intel_display.c 237 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/cpufreq.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include "drmP.h"
  35. #include "intel_drv.h"
  36. #include "i915_drm.h"
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include "drm_dp_helper.h"
  40. #include "drm_crtc_helper.h"
  41. #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_update_watermarks(struct drm_device *dev);
  44. static void intel_increase_pllclock(struct drm_crtc *crtc);
  45. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  46. typedef struct {
  47. /* given values */
  48. int n;
  49. int m1, m2;
  50. int p1, p2;
  51. /* derived values */
  52. int dot;
  53. int vco;
  54. int m;
  55. int p;
  56. } intel_clock_t;
  57. typedef struct {
  58. int min, max;
  59. } intel_range_t;
  60. typedef struct {
  61. int dot_limit;
  62. int p2_slow, p2_fast;
  63. } intel_p2_t;
  64. #define INTEL_P2_NUM 2
  65. typedef struct intel_limit intel_limit_t;
  66. struct intel_limit {
  67. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  68. intel_p2_t p2;
  69. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  70. int, int, intel_clock_t *);
  71. };
  72. /* FDI */
  73. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  74. static bool
  75. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  76. int target, int refclk, intel_clock_t *best_clock);
  77. static bool
  78. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  79. int target, int refclk, intel_clock_t *best_clock);
  80. static bool
  81. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  82. int target, int refclk, intel_clock_t *best_clock);
  83. static bool
  84. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  85. int target, int refclk, intel_clock_t *best_clock);
  86. static inline u32 /* units of 100MHz */
  87. intel_fdi_link_freq(struct drm_device *dev)
  88. {
  89. if (IS_GEN5(dev)) {
  90. struct drm_i915_private *dev_priv = dev->dev_private;
  91. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  92. } else
  93. return 27;
  94. }
  95. static const intel_limit_t intel_limits_i8xx_dvo = {
  96. .dot = { .min = 25000, .max = 350000 },
  97. .vco = { .min = 930000, .max = 1400000 },
  98. .n = { .min = 3, .max = 16 },
  99. .m = { .min = 96, .max = 140 },
  100. .m1 = { .min = 18, .max = 26 },
  101. .m2 = { .min = 6, .max = 16 },
  102. .p = { .min = 4, .max = 128 },
  103. .p1 = { .min = 2, .max = 33 },
  104. .p2 = { .dot_limit = 165000,
  105. .p2_slow = 4, .p2_fast = 2 },
  106. .find_pll = intel_find_best_PLL,
  107. };
  108. static const intel_limit_t intel_limits_i8xx_lvds = {
  109. .dot = { .min = 25000, .max = 350000 },
  110. .vco = { .min = 930000, .max = 1400000 },
  111. .n = { .min = 3, .max = 16 },
  112. .m = { .min = 96, .max = 140 },
  113. .m1 = { .min = 18, .max = 26 },
  114. .m2 = { .min = 6, .max = 16 },
  115. .p = { .min = 4, .max = 128 },
  116. .p1 = { .min = 1, .max = 6 },
  117. .p2 = { .dot_limit = 165000,
  118. .p2_slow = 14, .p2_fast = 7 },
  119. .find_pll = intel_find_best_PLL,
  120. };
  121. static const intel_limit_t intel_limits_i9xx_sdvo = {
  122. .dot = { .min = 20000, .max = 400000 },
  123. .vco = { .min = 1400000, .max = 2800000 },
  124. .n = { .min = 1, .max = 6 },
  125. .m = { .min = 70, .max = 120 },
  126. .m1 = { .min = 10, .max = 22 },
  127. .m2 = { .min = 5, .max = 9 },
  128. .p = { .min = 5, .max = 80 },
  129. .p1 = { .min = 1, .max = 8 },
  130. .p2 = { .dot_limit = 200000,
  131. .p2_slow = 10, .p2_fast = 5 },
  132. .find_pll = intel_find_best_PLL,
  133. };
  134. static const intel_limit_t intel_limits_i9xx_lvds = {
  135. .dot = { .min = 20000, .max = 400000 },
  136. .vco = { .min = 1400000, .max = 2800000 },
  137. .n = { .min = 1, .max = 6 },
  138. .m = { .min = 70, .max = 120 },
  139. .m1 = { .min = 10, .max = 22 },
  140. .m2 = { .min = 5, .max = 9 },
  141. .p = { .min = 7, .max = 98 },
  142. .p1 = { .min = 1, .max = 8 },
  143. .p2 = { .dot_limit = 112000,
  144. .p2_slow = 14, .p2_fast = 7 },
  145. .find_pll = intel_find_best_PLL,
  146. };
  147. static const intel_limit_t intel_limits_g4x_sdvo = {
  148. .dot = { .min = 25000, .max = 270000 },
  149. .vco = { .min = 1750000, .max = 3500000},
  150. .n = { .min = 1, .max = 4 },
  151. .m = { .min = 104, .max = 138 },
  152. .m1 = { .min = 17, .max = 23 },
  153. .m2 = { .min = 5, .max = 11 },
  154. .p = { .min = 10, .max = 30 },
  155. .p1 = { .min = 1, .max = 3},
  156. .p2 = { .dot_limit = 270000,
  157. .p2_slow = 10,
  158. .p2_fast = 10
  159. },
  160. .find_pll = intel_g4x_find_best_PLL,
  161. };
  162. static const intel_limit_t intel_limits_g4x_hdmi = {
  163. .dot = { .min = 22000, .max = 400000 },
  164. .vco = { .min = 1750000, .max = 3500000},
  165. .n = { .min = 1, .max = 4 },
  166. .m = { .min = 104, .max = 138 },
  167. .m1 = { .min = 16, .max = 23 },
  168. .m2 = { .min = 5, .max = 11 },
  169. .p = { .min = 5, .max = 80 },
  170. .p1 = { .min = 1, .max = 8},
  171. .p2 = { .dot_limit = 165000,
  172. .p2_slow = 10, .p2_fast = 5 },
  173. .find_pll = intel_g4x_find_best_PLL,
  174. };
  175. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  176. .dot = { .min = 20000, .max = 115000 },
  177. .vco = { .min = 1750000, .max = 3500000 },
  178. .n = { .min = 1, .max = 3 },
  179. .m = { .min = 104, .max = 138 },
  180. .m1 = { .min = 17, .max = 23 },
  181. .m2 = { .min = 5, .max = 11 },
  182. .p = { .min = 28, .max = 112 },
  183. .p1 = { .min = 2, .max = 8 },
  184. .p2 = { .dot_limit = 0,
  185. .p2_slow = 14, .p2_fast = 14
  186. },
  187. .find_pll = intel_g4x_find_best_PLL,
  188. };
  189. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  190. .dot = { .min = 80000, .max = 224000 },
  191. .vco = { .min = 1750000, .max = 3500000 },
  192. .n = { .min = 1, .max = 3 },
  193. .m = { .min = 104, .max = 138 },
  194. .m1 = { .min = 17, .max = 23 },
  195. .m2 = { .min = 5, .max = 11 },
  196. .p = { .min = 14, .max = 42 },
  197. .p1 = { .min = 2, .max = 6 },
  198. .p2 = { .dot_limit = 0,
  199. .p2_slow = 7, .p2_fast = 7
  200. },
  201. .find_pll = intel_g4x_find_best_PLL,
  202. };
  203. static const intel_limit_t intel_limits_g4x_display_port = {
  204. .dot = { .min = 161670, .max = 227000 },
  205. .vco = { .min = 1750000, .max = 3500000},
  206. .n = { .min = 1, .max = 2 },
  207. .m = { .min = 97, .max = 108 },
  208. .m1 = { .min = 0x10, .max = 0x12 },
  209. .m2 = { .min = 0x05, .max = 0x06 },
  210. .p = { .min = 10, .max = 20 },
  211. .p1 = { .min = 1, .max = 2},
  212. .p2 = { .dot_limit = 0,
  213. .p2_slow = 10, .p2_fast = 10 },
  214. .find_pll = intel_find_pll_g4x_dp,
  215. };
  216. static const intel_limit_t intel_limits_pineview_sdvo = {
  217. .dot = { .min = 20000, .max = 400000},
  218. .vco = { .min = 1700000, .max = 3500000 },
  219. /* Pineview's Ncounter is a ring counter */
  220. .n = { .min = 3, .max = 6 },
  221. .m = { .min = 2, .max = 256 },
  222. /* Pineview only has one combined m divider, which we treat as m2. */
  223. .m1 = { .min = 0, .max = 0 },
  224. .m2 = { .min = 0, .max = 254 },
  225. .p = { .min = 5, .max = 80 },
  226. .p1 = { .min = 1, .max = 8 },
  227. .p2 = { .dot_limit = 200000,
  228. .p2_slow = 10, .p2_fast = 5 },
  229. .find_pll = intel_find_best_PLL,
  230. };
  231. static const intel_limit_t intel_limits_pineview_lvds = {
  232. .dot = { .min = 20000, .max = 400000 },
  233. .vco = { .min = 1700000, .max = 3500000 },
  234. .n = { .min = 3, .max = 6 },
  235. .m = { .min = 2, .max = 256 },
  236. .m1 = { .min = 0, .max = 0 },
  237. .m2 = { .min = 0, .max = 254 },
  238. .p = { .min = 7, .max = 112 },
  239. .p1 = { .min = 1, .max = 8 },
  240. .p2 = { .dot_limit = 112000,
  241. .p2_slow = 14, .p2_fast = 14 },
  242. .find_pll = intel_find_best_PLL,
  243. };
  244. /* Ironlake / Sandybridge
  245. *
  246. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  247. * the range value for them is (actual_value - 2).
  248. */
  249. static const intel_limit_t intel_limits_ironlake_dac = {
  250. .dot = { .min = 25000, .max = 350000 },
  251. .vco = { .min = 1760000, .max = 3510000 },
  252. .n = { .min = 1, .max = 5 },
  253. .m = { .min = 79, .max = 127 },
  254. .m1 = { .min = 12, .max = 22 },
  255. .m2 = { .min = 5, .max = 9 },
  256. .p = { .min = 5, .max = 80 },
  257. .p1 = { .min = 1, .max = 8 },
  258. .p2 = { .dot_limit = 225000,
  259. .p2_slow = 10, .p2_fast = 5 },
  260. .find_pll = intel_g4x_find_best_PLL,
  261. };
  262. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  263. .dot = { .min = 25000, .max = 350000 },
  264. .vco = { .min = 1760000, .max = 3510000 },
  265. .n = { .min = 1, .max = 3 },
  266. .m = { .min = 79, .max = 118 },
  267. .m1 = { .min = 12, .max = 22 },
  268. .m2 = { .min = 5, .max = 9 },
  269. .p = { .min = 28, .max = 112 },
  270. .p1 = { .min = 2, .max = 8 },
  271. .p2 = { .dot_limit = 225000,
  272. .p2_slow = 14, .p2_fast = 14 },
  273. .find_pll = intel_g4x_find_best_PLL,
  274. };
  275. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  276. .dot = { .min = 25000, .max = 350000 },
  277. .vco = { .min = 1760000, .max = 3510000 },
  278. .n = { .min = 1, .max = 3 },
  279. .m = { .min = 79, .max = 127 },
  280. .m1 = { .min = 12, .max = 22 },
  281. .m2 = { .min = 5, .max = 9 },
  282. .p = { .min = 14, .max = 56 },
  283. .p1 = { .min = 2, .max = 8 },
  284. .p2 = { .dot_limit = 225000,
  285. .p2_slow = 7, .p2_fast = 7 },
  286. .find_pll = intel_g4x_find_best_PLL,
  287. };
  288. /* LVDS 100mhz refclk limits. */
  289. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  290. .dot = { .min = 25000, .max = 350000 },
  291. .vco = { .min = 1760000, .max = 3510000 },
  292. .n = { .min = 1, .max = 2 },
  293. .m = { .min = 79, .max = 126 },
  294. .m1 = { .min = 12, .max = 22 },
  295. .m2 = { .min = 5, .max = 9 },
  296. .p = { .min = 28, .max = 112 },
  297. .p1 = { .min = 2, .max = 8 },
  298. .p2 = { .dot_limit = 225000,
  299. .p2_slow = 14, .p2_fast = 14 },
  300. .find_pll = intel_g4x_find_best_PLL,
  301. };
  302. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  303. .dot = { .min = 25000, .max = 350000 },
  304. .vco = { .min = 1760000, .max = 3510000 },
  305. .n = { .min = 1, .max = 3 },
  306. .m = { .min = 79, .max = 126 },
  307. .m1 = { .min = 12, .max = 22 },
  308. .m2 = { .min = 5, .max = 9 },
  309. .p = { .min = 14, .max = 42 },
  310. .p1 = { .min = 2, .max = 6 },
  311. .p2 = { .dot_limit = 225000,
  312. .p2_slow = 7, .p2_fast = 7 },
  313. .find_pll = intel_g4x_find_best_PLL,
  314. };
  315. static const intel_limit_t intel_limits_ironlake_display_port = {
  316. .dot = { .min = 25000, .max = 350000 },
  317. .vco = { .min = 1760000, .max = 3510000},
  318. .n = { .min = 1, .max = 2 },
  319. .m = { .min = 81, .max = 90 },
  320. .m1 = { .min = 12, .max = 22 },
  321. .m2 = { .min = 5, .max = 9 },
  322. .p = { .min = 10, .max = 20 },
  323. .p1 = { .min = 1, .max = 2},
  324. .p2 = { .dot_limit = 0,
  325. .p2_slow = 10, .p2_fast = 10 },
  326. .find_pll = intel_find_pll_ironlake_dp,
  327. };
  328. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  329. int refclk)
  330. {
  331. struct drm_device *dev = crtc->dev;
  332. struct drm_i915_private *dev_priv = dev->dev_private;
  333. const intel_limit_t *limit;
  334. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  335. if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
  336. LVDS_CLKB_POWER_UP) {
  337. /* LVDS dual channel */
  338. if (refclk == 100000)
  339. limit = &intel_limits_ironlake_dual_lvds_100m;
  340. else
  341. limit = &intel_limits_ironlake_dual_lvds;
  342. } else {
  343. if (refclk == 100000)
  344. limit = &intel_limits_ironlake_single_lvds_100m;
  345. else
  346. limit = &intel_limits_ironlake_single_lvds;
  347. }
  348. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  349. HAS_eDP)
  350. limit = &intel_limits_ironlake_display_port;
  351. else
  352. limit = &intel_limits_ironlake_dac;
  353. return limit;
  354. }
  355. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  356. {
  357. struct drm_device *dev = crtc->dev;
  358. struct drm_i915_private *dev_priv = dev->dev_private;
  359. const intel_limit_t *limit;
  360. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  361. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  362. LVDS_CLKB_POWER_UP)
  363. /* LVDS with dual channel */
  364. limit = &intel_limits_g4x_dual_channel_lvds;
  365. else
  366. /* LVDS with dual channel */
  367. limit = &intel_limits_g4x_single_channel_lvds;
  368. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  369. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  370. limit = &intel_limits_g4x_hdmi;
  371. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  372. limit = &intel_limits_g4x_sdvo;
  373. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  374. limit = &intel_limits_g4x_display_port;
  375. } else /* The option is for other outputs */
  376. limit = &intel_limits_i9xx_sdvo;
  377. return limit;
  378. }
  379. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  380. {
  381. struct drm_device *dev = crtc->dev;
  382. const intel_limit_t *limit;
  383. if (HAS_PCH_SPLIT(dev))
  384. limit = intel_ironlake_limit(crtc, refclk);
  385. else if (IS_G4X(dev)) {
  386. limit = intel_g4x_limit(crtc);
  387. } else if (IS_PINEVIEW(dev)) {
  388. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  389. limit = &intel_limits_pineview_lvds;
  390. else
  391. limit = &intel_limits_pineview_sdvo;
  392. } else if (!IS_GEN2(dev)) {
  393. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  394. limit = &intel_limits_i9xx_lvds;
  395. else
  396. limit = &intel_limits_i9xx_sdvo;
  397. } else {
  398. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  399. limit = &intel_limits_i8xx_lvds;
  400. else
  401. limit = &intel_limits_i8xx_dvo;
  402. }
  403. return limit;
  404. }
  405. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  406. static void pineview_clock(int refclk, intel_clock_t *clock)
  407. {
  408. clock->m = clock->m2 + 2;
  409. clock->p = clock->p1 * clock->p2;
  410. clock->vco = refclk * clock->m / clock->n;
  411. clock->dot = clock->vco / clock->p;
  412. }
  413. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  414. {
  415. if (IS_PINEVIEW(dev)) {
  416. pineview_clock(refclk, clock);
  417. return;
  418. }
  419. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  420. clock->p = clock->p1 * clock->p2;
  421. clock->vco = refclk * clock->m / (clock->n + 2);
  422. clock->dot = clock->vco / clock->p;
  423. }
  424. /**
  425. * Returns whether any output on the specified pipe is of the specified type
  426. */
  427. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  428. {
  429. struct drm_device *dev = crtc->dev;
  430. struct drm_mode_config *mode_config = &dev->mode_config;
  431. struct intel_encoder *encoder;
  432. list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
  433. if (encoder->base.crtc == crtc && encoder->type == type)
  434. return true;
  435. return false;
  436. }
  437. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  438. /**
  439. * Returns whether the given set of divisors are valid for a given refclk with
  440. * the given connectors.
  441. */
  442. static bool intel_PLL_is_valid(struct drm_device *dev,
  443. const intel_limit_t *limit,
  444. const intel_clock_t *clock)
  445. {
  446. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  447. INTELPllInvalid("p1 out of range\n");
  448. if (clock->p < limit->p.min || limit->p.max < clock->p)
  449. INTELPllInvalid("p out of range\n");
  450. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  451. INTELPllInvalid("m2 out of range\n");
  452. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  453. INTELPllInvalid("m1 out of range\n");
  454. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  455. INTELPllInvalid("m1 <= m2\n");
  456. if (clock->m < limit->m.min || limit->m.max < clock->m)
  457. INTELPllInvalid("m out of range\n");
  458. if (clock->n < limit->n.min || limit->n.max < clock->n)
  459. INTELPllInvalid("n out of range\n");
  460. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  461. INTELPllInvalid("vco out of range\n");
  462. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  463. * connector, etc., rather than just a single range.
  464. */
  465. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  466. INTELPllInvalid("dot out of range\n");
  467. return true;
  468. }
  469. static bool
  470. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  471. int target, int refclk, intel_clock_t *best_clock)
  472. {
  473. struct drm_device *dev = crtc->dev;
  474. struct drm_i915_private *dev_priv = dev->dev_private;
  475. intel_clock_t clock;
  476. int err = target;
  477. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  478. (I915_READ(LVDS)) != 0) {
  479. /*
  480. * For LVDS, if the panel is on, just rely on its current
  481. * settings for dual-channel. We haven't figured out how to
  482. * reliably set up different single/dual channel state, if we
  483. * even can.
  484. */
  485. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  486. LVDS_CLKB_POWER_UP)
  487. clock.p2 = limit->p2.p2_fast;
  488. else
  489. clock.p2 = limit->p2.p2_slow;
  490. } else {
  491. if (target < limit->p2.dot_limit)
  492. clock.p2 = limit->p2.p2_slow;
  493. else
  494. clock.p2 = limit->p2.p2_fast;
  495. }
  496. memset(best_clock, 0, sizeof(*best_clock));
  497. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  498. clock.m1++) {
  499. for (clock.m2 = limit->m2.min;
  500. clock.m2 <= limit->m2.max; clock.m2++) {
  501. /* m1 is always 0 in Pineview */
  502. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  503. break;
  504. for (clock.n = limit->n.min;
  505. clock.n <= limit->n.max; clock.n++) {
  506. for (clock.p1 = limit->p1.min;
  507. clock.p1 <= limit->p1.max; clock.p1++) {
  508. int this_err;
  509. intel_clock(dev, refclk, &clock);
  510. if (!intel_PLL_is_valid(dev, limit,
  511. &clock))
  512. continue;
  513. this_err = abs(clock.dot - target);
  514. if (this_err < err) {
  515. *best_clock = clock;
  516. err = this_err;
  517. }
  518. }
  519. }
  520. }
  521. }
  522. return (err != target);
  523. }
  524. static bool
  525. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  526. int target, int refclk, intel_clock_t *best_clock)
  527. {
  528. struct drm_device *dev = crtc->dev;
  529. struct drm_i915_private *dev_priv = dev->dev_private;
  530. intel_clock_t clock;
  531. int max_n;
  532. bool found;
  533. /* approximately equals target * 0.00585 */
  534. int err_most = (target >> 8) + (target >> 9);
  535. found = false;
  536. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  537. int lvds_reg;
  538. if (HAS_PCH_SPLIT(dev))
  539. lvds_reg = PCH_LVDS;
  540. else
  541. lvds_reg = LVDS;
  542. if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
  543. LVDS_CLKB_POWER_UP)
  544. clock.p2 = limit->p2.p2_fast;
  545. else
  546. clock.p2 = limit->p2.p2_slow;
  547. } else {
  548. if (target < limit->p2.dot_limit)
  549. clock.p2 = limit->p2.p2_slow;
  550. else
  551. clock.p2 = limit->p2.p2_fast;
  552. }
  553. memset(best_clock, 0, sizeof(*best_clock));
  554. max_n = limit->n.max;
  555. /* based on hardware requirement, prefer smaller n to precision */
  556. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  557. /* based on hardware requirement, prefere larger m1,m2 */
  558. for (clock.m1 = limit->m1.max;
  559. clock.m1 >= limit->m1.min; clock.m1--) {
  560. for (clock.m2 = limit->m2.max;
  561. clock.m2 >= limit->m2.min; clock.m2--) {
  562. for (clock.p1 = limit->p1.max;
  563. clock.p1 >= limit->p1.min; clock.p1--) {
  564. int this_err;
  565. intel_clock(dev, refclk, &clock);
  566. if (!intel_PLL_is_valid(dev, limit,
  567. &clock))
  568. continue;
  569. this_err = abs(clock.dot - target);
  570. if (this_err < err_most) {
  571. *best_clock = clock;
  572. err_most = this_err;
  573. max_n = clock.n;
  574. found = true;
  575. }
  576. }
  577. }
  578. }
  579. }
  580. return found;
  581. }
  582. static bool
  583. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  584. int target, int refclk, intel_clock_t *best_clock)
  585. {
  586. struct drm_device *dev = crtc->dev;
  587. intel_clock_t clock;
  588. if (target < 200000) {
  589. clock.n = 1;
  590. clock.p1 = 2;
  591. clock.p2 = 10;
  592. clock.m1 = 12;
  593. clock.m2 = 9;
  594. } else {
  595. clock.n = 2;
  596. clock.p1 = 1;
  597. clock.p2 = 10;
  598. clock.m1 = 14;
  599. clock.m2 = 8;
  600. }
  601. intel_clock(dev, refclk, &clock);
  602. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  603. return true;
  604. }
  605. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  606. static bool
  607. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  608. int target, int refclk, intel_clock_t *best_clock)
  609. {
  610. intel_clock_t clock;
  611. if (target < 200000) {
  612. clock.p1 = 2;
  613. clock.p2 = 10;
  614. clock.n = 2;
  615. clock.m1 = 23;
  616. clock.m2 = 8;
  617. } else {
  618. clock.p1 = 1;
  619. clock.p2 = 10;
  620. clock.n = 1;
  621. clock.m1 = 14;
  622. clock.m2 = 2;
  623. }
  624. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  625. clock.p = (clock.p1 * clock.p2);
  626. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  627. clock.vco = 0;
  628. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  629. return true;
  630. }
  631. /**
  632. * intel_wait_for_vblank - wait for vblank on a given pipe
  633. * @dev: drm device
  634. * @pipe: pipe to wait for
  635. *
  636. * Wait for vblank to occur on a given pipe. Needed for various bits of
  637. * mode setting code.
  638. */
  639. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  640. {
  641. struct drm_i915_private *dev_priv = dev->dev_private;
  642. int pipestat_reg = PIPESTAT(pipe);
  643. /* Clear existing vblank status. Note this will clear any other
  644. * sticky status fields as well.
  645. *
  646. * This races with i915_driver_irq_handler() with the result
  647. * that either function could miss a vblank event. Here it is not
  648. * fatal, as we will either wait upon the next vblank interrupt or
  649. * timeout. Generally speaking intel_wait_for_vblank() is only
  650. * called during modeset at which time the GPU should be idle and
  651. * should *not* be performing page flips and thus not waiting on
  652. * vblanks...
  653. * Currently, the result of us stealing a vblank from the irq
  654. * handler is that a single frame will be skipped during swapbuffers.
  655. */
  656. I915_WRITE(pipestat_reg,
  657. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  658. /* Wait for vblank interrupt bit to set */
  659. if (wait_for(I915_READ(pipestat_reg) &
  660. PIPE_VBLANK_INTERRUPT_STATUS,
  661. 50))
  662. DRM_DEBUG_KMS("vblank wait timed out\n");
  663. }
  664. /*
  665. * intel_wait_for_pipe_off - wait for pipe to turn off
  666. * @dev: drm device
  667. * @pipe: pipe to wait for
  668. *
  669. * After disabling a pipe, we can't wait for vblank in the usual way,
  670. * spinning on the vblank interrupt status bit, since we won't actually
  671. * see an interrupt when the pipe is disabled.
  672. *
  673. * On Gen4 and above:
  674. * wait for the pipe register state bit to turn off
  675. *
  676. * Otherwise:
  677. * wait for the display line value to settle (it usually
  678. * ends up stopping at the start of the next frame).
  679. *
  680. */
  681. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  682. {
  683. struct drm_i915_private *dev_priv = dev->dev_private;
  684. if (INTEL_INFO(dev)->gen >= 4) {
  685. int reg = PIPECONF(pipe);
  686. /* Wait for the Pipe State to go off */
  687. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  688. 100))
  689. DRM_DEBUG_KMS("pipe_off wait timed out\n");
  690. } else {
  691. u32 last_line;
  692. int reg = PIPEDSL(pipe);
  693. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  694. /* Wait for the display line to settle */
  695. do {
  696. last_line = I915_READ(reg) & DSL_LINEMASK;
  697. mdelay(5);
  698. } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
  699. time_after(timeout, jiffies));
  700. if (time_after(jiffies, timeout))
  701. DRM_DEBUG_KMS("pipe_off wait timed out\n");
  702. }
  703. }
  704. static const char *state_string(bool enabled)
  705. {
  706. return enabled ? "on" : "off";
  707. }
  708. /* Only for pre-ILK configs */
  709. static void assert_pll(struct drm_i915_private *dev_priv,
  710. enum pipe pipe, bool state)
  711. {
  712. int reg;
  713. u32 val;
  714. bool cur_state;
  715. reg = DPLL(pipe);
  716. val = I915_READ(reg);
  717. cur_state = !!(val & DPLL_VCO_ENABLE);
  718. WARN(cur_state != state,
  719. "PLL state assertion failure (expected %s, current %s)\n",
  720. state_string(state), state_string(cur_state));
  721. }
  722. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  723. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  724. /* For ILK+ */
  725. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  726. enum pipe pipe, bool state)
  727. {
  728. int reg;
  729. u32 val;
  730. bool cur_state;
  731. reg = PCH_DPLL(pipe);
  732. val = I915_READ(reg);
  733. cur_state = !!(val & DPLL_VCO_ENABLE);
  734. WARN(cur_state != state,
  735. "PCH PLL state assertion failure (expected %s, current %s)\n",
  736. state_string(state), state_string(cur_state));
  737. }
  738. #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
  739. #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
  740. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  741. enum pipe pipe, bool state)
  742. {
  743. int reg;
  744. u32 val;
  745. bool cur_state;
  746. reg = FDI_TX_CTL(pipe);
  747. val = I915_READ(reg);
  748. cur_state = !!(val & FDI_TX_ENABLE);
  749. WARN(cur_state != state,
  750. "FDI TX state assertion failure (expected %s, current %s)\n",
  751. state_string(state), state_string(cur_state));
  752. }
  753. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  754. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  755. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  756. enum pipe pipe, bool state)
  757. {
  758. int reg;
  759. u32 val;
  760. bool cur_state;
  761. reg = FDI_RX_CTL(pipe);
  762. val = I915_READ(reg);
  763. cur_state = !!(val & FDI_RX_ENABLE);
  764. WARN(cur_state != state,
  765. "FDI RX state assertion failure (expected %s, current %s)\n",
  766. state_string(state), state_string(cur_state));
  767. }
  768. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  769. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  770. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  771. enum pipe pipe)
  772. {
  773. int reg;
  774. u32 val;
  775. /* ILK FDI PLL is always enabled */
  776. if (dev_priv->info->gen == 5)
  777. return;
  778. reg = FDI_TX_CTL(pipe);
  779. val = I915_READ(reg);
  780. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  781. }
  782. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  783. enum pipe pipe)
  784. {
  785. int reg;
  786. u32 val;
  787. reg = FDI_RX_CTL(pipe);
  788. val = I915_READ(reg);
  789. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  790. }
  791. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  792. enum pipe pipe)
  793. {
  794. int pp_reg, lvds_reg;
  795. u32 val;
  796. enum pipe panel_pipe = PIPE_A;
  797. bool locked = true;
  798. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  799. pp_reg = PCH_PP_CONTROL;
  800. lvds_reg = PCH_LVDS;
  801. } else {
  802. pp_reg = PP_CONTROL;
  803. lvds_reg = LVDS;
  804. }
  805. val = I915_READ(pp_reg);
  806. if (!(val & PANEL_POWER_ON) ||
  807. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  808. locked = false;
  809. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  810. panel_pipe = PIPE_B;
  811. WARN(panel_pipe == pipe && locked,
  812. "panel assertion failure, pipe %c regs locked\n",
  813. pipe_name(pipe));
  814. }
  815. static void assert_pipe(struct drm_i915_private *dev_priv,
  816. enum pipe pipe, bool state)
  817. {
  818. int reg;
  819. u32 val;
  820. bool cur_state;
  821. reg = PIPECONF(pipe);
  822. val = I915_READ(reg);
  823. cur_state = !!(val & PIPECONF_ENABLE);
  824. WARN(cur_state != state,
  825. "pipe %c assertion failure (expected %s, current %s)\n",
  826. pipe_name(pipe), state_string(state), state_string(cur_state));
  827. }
  828. #define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
  829. #define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
  830. static void assert_plane_enabled(struct drm_i915_private *dev_priv,
  831. enum plane plane)
  832. {
  833. int reg;
  834. u32 val;
  835. reg = DSPCNTR(plane);
  836. val = I915_READ(reg);
  837. WARN(!(val & DISPLAY_PLANE_ENABLE),
  838. "plane %c assertion failure, should be active but is disabled\n",
  839. plane_name(plane));
  840. }
  841. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  842. enum pipe pipe)
  843. {
  844. int reg, i;
  845. u32 val;
  846. int cur_pipe;
  847. /* Planes are fixed to pipes on ILK+ */
  848. if (HAS_PCH_SPLIT(dev_priv->dev))
  849. return;
  850. /* Need to check both planes against the pipe */
  851. for (i = 0; i < 2; i++) {
  852. reg = DSPCNTR(i);
  853. val = I915_READ(reg);
  854. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  855. DISPPLANE_SEL_PIPE_SHIFT;
  856. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  857. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  858. plane_name(i), pipe_name(pipe));
  859. }
  860. }
  861. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  862. {
  863. u32 val;
  864. bool enabled;
  865. val = I915_READ(PCH_DREF_CONTROL);
  866. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  867. DREF_SUPERSPREAD_SOURCE_MASK));
  868. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  869. }
  870. static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
  871. enum pipe pipe)
  872. {
  873. int reg;
  874. u32 val;
  875. bool enabled;
  876. reg = TRANSCONF(pipe);
  877. val = I915_READ(reg);
  878. enabled = !!(val & TRANS_ENABLE);
  879. WARN(enabled,
  880. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  881. pipe_name(pipe));
  882. }
  883. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  884. enum pipe pipe, u32 port_sel, u32 val)
  885. {
  886. if ((val & DP_PORT_EN) == 0)
  887. return false;
  888. if (HAS_PCH_CPT(dev_priv->dev)) {
  889. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  890. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  891. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  892. return false;
  893. } else {
  894. if ((val & DP_PIPE_MASK) != (pipe << 30))
  895. return false;
  896. }
  897. return true;
  898. }
  899. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  900. enum pipe pipe, u32 val)
  901. {
  902. if ((val & PORT_ENABLE) == 0)
  903. return false;
  904. if (HAS_PCH_CPT(dev_priv->dev)) {
  905. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  906. return false;
  907. } else {
  908. if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
  909. return false;
  910. }
  911. return true;
  912. }
  913. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  914. enum pipe pipe, u32 val)
  915. {
  916. if ((val & LVDS_PORT_EN) == 0)
  917. return false;
  918. if (HAS_PCH_CPT(dev_priv->dev)) {
  919. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  920. return false;
  921. } else {
  922. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  923. return false;
  924. }
  925. return true;
  926. }
  927. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  928. enum pipe pipe, u32 val)
  929. {
  930. if ((val & ADPA_DAC_ENABLE) == 0)
  931. return false;
  932. if (HAS_PCH_CPT(dev_priv->dev)) {
  933. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  934. return false;
  935. } else {
  936. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  937. return false;
  938. }
  939. return true;
  940. }
  941. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  942. enum pipe pipe, int reg, u32 port_sel)
  943. {
  944. u32 val = I915_READ(reg);
  945. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  946. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  947. reg, pipe_name(pipe));
  948. }
  949. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  950. enum pipe pipe, int reg)
  951. {
  952. u32 val = I915_READ(reg);
  953. WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
  954. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  955. reg, pipe_name(pipe));
  956. }
  957. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  958. enum pipe pipe)
  959. {
  960. int reg;
  961. u32 val;
  962. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  963. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  964. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  965. reg = PCH_ADPA;
  966. val = I915_READ(reg);
  967. WARN(adpa_pipe_enabled(dev_priv, val, pipe),
  968. "PCH VGA enabled on transcoder %c, should be disabled\n",
  969. pipe_name(pipe));
  970. reg = PCH_LVDS;
  971. val = I915_READ(reg);
  972. WARN(lvds_pipe_enabled(dev_priv, val, pipe),
  973. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  974. pipe_name(pipe));
  975. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
  976. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
  977. assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
  978. }
  979. /**
  980. * intel_enable_pll - enable a PLL
  981. * @dev_priv: i915 private structure
  982. * @pipe: pipe PLL to enable
  983. *
  984. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  985. * make sure the PLL reg is writable first though, since the panel write
  986. * protect mechanism may be enabled.
  987. *
  988. * Note! This is for pre-ILK only.
  989. */
  990. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  991. {
  992. int reg;
  993. u32 val;
  994. /* No really, not for ILK+ */
  995. BUG_ON(dev_priv->info->gen >= 5);
  996. /* PLL is protected by panel, make sure we can write it */
  997. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  998. assert_panel_unlocked(dev_priv, pipe);
  999. reg = DPLL(pipe);
  1000. val = I915_READ(reg);
  1001. val |= DPLL_VCO_ENABLE;
  1002. /* We do this three times for luck */
  1003. I915_WRITE(reg, val);
  1004. POSTING_READ(reg);
  1005. udelay(150); /* wait for warmup */
  1006. I915_WRITE(reg, val);
  1007. POSTING_READ(reg);
  1008. udelay(150); /* wait for warmup */
  1009. I915_WRITE(reg, val);
  1010. POSTING_READ(reg);
  1011. udelay(150); /* wait for warmup */
  1012. }
  1013. /**
  1014. * intel_disable_pll - disable a PLL
  1015. * @dev_priv: i915 private structure
  1016. * @pipe: pipe PLL to disable
  1017. *
  1018. * Disable the PLL for @pipe, making sure the pipe is off first.
  1019. *
  1020. * Note! This is for pre-ILK only.
  1021. */
  1022. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1023. {
  1024. int reg;
  1025. u32 val;
  1026. /* Don't disable pipe A or pipe A PLLs if needed */
  1027. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1028. return;
  1029. /* Make sure the pipe isn't still relying on us */
  1030. assert_pipe_disabled(dev_priv, pipe);
  1031. reg = DPLL(pipe);
  1032. val = I915_READ(reg);
  1033. val &= ~DPLL_VCO_ENABLE;
  1034. I915_WRITE(reg, val);
  1035. POSTING_READ(reg);
  1036. }
  1037. /**
  1038. * intel_enable_pch_pll - enable PCH PLL
  1039. * @dev_priv: i915 private structure
  1040. * @pipe: pipe PLL to enable
  1041. *
  1042. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1043. * drives the transcoder clock.
  1044. */
  1045. static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
  1046. enum pipe pipe)
  1047. {
  1048. int reg;
  1049. u32 val;
  1050. /* PCH only available on ILK+ */
  1051. BUG_ON(dev_priv->info->gen < 5);
  1052. /* PCH refclock must be enabled first */
  1053. assert_pch_refclk_enabled(dev_priv);
  1054. reg = PCH_DPLL(pipe);
  1055. val = I915_READ(reg);
  1056. val |= DPLL_VCO_ENABLE;
  1057. I915_WRITE(reg, val);
  1058. POSTING_READ(reg);
  1059. udelay(200);
  1060. }
  1061. static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
  1062. enum pipe pipe)
  1063. {
  1064. int reg;
  1065. u32 val;
  1066. /* PCH only available on ILK+ */
  1067. BUG_ON(dev_priv->info->gen < 5);
  1068. /* Make sure transcoder isn't still depending on us */
  1069. assert_transcoder_disabled(dev_priv, pipe);
  1070. reg = PCH_DPLL(pipe);
  1071. val = I915_READ(reg);
  1072. val &= ~DPLL_VCO_ENABLE;
  1073. I915_WRITE(reg, val);
  1074. POSTING_READ(reg);
  1075. udelay(200);
  1076. }
  1077. static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
  1078. enum pipe pipe)
  1079. {
  1080. int reg;
  1081. u32 val;
  1082. /* PCH only available on ILK+ */
  1083. BUG_ON(dev_priv->info->gen < 5);
  1084. /* Make sure PCH DPLL is enabled */
  1085. assert_pch_pll_enabled(dev_priv, pipe);
  1086. /* FDI must be feeding us bits for PCH ports */
  1087. assert_fdi_tx_enabled(dev_priv, pipe);
  1088. assert_fdi_rx_enabled(dev_priv, pipe);
  1089. reg = TRANSCONF(pipe);
  1090. val = I915_READ(reg);
  1091. if (HAS_PCH_IBX(dev_priv->dev)) {
  1092. /*
  1093. * make the BPC in transcoder be consistent with
  1094. * that in pipeconf reg.
  1095. */
  1096. val &= ~PIPE_BPC_MASK;
  1097. val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
  1098. }
  1099. I915_WRITE(reg, val | TRANS_ENABLE);
  1100. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1101. DRM_ERROR("failed to enable transcoder %d\n", pipe);
  1102. }
  1103. static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
  1104. enum pipe pipe)
  1105. {
  1106. int reg;
  1107. u32 val;
  1108. /* FDI relies on the transcoder */
  1109. assert_fdi_tx_disabled(dev_priv, pipe);
  1110. assert_fdi_rx_disabled(dev_priv, pipe);
  1111. /* Ports must be off as well */
  1112. assert_pch_ports_disabled(dev_priv, pipe);
  1113. reg = TRANSCONF(pipe);
  1114. val = I915_READ(reg);
  1115. val &= ~TRANS_ENABLE;
  1116. I915_WRITE(reg, val);
  1117. /* wait for PCH transcoder off, transcoder state */
  1118. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1119. DRM_ERROR("failed to disable transcoder\n");
  1120. }
  1121. /**
  1122. * intel_enable_pipe - enable a pipe, asserting requirements
  1123. * @dev_priv: i915 private structure
  1124. * @pipe: pipe to enable
  1125. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1126. *
  1127. * Enable @pipe, making sure that various hardware specific requirements
  1128. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1129. *
  1130. * @pipe should be %PIPE_A or %PIPE_B.
  1131. *
  1132. * Will wait until the pipe is actually running (i.e. first vblank) before
  1133. * returning.
  1134. */
  1135. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1136. bool pch_port)
  1137. {
  1138. int reg;
  1139. u32 val;
  1140. /*
  1141. * A pipe without a PLL won't actually be able to drive bits from
  1142. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1143. * need the check.
  1144. */
  1145. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1146. assert_pll_enabled(dev_priv, pipe);
  1147. else {
  1148. if (pch_port) {
  1149. /* if driving the PCH, we need FDI enabled */
  1150. assert_fdi_rx_pll_enabled(dev_priv, pipe);
  1151. assert_fdi_tx_pll_enabled(dev_priv, pipe);
  1152. }
  1153. /* FIXME: assert CPU port conditions for SNB+ */
  1154. }
  1155. reg = PIPECONF(pipe);
  1156. val = I915_READ(reg);
  1157. if (val & PIPECONF_ENABLE)
  1158. return;
  1159. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1160. intel_wait_for_vblank(dev_priv->dev, pipe);
  1161. }
  1162. /**
  1163. * intel_disable_pipe - disable a pipe, asserting requirements
  1164. * @dev_priv: i915 private structure
  1165. * @pipe: pipe to disable
  1166. *
  1167. * Disable @pipe, making sure that various hardware specific requirements
  1168. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1169. *
  1170. * @pipe should be %PIPE_A or %PIPE_B.
  1171. *
  1172. * Will wait until the pipe has shut down before returning.
  1173. */
  1174. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1175. enum pipe pipe)
  1176. {
  1177. int reg;
  1178. u32 val;
  1179. /*
  1180. * Make sure planes won't keep trying to pump pixels to us,
  1181. * or we might hang the display.
  1182. */
  1183. assert_planes_disabled(dev_priv, pipe);
  1184. /* Don't disable pipe A or pipe A PLLs if needed */
  1185. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1186. return;
  1187. reg = PIPECONF(pipe);
  1188. val = I915_READ(reg);
  1189. if ((val & PIPECONF_ENABLE) == 0)
  1190. return;
  1191. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1192. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1193. }
  1194. /*
  1195. * Plane regs are double buffered, going from enabled->disabled needs a
  1196. * trigger in order to latch. The display address reg provides this.
  1197. */
  1198. static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1199. enum plane plane)
  1200. {
  1201. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1202. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1203. }
  1204. /**
  1205. * intel_enable_plane - enable a display plane on a given pipe
  1206. * @dev_priv: i915 private structure
  1207. * @plane: plane to enable
  1208. * @pipe: pipe being fed
  1209. *
  1210. * Enable @plane on @pipe, making sure that @pipe is running first.
  1211. */
  1212. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1213. enum plane plane, enum pipe pipe)
  1214. {
  1215. int reg;
  1216. u32 val;
  1217. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1218. assert_pipe_enabled(dev_priv, pipe);
  1219. reg = DSPCNTR(plane);
  1220. val = I915_READ(reg);
  1221. if (val & DISPLAY_PLANE_ENABLE)
  1222. return;
  1223. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1224. intel_flush_display_plane(dev_priv, plane);
  1225. intel_wait_for_vblank(dev_priv->dev, pipe);
  1226. }
  1227. /**
  1228. * intel_disable_plane - disable a display plane
  1229. * @dev_priv: i915 private structure
  1230. * @plane: plane to disable
  1231. * @pipe: pipe consuming the data
  1232. *
  1233. * Disable @plane; should be an independent operation.
  1234. */
  1235. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1236. enum plane plane, enum pipe pipe)
  1237. {
  1238. int reg;
  1239. u32 val;
  1240. reg = DSPCNTR(plane);
  1241. val = I915_READ(reg);
  1242. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1243. return;
  1244. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1245. intel_flush_display_plane(dev_priv, plane);
  1246. intel_wait_for_vblank(dev_priv->dev, pipe);
  1247. }
  1248. static void disable_pch_dp(struct drm_i915_private *dev_priv,
  1249. enum pipe pipe, int reg, u32 port_sel)
  1250. {
  1251. u32 val = I915_READ(reg);
  1252. if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
  1253. DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
  1254. I915_WRITE(reg, val & ~DP_PORT_EN);
  1255. }
  1256. }
  1257. static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
  1258. enum pipe pipe, int reg)
  1259. {
  1260. u32 val = I915_READ(reg);
  1261. if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
  1262. DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
  1263. reg, pipe);
  1264. I915_WRITE(reg, val & ~PORT_ENABLE);
  1265. }
  1266. }
  1267. /* Disable any ports connected to this transcoder */
  1268. static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
  1269. enum pipe pipe)
  1270. {
  1271. u32 reg, val;
  1272. val = I915_READ(PCH_PP_CONTROL);
  1273. I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
  1274. disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1275. disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1276. disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1277. reg = PCH_ADPA;
  1278. val = I915_READ(reg);
  1279. if (adpa_pipe_enabled(dev_priv, val, pipe))
  1280. I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
  1281. reg = PCH_LVDS;
  1282. val = I915_READ(reg);
  1283. if (lvds_pipe_enabled(dev_priv, val, pipe)) {
  1284. DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
  1285. I915_WRITE(reg, val & ~LVDS_PORT_EN);
  1286. POSTING_READ(reg);
  1287. udelay(100);
  1288. }
  1289. disable_pch_hdmi(dev_priv, pipe, HDMIB);
  1290. disable_pch_hdmi(dev_priv, pipe, HDMIC);
  1291. disable_pch_hdmi(dev_priv, pipe, HDMID);
  1292. }
  1293. static void i8xx_disable_fbc(struct drm_device *dev)
  1294. {
  1295. struct drm_i915_private *dev_priv = dev->dev_private;
  1296. u32 fbc_ctl;
  1297. /* Disable compression */
  1298. fbc_ctl = I915_READ(FBC_CONTROL);
  1299. if ((fbc_ctl & FBC_CTL_EN) == 0)
  1300. return;
  1301. fbc_ctl &= ~FBC_CTL_EN;
  1302. I915_WRITE(FBC_CONTROL, fbc_ctl);
  1303. /* Wait for compressing bit to clear */
  1304. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  1305. DRM_DEBUG_KMS("FBC idle timed out\n");
  1306. return;
  1307. }
  1308. DRM_DEBUG_KMS("disabled FBC\n");
  1309. }
  1310. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1311. {
  1312. struct drm_device *dev = crtc->dev;
  1313. struct drm_i915_private *dev_priv = dev->dev_private;
  1314. struct drm_framebuffer *fb = crtc->fb;
  1315. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1316. struct drm_i915_gem_object *obj = intel_fb->obj;
  1317. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1318. int cfb_pitch;
  1319. int plane, i;
  1320. u32 fbc_ctl, fbc_ctl2;
  1321. cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
  1322. if (fb->pitch < cfb_pitch)
  1323. cfb_pitch = fb->pitch;
  1324. /* FBC_CTL wants 64B units */
  1325. cfb_pitch = (cfb_pitch / 64) - 1;
  1326. plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  1327. /* Clear old tags */
  1328. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  1329. I915_WRITE(FBC_TAG + (i * 4), 0);
  1330. /* Set it up... */
  1331. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  1332. fbc_ctl2 |= plane;
  1333. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  1334. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  1335. /* enable it... */
  1336. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  1337. if (IS_I945GM(dev))
  1338. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  1339. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  1340. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  1341. fbc_ctl |= obj->fence_reg;
  1342. I915_WRITE(FBC_CONTROL, fbc_ctl);
  1343. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
  1344. cfb_pitch, crtc->y, intel_crtc->plane);
  1345. }
  1346. static bool i8xx_fbc_enabled(struct drm_device *dev)
  1347. {
  1348. struct drm_i915_private *dev_priv = dev->dev_private;
  1349. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  1350. }
  1351. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1352. {
  1353. struct drm_device *dev = crtc->dev;
  1354. struct drm_i915_private *dev_priv = dev->dev_private;
  1355. struct drm_framebuffer *fb = crtc->fb;
  1356. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1357. struct drm_i915_gem_object *obj = intel_fb->obj;
  1358. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1359. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  1360. unsigned long stall_watermark = 200;
  1361. u32 dpfc_ctl;
  1362. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  1363. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  1364. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  1365. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  1366. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  1367. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  1368. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  1369. /* enable it... */
  1370. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  1371. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1372. }
  1373. static void g4x_disable_fbc(struct drm_device *dev)
  1374. {
  1375. struct drm_i915_private *dev_priv = dev->dev_private;
  1376. u32 dpfc_ctl;
  1377. /* Disable compression */
  1378. dpfc_ctl = I915_READ(DPFC_CONTROL);
  1379. if (dpfc_ctl & DPFC_CTL_EN) {
  1380. dpfc_ctl &= ~DPFC_CTL_EN;
  1381. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  1382. DRM_DEBUG_KMS("disabled FBC\n");
  1383. }
  1384. }
  1385. static bool g4x_fbc_enabled(struct drm_device *dev)
  1386. {
  1387. struct drm_i915_private *dev_priv = dev->dev_private;
  1388. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  1389. }
  1390. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  1391. {
  1392. struct drm_i915_private *dev_priv = dev->dev_private;
  1393. u32 blt_ecoskpd;
  1394. /* Make sure blitter notifies FBC of writes */
  1395. gen6_gt_force_wake_get(dev_priv);
  1396. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  1397. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  1398. GEN6_BLITTER_LOCK_SHIFT;
  1399. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1400. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  1401. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1402. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  1403. GEN6_BLITTER_LOCK_SHIFT);
  1404. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1405. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  1406. gen6_gt_force_wake_put(dev_priv);
  1407. }
  1408. static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1409. {
  1410. struct drm_device *dev = crtc->dev;
  1411. struct drm_i915_private *dev_priv = dev->dev_private;
  1412. struct drm_framebuffer *fb = crtc->fb;
  1413. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1414. struct drm_i915_gem_object *obj = intel_fb->obj;
  1415. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1416. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  1417. unsigned long stall_watermark = 200;
  1418. u32 dpfc_ctl;
  1419. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  1420. dpfc_ctl &= DPFC_RESERVED;
  1421. dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
  1422. /* Set persistent mode for front-buffer rendering, ala X. */
  1423. dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
  1424. dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
  1425. I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
  1426. I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  1427. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  1428. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  1429. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  1430. I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
  1431. /* enable it... */
  1432. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  1433. if (IS_GEN6(dev)) {
  1434. I915_WRITE(SNB_DPFC_CTL_SA,
  1435. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  1436. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  1437. sandybridge_blit_fbc_update(dev);
  1438. }
  1439. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1440. }
  1441. static void ironlake_disable_fbc(struct drm_device *dev)
  1442. {
  1443. struct drm_i915_private *dev_priv = dev->dev_private;
  1444. u32 dpfc_ctl;
  1445. /* Disable compression */
  1446. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  1447. if (dpfc_ctl & DPFC_CTL_EN) {
  1448. dpfc_ctl &= ~DPFC_CTL_EN;
  1449. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  1450. DRM_DEBUG_KMS("disabled FBC\n");
  1451. }
  1452. }
  1453. static bool ironlake_fbc_enabled(struct drm_device *dev)
  1454. {
  1455. struct drm_i915_private *dev_priv = dev->dev_private;
  1456. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  1457. }
  1458. bool intel_fbc_enabled(struct drm_device *dev)
  1459. {
  1460. struct drm_i915_private *dev_priv = dev->dev_private;
  1461. if (!dev_priv->display.fbc_enabled)
  1462. return false;
  1463. return dev_priv->display.fbc_enabled(dev);
  1464. }
  1465. static void intel_fbc_work_fn(struct work_struct *__work)
  1466. {
  1467. struct intel_fbc_work *work =
  1468. container_of(to_delayed_work(__work),
  1469. struct intel_fbc_work, work);
  1470. struct drm_device *dev = work->crtc->dev;
  1471. struct drm_i915_private *dev_priv = dev->dev_private;
  1472. mutex_lock(&dev->struct_mutex);
  1473. if (work == dev_priv->fbc_work) {
  1474. /* Double check that we haven't switched fb without cancelling
  1475. * the prior work.
  1476. */
  1477. if (work->crtc->fb == work->fb) {
  1478. dev_priv->display.enable_fbc(work->crtc,
  1479. work->interval);
  1480. dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
  1481. dev_priv->cfb_fb = work->crtc->fb->base.id;
  1482. dev_priv->cfb_y = work->crtc->y;
  1483. }
  1484. dev_priv->fbc_work = NULL;
  1485. }
  1486. mutex_unlock(&dev->struct_mutex);
  1487. kfree(work);
  1488. }
  1489. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  1490. {
  1491. if (dev_priv->fbc_work == NULL)
  1492. return;
  1493. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  1494. /* Synchronisation is provided by struct_mutex and checking of
  1495. * dev_priv->fbc_work, so we can perform the cancellation
  1496. * entirely asynchronously.
  1497. */
  1498. if (cancel_delayed_work(&dev_priv->fbc_work->work))
  1499. /* tasklet was killed before being run, clean up */
  1500. kfree(dev_priv->fbc_work);
  1501. /* Mark the work as no longer wanted so that if it does
  1502. * wake-up (because the work was already running and waiting
  1503. * for our mutex), it will discover that is no longer
  1504. * necessary to run.
  1505. */
  1506. dev_priv->fbc_work = NULL;
  1507. }
  1508. static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1509. {
  1510. struct intel_fbc_work *work;
  1511. struct drm_device *dev = crtc->dev;
  1512. struct drm_i915_private *dev_priv = dev->dev_private;
  1513. if (!dev_priv->display.enable_fbc)
  1514. return;
  1515. intel_cancel_fbc_work(dev_priv);
  1516. work = kzalloc(sizeof *work, GFP_KERNEL);
  1517. if (work == NULL) {
  1518. dev_priv->display.enable_fbc(crtc, interval);
  1519. return;
  1520. }
  1521. work->crtc = crtc;
  1522. work->fb = crtc->fb;
  1523. work->interval = interval;
  1524. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  1525. dev_priv->fbc_work = work;
  1526. DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
  1527. /* Delay the actual enabling to let pageflipping cease and the
  1528. * display to settle before starting the compression. Note that
  1529. * this delay also serves a second purpose: it allows for a
  1530. * vblank to pass after disabling the FBC before we attempt
  1531. * to modify the control registers.
  1532. *
  1533. * A more complicated solution would involve tracking vblanks
  1534. * following the termination of the page-flipping sequence
  1535. * and indeed performing the enable as a co-routine and not
  1536. * waiting synchronously upon the vblank.
  1537. */
  1538. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  1539. }
  1540. void intel_disable_fbc(struct drm_device *dev)
  1541. {
  1542. struct drm_i915_private *dev_priv = dev->dev_private;
  1543. intel_cancel_fbc_work(dev_priv);
  1544. if (!dev_priv->display.disable_fbc)
  1545. return;
  1546. dev_priv->display.disable_fbc(dev);
  1547. dev_priv->cfb_plane = -1;
  1548. }
  1549. /**
  1550. * intel_update_fbc - enable/disable FBC as needed
  1551. * @dev: the drm_device
  1552. *
  1553. * Set up the framebuffer compression hardware at mode set time. We
  1554. * enable it if possible:
  1555. * - plane A only (on pre-965)
  1556. * - no pixel mulitply/line duplication
  1557. * - no alpha buffer discard
  1558. * - no dual wide
  1559. * - framebuffer <= 2048 in width, 1536 in height
  1560. *
  1561. * We can't assume that any compression will take place (worst case),
  1562. * so the compressed buffer has to be the same size as the uncompressed
  1563. * one. It also must reside (along with the line length buffer) in
  1564. * stolen memory.
  1565. *
  1566. * We need to enable/disable FBC on a global basis.
  1567. */
  1568. static void intel_update_fbc(struct drm_device *dev)
  1569. {
  1570. struct drm_i915_private *dev_priv = dev->dev_private;
  1571. struct drm_crtc *crtc = NULL, *tmp_crtc;
  1572. struct intel_crtc *intel_crtc;
  1573. struct drm_framebuffer *fb;
  1574. struct intel_framebuffer *intel_fb;
  1575. struct drm_i915_gem_object *obj;
  1576. int enable_fbc;
  1577. DRM_DEBUG_KMS("\n");
  1578. if (!i915_powersave)
  1579. return;
  1580. if (!I915_HAS_FBC(dev))
  1581. return;
  1582. /*
  1583. * If FBC is already on, we just have to verify that we can
  1584. * keep it that way...
  1585. * Need to disable if:
  1586. * - more than one pipe is active
  1587. * - changing FBC params (stride, fence, mode)
  1588. * - new fb is too large to fit in compressed buffer
  1589. * - going to an unsupported config (interlace, pixel multiply, etc.)
  1590. */
  1591. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  1592. if (tmp_crtc->enabled && tmp_crtc->fb) {
  1593. if (crtc) {
  1594. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  1595. dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
  1596. goto out_disable;
  1597. }
  1598. crtc = tmp_crtc;
  1599. }
  1600. }
  1601. if (!crtc || crtc->fb == NULL) {
  1602. DRM_DEBUG_KMS("no output, disabling\n");
  1603. dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
  1604. goto out_disable;
  1605. }
  1606. intel_crtc = to_intel_crtc(crtc);
  1607. fb = crtc->fb;
  1608. intel_fb = to_intel_framebuffer(fb);
  1609. obj = intel_fb->obj;
  1610. enable_fbc = i915_enable_fbc;
  1611. if (enable_fbc < 0) {
  1612. DRM_DEBUG_KMS("fbc set to per-chip default\n");
  1613. enable_fbc = 1;
  1614. if (INTEL_INFO(dev)->gen <= 5)
  1615. enable_fbc = 0;
  1616. }
  1617. if (!enable_fbc) {
  1618. DRM_DEBUG_KMS("fbc disabled per module param\n");
  1619. dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
  1620. goto out_disable;
  1621. }
  1622. if (intel_fb->obj->base.size > dev_priv->cfb_size) {
  1623. DRM_DEBUG_KMS("framebuffer too large, disabling "
  1624. "compression\n");
  1625. dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
  1626. goto out_disable;
  1627. }
  1628. if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
  1629. (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
  1630. DRM_DEBUG_KMS("mode incompatible with compression, "
  1631. "disabling\n");
  1632. dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
  1633. goto out_disable;
  1634. }
  1635. if ((crtc->mode.hdisplay > 2048) ||
  1636. (crtc->mode.vdisplay > 1536)) {
  1637. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  1638. dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
  1639. goto out_disable;
  1640. }
  1641. if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
  1642. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  1643. dev_priv->no_fbc_reason = FBC_BAD_PLANE;
  1644. goto out_disable;
  1645. }
  1646. /* The use of a CPU fence is mandatory in order to detect writes
  1647. * by the CPU to the scanout and trigger updates to the FBC.
  1648. */
  1649. if (obj->tiling_mode != I915_TILING_X ||
  1650. obj->fence_reg == I915_FENCE_REG_NONE) {
  1651. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  1652. dev_priv->no_fbc_reason = FBC_NOT_TILED;
  1653. goto out_disable;
  1654. }
  1655. /* If the kernel debugger is active, always disable compression */
  1656. if (in_dbg_master())
  1657. goto out_disable;
  1658. /* If the scanout has not changed, don't modify the FBC settings.
  1659. * Note that we make the fundamental assumption that the fb->obj
  1660. * cannot be unpinned (and have its GTT offset and fence revoked)
  1661. * without first being decoupled from the scanout and FBC disabled.
  1662. */
  1663. if (dev_priv->cfb_plane == intel_crtc->plane &&
  1664. dev_priv->cfb_fb == fb->base.id &&
  1665. dev_priv->cfb_y == crtc->y)
  1666. return;
  1667. if (intel_fbc_enabled(dev)) {
  1668. /* We update FBC along two paths, after changing fb/crtc
  1669. * configuration (modeswitching) and after page-flipping
  1670. * finishes. For the latter, we know that not only did
  1671. * we disable the FBC at the start of the page-flip
  1672. * sequence, but also more than one vblank has passed.
  1673. *
  1674. * For the former case of modeswitching, it is possible
  1675. * to switch between two FBC valid configurations
  1676. * instantaneously so we do need to disable the FBC
  1677. * before we can modify its control registers. We also
  1678. * have to wait for the next vblank for that to take
  1679. * effect. However, since we delay enabling FBC we can
  1680. * assume that a vblank has passed since disabling and
  1681. * that we can safely alter the registers in the deferred
  1682. * callback.
  1683. *
  1684. * In the scenario that we go from a valid to invalid
  1685. * and then back to valid FBC configuration we have
  1686. * no strict enforcement that a vblank occurred since
  1687. * disabling the FBC. However, along all current pipe
  1688. * disabling paths we do need to wait for a vblank at
  1689. * some point. And we wait before enabling FBC anyway.
  1690. */
  1691. DRM_DEBUG_KMS("disabling active FBC for update\n");
  1692. intel_disable_fbc(dev);
  1693. }
  1694. intel_enable_fbc(crtc, 500);
  1695. return;
  1696. out_disable:
  1697. /* Multiple disables should be harmless */
  1698. if (intel_fbc_enabled(dev)) {
  1699. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  1700. intel_disable_fbc(dev);
  1701. }
  1702. }
  1703. int
  1704. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1705. struct drm_i915_gem_object *obj,
  1706. struct intel_ring_buffer *pipelined)
  1707. {
  1708. struct drm_i915_private *dev_priv = dev->dev_private;
  1709. u32 alignment;
  1710. int ret;
  1711. switch (obj->tiling_mode) {
  1712. case I915_TILING_NONE:
  1713. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1714. alignment = 128 * 1024;
  1715. else if (INTEL_INFO(dev)->gen >= 4)
  1716. alignment = 4 * 1024;
  1717. else
  1718. alignment = 64 * 1024;
  1719. break;
  1720. case I915_TILING_X:
  1721. /* pin() will align the object as required by fence */
  1722. alignment = 0;
  1723. break;
  1724. case I915_TILING_Y:
  1725. /* FIXME: Is this true? */
  1726. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1727. return -EINVAL;
  1728. default:
  1729. BUG();
  1730. }
  1731. dev_priv->mm.interruptible = false;
  1732. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1733. if (ret)
  1734. goto err_interruptible;
  1735. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1736. * fence, whereas 965+ only requires a fence if using
  1737. * framebuffer compression. For simplicity, we always install
  1738. * a fence as the cost is not that onerous.
  1739. */
  1740. if (obj->tiling_mode != I915_TILING_NONE) {
  1741. ret = i915_gem_object_get_fence(obj, pipelined);
  1742. if (ret)
  1743. goto err_unpin;
  1744. }
  1745. dev_priv->mm.interruptible = true;
  1746. return 0;
  1747. err_unpin:
  1748. i915_gem_object_unpin(obj);
  1749. err_interruptible:
  1750. dev_priv->mm.interruptible = true;
  1751. return ret;
  1752. }
  1753. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1754. int x, int y)
  1755. {
  1756. struct drm_device *dev = crtc->dev;
  1757. struct drm_i915_private *dev_priv = dev->dev_private;
  1758. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1759. struct intel_framebuffer *intel_fb;
  1760. struct drm_i915_gem_object *obj;
  1761. int plane = intel_crtc->plane;
  1762. unsigned long Start, Offset;
  1763. u32 dspcntr;
  1764. u32 reg;
  1765. switch (plane) {
  1766. case 0:
  1767. case 1:
  1768. break;
  1769. default:
  1770. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1771. return -EINVAL;
  1772. }
  1773. intel_fb = to_intel_framebuffer(fb);
  1774. obj = intel_fb->obj;
  1775. reg = DSPCNTR(plane);
  1776. dspcntr = I915_READ(reg);
  1777. /* Mask out pixel format bits in case we change it */
  1778. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1779. switch (fb->bits_per_pixel) {
  1780. case 8:
  1781. dspcntr |= DISPPLANE_8BPP;
  1782. break;
  1783. case 16:
  1784. if (fb->depth == 15)
  1785. dspcntr |= DISPPLANE_15_16BPP;
  1786. else
  1787. dspcntr |= DISPPLANE_16BPP;
  1788. break;
  1789. case 24:
  1790. case 32:
  1791. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1792. break;
  1793. default:
  1794. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  1795. return -EINVAL;
  1796. }
  1797. if (INTEL_INFO(dev)->gen >= 4) {
  1798. if (obj->tiling_mode != I915_TILING_NONE)
  1799. dspcntr |= DISPPLANE_TILED;
  1800. else
  1801. dspcntr &= ~DISPPLANE_TILED;
  1802. }
  1803. I915_WRITE(reg, dspcntr);
  1804. Start = obj->gtt_offset;
  1805. Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
  1806. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1807. Start, Offset, x, y, fb->pitch);
  1808. I915_WRITE(DSPSTRIDE(plane), fb->pitch);
  1809. if (INTEL_INFO(dev)->gen >= 4) {
  1810. I915_WRITE(DSPSURF(plane), Start);
  1811. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1812. I915_WRITE(DSPADDR(plane), Offset);
  1813. } else
  1814. I915_WRITE(DSPADDR(plane), Start + Offset);
  1815. POSTING_READ(reg);
  1816. return 0;
  1817. }
  1818. static int ironlake_update_plane(struct drm_crtc *crtc,
  1819. struct drm_framebuffer *fb, int x, int y)
  1820. {
  1821. struct drm_device *dev = crtc->dev;
  1822. struct drm_i915_private *dev_priv = dev->dev_private;
  1823. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1824. struct intel_framebuffer *intel_fb;
  1825. struct drm_i915_gem_object *obj;
  1826. int plane = intel_crtc->plane;
  1827. unsigned long Start, Offset;
  1828. u32 dspcntr;
  1829. u32 reg;
  1830. switch (plane) {
  1831. case 0:
  1832. case 1:
  1833. break;
  1834. default:
  1835. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1836. return -EINVAL;
  1837. }
  1838. intel_fb = to_intel_framebuffer(fb);
  1839. obj = intel_fb->obj;
  1840. reg = DSPCNTR(plane);
  1841. dspcntr = I915_READ(reg);
  1842. /* Mask out pixel format bits in case we change it */
  1843. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1844. switch (fb->bits_per_pixel) {
  1845. case 8:
  1846. dspcntr |= DISPPLANE_8BPP;
  1847. break;
  1848. case 16:
  1849. if (fb->depth != 16)
  1850. return -EINVAL;
  1851. dspcntr |= DISPPLANE_16BPP;
  1852. break;
  1853. case 24:
  1854. case 32:
  1855. if (fb->depth == 24)
  1856. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1857. else if (fb->depth == 30)
  1858. dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
  1859. else
  1860. return -EINVAL;
  1861. break;
  1862. default:
  1863. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  1864. return -EINVAL;
  1865. }
  1866. if (obj->tiling_mode != I915_TILING_NONE)
  1867. dspcntr |= DISPPLANE_TILED;
  1868. else
  1869. dspcntr &= ~DISPPLANE_TILED;
  1870. /* must disable */
  1871. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1872. I915_WRITE(reg, dspcntr);
  1873. Start = obj->gtt_offset;
  1874. Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
  1875. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1876. Start, Offset, x, y, fb->pitch);
  1877. I915_WRITE(DSPSTRIDE(plane), fb->pitch);
  1878. I915_WRITE(DSPSURF(plane), Start);
  1879. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1880. I915_WRITE(DSPADDR(plane), Offset);
  1881. POSTING_READ(reg);
  1882. return 0;
  1883. }
  1884. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1885. static int
  1886. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1887. int x, int y, enum mode_set_atomic state)
  1888. {
  1889. struct drm_device *dev = crtc->dev;
  1890. struct drm_i915_private *dev_priv = dev->dev_private;
  1891. int ret;
  1892. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1893. if (ret)
  1894. return ret;
  1895. intel_update_fbc(dev);
  1896. intel_increase_pllclock(crtc);
  1897. return 0;
  1898. }
  1899. static int
  1900. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1901. struct drm_framebuffer *old_fb)
  1902. {
  1903. struct drm_device *dev = crtc->dev;
  1904. struct drm_i915_master_private *master_priv;
  1905. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1906. int ret;
  1907. /* no fb bound */
  1908. if (!crtc->fb) {
  1909. DRM_ERROR("No FB bound\n");
  1910. return 0;
  1911. }
  1912. switch (intel_crtc->plane) {
  1913. case 0:
  1914. case 1:
  1915. break;
  1916. default:
  1917. DRM_ERROR("no plane for crtc\n");
  1918. return -EINVAL;
  1919. }
  1920. mutex_lock(&dev->struct_mutex);
  1921. ret = intel_pin_and_fence_fb_obj(dev,
  1922. to_intel_framebuffer(crtc->fb)->obj,
  1923. NULL);
  1924. if (ret != 0) {
  1925. mutex_unlock(&dev->struct_mutex);
  1926. DRM_ERROR("pin & fence failed\n");
  1927. return ret;
  1928. }
  1929. if (old_fb) {
  1930. struct drm_i915_private *dev_priv = dev->dev_private;
  1931. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1932. wait_event(dev_priv->pending_flip_queue,
  1933. atomic_read(&dev_priv->mm.wedged) ||
  1934. atomic_read(&obj->pending_flip) == 0);
  1935. /* Big Hammer, we also need to ensure that any pending
  1936. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1937. * current scanout is retired before unpinning the old
  1938. * framebuffer.
  1939. *
  1940. * This should only fail upon a hung GPU, in which case we
  1941. * can safely continue.
  1942. */
  1943. ret = i915_gem_object_finish_gpu(obj);
  1944. (void) ret;
  1945. }
  1946. ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
  1947. LEAVE_ATOMIC_MODE_SET);
  1948. if (ret) {
  1949. i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
  1950. mutex_unlock(&dev->struct_mutex);
  1951. DRM_ERROR("failed to update base address\n");
  1952. return ret;
  1953. }
  1954. if (old_fb) {
  1955. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1956. i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
  1957. }
  1958. mutex_unlock(&dev->struct_mutex);
  1959. if (!dev->primary->master)
  1960. return 0;
  1961. master_priv = dev->primary->master->driver_priv;
  1962. if (!master_priv->sarea_priv)
  1963. return 0;
  1964. if (intel_crtc->pipe) {
  1965. master_priv->sarea_priv->pipeB_x = x;
  1966. master_priv->sarea_priv->pipeB_y = y;
  1967. } else {
  1968. master_priv->sarea_priv->pipeA_x = x;
  1969. master_priv->sarea_priv->pipeA_y = y;
  1970. }
  1971. return 0;
  1972. }
  1973. static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
  1974. {
  1975. struct drm_device *dev = crtc->dev;
  1976. struct drm_i915_private *dev_priv = dev->dev_private;
  1977. u32 dpa_ctl;
  1978. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  1979. dpa_ctl = I915_READ(DP_A);
  1980. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  1981. if (clock < 200000) {
  1982. u32 temp;
  1983. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  1984. /* workaround for 160Mhz:
  1985. 1) program 0x4600c bits 15:0 = 0x8124
  1986. 2) program 0x46010 bit 0 = 1
  1987. 3) program 0x46034 bit 24 = 1
  1988. 4) program 0x64000 bit 14 = 1
  1989. */
  1990. temp = I915_READ(0x4600c);
  1991. temp &= 0xffff0000;
  1992. I915_WRITE(0x4600c, temp | 0x8124);
  1993. temp = I915_READ(0x46010);
  1994. I915_WRITE(0x46010, temp | 1);
  1995. temp = I915_READ(0x46034);
  1996. I915_WRITE(0x46034, temp | (1 << 24));
  1997. } else {
  1998. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  1999. }
  2000. I915_WRITE(DP_A, dpa_ctl);
  2001. POSTING_READ(DP_A);
  2002. udelay(500);
  2003. }
  2004. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2005. {
  2006. struct drm_device *dev = crtc->dev;
  2007. struct drm_i915_private *dev_priv = dev->dev_private;
  2008. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2009. int pipe = intel_crtc->pipe;
  2010. u32 reg, temp;
  2011. /* enable normal train */
  2012. reg = FDI_TX_CTL(pipe);
  2013. temp = I915_READ(reg);
  2014. if (IS_IVYBRIDGE(dev)) {
  2015. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2016. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2017. } else {
  2018. temp &= ~FDI_LINK_TRAIN_NONE;
  2019. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2020. }
  2021. I915_WRITE(reg, temp);
  2022. reg = FDI_RX_CTL(pipe);
  2023. temp = I915_READ(reg);
  2024. if (HAS_PCH_CPT(dev)) {
  2025. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2026. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2027. } else {
  2028. temp &= ~FDI_LINK_TRAIN_NONE;
  2029. temp |= FDI_LINK_TRAIN_NONE;
  2030. }
  2031. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2032. /* wait one idle pattern time */
  2033. POSTING_READ(reg);
  2034. udelay(1000);
  2035. /* IVB wants error correction enabled */
  2036. if (IS_IVYBRIDGE(dev))
  2037. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2038. FDI_FE_ERRC_ENABLE);
  2039. }
  2040. static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
  2041. {
  2042. struct drm_i915_private *dev_priv = dev->dev_private;
  2043. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2044. flags |= FDI_PHASE_SYNC_OVR(pipe);
  2045. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
  2046. flags |= FDI_PHASE_SYNC_EN(pipe);
  2047. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
  2048. POSTING_READ(SOUTH_CHICKEN1);
  2049. }
  2050. /* The FDI link training functions for ILK/Ibexpeak. */
  2051. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2052. {
  2053. struct drm_device *dev = crtc->dev;
  2054. struct drm_i915_private *dev_priv = dev->dev_private;
  2055. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2056. int pipe = intel_crtc->pipe;
  2057. int plane = intel_crtc->plane;
  2058. u32 reg, temp, tries;
  2059. /* FDI needs bits from pipe & plane first */
  2060. assert_pipe_enabled(dev_priv, pipe);
  2061. assert_plane_enabled(dev_priv, plane);
  2062. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2063. for train result */
  2064. reg = FDI_RX_IMR(pipe);
  2065. temp = I915_READ(reg);
  2066. temp &= ~FDI_RX_SYMBOL_LOCK;
  2067. temp &= ~FDI_RX_BIT_LOCK;
  2068. I915_WRITE(reg, temp);
  2069. I915_READ(reg);
  2070. udelay(150);
  2071. /* enable CPU FDI TX and PCH FDI RX */
  2072. reg = FDI_TX_CTL(pipe);
  2073. temp = I915_READ(reg);
  2074. temp &= ~(7 << 19);
  2075. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2076. temp &= ~FDI_LINK_TRAIN_NONE;
  2077. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2078. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2079. reg = FDI_RX_CTL(pipe);
  2080. temp = I915_READ(reg);
  2081. temp &= ~FDI_LINK_TRAIN_NONE;
  2082. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2083. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2084. POSTING_READ(reg);
  2085. udelay(150);
  2086. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2087. if (HAS_PCH_IBX(dev)) {
  2088. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2089. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2090. FDI_RX_PHASE_SYNC_POINTER_EN);
  2091. }
  2092. reg = FDI_RX_IIR(pipe);
  2093. for (tries = 0; tries < 5; tries++) {
  2094. temp = I915_READ(reg);
  2095. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2096. if ((temp & FDI_RX_BIT_LOCK)) {
  2097. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2098. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2099. break;
  2100. }
  2101. }
  2102. if (tries == 5)
  2103. DRM_ERROR("FDI train 1 fail!\n");
  2104. /* Train 2 */
  2105. reg = FDI_TX_CTL(pipe);
  2106. temp = I915_READ(reg);
  2107. temp &= ~FDI_LINK_TRAIN_NONE;
  2108. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2109. I915_WRITE(reg, temp);
  2110. reg = FDI_RX_CTL(pipe);
  2111. temp = I915_READ(reg);
  2112. temp &= ~FDI_LINK_TRAIN_NONE;
  2113. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2114. I915_WRITE(reg, temp);
  2115. POSTING_READ(reg);
  2116. udelay(150);
  2117. reg = FDI_RX_IIR(pipe);
  2118. for (tries = 0; tries < 5; tries++) {
  2119. temp = I915_READ(reg);
  2120. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2121. if (temp & FDI_RX_SYMBOL_LOCK) {
  2122. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2123. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2124. break;
  2125. }
  2126. }
  2127. if (tries == 5)
  2128. DRM_ERROR("FDI train 2 fail!\n");
  2129. DRM_DEBUG_KMS("FDI train done\n");
  2130. }
  2131. static const int snb_b_fdi_train_param[] = {
  2132. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2133. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2134. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2135. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2136. };
  2137. /* The FDI link training functions for SNB/Cougarpoint. */
  2138. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2139. {
  2140. struct drm_device *dev = crtc->dev;
  2141. struct drm_i915_private *dev_priv = dev->dev_private;
  2142. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2143. int pipe = intel_crtc->pipe;
  2144. u32 reg, temp, i;
  2145. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2146. for train result */
  2147. reg = FDI_RX_IMR(pipe);
  2148. temp = I915_READ(reg);
  2149. temp &= ~FDI_RX_SYMBOL_LOCK;
  2150. temp &= ~FDI_RX_BIT_LOCK;
  2151. I915_WRITE(reg, temp);
  2152. POSTING_READ(reg);
  2153. udelay(150);
  2154. /* enable CPU FDI TX and PCH FDI RX */
  2155. reg = FDI_TX_CTL(pipe);
  2156. temp = I915_READ(reg);
  2157. temp &= ~(7 << 19);
  2158. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2159. temp &= ~FDI_LINK_TRAIN_NONE;
  2160. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2161. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2162. /* SNB-B */
  2163. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2164. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2165. reg = FDI_RX_CTL(pipe);
  2166. temp = I915_READ(reg);
  2167. if (HAS_PCH_CPT(dev)) {
  2168. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2169. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2170. } else {
  2171. temp &= ~FDI_LINK_TRAIN_NONE;
  2172. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2173. }
  2174. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2175. POSTING_READ(reg);
  2176. udelay(150);
  2177. if (HAS_PCH_CPT(dev))
  2178. cpt_phase_pointer_enable(dev, pipe);
  2179. for (i = 0; i < 4; i++) {
  2180. reg = FDI_TX_CTL(pipe);
  2181. temp = I915_READ(reg);
  2182. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2183. temp |= snb_b_fdi_train_param[i];
  2184. I915_WRITE(reg, temp);
  2185. POSTING_READ(reg);
  2186. udelay(500);
  2187. reg = FDI_RX_IIR(pipe);
  2188. temp = I915_READ(reg);
  2189. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2190. if (temp & FDI_RX_BIT_LOCK) {
  2191. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2192. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2193. break;
  2194. }
  2195. }
  2196. if (i == 4)
  2197. DRM_ERROR("FDI train 1 fail!\n");
  2198. /* Train 2 */
  2199. reg = FDI_TX_CTL(pipe);
  2200. temp = I915_READ(reg);
  2201. temp &= ~FDI_LINK_TRAIN_NONE;
  2202. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2203. if (IS_GEN6(dev)) {
  2204. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2205. /* SNB-B */
  2206. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2207. }
  2208. I915_WRITE(reg, temp);
  2209. reg = FDI_RX_CTL(pipe);
  2210. temp = I915_READ(reg);
  2211. if (HAS_PCH_CPT(dev)) {
  2212. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2213. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2214. } else {
  2215. temp &= ~FDI_LINK_TRAIN_NONE;
  2216. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2217. }
  2218. I915_WRITE(reg, temp);
  2219. POSTING_READ(reg);
  2220. udelay(150);
  2221. for (i = 0; i < 4; i++) {
  2222. reg = FDI_TX_CTL(pipe);
  2223. temp = I915_READ(reg);
  2224. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2225. temp |= snb_b_fdi_train_param[i];
  2226. I915_WRITE(reg, temp);
  2227. POSTING_READ(reg);
  2228. udelay(500);
  2229. reg = FDI_RX_IIR(pipe);
  2230. temp = I915_READ(reg);
  2231. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2232. if (temp & FDI_RX_SYMBOL_LOCK) {
  2233. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2234. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2235. break;
  2236. }
  2237. }
  2238. if (i == 4)
  2239. DRM_ERROR("FDI train 2 fail!\n");
  2240. DRM_DEBUG_KMS("FDI train done.\n");
  2241. }
  2242. /* Manual link training for Ivy Bridge A0 parts */
  2243. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2244. {
  2245. struct drm_device *dev = crtc->dev;
  2246. struct drm_i915_private *dev_priv = dev->dev_private;
  2247. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2248. int pipe = intel_crtc->pipe;
  2249. u32 reg, temp, i;
  2250. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2251. for train result */
  2252. reg = FDI_RX_IMR(pipe);
  2253. temp = I915_READ(reg);
  2254. temp &= ~FDI_RX_SYMBOL_LOCK;
  2255. temp &= ~FDI_RX_BIT_LOCK;
  2256. I915_WRITE(reg, temp);
  2257. POSTING_READ(reg);
  2258. udelay(150);
  2259. /* enable CPU FDI TX and PCH FDI RX */
  2260. reg = FDI_TX_CTL(pipe);
  2261. temp = I915_READ(reg);
  2262. temp &= ~(7 << 19);
  2263. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2264. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2265. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2266. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2267. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2268. temp |= FDI_COMPOSITE_SYNC;
  2269. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2270. reg = FDI_RX_CTL(pipe);
  2271. temp = I915_READ(reg);
  2272. temp &= ~FDI_LINK_TRAIN_AUTO;
  2273. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2274. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2275. temp |= FDI_COMPOSITE_SYNC;
  2276. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2277. POSTING_READ(reg);
  2278. udelay(150);
  2279. if (HAS_PCH_CPT(dev))
  2280. cpt_phase_pointer_enable(dev, pipe);
  2281. for (i = 0; i < 4; i++) {
  2282. reg = FDI_TX_CTL(pipe);
  2283. temp = I915_READ(reg);
  2284. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2285. temp |= snb_b_fdi_train_param[i];
  2286. I915_WRITE(reg, temp);
  2287. POSTING_READ(reg);
  2288. udelay(500);
  2289. reg = FDI_RX_IIR(pipe);
  2290. temp = I915_READ(reg);
  2291. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2292. if (temp & FDI_RX_BIT_LOCK ||
  2293. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2294. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2295. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2296. break;
  2297. }
  2298. }
  2299. if (i == 4)
  2300. DRM_ERROR("FDI train 1 fail!\n");
  2301. /* Train 2 */
  2302. reg = FDI_TX_CTL(pipe);
  2303. temp = I915_READ(reg);
  2304. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2305. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2306. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2307. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2308. I915_WRITE(reg, temp);
  2309. reg = FDI_RX_CTL(pipe);
  2310. temp = I915_READ(reg);
  2311. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2312. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2313. I915_WRITE(reg, temp);
  2314. POSTING_READ(reg);
  2315. udelay(150);
  2316. for (i = 0; i < 4; i++) {
  2317. reg = FDI_TX_CTL(pipe);
  2318. temp = I915_READ(reg);
  2319. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2320. temp |= snb_b_fdi_train_param[i];
  2321. I915_WRITE(reg, temp);
  2322. POSTING_READ(reg);
  2323. udelay(500);
  2324. reg = FDI_RX_IIR(pipe);
  2325. temp = I915_READ(reg);
  2326. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2327. if (temp & FDI_RX_SYMBOL_LOCK) {
  2328. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2329. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2330. break;
  2331. }
  2332. }
  2333. if (i == 4)
  2334. DRM_ERROR("FDI train 2 fail!\n");
  2335. DRM_DEBUG_KMS("FDI train done.\n");
  2336. }
  2337. static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
  2338. {
  2339. struct drm_device *dev = crtc->dev;
  2340. struct drm_i915_private *dev_priv = dev->dev_private;
  2341. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2342. int pipe = intel_crtc->pipe;
  2343. u32 reg, temp;
  2344. /* Write the TU size bits so error detection works */
  2345. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2346. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2347. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2348. reg = FDI_RX_CTL(pipe);
  2349. temp = I915_READ(reg);
  2350. temp &= ~((0x7 << 19) | (0x7 << 16));
  2351. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2352. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2353. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2354. POSTING_READ(reg);
  2355. udelay(200);
  2356. /* Switch from Rawclk to PCDclk */
  2357. temp = I915_READ(reg);
  2358. I915_WRITE(reg, temp | FDI_PCDCLK);
  2359. POSTING_READ(reg);
  2360. udelay(200);
  2361. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2362. reg = FDI_TX_CTL(pipe);
  2363. temp = I915_READ(reg);
  2364. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2365. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2366. POSTING_READ(reg);
  2367. udelay(100);
  2368. }
  2369. }
  2370. static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
  2371. {
  2372. struct drm_i915_private *dev_priv = dev->dev_private;
  2373. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2374. flags &= ~(FDI_PHASE_SYNC_EN(pipe));
  2375. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
  2376. flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
  2377. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
  2378. POSTING_READ(SOUTH_CHICKEN1);
  2379. }
  2380. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2381. {
  2382. struct drm_device *dev = crtc->dev;
  2383. struct drm_i915_private *dev_priv = dev->dev_private;
  2384. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2385. int pipe = intel_crtc->pipe;
  2386. u32 reg, temp;
  2387. /* disable CPU FDI tx and PCH FDI rx */
  2388. reg = FDI_TX_CTL(pipe);
  2389. temp = I915_READ(reg);
  2390. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2391. POSTING_READ(reg);
  2392. reg = FDI_RX_CTL(pipe);
  2393. temp = I915_READ(reg);
  2394. temp &= ~(0x7 << 16);
  2395. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2396. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2397. POSTING_READ(reg);
  2398. udelay(100);
  2399. /* Ironlake workaround, disable clock pointer after downing FDI */
  2400. if (HAS_PCH_IBX(dev)) {
  2401. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2402. I915_WRITE(FDI_RX_CHICKEN(pipe),
  2403. I915_READ(FDI_RX_CHICKEN(pipe) &
  2404. ~FDI_RX_PHASE_SYNC_POINTER_EN));
  2405. } else if (HAS_PCH_CPT(dev)) {
  2406. cpt_phase_pointer_disable(dev, pipe);
  2407. }
  2408. /* still set train pattern 1 */
  2409. reg = FDI_TX_CTL(pipe);
  2410. temp = I915_READ(reg);
  2411. temp &= ~FDI_LINK_TRAIN_NONE;
  2412. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2413. I915_WRITE(reg, temp);
  2414. reg = FDI_RX_CTL(pipe);
  2415. temp = I915_READ(reg);
  2416. if (HAS_PCH_CPT(dev)) {
  2417. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2418. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2419. } else {
  2420. temp &= ~FDI_LINK_TRAIN_NONE;
  2421. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2422. }
  2423. /* BPC in FDI rx is consistent with that in PIPECONF */
  2424. temp &= ~(0x07 << 16);
  2425. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2426. I915_WRITE(reg, temp);
  2427. POSTING_READ(reg);
  2428. udelay(100);
  2429. }
  2430. /*
  2431. * When we disable a pipe, we need to clear any pending scanline wait events
  2432. * to avoid hanging the ring, which we assume we are waiting on.
  2433. */
  2434. static void intel_clear_scanline_wait(struct drm_device *dev)
  2435. {
  2436. struct drm_i915_private *dev_priv = dev->dev_private;
  2437. struct intel_ring_buffer *ring;
  2438. u32 tmp;
  2439. if (IS_GEN2(dev))
  2440. /* Can't break the hang on i8xx */
  2441. return;
  2442. ring = LP_RING(dev_priv);
  2443. tmp = I915_READ_CTL(ring);
  2444. if (tmp & RING_WAIT)
  2445. I915_WRITE_CTL(ring, tmp);
  2446. }
  2447. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2448. {
  2449. struct drm_i915_gem_object *obj;
  2450. struct drm_i915_private *dev_priv;
  2451. if (crtc->fb == NULL)
  2452. return;
  2453. obj = to_intel_framebuffer(crtc->fb)->obj;
  2454. dev_priv = crtc->dev->dev_private;
  2455. wait_event(dev_priv->pending_flip_queue,
  2456. atomic_read(&obj->pending_flip) == 0);
  2457. }
  2458. static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
  2459. {
  2460. struct drm_device *dev = crtc->dev;
  2461. struct drm_mode_config *mode_config = &dev->mode_config;
  2462. struct intel_encoder *encoder;
  2463. /*
  2464. * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
  2465. * must be driven by its own crtc; no sharing is possible.
  2466. */
  2467. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  2468. if (encoder->base.crtc != crtc)
  2469. continue;
  2470. switch (encoder->type) {
  2471. case INTEL_OUTPUT_EDP:
  2472. if (!intel_encoder_is_pch_edp(&encoder->base))
  2473. return false;
  2474. continue;
  2475. }
  2476. }
  2477. return true;
  2478. }
  2479. /*
  2480. * Enable PCH resources required for PCH ports:
  2481. * - PCH PLLs
  2482. * - FDI training & RX/TX
  2483. * - update transcoder timings
  2484. * - DP transcoding bits
  2485. * - transcoder
  2486. */
  2487. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2488. {
  2489. struct drm_device *dev = crtc->dev;
  2490. struct drm_i915_private *dev_priv = dev->dev_private;
  2491. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2492. int pipe = intel_crtc->pipe;
  2493. u32 reg, temp;
  2494. /* For PCH output, training FDI link */
  2495. dev_priv->display.fdi_link_train(crtc);
  2496. intel_enable_pch_pll(dev_priv, pipe);
  2497. if (HAS_PCH_CPT(dev)) {
  2498. /* Be sure PCH DPLL SEL is set */
  2499. temp = I915_READ(PCH_DPLL_SEL);
  2500. if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
  2501. temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
  2502. else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
  2503. temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2504. I915_WRITE(PCH_DPLL_SEL, temp);
  2505. }
  2506. /* set transcoder timing, panel must allow it */
  2507. assert_panel_unlocked(dev_priv, pipe);
  2508. I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
  2509. I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
  2510. I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
  2511. I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
  2512. I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
  2513. I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
  2514. intel_fdi_normal_train(crtc);
  2515. /* For PCH DP, enable TRANS_DP_CTL */
  2516. if (HAS_PCH_CPT(dev) &&
  2517. intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  2518. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
  2519. reg = TRANS_DP_CTL(pipe);
  2520. temp = I915_READ(reg);
  2521. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2522. TRANS_DP_SYNC_MASK |
  2523. TRANS_DP_BPC_MASK);
  2524. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2525. TRANS_DP_ENH_FRAMING);
  2526. temp |= bpc << 9; /* same format but at 11:9 */
  2527. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2528. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2529. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2530. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2531. switch (intel_trans_dp_port_sel(crtc)) {
  2532. case PCH_DP_B:
  2533. temp |= TRANS_DP_PORT_SEL_B;
  2534. break;
  2535. case PCH_DP_C:
  2536. temp |= TRANS_DP_PORT_SEL_C;
  2537. break;
  2538. case PCH_DP_D:
  2539. temp |= TRANS_DP_PORT_SEL_D;
  2540. break;
  2541. default:
  2542. DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
  2543. temp |= TRANS_DP_PORT_SEL_B;
  2544. break;
  2545. }
  2546. I915_WRITE(reg, temp);
  2547. }
  2548. intel_enable_transcoder(dev_priv, pipe);
  2549. }
  2550. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2551. {
  2552. struct drm_device *dev = crtc->dev;
  2553. struct drm_i915_private *dev_priv = dev->dev_private;
  2554. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2555. int pipe = intel_crtc->pipe;
  2556. int plane = intel_crtc->plane;
  2557. u32 temp;
  2558. bool is_pch_port;
  2559. if (intel_crtc->active)
  2560. return;
  2561. intel_crtc->active = true;
  2562. intel_update_watermarks(dev);
  2563. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2564. temp = I915_READ(PCH_LVDS);
  2565. if ((temp & LVDS_PORT_EN) == 0)
  2566. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2567. }
  2568. is_pch_port = intel_crtc_driving_pch(crtc);
  2569. if (is_pch_port)
  2570. ironlake_fdi_pll_enable(crtc);
  2571. else
  2572. ironlake_fdi_disable(crtc);
  2573. /* Enable panel fitting for LVDS */
  2574. if (dev_priv->pch_pf_size &&
  2575. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
  2576. /* Force use of hard-coded filter coefficients
  2577. * as some pre-programmed values are broken,
  2578. * e.g. x201.
  2579. */
  2580. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2581. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2582. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2583. }
  2584. /*
  2585. * On ILK+ LUT must be loaded before the pipe is running but with
  2586. * clocks enabled
  2587. */
  2588. intel_crtc_load_lut(crtc);
  2589. intel_enable_pipe(dev_priv, pipe, is_pch_port);
  2590. intel_enable_plane(dev_priv, plane, pipe);
  2591. if (is_pch_port)
  2592. ironlake_pch_enable(crtc);
  2593. mutex_lock(&dev->struct_mutex);
  2594. intel_update_fbc(dev);
  2595. mutex_unlock(&dev->struct_mutex);
  2596. intel_crtc_update_cursor(crtc, true);
  2597. }
  2598. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2599. {
  2600. struct drm_device *dev = crtc->dev;
  2601. struct drm_i915_private *dev_priv = dev->dev_private;
  2602. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2603. int pipe = intel_crtc->pipe;
  2604. int plane = intel_crtc->plane;
  2605. u32 reg, temp;
  2606. if (!intel_crtc->active)
  2607. return;
  2608. intel_crtc_wait_for_pending_flips(crtc);
  2609. drm_vblank_off(dev, pipe);
  2610. intel_crtc_update_cursor(crtc, false);
  2611. intel_disable_plane(dev_priv, plane, pipe);
  2612. if (dev_priv->cfb_plane == plane)
  2613. intel_disable_fbc(dev);
  2614. intel_disable_pipe(dev_priv, pipe);
  2615. /* Disable PF */
  2616. I915_WRITE(PF_CTL(pipe), 0);
  2617. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2618. ironlake_fdi_disable(crtc);
  2619. /* This is a horrible layering violation; we should be doing this in
  2620. * the connector/encoder ->prepare instead, but we don't always have
  2621. * enough information there about the config to know whether it will
  2622. * actually be necessary or just cause undesired flicker.
  2623. */
  2624. intel_disable_pch_ports(dev_priv, pipe);
  2625. intel_disable_transcoder(dev_priv, pipe);
  2626. if (HAS_PCH_CPT(dev)) {
  2627. /* disable TRANS_DP_CTL */
  2628. reg = TRANS_DP_CTL(pipe);
  2629. temp = I915_READ(reg);
  2630. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  2631. temp |= TRANS_DP_PORT_SEL_NONE;
  2632. I915_WRITE(reg, temp);
  2633. /* disable DPLL_SEL */
  2634. temp = I915_READ(PCH_DPLL_SEL);
  2635. switch (pipe) {
  2636. case 0:
  2637. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
  2638. break;
  2639. case 1:
  2640. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2641. break;
  2642. case 2:
  2643. /* FIXME: manage transcoder PLLs? */
  2644. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  2645. break;
  2646. default:
  2647. BUG(); /* wtf */
  2648. }
  2649. I915_WRITE(PCH_DPLL_SEL, temp);
  2650. }
  2651. /* disable PCH DPLL */
  2652. intel_disable_pch_pll(dev_priv, pipe);
  2653. /* Switch from PCDclk to Rawclk */
  2654. reg = FDI_RX_CTL(pipe);
  2655. temp = I915_READ(reg);
  2656. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2657. /* Disable CPU FDI TX PLL */
  2658. reg = FDI_TX_CTL(pipe);
  2659. temp = I915_READ(reg);
  2660. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2661. POSTING_READ(reg);
  2662. udelay(100);
  2663. reg = FDI_RX_CTL(pipe);
  2664. temp = I915_READ(reg);
  2665. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2666. /* Wait for the clocks to turn off. */
  2667. POSTING_READ(reg);
  2668. udelay(100);
  2669. intel_crtc->active = false;
  2670. intel_update_watermarks(dev);
  2671. mutex_lock(&dev->struct_mutex);
  2672. intel_update_fbc(dev);
  2673. intel_clear_scanline_wait(dev);
  2674. mutex_unlock(&dev->struct_mutex);
  2675. }
  2676. static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
  2677. {
  2678. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2679. int pipe = intel_crtc->pipe;
  2680. int plane = intel_crtc->plane;
  2681. /* XXX: When our outputs are all unaware of DPMS modes other than off
  2682. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  2683. */
  2684. switch (mode) {
  2685. case DRM_MODE_DPMS_ON:
  2686. case DRM_MODE_DPMS_STANDBY:
  2687. case DRM_MODE_DPMS_SUSPEND:
  2688. DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
  2689. ironlake_crtc_enable(crtc);
  2690. break;
  2691. case DRM_MODE_DPMS_OFF:
  2692. DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
  2693. ironlake_crtc_disable(crtc);
  2694. break;
  2695. }
  2696. }
  2697. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  2698. {
  2699. if (!enable && intel_crtc->overlay) {
  2700. struct drm_device *dev = intel_crtc->base.dev;
  2701. struct drm_i915_private *dev_priv = dev->dev_private;
  2702. mutex_lock(&dev->struct_mutex);
  2703. dev_priv->mm.interruptible = false;
  2704. (void) intel_overlay_switch_off(intel_crtc->overlay);
  2705. dev_priv->mm.interruptible = true;
  2706. mutex_unlock(&dev->struct_mutex);
  2707. }
  2708. /* Let userspace switch the overlay on again. In most cases userspace
  2709. * has to recompute where to put it anyway.
  2710. */
  2711. }
  2712. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  2713. {
  2714. struct drm_device *dev = crtc->dev;
  2715. struct drm_i915_private *dev_priv = dev->dev_private;
  2716. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2717. int pipe = intel_crtc->pipe;
  2718. int plane = intel_crtc->plane;
  2719. if (intel_crtc->active)
  2720. return;
  2721. intel_crtc->active = true;
  2722. intel_update_watermarks(dev);
  2723. intel_enable_pll(dev_priv, pipe);
  2724. intel_enable_pipe(dev_priv, pipe, false);
  2725. intel_enable_plane(dev_priv, plane, pipe);
  2726. intel_crtc_load_lut(crtc);
  2727. intel_update_fbc(dev);
  2728. /* Give the overlay scaler a chance to enable if it's on this pipe */
  2729. intel_crtc_dpms_overlay(intel_crtc, true);
  2730. intel_crtc_update_cursor(crtc, true);
  2731. }
  2732. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  2733. {
  2734. struct drm_device *dev = crtc->dev;
  2735. struct drm_i915_private *dev_priv = dev->dev_private;
  2736. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2737. int pipe = intel_crtc->pipe;
  2738. int plane = intel_crtc->plane;
  2739. if (!intel_crtc->active)
  2740. return;
  2741. /* Give the overlay scaler a chance to disable if it's on this pipe */
  2742. intel_crtc_wait_for_pending_flips(crtc);
  2743. drm_vblank_off(dev, pipe);
  2744. intel_crtc_dpms_overlay(intel_crtc, false);
  2745. intel_crtc_update_cursor(crtc, false);
  2746. if (dev_priv->cfb_plane == plane)
  2747. intel_disable_fbc(dev);
  2748. intel_disable_plane(dev_priv, plane, pipe);
  2749. intel_disable_pipe(dev_priv, pipe);
  2750. intel_disable_pll(dev_priv, pipe);
  2751. intel_crtc->active = false;
  2752. intel_update_fbc(dev);
  2753. intel_update_watermarks(dev);
  2754. intel_clear_scanline_wait(dev);
  2755. }
  2756. static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
  2757. {
  2758. /* XXX: When our outputs are all unaware of DPMS modes other than off
  2759. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  2760. */
  2761. switch (mode) {
  2762. case DRM_MODE_DPMS_ON:
  2763. case DRM_MODE_DPMS_STANDBY:
  2764. case DRM_MODE_DPMS_SUSPEND:
  2765. i9xx_crtc_enable(crtc);
  2766. break;
  2767. case DRM_MODE_DPMS_OFF:
  2768. i9xx_crtc_disable(crtc);
  2769. break;
  2770. }
  2771. }
  2772. /**
  2773. * Sets the power management mode of the pipe and plane.
  2774. */
  2775. static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
  2776. {
  2777. struct drm_device *dev = crtc->dev;
  2778. struct drm_i915_private *dev_priv = dev->dev_private;
  2779. struct drm_i915_master_private *master_priv;
  2780. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2781. int pipe = intel_crtc->pipe;
  2782. bool enabled;
  2783. if (intel_crtc->dpms_mode == mode)
  2784. return;
  2785. intel_crtc->dpms_mode = mode;
  2786. dev_priv->display.dpms(crtc, mode);
  2787. if (!dev->primary->master)
  2788. return;
  2789. master_priv = dev->primary->master->driver_priv;
  2790. if (!master_priv->sarea_priv)
  2791. return;
  2792. enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
  2793. switch (pipe) {
  2794. case 0:
  2795. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  2796. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  2797. break;
  2798. case 1:
  2799. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  2800. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  2801. break;
  2802. default:
  2803. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  2804. break;
  2805. }
  2806. }
  2807. static void intel_crtc_disable(struct drm_crtc *crtc)
  2808. {
  2809. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  2810. struct drm_device *dev = crtc->dev;
  2811. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
  2812. if (crtc->fb) {
  2813. mutex_lock(&dev->struct_mutex);
  2814. i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
  2815. mutex_unlock(&dev->struct_mutex);
  2816. }
  2817. }
  2818. /* Prepare for a mode set.
  2819. *
  2820. * Note we could be a lot smarter here. We need to figure out which outputs
  2821. * will be enabled, which disabled (in short, how the config will changes)
  2822. * and perform the minimum necessary steps to accomplish that, e.g. updating
  2823. * watermarks, FBC configuration, making sure PLLs are programmed correctly,
  2824. * panel fitting is in the proper state, etc.
  2825. */
  2826. static void i9xx_crtc_prepare(struct drm_crtc *crtc)
  2827. {
  2828. i9xx_crtc_disable(crtc);
  2829. }
  2830. static void i9xx_crtc_commit(struct drm_crtc *crtc)
  2831. {
  2832. i9xx_crtc_enable(crtc);
  2833. }
  2834. static void ironlake_crtc_prepare(struct drm_crtc *crtc)
  2835. {
  2836. ironlake_crtc_disable(crtc);
  2837. }
  2838. static void ironlake_crtc_commit(struct drm_crtc *crtc)
  2839. {
  2840. ironlake_crtc_enable(crtc);
  2841. }
  2842. void intel_encoder_prepare(struct drm_encoder *encoder)
  2843. {
  2844. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2845. /* lvds has its own version of prepare see intel_lvds_prepare */
  2846. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
  2847. }
  2848. void intel_encoder_commit(struct drm_encoder *encoder)
  2849. {
  2850. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2851. /* lvds has its own version of commit see intel_lvds_commit */
  2852. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  2853. }
  2854. void intel_encoder_destroy(struct drm_encoder *encoder)
  2855. {
  2856. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  2857. drm_encoder_cleanup(encoder);
  2858. kfree(intel_encoder);
  2859. }
  2860. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  2861. struct drm_display_mode *mode,
  2862. struct drm_display_mode *adjusted_mode)
  2863. {
  2864. struct drm_device *dev = crtc->dev;
  2865. if (HAS_PCH_SPLIT(dev)) {
  2866. /* FDI link clock is fixed at 2.7G */
  2867. if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
  2868. return false;
  2869. }
  2870. /* XXX some encoders set the crtcinfo, others don't.
  2871. * Obviously we need some form of conflict resolution here...
  2872. */
  2873. if (adjusted_mode->crtc_htotal == 0)
  2874. drm_mode_set_crtcinfo(adjusted_mode, 0);
  2875. return true;
  2876. }
  2877. static int i945_get_display_clock_speed(struct drm_device *dev)
  2878. {
  2879. return 400000;
  2880. }
  2881. static int i915_get_display_clock_speed(struct drm_device *dev)
  2882. {
  2883. return 333000;
  2884. }
  2885. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  2886. {
  2887. return 200000;
  2888. }
  2889. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  2890. {
  2891. u16 gcfgc = 0;
  2892. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  2893. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  2894. return 133000;
  2895. else {
  2896. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  2897. case GC_DISPLAY_CLOCK_333_MHZ:
  2898. return 333000;
  2899. default:
  2900. case GC_DISPLAY_CLOCK_190_200_MHZ:
  2901. return 190000;
  2902. }
  2903. }
  2904. }
  2905. static int i865_get_display_clock_speed(struct drm_device *dev)
  2906. {
  2907. return 266000;
  2908. }
  2909. static int i855_get_display_clock_speed(struct drm_device *dev)
  2910. {
  2911. u16 hpllcc = 0;
  2912. /* Assume that the hardware is in the high speed state. This
  2913. * should be the default.
  2914. */
  2915. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  2916. case GC_CLOCK_133_200:
  2917. case GC_CLOCK_100_200:
  2918. return 200000;
  2919. case GC_CLOCK_166_250:
  2920. return 250000;
  2921. case GC_CLOCK_100_133:
  2922. return 133000;
  2923. }
  2924. /* Shouldn't happen */
  2925. return 0;
  2926. }
  2927. static int i830_get_display_clock_speed(struct drm_device *dev)
  2928. {
  2929. return 133000;
  2930. }
  2931. struct fdi_m_n {
  2932. u32 tu;
  2933. u32 gmch_m;
  2934. u32 gmch_n;
  2935. u32 link_m;
  2936. u32 link_n;
  2937. };
  2938. static void
  2939. fdi_reduce_ratio(u32 *num, u32 *den)
  2940. {
  2941. while (*num > 0xffffff || *den > 0xffffff) {
  2942. *num >>= 1;
  2943. *den >>= 1;
  2944. }
  2945. }
  2946. static void
  2947. ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
  2948. int link_clock, struct fdi_m_n *m_n)
  2949. {
  2950. m_n->tu = 64; /* default size */
  2951. /* BUG_ON(pixel_clock > INT_MAX / 36); */
  2952. m_n->gmch_m = bits_per_pixel * pixel_clock;
  2953. m_n->gmch_n = link_clock * nlanes * 8;
  2954. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  2955. m_n->link_m = pixel_clock;
  2956. m_n->link_n = link_clock;
  2957. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  2958. }
  2959. struct intel_watermark_params {
  2960. unsigned long fifo_size;
  2961. unsigned long max_wm;
  2962. unsigned long default_wm;
  2963. unsigned long guard_size;
  2964. unsigned long cacheline_size;
  2965. };
  2966. /* Pineview has different values for various configs */
  2967. static const struct intel_watermark_params pineview_display_wm = {
  2968. PINEVIEW_DISPLAY_FIFO,
  2969. PINEVIEW_MAX_WM,
  2970. PINEVIEW_DFT_WM,
  2971. PINEVIEW_GUARD_WM,
  2972. PINEVIEW_FIFO_LINE_SIZE
  2973. };
  2974. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  2975. PINEVIEW_DISPLAY_FIFO,
  2976. PINEVIEW_MAX_WM,
  2977. PINEVIEW_DFT_HPLLOFF_WM,
  2978. PINEVIEW_GUARD_WM,
  2979. PINEVIEW_FIFO_LINE_SIZE
  2980. };
  2981. static const struct intel_watermark_params pineview_cursor_wm = {
  2982. PINEVIEW_CURSOR_FIFO,
  2983. PINEVIEW_CURSOR_MAX_WM,
  2984. PINEVIEW_CURSOR_DFT_WM,
  2985. PINEVIEW_CURSOR_GUARD_WM,
  2986. PINEVIEW_FIFO_LINE_SIZE,
  2987. };
  2988. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  2989. PINEVIEW_CURSOR_FIFO,
  2990. PINEVIEW_CURSOR_MAX_WM,
  2991. PINEVIEW_CURSOR_DFT_WM,
  2992. PINEVIEW_CURSOR_GUARD_WM,
  2993. PINEVIEW_FIFO_LINE_SIZE
  2994. };
  2995. static const struct intel_watermark_params g4x_wm_info = {
  2996. G4X_FIFO_SIZE,
  2997. G4X_MAX_WM,
  2998. G4X_MAX_WM,
  2999. 2,
  3000. G4X_FIFO_LINE_SIZE,
  3001. };
  3002. static const struct intel_watermark_params g4x_cursor_wm_info = {
  3003. I965_CURSOR_FIFO,
  3004. I965_CURSOR_MAX_WM,
  3005. I965_CURSOR_DFT_WM,
  3006. 2,
  3007. G4X_FIFO_LINE_SIZE,
  3008. };
  3009. static const struct intel_watermark_params i965_cursor_wm_info = {
  3010. I965_CURSOR_FIFO,
  3011. I965_CURSOR_MAX_WM,
  3012. I965_CURSOR_DFT_WM,
  3013. 2,
  3014. I915_FIFO_LINE_SIZE,
  3015. };
  3016. static const struct intel_watermark_params i945_wm_info = {
  3017. I945_FIFO_SIZE,
  3018. I915_MAX_WM,
  3019. 1,
  3020. 2,
  3021. I915_FIFO_LINE_SIZE
  3022. };
  3023. static const struct intel_watermark_params i915_wm_info = {
  3024. I915_FIFO_SIZE,
  3025. I915_MAX_WM,
  3026. 1,
  3027. 2,
  3028. I915_FIFO_LINE_SIZE
  3029. };
  3030. static const struct intel_watermark_params i855_wm_info = {
  3031. I855GM_FIFO_SIZE,
  3032. I915_MAX_WM,
  3033. 1,
  3034. 2,
  3035. I830_FIFO_LINE_SIZE
  3036. };
  3037. static const struct intel_watermark_params i830_wm_info = {
  3038. I830_FIFO_SIZE,
  3039. I915_MAX_WM,
  3040. 1,
  3041. 2,
  3042. I830_FIFO_LINE_SIZE
  3043. };
  3044. static const struct intel_watermark_params ironlake_display_wm_info = {
  3045. ILK_DISPLAY_FIFO,
  3046. ILK_DISPLAY_MAXWM,
  3047. ILK_DISPLAY_DFTWM,
  3048. 2,
  3049. ILK_FIFO_LINE_SIZE
  3050. };
  3051. static const struct intel_watermark_params ironlake_cursor_wm_info = {
  3052. ILK_CURSOR_FIFO,
  3053. ILK_CURSOR_MAXWM,
  3054. ILK_CURSOR_DFTWM,
  3055. 2,
  3056. ILK_FIFO_LINE_SIZE
  3057. };
  3058. static const struct intel_watermark_params ironlake_display_srwm_info = {
  3059. ILK_DISPLAY_SR_FIFO,
  3060. ILK_DISPLAY_MAX_SRWM,
  3061. ILK_DISPLAY_DFT_SRWM,
  3062. 2,
  3063. ILK_FIFO_LINE_SIZE
  3064. };
  3065. static const struct intel_watermark_params ironlake_cursor_srwm_info = {
  3066. ILK_CURSOR_SR_FIFO,
  3067. ILK_CURSOR_MAX_SRWM,
  3068. ILK_CURSOR_DFT_SRWM,
  3069. 2,
  3070. ILK_FIFO_LINE_SIZE
  3071. };
  3072. static const struct intel_watermark_params sandybridge_display_wm_info = {
  3073. SNB_DISPLAY_FIFO,
  3074. SNB_DISPLAY_MAXWM,
  3075. SNB_DISPLAY_DFTWM,
  3076. 2,
  3077. SNB_FIFO_LINE_SIZE
  3078. };
  3079. static const struct intel_watermark_params sandybridge_cursor_wm_info = {
  3080. SNB_CURSOR_FIFO,
  3081. SNB_CURSOR_MAXWM,
  3082. SNB_CURSOR_DFTWM,
  3083. 2,
  3084. SNB_FIFO_LINE_SIZE
  3085. };
  3086. static const struct intel_watermark_params sandybridge_display_srwm_info = {
  3087. SNB_DISPLAY_SR_FIFO,
  3088. SNB_DISPLAY_MAX_SRWM,
  3089. SNB_DISPLAY_DFT_SRWM,
  3090. 2,
  3091. SNB_FIFO_LINE_SIZE
  3092. };
  3093. static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
  3094. SNB_CURSOR_SR_FIFO,
  3095. SNB_CURSOR_MAX_SRWM,
  3096. SNB_CURSOR_DFT_SRWM,
  3097. 2,
  3098. SNB_FIFO_LINE_SIZE
  3099. };
  3100. /**
  3101. * intel_calculate_wm - calculate watermark level
  3102. * @clock_in_khz: pixel clock
  3103. * @wm: chip FIFO params
  3104. * @pixel_size: display pixel size
  3105. * @latency_ns: memory latency for the platform
  3106. *
  3107. * Calculate the watermark level (the level at which the display plane will
  3108. * start fetching from memory again). Each chip has a different display
  3109. * FIFO size and allocation, so the caller needs to figure that out and pass
  3110. * in the correct intel_watermark_params structure.
  3111. *
  3112. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  3113. * on the pixel size. When it reaches the watermark level, it'll start
  3114. * fetching FIFO line sized based chunks from memory until the FIFO fills
  3115. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  3116. * will occur, and a display engine hang could result.
  3117. */
  3118. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  3119. const struct intel_watermark_params *wm,
  3120. int fifo_size,
  3121. int pixel_size,
  3122. unsigned long latency_ns)
  3123. {
  3124. long entries_required, wm_size;
  3125. /*
  3126. * Note: we need to make sure we don't overflow for various clock &
  3127. * latency values.
  3128. * clocks go from a few thousand to several hundred thousand.
  3129. * latency is usually a few thousand
  3130. */
  3131. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  3132. 1000;
  3133. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  3134. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  3135. wm_size = fifo_size - (entries_required + wm->guard_size);
  3136. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  3137. /* Don't promote wm_size to unsigned... */
  3138. if (wm_size > (long)wm->max_wm)
  3139. wm_size = wm->max_wm;
  3140. if (wm_size <= 0)
  3141. wm_size = wm->default_wm;
  3142. return wm_size;
  3143. }
  3144. struct cxsr_latency {
  3145. int is_desktop;
  3146. int is_ddr3;
  3147. unsigned long fsb_freq;
  3148. unsigned long mem_freq;
  3149. unsigned long display_sr;
  3150. unsigned long display_hpll_disable;
  3151. unsigned long cursor_sr;
  3152. unsigned long cursor_hpll_disable;
  3153. };
  3154. static const struct cxsr_latency cxsr_latency_table[] = {
  3155. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  3156. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  3157. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  3158. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  3159. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  3160. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  3161. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  3162. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  3163. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  3164. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  3165. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  3166. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  3167. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  3168. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  3169. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  3170. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  3171. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  3172. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  3173. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  3174. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  3175. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  3176. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  3177. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  3178. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  3179. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  3180. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  3181. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  3182. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  3183. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  3184. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  3185. };
  3186. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  3187. int is_ddr3,
  3188. int fsb,
  3189. int mem)
  3190. {
  3191. const struct cxsr_latency *latency;
  3192. int i;
  3193. if (fsb == 0 || mem == 0)
  3194. return NULL;
  3195. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  3196. latency = &cxsr_latency_table[i];
  3197. if (is_desktop == latency->is_desktop &&
  3198. is_ddr3 == latency->is_ddr3 &&
  3199. fsb == latency->fsb_freq && mem == latency->mem_freq)
  3200. return latency;
  3201. }
  3202. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  3203. return NULL;
  3204. }
  3205. static void pineview_disable_cxsr(struct drm_device *dev)
  3206. {
  3207. struct drm_i915_private *dev_priv = dev->dev_private;
  3208. /* deactivate cxsr */
  3209. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  3210. }
  3211. /*
  3212. * Latency for FIFO fetches is dependent on several factors:
  3213. * - memory configuration (speed, channels)
  3214. * - chipset
  3215. * - current MCH state
  3216. * It can be fairly high in some situations, so here we assume a fairly
  3217. * pessimal value. It's a tradeoff between extra memory fetches (if we
  3218. * set this value too high, the FIFO will fetch frequently to stay full)
  3219. * and power consumption (set it too low to save power and we might see
  3220. * FIFO underruns and display "flicker").
  3221. *
  3222. * A value of 5us seems to be a good balance; safe for very low end
  3223. * platforms but not overly aggressive on lower latency configs.
  3224. */
  3225. static const int latency_ns = 5000;
  3226. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  3227. {
  3228. struct drm_i915_private *dev_priv = dev->dev_private;
  3229. uint32_t dsparb = I915_READ(DSPARB);
  3230. int size;
  3231. size = dsparb & 0x7f;
  3232. if (plane)
  3233. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  3234. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3235. plane ? "B" : "A", size);
  3236. return size;
  3237. }
  3238. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  3239. {
  3240. struct drm_i915_private *dev_priv = dev->dev_private;
  3241. uint32_t dsparb = I915_READ(DSPARB);
  3242. int size;
  3243. size = dsparb & 0x1ff;
  3244. if (plane)
  3245. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  3246. size >>= 1; /* Convert to cachelines */
  3247. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3248. plane ? "B" : "A", size);
  3249. return size;
  3250. }
  3251. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  3252. {
  3253. struct drm_i915_private *dev_priv = dev->dev_private;
  3254. uint32_t dsparb = I915_READ(DSPARB);
  3255. int size;
  3256. size = dsparb & 0x7f;
  3257. size >>= 2; /* Convert to cachelines */
  3258. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3259. plane ? "B" : "A",
  3260. size);
  3261. return size;
  3262. }
  3263. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  3264. {
  3265. struct drm_i915_private *dev_priv = dev->dev_private;
  3266. uint32_t dsparb = I915_READ(DSPARB);
  3267. int size;
  3268. size = dsparb & 0x7f;
  3269. size >>= 1; /* Convert to cachelines */
  3270. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3271. plane ? "B" : "A", size);
  3272. return size;
  3273. }
  3274. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  3275. {
  3276. struct drm_crtc *crtc, *enabled = NULL;
  3277. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3278. if (crtc->enabled && crtc->fb) {
  3279. if (enabled)
  3280. return NULL;
  3281. enabled = crtc;
  3282. }
  3283. }
  3284. return enabled;
  3285. }
  3286. static void pineview_update_wm(struct drm_device *dev)
  3287. {
  3288. struct drm_i915_private *dev_priv = dev->dev_private;
  3289. struct drm_crtc *crtc;
  3290. const struct cxsr_latency *latency;
  3291. u32 reg;
  3292. unsigned long wm;
  3293. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  3294. dev_priv->fsb_freq, dev_priv->mem_freq);
  3295. if (!latency) {
  3296. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  3297. pineview_disable_cxsr(dev);
  3298. return;
  3299. }
  3300. crtc = single_enabled_crtc(dev);
  3301. if (crtc) {
  3302. int clock = crtc->mode.clock;
  3303. int pixel_size = crtc->fb->bits_per_pixel / 8;
  3304. /* Display SR */
  3305. wm = intel_calculate_wm(clock, &pineview_display_wm,
  3306. pineview_display_wm.fifo_size,
  3307. pixel_size, latency->display_sr);
  3308. reg = I915_READ(DSPFW1);
  3309. reg &= ~DSPFW_SR_MASK;
  3310. reg |= wm << DSPFW_SR_SHIFT;
  3311. I915_WRITE(DSPFW1, reg);
  3312. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  3313. /* cursor SR */
  3314. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  3315. pineview_display_wm.fifo_size,
  3316. pixel_size, latency->cursor_sr);
  3317. reg = I915_READ(DSPFW3);
  3318. reg &= ~DSPFW_CURSOR_SR_MASK;
  3319. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  3320. I915_WRITE(DSPFW3, reg);
  3321. /* Display HPLL off SR */
  3322. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  3323. pineview_display_hplloff_wm.fifo_size,
  3324. pixel_size, latency->display_hpll_disable);
  3325. reg = I915_READ(DSPFW3);
  3326. reg &= ~DSPFW_HPLL_SR_MASK;
  3327. reg |= wm & DSPFW_HPLL_SR_MASK;
  3328. I915_WRITE(DSPFW3, reg);
  3329. /* cursor HPLL off SR */
  3330. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  3331. pineview_display_hplloff_wm.fifo_size,
  3332. pixel_size, latency->cursor_hpll_disable);
  3333. reg = I915_READ(DSPFW3);
  3334. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  3335. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  3336. I915_WRITE(DSPFW3, reg);
  3337. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  3338. /* activate cxsr */
  3339. I915_WRITE(DSPFW3,
  3340. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  3341. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  3342. } else {
  3343. pineview_disable_cxsr(dev);
  3344. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  3345. }
  3346. }
  3347. static bool g4x_compute_wm0(struct drm_device *dev,
  3348. int plane,
  3349. const struct intel_watermark_params *display,
  3350. int display_latency_ns,
  3351. const struct intel_watermark_params *cursor,
  3352. int cursor_latency_ns,
  3353. int *plane_wm,
  3354. int *cursor_wm)
  3355. {
  3356. struct drm_crtc *crtc;
  3357. int htotal, hdisplay, clock, pixel_size;
  3358. int line_time_us, line_count;
  3359. int entries, tlb_miss;
  3360. crtc = intel_get_crtc_for_plane(dev, plane);
  3361. if (crtc->fb == NULL || !crtc->enabled) {
  3362. *cursor_wm = cursor->guard_size;
  3363. *plane_wm = display->guard_size;
  3364. return false;
  3365. }
  3366. htotal = crtc->mode.htotal;
  3367. hdisplay = crtc->mode.hdisplay;
  3368. clock = crtc->mode.clock;
  3369. pixel_size = crtc->fb->bits_per_pixel / 8;
  3370. /* Use the small buffer method to calculate plane watermark */
  3371. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  3372. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  3373. if (tlb_miss > 0)
  3374. entries += tlb_miss;
  3375. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  3376. *plane_wm = entries + display->guard_size;
  3377. if (*plane_wm > (int)display->max_wm)
  3378. *plane_wm = display->max_wm;
  3379. /* Use the large buffer method to calculate cursor watermark */
  3380. line_time_us = ((htotal * 1000) / clock);
  3381. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  3382. entries = line_count * 64 * pixel_size;
  3383. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  3384. if (tlb_miss > 0)
  3385. entries += tlb_miss;
  3386. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3387. *cursor_wm = entries + cursor->guard_size;
  3388. if (*cursor_wm > (int)cursor->max_wm)
  3389. *cursor_wm = (int)cursor->max_wm;
  3390. return true;
  3391. }
  3392. /*
  3393. * Check the wm result.
  3394. *
  3395. * If any calculated watermark values is larger than the maximum value that
  3396. * can be programmed into the associated watermark register, that watermark
  3397. * must be disabled.
  3398. */
  3399. static bool g4x_check_srwm(struct drm_device *dev,
  3400. int display_wm, int cursor_wm,
  3401. const struct intel_watermark_params *display,
  3402. const struct intel_watermark_params *cursor)
  3403. {
  3404. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  3405. display_wm, cursor_wm);
  3406. if (display_wm > display->max_wm) {
  3407. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  3408. display_wm, display->max_wm);
  3409. return false;
  3410. }
  3411. if (cursor_wm > cursor->max_wm) {
  3412. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  3413. cursor_wm, cursor->max_wm);
  3414. return false;
  3415. }
  3416. if (!(display_wm || cursor_wm)) {
  3417. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  3418. return false;
  3419. }
  3420. return true;
  3421. }
  3422. static bool g4x_compute_srwm(struct drm_device *dev,
  3423. int plane,
  3424. int latency_ns,
  3425. const struct intel_watermark_params *display,
  3426. const struct intel_watermark_params *cursor,
  3427. int *display_wm, int *cursor_wm)
  3428. {
  3429. struct drm_crtc *crtc;
  3430. int hdisplay, htotal, pixel_size, clock;
  3431. unsigned long line_time_us;
  3432. int line_count, line_size;
  3433. int small, large;
  3434. int entries;
  3435. if (!latency_ns) {
  3436. *display_wm = *cursor_wm = 0;
  3437. return false;
  3438. }
  3439. crtc = intel_get_crtc_for_plane(dev, plane);
  3440. hdisplay = crtc->mode.hdisplay;
  3441. htotal = crtc->mode.htotal;
  3442. clock = crtc->mode.clock;
  3443. pixel_size = crtc->fb->bits_per_pixel / 8;
  3444. line_time_us = (htotal * 1000) / clock;
  3445. line_count = (latency_ns / line_time_us + 1000) / 1000;
  3446. line_size = hdisplay * pixel_size;
  3447. /* Use the minimum of the small and large buffer method for primary */
  3448. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  3449. large = line_count * line_size;
  3450. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  3451. *display_wm = entries + display->guard_size;
  3452. /* calculate the self-refresh watermark for display cursor */
  3453. entries = line_count * pixel_size * 64;
  3454. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3455. *cursor_wm = entries + cursor->guard_size;
  3456. return g4x_check_srwm(dev,
  3457. *display_wm, *cursor_wm,
  3458. display, cursor);
  3459. }
  3460. #define single_plane_enabled(mask) is_power_of_2(mask)
  3461. static void g4x_update_wm(struct drm_device *dev)
  3462. {
  3463. static const int sr_latency_ns = 12000;
  3464. struct drm_i915_private *dev_priv = dev->dev_private;
  3465. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  3466. int plane_sr, cursor_sr;
  3467. unsigned int enabled = 0;
  3468. if (g4x_compute_wm0(dev, 0,
  3469. &g4x_wm_info, latency_ns,
  3470. &g4x_cursor_wm_info, latency_ns,
  3471. &planea_wm, &cursora_wm))
  3472. enabled |= 1;
  3473. if (g4x_compute_wm0(dev, 1,
  3474. &g4x_wm_info, latency_ns,
  3475. &g4x_cursor_wm_info, latency_ns,
  3476. &planeb_wm, &cursorb_wm))
  3477. enabled |= 2;
  3478. plane_sr = cursor_sr = 0;
  3479. if (single_plane_enabled(enabled) &&
  3480. g4x_compute_srwm(dev, ffs(enabled) - 1,
  3481. sr_latency_ns,
  3482. &g4x_wm_info,
  3483. &g4x_cursor_wm_info,
  3484. &plane_sr, &cursor_sr))
  3485. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  3486. else
  3487. I915_WRITE(FW_BLC_SELF,
  3488. I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
  3489. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  3490. planea_wm, cursora_wm,
  3491. planeb_wm, cursorb_wm,
  3492. plane_sr, cursor_sr);
  3493. I915_WRITE(DSPFW1,
  3494. (plane_sr << DSPFW_SR_SHIFT) |
  3495. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  3496. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  3497. planea_wm);
  3498. I915_WRITE(DSPFW2,
  3499. (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
  3500. (cursora_wm << DSPFW_CURSORA_SHIFT));
  3501. /* HPLL off in SR has some issues on G4x... disable it */
  3502. I915_WRITE(DSPFW3,
  3503. (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
  3504. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  3505. }
  3506. static void i965_update_wm(struct drm_device *dev)
  3507. {
  3508. struct drm_i915_private *dev_priv = dev->dev_private;
  3509. struct drm_crtc *crtc;
  3510. int srwm = 1;
  3511. int cursor_sr = 16;
  3512. /* Calc sr entries for one plane configs */
  3513. crtc = single_enabled_crtc(dev);
  3514. if (crtc) {
  3515. /* self-refresh has much higher latency */
  3516. static const int sr_latency_ns = 12000;
  3517. int clock = crtc->mode.clock;
  3518. int htotal = crtc->mode.htotal;
  3519. int hdisplay = crtc->mode.hdisplay;
  3520. int pixel_size = crtc->fb->bits_per_pixel / 8;
  3521. unsigned long line_time_us;
  3522. int entries;
  3523. line_time_us = ((htotal * 1000) / clock);
  3524. /* Use ns/us then divide to preserve precision */
  3525. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3526. pixel_size * hdisplay;
  3527. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  3528. srwm = I965_FIFO_SIZE - entries;
  3529. if (srwm < 0)
  3530. srwm = 1;
  3531. srwm &= 0x1ff;
  3532. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  3533. entries, srwm);
  3534. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3535. pixel_size * 64;
  3536. entries = DIV_ROUND_UP(entries,
  3537. i965_cursor_wm_info.cacheline_size);
  3538. cursor_sr = i965_cursor_wm_info.fifo_size -
  3539. (entries + i965_cursor_wm_info.guard_size);
  3540. if (cursor_sr > i965_cursor_wm_info.max_wm)
  3541. cursor_sr = i965_cursor_wm_info.max_wm;
  3542. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  3543. "cursor %d\n", srwm, cursor_sr);
  3544. if (IS_CRESTLINE(dev))
  3545. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  3546. } else {
  3547. /* Turn off self refresh if both pipes are enabled */
  3548. if (IS_CRESTLINE(dev))
  3549. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  3550. & ~FW_BLC_SELF_EN);
  3551. }
  3552. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  3553. srwm);
  3554. /* 965 has limitations... */
  3555. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  3556. (8 << 16) | (8 << 8) | (8 << 0));
  3557. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  3558. /* update cursor SR watermark */
  3559. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  3560. }
  3561. static void i9xx_update_wm(struct drm_device *dev)
  3562. {
  3563. struct drm_i915_private *dev_priv = dev->dev_private;
  3564. const struct intel_watermark_params *wm_info;
  3565. uint32_t fwater_lo;
  3566. uint32_t fwater_hi;
  3567. int cwm, srwm = 1;
  3568. int fifo_size;
  3569. int planea_wm, planeb_wm;
  3570. struct drm_crtc *crtc, *enabled = NULL;
  3571. if (IS_I945GM(dev))
  3572. wm_info = &i945_wm_info;
  3573. else if (!IS_GEN2(dev))
  3574. wm_info = &i915_wm_info;
  3575. else
  3576. wm_info = &i855_wm_info;
  3577. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  3578. crtc = intel_get_crtc_for_plane(dev, 0);
  3579. if (crtc->enabled && crtc->fb) {
  3580. planea_wm = intel_calculate_wm(crtc->mode.clock,
  3581. wm_info, fifo_size,
  3582. crtc->fb->bits_per_pixel / 8,
  3583. latency_ns);
  3584. enabled = crtc;
  3585. } else
  3586. planea_wm = fifo_size - wm_info->guard_size;
  3587. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  3588. crtc = intel_get_crtc_for_plane(dev, 1);
  3589. if (crtc->enabled && crtc->fb) {
  3590. planeb_wm = intel_calculate_wm(crtc->mode.clock,
  3591. wm_info, fifo_size,
  3592. crtc->fb->bits_per_pixel / 8,
  3593. latency_ns);
  3594. if (enabled == NULL)
  3595. enabled = crtc;
  3596. else
  3597. enabled = NULL;
  3598. } else
  3599. planeb_wm = fifo_size - wm_info->guard_size;
  3600. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  3601. /*
  3602. * Overlay gets an aggressive default since video jitter is bad.
  3603. */
  3604. cwm = 2;
  3605. /* Play safe and disable self-refresh before adjusting watermarks. */
  3606. if (IS_I945G(dev) || IS_I945GM(dev))
  3607. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
  3608. else if (IS_I915GM(dev))
  3609. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  3610. /* Calc sr entries for one plane configs */
  3611. if (HAS_FW_BLC(dev) && enabled) {
  3612. /* self-refresh has much higher latency */
  3613. static const int sr_latency_ns = 6000;
  3614. int clock = enabled->mode.clock;
  3615. int htotal = enabled->mode.htotal;
  3616. int hdisplay = enabled->mode.hdisplay;
  3617. int pixel_size = enabled->fb->bits_per_pixel / 8;
  3618. unsigned long line_time_us;
  3619. int entries;
  3620. line_time_us = (htotal * 1000) / clock;
  3621. /* Use ns/us then divide to preserve precision */
  3622. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3623. pixel_size * hdisplay;
  3624. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  3625. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  3626. srwm = wm_info->fifo_size - entries;
  3627. if (srwm < 0)
  3628. srwm = 1;
  3629. if (IS_I945G(dev) || IS_I945GM(dev))
  3630. I915_WRITE(FW_BLC_SELF,
  3631. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  3632. else if (IS_I915GM(dev))
  3633. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  3634. }
  3635. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  3636. planea_wm, planeb_wm, cwm, srwm);
  3637. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  3638. fwater_hi = (cwm & 0x1f);
  3639. /* Set request length to 8 cachelines per fetch */
  3640. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  3641. fwater_hi = fwater_hi | (1 << 8);
  3642. I915_WRITE(FW_BLC, fwater_lo);
  3643. I915_WRITE(FW_BLC2, fwater_hi);
  3644. if (HAS_FW_BLC(dev)) {
  3645. if (enabled) {
  3646. if (IS_I945G(dev) || IS_I945GM(dev))
  3647. I915_WRITE(FW_BLC_SELF,
  3648. FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  3649. else if (IS_I915GM(dev))
  3650. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  3651. DRM_DEBUG_KMS("memory self refresh enabled\n");
  3652. } else
  3653. DRM_DEBUG_KMS("memory self refresh disabled\n");
  3654. }
  3655. }
  3656. static void i830_update_wm(struct drm_device *dev)
  3657. {
  3658. struct drm_i915_private *dev_priv = dev->dev_private;
  3659. struct drm_crtc *crtc;
  3660. uint32_t fwater_lo;
  3661. int planea_wm;
  3662. crtc = single_enabled_crtc(dev);
  3663. if (crtc == NULL)
  3664. return;
  3665. planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
  3666. dev_priv->display.get_fifo_size(dev, 0),
  3667. crtc->fb->bits_per_pixel / 8,
  3668. latency_ns);
  3669. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  3670. fwater_lo |= (3<<8) | planea_wm;
  3671. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  3672. I915_WRITE(FW_BLC, fwater_lo);
  3673. }
  3674. #define ILK_LP0_PLANE_LATENCY 700
  3675. #define ILK_LP0_CURSOR_LATENCY 1300
  3676. /*
  3677. * Check the wm result.
  3678. *
  3679. * If any calculated watermark values is larger than the maximum value that
  3680. * can be programmed into the associated watermark register, that watermark
  3681. * must be disabled.
  3682. */
  3683. static bool ironlake_check_srwm(struct drm_device *dev, int level,
  3684. int fbc_wm, int display_wm, int cursor_wm,
  3685. const struct intel_watermark_params *display,
  3686. const struct intel_watermark_params *cursor)
  3687. {
  3688. struct drm_i915_private *dev_priv = dev->dev_private;
  3689. DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
  3690. " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
  3691. if (fbc_wm > SNB_FBC_MAX_SRWM) {
  3692. DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
  3693. fbc_wm, SNB_FBC_MAX_SRWM, level);
  3694. /* fbc has it's own way to disable FBC WM */
  3695. I915_WRITE(DISP_ARB_CTL,
  3696. I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
  3697. return false;
  3698. }
  3699. if (display_wm > display->max_wm) {
  3700. DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
  3701. display_wm, SNB_DISPLAY_MAX_SRWM, level);
  3702. return false;
  3703. }
  3704. if (cursor_wm > cursor->max_wm) {
  3705. DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
  3706. cursor_wm, SNB_CURSOR_MAX_SRWM, level);
  3707. return false;
  3708. }
  3709. if (!(fbc_wm || display_wm || cursor_wm)) {
  3710. DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
  3711. return false;
  3712. }
  3713. return true;
  3714. }
  3715. /*
  3716. * Compute watermark values of WM[1-3],
  3717. */
  3718. static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
  3719. int latency_ns,
  3720. const struct intel_watermark_params *display,
  3721. const struct intel_watermark_params *cursor,
  3722. int *fbc_wm, int *display_wm, int *cursor_wm)
  3723. {
  3724. struct drm_crtc *crtc;
  3725. unsigned long line_time_us;
  3726. int hdisplay, htotal, pixel_size, clock;
  3727. int line_count, line_size;
  3728. int small, large;
  3729. int entries;
  3730. if (!latency_ns) {
  3731. *fbc_wm = *display_wm = *cursor_wm = 0;
  3732. return false;
  3733. }
  3734. crtc = intel_get_crtc_for_plane(dev, plane);
  3735. hdisplay = crtc->mode.hdisplay;
  3736. htotal = crtc->mode.htotal;
  3737. clock = crtc->mode.clock;
  3738. pixel_size = crtc->fb->bits_per_pixel / 8;
  3739. line_time_us = (htotal * 1000) / clock;
  3740. line_count = (latency_ns / line_time_us + 1000) / 1000;
  3741. line_size = hdisplay * pixel_size;
  3742. /* Use the minimum of the small and large buffer method for primary */
  3743. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  3744. large = line_count * line_size;
  3745. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  3746. *display_wm = entries + display->guard_size;
  3747. /*
  3748. * Spec says:
  3749. * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
  3750. */
  3751. *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
  3752. /* calculate the self-refresh watermark for display cursor */
  3753. entries = line_count * pixel_size * 64;
  3754. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3755. *cursor_wm = entries + cursor->guard_size;
  3756. return ironlake_check_srwm(dev, level,
  3757. *fbc_wm, *display_wm, *cursor_wm,
  3758. display, cursor);
  3759. }
  3760. static void ironlake_update_wm(struct drm_device *dev)
  3761. {
  3762. struct drm_i915_private *dev_priv = dev->dev_private;
  3763. int fbc_wm, plane_wm, cursor_wm;
  3764. unsigned int enabled;
  3765. enabled = 0;
  3766. if (g4x_compute_wm0(dev, 0,
  3767. &ironlake_display_wm_info,
  3768. ILK_LP0_PLANE_LATENCY,
  3769. &ironlake_cursor_wm_info,
  3770. ILK_LP0_CURSOR_LATENCY,
  3771. &plane_wm, &cursor_wm)) {
  3772. I915_WRITE(WM0_PIPEA_ILK,
  3773. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  3774. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  3775. " plane %d, " "cursor: %d\n",
  3776. plane_wm, cursor_wm);
  3777. enabled |= 1;
  3778. }
  3779. if (g4x_compute_wm0(dev, 1,
  3780. &ironlake_display_wm_info,
  3781. ILK_LP0_PLANE_LATENCY,
  3782. &ironlake_cursor_wm_info,
  3783. ILK_LP0_CURSOR_LATENCY,
  3784. &plane_wm, &cursor_wm)) {
  3785. I915_WRITE(WM0_PIPEB_ILK,
  3786. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  3787. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  3788. " plane %d, cursor: %d\n",
  3789. plane_wm, cursor_wm);
  3790. enabled |= 2;
  3791. }
  3792. /*
  3793. * Calculate and update the self-refresh watermark only when one
  3794. * display plane is used.
  3795. */
  3796. I915_WRITE(WM3_LP_ILK, 0);
  3797. I915_WRITE(WM2_LP_ILK, 0);
  3798. I915_WRITE(WM1_LP_ILK, 0);
  3799. if (!single_plane_enabled(enabled))
  3800. return;
  3801. enabled = ffs(enabled) - 1;
  3802. /* WM1 */
  3803. if (!ironlake_compute_srwm(dev, 1, enabled,
  3804. ILK_READ_WM1_LATENCY() * 500,
  3805. &ironlake_display_srwm_info,
  3806. &ironlake_cursor_srwm_info,
  3807. &fbc_wm, &plane_wm, &cursor_wm))
  3808. return;
  3809. I915_WRITE(WM1_LP_ILK,
  3810. WM1_LP_SR_EN |
  3811. (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3812. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3813. (plane_wm << WM1_LP_SR_SHIFT) |
  3814. cursor_wm);
  3815. /* WM2 */
  3816. if (!ironlake_compute_srwm(dev, 2, enabled,
  3817. ILK_READ_WM2_LATENCY() * 500,
  3818. &ironlake_display_srwm_info,
  3819. &ironlake_cursor_srwm_info,
  3820. &fbc_wm, &plane_wm, &cursor_wm))
  3821. return;
  3822. I915_WRITE(WM2_LP_ILK,
  3823. WM2_LP_EN |
  3824. (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3825. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3826. (plane_wm << WM1_LP_SR_SHIFT) |
  3827. cursor_wm);
  3828. /*
  3829. * WM3 is unsupported on ILK, probably because we don't have latency
  3830. * data for that power state
  3831. */
  3832. }
  3833. static void sandybridge_update_wm(struct drm_device *dev)
  3834. {
  3835. struct drm_i915_private *dev_priv = dev->dev_private;
  3836. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  3837. int fbc_wm, plane_wm, cursor_wm;
  3838. unsigned int enabled;
  3839. enabled = 0;
  3840. if (g4x_compute_wm0(dev, 0,
  3841. &sandybridge_display_wm_info, latency,
  3842. &sandybridge_cursor_wm_info, latency,
  3843. &plane_wm, &cursor_wm)) {
  3844. I915_WRITE(WM0_PIPEA_ILK,
  3845. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  3846. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  3847. " plane %d, " "cursor: %d\n",
  3848. plane_wm, cursor_wm);
  3849. enabled |= 1;
  3850. }
  3851. if (g4x_compute_wm0(dev, 1,
  3852. &sandybridge_display_wm_info, latency,
  3853. &sandybridge_cursor_wm_info, latency,
  3854. &plane_wm, &cursor_wm)) {
  3855. I915_WRITE(WM0_PIPEB_ILK,
  3856. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  3857. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  3858. " plane %d, cursor: %d\n",
  3859. plane_wm, cursor_wm);
  3860. enabled |= 2;
  3861. }
  3862. /*
  3863. * Calculate and update the self-refresh watermark only when one
  3864. * display plane is used.
  3865. *
  3866. * SNB support 3 levels of watermark.
  3867. *
  3868. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  3869. * and disabled in the descending order
  3870. *
  3871. */
  3872. I915_WRITE(WM3_LP_ILK, 0);
  3873. I915_WRITE(WM2_LP_ILK, 0);
  3874. I915_WRITE(WM1_LP_ILK, 0);
  3875. if (!single_plane_enabled(enabled))
  3876. return;
  3877. enabled = ffs(enabled) - 1;
  3878. /* WM1 */
  3879. if (!ironlake_compute_srwm(dev, 1, enabled,
  3880. SNB_READ_WM1_LATENCY() * 500,
  3881. &sandybridge_display_srwm_info,
  3882. &sandybridge_cursor_srwm_info,
  3883. &fbc_wm, &plane_wm, &cursor_wm))
  3884. return;
  3885. I915_WRITE(WM1_LP_ILK,
  3886. WM1_LP_SR_EN |
  3887. (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3888. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3889. (plane_wm << WM1_LP_SR_SHIFT) |
  3890. cursor_wm);
  3891. /* WM2 */
  3892. if (!ironlake_compute_srwm(dev, 2, enabled,
  3893. SNB_READ_WM2_LATENCY() * 500,
  3894. &sandybridge_display_srwm_info,
  3895. &sandybridge_cursor_srwm_info,
  3896. &fbc_wm, &plane_wm, &cursor_wm))
  3897. return;
  3898. I915_WRITE(WM2_LP_ILK,
  3899. WM2_LP_EN |
  3900. (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3901. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3902. (plane_wm << WM1_LP_SR_SHIFT) |
  3903. cursor_wm);
  3904. /* WM3 */
  3905. if (!ironlake_compute_srwm(dev, 3, enabled,
  3906. SNB_READ_WM3_LATENCY() * 500,
  3907. &sandybridge_display_srwm_info,
  3908. &sandybridge_cursor_srwm_info,
  3909. &fbc_wm, &plane_wm, &cursor_wm))
  3910. return;
  3911. I915_WRITE(WM3_LP_ILK,
  3912. WM3_LP_EN |
  3913. (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3914. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3915. (plane_wm << WM1_LP_SR_SHIFT) |
  3916. cursor_wm);
  3917. }
  3918. /**
  3919. * intel_update_watermarks - update FIFO watermark values based on current modes
  3920. *
  3921. * Calculate watermark values for the various WM regs based on current mode
  3922. * and plane configuration.
  3923. *
  3924. * There are several cases to deal with here:
  3925. * - normal (i.e. non-self-refresh)
  3926. * - self-refresh (SR) mode
  3927. * - lines are large relative to FIFO size (buffer can hold up to 2)
  3928. * - lines are small relative to FIFO size (buffer can hold more than 2
  3929. * lines), so need to account for TLB latency
  3930. *
  3931. * The normal calculation is:
  3932. * watermark = dotclock * bytes per pixel * latency
  3933. * where latency is platform & configuration dependent (we assume pessimal
  3934. * values here).
  3935. *
  3936. * The SR calculation is:
  3937. * watermark = (trunc(latency/line time)+1) * surface width *
  3938. * bytes per pixel
  3939. * where
  3940. * line time = htotal / dotclock
  3941. * surface width = hdisplay for normal plane and 64 for cursor
  3942. * and latency is assumed to be high, as above.
  3943. *
  3944. * The final value programmed to the register should always be rounded up,
  3945. * and include an extra 2 entries to account for clock crossings.
  3946. *
  3947. * We don't use the sprite, so we can ignore that. And on Crestline we have
  3948. * to set the non-SR watermarks to 8.
  3949. */
  3950. static void intel_update_watermarks(struct drm_device *dev)
  3951. {
  3952. struct drm_i915_private *dev_priv = dev->dev_private;
  3953. if (dev_priv->display.update_wm)
  3954. dev_priv->display.update_wm(dev);
  3955. }
  3956. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3957. {
  3958. if (i915_panel_use_ssc >= 0)
  3959. return i915_panel_use_ssc != 0;
  3960. return dev_priv->lvds_use_ssc
  3961. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3962. }
  3963. /**
  3964. * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
  3965. * @crtc: CRTC structure
  3966. *
  3967. * A pipe may be connected to one or more outputs. Based on the depth of the
  3968. * attached framebuffer, choose a good color depth to use on the pipe.
  3969. *
  3970. * If possible, match the pipe depth to the fb depth. In some cases, this
  3971. * isn't ideal, because the connected output supports a lesser or restricted
  3972. * set of depths. Resolve that here:
  3973. * LVDS typically supports only 6bpc, so clamp down in that case
  3974. * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
  3975. * Displays may support a restricted set as well, check EDID and clamp as
  3976. * appropriate.
  3977. *
  3978. * RETURNS:
  3979. * Dithering requirement (i.e. false if display bpc and pipe bpc match,
  3980. * true if they don't match).
  3981. */
  3982. static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
  3983. unsigned int *pipe_bpp)
  3984. {
  3985. struct drm_device *dev = crtc->dev;
  3986. struct drm_i915_private *dev_priv = dev->dev_private;
  3987. struct drm_encoder *encoder;
  3988. struct drm_connector *connector;
  3989. unsigned int display_bpc = UINT_MAX, bpc;
  3990. /* Walk the encoders & connectors on this crtc, get min bpc */
  3991. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  3992. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3993. if (encoder->crtc != crtc)
  3994. continue;
  3995. if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
  3996. unsigned int lvds_bpc;
  3997. if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
  3998. LVDS_A3_POWER_UP)
  3999. lvds_bpc = 8;
  4000. else
  4001. lvds_bpc = 6;
  4002. if (lvds_bpc < display_bpc) {
  4003. DRM_DEBUG_DRIVER("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
  4004. display_bpc = lvds_bpc;
  4005. }
  4006. continue;
  4007. }
  4008. if (intel_encoder->type == INTEL_OUTPUT_EDP) {
  4009. /* Use VBT settings if we have an eDP panel */
  4010. unsigned int edp_bpc = dev_priv->edp.bpp / 3;
  4011. if (edp_bpc < display_bpc) {
  4012. DRM_DEBUG_DRIVER("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
  4013. display_bpc = edp_bpc;
  4014. }
  4015. continue;
  4016. }
  4017. /* Not one of the known troublemakers, check the EDID */
  4018. list_for_each_entry(connector, &dev->mode_config.connector_list,
  4019. head) {
  4020. if (connector->encoder != encoder)
  4021. continue;
  4022. /* Don't use an invalid EDID bpc value */
  4023. if (connector->display_info.bpc &&
  4024. connector->display_info.bpc < display_bpc) {
  4025. DRM_DEBUG_DRIVER("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
  4026. display_bpc = connector->display_info.bpc;
  4027. }
  4028. }
  4029. /*
  4030. * HDMI is either 12 or 8, so if the display lets 10bpc sneak
  4031. * through, clamp it down. (Note: >12bpc will be caught below.)
  4032. */
  4033. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  4034. if (display_bpc > 8 && display_bpc < 12) {
  4035. DRM_DEBUG_DRIVER("forcing bpc to 12 for HDMI\n");
  4036. display_bpc = 12;
  4037. } else {
  4038. DRM_DEBUG_DRIVER("forcing bpc to 8 for HDMI\n");
  4039. display_bpc = 8;
  4040. }
  4041. }
  4042. }
  4043. /*
  4044. * We could just drive the pipe at the highest bpc all the time and
  4045. * enable dithering as needed, but that costs bandwidth. So choose
  4046. * the minimum value that expresses the full color range of the fb but
  4047. * also stays within the max display bpc discovered above.
  4048. */
  4049. switch (crtc->fb->depth) {
  4050. case 8:
  4051. bpc = 8; /* since we go through a colormap */
  4052. break;
  4053. case 15:
  4054. case 16:
  4055. bpc = 6; /* min is 18bpp */
  4056. break;
  4057. case 24:
  4058. bpc = 8;
  4059. break;
  4060. case 30:
  4061. bpc = 10;
  4062. break;
  4063. case 48:
  4064. bpc = 12;
  4065. break;
  4066. default:
  4067. DRM_DEBUG("unsupported depth, assuming 24 bits\n");
  4068. bpc = min((unsigned int)8, display_bpc);
  4069. break;
  4070. }
  4071. display_bpc = min(display_bpc, bpc);
  4072. DRM_DEBUG_DRIVER("setting pipe bpc to %d (max display bpc %d)\n",
  4073. bpc, display_bpc);
  4074. *pipe_bpp = display_bpc * 3;
  4075. return display_bpc != bpc;
  4076. }
  4077. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4078. struct drm_display_mode *mode,
  4079. struct drm_display_mode *adjusted_mode,
  4080. int x, int y,
  4081. struct drm_framebuffer *old_fb)
  4082. {
  4083. struct drm_device *dev = crtc->dev;
  4084. struct drm_i915_private *dev_priv = dev->dev_private;
  4085. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4086. int pipe = intel_crtc->pipe;
  4087. int plane = intel_crtc->plane;
  4088. int refclk, num_connectors = 0;
  4089. intel_clock_t clock, reduced_clock;
  4090. u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
  4091. bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
  4092. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  4093. struct drm_mode_config *mode_config = &dev->mode_config;
  4094. struct intel_encoder *encoder;
  4095. const intel_limit_t *limit;
  4096. int ret;
  4097. u32 temp;
  4098. u32 lvds_sync = 0;
  4099. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4100. if (encoder->base.crtc != crtc)
  4101. continue;
  4102. switch (encoder->type) {
  4103. case INTEL_OUTPUT_LVDS:
  4104. is_lvds = true;
  4105. break;
  4106. case INTEL_OUTPUT_SDVO:
  4107. case INTEL_OUTPUT_HDMI:
  4108. is_sdvo = true;
  4109. if (encoder->needs_tv_clock)
  4110. is_tv = true;
  4111. break;
  4112. case INTEL_OUTPUT_DVO:
  4113. is_dvo = true;
  4114. break;
  4115. case INTEL_OUTPUT_TVOUT:
  4116. is_tv = true;
  4117. break;
  4118. case INTEL_OUTPUT_ANALOG:
  4119. is_crt = true;
  4120. break;
  4121. case INTEL_OUTPUT_DISPLAYPORT:
  4122. is_dp = true;
  4123. break;
  4124. }
  4125. num_connectors++;
  4126. }
  4127. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4128. refclk = dev_priv->lvds_ssc_freq * 1000;
  4129. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4130. refclk / 1000);
  4131. } else if (!IS_GEN2(dev)) {
  4132. refclk = 96000;
  4133. } else {
  4134. refclk = 48000;
  4135. }
  4136. /*
  4137. * Returns a set of divisors for the desired target clock with the given
  4138. * refclk, or FALSE. The returned values represent the clock equation:
  4139. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4140. */
  4141. limit = intel_limit(crtc, refclk);
  4142. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
  4143. if (!ok) {
  4144. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4145. return -EINVAL;
  4146. }
  4147. /* Ensure that the cursor is valid for the new mode before changing... */
  4148. intel_crtc_update_cursor(crtc, true);
  4149. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4150. has_reduced_clock = limit->find_pll(limit, crtc,
  4151. dev_priv->lvds_downclock,
  4152. refclk,
  4153. &reduced_clock);
  4154. if (has_reduced_clock && (clock.p != reduced_clock.p)) {
  4155. /*
  4156. * If the different P is found, it means that we can't
  4157. * switch the display clock by using the FP0/FP1.
  4158. * In such case we will disable the LVDS downclock
  4159. * feature.
  4160. */
  4161. DRM_DEBUG_KMS("Different P is found for "
  4162. "LVDS clock/downclock\n");
  4163. has_reduced_clock = 0;
  4164. }
  4165. }
  4166. /* SDVO TV has fixed PLL values depend on its clock range,
  4167. this mirrors vbios setting. */
  4168. if (is_sdvo && is_tv) {
  4169. if (adjusted_mode->clock >= 100000
  4170. && adjusted_mode->clock < 140500) {
  4171. clock.p1 = 2;
  4172. clock.p2 = 10;
  4173. clock.n = 3;
  4174. clock.m1 = 16;
  4175. clock.m2 = 8;
  4176. } else if (adjusted_mode->clock >= 140500
  4177. && adjusted_mode->clock <= 200000) {
  4178. clock.p1 = 1;
  4179. clock.p2 = 10;
  4180. clock.n = 6;
  4181. clock.m1 = 12;
  4182. clock.m2 = 8;
  4183. }
  4184. }
  4185. if (IS_PINEVIEW(dev)) {
  4186. fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
  4187. if (has_reduced_clock)
  4188. fp2 = (1 << reduced_clock.n) << 16 |
  4189. reduced_clock.m1 << 8 | reduced_clock.m2;
  4190. } else {
  4191. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4192. if (has_reduced_clock)
  4193. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  4194. reduced_clock.m2;
  4195. }
  4196. dpll = DPLL_VGA_MODE_DIS;
  4197. if (!IS_GEN2(dev)) {
  4198. if (is_lvds)
  4199. dpll |= DPLLB_MODE_LVDS;
  4200. else
  4201. dpll |= DPLLB_MODE_DAC_SERIAL;
  4202. if (is_sdvo) {
  4203. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4204. if (pixel_multiplier > 1) {
  4205. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4206. dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  4207. }
  4208. dpll |= DPLL_DVO_HIGH_SPEED;
  4209. }
  4210. if (is_dp)
  4211. dpll |= DPLL_DVO_HIGH_SPEED;
  4212. /* compute bitmask from p1 value */
  4213. if (IS_PINEVIEW(dev))
  4214. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  4215. else {
  4216. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4217. if (IS_G4X(dev) && has_reduced_clock)
  4218. dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4219. }
  4220. switch (clock.p2) {
  4221. case 5:
  4222. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4223. break;
  4224. case 7:
  4225. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4226. break;
  4227. case 10:
  4228. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4229. break;
  4230. case 14:
  4231. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4232. break;
  4233. }
  4234. if (INTEL_INFO(dev)->gen >= 4)
  4235. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  4236. } else {
  4237. if (is_lvds) {
  4238. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4239. } else {
  4240. if (clock.p1 == 2)
  4241. dpll |= PLL_P1_DIVIDE_BY_TWO;
  4242. else
  4243. dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4244. if (clock.p2 == 4)
  4245. dpll |= PLL_P2_DIVIDE_BY_4;
  4246. }
  4247. }
  4248. if (is_sdvo && is_tv)
  4249. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4250. else if (is_tv)
  4251. /* XXX: just matching BIOS for now */
  4252. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4253. dpll |= 3;
  4254. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4255. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4256. else
  4257. dpll |= PLL_REF_INPUT_DREFCLK;
  4258. /* setup pipeconf */
  4259. pipeconf = I915_READ(PIPECONF(pipe));
  4260. /* Set up the display plane register */
  4261. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4262. /* Ironlake's plane is forced to pipe, bit 24 is to
  4263. enable color space conversion */
  4264. if (pipe == 0)
  4265. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4266. else
  4267. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4268. if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4269. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4270. * core speed.
  4271. *
  4272. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4273. * pipe == 0 check?
  4274. */
  4275. if (mode->clock >
  4276. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4277. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4278. else
  4279. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  4280. }
  4281. dpll |= DPLL_VCO_ENABLE;
  4282. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  4283. drm_mode_debug_printmodeline(mode);
  4284. I915_WRITE(FP0(pipe), fp);
  4285. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  4286. POSTING_READ(DPLL(pipe));
  4287. udelay(150);
  4288. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  4289. * This is an exception to the general rule that mode_set doesn't turn
  4290. * things on.
  4291. */
  4292. if (is_lvds) {
  4293. temp = I915_READ(LVDS);
  4294. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4295. if (pipe == 1) {
  4296. temp |= LVDS_PIPEB_SELECT;
  4297. } else {
  4298. temp &= ~LVDS_PIPEB_SELECT;
  4299. }
  4300. /* set the corresponsding LVDS_BORDER bit */
  4301. temp |= dev_priv->lvds_border_bits;
  4302. /* Set the B0-B3 data pairs corresponding to whether we're going to
  4303. * set the DPLLs for dual-channel mode or not.
  4304. */
  4305. if (clock.p2 == 7)
  4306. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4307. else
  4308. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  4309. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  4310. * appropriately here, but we need to look more thoroughly into how
  4311. * panels behave in the two modes.
  4312. */
  4313. /* set the dithering flag on LVDS as needed */
  4314. if (INTEL_INFO(dev)->gen >= 4) {
  4315. if (dev_priv->lvds_dither)
  4316. temp |= LVDS_ENABLE_DITHER;
  4317. else
  4318. temp &= ~LVDS_ENABLE_DITHER;
  4319. }
  4320. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4321. lvds_sync |= LVDS_HSYNC_POLARITY;
  4322. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4323. lvds_sync |= LVDS_VSYNC_POLARITY;
  4324. if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
  4325. != lvds_sync) {
  4326. char flags[2] = "-+";
  4327. DRM_INFO("Changing LVDS panel from "
  4328. "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
  4329. flags[!(temp & LVDS_HSYNC_POLARITY)],
  4330. flags[!(temp & LVDS_VSYNC_POLARITY)],
  4331. flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
  4332. flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
  4333. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4334. temp |= lvds_sync;
  4335. }
  4336. I915_WRITE(LVDS, temp);
  4337. }
  4338. if (is_dp) {
  4339. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4340. }
  4341. I915_WRITE(DPLL(pipe), dpll);
  4342. /* Wait for the clocks to stabilize. */
  4343. POSTING_READ(DPLL(pipe));
  4344. udelay(150);
  4345. if (INTEL_INFO(dev)->gen >= 4) {
  4346. temp = 0;
  4347. if (is_sdvo) {
  4348. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  4349. if (temp > 1)
  4350. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  4351. else
  4352. temp = 0;
  4353. }
  4354. I915_WRITE(DPLL_MD(pipe), temp);
  4355. } else {
  4356. /* The pixel multiplier can only be updated once the
  4357. * DPLL is enabled and the clocks are stable.
  4358. *
  4359. * So write it again.
  4360. */
  4361. I915_WRITE(DPLL(pipe), dpll);
  4362. }
  4363. intel_crtc->lowfreq_avail = false;
  4364. if (is_lvds && has_reduced_clock && i915_powersave) {
  4365. I915_WRITE(FP1(pipe), fp2);
  4366. intel_crtc->lowfreq_avail = true;
  4367. if (HAS_PIPE_CXSR(dev)) {
  4368. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4369. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4370. }
  4371. } else {
  4372. I915_WRITE(FP1(pipe), fp);
  4373. if (HAS_PIPE_CXSR(dev)) {
  4374. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4375. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4376. }
  4377. }
  4378. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  4379. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4380. /* the chip adds 2 halflines automatically */
  4381. adjusted_mode->crtc_vdisplay -= 1;
  4382. adjusted_mode->crtc_vtotal -= 1;
  4383. adjusted_mode->crtc_vblank_start -= 1;
  4384. adjusted_mode->crtc_vblank_end -= 1;
  4385. adjusted_mode->crtc_vsync_end -= 1;
  4386. adjusted_mode->crtc_vsync_start -= 1;
  4387. } else
  4388. pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
  4389. I915_WRITE(HTOTAL(pipe),
  4390. (adjusted_mode->crtc_hdisplay - 1) |
  4391. ((adjusted_mode->crtc_htotal - 1) << 16));
  4392. I915_WRITE(HBLANK(pipe),
  4393. (adjusted_mode->crtc_hblank_start - 1) |
  4394. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  4395. I915_WRITE(HSYNC(pipe),
  4396. (adjusted_mode->crtc_hsync_start - 1) |
  4397. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  4398. I915_WRITE(VTOTAL(pipe),
  4399. (adjusted_mode->crtc_vdisplay - 1) |
  4400. ((adjusted_mode->crtc_vtotal - 1) << 16));
  4401. I915_WRITE(VBLANK(pipe),
  4402. (adjusted_mode->crtc_vblank_start - 1) |
  4403. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  4404. I915_WRITE(VSYNC(pipe),
  4405. (adjusted_mode->crtc_vsync_start - 1) |
  4406. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  4407. /* pipesrc and dspsize control the size that is scaled from,
  4408. * which should always be the user's requested size.
  4409. */
  4410. I915_WRITE(DSPSIZE(plane),
  4411. ((mode->vdisplay - 1) << 16) |
  4412. (mode->hdisplay - 1));
  4413. I915_WRITE(DSPPOS(plane), 0);
  4414. I915_WRITE(PIPESRC(pipe),
  4415. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  4416. I915_WRITE(PIPECONF(pipe), pipeconf);
  4417. POSTING_READ(PIPECONF(pipe));
  4418. intel_enable_pipe(dev_priv, pipe, false);
  4419. intel_wait_for_vblank(dev, pipe);
  4420. I915_WRITE(DSPCNTR(plane), dspcntr);
  4421. POSTING_READ(DSPCNTR(plane));
  4422. intel_enable_plane(dev_priv, plane, pipe);
  4423. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  4424. intel_update_watermarks(dev);
  4425. return ret;
  4426. }
  4427. /*
  4428. * Initialize reference clocks when the driver loads
  4429. */
  4430. void ironlake_init_pch_refclk(struct drm_device *dev)
  4431. {
  4432. struct drm_i915_private *dev_priv = dev->dev_private;
  4433. struct drm_mode_config *mode_config = &dev->mode_config;
  4434. struct intel_encoder *encoder;
  4435. u32 temp;
  4436. bool has_lvds = false;
  4437. bool has_cpu_edp = false;
  4438. bool has_pch_edp = false;
  4439. bool has_panel = false;
  4440. bool has_ck505 = false;
  4441. bool can_ssc = false;
  4442. /* We need to take the global config into account */
  4443. list_for_each_entry(encoder, &mode_config->encoder_list,
  4444. base.head) {
  4445. switch (encoder->type) {
  4446. case INTEL_OUTPUT_LVDS:
  4447. has_panel = true;
  4448. has_lvds = true;
  4449. break;
  4450. case INTEL_OUTPUT_EDP:
  4451. has_panel = true;
  4452. if (intel_encoder_is_pch_edp(&encoder->base))
  4453. has_pch_edp = true;
  4454. else
  4455. has_cpu_edp = true;
  4456. break;
  4457. }
  4458. }
  4459. if (HAS_PCH_IBX(dev)) {
  4460. has_ck505 = dev_priv->display_clock_mode;
  4461. can_ssc = has_ck505;
  4462. } else {
  4463. has_ck505 = false;
  4464. can_ssc = true;
  4465. }
  4466. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
  4467. has_panel, has_lvds, has_pch_edp, has_cpu_edp,
  4468. has_ck505);
  4469. /* Ironlake: try to setup display ref clock before DPLL
  4470. * enabling. This is only under driver's control after
  4471. * PCH B stepping, previous chipset stepping should be
  4472. * ignoring this setting.
  4473. */
  4474. temp = I915_READ(PCH_DREF_CONTROL);
  4475. /* Always enable nonspread source */
  4476. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  4477. if (has_ck505)
  4478. temp |= DREF_NONSPREAD_CK505_ENABLE;
  4479. else
  4480. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  4481. if (has_panel) {
  4482. temp &= ~DREF_SSC_SOURCE_MASK;
  4483. temp |= DREF_SSC_SOURCE_ENABLE;
  4484. /* SSC must be turned on before enabling the CPU output */
  4485. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4486. DRM_DEBUG_KMS("Using SSC on panel\n");
  4487. temp |= DREF_SSC1_ENABLE;
  4488. }
  4489. /* Get SSC going before enabling the outputs */
  4490. I915_WRITE(PCH_DREF_CONTROL, temp);
  4491. POSTING_READ(PCH_DREF_CONTROL);
  4492. udelay(200);
  4493. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4494. /* Enable CPU source on CPU attached eDP */
  4495. if (has_cpu_edp) {
  4496. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4497. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4498. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4499. }
  4500. else
  4501. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4502. } else
  4503. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4504. I915_WRITE(PCH_DREF_CONTROL, temp);
  4505. POSTING_READ(PCH_DREF_CONTROL);
  4506. udelay(200);
  4507. } else {
  4508. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4509. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4510. /* Turn off CPU output */
  4511. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4512. I915_WRITE(PCH_DREF_CONTROL, temp);
  4513. POSTING_READ(PCH_DREF_CONTROL);
  4514. udelay(200);
  4515. /* Turn off the SSC source */
  4516. temp &= ~DREF_SSC_SOURCE_MASK;
  4517. temp |= DREF_SSC_SOURCE_DISABLE;
  4518. /* Turn off SSC1 */
  4519. temp &= ~ DREF_SSC1_ENABLE;
  4520. I915_WRITE(PCH_DREF_CONTROL, temp);
  4521. POSTING_READ(PCH_DREF_CONTROL);
  4522. udelay(200);
  4523. }
  4524. }
  4525. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4526. struct drm_display_mode *mode,
  4527. struct drm_display_mode *adjusted_mode,
  4528. int x, int y,
  4529. struct drm_framebuffer *old_fb)
  4530. {
  4531. struct drm_device *dev = crtc->dev;
  4532. struct drm_i915_private *dev_priv = dev->dev_private;
  4533. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4534. int pipe = intel_crtc->pipe;
  4535. int plane = intel_crtc->plane;
  4536. int refclk, num_connectors = 0;
  4537. intel_clock_t clock, reduced_clock;
  4538. u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
  4539. bool ok, has_reduced_clock = false, is_sdvo = false;
  4540. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  4541. struct intel_encoder *has_edp_encoder = NULL;
  4542. struct drm_mode_config *mode_config = &dev->mode_config;
  4543. struct intel_encoder *encoder;
  4544. const intel_limit_t *limit;
  4545. int ret;
  4546. struct fdi_m_n m_n = {0};
  4547. u32 temp;
  4548. u32 lvds_sync = 0;
  4549. int target_clock, pixel_multiplier, lane, link_bw, factor;
  4550. unsigned int pipe_bpp;
  4551. bool dither;
  4552. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4553. if (encoder->base.crtc != crtc)
  4554. continue;
  4555. switch (encoder->type) {
  4556. case INTEL_OUTPUT_LVDS:
  4557. is_lvds = true;
  4558. break;
  4559. case INTEL_OUTPUT_SDVO:
  4560. case INTEL_OUTPUT_HDMI:
  4561. is_sdvo = true;
  4562. if (encoder->needs_tv_clock)
  4563. is_tv = true;
  4564. break;
  4565. case INTEL_OUTPUT_TVOUT:
  4566. is_tv = true;
  4567. break;
  4568. case INTEL_OUTPUT_ANALOG:
  4569. is_crt = true;
  4570. break;
  4571. case INTEL_OUTPUT_DISPLAYPORT:
  4572. is_dp = true;
  4573. break;
  4574. case INTEL_OUTPUT_EDP:
  4575. has_edp_encoder = encoder;
  4576. break;
  4577. }
  4578. num_connectors++;
  4579. }
  4580. /*
  4581. * Every reference clock in a PCH system is 120MHz
  4582. */
  4583. refclk = 120000;
  4584. /*
  4585. * Returns a set of divisors for the desired target clock with the given
  4586. * refclk, or FALSE. The returned values represent the clock equation:
  4587. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4588. */
  4589. limit = intel_limit(crtc, refclk);
  4590. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
  4591. if (!ok) {
  4592. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4593. return -EINVAL;
  4594. }
  4595. /* Ensure that the cursor is valid for the new mode before changing... */
  4596. intel_crtc_update_cursor(crtc, true);
  4597. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4598. has_reduced_clock = limit->find_pll(limit, crtc,
  4599. dev_priv->lvds_downclock,
  4600. refclk,
  4601. &reduced_clock);
  4602. if (has_reduced_clock && (clock.p != reduced_clock.p)) {
  4603. /*
  4604. * If the different P is found, it means that we can't
  4605. * switch the display clock by using the FP0/FP1.
  4606. * In such case we will disable the LVDS downclock
  4607. * feature.
  4608. */
  4609. DRM_DEBUG_KMS("Different P is found for "
  4610. "LVDS clock/downclock\n");
  4611. has_reduced_clock = 0;
  4612. }
  4613. }
  4614. /* SDVO TV has fixed PLL values depend on its clock range,
  4615. this mirrors vbios setting. */
  4616. if (is_sdvo && is_tv) {
  4617. if (adjusted_mode->clock >= 100000
  4618. && adjusted_mode->clock < 140500) {
  4619. clock.p1 = 2;
  4620. clock.p2 = 10;
  4621. clock.n = 3;
  4622. clock.m1 = 16;
  4623. clock.m2 = 8;
  4624. } else if (adjusted_mode->clock >= 140500
  4625. && adjusted_mode->clock <= 200000) {
  4626. clock.p1 = 1;
  4627. clock.p2 = 10;
  4628. clock.n = 6;
  4629. clock.m1 = 12;
  4630. clock.m2 = 8;
  4631. }
  4632. }
  4633. /* FDI link */
  4634. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4635. lane = 0;
  4636. /* CPU eDP doesn't require FDI link, so just set DP M/N
  4637. according to current link config */
  4638. if (has_edp_encoder &&
  4639. !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  4640. target_clock = mode->clock;
  4641. intel_edp_link_config(has_edp_encoder,
  4642. &lane, &link_bw);
  4643. } else {
  4644. /* [e]DP over FDI requires target mode clock
  4645. instead of link clock */
  4646. if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
  4647. target_clock = mode->clock;
  4648. else
  4649. target_clock = adjusted_mode->clock;
  4650. /* FDI is a binary signal running at ~2.7GHz, encoding
  4651. * each output octet as 10 bits. The actual frequency
  4652. * is stored as a divider into a 100MHz clock, and the
  4653. * mode pixel clock is stored in units of 1KHz.
  4654. * Hence the bw of each lane in terms of the mode signal
  4655. * is:
  4656. */
  4657. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  4658. }
  4659. /* determine panel color depth */
  4660. temp = I915_READ(PIPECONF(pipe));
  4661. temp &= ~PIPE_BPC_MASK;
  4662. dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp);
  4663. switch (pipe_bpp) {
  4664. case 18:
  4665. temp |= PIPE_6BPC;
  4666. break;
  4667. case 24:
  4668. temp |= PIPE_8BPC;
  4669. break;
  4670. case 30:
  4671. temp |= PIPE_10BPC;
  4672. break;
  4673. case 36:
  4674. temp |= PIPE_12BPC;
  4675. break;
  4676. default:
  4677. WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
  4678. pipe_bpp);
  4679. temp |= PIPE_8BPC;
  4680. pipe_bpp = 24;
  4681. break;
  4682. }
  4683. intel_crtc->bpp = pipe_bpp;
  4684. I915_WRITE(PIPECONF(pipe), temp);
  4685. if (!lane) {
  4686. /*
  4687. * Account for spread spectrum to avoid
  4688. * oversubscribing the link. Max center spread
  4689. * is 2.5%; use 5% for safety's sake.
  4690. */
  4691. u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
  4692. lane = bps / (link_bw * 8) + 1;
  4693. }
  4694. intel_crtc->fdi_lanes = lane;
  4695. if (pixel_multiplier > 1)
  4696. link_bw *= pixel_multiplier;
  4697. ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
  4698. &m_n);
  4699. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4700. if (has_reduced_clock)
  4701. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  4702. reduced_clock.m2;
  4703. /* Enable autotuning of the PLL clock (if permissible) */
  4704. factor = 21;
  4705. if (is_lvds) {
  4706. if ((intel_panel_use_ssc(dev_priv) &&
  4707. dev_priv->lvds_ssc_freq == 100) ||
  4708. (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
  4709. factor = 25;
  4710. } else if (is_sdvo && is_tv)
  4711. factor = 20;
  4712. if (clock.m < factor * clock.n)
  4713. fp |= FP_CB_TUNE;
  4714. dpll = 0;
  4715. if (is_lvds)
  4716. dpll |= DPLLB_MODE_LVDS;
  4717. else
  4718. dpll |= DPLLB_MODE_DAC_SERIAL;
  4719. if (is_sdvo) {
  4720. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4721. if (pixel_multiplier > 1) {
  4722. dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4723. }
  4724. dpll |= DPLL_DVO_HIGH_SPEED;
  4725. }
  4726. if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
  4727. dpll |= DPLL_DVO_HIGH_SPEED;
  4728. /* compute bitmask from p1 value */
  4729. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4730. /* also FPA1 */
  4731. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4732. switch (clock.p2) {
  4733. case 5:
  4734. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4735. break;
  4736. case 7:
  4737. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4738. break;
  4739. case 10:
  4740. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4741. break;
  4742. case 14:
  4743. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4744. break;
  4745. }
  4746. if (is_sdvo && is_tv)
  4747. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4748. else if (is_tv)
  4749. /* XXX: just matching BIOS for now */
  4750. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4751. dpll |= 3;
  4752. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4753. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4754. else
  4755. dpll |= PLL_REF_INPUT_DREFCLK;
  4756. /* setup pipeconf */
  4757. pipeconf = I915_READ(PIPECONF(pipe));
  4758. /* Set up the display plane register */
  4759. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4760. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  4761. drm_mode_debug_printmodeline(mode);
  4762. /* PCH eDP needs FDI, but CPU eDP does not */
  4763. if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  4764. I915_WRITE(PCH_FP0(pipe), fp);
  4765. I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  4766. POSTING_READ(PCH_DPLL(pipe));
  4767. udelay(150);
  4768. }
  4769. /* enable transcoder DPLL */
  4770. if (HAS_PCH_CPT(dev)) {
  4771. temp = I915_READ(PCH_DPLL_SEL);
  4772. switch (pipe) {
  4773. case 0:
  4774. temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
  4775. break;
  4776. case 1:
  4777. temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
  4778. break;
  4779. case 2:
  4780. /* FIXME: manage transcoder PLLs? */
  4781. temp |= TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL;
  4782. break;
  4783. default:
  4784. BUG();
  4785. }
  4786. I915_WRITE(PCH_DPLL_SEL, temp);
  4787. POSTING_READ(PCH_DPLL_SEL);
  4788. udelay(150);
  4789. }
  4790. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  4791. * This is an exception to the general rule that mode_set doesn't turn
  4792. * things on.
  4793. */
  4794. if (is_lvds) {
  4795. temp = I915_READ(PCH_LVDS);
  4796. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4797. if (pipe == 1) {
  4798. if (HAS_PCH_CPT(dev))
  4799. temp |= PORT_TRANS_B_SEL_CPT;
  4800. else
  4801. temp |= LVDS_PIPEB_SELECT;
  4802. } else {
  4803. if (HAS_PCH_CPT(dev))
  4804. temp &= ~PORT_TRANS_SEL_MASK;
  4805. else
  4806. temp &= ~LVDS_PIPEB_SELECT;
  4807. }
  4808. /* set the corresponsding LVDS_BORDER bit */
  4809. temp |= dev_priv->lvds_border_bits;
  4810. /* Set the B0-B3 data pairs corresponding to whether we're going to
  4811. * set the DPLLs for dual-channel mode or not.
  4812. */
  4813. if (clock.p2 == 7)
  4814. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4815. else
  4816. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  4817. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  4818. * appropriately here, but we need to look more thoroughly into how
  4819. * panels behave in the two modes.
  4820. */
  4821. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4822. lvds_sync |= LVDS_HSYNC_POLARITY;
  4823. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4824. lvds_sync |= LVDS_VSYNC_POLARITY;
  4825. if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
  4826. != lvds_sync) {
  4827. char flags[2] = "-+";
  4828. DRM_INFO("Changing LVDS panel from "
  4829. "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
  4830. flags[!(temp & LVDS_HSYNC_POLARITY)],
  4831. flags[!(temp & LVDS_VSYNC_POLARITY)],
  4832. flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
  4833. flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
  4834. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4835. temp |= lvds_sync;
  4836. }
  4837. I915_WRITE(PCH_LVDS, temp);
  4838. }
  4839. pipeconf &= ~PIPECONF_DITHER_EN;
  4840. pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
  4841. if ((is_lvds && dev_priv->lvds_dither) || dither) {
  4842. pipeconf |= PIPECONF_DITHER_EN;
  4843. pipeconf |= PIPECONF_DITHER_TYPE_ST1;
  4844. }
  4845. if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  4846. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4847. } else {
  4848. /* For non-DP output, clear any trans DP clock recovery setting.*/
  4849. I915_WRITE(TRANSDATA_M1(pipe), 0);
  4850. I915_WRITE(TRANSDATA_N1(pipe), 0);
  4851. I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  4852. I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  4853. }
  4854. if (!has_edp_encoder ||
  4855. intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  4856. I915_WRITE(PCH_DPLL(pipe), dpll);
  4857. /* Wait for the clocks to stabilize. */
  4858. POSTING_READ(PCH_DPLL(pipe));
  4859. udelay(150);
  4860. /* The pixel multiplier can only be updated once the
  4861. * DPLL is enabled and the clocks are stable.
  4862. *
  4863. * So write it again.
  4864. */
  4865. I915_WRITE(PCH_DPLL(pipe), dpll);
  4866. }
  4867. intel_crtc->lowfreq_avail = false;
  4868. if (is_lvds && has_reduced_clock && i915_powersave) {
  4869. I915_WRITE(PCH_FP1(pipe), fp2);
  4870. intel_crtc->lowfreq_avail = true;
  4871. if (HAS_PIPE_CXSR(dev)) {
  4872. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4873. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4874. }
  4875. } else {
  4876. I915_WRITE(PCH_FP1(pipe), fp);
  4877. if (HAS_PIPE_CXSR(dev)) {
  4878. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4879. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4880. }
  4881. }
  4882. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  4883. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4884. /* the chip adds 2 halflines automatically */
  4885. adjusted_mode->crtc_vdisplay -= 1;
  4886. adjusted_mode->crtc_vtotal -= 1;
  4887. adjusted_mode->crtc_vblank_start -= 1;
  4888. adjusted_mode->crtc_vblank_end -= 1;
  4889. adjusted_mode->crtc_vsync_end -= 1;
  4890. adjusted_mode->crtc_vsync_start -= 1;
  4891. } else
  4892. pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
  4893. I915_WRITE(HTOTAL(pipe),
  4894. (adjusted_mode->crtc_hdisplay - 1) |
  4895. ((adjusted_mode->crtc_htotal - 1) << 16));
  4896. I915_WRITE(HBLANK(pipe),
  4897. (adjusted_mode->crtc_hblank_start - 1) |
  4898. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  4899. I915_WRITE(HSYNC(pipe),
  4900. (adjusted_mode->crtc_hsync_start - 1) |
  4901. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  4902. I915_WRITE(VTOTAL(pipe),
  4903. (adjusted_mode->crtc_vdisplay - 1) |
  4904. ((adjusted_mode->crtc_vtotal - 1) << 16));
  4905. I915_WRITE(VBLANK(pipe),
  4906. (adjusted_mode->crtc_vblank_start - 1) |
  4907. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  4908. I915_WRITE(VSYNC(pipe),
  4909. (adjusted_mode->crtc_vsync_start - 1) |
  4910. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  4911. /* pipesrc controls the size that is scaled from, which should
  4912. * always be the user's requested size.
  4913. */
  4914. I915_WRITE(PIPESRC(pipe),
  4915. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  4916. I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
  4917. I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
  4918. I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
  4919. I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
  4920. if (has_edp_encoder &&
  4921. !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  4922. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  4923. }
  4924. I915_WRITE(PIPECONF(pipe), pipeconf);
  4925. POSTING_READ(PIPECONF(pipe));
  4926. intel_wait_for_vblank(dev, pipe);
  4927. if (IS_GEN5(dev)) {
  4928. /* enable address swizzle for tiling buffer */
  4929. temp = I915_READ(DISP_ARB_CTL);
  4930. I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
  4931. }
  4932. I915_WRITE(DSPCNTR(plane), dspcntr);
  4933. POSTING_READ(DSPCNTR(plane));
  4934. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  4935. intel_update_watermarks(dev);
  4936. return ret;
  4937. }
  4938. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  4939. struct drm_display_mode *mode,
  4940. struct drm_display_mode *adjusted_mode,
  4941. int x, int y,
  4942. struct drm_framebuffer *old_fb)
  4943. {
  4944. struct drm_device *dev = crtc->dev;
  4945. struct drm_i915_private *dev_priv = dev->dev_private;
  4946. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4947. int pipe = intel_crtc->pipe;
  4948. int ret;
  4949. drm_vblank_pre_modeset(dev, pipe);
  4950. ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
  4951. x, y, old_fb);
  4952. drm_vblank_post_modeset(dev, pipe);
  4953. intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
  4954. return ret;
  4955. }
  4956. static void g4x_write_eld(struct drm_connector *connector,
  4957. struct drm_crtc *crtc)
  4958. {
  4959. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4960. uint8_t *eld = connector->eld;
  4961. uint32_t eldv;
  4962. uint32_t len;
  4963. uint32_t i;
  4964. i = I915_READ(G4X_AUD_VID_DID);
  4965. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  4966. eldv = G4X_ELDV_DEVCL_DEVBLC;
  4967. else
  4968. eldv = G4X_ELDV_DEVCTG;
  4969. i = I915_READ(G4X_AUD_CNTL_ST);
  4970. i &= ~(eldv | G4X_ELD_ADDR);
  4971. len = (i >> 9) & 0x1f; /* ELD buffer size */
  4972. I915_WRITE(G4X_AUD_CNTL_ST, i);
  4973. if (!eld[0])
  4974. return;
  4975. len = min_t(uint8_t, eld[2], len);
  4976. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  4977. for (i = 0; i < len; i++)
  4978. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  4979. i = I915_READ(G4X_AUD_CNTL_ST);
  4980. i |= eldv;
  4981. I915_WRITE(G4X_AUD_CNTL_ST, i);
  4982. }
  4983. static void ironlake_write_eld(struct drm_connector *connector,
  4984. struct drm_crtc *crtc)
  4985. {
  4986. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4987. uint8_t *eld = connector->eld;
  4988. uint32_t eldv;
  4989. uint32_t i;
  4990. int len;
  4991. int hdmiw_hdmiedid;
  4992. int aud_cntl_st;
  4993. int aud_cntrl_st2;
  4994. if (IS_IVYBRIDGE(connector->dev)) {
  4995. hdmiw_hdmiedid = GEN7_HDMIW_HDMIEDID_A;
  4996. aud_cntl_st = GEN7_AUD_CNTRL_ST_A;
  4997. aud_cntrl_st2 = GEN7_AUD_CNTRL_ST2;
  4998. } else {
  4999. hdmiw_hdmiedid = GEN5_HDMIW_HDMIEDID_A;
  5000. aud_cntl_st = GEN5_AUD_CNTL_ST_A;
  5001. aud_cntrl_st2 = GEN5_AUD_CNTL_ST2;
  5002. }
  5003. i = to_intel_crtc(crtc)->pipe;
  5004. hdmiw_hdmiedid += i * 0x100;
  5005. aud_cntl_st += i * 0x100;
  5006. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
  5007. i = I915_READ(aud_cntl_st);
  5008. i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
  5009. if (!i) {
  5010. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5011. /* operate blindly on all ports */
  5012. eldv = GEN5_ELD_VALIDB;
  5013. eldv |= GEN5_ELD_VALIDB << 4;
  5014. eldv |= GEN5_ELD_VALIDB << 8;
  5015. } else {
  5016. DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
  5017. eldv = GEN5_ELD_VALIDB << ((i - 1) * 4);
  5018. }
  5019. i = I915_READ(aud_cntrl_st2);
  5020. i &= ~eldv;
  5021. I915_WRITE(aud_cntrl_st2, i);
  5022. if (!eld[0])
  5023. return;
  5024. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5025. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5026. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5027. }
  5028. i = I915_READ(aud_cntl_st);
  5029. i &= ~GEN5_ELD_ADDRESS;
  5030. I915_WRITE(aud_cntl_st, i);
  5031. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5032. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5033. for (i = 0; i < len; i++)
  5034. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5035. i = I915_READ(aud_cntrl_st2);
  5036. i |= eldv;
  5037. I915_WRITE(aud_cntrl_st2, i);
  5038. }
  5039. void intel_write_eld(struct drm_encoder *encoder,
  5040. struct drm_display_mode *mode)
  5041. {
  5042. struct drm_crtc *crtc = encoder->crtc;
  5043. struct drm_connector *connector;
  5044. struct drm_device *dev = encoder->dev;
  5045. struct drm_i915_private *dev_priv = dev->dev_private;
  5046. connector = drm_select_eld(encoder, mode);
  5047. if (!connector)
  5048. return;
  5049. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5050. connector->base.id,
  5051. drm_get_connector_name(connector),
  5052. connector->encoder->base.id,
  5053. drm_get_encoder_name(connector->encoder));
  5054. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5055. if (dev_priv->display.write_eld)
  5056. dev_priv->display.write_eld(connector, crtc);
  5057. }
  5058. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5059. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5060. {
  5061. struct drm_device *dev = crtc->dev;
  5062. struct drm_i915_private *dev_priv = dev->dev_private;
  5063. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5064. int palreg = PALETTE(intel_crtc->pipe);
  5065. int i;
  5066. /* The clocks have to be on to load the palette. */
  5067. if (!crtc->enabled)
  5068. return;
  5069. /* use legacy palette for Ironlake */
  5070. if (HAS_PCH_SPLIT(dev))
  5071. palreg = LGC_PALETTE(intel_crtc->pipe);
  5072. for (i = 0; i < 256; i++) {
  5073. I915_WRITE(palreg + 4 * i,
  5074. (intel_crtc->lut_r[i] << 16) |
  5075. (intel_crtc->lut_g[i] << 8) |
  5076. intel_crtc->lut_b[i]);
  5077. }
  5078. }
  5079. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5080. {
  5081. struct drm_device *dev = crtc->dev;
  5082. struct drm_i915_private *dev_priv = dev->dev_private;
  5083. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5084. bool visible = base != 0;
  5085. u32 cntl;
  5086. if (intel_crtc->cursor_visible == visible)
  5087. return;
  5088. cntl = I915_READ(_CURACNTR);
  5089. if (visible) {
  5090. /* On these chipsets we can only modify the base whilst
  5091. * the cursor is disabled.
  5092. */
  5093. I915_WRITE(_CURABASE, base);
  5094. cntl &= ~(CURSOR_FORMAT_MASK);
  5095. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5096. cntl |= CURSOR_ENABLE |
  5097. CURSOR_GAMMA_ENABLE |
  5098. CURSOR_FORMAT_ARGB;
  5099. } else
  5100. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5101. I915_WRITE(_CURACNTR, cntl);
  5102. intel_crtc->cursor_visible = visible;
  5103. }
  5104. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5105. {
  5106. struct drm_device *dev = crtc->dev;
  5107. struct drm_i915_private *dev_priv = dev->dev_private;
  5108. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5109. int pipe = intel_crtc->pipe;
  5110. bool visible = base != 0;
  5111. if (intel_crtc->cursor_visible != visible) {
  5112. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5113. if (base) {
  5114. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5115. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5116. cntl |= pipe << 28; /* Connect to correct pipe */
  5117. } else {
  5118. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5119. cntl |= CURSOR_MODE_DISABLE;
  5120. }
  5121. I915_WRITE(CURCNTR(pipe), cntl);
  5122. intel_crtc->cursor_visible = visible;
  5123. }
  5124. /* and commit changes on next vblank */
  5125. I915_WRITE(CURBASE(pipe), base);
  5126. }
  5127. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5128. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5129. bool on)
  5130. {
  5131. struct drm_device *dev = crtc->dev;
  5132. struct drm_i915_private *dev_priv = dev->dev_private;
  5133. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5134. int pipe = intel_crtc->pipe;
  5135. int x = intel_crtc->cursor_x;
  5136. int y = intel_crtc->cursor_y;
  5137. u32 base, pos;
  5138. bool visible;
  5139. pos = 0;
  5140. if (on && crtc->enabled && crtc->fb) {
  5141. base = intel_crtc->cursor_addr;
  5142. if (x > (int) crtc->fb->width)
  5143. base = 0;
  5144. if (y > (int) crtc->fb->height)
  5145. base = 0;
  5146. } else
  5147. base = 0;
  5148. if (x < 0) {
  5149. if (x + intel_crtc->cursor_width < 0)
  5150. base = 0;
  5151. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5152. x = -x;
  5153. }
  5154. pos |= x << CURSOR_X_SHIFT;
  5155. if (y < 0) {
  5156. if (y + intel_crtc->cursor_height < 0)
  5157. base = 0;
  5158. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5159. y = -y;
  5160. }
  5161. pos |= y << CURSOR_Y_SHIFT;
  5162. visible = base != 0;
  5163. if (!visible && !intel_crtc->cursor_visible)
  5164. return;
  5165. I915_WRITE(CURPOS(pipe), pos);
  5166. if (IS_845G(dev) || IS_I865G(dev))
  5167. i845_update_cursor(crtc, base);
  5168. else
  5169. i9xx_update_cursor(crtc, base);
  5170. if (visible)
  5171. intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
  5172. }
  5173. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5174. struct drm_file *file,
  5175. uint32_t handle,
  5176. uint32_t width, uint32_t height)
  5177. {
  5178. struct drm_device *dev = crtc->dev;
  5179. struct drm_i915_private *dev_priv = dev->dev_private;
  5180. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5181. struct drm_i915_gem_object *obj;
  5182. uint32_t addr;
  5183. int ret;
  5184. DRM_DEBUG_KMS("\n");
  5185. /* if we want to turn off the cursor ignore width and height */
  5186. if (!handle) {
  5187. DRM_DEBUG_KMS("cursor off\n");
  5188. addr = 0;
  5189. obj = NULL;
  5190. mutex_lock(&dev->struct_mutex);
  5191. goto finish;
  5192. }
  5193. /* Currently we only support 64x64 cursors */
  5194. if (width != 64 || height != 64) {
  5195. DRM_ERROR("we currently only support 64x64 cursors\n");
  5196. return -EINVAL;
  5197. }
  5198. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5199. if (&obj->base == NULL)
  5200. return -ENOENT;
  5201. if (obj->base.size < width * height * 4) {
  5202. DRM_ERROR("buffer is to small\n");
  5203. ret = -ENOMEM;
  5204. goto fail;
  5205. }
  5206. /* we only need to pin inside GTT if cursor is non-phy */
  5207. mutex_lock(&dev->struct_mutex);
  5208. if (!dev_priv->info->cursor_needs_physical) {
  5209. if (obj->tiling_mode) {
  5210. DRM_ERROR("cursor cannot be tiled\n");
  5211. ret = -EINVAL;
  5212. goto fail_locked;
  5213. }
  5214. ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
  5215. if (ret) {
  5216. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5217. goto fail_locked;
  5218. }
  5219. ret = i915_gem_object_put_fence(obj);
  5220. if (ret) {
  5221. DRM_ERROR("failed to release fence for cursor");
  5222. goto fail_unpin;
  5223. }
  5224. addr = obj->gtt_offset;
  5225. } else {
  5226. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5227. ret = i915_gem_attach_phys_object(dev, obj,
  5228. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5229. align);
  5230. if (ret) {
  5231. DRM_ERROR("failed to attach phys object\n");
  5232. goto fail_locked;
  5233. }
  5234. addr = obj->phys_obj->handle->busaddr;
  5235. }
  5236. if (IS_GEN2(dev))
  5237. I915_WRITE(CURSIZE, (height << 12) | width);
  5238. finish:
  5239. if (intel_crtc->cursor_bo) {
  5240. if (dev_priv->info->cursor_needs_physical) {
  5241. if (intel_crtc->cursor_bo != obj)
  5242. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5243. } else
  5244. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5245. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5246. }
  5247. mutex_unlock(&dev->struct_mutex);
  5248. intel_crtc->cursor_addr = addr;
  5249. intel_crtc->cursor_bo = obj;
  5250. intel_crtc->cursor_width = width;
  5251. intel_crtc->cursor_height = height;
  5252. intel_crtc_update_cursor(crtc, true);
  5253. return 0;
  5254. fail_unpin:
  5255. i915_gem_object_unpin(obj);
  5256. fail_locked:
  5257. mutex_unlock(&dev->struct_mutex);
  5258. fail:
  5259. drm_gem_object_unreference_unlocked(&obj->base);
  5260. return ret;
  5261. }
  5262. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5263. {
  5264. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5265. intel_crtc->cursor_x = x;
  5266. intel_crtc->cursor_y = y;
  5267. intel_crtc_update_cursor(crtc, true);
  5268. return 0;
  5269. }
  5270. /** Sets the color ramps on behalf of RandR */
  5271. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5272. u16 blue, int regno)
  5273. {
  5274. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5275. intel_crtc->lut_r[regno] = red >> 8;
  5276. intel_crtc->lut_g[regno] = green >> 8;
  5277. intel_crtc->lut_b[regno] = blue >> 8;
  5278. }
  5279. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5280. u16 *blue, int regno)
  5281. {
  5282. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5283. *red = intel_crtc->lut_r[regno] << 8;
  5284. *green = intel_crtc->lut_g[regno] << 8;
  5285. *blue = intel_crtc->lut_b[regno] << 8;
  5286. }
  5287. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5288. u16 *blue, uint32_t start, uint32_t size)
  5289. {
  5290. int end = (start + size > 256) ? 256 : start + size, i;
  5291. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5292. for (i = start; i < end; i++) {
  5293. intel_crtc->lut_r[i] = red[i] >> 8;
  5294. intel_crtc->lut_g[i] = green[i] >> 8;
  5295. intel_crtc->lut_b[i] = blue[i] >> 8;
  5296. }
  5297. intel_crtc_load_lut(crtc);
  5298. }
  5299. /**
  5300. * Get a pipe with a simple mode set on it for doing load-based monitor
  5301. * detection.
  5302. *
  5303. * It will be up to the load-detect code to adjust the pipe as appropriate for
  5304. * its requirements. The pipe will be connected to no other encoders.
  5305. *
  5306. * Currently this code will only succeed if there is a pipe with no encoders
  5307. * configured for it. In the future, it could choose to temporarily disable
  5308. * some outputs to free up a pipe for its use.
  5309. *
  5310. * \return crtc, or NULL if no pipes are available.
  5311. */
  5312. /* VESA 640x480x72Hz mode to set on the pipe */
  5313. static struct drm_display_mode load_detect_mode = {
  5314. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5315. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5316. };
  5317. static struct drm_framebuffer *
  5318. intel_framebuffer_create(struct drm_device *dev,
  5319. struct drm_mode_fb_cmd *mode_cmd,
  5320. struct drm_i915_gem_object *obj)
  5321. {
  5322. struct intel_framebuffer *intel_fb;
  5323. int ret;
  5324. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5325. if (!intel_fb) {
  5326. drm_gem_object_unreference_unlocked(&obj->base);
  5327. return ERR_PTR(-ENOMEM);
  5328. }
  5329. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5330. if (ret) {
  5331. drm_gem_object_unreference_unlocked(&obj->base);
  5332. kfree(intel_fb);
  5333. return ERR_PTR(ret);
  5334. }
  5335. return &intel_fb->base;
  5336. }
  5337. static u32
  5338. intel_framebuffer_pitch_for_width(int width, int bpp)
  5339. {
  5340. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5341. return ALIGN(pitch, 64);
  5342. }
  5343. static u32
  5344. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5345. {
  5346. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5347. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5348. }
  5349. static struct drm_framebuffer *
  5350. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5351. struct drm_display_mode *mode,
  5352. int depth, int bpp)
  5353. {
  5354. struct drm_i915_gem_object *obj;
  5355. struct drm_mode_fb_cmd mode_cmd;
  5356. obj = i915_gem_alloc_object(dev,
  5357. intel_framebuffer_size_for_mode(mode, bpp));
  5358. if (obj == NULL)
  5359. return ERR_PTR(-ENOMEM);
  5360. mode_cmd.width = mode->hdisplay;
  5361. mode_cmd.height = mode->vdisplay;
  5362. mode_cmd.depth = depth;
  5363. mode_cmd.bpp = bpp;
  5364. mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp);
  5365. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5366. }
  5367. static struct drm_framebuffer *
  5368. mode_fits_in_fbdev(struct drm_device *dev,
  5369. struct drm_display_mode *mode)
  5370. {
  5371. struct drm_i915_private *dev_priv = dev->dev_private;
  5372. struct drm_i915_gem_object *obj;
  5373. struct drm_framebuffer *fb;
  5374. if (dev_priv->fbdev == NULL)
  5375. return NULL;
  5376. obj = dev_priv->fbdev->ifb.obj;
  5377. if (obj == NULL)
  5378. return NULL;
  5379. fb = &dev_priv->fbdev->ifb.base;
  5380. if (fb->pitch < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5381. fb->bits_per_pixel))
  5382. return NULL;
  5383. if (obj->base.size < mode->vdisplay * fb->pitch)
  5384. return NULL;
  5385. return fb;
  5386. }
  5387. bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
  5388. struct drm_connector *connector,
  5389. struct drm_display_mode *mode,
  5390. struct intel_load_detect_pipe *old)
  5391. {
  5392. struct intel_crtc *intel_crtc;
  5393. struct drm_crtc *possible_crtc;
  5394. struct drm_encoder *encoder = &intel_encoder->base;
  5395. struct drm_crtc *crtc = NULL;
  5396. struct drm_device *dev = encoder->dev;
  5397. struct drm_framebuffer *old_fb;
  5398. int i = -1;
  5399. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5400. connector->base.id, drm_get_connector_name(connector),
  5401. encoder->base.id, drm_get_encoder_name(encoder));
  5402. /*
  5403. * Algorithm gets a little messy:
  5404. *
  5405. * - if the connector already has an assigned crtc, use it (but make
  5406. * sure it's on first)
  5407. *
  5408. * - try to find the first unused crtc that can drive this connector,
  5409. * and use that if we find one
  5410. */
  5411. /* See if we already have a CRTC for this connector */
  5412. if (encoder->crtc) {
  5413. crtc = encoder->crtc;
  5414. intel_crtc = to_intel_crtc(crtc);
  5415. old->dpms_mode = intel_crtc->dpms_mode;
  5416. old->load_detect_temp = false;
  5417. /* Make sure the crtc and connector are running */
  5418. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  5419. struct drm_encoder_helper_funcs *encoder_funcs;
  5420. struct drm_crtc_helper_funcs *crtc_funcs;
  5421. crtc_funcs = crtc->helper_private;
  5422. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  5423. encoder_funcs = encoder->helper_private;
  5424. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  5425. }
  5426. return true;
  5427. }
  5428. /* Find an unused one (if possible) */
  5429. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5430. i++;
  5431. if (!(encoder->possible_crtcs & (1 << i)))
  5432. continue;
  5433. if (!possible_crtc->enabled) {
  5434. crtc = possible_crtc;
  5435. break;
  5436. }
  5437. }
  5438. /*
  5439. * If we didn't find an unused CRTC, don't use any.
  5440. */
  5441. if (!crtc) {
  5442. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5443. return false;
  5444. }
  5445. encoder->crtc = crtc;
  5446. connector->encoder = encoder;
  5447. intel_crtc = to_intel_crtc(crtc);
  5448. old->dpms_mode = intel_crtc->dpms_mode;
  5449. old->load_detect_temp = true;
  5450. old->release_fb = NULL;
  5451. if (!mode)
  5452. mode = &load_detect_mode;
  5453. old_fb = crtc->fb;
  5454. /* We need a framebuffer large enough to accommodate all accesses
  5455. * that the plane may generate whilst we perform load detection.
  5456. * We can not rely on the fbcon either being present (we get called
  5457. * during its initialisation to detect all boot displays, or it may
  5458. * not even exist) or that it is large enough to satisfy the
  5459. * requested mode.
  5460. */
  5461. crtc->fb = mode_fits_in_fbdev(dev, mode);
  5462. if (crtc->fb == NULL) {
  5463. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5464. crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5465. old->release_fb = crtc->fb;
  5466. } else
  5467. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5468. if (IS_ERR(crtc->fb)) {
  5469. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5470. crtc->fb = old_fb;
  5471. return false;
  5472. }
  5473. if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
  5474. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5475. if (old->release_fb)
  5476. old->release_fb->funcs->destroy(old->release_fb);
  5477. crtc->fb = old_fb;
  5478. return false;
  5479. }
  5480. /* let the connector get through one full cycle before testing */
  5481. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5482. return true;
  5483. }
  5484. void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
  5485. struct drm_connector *connector,
  5486. struct intel_load_detect_pipe *old)
  5487. {
  5488. struct drm_encoder *encoder = &intel_encoder->base;
  5489. struct drm_device *dev = encoder->dev;
  5490. struct drm_crtc *crtc = encoder->crtc;
  5491. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  5492. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  5493. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5494. connector->base.id, drm_get_connector_name(connector),
  5495. encoder->base.id, drm_get_encoder_name(encoder));
  5496. if (old->load_detect_temp) {
  5497. connector->encoder = NULL;
  5498. drm_helper_disable_unused_functions(dev);
  5499. if (old->release_fb)
  5500. old->release_fb->funcs->destroy(old->release_fb);
  5501. return;
  5502. }
  5503. /* Switch crtc and encoder back off if necessary */
  5504. if (old->dpms_mode != DRM_MODE_DPMS_ON) {
  5505. encoder_funcs->dpms(encoder, old->dpms_mode);
  5506. crtc_funcs->dpms(crtc, old->dpms_mode);
  5507. }
  5508. }
  5509. /* Returns the clock of the currently programmed mode of the given pipe. */
  5510. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5511. {
  5512. struct drm_i915_private *dev_priv = dev->dev_private;
  5513. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5514. int pipe = intel_crtc->pipe;
  5515. u32 dpll = I915_READ(DPLL(pipe));
  5516. u32 fp;
  5517. intel_clock_t clock;
  5518. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5519. fp = I915_READ(FP0(pipe));
  5520. else
  5521. fp = I915_READ(FP1(pipe));
  5522. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5523. if (IS_PINEVIEW(dev)) {
  5524. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5525. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5526. } else {
  5527. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5528. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5529. }
  5530. if (!IS_GEN2(dev)) {
  5531. if (IS_PINEVIEW(dev))
  5532. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5533. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5534. else
  5535. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5536. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5537. switch (dpll & DPLL_MODE_MASK) {
  5538. case DPLLB_MODE_DAC_SERIAL:
  5539. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5540. 5 : 10;
  5541. break;
  5542. case DPLLB_MODE_LVDS:
  5543. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5544. 7 : 14;
  5545. break;
  5546. default:
  5547. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5548. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5549. return 0;
  5550. }
  5551. /* XXX: Handle the 100Mhz refclk */
  5552. intel_clock(dev, 96000, &clock);
  5553. } else {
  5554. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5555. if (is_lvds) {
  5556. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5557. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5558. clock.p2 = 14;
  5559. if ((dpll & PLL_REF_INPUT_MASK) ==
  5560. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5561. /* XXX: might not be 66MHz */
  5562. intel_clock(dev, 66000, &clock);
  5563. } else
  5564. intel_clock(dev, 48000, &clock);
  5565. } else {
  5566. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5567. clock.p1 = 2;
  5568. else {
  5569. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5570. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5571. }
  5572. if (dpll & PLL_P2_DIVIDE_BY_4)
  5573. clock.p2 = 4;
  5574. else
  5575. clock.p2 = 2;
  5576. intel_clock(dev, 48000, &clock);
  5577. }
  5578. }
  5579. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5580. * i830PllIsValid() because it relies on the xf86_config connector
  5581. * configuration being accurate, which it isn't necessarily.
  5582. */
  5583. return clock.dot;
  5584. }
  5585. /** Returns the currently programmed mode of the given pipe. */
  5586. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5587. struct drm_crtc *crtc)
  5588. {
  5589. struct drm_i915_private *dev_priv = dev->dev_private;
  5590. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5591. int pipe = intel_crtc->pipe;
  5592. struct drm_display_mode *mode;
  5593. int htot = I915_READ(HTOTAL(pipe));
  5594. int hsync = I915_READ(HSYNC(pipe));
  5595. int vtot = I915_READ(VTOTAL(pipe));
  5596. int vsync = I915_READ(VSYNC(pipe));
  5597. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5598. if (!mode)
  5599. return NULL;
  5600. mode->clock = intel_crtc_clock_get(dev, crtc);
  5601. mode->hdisplay = (htot & 0xffff) + 1;
  5602. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5603. mode->hsync_start = (hsync & 0xffff) + 1;
  5604. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5605. mode->vdisplay = (vtot & 0xffff) + 1;
  5606. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5607. mode->vsync_start = (vsync & 0xffff) + 1;
  5608. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5609. drm_mode_set_name(mode);
  5610. drm_mode_set_crtcinfo(mode, 0);
  5611. return mode;
  5612. }
  5613. #define GPU_IDLE_TIMEOUT 500 /* ms */
  5614. /* When this timer fires, we've been idle for awhile */
  5615. static void intel_gpu_idle_timer(unsigned long arg)
  5616. {
  5617. struct drm_device *dev = (struct drm_device *)arg;
  5618. drm_i915_private_t *dev_priv = dev->dev_private;
  5619. if (!list_empty(&dev_priv->mm.active_list)) {
  5620. /* Still processing requests, so just re-arm the timer. */
  5621. mod_timer(&dev_priv->idle_timer, jiffies +
  5622. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  5623. return;
  5624. }
  5625. dev_priv->busy = false;
  5626. queue_work(dev_priv->wq, &dev_priv->idle_work);
  5627. }
  5628. #define CRTC_IDLE_TIMEOUT 1000 /* ms */
  5629. static void intel_crtc_idle_timer(unsigned long arg)
  5630. {
  5631. struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
  5632. struct drm_crtc *crtc = &intel_crtc->base;
  5633. drm_i915_private_t *dev_priv = crtc->dev->dev_private;
  5634. struct intel_framebuffer *intel_fb;
  5635. intel_fb = to_intel_framebuffer(crtc->fb);
  5636. if (intel_fb && intel_fb->obj->active) {
  5637. /* The framebuffer is still being accessed by the GPU. */
  5638. mod_timer(&intel_crtc->idle_timer, jiffies +
  5639. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  5640. return;
  5641. }
  5642. intel_crtc->busy = false;
  5643. queue_work(dev_priv->wq, &dev_priv->idle_work);
  5644. }
  5645. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5646. {
  5647. struct drm_device *dev = crtc->dev;
  5648. drm_i915_private_t *dev_priv = dev->dev_private;
  5649. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5650. int pipe = intel_crtc->pipe;
  5651. int dpll_reg = DPLL(pipe);
  5652. int dpll;
  5653. if (HAS_PCH_SPLIT(dev))
  5654. return;
  5655. if (!dev_priv->lvds_downclock_avail)
  5656. return;
  5657. dpll = I915_READ(dpll_reg);
  5658. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5659. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5660. /* Unlock panel regs */
  5661. I915_WRITE(PP_CONTROL,
  5662. I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
  5663. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5664. I915_WRITE(dpll_reg, dpll);
  5665. intel_wait_for_vblank(dev, pipe);
  5666. dpll = I915_READ(dpll_reg);
  5667. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5668. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5669. /* ...and lock them again */
  5670. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
  5671. }
  5672. /* Schedule downclock */
  5673. mod_timer(&intel_crtc->idle_timer, jiffies +
  5674. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  5675. }
  5676. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5677. {
  5678. struct drm_device *dev = crtc->dev;
  5679. drm_i915_private_t *dev_priv = dev->dev_private;
  5680. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5681. int pipe = intel_crtc->pipe;
  5682. int dpll_reg = DPLL(pipe);
  5683. int dpll = I915_READ(dpll_reg);
  5684. if (HAS_PCH_SPLIT(dev))
  5685. return;
  5686. if (!dev_priv->lvds_downclock_avail)
  5687. return;
  5688. /*
  5689. * Since this is called by a timer, we should never get here in
  5690. * the manual case.
  5691. */
  5692. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5693. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5694. /* Unlock panel regs */
  5695. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
  5696. PANEL_UNLOCK_REGS);
  5697. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5698. I915_WRITE(dpll_reg, dpll);
  5699. intel_wait_for_vblank(dev, pipe);
  5700. dpll = I915_READ(dpll_reg);
  5701. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5702. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5703. /* ...and lock them again */
  5704. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
  5705. }
  5706. }
  5707. /**
  5708. * intel_idle_update - adjust clocks for idleness
  5709. * @work: work struct
  5710. *
  5711. * Either the GPU or display (or both) went idle. Check the busy status
  5712. * here and adjust the CRTC and GPU clocks as necessary.
  5713. */
  5714. static void intel_idle_update(struct work_struct *work)
  5715. {
  5716. drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
  5717. idle_work);
  5718. struct drm_device *dev = dev_priv->dev;
  5719. struct drm_crtc *crtc;
  5720. struct intel_crtc *intel_crtc;
  5721. if (!i915_powersave)
  5722. return;
  5723. mutex_lock(&dev->struct_mutex);
  5724. i915_update_gfx_val(dev_priv);
  5725. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5726. /* Skip inactive CRTCs */
  5727. if (!crtc->fb)
  5728. continue;
  5729. intel_crtc = to_intel_crtc(crtc);
  5730. if (!intel_crtc->busy)
  5731. intel_decrease_pllclock(crtc);
  5732. }
  5733. mutex_unlock(&dev->struct_mutex);
  5734. }
  5735. /**
  5736. * intel_mark_busy - mark the GPU and possibly the display busy
  5737. * @dev: drm device
  5738. * @obj: object we're operating on
  5739. *
  5740. * Callers can use this function to indicate that the GPU is busy processing
  5741. * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
  5742. * buffer), we'll also mark the display as busy, so we know to increase its
  5743. * clock frequency.
  5744. */
  5745. void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
  5746. {
  5747. drm_i915_private_t *dev_priv = dev->dev_private;
  5748. struct drm_crtc *crtc = NULL;
  5749. struct intel_framebuffer *intel_fb;
  5750. struct intel_crtc *intel_crtc;
  5751. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  5752. return;
  5753. if (!dev_priv->busy)
  5754. dev_priv->busy = true;
  5755. else
  5756. mod_timer(&dev_priv->idle_timer, jiffies +
  5757. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  5758. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5759. if (!crtc->fb)
  5760. continue;
  5761. intel_crtc = to_intel_crtc(crtc);
  5762. intel_fb = to_intel_framebuffer(crtc->fb);
  5763. if (intel_fb->obj == obj) {
  5764. if (!intel_crtc->busy) {
  5765. /* Non-busy -> busy, upclock */
  5766. intel_increase_pllclock(crtc);
  5767. intel_crtc->busy = true;
  5768. } else {
  5769. /* Busy -> busy, put off timer */
  5770. mod_timer(&intel_crtc->idle_timer, jiffies +
  5771. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  5772. }
  5773. }
  5774. }
  5775. }
  5776. static void intel_crtc_destroy(struct drm_crtc *crtc)
  5777. {
  5778. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5779. struct drm_device *dev = crtc->dev;
  5780. struct intel_unpin_work *work;
  5781. unsigned long flags;
  5782. spin_lock_irqsave(&dev->event_lock, flags);
  5783. work = intel_crtc->unpin_work;
  5784. intel_crtc->unpin_work = NULL;
  5785. spin_unlock_irqrestore(&dev->event_lock, flags);
  5786. if (work) {
  5787. cancel_work_sync(&work->work);
  5788. kfree(work);
  5789. }
  5790. drm_crtc_cleanup(crtc);
  5791. kfree(intel_crtc);
  5792. }
  5793. static void intel_unpin_work_fn(struct work_struct *__work)
  5794. {
  5795. struct intel_unpin_work *work =
  5796. container_of(__work, struct intel_unpin_work, work);
  5797. mutex_lock(&work->dev->struct_mutex);
  5798. i915_gem_object_unpin(work->old_fb_obj);
  5799. drm_gem_object_unreference(&work->pending_flip_obj->base);
  5800. drm_gem_object_unreference(&work->old_fb_obj->base);
  5801. intel_update_fbc(work->dev);
  5802. mutex_unlock(&work->dev->struct_mutex);
  5803. kfree(work);
  5804. }
  5805. static void do_intel_finish_page_flip(struct drm_device *dev,
  5806. struct drm_crtc *crtc)
  5807. {
  5808. drm_i915_private_t *dev_priv = dev->dev_private;
  5809. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5810. struct intel_unpin_work *work;
  5811. struct drm_i915_gem_object *obj;
  5812. struct drm_pending_vblank_event *e;
  5813. struct timeval tnow, tvbl;
  5814. unsigned long flags;
  5815. /* Ignore early vblank irqs */
  5816. if (intel_crtc == NULL)
  5817. return;
  5818. do_gettimeofday(&tnow);
  5819. spin_lock_irqsave(&dev->event_lock, flags);
  5820. work = intel_crtc->unpin_work;
  5821. if (work == NULL || !work->pending) {
  5822. spin_unlock_irqrestore(&dev->event_lock, flags);
  5823. return;
  5824. }
  5825. intel_crtc->unpin_work = NULL;
  5826. if (work->event) {
  5827. e = work->event;
  5828. e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
  5829. /* Called before vblank count and timestamps have
  5830. * been updated for the vblank interval of flip
  5831. * completion? Need to increment vblank count and
  5832. * add one videorefresh duration to returned timestamp
  5833. * to account for this. We assume this happened if we
  5834. * get called over 0.9 frame durations after the last
  5835. * timestamped vblank.
  5836. *
  5837. * This calculation can not be used with vrefresh rates
  5838. * below 5Hz (10Hz to be on the safe side) without
  5839. * promoting to 64 integers.
  5840. */
  5841. if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
  5842. 9 * crtc->framedur_ns) {
  5843. e->event.sequence++;
  5844. tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
  5845. crtc->framedur_ns);
  5846. }
  5847. e->event.tv_sec = tvbl.tv_sec;
  5848. e->event.tv_usec = tvbl.tv_usec;
  5849. list_add_tail(&e->base.link,
  5850. &e->base.file_priv->event_list);
  5851. wake_up_interruptible(&e->base.file_priv->event_wait);
  5852. }
  5853. drm_vblank_put(dev, intel_crtc->pipe);
  5854. spin_unlock_irqrestore(&dev->event_lock, flags);
  5855. obj = work->old_fb_obj;
  5856. atomic_clear_mask(1 << intel_crtc->plane,
  5857. &obj->pending_flip.counter);
  5858. if (atomic_read(&obj->pending_flip) == 0)
  5859. wake_up(&dev_priv->pending_flip_queue);
  5860. schedule_work(&work->work);
  5861. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  5862. }
  5863. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  5864. {
  5865. drm_i915_private_t *dev_priv = dev->dev_private;
  5866. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  5867. do_intel_finish_page_flip(dev, crtc);
  5868. }
  5869. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  5870. {
  5871. drm_i915_private_t *dev_priv = dev->dev_private;
  5872. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  5873. do_intel_finish_page_flip(dev, crtc);
  5874. }
  5875. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  5876. {
  5877. drm_i915_private_t *dev_priv = dev->dev_private;
  5878. struct intel_crtc *intel_crtc =
  5879. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  5880. unsigned long flags;
  5881. spin_lock_irqsave(&dev->event_lock, flags);
  5882. if (intel_crtc->unpin_work) {
  5883. if ((++intel_crtc->unpin_work->pending) > 1)
  5884. DRM_ERROR("Prepared flip multiple times\n");
  5885. } else {
  5886. DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
  5887. }
  5888. spin_unlock_irqrestore(&dev->event_lock, flags);
  5889. }
  5890. static int intel_gen2_queue_flip(struct drm_device *dev,
  5891. struct drm_crtc *crtc,
  5892. struct drm_framebuffer *fb,
  5893. struct drm_i915_gem_object *obj)
  5894. {
  5895. struct drm_i915_private *dev_priv = dev->dev_private;
  5896. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5897. unsigned long offset;
  5898. u32 flip_mask;
  5899. int ret;
  5900. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  5901. if (ret)
  5902. goto out;
  5903. /* Offset into the new buffer for cases of shared fbs between CRTCs */
  5904. offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
  5905. ret = BEGIN_LP_RING(6);
  5906. if (ret)
  5907. goto out;
  5908. /* Can't queue multiple flips, so wait for the previous
  5909. * one to finish before executing the next.
  5910. */
  5911. if (intel_crtc->plane)
  5912. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  5913. else
  5914. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  5915. OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
  5916. OUT_RING(MI_NOOP);
  5917. OUT_RING(MI_DISPLAY_FLIP |
  5918. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5919. OUT_RING(fb->pitch);
  5920. OUT_RING(obj->gtt_offset + offset);
  5921. OUT_RING(MI_NOOP);
  5922. ADVANCE_LP_RING();
  5923. out:
  5924. return ret;
  5925. }
  5926. static int intel_gen3_queue_flip(struct drm_device *dev,
  5927. struct drm_crtc *crtc,
  5928. struct drm_framebuffer *fb,
  5929. struct drm_i915_gem_object *obj)
  5930. {
  5931. struct drm_i915_private *dev_priv = dev->dev_private;
  5932. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5933. unsigned long offset;
  5934. u32 flip_mask;
  5935. int ret;
  5936. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  5937. if (ret)
  5938. goto out;
  5939. /* Offset into the new buffer for cases of shared fbs between CRTCs */
  5940. offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
  5941. ret = BEGIN_LP_RING(6);
  5942. if (ret)
  5943. goto out;
  5944. if (intel_crtc->plane)
  5945. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  5946. else
  5947. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  5948. OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
  5949. OUT_RING(MI_NOOP);
  5950. OUT_RING(MI_DISPLAY_FLIP_I915 |
  5951. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5952. OUT_RING(fb->pitch);
  5953. OUT_RING(obj->gtt_offset + offset);
  5954. OUT_RING(MI_NOOP);
  5955. ADVANCE_LP_RING();
  5956. out:
  5957. return ret;
  5958. }
  5959. static int intel_gen4_queue_flip(struct drm_device *dev,
  5960. struct drm_crtc *crtc,
  5961. struct drm_framebuffer *fb,
  5962. struct drm_i915_gem_object *obj)
  5963. {
  5964. struct drm_i915_private *dev_priv = dev->dev_private;
  5965. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5966. uint32_t pf, pipesrc;
  5967. int ret;
  5968. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  5969. if (ret)
  5970. goto out;
  5971. ret = BEGIN_LP_RING(4);
  5972. if (ret)
  5973. goto out;
  5974. /* i965+ uses the linear or tiled offsets from the
  5975. * Display Registers (which do not change across a page-flip)
  5976. * so we need only reprogram the base address.
  5977. */
  5978. OUT_RING(MI_DISPLAY_FLIP |
  5979. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5980. OUT_RING(fb->pitch);
  5981. OUT_RING(obj->gtt_offset | obj->tiling_mode);
  5982. /* XXX Enabling the panel-fitter across page-flip is so far
  5983. * untested on non-native modes, so ignore it for now.
  5984. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  5985. */
  5986. pf = 0;
  5987. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  5988. OUT_RING(pf | pipesrc);
  5989. ADVANCE_LP_RING();
  5990. out:
  5991. return ret;
  5992. }
  5993. static int intel_gen6_queue_flip(struct drm_device *dev,
  5994. struct drm_crtc *crtc,
  5995. struct drm_framebuffer *fb,
  5996. struct drm_i915_gem_object *obj)
  5997. {
  5998. struct drm_i915_private *dev_priv = dev->dev_private;
  5999. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6000. uint32_t pf, pipesrc;
  6001. int ret;
  6002. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6003. if (ret)
  6004. goto out;
  6005. ret = BEGIN_LP_RING(4);
  6006. if (ret)
  6007. goto out;
  6008. OUT_RING(MI_DISPLAY_FLIP |
  6009. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6010. OUT_RING(fb->pitch | obj->tiling_mode);
  6011. OUT_RING(obj->gtt_offset);
  6012. pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6013. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6014. OUT_RING(pf | pipesrc);
  6015. ADVANCE_LP_RING();
  6016. out:
  6017. return ret;
  6018. }
  6019. /*
  6020. * On gen7 we currently use the blit ring because (in early silicon at least)
  6021. * the render ring doesn't give us interrpts for page flip completion, which
  6022. * means clients will hang after the first flip is queued. Fortunately the
  6023. * blit ring generates interrupts properly, so use it instead.
  6024. */
  6025. static int intel_gen7_queue_flip(struct drm_device *dev,
  6026. struct drm_crtc *crtc,
  6027. struct drm_framebuffer *fb,
  6028. struct drm_i915_gem_object *obj)
  6029. {
  6030. struct drm_i915_private *dev_priv = dev->dev_private;
  6031. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6032. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6033. int ret;
  6034. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6035. if (ret)
  6036. goto out;
  6037. ret = intel_ring_begin(ring, 4);
  6038. if (ret)
  6039. goto out;
  6040. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
  6041. intel_ring_emit(ring, (fb->pitch | obj->tiling_mode));
  6042. intel_ring_emit(ring, (obj->gtt_offset));
  6043. intel_ring_emit(ring, (MI_NOOP));
  6044. intel_ring_advance(ring);
  6045. out:
  6046. return ret;
  6047. }
  6048. static int intel_default_queue_flip(struct drm_device *dev,
  6049. struct drm_crtc *crtc,
  6050. struct drm_framebuffer *fb,
  6051. struct drm_i915_gem_object *obj)
  6052. {
  6053. return -ENODEV;
  6054. }
  6055. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6056. struct drm_framebuffer *fb,
  6057. struct drm_pending_vblank_event *event)
  6058. {
  6059. struct drm_device *dev = crtc->dev;
  6060. struct drm_i915_private *dev_priv = dev->dev_private;
  6061. struct intel_framebuffer *intel_fb;
  6062. struct drm_i915_gem_object *obj;
  6063. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6064. struct intel_unpin_work *work;
  6065. unsigned long flags;
  6066. int ret;
  6067. work = kzalloc(sizeof *work, GFP_KERNEL);
  6068. if (work == NULL)
  6069. return -ENOMEM;
  6070. work->event = event;
  6071. work->dev = crtc->dev;
  6072. intel_fb = to_intel_framebuffer(crtc->fb);
  6073. work->old_fb_obj = intel_fb->obj;
  6074. INIT_WORK(&work->work, intel_unpin_work_fn);
  6075. /* We borrow the event spin lock for protecting unpin_work */
  6076. spin_lock_irqsave(&dev->event_lock, flags);
  6077. if (intel_crtc->unpin_work) {
  6078. spin_unlock_irqrestore(&dev->event_lock, flags);
  6079. kfree(work);
  6080. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6081. return -EBUSY;
  6082. }
  6083. intel_crtc->unpin_work = work;
  6084. spin_unlock_irqrestore(&dev->event_lock, flags);
  6085. intel_fb = to_intel_framebuffer(fb);
  6086. obj = intel_fb->obj;
  6087. mutex_lock(&dev->struct_mutex);
  6088. /* Reference the objects for the scheduled work. */
  6089. drm_gem_object_reference(&work->old_fb_obj->base);
  6090. drm_gem_object_reference(&obj->base);
  6091. crtc->fb = fb;
  6092. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6093. if (ret)
  6094. goto cleanup_objs;
  6095. work->pending_flip_obj = obj;
  6096. work->enable_stall_check = true;
  6097. /* Block clients from rendering to the new back buffer until
  6098. * the flip occurs and the object is no longer visible.
  6099. */
  6100. atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  6101. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6102. if (ret)
  6103. goto cleanup_pending;
  6104. intel_disable_fbc(dev);
  6105. mutex_unlock(&dev->struct_mutex);
  6106. trace_i915_flip_request(intel_crtc->plane, obj);
  6107. return 0;
  6108. cleanup_pending:
  6109. atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  6110. cleanup_objs:
  6111. drm_gem_object_unreference(&work->old_fb_obj->base);
  6112. drm_gem_object_unreference(&obj->base);
  6113. mutex_unlock(&dev->struct_mutex);
  6114. spin_lock_irqsave(&dev->event_lock, flags);
  6115. intel_crtc->unpin_work = NULL;
  6116. spin_unlock_irqrestore(&dev->event_lock, flags);
  6117. kfree(work);
  6118. return ret;
  6119. }
  6120. static void intel_sanitize_modesetting(struct drm_device *dev,
  6121. int pipe, int plane)
  6122. {
  6123. struct drm_i915_private *dev_priv = dev->dev_private;
  6124. u32 reg, val;
  6125. if (HAS_PCH_SPLIT(dev))
  6126. return;
  6127. /* Who knows what state these registers were left in by the BIOS or
  6128. * grub?
  6129. *
  6130. * If we leave the registers in a conflicting state (e.g. with the
  6131. * display plane reading from the other pipe than the one we intend
  6132. * to use) then when we attempt to teardown the active mode, we will
  6133. * not disable the pipes and planes in the correct order -- leaving
  6134. * a plane reading from a disabled pipe and possibly leading to
  6135. * undefined behaviour.
  6136. */
  6137. reg = DSPCNTR(plane);
  6138. val = I915_READ(reg);
  6139. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  6140. return;
  6141. if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
  6142. return;
  6143. /* This display plane is active and attached to the other CPU pipe. */
  6144. pipe = !pipe;
  6145. /* Disable the plane and wait for it to stop reading from the pipe. */
  6146. intel_disable_plane(dev_priv, plane, pipe);
  6147. intel_disable_pipe(dev_priv, pipe);
  6148. }
  6149. static void intel_crtc_reset(struct drm_crtc *crtc)
  6150. {
  6151. struct drm_device *dev = crtc->dev;
  6152. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6153. /* Reset flags back to the 'unknown' status so that they
  6154. * will be correctly set on the initial modeset.
  6155. */
  6156. intel_crtc->dpms_mode = -1;
  6157. /* We need to fix up any BIOS configuration that conflicts with
  6158. * our expectations.
  6159. */
  6160. intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
  6161. }
  6162. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6163. .dpms = intel_crtc_dpms,
  6164. .mode_fixup = intel_crtc_mode_fixup,
  6165. .mode_set = intel_crtc_mode_set,
  6166. .mode_set_base = intel_pipe_set_base,
  6167. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6168. .load_lut = intel_crtc_load_lut,
  6169. .disable = intel_crtc_disable,
  6170. };
  6171. static const struct drm_crtc_funcs intel_crtc_funcs = {
  6172. .reset = intel_crtc_reset,
  6173. .cursor_set = intel_crtc_cursor_set,
  6174. .cursor_move = intel_crtc_cursor_move,
  6175. .gamma_set = intel_crtc_gamma_set,
  6176. .set_config = drm_crtc_helper_set_config,
  6177. .destroy = intel_crtc_destroy,
  6178. .page_flip = intel_crtc_page_flip,
  6179. };
  6180. static void intel_crtc_init(struct drm_device *dev, int pipe)
  6181. {
  6182. drm_i915_private_t *dev_priv = dev->dev_private;
  6183. struct intel_crtc *intel_crtc;
  6184. int i;
  6185. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  6186. if (intel_crtc == NULL)
  6187. return;
  6188. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  6189. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  6190. for (i = 0; i < 256; i++) {
  6191. intel_crtc->lut_r[i] = i;
  6192. intel_crtc->lut_g[i] = i;
  6193. intel_crtc->lut_b[i] = i;
  6194. }
  6195. /* Swap pipes & planes for FBC on pre-965 */
  6196. intel_crtc->pipe = pipe;
  6197. intel_crtc->plane = pipe;
  6198. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  6199. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  6200. intel_crtc->plane = !pipe;
  6201. }
  6202. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  6203. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  6204. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  6205. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  6206. intel_crtc_reset(&intel_crtc->base);
  6207. intel_crtc->active = true; /* force the pipe off on setup_init_config */
  6208. intel_crtc->bpp = 24; /* default for pre-Ironlake */
  6209. if (HAS_PCH_SPLIT(dev)) {
  6210. intel_helper_funcs.prepare = ironlake_crtc_prepare;
  6211. intel_helper_funcs.commit = ironlake_crtc_commit;
  6212. } else {
  6213. intel_helper_funcs.prepare = i9xx_crtc_prepare;
  6214. intel_helper_funcs.commit = i9xx_crtc_commit;
  6215. }
  6216. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  6217. intel_crtc->busy = false;
  6218. setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
  6219. (unsigned long)intel_crtc);
  6220. }
  6221. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  6222. struct drm_file *file)
  6223. {
  6224. drm_i915_private_t *dev_priv = dev->dev_private;
  6225. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  6226. struct drm_mode_object *drmmode_obj;
  6227. struct intel_crtc *crtc;
  6228. if (!dev_priv) {
  6229. DRM_ERROR("called with no initialization\n");
  6230. return -EINVAL;
  6231. }
  6232. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  6233. DRM_MODE_OBJECT_CRTC);
  6234. if (!drmmode_obj) {
  6235. DRM_ERROR("no such CRTC id\n");
  6236. return -EINVAL;
  6237. }
  6238. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  6239. pipe_from_crtc_id->pipe = crtc->pipe;
  6240. return 0;
  6241. }
  6242. static int intel_encoder_clones(struct drm_device *dev, int type_mask)
  6243. {
  6244. struct intel_encoder *encoder;
  6245. int index_mask = 0;
  6246. int entry = 0;
  6247. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6248. if (type_mask & encoder->clone_mask)
  6249. index_mask |= (1 << entry);
  6250. entry++;
  6251. }
  6252. return index_mask;
  6253. }
  6254. static bool has_edp_a(struct drm_device *dev)
  6255. {
  6256. struct drm_i915_private *dev_priv = dev->dev_private;
  6257. if (!IS_MOBILE(dev))
  6258. return false;
  6259. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  6260. return false;
  6261. if (IS_GEN5(dev) &&
  6262. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  6263. return false;
  6264. return true;
  6265. }
  6266. static void intel_setup_outputs(struct drm_device *dev)
  6267. {
  6268. struct drm_i915_private *dev_priv = dev->dev_private;
  6269. struct intel_encoder *encoder;
  6270. bool dpd_is_edp = false;
  6271. bool has_lvds = false;
  6272. if (IS_MOBILE(dev) && !IS_I830(dev))
  6273. has_lvds = intel_lvds_init(dev);
  6274. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  6275. /* disable the panel fitter on everything but LVDS */
  6276. I915_WRITE(PFIT_CONTROL, 0);
  6277. }
  6278. if (HAS_PCH_SPLIT(dev)) {
  6279. dpd_is_edp = intel_dpd_is_edp(dev);
  6280. if (has_edp_a(dev))
  6281. intel_dp_init(dev, DP_A);
  6282. if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  6283. intel_dp_init(dev, PCH_DP_D);
  6284. }
  6285. intel_crt_init(dev);
  6286. if (HAS_PCH_SPLIT(dev)) {
  6287. int found;
  6288. if (I915_READ(HDMIB) & PORT_DETECTED) {
  6289. /* PCH SDVOB multiplex with HDMIB */
  6290. found = intel_sdvo_init(dev, PCH_SDVOB);
  6291. if (!found)
  6292. intel_hdmi_init(dev, HDMIB);
  6293. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  6294. intel_dp_init(dev, PCH_DP_B);
  6295. }
  6296. if (I915_READ(HDMIC) & PORT_DETECTED)
  6297. intel_hdmi_init(dev, HDMIC);
  6298. if (I915_READ(HDMID) & PORT_DETECTED)
  6299. intel_hdmi_init(dev, HDMID);
  6300. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  6301. intel_dp_init(dev, PCH_DP_C);
  6302. if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  6303. intel_dp_init(dev, PCH_DP_D);
  6304. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  6305. bool found = false;
  6306. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6307. DRM_DEBUG_KMS("probing SDVOB\n");
  6308. found = intel_sdvo_init(dev, SDVOB);
  6309. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  6310. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  6311. intel_hdmi_init(dev, SDVOB);
  6312. }
  6313. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  6314. DRM_DEBUG_KMS("probing DP_B\n");
  6315. intel_dp_init(dev, DP_B);
  6316. }
  6317. }
  6318. /* Before G4X SDVOC doesn't have its own detect register */
  6319. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6320. DRM_DEBUG_KMS("probing SDVOC\n");
  6321. found = intel_sdvo_init(dev, SDVOC);
  6322. }
  6323. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  6324. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  6325. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  6326. intel_hdmi_init(dev, SDVOC);
  6327. }
  6328. if (SUPPORTS_INTEGRATED_DP(dev)) {
  6329. DRM_DEBUG_KMS("probing DP_C\n");
  6330. intel_dp_init(dev, DP_C);
  6331. }
  6332. }
  6333. if (SUPPORTS_INTEGRATED_DP(dev) &&
  6334. (I915_READ(DP_D) & DP_DETECTED)) {
  6335. DRM_DEBUG_KMS("probing DP_D\n");
  6336. intel_dp_init(dev, DP_D);
  6337. }
  6338. } else if (IS_GEN2(dev))
  6339. intel_dvo_init(dev);
  6340. if (SUPPORTS_TV(dev))
  6341. intel_tv_init(dev);
  6342. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6343. encoder->base.possible_crtcs = encoder->crtc_mask;
  6344. encoder->base.possible_clones =
  6345. intel_encoder_clones(dev, encoder->clone_mask);
  6346. }
  6347. /* disable all the possible outputs/crtcs before entering KMS mode */
  6348. drm_helper_disable_unused_functions(dev);
  6349. if (HAS_PCH_SPLIT(dev))
  6350. ironlake_init_pch_refclk(dev);
  6351. }
  6352. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  6353. {
  6354. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  6355. drm_framebuffer_cleanup(fb);
  6356. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  6357. kfree(intel_fb);
  6358. }
  6359. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  6360. struct drm_file *file,
  6361. unsigned int *handle)
  6362. {
  6363. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  6364. struct drm_i915_gem_object *obj = intel_fb->obj;
  6365. return drm_gem_handle_create(file, &obj->base, handle);
  6366. }
  6367. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  6368. .destroy = intel_user_framebuffer_destroy,
  6369. .create_handle = intel_user_framebuffer_create_handle,
  6370. };
  6371. int intel_framebuffer_init(struct drm_device *dev,
  6372. struct intel_framebuffer *intel_fb,
  6373. struct drm_mode_fb_cmd *mode_cmd,
  6374. struct drm_i915_gem_object *obj)
  6375. {
  6376. int ret;
  6377. if (obj->tiling_mode == I915_TILING_Y)
  6378. return -EINVAL;
  6379. if (mode_cmd->pitch & 63)
  6380. return -EINVAL;
  6381. switch (mode_cmd->bpp) {
  6382. case 8:
  6383. case 16:
  6384. /* Only pre-ILK can handle 5:5:5 */
  6385. if (mode_cmd->depth == 15 && !HAS_PCH_SPLIT(dev))
  6386. return -EINVAL;
  6387. break;
  6388. case 24:
  6389. case 32:
  6390. break;
  6391. default:
  6392. return -EINVAL;
  6393. }
  6394. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  6395. if (ret) {
  6396. DRM_ERROR("framebuffer init failed %d\n", ret);
  6397. return ret;
  6398. }
  6399. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  6400. intel_fb->obj = obj;
  6401. return 0;
  6402. }
  6403. static struct drm_framebuffer *
  6404. intel_user_framebuffer_create(struct drm_device *dev,
  6405. struct drm_file *filp,
  6406. struct drm_mode_fb_cmd *mode_cmd)
  6407. {
  6408. struct drm_i915_gem_object *obj;
  6409. obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
  6410. if (&obj->base == NULL)
  6411. return ERR_PTR(-ENOENT);
  6412. return intel_framebuffer_create(dev, mode_cmd, obj);
  6413. }
  6414. static const struct drm_mode_config_funcs intel_mode_funcs = {
  6415. .fb_create = intel_user_framebuffer_create,
  6416. .output_poll_changed = intel_fb_output_poll_changed,
  6417. };
  6418. static struct drm_i915_gem_object *
  6419. intel_alloc_context_page(struct drm_device *dev)
  6420. {
  6421. struct drm_i915_gem_object *ctx;
  6422. int ret;
  6423. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  6424. ctx = i915_gem_alloc_object(dev, 4096);
  6425. if (!ctx) {
  6426. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  6427. return NULL;
  6428. }
  6429. ret = i915_gem_object_pin(ctx, 4096, true);
  6430. if (ret) {
  6431. DRM_ERROR("failed to pin power context: %d\n", ret);
  6432. goto err_unref;
  6433. }
  6434. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  6435. if (ret) {
  6436. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  6437. goto err_unpin;
  6438. }
  6439. return ctx;
  6440. err_unpin:
  6441. i915_gem_object_unpin(ctx);
  6442. err_unref:
  6443. drm_gem_object_unreference(&ctx->base);
  6444. mutex_unlock(&dev->struct_mutex);
  6445. return NULL;
  6446. }
  6447. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  6448. {
  6449. struct drm_i915_private *dev_priv = dev->dev_private;
  6450. u16 rgvswctl;
  6451. rgvswctl = I915_READ16(MEMSWCTL);
  6452. if (rgvswctl & MEMCTL_CMD_STS) {
  6453. DRM_DEBUG("gpu busy, RCS change rejected\n");
  6454. return false; /* still busy with another command */
  6455. }
  6456. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  6457. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  6458. I915_WRITE16(MEMSWCTL, rgvswctl);
  6459. POSTING_READ16(MEMSWCTL);
  6460. rgvswctl |= MEMCTL_CMD_STS;
  6461. I915_WRITE16(MEMSWCTL, rgvswctl);
  6462. return true;
  6463. }
  6464. void ironlake_enable_drps(struct drm_device *dev)
  6465. {
  6466. struct drm_i915_private *dev_priv = dev->dev_private;
  6467. u32 rgvmodectl = I915_READ(MEMMODECTL);
  6468. u8 fmax, fmin, fstart, vstart;
  6469. /* Enable temp reporting */
  6470. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  6471. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  6472. /* 100ms RC evaluation intervals */
  6473. I915_WRITE(RCUPEI, 100000);
  6474. I915_WRITE(RCDNEI, 100000);
  6475. /* Set max/min thresholds to 90ms and 80ms respectively */
  6476. I915_WRITE(RCBMAXAVG, 90000);
  6477. I915_WRITE(RCBMINAVG, 80000);
  6478. I915_WRITE(MEMIHYST, 1);
  6479. /* Set up min, max, and cur for interrupt handling */
  6480. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  6481. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  6482. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  6483. MEMMODE_FSTART_SHIFT;
  6484. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  6485. PXVFREQ_PX_SHIFT;
  6486. dev_priv->fmax = fmax; /* IPS callback will increase this */
  6487. dev_priv->fstart = fstart;
  6488. dev_priv->max_delay = fstart;
  6489. dev_priv->min_delay = fmin;
  6490. dev_priv->cur_delay = fstart;
  6491. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  6492. fmax, fmin, fstart);
  6493. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  6494. /*
  6495. * Interrupts will be enabled in ironlake_irq_postinstall
  6496. */
  6497. I915_WRITE(VIDSTART, vstart);
  6498. POSTING_READ(VIDSTART);
  6499. rgvmodectl |= MEMMODE_SWMODE_EN;
  6500. I915_WRITE(MEMMODECTL, rgvmodectl);
  6501. if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  6502. DRM_ERROR("stuck trying to change perf mode\n");
  6503. msleep(1);
  6504. ironlake_set_drps(dev, fstart);
  6505. dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  6506. I915_READ(0x112e0);
  6507. dev_priv->last_time1 = jiffies_to_msecs(jiffies);
  6508. dev_priv->last_count2 = I915_READ(0x112f4);
  6509. getrawmonotonic(&dev_priv->last_time2);
  6510. }
  6511. void ironlake_disable_drps(struct drm_device *dev)
  6512. {
  6513. struct drm_i915_private *dev_priv = dev->dev_private;
  6514. u16 rgvswctl = I915_READ16(MEMSWCTL);
  6515. /* Ack interrupts, disable EFC interrupt */
  6516. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  6517. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  6518. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  6519. I915_WRITE(DEIIR, DE_PCU_EVENT);
  6520. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  6521. /* Go back to the starting frequency */
  6522. ironlake_set_drps(dev, dev_priv->fstart);
  6523. msleep(1);
  6524. rgvswctl |= MEMCTL_CMD_STS;
  6525. I915_WRITE(MEMSWCTL, rgvswctl);
  6526. msleep(1);
  6527. }
  6528. void gen6_set_rps(struct drm_device *dev, u8 val)
  6529. {
  6530. struct drm_i915_private *dev_priv = dev->dev_private;
  6531. u32 swreq;
  6532. swreq = (val & 0x3ff) << 25;
  6533. I915_WRITE(GEN6_RPNSWREQ, swreq);
  6534. }
  6535. void gen6_disable_rps(struct drm_device *dev)
  6536. {
  6537. struct drm_i915_private *dev_priv = dev->dev_private;
  6538. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  6539. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  6540. I915_WRITE(GEN6_PMIER, 0);
  6541. /* Complete PM interrupt masking here doesn't race with the rps work
  6542. * item again unmasking PM interrupts because that is using a different
  6543. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  6544. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  6545. spin_lock_irq(&dev_priv->rps_lock);
  6546. dev_priv->pm_iir = 0;
  6547. spin_unlock_irq(&dev_priv->rps_lock);
  6548. I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
  6549. }
  6550. static unsigned long intel_pxfreq(u32 vidfreq)
  6551. {
  6552. unsigned long freq;
  6553. int div = (vidfreq & 0x3f0000) >> 16;
  6554. int post = (vidfreq & 0x3000) >> 12;
  6555. int pre = (vidfreq & 0x7);
  6556. if (!pre)
  6557. return 0;
  6558. freq = ((div * 133333) / ((1<<post) * pre));
  6559. return freq;
  6560. }
  6561. void intel_init_emon(struct drm_device *dev)
  6562. {
  6563. struct drm_i915_private *dev_priv = dev->dev_private;
  6564. u32 lcfuse;
  6565. u8 pxw[16];
  6566. int i;
  6567. /* Disable to program */
  6568. I915_WRITE(ECR, 0);
  6569. POSTING_READ(ECR);
  6570. /* Program energy weights for various events */
  6571. I915_WRITE(SDEW, 0x15040d00);
  6572. I915_WRITE(CSIEW0, 0x007f0000);
  6573. I915_WRITE(CSIEW1, 0x1e220004);
  6574. I915_WRITE(CSIEW2, 0x04000004);
  6575. for (i = 0; i < 5; i++)
  6576. I915_WRITE(PEW + (i * 4), 0);
  6577. for (i = 0; i < 3; i++)
  6578. I915_WRITE(DEW + (i * 4), 0);
  6579. /* Program P-state weights to account for frequency power adjustment */
  6580. for (i = 0; i < 16; i++) {
  6581. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  6582. unsigned long freq = intel_pxfreq(pxvidfreq);
  6583. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  6584. PXVFREQ_PX_SHIFT;
  6585. unsigned long val;
  6586. val = vid * vid;
  6587. val *= (freq / 1000);
  6588. val *= 255;
  6589. val /= (127*127*900);
  6590. if (val > 0xff)
  6591. DRM_ERROR("bad pxval: %ld\n", val);
  6592. pxw[i] = val;
  6593. }
  6594. /* Render standby states get 0 weight */
  6595. pxw[14] = 0;
  6596. pxw[15] = 0;
  6597. for (i = 0; i < 4; i++) {
  6598. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  6599. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  6600. I915_WRITE(PXW + (i * 4), val);
  6601. }
  6602. /* Adjust magic regs to magic values (more experimental results) */
  6603. I915_WRITE(OGW0, 0);
  6604. I915_WRITE(OGW1, 0);
  6605. I915_WRITE(EG0, 0x00007f00);
  6606. I915_WRITE(EG1, 0x0000000e);
  6607. I915_WRITE(EG2, 0x000e0000);
  6608. I915_WRITE(EG3, 0x68000300);
  6609. I915_WRITE(EG4, 0x42000000);
  6610. I915_WRITE(EG5, 0x00140031);
  6611. I915_WRITE(EG6, 0);
  6612. I915_WRITE(EG7, 0);
  6613. for (i = 0; i < 8; i++)
  6614. I915_WRITE(PXWL + (i * 4), 0);
  6615. /* Enable PMON + select events */
  6616. I915_WRITE(ECR, 0x80000019);
  6617. lcfuse = I915_READ(LCFUSE02);
  6618. dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
  6619. }
  6620. void gen6_enable_rps(struct drm_i915_private *dev_priv)
  6621. {
  6622. u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  6623. u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  6624. u32 pcu_mbox, rc6_mask = 0;
  6625. int cur_freq, min_freq, max_freq;
  6626. int i;
  6627. /* Here begins a magic sequence of register writes to enable
  6628. * auto-downclocking.
  6629. *
  6630. * Perhaps there might be some value in exposing these to
  6631. * userspace...
  6632. */
  6633. I915_WRITE(GEN6_RC_STATE, 0);
  6634. mutex_lock(&dev_priv->dev->struct_mutex);
  6635. gen6_gt_force_wake_get(dev_priv);
  6636. /* disable the counters and set deterministic thresholds */
  6637. I915_WRITE(GEN6_RC_CONTROL, 0);
  6638. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  6639. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  6640. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  6641. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  6642. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  6643. for (i = 0; i < I915_NUM_RINGS; i++)
  6644. I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
  6645. I915_WRITE(GEN6_RC_SLEEP, 0);
  6646. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  6647. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  6648. I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
  6649. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  6650. if (i915_enable_rc6)
  6651. rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
  6652. GEN6_RC_CTL_RC6_ENABLE;
  6653. I915_WRITE(GEN6_RC_CONTROL,
  6654. rc6_mask |
  6655. GEN6_RC_CTL_EI_MODE(1) |
  6656. GEN6_RC_CTL_HW_ENABLE);
  6657. I915_WRITE(GEN6_RPNSWREQ,
  6658. GEN6_FREQUENCY(10) |
  6659. GEN6_OFFSET(0) |
  6660. GEN6_AGGRESSIVE_TURBO);
  6661. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  6662. GEN6_FREQUENCY(12));
  6663. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  6664. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  6665. 18 << 24 |
  6666. 6 << 16);
  6667. I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
  6668. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
  6669. I915_WRITE(GEN6_RP_UP_EI, 100000);
  6670. I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
  6671. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  6672. I915_WRITE(GEN6_RP_CONTROL,
  6673. GEN6_RP_MEDIA_TURBO |
  6674. GEN6_RP_USE_NORMAL_FREQ |
  6675. GEN6_RP_MEDIA_IS_GFX |
  6676. GEN6_RP_ENABLE |
  6677. GEN6_RP_UP_BUSY_AVG |
  6678. GEN6_RP_DOWN_IDLE_CONT);
  6679. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  6680. 500))
  6681. DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
  6682. I915_WRITE(GEN6_PCODE_DATA, 0);
  6683. I915_WRITE(GEN6_PCODE_MAILBOX,
  6684. GEN6_PCODE_READY |
  6685. GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
  6686. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  6687. 500))
  6688. DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
  6689. min_freq = (rp_state_cap & 0xff0000) >> 16;
  6690. max_freq = rp_state_cap & 0xff;
  6691. cur_freq = (gt_perf_status & 0xff00) >> 8;
  6692. /* Check for overclock support */
  6693. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  6694. 500))
  6695. DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
  6696. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
  6697. pcu_mbox = I915_READ(GEN6_PCODE_DATA);
  6698. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  6699. 500))
  6700. DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
  6701. if (pcu_mbox & (1<<31)) { /* OC supported */
  6702. max_freq = pcu_mbox & 0xff;
  6703. DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
  6704. }
  6705. /* In units of 100MHz */
  6706. dev_priv->max_delay = max_freq;
  6707. dev_priv->min_delay = min_freq;
  6708. dev_priv->cur_delay = cur_freq;
  6709. /* requires MSI enabled */
  6710. I915_WRITE(GEN6_PMIER,
  6711. GEN6_PM_MBOX_EVENT |
  6712. GEN6_PM_THERMAL_EVENT |
  6713. GEN6_PM_RP_DOWN_TIMEOUT |
  6714. GEN6_PM_RP_UP_THRESHOLD |
  6715. GEN6_PM_RP_DOWN_THRESHOLD |
  6716. GEN6_PM_RP_UP_EI_EXPIRED |
  6717. GEN6_PM_RP_DOWN_EI_EXPIRED);
  6718. spin_lock_irq(&dev_priv->rps_lock);
  6719. WARN_ON(dev_priv->pm_iir != 0);
  6720. I915_WRITE(GEN6_PMIMR, 0);
  6721. spin_unlock_irq(&dev_priv->rps_lock);
  6722. /* enable all PM interrupts */
  6723. I915_WRITE(GEN6_PMINTRMSK, 0);
  6724. gen6_gt_force_wake_put(dev_priv);
  6725. mutex_unlock(&dev_priv->dev->struct_mutex);
  6726. }
  6727. void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
  6728. {
  6729. int min_freq = 15;
  6730. int gpu_freq, ia_freq, max_ia_freq;
  6731. int scaling_factor = 180;
  6732. max_ia_freq = cpufreq_quick_get_max(0);
  6733. /*
  6734. * Default to measured freq if none found, PCU will ensure we don't go
  6735. * over
  6736. */
  6737. if (!max_ia_freq)
  6738. max_ia_freq = tsc_khz;
  6739. /* Convert from kHz to MHz */
  6740. max_ia_freq /= 1000;
  6741. mutex_lock(&dev_priv->dev->struct_mutex);
  6742. /*
  6743. * For each potential GPU frequency, load a ring frequency we'd like
  6744. * to use for memory access. We do this by specifying the IA frequency
  6745. * the PCU should use as a reference to determine the ring frequency.
  6746. */
  6747. for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
  6748. gpu_freq--) {
  6749. int diff = dev_priv->max_delay - gpu_freq;
  6750. /*
  6751. * For GPU frequencies less than 750MHz, just use the lowest
  6752. * ring freq.
  6753. */
  6754. if (gpu_freq < min_freq)
  6755. ia_freq = 800;
  6756. else
  6757. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  6758. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  6759. I915_WRITE(GEN6_PCODE_DATA,
  6760. (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
  6761. gpu_freq);
  6762. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
  6763. GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
  6764. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
  6765. GEN6_PCODE_READY) == 0, 10)) {
  6766. DRM_ERROR("pcode write of freq table timed out\n");
  6767. continue;
  6768. }
  6769. }
  6770. mutex_unlock(&dev_priv->dev->struct_mutex);
  6771. }
  6772. static void ironlake_init_clock_gating(struct drm_device *dev)
  6773. {
  6774. struct drm_i915_private *dev_priv = dev->dev_private;
  6775. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  6776. /* Required for FBC */
  6777. dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
  6778. DPFCRUNIT_CLOCK_GATE_DISABLE |
  6779. DPFDUNIT_CLOCK_GATE_DISABLE;
  6780. /* Required for CxSR */
  6781. dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
  6782. I915_WRITE(PCH_3DCGDIS0,
  6783. MARIUNIT_CLOCK_GATE_DISABLE |
  6784. SVSMUNIT_CLOCK_GATE_DISABLE);
  6785. I915_WRITE(PCH_3DCGDIS1,
  6786. VFMUNIT_CLOCK_GATE_DISABLE);
  6787. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  6788. /*
  6789. * According to the spec the following bits should be set in
  6790. * order to enable memory self-refresh
  6791. * The bit 22/21 of 0x42004
  6792. * The bit 5 of 0x42020
  6793. * The bit 15 of 0x45000
  6794. */
  6795. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6796. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  6797. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  6798. I915_WRITE(ILK_DSPCLK_GATE,
  6799. (I915_READ(ILK_DSPCLK_GATE) |
  6800. ILK_DPARB_CLK_GATE));
  6801. I915_WRITE(DISP_ARB_CTL,
  6802. (I915_READ(DISP_ARB_CTL) |
  6803. DISP_FBC_WM_DIS));
  6804. I915_WRITE(WM3_LP_ILK, 0);
  6805. I915_WRITE(WM2_LP_ILK, 0);
  6806. I915_WRITE(WM1_LP_ILK, 0);
  6807. /*
  6808. * Based on the document from hardware guys the following bits
  6809. * should be set unconditionally in order to enable FBC.
  6810. * The bit 22 of 0x42000
  6811. * The bit 22 of 0x42004
  6812. * The bit 7,8,9 of 0x42020.
  6813. */
  6814. if (IS_IRONLAKE_M(dev)) {
  6815. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  6816. I915_READ(ILK_DISPLAY_CHICKEN1) |
  6817. ILK_FBCQ_DIS);
  6818. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6819. I915_READ(ILK_DISPLAY_CHICKEN2) |
  6820. ILK_DPARB_GATE);
  6821. I915_WRITE(ILK_DSPCLK_GATE,
  6822. I915_READ(ILK_DSPCLK_GATE) |
  6823. ILK_DPFC_DIS1 |
  6824. ILK_DPFC_DIS2 |
  6825. ILK_CLK_FBC);
  6826. }
  6827. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6828. I915_READ(ILK_DISPLAY_CHICKEN2) |
  6829. ILK_ELPIN_409_SELECT);
  6830. I915_WRITE(_3D_CHICKEN2,
  6831. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  6832. _3D_CHICKEN2_WM_READ_PIPELINED);
  6833. }
  6834. static void gen6_init_clock_gating(struct drm_device *dev)
  6835. {
  6836. struct drm_i915_private *dev_priv = dev->dev_private;
  6837. int pipe;
  6838. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  6839. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  6840. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6841. I915_READ(ILK_DISPLAY_CHICKEN2) |
  6842. ILK_ELPIN_409_SELECT);
  6843. I915_WRITE(WM3_LP_ILK, 0);
  6844. I915_WRITE(WM2_LP_ILK, 0);
  6845. I915_WRITE(WM1_LP_ILK, 0);
  6846. /*
  6847. * According to the spec the following bits should be
  6848. * set in order to enable memory self-refresh and fbc:
  6849. * The bit21 and bit22 of 0x42000
  6850. * The bit21 and bit22 of 0x42004
  6851. * The bit5 and bit7 of 0x42020
  6852. * The bit14 of 0x70180
  6853. * The bit14 of 0x71180
  6854. */
  6855. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  6856. I915_READ(ILK_DISPLAY_CHICKEN1) |
  6857. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  6858. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6859. I915_READ(ILK_DISPLAY_CHICKEN2) |
  6860. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  6861. I915_WRITE(ILK_DSPCLK_GATE,
  6862. I915_READ(ILK_DSPCLK_GATE) |
  6863. ILK_DPARB_CLK_GATE |
  6864. ILK_DPFD_CLK_GATE);
  6865. for_each_pipe(pipe) {
  6866. I915_WRITE(DSPCNTR(pipe),
  6867. I915_READ(DSPCNTR(pipe)) |
  6868. DISPPLANE_TRICKLE_FEED_DISABLE);
  6869. intel_flush_display_plane(dev_priv, pipe);
  6870. }
  6871. }
  6872. static void ivybridge_init_clock_gating(struct drm_device *dev)
  6873. {
  6874. struct drm_i915_private *dev_priv = dev->dev_private;
  6875. int pipe;
  6876. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  6877. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  6878. I915_WRITE(WM3_LP_ILK, 0);
  6879. I915_WRITE(WM2_LP_ILK, 0);
  6880. I915_WRITE(WM1_LP_ILK, 0);
  6881. I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
  6882. for_each_pipe(pipe) {
  6883. I915_WRITE(DSPCNTR(pipe),
  6884. I915_READ(DSPCNTR(pipe)) |
  6885. DISPPLANE_TRICKLE_FEED_DISABLE);
  6886. intel_flush_display_plane(dev_priv, pipe);
  6887. }
  6888. }
  6889. static void g4x_init_clock_gating(struct drm_device *dev)
  6890. {
  6891. struct drm_i915_private *dev_priv = dev->dev_private;
  6892. uint32_t dspclk_gate;
  6893. I915_WRITE(RENCLK_GATE_D1, 0);
  6894. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  6895. GS_UNIT_CLOCK_GATE_DISABLE |
  6896. CL_UNIT_CLOCK_GATE_DISABLE);
  6897. I915_WRITE(RAMCLK_GATE_D, 0);
  6898. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  6899. OVRUNIT_CLOCK_GATE_DISABLE |
  6900. OVCUNIT_CLOCK_GATE_DISABLE;
  6901. if (IS_GM45(dev))
  6902. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  6903. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  6904. }
  6905. static void crestline_init_clock_gating(struct drm_device *dev)
  6906. {
  6907. struct drm_i915_private *dev_priv = dev->dev_private;
  6908. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  6909. I915_WRITE(RENCLK_GATE_D2, 0);
  6910. I915_WRITE(DSPCLK_GATE_D, 0);
  6911. I915_WRITE(RAMCLK_GATE_D, 0);
  6912. I915_WRITE16(DEUC, 0);
  6913. }
  6914. static void broadwater_init_clock_gating(struct drm_device *dev)
  6915. {
  6916. struct drm_i915_private *dev_priv = dev->dev_private;
  6917. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  6918. I965_RCC_CLOCK_GATE_DISABLE |
  6919. I965_RCPB_CLOCK_GATE_DISABLE |
  6920. I965_ISC_CLOCK_GATE_DISABLE |
  6921. I965_FBC_CLOCK_GATE_DISABLE);
  6922. I915_WRITE(RENCLK_GATE_D2, 0);
  6923. }
  6924. static void gen3_init_clock_gating(struct drm_device *dev)
  6925. {
  6926. struct drm_i915_private *dev_priv = dev->dev_private;
  6927. u32 dstate = I915_READ(D_STATE);
  6928. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  6929. DSTATE_DOT_CLOCK_GATING;
  6930. I915_WRITE(D_STATE, dstate);
  6931. }
  6932. static void i85x_init_clock_gating(struct drm_device *dev)
  6933. {
  6934. struct drm_i915_private *dev_priv = dev->dev_private;
  6935. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  6936. }
  6937. static void i830_init_clock_gating(struct drm_device *dev)
  6938. {
  6939. struct drm_i915_private *dev_priv = dev->dev_private;
  6940. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  6941. }
  6942. static void ibx_init_clock_gating(struct drm_device *dev)
  6943. {
  6944. struct drm_i915_private *dev_priv = dev->dev_private;
  6945. /*
  6946. * On Ibex Peak and Cougar Point, we need to disable clock
  6947. * gating for the panel power sequencer or it will fail to
  6948. * start up when no ports are active.
  6949. */
  6950. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  6951. }
  6952. static void cpt_init_clock_gating(struct drm_device *dev)
  6953. {
  6954. struct drm_i915_private *dev_priv = dev->dev_private;
  6955. int pipe;
  6956. /*
  6957. * On Ibex Peak and Cougar Point, we need to disable clock
  6958. * gating for the panel power sequencer or it will fail to
  6959. * start up when no ports are active.
  6960. */
  6961. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  6962. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  6963. DPLS_EDP_PPS_FIX_DIS);
  6964. /* Without this, mode sets may fail silently on FDI */
  6965. for_each_pipe(pipe)
  6966. I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
  6967. }
  6968. static void ironlake_teardown_rc6(struct drm_device *dev)
  6969. {
  6970. struct drm_i915_private *dev_priv = dev->dev_private;
  6971. if (dev_priv->renderctx) {
  6972. i915_gem_object_unpin(dev_priv->renderctx);
  6973. drm_gem_object_unreference(&dev_priv->renderctx->base);
  6974. dev_priv->renderctx = NULL;
  6975. }
  6976. if (dev_priv->pwrctx) {
  6977. i915_gem_object_unpin(dev_priv->pwrctx);
  6978. drm_gem_object_unreference(&dev_priv->pwrctx->base);
  6979. dev_priv->pwrctx = NULL;
  6980. }
  6981. }
  6982. static void ironlake_disable_rc6(struct drm_device *dev)
  6983. {
  6984. struct drm_i915_private *dev_priv = dev->dev_private;
  6985. if (I915_READ(PWRCTXA)) {
  6986. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  6987. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  6988. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  6989. 50);
  6990. I915_WRITE(PWRCTXA, 0);
  6991. POSTING_READ(PWRCTXA);
  6992. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  6993. POSTING_READ(RSTDBYCTL);
  6994. }
  6995. ironlake_teardown_rc6(dev);
  6996. }
  6997. static int ironlake_setup_rc6(struct drm_device *dev)
  6998. {
  6999. struct drm_i915_private *dev_priv = dev->dev_private;
  7000. if (dev_priv->renderctx == NULL)
  7001. dev_priv->renderctx = intel_alloc_context_page(dev);
  7002. if (!dev_priv->renderctx)
  7003. return -ENOMEM;
  7004. if (dev_priv->pwrctx == NULL)
  7005. dev_priv->pwrctx = intel_alloc_context_page(dev);
  7006. if (!dev_priv->pwrctx) {
  7007. ironlake_teardown_rc6(dev);
  7008. return -ENOMEM;
  7009. }
  7010. return 0;
  7011. }
  7012. void ironlake_enable_rc6(struct drm_device *dev)
  7013. {
  7014. struct drm_i915_private *dev_priv = dev->dev_private;
  7015. int ret;
  7016. /* rc6 disabled by default due to repeated reports of hanging during
  7017. * boot and resume.
  7018. */
  7019. if (!i915_enable_rc6)
  7020. return;
  7021. mutex_lock(&dev->struct_mutex);
  7022. ret = ironlake_setup_rc6(dev);
  7023. if (ret) {
  7024. mutex_unlock(&dev->struct_mutex);
  7025. return;
  7026. }
  7027. /*
  7028. * GPU can automatically power down the render unit if given a page
  7029. * to save state.
  7030. */
  7031. ret = BEGIN_LP_RING(6);
  7032. if (ret) {
  7033. ironlake_teardown_rc6(dev);
  7034. mutex_unlock(&dev->struct_mutex);
  7035. return;
  7036. }
  7037. OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  7038. OUT_RING(MI_SET_CONTEXT);
  7039. OUT_RING(dev_priv->renderctx->gtt_offset |
  7040. MI_MM_SPACE_GTT |
  7041. MI_SAVE_EXT_STATE_EN |
  7042. MI_RESTORE_EXT_STATE_EN |
  7043. MI_RESTORE_INHIBIT);
  7044. OUT_RING(MI_SUSPEND_FLUSH);
  7045. OUT_RING(MI_NOOP);
  7046. OUT_RING(MI_FLUSH);
  7047. ADVANCE_LP_RING();
  7048. /*
  7049. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  7050. * does an implicit flush, combined with MI_FLUSH above, it should be
  7051. * safe to assume that renderctx is valid
  7052. */
  7053. ret = intel_wait_ring_idle(LP_RING(dev_priv));
  7054. if (ret) {
  7055. DRM_ERROR("failed to enable ironlake power power savings\n");
  7056. ironlake_teardown_rc6(dev);
  7057. mutex_unlock(&dev->struct_mutex);
  7058. return;
  7059. }
  7060. I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
  7061. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  7062. mutex_unlock(&dev->struct_mutex);
  7063. }
  7064. void intel_init_clock_gating(struct drm_device *dev)
  7065. {
  7066. struct drm_i915_private *dev_priv = dev->dev_private;
  7067. dev_priv->display.init_clock_gating(dev);
  7068. if (dev_priv->display.init_pch_clock_gating)
  7069. dev_priv->display.init_pch_clock_gating(dev);
  7070. }
  7071. /* Set up chip specific display functions */
  7072. static void intel_init_display(struct drm_device *dev)
  7073. {
  7074. struct drm_i915_private *dev_priv = dev->dev_private;
  7075. /* We always want a DPMS function */
  7076. if (HAS_PCH_SPLIT(dev)) {
  7077. dev_priv->display.dpms = ironlake_crtc_dpms;
  7078. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7079. dev_priv->display.update_plane = ironlake_update_plane;
  7080. } else {
  7081. dev_priv->display.dpms = i9xx_crtc_dpms;
  7082. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7083. dev_priv->display.update_plane = i9xx_update_plane;
  7084. }
  7085. if (I915_HAS_FBC(dev)) {
  7086. if (HAS_PCH_SPLIT(dev)) {
  7087. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  7088. dev_priv->display.enable_fbc = ironlake_enable_fbc;
  7089. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  7090. } else if (IS_GM45(dev)) {
  7091. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  7092. dev_priv->display.enable_fbc = g4x_enable_fbc;
  7093. dev_priv->display.disable_fbc = g4x_disable_fbc;
  7094. } else if (IS_CRESTLINE(dev)) {
  7095. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  7096. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  7097. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  7098. }
  7099. /* 855GM needs testing */
  7100. }
  7101. /* Returns the core display clock speed */
  7102. if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7103. dev_priv->display.get_display_clock_speed =
  7104. i945_get_display_clock_speed;
  7105. else if (IS_I915G(dev))
  7106. dev_priv->display.get_display_clock_speed =
  7107. i915_get_display_clock_speed;
  7108. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7109. dev_priv->display.get_display_clock_speed =
  7110. i9xx_misc_get_display_clock_speed;
  7111. else if (IS_I915GM(dev))
  7112. dev_priv->display.get_display_clock_speed =
  7113. i915gm_get_display_clock_speed;
  7114. else if (IS_I865G(dev))
  7115. dev_priv->display.get_display_clock_speed =
  7116. i865_get_display_clock_speed;
  7117. else if (IS_I85X(dev))
  7118. dev_priv->display.get_display_clock_speed =
  7119. i855_get_display_clock_speed;
  7120. else /* 852, 830 */
  7121. dev_priv->display.get_display_clock_speed =
  7122. i830_get_display_clock_speed;
  7123. /* For FIFO watermark updates */
  7124. if (HAS_PCH_SPLIT(dev)) {
  7125. if (HAS_PCH_IBX(dev))
  7126. dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
  7127. else if (HAS_PCH_CPT(dev))
  7128. dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
  7129. if (IS_GEN5(dev)) {
  7130. if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
  7131. dev_priv->display.update_wm = ironlake_update_wm;
  7132. else {
  7133. DRM_DEBUG_KMS("Failed to get proper latency. "
  7134. "Disable CxSR\n");
  7135. dev_priv->display.update_wm = NULL;
  7136. }
  7137. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7138. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  7139. dev_priv->display.write_eld = ironlake_write_eld;
  7140. } else if (IS_GEN6(dev)) {
  7141. if (SNB_READ_WM0_LATENCY()) {
  7142. dev_priv->display.update_wm = sandybridge_update_wm;
  7143. } else {
  7144. DRM_DEBUG_KMS("Failed to read display plane latency. "
  7145. "Disable CxSR\n");
  7146. dev_priv->display.update_wm = NULL;
  7147. }
  7148. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7149. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  7150. dev_priv->display.write_eld = ironlake_write_eld;
  7151. } else if (IS_IVYBRIDGE(dev)) {
  7152. /* FIXME: detect B0+ stepping and use auto training */
  7153. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7154. if (SNB_READ_WM0_LATENCY()) {
  7155. dev_priv->display.update_wm = sandybridge_update_wm;
  7156. } else {
  7157. DRM_DEBUG_KMS("Failed to read display plane latency. "
  7158. "Disable CxSR\n");
  7159. dev_priv->display.update_wm = NULL;
  7160. }
  7161. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  7162. dev_priv->display.write_eld = ironlake_write_eld;
  7163. } else
  7164. dev_priv->display.update_wm = NULL;
  7165. } else if (IS_PINEVIEW(dev)) {
  7166. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  7167. dev_priv->is_ddr3,
  7168. dev_priv->fsb_freq,
  7169. dev_priv->mem_freq)) {
  7170. DRM_INFO("failed to find known CxSR latency "
  7171. "(found ddr%s fsb freq %d, mem freq %d), "
  7172. "disabling CxSR\n",
  7173. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  7174. dev_priv->fsb_freq, dev_priv->mem_freq);
  7175. /* Disable CxSR and never update its watermark again */
  7176. pineview_disable_cxsr(dev);
  7177. dev_priv->display.update_wm = NULL;
  7178. } else
  7179. dev_priv->display.update_wm = pineview_update_wm;
  7180. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  7181. } else if (IS_G4X(dev)) {
  7182. dev_priv->display.write_eld = g4x_write_eld;
  7183. dev_priv->display.update_wm = g4x_update_wm;
  7184. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  7185. } else if (IS_GEN4(dev)) {
  7186. dev_priv->display.update_wm = i965_update_wm;
  7187. if (IS_CRESTLINE(dev))
  7188. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  7189. else if (IS_BROADWATER(dev))
  7190. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  7191. } else if (IS_GEN3(dev)) {
  7192. dev_priv->display.update_wm = i9xx_update_wm;
  7193. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  7194. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  7195. } else if (IS_I865G(dev)) {
  7196. dev_priv->display.update_wm = i830_update_wm;
  7197. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  7198. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  7199. } else if (IS_I85X(dev)) {
  7200. dev_priv->display.update_wm = i9xx_update_wm;
  7201. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  7202. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  7203. } else {
  7204. dev_priv->display.update_wm = i830_update_wm;
  7205. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  7206. if (IS_845G(dev))
  7207. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  7208. else
  7209. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  7210. }
  7211. /* Default just returns -ENODEV to indicate unsupported */
  7212. dev_priv->display.queue_flip = intel_default_queue_flip;
  7213. switch (INTEL_INFO(dev)->gen) {
  7214. case 2:
  7215. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7216. break;
  7217. case 3:
  7218. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7219. break;
  7220. case 4:
  7221. case 5:
  7222. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7223. break;
  7224. case 6:
  7225. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7226. break;
  7227. case 7:
  7228. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7229. break;
  7230. }
  7231. }
  7232. /*
  7233. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7234. * resume, or other times. This quirk makes sure that's the case for
  7235. * affected systems.
  7236. */
  7237. static void quirk_pipea_force(struct drm_device *dev)
  7238. {
  7239. struct drm_i915_private *dev_priv = dev->dev_private;
  7240. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7241. DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
  7242. }
  7243. /*
  7244. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7245. */
  7246. static void quirk_ssc_force_disable(struct drm_device *dev)
  7247. {
  7248. struct drm_i915_private *dev_priv = dev->dev_private;
  7249. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7250. }
  7251. struct intel_quirk {
  7252. int device;
  7253. int subsystem_vendor;
  7254. int subsystem_device;
  7255. void (*hook)(struct drm_device *dev);
  7256. };
  7257. struct intel_quirk intel_quirks[] = {
  7258. /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
  7259. { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
  7260. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7261. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7262. /* Thinkpad R31 needs pipe A force quirk */
  7263. { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
  7264. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7265. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7266. /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
  7267. { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
  7268. /* ThinkPad X40 needs pipe A force quirk */
  7269. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7270. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7271. /* 855 & before need to leave pipe A & dpll A up */
  7272. { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7273. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7274. /* Lenovo U160 cannot use SSC on LVDS */
  7275. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7276. /* Sony Vaio Y cannot use SSC on LVDS */
  7277. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7278. };
  7279. static void intel_init_quirks(struct drm_device *dev)
  7280. {
  7281. struct pci_dev *d = dev->pdev;
  7282. int i;
  7283. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7284. struct intel_quirk *q = &intel_quirks[i];
  7285. if (d->device == q->device &&
  7286. (d->subsystem_vendor == q->subsystem_vendor ||
  7287. q->subsystem_vendor == PCI_ANY_ID) &&
  7288. (d->subsystem_device == q->subsystem_device ||
  7289. q->subsystem_device == PCI_ANY_ID))
  7290. q->hook(dev);
  7291. }
  7292. }
  7293. /* Disable the VGA plane that we never use */
  7294. static void i915_disable_vga(struct drm_device *dev)
  7295. {
  7296. struct drm_i915_private *dev_priv = dev->dev_private;
  7297. u8 sr1;
  7298. u32 vga_reg;
  7299. if (HAS_PCH_SPLIT(dev))
  7300. vga_reg = CPU_VGACNTRL;
  7301. else
  7302. vga_reg = VGACNTRL;
  7303. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7304. outb(1, VGA_SR_INDEX);
  7305. sr1 = inb(VGA_SR_DATA);
  7306. outb(sr1 | 1<<5, VGA_SR_DATA);
  7307. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7308. udelay(300);
  7309. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7310. POSTING_READ(vga_reg);
  7311. }
  7312. void intel_modeset_init(struct drm_device *dev)
  7313. {
  7314. struct drm_i915_private *dev_priv = dev->dev_private;
  7315. int i;
  7316. drm_mode_config_init(dev);
  7317. dev->mode_config.min_width = 0;
  7318. dev->mode_config.min_height = 0;
  7319. dev->mode_config.funcs = (void *)&intel_mode_funcs;
  7320. intel_init_quirks(dev);
  7321. intel_init_display(dev);
  7322. if (IS_GEN2(dev)) {
  7323. dev->mode_config.max_width = 2048;
  7324. dev->mode_config.max_height = 2048;
  7325. } else if (IS_GEN3(dev)) {
  7326. dev->mode_config.max_width = 4096;
  7327. dev->mode_config.max_height = 4096;
  7328. } else {
  7329. dev->mode_config.max_width = 8192;
  7330. dev->mode_config.max_height = 8192;
  7331. }
  7332. dev->mode_config.fb_base = dev->agp->base;
  7333. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7334. dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
  7335. for (i = 0; i < dev_priv->num_pipe; i++) {
  7336. intel_crtc_init(dev, i);
  7337. }
  7338. /* Just disable it once at startup */
  7339. i915_disable_vga(dev);
  7340. intel_setup_outputs(dev);
  7341. intel_init_clock_gating(dev);
  7342. if (IS_IRONLAKE_M(dev)) {
  7343. ironlake_enable_drps(dev);
  7344. intel_init_emon(dev);
  7345. }
  7346. if (IS_GEN6(dev) || IS_GEN7(dev)) {
  7347. gen6_enable_rps(dev_priv);
  7348. gen6_update_ring_freq(dev_priv);
  7349. }
  7350. INIT_WORK(&dev_priv->idle_work, intel_idle_update);
  7351. setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
  7352. (unsigned long)dev);
  7353. }
  7354. void intel_modeset_gem_init(struct drm_device *dev)
  7355. {
  7356. if (IS_IRONLAKE_M(dev))
  7357. ironlake_enable_rc6(dev);
  7358. intel_setup_overlay(dev);
  7359. }
  7360. void intel_modeset_cleanup(struct drm_device *dev)
  7361. {
  7362. struct drm_i915_private *dev_priv = dev->dev_private;
  7363. struct drm_crtc *crtc;
  7364. struct intel_crtc *intel_crtc;
  7365. drm_kms_helper_poll_fini(dev);
  7366. mutex_lock(&dev->struct_mutex);
  7367. intel_unregister_dsm_handler();
  7368. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  7369. /* Skip inactive CRTCs */
  7370. if (!crtc->fb)
  7371. continue;
  7372. intel_crtc = to_intel_crtc(crtc);
  7373. intel_increase_pllclock(crtc);
  7374. }
  7375. intel_disable_fbc(dev);
  7376. if (IS_IRONLAKE_M(dev))
  7377. ironlake_disable_drps(dev);
  7378. if (IS_GEN6(dev) || IS_GEN7(dev))
  7379. gen6_disable_rps(dev);
  7380. if (IS_IRONLAKE_M(dev))
  7381. ironlake_disable_rc6(dev);
  7382. mutex_unlock(&dev->struct_mutex);
  7383. /* Disable the irq before mode object teardown, for the irq might
  7384. * enqueue unpin/hotplug work. */
  7385. drm_irq_uninstall(dev);
  7386. cancel_work_sync(&dev_priv->hotplug_work);
  7387. cancel_work_sync(&dev_priv->rps_work);
  7388. /* flush any delayed tasks or pending work */
  7389. flush_scheduled_work();
  7390. /* Shut off idle work before the crtcs get freed. */
  7391. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  7392. intel_crtc = to_intel_crtc(crtc);
  7393. del_timer_sync(&intel_crtc->idle_timer);
  7394. }
  7395. del_timer_sync(&dev_priv->idle_timer);
  7396. cancel_work_sync(&dev_priv->idle_work);
  7397. drm_mode_config_cleanup(dev);
  7398. }
  7399. /*
  7400. * Return which encoder is currently attached for connector.
  7401. */
  7402. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  7403. {
  7404. return &intel_attached_encoder(connector)->base;
  7405. }
  7406. void intel_connector_attach_encoder(struct intel_connector *connector,
  7407. struct intel_encoder *encoder)
  7408. {
  7409. connector->encoder = encoder;
  7410. drm_mode_connector_attach_encoder(&connector->base,
  7411. &encoder->base);
  7412. }
  7413. /*
  7414. * set vga decode state - true == enable VGA decode
  7415. */
  7416. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  7417. {
  7418. struct drm_i915_private *dev_priv = dev->dev_private;
  7419. u16 gmch_ctrl;
  7420. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  7421. if (state)
  7422. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  7423. else
  7424. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  7425. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  7426. return 0;
  7427. }
  7428. #ifdef CONFIG_DEBUG_FS
  7429. #include <linux/seq_file.h>
  7430. struct intel_display_error_state {
  7431. struct intel_cursor_error_state {
  7432. u32 control;
  7433. u32 position;
  7434. u32 base;
  7435. u32 size;
  7436. } cursor[2];
  7437. struct intel_pipe_error_state {
  7438. u32 conf;
  7439. u32 source;
  7440. u32 htotal;
  7441. u32 hblank;
  7442. u32 hsync;
  7443. u32 vtotal;
  7444. u32 vblank;
  7445. u32 vsync;
  7446. } pipe[2];
  7447. struct intel_plane_error_state {
  7448. u32 control;
  7449. u32 stride;
  7450. u32 size;
  7451. u32 pos;
  7452. u32 addr;
  7453. u32 surface;
  7454. u32 tile_offset;
  7455. } plane[2];
  7456. };
  7457. struct intel_display_error_state *
  7458. intel_display_capture_error_state(struct drm_device *dev)
  7459. {
  7460. drm_i915_private_t *dev_priv = dev->dev_private;
  7461. struct intel_display_error_state *error;
  7462. int i;
  7463. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  7464. if (error == NULL)
  7465. return NULL;
  7466. for (i = 0; i < 2; i++) {
  7467. error->cursor[i].control = I915_READ(CURCNTR(i));
  7468. error->cursor[i].position = I915_READ(CURPOS(i));
  7469. error->cursor[i].base = I915_READ(CURBASE(i));
  7470. error->plane[i].control = I915_READ(DSPCNTR(i));
  7471. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  7472. error->plane[i].size = I915_READ(DSPSIZE(i));
  7473. error->plane[i].pos = I915_READ(DSPPOS(i));
  7474. error->plane[i].addr = I915_READ(DSPADDR(i));
  7475. if (INTEL_INFO(dev)->gen >= 4) {
  7476. error->plane[i].surface = I915_READ(DSPSURF(i));
  7477. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  7478. }
  7479. error->pipe[i].conf = I915_READ(PIPECONF(i));
  7480. error->pipe[i].source = I915_READ(PIPESRC(i));
  7481. error->pipe[i].htotal = I915_READ(HTOTAL(i));
  7482. error->pipe[i].hblank = I915_READ(HBLANK(i));
  7483. error->pipe[i].hsync = I915_READ(HSYNC(i));
  7484. error->pipe[i].vtotal = I915_READ(VTOTAL(i));
  7485. error->pipe[i].vblank = I915_READ(VBLANK(i));
  7486. error->pipe[i].vsync = I915_READ(VSYNC(i));
  7487. }
  7488. return error;
  7489. }
  7490. void
  7491. intel_display_print_error_state(struct seq_file *m,
  7492. struct drm_device *dev,
  7493. struct intel_display_error_state *error)
  7494. {
  7495. int i;
  7496. for (i = 0; i < 2; i++) {
  7497. seq_printf(m, "Pipe [%d]:\n", i);
  7498. seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  7499. seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
  7500. seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  7501. seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  7502. seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  7503. seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  7504. seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  7505. seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  7506. seq_printf(m, "Plane [%d]:\n", i);
  7507. seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
  7508. seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  7509. seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
  7510. seq_printf(m, " POS: %08x\n", error->plane[i].pos);
  7511. seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  7512. if (INTEL_INFO(dev)->gen >= 4) {
  7513. seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
  7514. seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  7515. }
  7516. seq_printf(m, "Cursor [%d]:\n", i);
  7517. seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  7518. seq_printf(m, " POS: %08x\n", error->cursor[i].position);
  7519. seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
  7520. }
  7521. }
  7522. #endif