CTL_ENA_PME_ON_MAGIC_PKT |
  151. WOL_CTL_ENA_MAGIC_PKT_UNIT);
  152. } else
  153. skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);
  154. return 0;
  155. }
  156. static int skge_get_settings(struct net_device *dev,
  157. struct ethtool_cmd *ecmd)
  158. {
  159. struct skge_port *skge = netdev_priv(dev);
  160. struct skge_hw *hw = skge->hw;
  161. ecmd->transceiver = XCVR_INTERNAL;
  162. if (iscopper(hw)) {
  163. if (hw->chip_id == CHIP_ID_GENESIS)
  164. ecmd->supported = SUPPORTED_1000baseT_Full
  165. | SUPPORTED_1000baseT_Half
  166. | SUPPORTED_Autoneg | SUPPORTED_TP;
  167. else {
  168. ecmd->supported = SUPPORTED_10baseT_Half
  169. | SUPPORTED_10baseT_Full
  170. | SUPPORTED_100baseT_Half
  171. | SUPPORTED_100baseT_Full
  172. | SUPPORTED_1000baseT_Half
  173. | SUPPORTED_1000baseT_Full
  174. | SUPPORTED_Autoneg| SUPPORTED_TP;
  175. if (hw->chip_id == CHIP_ID_YUKON)
  176. ecmd->supported &= ~SUPPORTED_1000baseT_Half;
  177. }
  178. ecmd->port = PORT_TP;
  179. ecmd->phy_address = hw->phy_addr;
  180. } else {
  181. ecmd->supported = SUPPORTED_1000baseT_Full
  182. | SUPPORTED_FIBRE
  183. | SUPPORTED_Autoneg;
  184. ecmd->port = PORT_FIBRE;
  185. }
  186. ecmd->advertising = skge->advertising;
  187. ecmd->autoneg = skge->autoneg;
  188. ecmd->speed = skge->speed;
  189. ecmd->duplex = skge->duplex;
  190. return 0;
  191. }
  192. static u32 skge_modes(const struct skge_hw *hw)
  193. {
  194. u32 modes = ADVERTISED_Autoneg
  195. | ADVERTISED_1000baseT_Full | ADVERTISED_1000baseT_Half
  196. | ADVERTISED_100baseT_Full | ADVERTISED_100baseT_Half
  197. | ADVERTISED_10baseT_Full | ADVERTISED_10baseT_Half;
  198. if (iscopper(hw)) {
  199. modes |= ADVERTISED_TP;
  200. switch (hw->chip_id) {
  201. case CHIP_ID_GENESIS:
  202. modes &= ~(ADVERTISED_100baseT_Full
  203. | ADVERTISED_100baseT_Half
  204. | ADVERTISED_10baseT_Full
  205. | ADVERTISED_10baseT_Half);
  206. break;
  207. case CHIP_ID_YUKON:
  208. modes &= ~ADVERTISED_1000baseT_Half;
  209. break;
  210. }
  211. } else {
  212. modes |= ADVERTISED_FIBRE;
  213. modes &= ~ADVERTISED_1000baseT_Half;
  214. }
  215. return modes;
  216. }
  217. static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  218. {
  219. struct skge_port *skge = netdev_priv(dev);
  220. const struct skge_hw *hw = skge->hw;
  221. if (ecmd->autoneg == AUTONEG_ENABLE) {
  222. if (ecmd->advertising & skge_modes(hw))
  223. return -EINVAL;
  224. } else {
  225. switch (ecmd->speed) {
  226. case SPEED_1000:
  227. break;
  228. case SPEED_100:
  229. case SPEED_10:
  230. if (iscopper(hw) || hw->chip_id == CHIP_ID_GENESIS)
  231. return -EINVAL;
  232. break;
  233. default:
  234. return -EINVAL;
  235. }
  236. }
  237. skge->autoneg = ecmd->autoneg;
  238. skge->speed = ecmd->speed;
  239. skge->duplex = ecmd->duplex;
  240. skge->advertising = ecmd->advertising;
  241. if (netif_running(dev)) {
  242. skge_down(dev);
  243. skge_up(dev);
  244. }
  245. return (0);
  246. }
  247. static void skge_get_drvinfo(struct net_device *dev,
  248. struct ethtool_drvinfo *info)
  249. {
  250. struct skge_port *skge = netdev_priv(dev);
  251. strcpy(info->driver, DRV_NAME);
  252. strcpy(info->version, DRV_VERSION);
  253. strcpy(info->fw_version, "N/A");
  254. strcpy(info->bus_info, pci_name(skge->hw->pdev));
  255. }
  256. static const struct skge_stat {
  257. char name[ETH_GSTRING_LEN];
  258. u16 xmac_offset;
  259. u16 gma_offset;
  260. } skge_stats[] = {
  261. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  262. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  263. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  264. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  265. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  266. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  267. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  268. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  269. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  270. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  271. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  272. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  273. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  274. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  275. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  276. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  277. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  278. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  279. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  280. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  281. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  282. };
  283. static int skge_get_stats_count(struct net_device *dev)
  284. {
  285. return ARRAY_SIZE(skge_stats);
  286. }
  287. static void skge_get_ethtool_stats(struct net_device *dev,
  288. struct ethtool_stats *stats, u64 *data)
  289. {
  290. struct skge_port *skge = netdev_priv(dev);
  291. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  292. genesis_get_stats(skge, data);
  293. else
  294. yukon_get_stats(skge, data);
  295. }
  296. /* Use hardware MIB variables for critical path statistics and
  297. * transmit feedback not reported at interrupt.
  298. * Other errors are accounted for in interrupt handler.
  299. */
  300. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  301. {
  302. struct skge_port *skge = netdev_priv(dev);
  303. u64 data[ARRAY_SIZE(skge_stats)];
  304. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  305. genesis_get_stats(skge, data);
  306. else
  307. yukon_get_stats(skge, data);
  308. skge->net_stats.tx_bytes = data[0];
  309. skge->net_stats.rx_bytes = data[1];
  310. skge->net_stats.tx_packets = data[2] + data[4] + data[6];
  311. skge->net_stats.rx_packets = data[3] + data[5] + data[7];
  312. skge->net_stats.multicast = data[5] + data[7];
  313. skge->net_stats.collisions = data[10];
  314. skge->net_stats.tx_aborted_errors = data[12];
  315. return &skge->net_stats;
  316. }
  317. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  318. {
  319. int i;
  320. switch (stringset) {
  321. case ETH_SS_STATS:
  322. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  323. memcpy(data + i * ETH_GSTRING_LEN,
  324. skge_stats[i].name, ETH_GSTRING_LEN);
  325. break;
  326. }
  327. }
  328. static void skge_get_ring_param(struct net_device *dev,
  329. struct ethtool_ringparam *p)
  330. {
  331. struct skge_port *skge = netdev_priv(dev);
  332. p->rx_max_pending = MAX_RX_RING_SIZE;
  333. p->tx_max_pending = MAX_TX_RING_SIZE;
  334. p->rx_mini_max_pending = 0;
  335. p->rx_jumbo_max_pending = 0;
  336. p->rx_pending = skge->rx_ring.count;
  337. p->tx_pending = skge->tx_ring.count;
  338. p->rx_mini_pending = 0;
  339. p->rx_jumbo_pending = 0;
  340. }
  341. static int skge_set_ring_param(struct net_device *dev,
  342. struct ethtool_ringparam *p)
  343. {
  344. struct skge_port *skge = netdev_priv(dev);
  345. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  346. p->tx_pending == 0 || p->tx_pending > MAX_TX_RING_SIZE)
  347. return -EINVAL;
  348. skge->rx_ring.count = p->rx_pending;
  349. skge->tx_ring.count = p->tx_pending;
  350. if (netif_running(dev)) {
  351. skge_down(dev);
  352. skge_up(dev);
  353. }
  354. return 0;
  355. }
  356. static u32 skge_get_msglevel(struct net_device *netdev)
  357. {
  358. struct skge_port *skge = netdev_priv(netdev);
  359. return skge->msg_enable;
  360. }
  361. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  362. {
  363. struct skge_port *skge = netdev_priv(netdev);
  364. skge->msg_enable = value;
  365. }
  366. static int skge_nway_reset(struct net_device *dev)
  367. {
  368. struct skge_port *skge = netdev_priv(dev);
  369. struct skge_hw *hw = skge->hw;
  370. int port = skge->port;
  371. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  372. return -EINVAL;
  373. spin_lock_bh(&hw->phy_lock);
  374. if (hw->chip_id == CHIP_ID_GENESIS) {
  375. genesis_reset(hw, port);
  376. genesis_mac_init(hw, port);
  377. } else {
  378. yukon_reset(hw, port);
  379. yukon_init(hw, port);
  380. }
  381. spin_unlock_bh(&hw->phy_lock);
  382. return 0;
  383. }
  384. static int skge_set_sg(struct net_device *dev, u32 data)
  385. {
  386. struct skge_port *skge = netdev_priv(dev);
  387. struct skge_hw *hw = skge->hw;
  388. if (hw->chip_id == CHIP_ID_GENESIS && data)
  389. return -EOPNOTSUPP;
  390. return ethtool_op_set_sg(dev, data);
  391. }
  392. static int skge_set_tx_csum(struct net_device *dev, u32 data)
  393. {
  394. struct skge_port *skge = netdev_priv(dev);
  395. struct skge_hw *hw = skge->hw;
  396. if (hw->chip_id == CHIP_ID_GENESIS && data)
  397. return -EOPNOTSUPP;
  398. return ethtool_op_set_tx_csum(dev, data);
  399. }
  400. static u32 skge_get_rx_csum(struct net_device *dev)
  401. {
  402. struct skge_port *skge = netdev_priv(dev);
  403. return skge->rx_csum;
  404. }
  405. /* Only Yukon supports checksum offload. */
  406. static int skge_set_rx_csum(struct net_device *dev, u32 data)
  407. {
  408. struct skge_port *skge = netdev_priv(dev);
  409. if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
  410. return -EOPNOTSUPP;
  411. skge->rx_csum = data;
  412. return 0;
  413. }
  414. static void skge_get_pauseparam(struct net_device *dev,
  415. struct ethtool_pauseparam *ecmd)
  416. {
  417. struct skge_port *skge = netdev_priv(dev);
  418. ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND)
  419. || (skge->flow_control == FLOW_MODE_SYMMETRIC);
  420. ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND)
  421. || (skge->flow_control == FLOW_MODE_SYMMETRIC);
  422. ecmd->autoneg = skge->autoneg;
  423. }
  424. static int skge_set_pauseparam(struct net_device *dev,
  425. struct ethtool_pauseparam *ecmd)
  426. {
  427. struct skge_port *skge = netdev_priv(dev);
  428. skge->autoneg = ecmd->autoneg;
  429. if (ecmd->rx_pause && ecmd->tx_pause)
  430. skge->flow_control = FLOW_MODE_SYMMETRIC;
  431. else if (ecmd->rx_pause && !ecmd->tx_pause)
  432. skge->flow_control = FLOW_MODE_REM_SEND;
  433. else if (!ecmd->rx_pause && ecmd->tx_pause)
  434. skge->flow_control = FLOW_MODE_LOC_SEND;
  435. else
  436. skge->flow_control = FLOW_MODE_NONE;
  437. if (netif_running(dev)) {
  438. skge_down(dev);
  439. skge_up(dev);
  440. }
  441. return 0;
  442. }
  443. /* Chip internal frequency for clock calculations */
  444. static inline u32 hwkhz(const struct skge_hw *hw)
  445. {
  446. if (hw->chip_id == CHIP_ID_GENESIS)
  447. return 53215; /* or: 53.125 MHz */
  448. else
  449. return 78215; /* or: 78.125 MHz */
  450. }
  451. /* Chip hz to microseconds */
  452. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  453. {
  454. return (ticks * 1000) / hwkhz(hw);
  455. }
  456. /* Microseconds to chip hz */
  457. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  458. {
  459. return hwkhz(hw) * usec / 1000;
  460. }
  461. static int skge_get_coalesce(struct net_device *dev,
  462. struct ethtool_coalesce *ecmd)
  463. {
  464. struct skge_port *skge = netdev_priv(dev);
  465. struct skge_hw *hw = skge->hw;
  466. int port = skge->port;
  467. ecmd->rx_coalesce_usecs = 0;
  468. ecmd->tx_coalesce_usecs = 0;
  469. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  470. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  471. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  472. if (msk & rxirqmask[port])
  473. ecmd->rx_coalesce_usecs = delay;
  474. if (msk & txirqmask[port])
  475. ecmd->tx_coalesce_usecs = delay;
  476. }
  477. return 0;
  478. }
  479. /* Note: interrupt timer is per board, but can turn on/off per port */
  480. static int skge_set_coalesce(struct net_device *dev,
  481. struct ethtool_coalesce *ecmd)
  482. {
  483. struct skge_port *skge = netdev_priv(dev);
  484. struct skge_hw *hw = skge->hw;
  485. int port = skge->port;
  486. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  487. u32 delay = 25;
  488. if (ecmd->rx_coalesce_usecs == 0)
  489. msk &= ~rxirqmask[port];
  490. else if (ecmd->rx_coalesce_usecs < 25 ||
  491. ecmd->rx_coalesce_usecs > 33333)
  492. return -EINVAL;
  493. else {
  494. msk |= rxirqmask[port];
  495. delay = ecmd->rx_coalesce_usecs;
  496. }
  497. if (ecmd->tx_coalesce_usecs == 0)
  498. msk &= ~txirqmask[port];
  499. else if (ecmd->tx_coalesce_usecs < 25 ||
  500. ecmd->tx_coalesce_usecs > 33333)
  501. return -EINVAL;
  502. else {
  503. msk |= txirqmask[port];
  504. delay = min(delay, ecmd->rx_coalesce_usecs);
  505. }
  506. skge_write32(hw, B2_IRQM_MSK, msk);
  507. if (msk == 0)
  508. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  509. else {
  510. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  511. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  512. }
  513. return 0;
  514. }
  515. static void skge_led_on(struct skge_hw *hw, int port)
  516. {
  517. if (hw->chip_id == CHIP_ID_GENESIS) {
  518. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  519. skge_write8(hw, B0_LED, LED_STAT_ON);
  520. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  521. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  522. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  523. switch (hw->phy_type) {
  524. case SK_PHY_BCOM:
  525. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL,
  526. PHY_B_PEC_LED_ON);
  527. break;
  528. default:
  529. skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
  530. skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
  531. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  532. }
  533. } else {
  534. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  535. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  536. PHY_M_LED_MO_DUP(MO_LED_ON) |
  537. PHY_M_LED_MO_10(MO_LED_ON) |
  538. PHY_M_LED_MO_100(MO_LED_ON) |
  539. PHY_M_LED_MO_1000(MO_LED_ON) |
  540. PHY_M_LED_MO_RX(MO_LED_ON));
  541. }
  542. }
  543. static void skge_led_off(struct skge_hw *hw, int port)
  544. {
  545. if (hw->chip_id == CHIP_ID_GENESIS) {
  546. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  547. skge_write8(hw, B0_LED, LED_STAT_OFF);
  548. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  549. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  550. switch (hw->phy_type) {
  551. case SK_PHY_BCOM:
  552. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL,
  553. PHY_B_PEC_LED_OFF);
  554. break;
  555. default:
  556. skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
  557. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
  558. }
  559. } else {
  560. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  561. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  562. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  563. PHY_M_LED_MO_10(MO_LED_OFF) |
  564. PHY_M_LED_MO_100(MO_LED_OFF) |
  565. PHY_M_LED_MO_1000(MO_LED_OFF) |
  566. PHY_M_LED_MO_RX(MO_LED_OFF));
  567. }
  568. }
  569. static void skge_blink_timer(unsigned long data)
  570. {
  571. struct skge_port *skge = (struct skge_port *) data;
  572. struct skge_hw *hw = skge->hw;
  573. unsigned long flags;
  574. spin_lock_irqsave(&hw->phy_lock, flags);
  575. if (skge->blink_on)
  576. skge_led_on(hw, skge->port);
  577. else
  578. skge_led_off(hw, skge->port);
  579. spin_unlock_irqrestore(&hw->phy_lock, flags);
  580. skge->blink_on = !skge->blink_on;
  581. mod_timer(&skge->led_blink, jiffies + BLINK_HZ);
  582. }
  583. /* blink LED's for finding board */
  584. static int skge_phys_id(struct net_device *dev, u32 data)
  585. {
  586. struct skge_port *skge = netdev_priv(dev);
  587. if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
  588. data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
  589. /* start blinking */
  590. skge->blink_on = 1;
  591. mod_timer(&skge->led_blink, jiffies+1);
  592. msleep_interruptible(data * 1000);
  593. del_timer_sync(&skge->led_blink);
  594. skge_led_off(skge->hw, skge->port);
  595. return 0;
  596. }
  597. static struct ethtool_ops skge_ethtool_ops = {
  598. .get_settings = skge_get_settings,
  599. .set_settings = skge_set_settings,
  600. .get_drvinfo = skge_get_drvinfo,
  601. .get_regs_len = skge_get_regs_len,
  602. .get_regs = skge_get_regs,
  603. .get_wol = skge_get_wol,
  604. .set_wol = skge_set_wol,
  605. .get_msglevel = skge_get_msglevel,
  606. .set_msglevel = skge_set_msglevel,
  607. .nway_reset = skge_nway_reset,
  608. .get_link = ethtool_op_get_link,
  609. .get_ringparam = skge_get_ring_param,
  610. .set_ringparam = skge_set_ring_param,
  611. .get_pauseparam = skge_get_pauseparam,
  612. .set_pauseparam = skge_set_pauseparam,
  613. .get_coalesce = skge_get_coalesce,
  614. .set_coalesce = skge_set_coalesce,
  615. .get_sg = ethtool_op_get_sg,
  616. .set_sg = skge_set_sg,
  617. .get_tx_csum = ethtool_op_get_tx_csum,
  618. .set_tx_csum = skge_set_tx_csum,
  619. .get_rx_csum = skge_get_rx_csum,
  620. .set_rx_csum = skge_set_rx_csum,
  621. .get_strings = skge_get_strings,
  622. .phys_id = skge_phys_id,
  623. .get_stats_count = skge_get_stats_count,
  624. .get_ethtool_stats = skge_get_ethtool_stats,
  625. };
  626. /*
  627. * Allocate ring elements and chain them together
  628. * One-to-one association of board descriptors with ring elements
  629. */
  630. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u64 base)
  631. {
  632. struct skge_tx_desc *d;
  633. struct skge_element *e;
  634. int i;
  635. ring->start = kmalloc(sizeof(*e)*ring->count, GFP_KERNEL);
  636. if (!ring->start)
  637. return -ENOMEM;
  638. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  639. e->desc = d;
  640. if (i == ring->count - 1) {
  641. e->next = ring->start;
  642. d->next_offset = base;
  643. } else {
  644. e->next = e + 1;
  645. d->next_offset = base + (i+1) * sizeof(*d);
  646. }
  647. }
  648. ring->to_use = ring->to_clean = ring->start;
  649. return 0;
  650. }
  651. /* Setup buffer for receiving */
  652. static inline int skge_rx_alloc(struct skge_port *skge,
  653. struct skge_element *e)
  654. {
  655. unsigned long bufsize = skge->netdev->mtu + ETH_HLEN; /* VLAN? */
  656. struct skge_rx_desc *rd = e->desc;
  657. struct sk_buff *skb;
  658. u64 map;
  659. skb = dev_alloc_skb(bufsize + NET_IP_ALIGN);
  660. if (unlikely(!skb)) {
  661. printk(KERN_DEBUG PFX "%s: out of memory for receive\n",
  662. skge->netdev->name);
  663. return -ENOMEM;
  664. }
  665. skb->dev = skge->netdev;
  666. skb_reserve(skb, NET_IP_ALIGN);
  667. map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
  668. PCI_DMA_FROMDEVICE);
  669. rd->dma_lo = map;
  670. rd->dma_hi = map >> 32;
  671. e->skb = skb;
  672. rd->csum1_start = ETH_HLEN;
  673. rd->csum2_start = ETH_HLEN;
  674. rd->csum1 = 0;
  675. rd->csum2 = 0;
  676. wmb();
  677. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  678. pci_unmap_addr_set(e, mapaddr, map);
  679. pci_unmap_len_set(e, maplen, bufsize);
  680. return 0;
  681. }
  682. /* Free all unused buffers in receive ring, assumes receiver stopped */
  683. static void skge_rx_clean(struct skge_port *skge)
  684. {
  685. struct skge_hw *hw = skge->hw;
  686. struct skge_ring *ring = &skge->rx_ring;
  687. struct skge_element *e;
  688. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  689. struct skge_rx_desc *rd = e->desc;
  690. rd->control = 0;
  691. pci_unmap_single(hw->pdev,
  692. pci_unmap_addr(e, mapaddr),
  693. pci_unmap_len(e, maplen),
  694. PCI_DMA_FROMDEVICE);
  695. dev_kfree_skb(e->skb);
  696. e->skb = NULL;
  697. }
  698. ring->to_clean = e;
  699. }
  700. /* Allocate buffers for receive ring
  701. * For receive: to_use is refill location
  702. * to_clean is next received frame.
  703. *
  704. * if (to_use == to_clean)
  705. * then ring all frames in ring need buffers
  706. * if (to_use->next == to_clean)
  707. * then ring all frames in ring have buffers
  708. */
  709. static int skge_rx_fill(struct skge_port *skge)
  710. {
  711. struct skge_ring *ring = &skge->rx_ring;
  712. struct skge_element *e;
  713. int ret = 0;
  714. for (e = ring->to_use; e->next != ring->to_clean; e = e->next) {
  715. if (skge_rx_alloc(skge, e)) {
  716. ret = 1;
  717. break;
  718. }
  719. }
  720. ring->to_use = e;
  721. return ret;
  722. }
  723. static void skge_link_up(struct skge_port *skge)
  724. {
  725. netif_carrier_on(skge->netdev);
  726. if (skge->tx_avail > MAX_SKB_FRAGS + 1)
  727. netif_wake_queue(skge->netdev);
  728. if (netif_msg_link(skge))
  729. printk(KERN_INFO PFX
  730. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  731. skge->netdev->name, skge->speed,
  732. skge->duplex == DUPLEX_FULL ? "full" : "half",
  733. (skge->flow_control == FLOW_MODE_NONE) ? "none" :
  734. (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" :
  735. (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" :
  736. (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" :
  737. "unknown");
  738. }
  739. static void skge_link_down(struct skge_port *skge)
  740. {
  741. netif_carrier_off(skge->netdev);
  742. netif_stop_queue(skge->netdev);
  743. if (netif_msg_link(skge))
  744. printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
  745. }
  746. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  747. {
  748. int i;
  749. u16 v;
  750. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  751. v = xm_read16(hw, port, XM_PHY_DATA);
  752. if (hw->phy_type != SK_PHY_XMAC) {
  753. for (i = 0; i < PHY_RETRIES; i++) {
  754. udelay(1);
  755. if (xm_read16(hw, port, XM_MMU_CMD)
  756. & XM_MMU_PHY_RDY)
  757. goto ready;
  758. }
  759. printk(KERN_WARNING PFX "%s: phy read timed out\n",
  760. hw->dev[port]->name);
  761. return 0;
  762. ready:
  763. v = xm_read16(hw, port, XM_PHY_DATA);
  764. }
  765. return v;
  766. }
  767. static void xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  768. {
  769. int i;
  770. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  771. for (i = 0; i < PHY_RETRIES; i++) {
  772. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  773. goto ready;
  774. cpu_relax();
  775. }
  776. printk(KERN_WARNING PFX "%s: phy write failed to come ready\n",
  777. hw->dev[port]->name);
  778. ready:
  779. xm_write16(hw, port, XM_PHY_DATA, val);
  780. for (i = 0; i < PHY_RETRIES; i++) {
  781. udelay(1);
  782. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  783. return;
  784. }
  785. printk(KERN_WARNING PFX "%s: phy write timed out\n",
  786. hw->dev[port]->name);
  787. }
  788. static void genesis_init(struct skge_hw *hw)
  789. {
  790. /* set blink source counter */
  791. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  792. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  793. /* configure mac arbiter */
  794. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  795. /* configure mac arbiter timeout values */
  796. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  797. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  798. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  799. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  800. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  801. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  802. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  803. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  804. /* configure packet arbiter timeout */
  805. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  806. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  807. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  808. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  809. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  810. }
  811. static void genesis_reset(struct skge_hw *hw, int port)
  812. {
  813. int i;
  814. u64 zero = 0;
  815. /* reset the statistics module */
  816. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  817. xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
  818. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  819. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  820. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  821. /* disable all PHY IRQs */
  822. if (hw->phy_type == SK_PHY_BCOM)
  823. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  824. xm_outhash(hw, port, XM_HSM, (u8 *) &zero);
  825. for (i = 0; i < 15; i++)
  826. xm_outaddr(hw, port, XM_EXM(i), (u8 *) &zero);
  827. xm_outhash(hw, port, XM_SRC_CHK, (u8 *) &zero);
  828. }
  829. static void genesis_mac_init(struct skge_hw *hw, int port)
  830. {
  831. struct skge_port *skge = netdev_priv(hw->dev[port]);
  832. int i;
  833. u32 r;
  834. u16 id1;
  835. u16 ctrl1, ctrl2, ctrl3, ctrl4, ctrl5;
  836. /* magic workaround patterns for Broadcom */
  837. static const struct {
  838. u16 reg;
  839. u16 val;
  840. } A1hack[] = {
  841. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  842. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  843. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  844. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  845. }, C0hack[] = {
  846. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  847. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  848. };
  849. /* initialize Rx, Tx and Link LED */
  850. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  851. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  852. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  853. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  854. /* Unreset the XMAC. */
  855. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  856. /*
  857. * Perform additional initialization for external PHYs,
  858. * namely for the 1000baseTX cards that use the XMAC's
  859. * GMII mode.
  860. */
  861. spin_lock_bh(&hw->phy_lock);
  862. if (hw->phy_type != SK_PHY_XMAC) {
  863. /* Take PHY out of reset. */
  864. r = skge_read32(hw, B2_GP_IO);
  865. if (port == 0)
  866. r |= GP_DIR_0|GP_IO_0;
  867. else
  868. r |= GP_DIR_2|GP_IO_2;
  869. skge_write32(hw, B2_GP_IO, r);
  870. skge_read32(hw, B2_GP_IO);
  871. /* Enable GMII mode on the XMAC. */
  872. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  873. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  874. /* Optimize MDIO transfer by suppressing preamble. */
  875. xm_write16(hw, port, XM_MMU_CMD,
  876. xm_read16(hw, port, XM_MMU_CMD)
  877. | XM_MMU_NO_PRE);
  878. if (id1 == PHY_BCOM_ID1_C0) {
  879. /*
  880. * Workaround BCOM Errata for the C0 type.
  881. * Write magic patterns to reserved registers.
  882. */
  883. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  884. xm_phy_write(hw, port,
  885. C0hack[i].reg, C0hack[i].val);
  886. } else if (id1 == PHY_BCOM_ID1_A1) {
  887. /*
  888. * Workaround BCOM Errata for the A1 type.
  889. * Write magic patterns to reserved registers.
  890. */
  891. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  892. xm_phy_write(hw, port,
  893. A1hack[i].reg, A1hack[i].val);
  894. }
  895. /*
  896. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  897. * Disable Power Management after reset.
  898. */
  899. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  900. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r | PHY_B_AC_DIS_PM);
  901. }
  902. /* Dummy read */
  903. xm_read16(hw, port, XM_ISRC);
  904. r = xm_read32(hw, port, XM_MODE);
  905. xm_write32(hw, port, XM_MODE, r|XM_MD_CSA);
  906. /* We don't need the FCS appended to the packet. */
  907. r = xm_read16(hw, port, XM_RX_CMD);
  908. xm_write16(hw, port, XM_RX_CMD, r | XM_RX_STRIP_FCS);
  909. /* We want short frames padded to 60 bytes. */
  910. r = xm_read16(hw, port, XM_TX_CMD);
  911. xm_write16(hw, port, XM_TX_CMD, r | XM_TX_AUTO_PAD);
  912. /*
  913. * Enable the reception of all error frames. This is is
  914. * a necessary evil due to the design of the XMAC. The
  915. * XMAC's receive FIFO is only 8K in size, however jumbo
  916. * frames can be up to 9000 bytes in length. When bad
  917. * frame filtering is enabled, the XMAC's RX FIFO operates
  918. * in 'store and forward' mode. For this to work, the
  919. * entire frame has to fit into the FIFO, but that means
  920. * that jumbo frames larger than 8192 bytes will be
  921. * truncated. Disabling all bad frame filtering causes
  922. * the RX FIFO to operate in streaming mode, in which
  923. * case the XMAC will start transfering frames out of the
  924. * RX FIFO as soon as the FIFO threshold is reached.
  925. */
  926. r = xm_read32(hw, port, XM_MODE);
  927. xm_write32(hw, port, XM_MODE,
  928. XM_MD_RX_CRCE|XM_MD_RX_LONG|XM_MD_RX_RUNT|
  929. XM_MD_RX_ERR|XM_MD_RX_IRLE);
  930. xm_outaddr(hw, port, XM_SA, hw->dev[port]->dev_addr);
  931. xm_outaddr(hw, port, XM_EXM(0), hw->dev[port]->dev_addr);
  932. /*
  933. * Bump up the transmit threshold. This helps hold off transmit
  934. * underruns when we're blasting traffic from both ports at once.
  935. */
  936. xm_write16(hw, port, XM_TX_THR, 512);
  937. /* Configure MAC arbiter */
  938. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  939. /* configure timeout values */
  940. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  941. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  942. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  943. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  944. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  945. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  946. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  947. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  948. /* Configure Rx MAC FIFO */
  949. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  950. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  951. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  952. /* Configure Tx MAC FIFO */
  953. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  954. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  955. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  956. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  957. /* Enable frame flushing if jumbo frames used */
  958. skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
  959. } else {
  960. /* enable timeout timers if normal frames */
  961. skge_write16(hw, B3_PA_CTRL,
  962. port == 0 ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  963. }
  964. r = xm_read16(hw, port, XM_RX_CMD);
  965. if (hw->dev[port]->mtu > ETH_DATA_LEN)
  966. xm_write16(hw, port, XM_RX_CMD, r | XM_RX_BIG_PK_OK);
  967. else
  968. xm_write16(hw, port, XM_RX_CMD, r & ~(XM_RX_BIG_PK_OK));
  969. switch (hw->phy_type) {
  970. case SK_PHY_XMAC:
  971. if (skge->autoneg == AUTONEG_ENABLE) {
  972. ctrl1 = PHY_X_AN_FD | PHY_X_AN_HD;
  973. switch (skge->flow_control) {
  974. case FLOW_MODE_NONE:
  975. ctrl1 |= PHY_X_P_NO_PAUSE;
  976. break;
  977. case FLOW_MODE_LOC_SEND:
  978. ctrl1 |= PHY_X_P_ASYM_MD;
  979. break;
  980. case FLOW_MODE_SYMMETRIC:
  981. ctrl1 |= PHY_X_P_SYM_MD;
  982. break;
  983. case FLOW_MODE_REM_SEND:
  984. ctrl1 |= PHY_X_P_BOTH_MD;
  985. break;
  986. }
  987. xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl1);
  988. ctrl2 = PHY_CT_ANE | PHY_CT_RE_CFG;
  989. } else {
  990. ctrl2 = 0;
  991. if (skge->duplex == DUPLEX_FULL)
  992. ctrl2 |= PHY_CT_DUP_MD;
  993. }
  994. xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl2);
  995. break;
  996. case SK_PHY_BCOM:
  997. ctrl1 = PHY_CT_SP1000;
  998. ctrl2 = 0;
  999. ctrl3 = PHY_AN_CSMA;
  1000. ctrl4 = PHY_B_PEC_EN_LTR;
  1001. ctrl5 = PHY_B_AC_TX_TST;
  1002. if (skge->autoneg == AUTONEG_ENABLE) {
  1003. /*
  1004. * Workaround BCOM Errata #1 for the C5 type.
  1005. * 1000Base-T Link Acquisition Failure in Slave Mode
  1006. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  1007. */
  1008. ctrl2 |= PHY_B_1000C_RD;
  1009. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1010. ctrl2 |= PHY_B_1000C_AHD;
  1011. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1012. ctrl2 |= PHY_B_1000C_AFD;
  1013. /* Set Flow-control capabilities */
  1014. switch (skge->flow_control) {
  1015. case FLOW_MODE_NONE:
  1016. ctrl3 |= PHY_B_P_NO_PAUSE;
  1017. break;
  1018. case FLOW_MODE_LOC_SEND:
  1019. ctrl3 |= PHY_B_P_ASYM_MD;
  1020. break;
  1021. case FLOW_MODE_SYMMETRIC:
  1022. ctrl3 |= PHY_B_P_SYM_MD;
  1023. break;
  1024. case FLOW_MODE_REM_SEND:
  1025. ctrl3 |= PHY_B_P_BOTH_MD;
  1026. break;
  1027. }
  1028. /* Restart Auto-negotiation */
  1029. ctrl1 |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1030. } else {
  1031. if (skge->duplex == DUPLEX_FULL)
  1032. ctrl1 |= PHY_CT_DUP_MD;
  1033. ctrl2 |= PHY_B_1000C_MSE; /* set it to Slave */
  1034. }
  1035. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, ctrl2);
  1036. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV, ctrl3);
  1037. if (skge->netdev->mtu > ETH_DATA_LEN) {
  1038. ctrl4 |= PHY_B_PEC_HIGH_LA;
  1039. ctrl5 |= PHY_B_AC_LONG_PACK;
  1040. xm_phy_write(hw, port,PHY_BCOM_AUX_CTRL, ctrl5);
  1041. }
  1042. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ctrl4);
  1043. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctrl1);
  1044. break;
  1045. }
  1046. spin_unlock_bh(&hw->phy_lock);
  1047. /* Clear MIB counters */
  1048. xm_write16(hw, port, XM_STAT_CMD,
  1049. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1050. /* Clear two times according to Errata #3 */
  1051. xm_write16(hw, port, XM_STAT_CMD,
  1052. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1053. /* Start polling for link status */
  1054. mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
  1055. }
  1056. static void genesis_stop(struct skge_port *skge)
  1057. {
  1058. struct skge_hw *hw = skge->hw;
  1059. int port = skge->port;
  1060. /* Clear Tx packet arbiter timeout IRQ */
  1061. skge_write16(hw, B3_PA_CTRL,
  1062. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1063. /*
  1064. * If the transfer stucks at the MAC the STOP command will not
  1065. * terminate if we don't flush the XMAC's transmit FIFO !
  1066. */
  1067. xm_write32(hw, port, XM_MODE,
  1068. xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
  1069. /* Reset the MAC */
  1070. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1071. /* For external PHYs there must be special handling */
  1072. if (hw->phy_type != SK_PHY_XMAC) {
  1073. u32 reg = skge_read32(hw, B2_GP_IO);
  1074. if (port == 0) {
  1075. reg |= GP_DIR_0;
  1076. reg &= ~GP_IO_0;
  1077. } else {
  1078. reg |= GP_DIR_2;
  1079. reg &= ~GP_IO_2;
  1080. }
  1081. skge_write32(hw, B2_GP_IO, reg);
  1082. skge_read32(hw, B2_GP_IO);
  1083. }
  1084. xm_write16(hw, port, XM_MMU_CMD,
  1085. xm_read16(hw, port, XM_MMU_CMD)
  1086. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1087. xm_read16(hw, port, XM_MMU_CMD);
  1088. }
  1089. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1090. {
  1091. struct skge_hw *hw = skge->hw;
  1092. int port = skge->port;
  1093. int i;
  1094. unsigned long timeout = jiffies + HZ;
  1095. xm_write16(hw, port,
  1096. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1097. /* wait for update to complete */
  1098. while (xm_read16(hw, port, XM_STAT_CMD)
  1099. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1100. if (time_after(jiffies, timeout))
  1101. break;
  1102. udelay(10);
  1103. }
  1104. /* special case for 64 bit octet counter */
  1105. data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1106. | xm_read32(hw, port, XM_TXO_OK_LO);
  1107. data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1108. | xm_read32(hw, port, XM_RXO_OK_LO);
  1109. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1110. data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
  1111. }
  1112. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1113. {
  1114. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1115. u16 status = xm_read16(hw, port, XM_ISRC);
  1116. pr_debug("genesis_intr status %x\n", status);
  1117. if (hw->phy_type == SK_PHY_XMAC) {
  1118. /* LInk down, start polling for state change */
  1119. if (status & XM_IS_INP_ASS) {
  1120. xm_write16(hw, port, XM_IMSK,
  1121. xm_read16(hw, port, XM_IMSK) | XM_IS_INP_ASS);
  1122. mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
  1123. }
  1124. else if (status & XM_IS_AND)
  1125. mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
  1126. }
  1127. if (status & XM_IS_TXF_UR) {
  1128. xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1129. ++skge->net_stats.tx_fifo_errors;
  1130. }
  1131. if (status & XM_IS_RXF_OV) {
  1132. xm_write32(hw, port, XM_MODE, XM_MD_FRF);
  1133. ++skge->net_stats.rx_fifo_errors;
  1134. }
  1135. }
  1136. static void gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1137. {
  1138. int i;
  1139. gma_write16(hw, port, GM_SMI_DATA, val);
  1140. gma_write16(hw, port, GM_SMI_CTRL,
  1141. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1142. for (i = 0; i < PHY_RETRIES; i++) {
  1143. udelay(1);
  1144. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1145. break;
  1146. }
  1147. }
  1148. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1149. {
  1150. int i;
  1151. gma_write16(hw, port, GM_SMI_CTRL,
  1152. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1153. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1154. for (i = 0; i < PHY_RETRIES; i++) {
  1155. udelay(1);
  1156. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1157. goto ready;
  1158. }
  1159. printk(KERN_WARNING PFX "%s: phy read timeout\n",
  1160. hw->dev[port]->name);
  1161. return 0;
  1162. ready:
  1163. return gma_read16(hw, port, GM_SMI_DATA);
  1164. }
  1165. static void genesis_link_down(struct skge_port *skge)
  1166. {
  1167. struct skge_hw *hw = skge->hw;
  1168. int port = skge->port;
  1169. pr_debug("genesis_link_down\n");
  1170. xm_write16(hw, port, XM_MMU_CMD,
  1171. xm_read16(hw, port, XM_MMU_CMD)
  1172. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1173. /* dummy read to ensure writing */
  1174. (void) xm_read16(hw, port, XM_MMU_CMD);
  1175. skge_link_down(skge);
  1176. }
  1177. static void genesis_link_up(struct skge_port *skge)
  1178. {
  1179. struct skge_hw *hw = skge->hw;
  1180. int port = skge->port;
  1181. u16 cmd;
  1182. u32 mode, msk;
  1183. pr_debug("genesis_link_up\n");
  1184. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1185. /*
  1186. * enabling pause frame reception is required for 1000BT
  1187. * because the XMAC is not reset if the link is going down
  1188. */
  1189. if (skge->flow_control == FLOW_MODE_NONE ||
  1190. skge->flow_control == FLOW_MODE_LOC_SEND)
  1191. cmd |= XM_MMU_IGN_PF;
  1192. else
  1193. /* Enable Pause Frame Reception */
  1194. cmd &= ~XM_MMU_IGN_PF;
  1195. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1196. mode = xm_read32(hw, port, XM_MODE);
  1197. if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1198. skge->flow_control == FLOW_MODE_LOC_SEND) {
  1199. /*
  1200. * Configure Pause Frame Generation
  1201. * Use internal and external Pause Frame Generation.
  1202. * Sending pause frames is edge triggered.
  1203. * Send a Pause frame with the maximum pause time if
  1204. * internal oder external FIFO full condition occurs.
  1205. * Send a zero pause time frame to re-start transmission.
  1206. */
  1207. /* XM_PAUSE_DA = '010000C28001' (default) */
  1208. /* XM_MAC_PTIME = 0xffff (maximum) */
  1209. /* remember this value is defined in big endian (!) */
  1210. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1211. mode |= XM_PAUSE_MODE;
  1212. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1213. } else {
  1214. /*
  1215. * disable pause frame generation is required for 1000BT
  1216. * because the XMAC is not reset if the link is going down
  1217. */
  1218. /* Disable Pause Mode in Mode Register */
  1219. mode &= ~XM_PAUSE_MODE;
  1220. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1221. }
  1222. xm_write32(hw, port, XM_MODE, mode);
  1223. msk = XM_DEF_MSK;
  1224. if (hw->phy_type != SK_PHY_XMAC)
  1225. msk |= XM_IS_INP_ASS; /* disable GP0 interrupt bit */
  1226. xm_write16(hw, port, XM_IMSK, msk);
  1227. xm_read16(hw, port, XM_ISRC);
  1228. /* get MMU Command Reg. */
  1229. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1230. if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
  1231. cmd |= XM_MMU_GMII_FD;
  1232. if (hw->phy_type == SK_PHY_BCOM) {
  1233. /*
  1234. * Workaround BCOM Errata (#10523) for all BCom Phys
  1235. * Enable Power Management after link up
  1236. */
  1237. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1238. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1239. & ~PHY_B_AC_DIS_PM);
  1240. xm_phy_write(hw, port, PHY_BCOM_INT_MASK,
  1241. PHY_B_DEF_MSK);
  1242. }
  1243. /* enable Rx/Tx */
  1244. xm_write16(hw, port, XM_MMU_CMD,
  1245. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1246. skge_link_up(skge);
  1247. }
  1248. static void genesis_bcom_intr(struct skge_port *skge)
  1249. {
  1250. struct skge_hw *hw = skge->hw;
  1251. int port = skge->port;
  1252. u16 stat = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1253. pr_debug("genesis_bcom intr stat=%x\n", stat);
  1254. /* Workaround BCom Errata:
  1255. * enable and disable loopback mode if "NO HCD" occurs.
  1256. */
  1257. if (stat & PHY_B_IS_NO_HDCL) {
  1258. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1259. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1260. ctrl | PHY_CT_LOOP);
  1261. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1262. ctrl & ~PHY_CT_LOOP);
  1263. }
  1264. stat = xm_phy_read(hw, port, PHY_BCOM_STAT);
  1265. if (stat & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE)) {
  1266. u16 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  1267. if ( !(aux & PHY_B_AS_LS) && netif_carrier_ok(skge->netdev))
  1268. genesis_link_down(skge);
  1269. else if (stat & PHY_B_IS_LST_CHANGE) {
  1270. if (aux & PHY_B_AS_AN_C) {
  1271. switch (aux & PHY_B_AS_AN_RES_MSK) {
  1272. case PHY_B_RES_1000FD:
  1273. skge->duplex = DUPLEX_FULL;
  1274. break;
  1275. case PHY_B_RES_1000HD:
  1276. skge->duplex = DUPLEX_HALF;
  1277. break;
  1278. }
  1279. switch (aux & PHY_B_AS_PAUSE_MSK) {
  1280. case PHY_B_AS_PAUSE_MSK:
  1281. skge->flow_control = FLOW_MODE_SYMMETRIC;
  1282. break;
  1283. case PHY_B_AS_PRR:
  1284. skge->flow_control = FLOW_MODE_REM_SEND;
  1285. break;
  1286. case PHY_B_AS_PRT:
  1287. skge->flow_control = FLOW_MODE_LOC_SEND;
  1288. break;
  1289. default:
  1290. skge->flow_control = FLOW_MODE_NONE;
  1291. }
  1292. skge->speed = SPEED_1000;
  1293. }
  1294. genesis_link_up(skge);
  1295. }
  1296. else
  1297. mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
  1298. }
  1299. }
  1300. /* Perodic poll of phy status to check for link transistion */
  1301. static void skge_link_timer(unsigned long __arg)
  1302. {
  1303. struct skge_port *skge = (struct skge_port *) __arg;
  1304. struct skge_hw *hw = skge->hw;
  1305. int port = skge->port;
  1306. if (hw->chip_id != CHIP_ID_GENESIS || !netif_running(skge->netdev))
  1307. return;
  1308. spin_lock_bh(&hw->phy_lock);
  1309. if (hw->phy_type == SK_PHY_BCOM)
  1310. genesis_bcom_intr(skge);
  1311. else {
  1312. int i;
  1313. for (i = 0; i < 3; i++)
  1314. if (xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS)
  1315. break;
  1316. if (i == 3)
  1317. mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
  1318. else
  1319. genesis_link_up(skge);
  1320. }
  1321. spin_unlock_bh(&hw->phy_lock);
  1322. }
  1323. /* Marvell Phy Initailization */
  1324. static void yukon_init(struct skge_hw *hw, int port)
  1325. {
  1326. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1327. u16 ctrl, ct1000, adv;
  1328. u16 ledctrl, ledover;
  1329. pr_debug("yukon_init\n");
  1330. if (skge->autoneg == AUTONEG_ENABLE) {
  1331. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1332. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1333. PHY_M_EC_MAC_S_MSK);
  1334. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1335. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1336. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1337. }
  1338. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1339. if (skge->autoneg == AUTONEG_DISABLE)
  1340. ctrl &= ~PHY_CT_ANE;
  1341. ctrl |= PHY_CT_RESET;
  1342. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1343. ctrl = 0;
  1344. ct1000 = 0;
  1345. adv = PHY_AN_CSMA;
  1346. if (skge->autoneg == AUTONEG_ENABLE) {
  1347. if (iscopper(hw)) {
  1348. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1349. ct1000 |= PHY_M_1000C_AFD;
  1350. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1351. ct1000 |= PHY_M_1000C_AHD;
  1352. if (skge->advertising & ADVERTISED_100baseT_Full)
  1353. adv |= PHY_M_AN_100_FD;
  1354. if (skge->advertising & ADVERTISED_100baseT_Half)
  1355. adv |= PHY_M_AN_100_HD;
  1356. if (skge->advertising & ADVERTISED_10baseT_Full)
  1357. adv |= PHY_M_AN_10_FD;
  1358. if (skge->advertising & ADVERTISED_10baseT_Half)
  1359. adv |= PHY_M_AN_10_HD;
  1360. /* Set Flow-control capabilities */
  1361. switch (skge->flow_control) {
  1362. case FLOW_MODE_NONE:
  1363. adv |= PHY_B_P_NO_PAUSE;
  1364. break;
  1365. case FLOW_MODE_LOC_SEND:
  1366. adv |= PHY_B_P_ASYM_MD;
  1367. break;
  1368. case FLOW_MODE_SYMMETRIC:
  1369. adv |= PHY_B_P_SYM_MD;
  1370. break;
  1371. case FLOW_MODE_REM_SEND:
  1372. adv |= PHY_B_P_BOTH_MD;
  1373. break;
  1374. }
  1375. } else { /* special defines for FIBER (88E1011S only) */
  1376. adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
  1377. /* Set Flow-control capabilities */
  1378. switch (skge->flow_control) {
  1379. case FLOW_MODE_NONE:
  1380. adv |= PHY_M_P_NO_PAUSE_X;
  1381. break;
  1382. case FLOW_MODE_LOC_SEND:
  1383. adv |= PHY_M_P_ASYM_MD_X;
  1384. break;
  1385. case FLOW_MODE_SYMMETRIC:
  1386. adv |= PHY_M_P_SYM_MD_X;
  1387. break;
  1388. case FLOW_MODE_REM_SEND:
  1389. adv |= PHY_M_P_BOTH_MD_X;
  1390. break;
  1391. }
  1392. }
  1393. /* Restart Auto-negotiation */
  1394. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1395. } else {
  1396. /* forced speed/duplex settings */
  1397. ct1000 = PHY_M_1000C_MSE;
  1398. if (skge->duplex == DUPLEX_FULL)
  1399. ctrl |= PHY_CT_DUP_MD;
  1400. switch (skge->speed) {
  1401. case SPEED_1000:
  1402. ctrl |= PHY_CT_SP1000;
  1403. break;
  1404. case SPEED_100:
  1405. ctrl |= PHY_CT_SP100;
  1406. break;
  1407. }
  1408. ctrl |= PHY_CT_RESET;
  1409. }
  1410. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1411. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1412. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1413. /* Setup Phy LED's */
  1414. ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS);
  1415. ledover = 0;
  1416. ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL;
  1417. /* turn off the Rx LED (LED_RX) */
  1418. ledover |= PHY_M_LED_MO_RX(MO_LED_OFF);
  1419. /* disable blink mode (LED_DUPLEX) on collisions */
  1420. ctrl |= PHY_M_LEDC_DP_CTRL;
  1421. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
  1422. if (skge->autoneg == AUTONEG_DISABLE || skge->speed == SPEED_100) {
  1423. /* turn on 100 Mbps LED (LED_LINK100) */
  1424. ledover |= PHY_M_LED_MO_100(MO_LED_ON);
  1425. }
  1426. if (ledover)
  1427. gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
  1428. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1429. if (skge->autoneg == AUTONEG_ENABLE)
  1430. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL);
  1431. else
  1432. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
  1433. }
  1434. static void yukon_reset(struct skge_hw *hw, int port)
  1435. {
  1436. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1437. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1438. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1439. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1440. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1441. gma_write16(hw, port, GM_RX_CTRL,
  1442. gma_read16(hw, port, GM_RX_CTRL)
  1443. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1444. }
  1445. static void yukon_mac_init(struct skge_hw *hw, int port)
  1446. {
  1447. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1448. int i;
  1449. u32 reg;
  1450. const u8 *addr = hw->dev[port]->dev_addr;
  1451. /* WA code for COMA mode -- set PHY reset */
  1452. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1453. hw->chip_rev == CHIP_REV_YU_LITE_A3)
  1454. skge_write32(hw, B2_GP_IO,
  1455. (skge_read32(hw, B2_GP_IO) | GP_DIR_9 | GP_IO_9));
  1456. /* hard reset */
  1457. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1458. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1459. /* WA code for COMA mode -- clear PHY reset */
  1460. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1461. hw->chip_rev == CHIP_REV_YU_LITE_A3)
  1462. skge_write32(hw, B2_GP_IO,
  1463. (skge_read32(hw, B2_GP_IO) | GP_DIR_9)
  1464. & ~GP_IO_9);
  1465. /* Set hardware config mode */
  1466. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1467. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1468. reg |= iscopper(hw) ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1469. /* Clear GMC reset */
  1470. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1471. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1472. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1473. if (skge->autoneg == AUTONEG_DISABLE) {
  1474. reg = GM_GPCR_AU_ALL_DIS;
  1475. gma_write16(hw, port, GM_GP_CTRL,
  1476. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1477. switch (skge->speed) {
  1478. case SPEED_1000:
  1479. reg |= GM_GPCR_SPEED_1000;
  1480. /* fallthru */
  1481. case SPEED_100:
  1482. reg |= GM_GPCR_SPEED_100;
  1483. }
  1484. if (skge->duplex == DUPLEX_FULL)
  1485. reg |= GM_GPCR_DUP_FULL;
  1486. } else
  1487. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1488. switch (skge->flow_control) {
  1489. case FLOW_MODE_NONE:
  1490. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1491. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1492. break;
  1493. case FLOW_MODE_LOC_SEND:
  1494. /* disable Rx flow-control */
  1495. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1496. }
  1497. gma_write16(hw, port, GM_GP_CTRL, reg);
  1498. skge_read16(hw, GMAC_IRQ_SRC);
  1499. spin_lock_bh(&hw->phy_lock);
  1500. yukon_init(hw, port);
  1501. spin_unlock_bh(&hw->phy_lock);
  1502. /* MIB clear */
  1503. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1504. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1505. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1506. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1507. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1508. /* transmit control */
  1509. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1510. /* receive control reg: unicast + multicast + no FCS */
  1511. gma_write16(hw, port, GM_RX_CTRL,
  1512. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1513. /* transmit flow control */
  1514. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1515. /* transmit parameter */
  1516. gma_write16(hw, port, GM_TX_PARAM,
  1517. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1518. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1519. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1520. /* serial mode register */
  1521. reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  1522. if (hw->dev[port]->mtu > 1500)
  1523. reg |= GM_SMOD_JUMBO_ENA;
  1524. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1525. /* physical address: used for pause frames */
  1526. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1527. /* virtual address for data */
  1528. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1529. /* enable interrupt mask for counter overflows */
  1530. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1531. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1532. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1533. /* Initialize Mac Fifo */
  1534. /* Configure Rx MAC FIFO */
  1535. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1536. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1537. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1538. hw->chip_rev == CHIP_REV_YU_LITE_A3)
  1539. reg &= ~GMF_RX_F_FL_ON;
  1540. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1541. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1542. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF);
  1543. /* Configure Tx MAC FIFO */
  1544. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1545. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1546. }
  1547. static void yukon_stop(struct skge_port *skge)
  1548. {
  1549. struct skge_hw *hw = skge->hw;
  1550. int port = skge->port;
  1551. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1552. hw->chip_rev == CHIP_REV_YU_LITE_A3) {
  1553. skge_write32(hw, B2_GP_IO,
  1554. skge_read32(hw, B2_GP_IO) | GP_DIR_9 | GP_IO_9);
  1555. }
  1556. gma_write16(hw, port, GM_GP_CTRL,
  1557. gma_read16(hw, port, GM_GP_CTRL)
  1558. & ~(GM_GPCR_RX_ENA|GM_GPCR_RX_ENA));
  1559. gma_read16(hw, port, GM_GP_CTRL);
  1560. /* set GPHY Control reset */
  1561. gma_write32(hw, port, GPHY_CTRL, GPC_RST_SET);
  1562. gma_write32(hw, port, GMAC_CTRL, GMC_RST_SET);
  1563. }
  1564. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1565. {
  1566. struct skge_hw *hw = skge->hw;
  1567. int port = skge->port;
  1568. int i;
  1569. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1570. | gma_read32(hw, port, GM_TXO_OK_LO);
  1571. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1572. | gma_read32(hw, port, GM_RXO_OK_LO);
  1573. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1574. data[i] = gma_read32(hw, port,
  1575. skge_stats[i].gma_offset);
  1576. }
  1577. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1578. {
  1579. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1580. u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1581. pr_debug("yukon_intr status %x\n", status);
  1582. if (status & GM_IS_RX_FF_OR) {
  1583. ++skge->net_stats.rx_fifo_errors;
  1584. gma_write8(hw, port, RX_GMF_CTRL_T, GMF_CLI_RX_FO);
  1585. }
  1586. if (status & GM_IS_TX_FF_UR) {
  1587. ++skge->net_stats.tx_fifo_errors;
  1588. gma_write8(hw, port, TX_GMF_CTRL_T, GMF_CLI_TX_FU);
  1589. }
  1590. }
  1591. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1592. {
  1593. switch (aux & PHY_M_PS_SPEED_MSK) {
  1594. case PHY_M_PS_SPEED_1000:
  1595. return SPEED_1000;
  1596. case PHY_M_PS_SPEED_100:
  1597. return SPEED_100;
  1598. default:
  1599. return SPEED_10;
  1600. }
  1601. }
  1602. static void yukon_link_up(struct skge_port *skge)
  1603. {
  1604. struct skge_hw *hw = skge->hw;
  1605. int port = skge->port;
  1606. u16 reg;
  1607. pr_debug("yukon_link_up\n");
  1608. /* Enable Transmit FIFO Underrun */
  1609. skge_write8(hw, GMAC_IRQ_MSK, GMAC_DEF_MSK);
  1610. reg = gma_read16(hw, port, GM_GP_CTRL);
  1611. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1612. reg |= GM_GPCR_DUP_FULL;
  1613. /* enable Rx/Tx */
  1614. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1615. gma_write16(hw, port, GM_GP_CTRL, reg);
  1616. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
  1617. skge_link_up(skge);
  1618. }
  1619. static void yukon_link_down(struct skge_port *skge)
  1620. {
  1621. struct skge_hw *hw = skge->hw;
  1622. int port = skge->port;
  1623. pr_debug("yukon_link_down\n");
  1624. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  1625. gm_phy_write(hw, port, GM_GP_CTRL,
  1626. gm_phy_read(hw, port, GM_GP_CTRL)
  1627. & ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA));
  1628. if (skge->flow_control == FLOW_MODE_REM_SEND) {
  1629. /* restore Asymmetric Pause bit */
  1630. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  1631. gm_phy_read(hw, port,
  1632. PHY_MARV_AUNE_ADV)
  1633. | PHY_M_AN_ASP);
  1634. }
  1635. yukon_reset(hw, port);
  1636. skge_link_down(skge);
  1637. yukon_init(hw, port);
  1638. }
  1639. static void yukon_phy_intr(struct skge_port *skge)
  1640. {
  1641. struct skge_hw *hw = skge->hw;
  1642. int port = skge->port;
  1643. const char *reason = NULL;
  1644. u16 istatus, phystat;
  1645. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1646. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1647. pr_debug("yukon phy intr istat=%x phy_stat=%x\n", istatus, phystat);
  1648. if (istatus & PHY_M_IS_AN_COMPL) {
  1649. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1650. & PHY_M_AN_RF) {
  1651. reason = "remote fault";
  1652. goto failed;
  1653. }
  1654. if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1655. reason = "master/slave fault";
  1656. goto failed;
  1657. }
  1658. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1659. reason = "speed/duplex";
  1660. goto failed;
  1661. }
  1662. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1663. ? DUPLEX_FULL : DUPLEX_HALF;
  1664. skge->speed = yukon_speed(hw, phystat);
  1665. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1666. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1667. case PHY_M_PS_PAUSE_MSK:
  1668. skge->flow_control = FLOW_MODE_SYMMETRIC;
  1669. break;
  1670. case PHY_M_PS_RX_P_EN:
  1671. skge->flow_control = FLOW_MODE_REM_SEND;
  1672. break;
  1673. case PHY_M_PS_TX_P_EN:
  1674. skge->flow_control = FLOW_MODE_LOC_SEND;
  1675. break;
  1676. default:
  1677. skge->flow_control = FLOW_MODE_NONE;
  1678. }
  1679. if (skge->flow_control == FLOW_MODE_NONE ||
  1680. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1681. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1682. else
  1683. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1684. yukon_link_up(skge);
  1685. return;
  1686. }
  1687. if (istatus & PHY_M_IS_LSP_CHANGE)
  1688. skge->speed = yukon_speed(hw, phystat);
  1689. if (istatus & PHY_M_IS_DUP_CHANGE)
  1690. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1691. if (istatus & PHY_M_IS_LST_CHANGE) {
  1692. if (phystat & PHY_M_PS_LINK_UP)
  1693. yukon_link_up(skge);
  1694. else
  1695. yukon_link_down(skge);
  1696. }
  1697. return;
  1698. failed:
  1699. printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
  1700. skge->netdev->name, reason);
  1701. /* XXX restart autonegotiation? */
  1702. }
  1703. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  1704. {
  1705. u32 end;
  1706. start /= 8;
  1707. len /= 8;
  1708. end = start + len - 1;
  1709. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  1710. skge_write32(hw, RB_ADDR(q, RB_START), start);
  1711. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  1712. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  1713. skge_write32(hw, RB_ADDR(q, RB_END), end);
  1714. if (q == Q_R1 || q == Q_R2) {
  1715. /* Set thresholds on receive queue's */
  1716. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  1717. start + (2*len)/3);
  1718. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  1719. start + (len/3));
  1720. } else {
  1721. /* Enable store & forward on Tx queue's because
  1722. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  1723. */
  1724. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  1725. }
  1726. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  1727. }
  1728. /* Setup Bus Memory Interface */
  1729. static void skge_qset(struct skge_port *skge, u16 q,
  1730. const struct skge_element *e)
  1731. {
  1732. struct skge_hw *hw = skge->hw;
  1733. u32 watermark = 0x600;
  1734. u64 base = skge->dma + (e->desc - skge->mem);
  1735. /* optimization to reduce window on 32bit/33mhz */
  1736. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  1737. watermark /= 2;
  1738. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  1739. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  1740. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  1741. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  1742. }
  1743. static int skge_up(struct net_device *dev)
  1744. {
  1745. struct skge_port *skge = netdev_priv(dev);
  1746. struct skge_hw *hw = skge->hw;
  1747. int port = skge->port;
  1748. u32 chunk, ram_addr;
  1749. size_t rx_size, tx_size;
  1750. int err;
  1751. if (netif_msg_ifup(skge))
  1752. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  1753. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  1754. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  1755. skge->mem_size = tx_size + rx_size;
  1756. skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
  1757. if (!skge->mem)
  1758. return -ENOMEM;
  1759. memset(skge->mem, 0, skge->mem_size);
  1760. if ((err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma)))
  1761. goto free_pci_mem;
  1762. if (skge_rx_fill(skge))
  1763. goto free_rx_ring;
  1764. if ((err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  1765. skge->dma + rx_size)))
  1766. goto free_rx_ring;
  1767. skge->tx_avail = skge->tx_ring.count - 1;
  1768. /* Initialze MAC */
  1769. if (hw->chip_id == CHIP_ID_GENESIS)
  1770. genesis_mac_init(hw, port);
  1771. else
  1772. yukon_mac_init(hw, port);
  1773. /* Configure RAMbuffers */
  1774. chunk = hw->ram_size / ((hw->ports + 1)*2);
  1775. ram_addr = hw->ram_offset + 2 * chunk * port;
  1776. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  1777. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  1778. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  1779. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  1780. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  1781. /* Start receiver BMU */
  1782. wmb();
  1783. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  1784. pr_debug("skge_up completed\n");
  1785. return 0;
  1786. free_rx_ring:
  1787. skge_rx_clean(skge);
  1788. kfree(skge->rx_ring.start);
  1789. free_pci_mem:
  1790. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  1791. return err;
  1792. }
  1793. static int skge_down(struct net_device *dev)
  1794. {
  1795. struct skge_port *skge = netdev_priv(dev);
  1796. struct skge_hw *hw = skge->hw;
  1797. int port = skge->port;
  1798. if (netif_msg_ifdown(skge))
  1799. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  1800. netif_stop_queue(dev);
  1801. del_timer_sync(&skge->led_blink);
  1802. del_timer_sync(&skge->link_check);
  1803. /* Stop transmitter */
  1804. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  1805. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  1806. RB_RST_SET|RB_DIS_OP_MD);
  1807. if (hw->chip_id == CHIP_ID_GENESIS)
  1808. genesis_stop(skge);
  1809. else
  1810. yukon_stop(skge);
  1811. /* Disable Force Sync bit and Enable Alloc bit */
  1812. skge_write8(hw, SK_REG(port, TXA_CTRL),
  1813. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  1814. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  1815. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  1816. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  1817. /* Reset PCI FIFO */
  1818. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  1819. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  1820. /* Reset the RAM Buffer async Tx queue */
  1821. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  1822. /* stop receiver */
  1823. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  1824. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  1825. RB_RST_SET|RB_DIS_OP_MD);
  1826. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  1827. if (hw->chip_id == CHIP_ID_GENESIS) {
  1828. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  1829. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  1830. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_STOP);
  1831. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_STOP);
  1832. } else {
  1833. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  1834. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  1835. }
  1836. /* turn off led's */
  1837. skge_write16(hw, B0_LED, LED_STAT_OFF);
  1838. skge_tx_clean(skge);
  1839. skge_rx_clean(skge);
  1840. kfree(skge->rx_ring.start);
  1841. kfree(skge->tx_ring.start);
  1842. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  1843. return 0;
  1844. }
  1845. static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  1846. {
  1847. struct skge_port *skge = netdev_priv(dev);
  1848. struct skge_hw *hw = skge->hw;
  1849. struct skge_ring *ring = &skge->tx_ring;
  1850. struct skge_element *e;
  1851. struct skge_tx_desc *td;
  1852. int i;
  1853. u32 control, len;
  1854. u64 map;
  1855. unsigned long flags;
  1856. skb = skb_padto(skb, ETH_ZLEN);
  1857. if (!skb)
  1858. return NETDEV_TX_OK;
  1859. local_irq_save(flags);
  1860. if (!spin_trylock(&skge->tx_lock)) {
  1861. /* Collision - tell upper layer to requeue */
  1862. local_irq_restore(flags);
  1863. return NETDEV_TX_LOCKED;
  1864. }
  1865. if (unlikely(skge->tx_avail < skb_shinfo(skb)->nr_frags +1)) {
  1866. netif_stop_queue(dev);
  1867. spin_unlock_irqrestore(&skge->tx_lock, flags);
  1868. printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
  1869. dev->name);
  1870. return NETDEV_TX_BUSY;
  1871. }
  1872. e = ring->to_use;
  1873. td = e->desc;
  1874. e->skb = skb;
  1875. len = skb_headlen(skb);
  1876. map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1877. pci_unmap_addr_set(e, mapaddr, map);
  1878. pci_unmap_len_set(e, maplen, len);
  1879. td->dma_lo = map;
  1880. td->dma_hi = map >> 32;
  1881. if (skb->ip_summed == CHECKSUM_HW) {
  1882. const struct iphdr *ip
  1883. = (const struct iphdr *) (skb->data + ETH_HLEN);
  1884. int offset = skb->h.raw - skb->data;
  1885. /* This seems backwards, but it is what the sk98lin
  1886. * does. Looks like hardware is wrong?
  1887. */
  1888. if (ip->protocol == IPPROTO_UDP
  1889. && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
  1890. control = BMU_TCP_CHECK;
  1891. else
  1892. control = BMU_UDP_CHECK;
  1893. td->csum_offs = 0;
  1894. td->csum_start = offset;
  1895. td->csum_write = offset + skb->csum;
  1896. } else
  1897. control = BMU_CHECK;
  1898. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  1899. control |= BMU_EOF| BMU_IRQ_EOF;
  1900. else {
  1901. struct skge_tx_desc *tf = td;
  1902. control |= BMU_STFWD;
  1903. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1904. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1905. map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  1906. frag->size, PCI_DMA_TODEVICE);
  1907. e = e->next;
  1908. e->skb = NULL;
  1909. tf = e->desc;
  1910. tf->dma_lo = map;
  1911. tf->dma_hi = (u64) map >> 32;
  1912. pci_unmap_addr_set(e, mapaddr, map);
  1913. pci_unmap_len_set(e, maplen, frag->size);
  1914. tf->control = BMU_OWN | BMU_SW | control | frag->size;
  1915. }
  1916. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  1917. }
  1918. /* Make sure all the descriptors written */
  1919. wmb();
  1920. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  1921. wmb();
  1922. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  1923. if (netif_msg_tx_queued(skge))
  1924. printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
  1925. dev->name, e - ring->start, skb->len);
  1926. ring->to_use = e->next;
  1927. skge->tx_avail -= skb_shinfo(skb)->nr_frags + 1;
  1928. if (skge->tx_avail <= MAX_SKB_FRAGS + 1) {
  1929. pr_debug("%s: transmit queue full\n", dev->name);
  1930. netif_stop_queue(dev);
  1931. }
  1932. dev->trans_start = jiffies;
  1933. spin_unlock_irqrestore(&skge->tx_lock, flags);
  1934. return NETDEV_TX_OK;
  1935. }
  1936. static inline void skge_tx_free(struct skge_hw *hw, struct skge_element *e)
  1937. {
  1938. if (e->skb) {
  1939. pci_unmap_single(hw->pdev,
  1940. pci_unmap_addr(e, mapaddr),
  1941. pci_unmap_len(e, maplen),
  1942. PCI_DMA_TODEVICE);
  1943. dev_kfree_skb_any(e->skb);
  1944. e->skb = NULL;
  1945. } else {
  1946. pci_unmap_page(hw->pdev,
  1947. pci_unmap_addr(e, mapaddr),
  1948. pci_unmap_len(e, maplen),
  1949. PCI_DMA_TODEVICE);
  1950. }
  1951. }
  1952. static void skge_tx_clean(struct skge_port *skge)
  1953. {
  1954. struct skge_ring *ring = &skge->tx_ring;
  1955. struct skge_element *e;
  1956. unsigned long flags;
  1957. spin_lock_irqsave(&skge->tx_lock, flags);
  1958. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  1959. ++skge->tx_avail;
  1960. skge_tx_free(skge->hw, e);
  1961. }
  1962. ring->to_clean = e;
  1963. spin_unlock_irqrestore(&skge->tx_lock, flags);
  1964. }
  1965. static void skge_tx_timeout(struct net_device *dev)
  1966. {
  1967. struct skge_port *skge = netdev_priv(dev);
  1968. if (netif_msg_timer(skge))
  1969. printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
  1970. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  1971. skge_tx_clean(skge);
  1972. }
  1973. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  1974. {
  1975. int err = 0;
  1976. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  1977. return -EINVAL;
  1978. dev->mtu = new_mtu;
  1979. if (netif_running(dev)) {
  1980. skge_down(dev);
  1981. skge_up(dev);
  1982. }
  1983. return err;
  1984. }
  1985. static void genesis_set_multicast(struct net_device *dev)
  1986. {
  1987. struct skge_port *skge = netdev_priv(dev);
  1988. struct skge_hw *hw = skge->hw;
  1989. int port = skge->port;
  1990. int i, count = dev->mc_count;
  1991. struct dev_mc_list *list = dev->mc_list;
  1992. u32 mode;
  1993. u8 filter[8];
  1994. mode = xm_read32(hw, port, XM_MODE);
  1995. mode |= XM_MD_ENA_HASH;
  1996. if (dev->flags & IFF_PROMISC)
  1997. mode |= XM_MD_ENA_PROM;
  1998. else
  1999. mode &= ~XM_MD_ENA_PROM;
  2000. if (dev->flags & IFF_ALLMULTI)
  2001. memset(filter, 0xff, sizeof(filter));
  2002. else {
  2003. memset(filter, 0, sizeof(filter));
  2004. for (i = 0; list && i < count; i++, list = list->next) {
  2005. u32 crc = crc32_le(~0, list->dmi_addr, ETH_ALEN);
  2006. u8 bit = 63 - (crc & 63);
  2007. filter[bit/8] |= 1 << (bit%8);
  2008. }
  2009. }
  2010. xm_outhash(hw, port, XM_HSM, filter);
  2011. xm_write32(hw, port, XM_MODE, mode);
  2012. }
  2013. static void yukon_set_multicast(struct net_device *dev)
  2014. {
  2015. struct skge_port *skge = netdev_priv(dev);
  2016. struct skge_hw *hw = skge->hw;
  2017. int port = skge->port;
  2018. struct dev_mc_list *list = dev->mc_list;
  2019. u16 reg;
  2020. u8 filter[8];
  2021. memset(filter, 0, sizeof(filter));
  2022. reg = gma_read16(hw, port, GM_RX_CTRL);
  2023. reg |= GM_RXCR_UCF_ENA;
  2024. if (dev->flags & IFF_PROMISC) /* promiscious */
  2025. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2026. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  2027. memset(filter, 0xff, sizeof(filter));
  2028. else if (dev->mc_count == 0) /* no multicast */
  2029. reg &= ~GM_RXCR_MCF_ENA;
  2030. else {
  2031. int i;
  2032. reg |= GM_RXCR_MCF_ENA;
  2033. for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
  2034. u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
  2035. filter[bit/8] |= 1 << (bit%8);
  2036. }
  2037. }
  2038. gma_write16(hw, port, GM_MC_ADDR_H1,
  2039. (u16)filter[0] | ((u16)filter[1] << 8));
  2040. gma_write16(hw, port, GM_MC_ADDR_H2,
  2041. (u16)filter[2] | ((u16)filter[3] << 8));
  2042. gma_write16(hw, port, GM_MC_ADDR_H3,
  2043. (u16)filter[4] | ((u16)filter[5] << 8));
  2044. gma_write16(hw, port, GM_MC_ADDR_H4,
  2045. (u16)filter[6] | ((u16)filter[7] << 8));
  2046. gma_write16(hw, port, GM_RX_CTRL, reg);
  2047. }
  2048. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2049. {
  2050. if (hw->chip_id == CHIP_ID_GENESIS)
  2051. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2052. else
  2053. return (status & GMR_FS_ANY_ERR) ||
  2054. (status & GMR_FS_RX_OK) == 0;
  2055. }
  2056. static void skge_rx_error(struct skge_port *skge, int slot,
  2057. u32 control, u32 status)
  2058. {
  2059. if (netif_msg_rx_err(skge))
  2060. printk(KERN_DEBUG PFX "%s: rx err, slot %d control 0x%x status 0x%x\n",
  2061. skge->netdev->name, slot, control, status);
  2062. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)
  2063. || (control & BMU_BBC) > skge->netdev->mtu + VLAN_ETH_HLEN)
  2064. skge->net_stats.rx_length_errors++;
  2065. else {
  2066. if (skge->hw->chip_id == CHIP_ID_GENESIS) {
  2067. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2068. skge->net_stats.rx_length_errors++;
  2069. if (status & XMR_FS_FRA_ERR)
  2070. skge->net_stats.rx_frame_errors++;
  2071. if (status & XMR_FS_FCS_ERR)
  2072. skge->net_stats.rx_crc_errors++;
  2073. } else {
  2074. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2075. skge->net_stats.rx_length_errors++;
  2076. if (status & GMR_FS_FRAGMENT)
  2077. skge->net_stats.rx_frame_errors++;
  2078. if (status & GMR_FS_CRC_ERR)
  2079. skge->net_stats.rx_crc_errors++;
  2080. }
  2081. }
  2082. }
  2083. static int skge_poll(struct net_device *dev, int *budget)
  2084. {
  2085. struct skge_port *skge = netdev_priv(dev);
  2086. struct skge_hw *hw = skge->hw;
  2087. struct skge_ring *ring = &skge->rx_ring;
  2088. struct skge_element *e;
  2089. unsigned int to_do = min(dev->quota, *budget);
  2090. unsigned int work_done = 0;
  2091. int done;
  2092. static const u32 irqmask[] = { IS_PORT_1, IS_PORT_2 };
  2093. for (e = ring->to_clean; e != ring->to_use && work_done < to_do;
  2094. e = e->next) {
  2095. struct skge_rx_desc *rd = e->desc;
  2096. struct sk_buff *skb = e->skb;
  2097. u32 control, len, status;
  2098. rmb();
  2099. control = rd->control;
  2100. if (control & BMU_OWN)
  2101. break;
  2102. len = control & BMU_BBC;
  2103. e->skb = NULL;
  2104. pci_unmap_single(hw->pdev,
  2105. pci_unmap_addr(e, mapaddr),
  2106. pci_unmap_len(e, maplen),
  2107. PCI_DMA_FROMDEVICE);
  2108. status = rd->status;
  2109. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)
  2110. || len > dev->mtu + VLAN_ETH_HLEN
  2111. || bad_phy_status(hw, status)) {
  2112. skge_rx_error(skge, e - ring->start, control, status);
  2113. dev_kfree_skb(skb);
  2114. continue;
  2115. }
  2116. if (netif_msg_rx_status(skge))
  2117. printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
  2118. dev->name, e - ring->start, rd->status, len);
  2119. skb_put(skb, len);
  2120. skb->protocol = eth_type_trans(skb, dev);
  2121. if (skge->rx_csum) {
  2122. skb->csum = le16_to_cpu(rd->csum2);
  2123. skb->ip_summed = CHECKSUM_HW;
  2124. }
  2125. dev->last_rx = jiffies;
  2126. netif_receive_skb(skb);
  2127. ++work_done;
  2128. }
  2129. ring->to_clean = e;
  2130. *budget -= work_done;
  2131. dev->quota -= work_done;
  2132. done = work_done < to_do;
  2133. if (skge_rx_fill(skge))
  2134. done = 0;
  2135. /* restart receiver */
  2136. wmb();
  2137. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR),
  2138. CSR_START | CSR_IRQ_CL_F);
  2139. if (done) {
  2140. local_irq_disable();
  2141. hw->intr_mask |= irqmask[skge->port];
  2142. /* Order is important since data can get interrupted */
  2143. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2144. __netif_rx_complete(dev);
  2145. local_irq_enable();
  2146. }
  2147. return !done;
  2148. }
  2149. static inline void skge_tx_intr(struct net_device *dev)
  2150. {
  2151. struct skge_port *skge = netdev_priv(dev);
  2152. struct skge_hw *hw = skge->hw;
  2153. struct skge_ring *ring = &skge->tx_ring;
  2154. struct skge_element *e;
  2155. spin_lock(&skge->tx_lock);
  2156. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  2157. struct skge_tx_desc *td = e->desc;
  2158. u32 control;
  2159. rmb();
  2160. control = td->control;
  2161. if (control & BMU_OWN)
  2162. break;
  2163. if (unlikely(netif_msg_tx_done(skge)))
  2164. printk(KERN_DEBUG PFX "%s: tx done slot %td status 0x%x\n",
  2165. dev->name, e - ring->start, td->status);
  2166. skge_tx_free(hw, e);
  2167. e->skb = NULL;
  2168. ++skge->tx_avail;
  2169. }
  2170. ring->to_clean = e;
  2171. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2172. if (skge->tx_avail > MAX_SKB_FRAGS + 1)
  2173. netif_wake_queue(dev);
  2174. spin_unlock(&skge->tx_lock);
  2175. }
  2176. static void skge_mac_parity(struct skge_hw *hw, int port)
  2177. {
  2178. printk(KERN_ERR PFX "%s: mac data parity error\n",
  2179. hw->dev[port] ? hw->dev[port]->name
  2180. : (port == 0 ? "(port A)": "(port B"));
  2181. if (hw->chip_id == CHIP_ID_GENESIS)
  2182. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  2183. MFF_CLR_PERR);
  2184. else
  2185. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2186. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
  2187. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  2188. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2189. }
  2190. static void skge_pci_clear(struct skge_hw *hw)
  2191. {
  2192. u16 status;
  2193. pci_read_config_word(hw->pdev, PCI_STATUS, &status);
  2194. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2195. pci_write_config_word(hw->pdev, PCI_STATUS,
  2196. status | PCI_STATUS_ERROR_BITS);
  2197. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2198. }
  2199. static void skge_mac_intr(struct skge_hw *hw, int port)
  2200. {
  2201. if (hw->chip_id == CHIP_ID_GENESIS)
  2202. genesis_mac_intr(hw, port);
  2203. else
  2204. yukon_mac_intr(hw, port);
  2205. }
  2206. /* Handle device specific framing and timeout interrupts */
  2207. static void skge_error_irq(struct skge_hw *hw)
  2208. {
  2209. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2210. if (hw->chip_id == CHIP_ID_GENESIS) {
  2211. /* clear xmac errors */
  2212. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2213. skge_write16(hw, SK_REG(0, RX_MFF_CTRL1), MFF_CLR_INSTAT);
  2214. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2215. skge_write16(hw, SK_REG(0, RX_MFF_CTRL2), MFF_CLR_INSTAT);
  2216. } else {
  2217. /* Timestamp (unused) overflow */
  2218. if (hwstatus & IS_IRQ_TIST_OV)
  2219. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2220. if (hwstatus & IS_IRQ_SENSOR) {
  2221. /* no sensors on 32-bit Yukon */
  2222. if (!(skge_read16(hw, B0_CTST) & CS_BUS_SLOT_SZ)) {
  2223. printk(KERN_ERR PFX "ignoring bogus sensor interrups\n");
  2224. skge_write32(hw, B0_HWE_IMSK,
  2225. IS_ERR_MSK & ~IS_IRQ_SENSOR);
  2226. } else
  2227. printk(KERN_WARNING PFX "sensor interrupt\n");
  2228. }
  2229. }
  2230. if (hwstatus & IS_RAM_RD_PAR) {
  2231. printk(KERN_ERR PFX "Ram read data parity error\n");
  2232. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2233. }
  2234. if (hwstatus & IS_RAM_WR_PAR) {
  2235. printk(KERN_ERR PFX "Ram write data parity error\n");
  2236. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2237. }
  2238. if (hwstatus & IS_M1_PAR_ERR)
  2239. skge_mac_parity(hw, 0);
  2240. if (hwstatus & IS_M2_PAR_ERR)
  2241. skge_mac_parity(hw, 1);
  2242. if (hwstatus & IS_R1_PAR_ERR)
  2243. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2244. if (hwstatus & IS_R2_PAR_ERR)
  2245. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2246. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2247. printk(KERN_ERR PFX "hardware error detected (status 0x%x)\n",
  2248. hwstatus);
  2249. skge_pci_clear(hw);
  2250. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2251. if (hwstatus & IS_IRQ_STAT) {
  2252. printk(KERN_WARNING PFX "IRQ status %x: still set ignoring hardware errors\n",
  2253. hwstatus);
  2254. hw->intr_mask &= ~IS_HW_ERR;
  2255. }
  2256. }
  2257. }
  2258. /*
  2259. * Interrrupt from PHY are handled in tasklet (soft irq)
  2260. * because accessing phy registers requires spin wait which might
  2261. * cause excess interrupt latency.
  2262. */
  2263. static void skge_extirq(unsigned long data)
  2264. {
  2265. struct skge_hw *hw = (struct skge_hw *) data;
  2266. int port;
  2267. spin_lock(&hw->phy_lock);
  2268. for (port = 0; port < 2; port++) {
  2269. struct net_device *dev = hw->dev[port];
  2270. if (dev && netif_running(dev)) {
  2271. struct skge_port *skge = netdev_priv(dev);
  2272. if (hw->chip_id != CHIP_ID_GENESIS)
  2273. yukon_phy_intr(skge);
  2274. else if (hw->phy_type == SK_PHY_BCOM)
  2275. genesis_bcom_intr(skge);
  2276. }
  2277. }
  2278. spin_unlock(&hw->phy_lock);
  2279. local_irq_disable();
  2280. hw->intr_mask |= IS_EXT_REG;
  2281. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2282. local_irq_enable();
  2283. }
  2284. static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
  2285. {
  2286. struct skge_hw *hw = dev_id;
  2287. u32 status = skge_read32(hw, B0_SP_ISRC);
  2288. if (status == 0 || status == ~0) /* hotplug or shared irq */
  2289. return IRQ_NONE;
  2290. status &= hw->intr_mask;
  2291. if ((status & IS_R1_F) && netif_rx_schedule_prep(hw->dev[0])) {
  2292. status &= ~IS_R1_F;
  2293. hw->intr_mask &= ~IS_R1_F;
  2294. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2295. __netif_rx_schedule(hw->dev[0]);
  2296. }
  2297. if ((status & IS_R2_F) && netif_rx_schedule_prep(hw->dev[1])) {
  2298. status &= ~IS_R2_F;
  2299. hw->intr_mask &= ~IS_R2_F;
  2300. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2301. __netif_rx_schedule(hw->dev[1]);
  2302. }
  2303. if (status & IS_XA1_F)
  2304. skge_tx_intr(hw->dev[0]);
  2305. if (status & IS_XA2_F)
  2306. skge_tx_intr(hw->dev[1]);
  2307. if (status & IS_MAC1)
  2308. skge_mac_intr(hw, 0);
  2309. if (status & IS_MAC2)
  2310. skge_mac_intr(hw, 1);
  2311. if (status & IS_HW_ERR)
  2312. skge_error_irq(hw);
  2313. if (status & IS_EXT_REG) {
  2314. hw->intr_mask &= ~IS_EXT_REG;
  2315. tasklet_schedule(&hw->ext_tasklet);
  2316. }
  2317. if (status)
  2318. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2319. return IRQ_HANDLED;
  2320. }
  2321. #ifdef CONFIG_NET_POLL_CONTROLLER
  2322. static void skge_netpoll(struct net_device *dev)
  2323. {
  2324. struct skge_port *skge = netdev_priv(dev);
  2325. disable_irq(dev->irq);
  2326. skge_intr(dev->irq, skge->hw, NULL);
  2327. enable_irq(dev->irq);
  2328. }
  2329. #endif
  2330. static int skge_set_mac_address(struct net_device *dev, void *p)
  2331. {
  2332. struct skge_port *skge = netdev_priv(dev);
  2333. struct sockaddr *addr = p;
  2334. int err = 0;
  2335. if (!is_valid_ether_addr(addr->sa_data))
  2336. return -EADDRNOTAVAIL;
  2337. skge_down(dev);
  2338. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2339. memcpy_toio(skge->hw->regs + B2_MAC_1 + skge->port*8,
  2340. dev->dev_addr, ETH_ALEN);
  2341. memcpy_toio(skge->hw->regs + B2_MAC_2 + skge->port*8,
  2342. dev->dev_addr, ETH_ALEN);
  2343. if (dev->flags & IFF_UP)
  2344. err = skge_up(dev);
  2345. return err;
  2346. }
  2347. static const struct {
  2348. u8 id;
  2349. const char *name;
  2350. } skge_chips[] = {
  2351. { CHIP_ID_GENESIS, "Genesis" },
  2352. { CHIP_ID_YUKON, "Yukon" },
  2353. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2354. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2355. };
  2356. static const char *skge_board_name(const struct skge_hw *hw)
  2357. {
  2358. int i;
  2359. static char buf[16];
  2360. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2361. if (skge_chips[i].id == hw->chip_id)
  2362. return skge_chips[i].name;
  2363. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  2364. return buf;
  2365. }
  2366. /*
  2367. * Setup the board data structure, but don't bring up
  2368. * the port(s)
  2369. */
  2370. static int skge_reset(struct skge_hw *hw)
  2371. {
  2372. u16 ctst;
  2373. u8 t8, mac_cfg;
  2374. int i;
  2375. ctst = skge_read16(hw, B0_CTST);
  2376. /* do a SW reset */
  2377. skge_write8(hw, B0_CTST, CS_RST_SET);
  2378. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2379. /* clear PCI errors, if any */
  2380. skge_pci_clear(hw);
  2381. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2382. /* restore CLK_RUN bits (for Yukon-Lite) */
  2383. skge_write16(hw, B0_CTST,
  2384. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2385. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2386. hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2387. hw->pmd_type = skge_read8(hw, B2_PMD_TYP);
  2388. switch (hw->chip_id) {
  2389. case CHIP_ID_GENESIS:
  2390. switch (hw->phy_type) {
  2391. case SK_PHY_XMAC:
  2392. hw->phy_addr = PHY_ADDR_XMAC;
  2393. break;
  2394. case SK_PHY_BCOM:
  2395. hw->phy_addr = PHY_ADDR_BCOM;
  2396. break;
  2397. default:
  2398. printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
  2399. pci_name(hw->pdev), hw->phy_type);
  2400. return -EOPNOTSUPP;
  2401. }
  2402. break;
  2403. case CHIP_ID_YUKON:
  2404. case CHIP_ID_YUKON_LITE:
  2405. case CHIP_ID_YUKON_LP:
  2406. if (hw->phy_type < SK_PHY_MARV_COPPER && hw->pmd_type != 'S')
  2407. hw->phy_type = SK_PHY_MARV_COPPER;
  2408. hw->phy_addr = PHY_ADDR_MARV;
  2409. if (!iscopper(hw))
  2410. hw->phy_type = SK_PHY_MARV_FIBER;
  2411. break;
  2412. default:
  2413. printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
  2414. pci_name(hw->pdev), hw->chip_id);
  2415. return -EOPNOTSUPP;
  2416. }
  2417. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2418. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  2419. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  2420. /* read the adapters RAM size */
  2421. t8 = skge_read8(hw, B2_E_0);
  2422. if (hw->chip_id == CHIP_ID_GENESIS) {
  2423. if (t8 == 3) {
  2424. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2425. hw->ram_size = 0x100000;
  2426. hw->ram_offset = 0x80000;
  2427. } else
  2428. hw->ram_size = t8 * 512;
  2429. }
  2430. else if (t8 == 0)
  2431. hw->ram_size = 0x20000;
  2432. else
  2433. hw->ram_size = t8 * 4096;
  2434. if (hw->chip_id == CHIP_ID_GENESIS)
  2435. genesis_init(hw);
  2436. else {
  2437. /* switch power to VCC (WA for VAUX problem) */
  2438. skge_write8(hw, B0_POWER_CTRL,
  2439. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2440. for (i = 0; i < hw->ports; i++) {
  2441. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2442. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2443. }
  2444. }
  2445. /* turn off hardware timer (unused) */
  2446. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2447. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2448. skge_write8(hw, B0_LED, LED_STAT_ON);
  2449. /* enable the Tx Arbiters */
  2450. for (i = 0; i < hw->ports; i++)
  2451. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2452. /* Initialize ram interface */
  2453. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2454. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2455. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2456. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2457. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2458. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2459. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  2460. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  2461. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  2462. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  2463. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  2464. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  2465. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  2466. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  2467. /* Set interrupt moderation for Transmit only
  2468. * Receive interrupts avoided by NAPI
  2469. */
  2470. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  2471. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  2472. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  2473. hw->intr_mask = IS_HW_ERR | IS_EXT_REG | IS_PORT_1;
  2474. if (hw->ports > 1)
  2475. hw->intr_mask |= IS_PORT_2;
  2476. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2477. if (hw->chip_id != CHIP_ID_GENESIS)
  2478. skge_write8(hw, GMAC_IRQ_MSK, 0);
  2479. spin_lock_bh(&hw->phy_lock);
  2480. for (i = 0; i < hw->ports; i++) {
  2481. if (hw->chip_id == CHIP_ID_GENESIS)
  2482. genesis_reset(hw, i);
  2483. else
  2484. yukon_reset(hw, i);
  2485. }
  2486. spin_unlock_bh(&hw->phy_lock);
  2487. return 0;
  2488. }
  2489. /* Initialize network device */
  2490. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  2491. int highmem)
  2492. {
  2493. struct skge_port *skge;
  2494. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  2495. if (!dev) {
  2496. printk(KERN_ERR "skge etherdev alloc failed");
  2497. return NULL;
  2498. }
  2499. SET_MODULE_OWNER(dev);
  2500. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  2501. dev->open = skge_up;
  2502. dev->stop = skge_down;
  2503. dev->hard_start_xmit = skge_xmit_frame;
  2504. dev->get_stats = skge_get_stats;
  2505. if (hw->chip_id == CHIP_ID_GENESIS)
  2506. dev->set_multicast_list = genesis_set_multicast;
  2507. else
  2508. dev->set_multicast_list = yukon_set_multicast;
  2509. dev->set_mac_address = skge_set_mac_address;
  2510. dev->change_mtu = skge_change_mtu;
  2511. SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
  2512. dev->tx_timeout = skge_tx_timeout;
  2513. dev->watchdog_timeo = TX_WATCHDOG;
  2514. dev->poll = skge_poll;
  2515. dev->weight = NAPI_WEIGHT;
  2516. #ifdef CONFIG_NET_POLL_CONTROLLER
  2517. dev->poll_controller = skge_netpoll;
  2518. #endif
  2519. dev->irq = hw->pdev->irq;
  2520. dev->features = NETIF_F_LLTX;
  2521. if (highmem)
  2522. dev->features |= NETIF_F_HIGHDMA;
  2523. skge = netdev_priv(dev);
  2524. skge->netdev = dev;
  2525. skge->hw = hw;
  2526. skge->msg_enable = netif_msg_init(debug, default_msg);
  2527. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  2528. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  2529. /* Auto speed and flow control */
  2530. skge->autoneg = AUTONEG_ENABLE;
  2531. skge->flow_control = FLOW_MODE_SYMMETRIC;
  2532. skge->duplex = -1;
  2533. skge->speed = -1;
  2534. skge->advertising = skge_modes(hw);
  2535. hw->dev[port] = dev;
  2536. skge->port = port;
  2537. spin_lock_init(&skge->tx_lock);
  2538. init_timer(&skge->link_check);
  2539. skge->link_check.function = skge_link_timer;
  2540. skge->link_check.data = (unsigned long) skge;
  2541. init_timer(&skge->led_blink);
  2542. skge->led_blink.function = skge_blink_timer;
  2543. skge->led_blink.data = (unsigned long) skge;
  2544. if (hw->chip_id != CHIP_ID_GENESIS) {
  2545. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  2546. skge->rx_csum = 1;
  2547. }
  2548. /* read the mac address */
  2549. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  2550. /* device is off until link detection */
  2551. netif_carrier_off(dev);
  2552. netif_stop_queue(dev);
  2553. return dev;
  2554. }
  2555. static void __devinit skge_show_addr(struct net_device *dev)
  2556. {
  2557. const struct skge_port *skge = netdev_priv(dev);
  2558. if (netif_msg_probe(skge))
  2559. printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  2560. dev->name,
  2561. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2562. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2563. }
  2564. static int __devinit skge_probe(struct pci_dev *pdev,
  2565. const struct pci_device_id *ent)
  2566. {
  2567. struct net_device *dev, *dev1;
  2568. struct skge_hw *hw;
  2569. int err, using_dac = 0;
  2570. if ((err = pci_enable_device(pdev))) {
  2571. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  2572. pci_name(pdev));
  2573. goto err_out;
  2574. }
  2575. if ((err = pci_request_regions(pdev, DRV_NAME))) {
  2576. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  2577. pci_name(pdev));
  2578. goto err_out_disable_pdev;
  2579. }
  2580. pci_set_master(pdev);
  2581. if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)))
  2582. using_dac = 1;
  2583. else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  2584. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  2585. pci_name(pdev));
  2586. goto err_out_free_regions;
  2587. }
  2588. #ifdef __BIG_ENDIAN
  2589. /* byte swap decriptors in hardware */
  2590. {
  2591. u32 reg;
  2592. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  2593. reg |= PCI_REV_DESC;
  2594. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  2595. }
  2596. #endif
  2597. err = -ENOMEM;
  2598. hw = kmalloc(sizeof(*hw), GFP_KERNEL);
  2599. if (!hw) {
  2600. printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
  2601. pci_name(pdev));
  2602. goto err_out_free_regions;
  2603. }
  2604. memset(hw, 0, sizeof(*hw));
  2605. hw->pdev = pdev;
  2606. spin_lock_init(&hw->phy_lock);
  2607. tasklet_init(&hw->ext_tasklet, skge_extirq, (unsigned long) hw);
  2608. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  2609. if (!hw->regs) {
  2610. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  2611. pci_name(pdev));
  2612. goto err_out_free_hw;
  2613. }
  2614. if ((err = request_irq(pdev->irq, skge_intr, SA_SHIRQ, DRV_NAME, hw))) {
  2615. printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
  2616. pci_name(pdev), pdev->irq);
  2617. goto err_out_iounmap;
  2618. }
  2619. pci_set_drvdata(pdev, hw);
  2620. err = skge_reset(hw);
  2621. if (err)
  2622. goto err_out_free_irq;
  2623. printk(KERN_INFO PFX "addr 0x%lx irq %d chip %s rev %d\n",
  2624. pci_resource_start(pdev, 0), pdev->irq,
  2625. skge_board_name(hw), hw->chip_rev);
  2626. if ((dev = skge_devinit(hw, 0, using_dac)) == NULL)
  2627. goto err_out_led_off;
  2628. if ((err = register_netdev(dev))) {
  2629. printk(KERN_ERR PFX "%s: cannot register net device\n",
  2630. pci_name(pdev));
  2631. goto err_out_free_netdev;
  2632. }
  2633. skge_show_addr(dev);
  2634. if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
  2635. if (register_netdev(dev1) == 0)
  2636. skge_show_addr(dev1);
  2637. else {
  2638. /* Failure to register second port need not be fatal */
  2639. printk(KERN_WARNING PFX "register of second port failed\n");
  2640. hw->dev[1] = NULL;
  2641. free_netdev(dev1);
  2642. }
  2643. }
  2644. return 0;
  2645. err_out_free_netdev:
  2646. free_netdev(dev);
  2647. err_out_led_off:
  2648. skge_write16(hw, B0_LED, LED_STAT_OFF);
  2649. err_out_free_irq:
  2650. free_irq(pdev->irq, hw);
  2651. err_out_iounmap:
  2652. iounmap(hw->regs);
  2653. err_out_free_hw:
  2654. kfree(hw);
  2655. err_out_free_regions:
  2656. pci_release_regions(pdev);
  2657. err_out_disable_pdev:
  2658. pci_disable_device(pdev);
  2659. pci_set_drvdata(pdev, NULL);
  2660. err_out:
  2661. return err;
  2662. }
  2663. static void __devexit skge_remove(struct pci_dev *pdev)
  2664. {
  2665. struct skge_hw *hw = pci_get_drvdata(pdev);
  2666. struct net_device *dev0, *dev1;
  2667. if (!hw)
  2668. return;
  2669. if ((dev1 = hw->dev[1]))
  2670. unregister_netdev(dev1);
  2671. dev0 = hw->dev[0];
  2672. unregister_netdev(dev0);
  2673. tasklet_kill(&hw->ext_tasklet);
  2674. free_irq(pdev->irq, hw);
  2675. pci_release_regions(pdev);
  2676. pci_disable_device(pdev);
  2677. if (dev1)
  2678. free_netdev(dev1);
  2679. free_netdev(dev0);
  2680. skge_write16(hw, B0_LED, LED_STAT_OFF);
  2681. iounmap(hw->regs);
  2682. kfree(hw);
  2683. pci_set_drvdata(pdev, NULL);
  2684. }
  2685. #ifdef CONFIG_PM
  2686. static int skge_suspend(struct pci_dev *pdev, u32 state)
  2687. {
  2688. struct skge_hw *hw = pci_get_drvdata(pdev);
  2689. int i, wol = 0;
  2690. for (i = 0; i < 2; i++) {
  2691. struct net_device *dev = hw->dev[i];
  2692. if (dev) {
  2693. struct skge_port *skge = netdev_priv(dev);
  2694. if (netif_running(dev)) {
  2695. netif_carrier_off(dev);
  2696. skge_down(dev);
  2697. }
  2698. netif_device_detach(dev);
  2699. wol |= skge->wol;
  2700. }
  2701. }
  2702. pci_save_state(pdev);
  2703. pci_enable_wake(pdev, state, wol);
  2704. pci_disable_device(pdev);
  2705. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  2706. return 0;
  2707. }
  2708. static int skge_resume(struct pci_dev *pdev)
  2709. {
  2710. struct skge_hw *hw = pci_get_drvdata(pdev);
  2711. int i;
  2712. pci_set_power_state(pdev, PCI_D0);
  2713. pci_restore_state(pdev);
  2714. pci_enable_wake(pdev, PCI_D0, 0);
  2715. skge_reset(hw);
  2716. for (i = 0; i < 2; i++) {
  2717. struct net_device *dev = hw->dev[i];
  2718. if (dev) {
  2719. netif_device_attach(dev);
  2720. if (netif_running(dev))
  2721. skge_up(dev);
  2722. }
  2723. }
  2724. return 0;
  2725. }
  2726. #endif
  2727. static struct pci_driver skge_driver = {
  2728. .name = DRV_NAME,
  2729. .id_table = skge_id_table,
  2730. .probe = skge_probe,
  2731. .remove = __devexit_p(skge_remove),
  2732. #ifdef CONFIG_PM
  2733. .suspend = skge_suspend,
  2734. .resume = skge_resume,
  2735. #endif
  2736. };
  2737. static int __init skge_init_module(void)
  2738. {
  2739. return pci_module_init(&skge_driver);
  2740. }
  2741. static void __exit skge_cleanup_module(void)
  2742. {
  2743. pci_unregister_driver(&skge_driver);
  2744. }
  2745. module_init(skge_init_module);
  2746. module_exit(skge_cleanup_module);