swapfile.c 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035
  1. /*
  2. * linux/mm/swapfile.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. * Swap reorganised 29.12.95, Stephen Tweedie
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/hugetlb.h>
  9. #include <linux/mman.h>
  10. #include <linux/slab.h>
  11. #include <linux/kernel_stat.h>
  12. #include <linux/swap.h>
  13. #include <linux/vmalloc.h>
  14. #include <linux/pagemap.h>
  15. #include <linux/namei.h>
  16. #include <linux/shm.h>
  17. #include <linux/blkdev.h>
  18. #include <linux/random.h>
  19. #include <linux/writeback.h>
  20. #include <linux/proc_fs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/init.h>
  23. #include <linux/module.h>
  24. #include <linux/rmap.h>
  25. #include <linux/security.h>
  26. #include <linux/backing-dev.h>
  27. #include <linux/mutex.h>
  28. #include <linux/capability.h>
  29. #include <linux/syscalls.h>
  30. #include <linux/memcontrol.h>
  31. #include <asm/pgtable.h>
  32. #include <asm/tlbflush.h>
  33. #include <linux/swapops.h>
  34. #include <linux/page_cgroup.h>
  35. static DEFINE_SPINLOCK(swap_lock);
  36. static unsigned int nr_swapfiles;
  37. long nr_swap_pages;
  38. long total_swap_pages;
  39. static int swap_overflow;
  40. static int least_priority;
  41. static const char Bad_file[] = "Bad swap file entry ";
  42. static const char Unused_file[] = "Unused swap file entry ";
  43. static const char Bad_offset[] = "Bad swap offset entry ";
  44. static const char Unused_offset[] = "Unused swap offset entry ";
  45. static struct swap_list_t swap_list = {-1, -1};
  46. static struct swap_info_struct swap_info[MAX_SWAPFILES];
  47. static DEFINE_MUTEX(swapon_mutex);
  48. /*
  49. * We need this because the bdev->unplug_fn can sleep and we cannot
  50. * hold swap_lock while calling the unplug_fn. And swap_lock
  51. * cannot be turned into a mutex.
  52. */
  53. static DECLARE_RWSEM(swap_unplug_sem);
  54. void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
  55. {
  56. swp_entry_t entry;
  57. down_read(&swap_unplug_sem);
  58. entry.val = page_private(page);
  59. if (PageSwapCache(page)) {
  60. struct block_device *bdev = swap_info[swp_type(entry)].bdev;
  61. struct backing_dev_info *bdi;
  62. /*
  63. * If the page is removed from swapcache from under us (with a
  64. * racy try_to_unuse/swapoff) we need an additional reference
  65. * count to avoid reading garbage from page_private(page) above.
  66. * If the WARN_ON triggers during a swapoff it maybe the race
  67. * condition and it's harmless. However if it triggers without
  68. * swapoff it signals a problem.
  69. */
  70. WARN_ON(page_count(page) <= 1);
  71. bdi = bdev->bd_inode->i_mapping->backing_dev_info;
  72. blk_run_backing_dev(bdi, page);
  73. }
  74. up_read(&swap_unplug_sem);
  75. }
  76. /*
  77. * swapon tell device that all the old swap contents can be discarded,
  78. * to allow the swap device to optimize its wear-levelling.
  79. */
  80. static int discard_swap(struct swap_info_struct *si)
  81. {
  82. struct swap_extent *se;
  83. int err = 0;
  84. list_for_each_entry(se, &si->extent_list, list) {
  85. sector_t start_block = se->start_block << (PAGE_SHIFT - 9);
  86. sector_t nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
  87. if (se->start_page == 0) {
  88. /* Do not discard the swap header page! */
  89. start_block += 1 << (PAGE_SHIFT - 9);
  90. nr_blocks -= 1 << (PAGE_SHIFT - 9);
  91. if (!nr_blocks)
  92. continue;
  93. }
  94. err = blkdev_issue_discard(si->bdev, start_block,
  95. nr_blocks, GFP_KERNEL);
  96. if (err)
  97. break;
  98. cond_resched();
  99. }
  100. return err; /* That will often be -EOPNOTSUPP */
  101. }
  102. /*
  103. * swap allocation tell device that a cluster of swap can now be discarded,
  104. * to allow the swap device to optimize its wear-levelling.
  105. */
  106. static void discard_swap_cluster(struct swap_info_struct *si,
  107. pgoff_t start_page, pgoff_t nr_pages)
  108. {
  109. struct swap_extent *se = si->curr_swap_extent;
  110. int found_extent = 0;
  111. while (nr_pages) {
  112. struct list_head *lh;
  113. if (se->start_page <= start_page &&
  114. start_page < se->start_page + se->nr_pages) {
  115. pgoff_t offset = start_page - se->start_page;
  116. sector_t start_block = se->start_block + offset;
  117. sector_t nr_blocks = se->nr_pages - offset;
  118. if (nr_blocks > nr_pages)
  119. nr_blocks = nr_pages;
  120. start_page += nr_blocks;
  121. nr_pages -= nr_blocks;
  122. if (!found_extent++)
  123. si->curr_swap_extent = se;
  124. start_block <<= PAGE_SHIFT - 9;
  125. nr_blocks <<= PAGE_SHIFT - 9;
  126. if (blkdev_issue_discard(si->bdev, start_block,
  127. nr_blocks, GFP_NOIO))
  128. break;
  129. }
  130. lh = se->list.next;
  131. if (lh == &si->extent_list)
  132. lh = lh->next;
  133. se = list_entry(lh, struct swap_extent, list);
  134. }
  135. }
  136. static int wait_for_discard(void *word)
  137. {
  138. schedule();
  139. return 0;
  140. }
  141. #define SWAPFILE_CLUSTER 256
  142. #define LATENCY_LIMIT 256
  143. static inline unsigned long scan_swap_map(struct swap_info_struct *si)
  144. {
  145. unsigned long offset;
  146. unsigned long scan_base;
  147. unsigned long last_in_cluster = 0;
  148. int latency_ration = LATENCY_LIMIT;
  149. int found_free_cluster = 0;
  150. /*
  151. * We try to cluster swap pages by allocating them sequentially
  152. * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
  153. * way, however, we resort to first-free allocation, starting
  154. * a new cluster. This prevents us from scattering swap pages
  155. * all over the entire swap partition, so that we reduce
  156. * overall disk seek times between swap pages. -- sct
  157. * But we do now try to find an empty cluster. -Andrea
  158. * And we let swap pages go all over an SSD partition. Hugh
  159. */
  160. si->flags += SWP_SCANNING;
  161. scan_base = offset = si->cluster_next;
  162. if (unlikely(!si->cluster_nr--)) {
  163. if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
  164. si->cluster_nr = SWAPFILE_CLUSTER - 1;
  165. goto checks;
  166. }
  167. if (si->flags & SWP_DISCARDABLE) {
  168. /*
  169. * Start range check on racing allocations, in case
  170. * they overlap the cluster we eventually decide on
  171. * (we scan without swap_lock to allow preemption).
  172. * It's hardly conceivable that cluster_nr could be
  173. * wrapped during our scan, but don't depend on it.
  174. */
  175. if (si->lowest_alloc)
  176. goto checks;
  177. si->lowest_alloc = si->max;
  178. si->highest_alloc = 0;
  179. }
  180. spin_unlock(&swap_lock);
  181. /*
  182. * If seek is expensive, start searching for new cluster from
  183. * start of partition, to minimize the span of allocated swap.
  184. * But if seek is cheap, search from our current position, so
  185. * that swap is allocated from all over the partition: if the
  186. * Flash Translation Layer only remaps within limited zones,
  187. * we don't want to wear out the first zone too quickly.
  188. */
  189. if (!(si->flags & SWP_SOLIDSTATE))
  190. scan_base = offset = si->lowest_bit;
  191. last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
  192. /* Locate the first empty (unaligned) cluster */
  193. for (; last_in_cluster <= si->highest_bit; offset++) {
  194. if (si->swap_map[offset])
  195. last_in_cluster = offset + SWAPFILE_CLUSTER;
  196. else if (offset == last_in_cluster) {
  197. spin_lock(&swap_lock);
  198. offset -= SWAPFILE_CLUSTER - 1;
  199. si->cluster_next = offset;
  200. si->cluster_nr = SWAPFILE_CLUSTER - 1;
  201. found_free_cluster = 1;
  202. goto checks;
  203. }
  204. if (unlikely(--latency_ration < 0)) {
  205. cond_resched();
  206. latency_ration = LATENCY_LIMIT;
  207. }
  208. }
  209. offset = si->lowest_bit;
  210. last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
  211. /* Locate the first empty (unaligned) cluster */
  212. for (; last_in_cluster < scan_base; offset++) {
  213. if (si->swap_map[offset])
  214. last_in_cluster = offset + SWAPFILE_CLUSTER;
  215. else if (offset == last_in_cluster) {
  216. spin_lock(&swap_lock);
  217. offset -= SWAPFILE_CLUSTER - 1;
  218. si->cluster_next = offset;
  219. si->cluster_nr = SWAPFILE_CLUSTER - 1;
  220. found_free_cluster = 1;
  221. goto checks;
  222. }
  223. if (unlikely(--latency_ration < 0)) {
  224. cond_resched();
  225. latency_ration = LATENCY_LIMIT;
  226. }
  227. }
  228. offset = scan_base;
  229. spin_lock(&swap_lock);
  230. si->cluster_nr = SWAPFILE_CLUSTER - 1;
  231. si->lowest_alloc = 0;
  232. }
  233. checks:
  234. if (!(si->flags & SWP_WRITEOK))
  235. goto no_page;
  236. if (!si->highest_bit)
  237. goto no_page;
  238. if (offset > si->highest_bit)
  239. scan_base = offset = si->lowest_bit;
  240. if (si->swap_map[offset])
  241. goto scan;
  242. if (offset == si->lowest_bit)
  243. si->lowest_bit++;
  244. if (offset == si->highest_bit)
  245. si->highest_bit--;
  246. si->inuse_pages++;
  247. if (si->inuse_pages == si->pages) {
  248. si->lowest_bit = si->max;
  249. si->highest_bit = 0;
  250. }
  251. si->swap_map[offset] = 1;
  252. si->cluster_next = offset + 1;
  253. si->flags -= SWP_SCANNING;
  254. if (si->lowest_alloc) {
  255. /*
  256. * Only set when SWP_DISCARDABLE, and there's a scan
  257. * for a free cluster in progress or just completed.
  258. */
  259. if (found_free_cluster) {
  260. /*
  261. * To optimize wear-levelling, discard the
  262. * old data of the cluster, taking care not to
  263. * discard any of its pages that have already
  264. * been allocated by racing tasks (offset has
  265. * already stepped over any at the beginning).
  266. */
  267. if (offset < si->highest_alloc &&
  268. si->lowest_alloc <= last_in_cluster)
  269. last_in_cluster = si->lowest_alloc - 1;
  270. si->flags |= SWP_DISCARDING;
  271. spin_unlock(&swap_lock);
  272. if (offset < last_in_cluster)
  273. discard_swap_cluster(si, offset,
  274. last_in_cluster - offset + 1);
  275. spin_lock(&swap_lock);
  276. si->lowest_alloc = 0;
  277. si->flags &= ~SWP_DISCARDING;
  278. smp_mb(); /* wake_up_bit advises this */
  279. wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
  280. } else if (si->flags & SWP_DISCARDING) {
  281. /*
  282. * Delay using pages allocated by racing tasks
  283. * until the whole discard has been issued. We
  284. * could defer that delay until swap_writepage,
  285. * but it's easier to keep this self-contained.
  286. */
  287. spin_unlock(&swap_lock);
  288. wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
  289. wait_for_discard, TASK_UNINTERRUPTIBLE);
  290. spin_lock(&swap_lock);
  291. } else {
  292. /*
  293. * Note pages allocated by racing tasks while
  294. * scan for a free cluster is in progress, so
  295. * that its final discard can exclude them.
  296. */
  297. if (offset < si->lowest_alloc)
  298. si->lowest_alloc = offset;
  299. if (offset > si->highest_alloc)
  300. si->highest_alloc = offset;
  301. }
  302. }
  303. return offset;
  304. scan:
  305. spin_unlock(&swap_lock);
  306. while (++offset <= si->highest_bit) {
  307. if (!si->swap_map[offset]) {
  308. spin_lock(&swap_lock);
  309. goto checks;
  310. }
  311. if (unlikely(--latency_ration < 0)) {
  312. cond_resched();
  313. latency_ration = LATENCY_LIMIT;
  314. }
  315. }
  316. offset = si->lowest_bit;
  317. while (++offset < scan_base) {
  318. if (!si->swap_map[offset]) {
  319. spin_lock(&swap_lock);
  320. goto checks;
  321. }
  322. if (unlikely(--latency_ration < 0)) {
  323. cond_resched();
  324. latency_ration = LATENCY_LIMIT;
  325. }
  326. }
  327. spin_lock(&swap_lock);
  328. no_page:
  329. si->flags -= SWP_SCANNING;
  330. return 0;
  331. }
  332. swp_entry_t get_swap_page(void)
  333. {
  334. struct swap_info_struct *si;
  335. pgoff_t offset;
  336. int type, next;
  337. int wrapped = 0;
  338. spin_lock(&swap_lock);
  339. if (nr_swap_pages <= 0)
  340. goto noswap;
  341. nr_swap_pages--;
  342. for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
  343. si = swap_info + type;
  344. next = si->next;
  345. if (next < 0 ||
  346. (!wrapped && si->prio != swap_info[next].prio)) {
  347. next = swap_list.head;
  348. wrapped++;
  349. }
  350. if (!si->highest_bit)
  351. continue;
  352. if (!(si->flags & SWP_WRITEOK))
  353. continue;
  354. swap_list.next = next;
  355. offset = scan_swap_map(si);
  356. if (offset) {
  357. spin_unlock(&swap_lock);
  358. return swp_entry(type, offset);
  359. }
  360. next = swap_list.next;
  361. }
  362. nr_swap_pages++;
  363. noswap:
  364. spin_unlock(&swap_lock);
  365. return (swp_entry_t) {0};
  366. }
  367. swp_entry_t get_swap_page_of_type(int type)
  368. {
  369. struct swap_info_struct *si;
  370. pgoff_t offset;
  371. spin_lock(&swap_lock);
  372. si = swap_info + type;
  373. if (si->flags & SWP_WRITEOK) {
  374. nr_swap_pages--;
  375. offset = scan_swap_map(si);
  376. if (offset) {
  377. spin_unlock(&swap_lock);
  378. return swp_entry(type, offset);
  379. }
  380. nr_swap_pages++;
  381. }
  382. spin_unlock(&swap_lock);
  383. return (swp_entry_t) {0};
  384. }
  385. static struct swap_info_struct * swap_info_get(swp_entry_t entry)
  386. {
  387. struct swap_info_struct * p;
  388. unsigned long offset, type;
  389. if (!entry.val)
  390. goto out;
  391. type = swp_type(entry);
  392. if (type >= nr_swapfiles)
  393. goto bad_nofile;
  394. p = & swap_info[type];
  395. if (!(p->flags & SWP_USED))
  396. goto bad_device;
  397. offset = swp_offset(entry);
  398. if (offset >= p->max)
  399. goto bad_offset;
  400. if (!p->swap_map[offset])
  401. goto bad_free;
  402. spin_lock(&swap_lock);
  403. return p;
  404. bad_free:
  405. printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
  406. goto out;
  407. bad_offset:
  408. printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
  409. goto out;
  410. bad_device:
  411. printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
  412. goto out;
  413. bad_nofile:
  414. printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
  415. out:
  416. return NULL;
  417. }
  418. static int swap_entry_free(struct swap_info_struct *p, swp_entry_t ent)
  419. {
  420. unsigned long offset = swp_offset(ent);
  421. int count = p->swap_map[offset];
  422. if (count < SWAP_MAP_MAX) {
  423. count--;
  424. p->swap_map[offset] = count;
  425. if (!count) {
  426. if (offset < p->lowest_bit)
  427. p->lowest_bit = offset;
  428. if (offset > p->highest_bit)
  429. p->highest_bit = offset;
  430. if (p->prio > swap_info[swap_list.next].prio)
  431. swap_list.next = p - swap_info;
  432. nr_swap_pages++;
  433. p->inuse_pages--;
  434. mem_cgroup_uncharge_swap(ent);
  435. }
  436. }
  437. return count;
  438. }
  439. /*
  440. * Caller has made sure that the swapdevice corresponding to entry
  441. * is still around or has not been recycled.
  442. */
  443. void swap_free(swp_entry_t entry)
  444. {
  445. struct swap_info_struct * p;
  446. p = swap_info_get(entry);
  447. if (p) {
  448. swap_entry_free(p, entry);
  449. spin_unlock(&swap_lock);
  450. }
  451. }
  452. /*
  453. * How many references to page are currently swapped out?
  454. */
  455. static inline int page_swapcount(struct page *page)
  456. {
  457. int count = 0;
  458. struct swap_info_struct *p;
  459. swp_entry_t entry;
  460. entry.val = page_private(page);
  461. p = swap_info_get(entry);
  462. if (p) {
  463. /* Subtract the 1 for the swap cache itself */
  464. count = p->swap_map[swp_offset(entry)] - 1;
  465. spin_unlock(&swap_lock);
  466. }
  467. return count;
  468. }
  469. /*
  470. * We can write to an anon page without COW if there are no other references
  471. * to it. And as a side-effect, free up its swap: because the old content
  472. * on disk will never be read, and seeking back there to write new content
  473. * later would only waste time away from clustering.
  474. */
  475. int reuse_swap_page(struct page *page)
  476. {
  477. int count;
  478. VM_BUG_ON(!PageLocked(page));
  479. count = page_mapcount(page);
  480. if (count <= 1 && PageSwapCache(page)) {
  481. count += page_swapcount(page);
  482. if (count == 1 && !PageWriteback(page)) {
  483. delete_from_swap_cache(page);
  484. SetPageDirty(page);
  485. }
  486. }
  487. return count == 1;
  488. }
  489. /*
  490. * If swap is getting full, or if there are no more mappings of this page,
  491. * then try_to_free_swap is called to free its swap space.
  492. */
  493. int try_to_free_swap(struct page *page)
  494. {
  495. VM_BUG_ON(!PageLocked(page));
  496. if (!PageSwapCache(page))
  497. return 0;
  498. if (PageWriteback(page))
  499. return 0;
  500. if (page_swapcount(page))
  501. return 0;
  502. delete_from_swap_cache(page);
  503. SetPageDirty(page);
  504. return 1;
  505. }
  506. /*
  507. * Free the swap entry like above, but also try to
  508. * free the page cache entry if it is the last user.
  509. */
  510. int free_swap_and_cache(swp_entry_t entry)
  511. {
  512. struct swap_info_struct *p;
  513. struct page *page = NULL;
  514. if (is_migration_entry(entry))
  515. return 1;
  516. p = swap_info_get(entry);
  517. if (p) {
  518. if (swap_entry_free(p, entry) == 1) {
  519. page = find_get_page(&swapper_space, entry.val);
  520. if (page && !trylock_page(page)) {
  521. page_cache_release(page);
  522. page = NULL;
  523. }
  524. }
  525. spin_unlock(&swap_lock);
  526. }
  527. if (page) {
  528. /*
  529. * Not mapped elsewhere, or swap space full? Free it!
  530. * Also recheck PageSwapCache now page is locked (above).
  531. */
  532. if (PageSwapCache(page) && !PageWriteback(page) &&
  533. (!page_mapped(page) || vm_swap_full())) {
  534. delete_from_swap_cache(page);
  535. SetPageDirty(page);
  536. }
  537. unlock_page(page);
  538. page_cache_release(page);
  539. }
  540. return p != NULL;
  541. }
  542. #ifdef CONFIG_HIBERNATION
  543. /*
  544. * Find the swap type that corresponds to given device (if any).
  545. *
  546. * @offset - number of the PAGE_SIZE-sized block of the device, starting
  547. * from 0, in which the swap header is expected to be located.
  548. *
  549. * This is needed for the suspend to disk (aka swsusp).
  550. */
  551. int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
  552. {
  553. struct block_device *bdev = NULL;
  554. int i;
  555. if (device)
  556. bdev = bdget(device);
  557. spin_lock(&swap_lock);
  558. for (i = 0; i < nr_swapfiles; i++) {
  559. struct swap_info_struct *sis = swap_info + i;
  560. if (!(sis->flags & SWP_WRITEOK))
  561. continue;
  562. if (!bdev) {
  563. if (bdev_p)
  564. *bdev_p = sis->bdev;
  565. spin_unlock(&swap_lock);
  566. return i;
  567. }
  568. if (bdev == sis->bdev) {
  569. struct swap_extent *se;
  570. se = list_entry(sis->extent_list.next,
  571. struct swap_extent, list);
  572. if (se->start_block == offset) {
  573. if (bdev_p)
  574. *bdev_p = sis->bdev;
  575. spin_unlock(&swap_lock);
  576. bdput(bdev);
  577. return i;
  578. }
  579. }
  580. }
  581. spin_unlock(&swap_lock);
  582. if (bdev)
  583. bdput(bdev);
  584. return -ENODEV;
  585. }
  586. /*
  587. * Return either the total number of swap pages of given type, or the number
  588. * of free pages of that type (depending on @free)
  589. *
  590. * This is needed for software suspend
  591. */
  592. unsigned int count_swap_pages(int type, int free)
  593. {
  594. unsigned int n = 0;
  595. if (type < nr_swapfiles) {
  596. spin_lock(&swap_lock);
  597. if (swap_info[type].flags & SWP_WRITEOK) {
  598. n = swap_info[type].pages;
  599. if (free)
  600. n -= swap_info[type].inuse_pages;
  601. }
  602. spin_unlock(&swap_lock);
  603. }
  604. return n;
  605. }
  606. #endif
  607. /*
  608. * No need to decide whether this PTE shares the swap entry with others,
  609. * just let do_wp_page work it out if a write is requested later - to
  610. * force COW, vm_page_prot omits write permission from any private vma.
  611. */
  612. static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
  613. unsigned long addr, swp_entry_t entry, struct page *page)
  614. {
  615. struct mem_cgroup *ptr = NULL;
  616. spinlock_t *ptl;
  617. pte_t *pte;
  618. int ret = 1;
  619. if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr))
  620. ret = -ENOMEM;
  621. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  622. if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
  623. if (ret > 0)
  624. mem_cgroup_cancel_charge_swapin(ptr);
  625. ret = 0;
  626. goto out;
  627. }
  628. inc_mm_counter(vma->vm_mm, anon_rss);
  629. get_page(page);
  630. set_pte_at(vma->vm_mm, addr, pte,
  631. pte_mkold(mk_pte(page, vma->vm_page_prot)));
  632. page_add_anon_rmap(page, vma, addr);
  633. mem_cgroup_commit_charge_swapin(page, ptr);
  634. swap_free(entry);
  635. /*
  636. * Move the page to the active list so it is not
  637. * immediately swapped out again after swapon.
  638. */
  639. activate_page(page);
  640. out:
  641. pte_unmap_unlock(pte, ptl);
  642. return ret;
  643. }
  644. static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
  645. unsigned long addr, unsigned long end,
  646. swp_entry_t entry, struct page *page)
  647. {
  648. pte_t swp_pte = swp_entry_to_pte(entry);
  649. pte_t *pte;
  650. int ret = 0;
  651. /*
  652. * We don't actually need pte lock while scanning for swp_pte: since
  653. * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
  654. * page table while we're scanning; though it could get zapped, and on
  655. * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
  656. * of unmatched parts which look like swp_pte, so unuse_pte must
  657. * recheck under pte lock. Scanning without pte lock lets it be
  658. * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
  659. */
  660. pte = pte_offset_map(pmd, addr);
  661. do {
  662. /*
  663. * swapoff spends a _lot_ of time in this loop!
  664. * Test inline before going to call unuse_pte.
  665. */
  666. if (unlikely(pte_same(*pte, swp_pte))) {
  667. pte_unmap(pte);
  668. ret = unuse_pte(vma, pmd, addr, entry, page);
  669. if (ret)
  670. goto out;
  671. pte = pte_offset_map(pmd, addr);
  672. }
  673. } while (pte++, addr += PAGE_SIZE, addr != end);
  674. pte_unmap(pte - 1);
  675. out:
  676. return ret;
  677. }
  678. static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
  679. unsigned long addr, unsigned long end,
  680. swp_entry_t entry, struct page *page)
  681. {
  682. pmd_t *pmd;
  683. unsigned long next;
  684. int ret;
  685. pmd = pmd_offset(pud, addr);
  686. do {
  687. next = pmd_addr_end(addr, end);
  688. if (pmd_none_or_clear_bad(pmd))
  689. continue;
  690. ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
  691. if (ret)
  692. return ret;
  693. } while (pmd++, addr = next, addr != end);
  694. return 0;
  695. }
  696. static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
  697. unsigned long addr, unsigned long end,
  698. swp_entry_t entry, struct page *page)
  699. {
  700. pud_t *pud;
  701. unsigned long next;
  702. int ret;
  703. pud = pud_offset(pgd, addr);
  704. do {
  705. next = pud_addr_end(addr, end);
  706. if (pud_none_or_clear_bad(pud))
  707. continue;
  708. ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
  709. if (ret)
  710. return ret;
  711. } while (pud++, addr = next, addr != end);
  712. return 0;
  713. }
  714. static int unuse_vma(struct vm_area_struct *vma,
  715. swp_entry_t entry, struct page *page)
  716. {
  717. pgd_t *pgd;
  718. unsigned long addr, end, next;
  719. int ret;
  720. if (page->mapping) {
  721. addr = page_address_in_vma(page, vma);
  722. if (addr == -EFAULT)
  723. return 0;
  724. else
  725. end = addr + PAGE_SIZE;
  726. } else {
  727. addr = vma->vm_start;
  728. end = vma->vm_end;
  729. }
  730. pgd = pgd_offset(vma->vm_mm, addr);
  731. do {
  732. next = pgd_addr_end(addr, end);
  733. if (pgd_none_or_clear_bad(pgd))
  734. continue;
  735. ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
  736. if (ret)
  737. return ret;
  738. } while (pgd++, addr = next, addr != end);
  739. return 0;
  740. }
  741. static int unuse_mm(struct mm_struct *mm,
  742. swp_entry_t entry, struct page *page)
  743. {
  744. struct vm_area_struct *vma;
  745. int ret = 0;
  746. if (!down_read_trylock(&mm->mmap_sem)) {
  747. /*
  748. * Activate page so shrink_inactive_list is unlikely to unmap
  749. * its ptes while lock is dropped, so swapoff can make progress.
  750. */
  751. activate_page(page);
  752. unlock_page(page);
  753. down_read(&mm->mmap_sem);
  754. lock_page(page);
  755. }
  756. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  757. if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
  758. break;
  759. }
  760. up_read(&mm->mmap_sem);
  761. return (ret < 0)? ret: 0;
  762. }
  763. /*
  764. * Scan swap_map from current position to next entry still in use.
  765. * Recycle to start on reaching the end, returning 0 when empty.
  766. */
  767. static unsigned int find_next_to_unuse(struct swap_info_struct *si,
  768. unsigned int prev)
  769. {
  770. unsigned int max = si->max;
  771. unsigned int i = prev;
  772. int count;
  773. /*
  774. * No need for swap_lock here: we're just looking
  775. * for whether an entry is in use, not modifying it; false
  776. * hits are okay, and sys_swapoff() has already prevented new
  777. * allocations from this area (while holding swap_lock).
  778. */
  779. for (;;) {
  780. if (++i >= max) {
  781. if (!prev) {
  782. i = 0;
  783. break;
  784. }
  785. /*
  786. * No entries in use at top of swap_map,
  787. * loop back to start and recheck there.
  788. */
  789. max = prev + 1;
  790. prev = 0;
  791. i = 1;
  792. }
  793. count = si->swap_map[i];
  794. if (count && count != SWAP_MAP_BAD)
  795. break;
  796. }
  797. return i;
  798. }
  799. /*
  800. * We completely avoid races by reading each swap page in advance,
  801. * and then search for the process using it. All the necessary
  802. * page table adjustments can then be made atomically.
  803. */
  804. static int try_to_unuse(unsigned int type)
  805. {
  806. struct swap_info_struct * si = &swap_info[type];
  807. struct mm_struct *start_mm;
  808. unsigned short *swap_map;
  809. unsigned short swcount;
  810. struct page *page;
  811. swp_entry_t entry;
  812. unsigned int i = 0;
  813. int retval = 0;
  814. int reset_overflow = 0;
  815. int shmem;
  816. /*
  817. * When searching mms for an entry, a good strategy is to
  818. * start at the first mm we freed the previous entry from
  819. * (though actually we don't notice whether we or coincidence
  820. * freed the entry). Initialize this start_mm with a hold.
  821. *
  822. * A simpler strategy would be to start at the last mm we
  823. * freed the previous entry from; but that would take less
  824. * advantage of mmlist ordering, which clusters forked mms
  825. * together, child after parent. If we race with dup_mmap(), we
  826. * prefer to resolve parent before child, lest we miss entries
  827. * duplicated after we scanned child: using last mm would invert
  828. * that. Though it's only a serious concern when an overflowed
  829. * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
  830. */
  831. start_mm = &init_mm;
  832. atomic_inc(&init_mm.mm_users);
  833. /*
  834. * Keep on scanning until all entries have gone. Usually,
  835. * one pass through swap_map is enough, but not necessarily:
  836. * there are races when an instance of an entry might be missed.
  837. */
  838. while ((i = find_next_to_unuse(si, i)) != 0) {
  839. if (signal_pending(current)) {
  840. retval = -EINTR;
  841. break;
  842. }
  843. /*
  844. * Get a page for the entry, using the existing swap
  845. * cache page if there is one. Otherwise, get a clean
  846. * page and read the swap into it.
  847. */
  848. swap_map = &si->swap_map[i];
  849. entry = swp_entry(type, i);
  850. page = read_swap_cache_async(entry,
  851. GFP_HIGHUSER_MOVABLE, NULL, 0);
  852. if (!page) {
  853. /*
  854. * Either swap_duplicate() failed because entry
  855. * has been freed independently, and will not be
  856. * reused since sys_swapoff() already disabled
  857. * allocation from here, or alloc_page() failed.
  858. */
  859. if (!*swap_map)
  860. continue;
  861. retval = -ENOMEM;
  862. break;
  863. }
  864. /*
  865. * Don't hold on to start_mm if it looks like exiting.
  866. */
  867. if (atomic_read(&start_mm->mm_users) == 1) {
  868. mmput(start_mm);
  869. start_mm = &init_mm;
  870. atomic_inc(&init_mm.mm_users);
  871. }
  872. /*
  873. * Wait for and lock page. When do_swap_page races with
  874. * try_to_unuse, do_swap_page can handle the fault much
  875. * faster than try_to_unuse can locate the entry. This
  876. * apparently redundant "wait_on_page_locked" lets try_to_unuse
  877. * defer to do_swap_page in such a case - in some tests,
  878. * do_swap_page and try_to_unuse repeatedly compete.
  879. */
  880. wait_on_page_locked(page);
  881. wait_on_page_writeback(page);
  882. lock_page(page);
  883. wait_on_page_writeback(page);
  884. /*
  885. * Remove all references to entry.
  886. * Whenever we reach init_mm, there's no address space
  887. * to search, but use it as a reminder to search shmem.
  888. */
  889. shmem = 0;
  890. swcount = *swap_map;
  891. if (swcount > 1) {
  892. if (start_mm == &init_mm)
  893. shmem = shmem_unuse(entry, page);
  894. else
  895. retval = unuse_mm(start_mm, entry, page);
  896. }
  897. if (*swap_map > 1) {
  898. int set_start_mm = (*swap_map >= swcount);
  899. struct list_head *p = &start_mm->mmlist;
  900. struct mm_struct *new_start_mm = start_mm;
  901. struct mm_struct *prev_mm = start_mm;
  902. struct mm_struct *mm;
  903. atomic_inc(&new_start_mm->mm_users);
  904. atomic_inc(&prev_mm->mm_users);
  905. spin_lock(&mmlist_lock);
  906. while (*swap_map > 1 && !retval && !shmem &&
  907. (p = p->next) != &start_mm->mmlist) {
  908. mm = list_entry(p, struct mm_struct, mmlist);
  909. if (!atomic_inc_not_zero(&mm->mm_users))
  910. continue;
  911. spin_unlock(&mmlist_lock);
  912. mmput(prev_mm);
  913. prev_mm = mm;
  914. cond_resched();
  915. swcount = *swap_map;
  916. if (swcount <= 1)
  917. ;
  918. else if (mm == &init_mm) {
  919. set_start_mm = 1;
  920. shmem = shmem_unuse(entry, page);
  921. } else
  922. retval = unuse_mm(mm, entry, page);
  923. if (set_start_mm && *swap_map < swcount) {
  924. mmput(new_start_mm);
  925. atomic_inc(&mm->mm_users);
  926. new_start_mm = mm;
  927. set_start_mm = 0;
  928. }
  929. spin_lock(&mmlist_lock);
  930. }
  931. spin_unlock(&mmlist_lock);
  932. mmput(prev_mm);
  933. mmput(start_mm);
  934. start_mm = new_start_mm;
  935. }
  936. if (shmem) {
  937. /* page has already been unlocked and released */
  938. if (shmem > 0)
  939. continue;
  940. retval = shmem;
  941. break;
  942. }
  943. if (retval) {
  944. unlock_page(page);
  945. page_cache_release(page);
  946. break;
  947. }
  948. /*
  949. * How could swap count reach 0x7fff when the maximum
  950. * pid is 0x7fff, and there's no way to repeat a swap
  951. * page within an mm (except in shmem, where it's the
  952. * shared object which takes the reference count)?
  953. * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
  954. *
  955. * If that's wrong, then we should worry more about
  956. * exit_mmap() and do_munmap() cases described above:
  957. * we might be resetting SWAP_MAP_MAX too early here.
  958. * We know "Undead"s can happen, they're okay, so don't
  959. * report them; but do report if we reset SWAP_MAP_MAX.
  960. */
  961. if (*swap_map == SWAP_MAP_MAX) {
  962. spin_lock(&swap_lock);
  963. *swap_map = 1;
  964. spin_unlock(&swap_lock);
  965. reset_overflow = 1;
  966. }
  967. /*
  968. * If a reference remains (rare), we would like to leave
  969. * the page in the swap cache; but try_to_unmap could
  970. * then re-duplicate the entry once we drop page lock,
  971. * so we might loop indefinitely; also, that page could
  972. * not be swapped out to other storage meanwhile. So:
  973. * delete from cache even if there's another reference,
  974. * after ensuring that the data has been saved to disk -
  975. * since if the reference remains (rarer), it will be
  976. * read from disk into another page. Splitting into two
  977. * pages would be incorrect if swap supported "shared
  978. * private" pages, but they are handled by tmpfs files.
  979. */
  980. if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
  981. struct writeback_control wbc = {
  982. .sync_mode = WB_SYNC_NONE,
  983. };
  984. swap_writepage(page, &wbc);
  985. lock_page(page);
  986. wait_on_page_writeback(page);
  987. }
  988. /*
  989. * It is conceivable that a racing task removed this page from
  990. * swap cache just before we acquired the page lock at the top,
  991. * or while we dropped it in unuse_mm(). The page might even
  992. * be back in swap cache on another swap area: that we must not
  993. * delete, since it may not have been written out to swap yet.
  994. */
  995. if (PageSwapCache(page) &&
  996. likely(page_private(page) == entry.val))
  997. delete_from_swap_cache(page);
  998. /*
  999. * So we could skip searching mms once swap count went
  1000. * to 1, we did not mark any present ptes as dirty: must
  1001. * mark page dirty so shrink_page_list will preserve it.
  1002. */
  1003. SetPageDirty(page);
  1004. unlock_page(page);
  1005. page_cache_release(page);
  1006. /*
  1007. * Make sure that we aren't completely killing
  1008. * interactive performance.
  1009. */
  1010. cond_resched();
  1011. }
  1012. mmput(start_mm);
  1013. if (reset_overflow) {
  1014. printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
  1015. swap_overflow = 0;
  1016. }
  1017. return retval;
  1018. }
  1019. /*
  1020. * After a successful try_to_unuse, if no swap is now in use, we know
  1021. * we can empty the mmlist. swap_lock must be held on entry and exit.
  1022. * Note that mmlist_lock nests inside swap_lock, and an mm must be
  1023. * added to the mmlist just after page_duplicate - before would be racy.
  1024. */
  1025. static void drain_mmlist(void)
  1026. {
  1027. struct list_head *p, *next;
  1028. unsigned int i;
  1029. for (i = 0; i < nr_swapfiles; i++)
  1030. if (swap_info[i].inuse_pages)
  1031. return;
  1032. spin_lock(&mmlist_lock);
  1033. list_for_each_safe(p, next, &init_mm.mmlist)
  1034. list_del_init(p);
  1035. spin_unlock(&mmlist_lock);
  1036. }
  1037. /*
  1038. * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
  1039. * corresponds to page offset `offset'.
  1040. */
  1041. sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
  1042. {
  1043. struct swap_extent *se = sis->curr_swap_extent;
  1044. struct swap_extent *start_se = se;
  1045. for ( ; ; ) {
  1046. struct list_head *lh;
  1047. if (se->start_page <= offset &&
  1048. offset < (se->start_page + se->nr_pages)) {
  1049. return se->start_block + (offset - se->start_page);
  1050. }
  1051. lh = se->list.next;
  1052. if (lh == &sis->extent_list)
  1053. lh = lh->next;
  1054. se = list_entry(lh, struct swap_extent, list);
  1055. sis->curr_swap_extent = se;
  1056. BUG_ON(se == start_se); /* It *must* be present */
  1057. }
  1058. }
  1059. #ifdef CONFIG_HIBERNATION
  1060. /*
  1061. * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
  1062. * corresponding to given index in swap_info (swap type).
  1063. */
  1064. sector_t swapdev_block(int swap_type, pgoff_t offset)
  1065. {
  1066. struct swap_info_struct *sis;
  1067. if (swap_type >= nr_swapfiles)
  1068. return 0;
  1069. sis = swap_info + swap_type;
  1070. return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
  1071. }
  1072. #endif /* CONFIG_HIBERNATION */
  1073. /*
  1074. * Free all of a swapdev's extent information
  1075. */
  1076. static void destroy_swap_extents(struct swap_info_struct *sis)
  1077. {
  1078. while (!list_empty(&sis->extent_list)) {
  1079. struct swap_extent *se;
  1080. se = list_entry(sis->extent_list.next,
  1081. struct swap_extent, list);
  1082. list_del(&se->list);
  1083. kfree(se);
  1084. }
  1085. }
  1086. /*
  1087. * Add a block range (and the corresponding page range) into this swapdev's
  1088. * extent list. The extent list is kept sorted in page order.
  1089. *
  1090. * This function rather assumes that it is called in ascending page order.
  1091. */
  1092. static int
  1093. add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
  1094. unsigned long nr_pages, sector_t start_block)
  1095. {
  1096. struct swap_extent *se;
  1097. struct swap_extent *new_se;
  1098. struct list_head *lh;
  1099. lh = sis->extent_list.prev; /* The highest page extent */
  1100. if (lh != &sis->extent_list) {
  1101. se = list_entry(lh, struct swap_extent, list);
  1102. BUG_ON(se->start_page + se->nr_pages != start_page);
  1103. if (se->start_block + se->nr_pages == start_block) {
  1104. /* Merge it */
  1105. se->nr_pages += nr_pages;
  1106. return 0;
  1107. }
  1108. }
  1109. /*
  1110. * No merge. Insert a new extent, preserving ordering.
  1111. */
  1112. new_se = kmalloc(sizeof(*se), GFP_KERNEL);
  1113. if (new_se == NULL)
  1114. return -ENOMEM;
  1115. new_se->start_page = start_page;
  1116. new_se->nr_pages = nr_pages;
  1117. new_se->start_block = start_block;
  1118. list_add_tail(&new_se->list, &sis->extent_list);
  1119. return 1;
  1120. }
  1121. /*
  1122. * A `swap extent' is a simple thing which maps a contiguous range of pages
  1123. * onto a contiguous range of disk blocks. An ordered list of swap extents
  1124. * is built at swapon time and is then used at swap_writepage/swap_readpage
  1125. * time for locating where on disk a page belongs.
  1126. *
  1127. * If the swapfile is an S_ISBLK block device, a single extent is installed.
  1128. * This is done so that the main operating code can treat S_ISBLK and S_ISREG
  1129. * swap files identically.
  1130. *
  1131. * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
  1132. * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
  1133. * swapfiles are handled *identically* after swapon time.
  1134. *
  1135. * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
  1136. * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
  1137. * some stray blocks are found which do not fall within the PAGE_SIZE alignment
  1138. * requirements, they are simply tossed out - we will never use those blocks
  1139. * for swapping.
  1140. *
  1141. * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
  1142. * prevents root from shooting her foot off by ftruncating an in-use swapfile,
  1143. * which will scribble on the fs.
  1144. *
  1145. * The amount of disk space which a single swap extent represents varies.
  1146. * Typically it is in the 1-4 megabyte range. So we can have hundreds of
  1147. * extents in the list. To avoid much list walking, we cache the previous
  1148. * search location in `curr_swap_extent', and start new searches from there.
  1149. * This is extremely effective. The average number of iterations in
  1150. * map_swap_page() has been measured at about 0.3 per page. - akpm.
  1151. */
  1152. static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
  1153. {
  1154. struct inode *inode;
  1155. unsigned blocks_per_page;
  1156. unsigned long page_no;
  1157. unsigned blkbits;
  1158. sector_t probe_block;
  1159. sector_t last_block;
  1160. sector_t lowest_block = -1;
  1161. sector_t highest_block = 0;
  1162. int nr_extents = 0;
  1163. int ret;
  1164. inode = sis->swap_file->f_mapping->host;
  1165. if (S_ISBLK(inode->i_mode)) {
  1166. ret = add_swap_extent(sis, 0, sis->max, 0);
  1167. *span = sis->pages;
  1168. goto done;
  1169. }
  1170. blkbits = inode->i_blkbits;
  1171. blocks_per_page = PAGE_SIZE >> blkbits;
  1172. /*
  1173. * Map all the blocks into the extent list. This code doesn't try
  1174. * to be very smart.
  1175. */
  1176. probe_block = 0;
  1177. page_no = 0;
  1178. last_block = i_size_read(inode) >> blkbits;
  1179. while ((probe_block + blocks_per_page) <= last_block &&
  1180. page_no < sis->max) {
  1181. unsigned block_in_page;
  1182. sector_t first_block;
  1183. first_block = bmap(inode, probe_block);
  1184. if (first_block == 0)
  1185. goto bad_bmap;
  1186. /*
  1187. * It must be PAGE_SIZE aligned on-disk
  1188. */
  1189. if (first_block & (blocks_per_page - 1)) {
  1190. probe_block++;
  1191. goto reprobe;
  1192. }
  1193. for (block_in_page = 1; block_in_page < blocks_per_page;
  1194. block_in_page++) {
  1195. sector_t block;
  1196. block = bmap(inode, probe_block + block_in_page);
  1197. if (block == 0)
  1198. goto bad_bmap;
  1199. if (block != first_block + block_in_page) {
  1200. /* Discontiguity */
  1201. probe_block++;
  1202. goto reprobe;
  1203. }
  1204. }
  1205. first_block >>= (PAGE_SHIFT - blkbits);
  1206. if (page_no) { /* exclude the header page */
  1207. if (first_block < lowest_block)
  1208. lowest_block = first_block;
  1209. if (first_block > highest_block)
  1210. highest_block = first_block;
  1211. }
  1212. /*
  1213. * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
  1214. */
  1215. ret = add_swap_extent(sis, page_no, 1, first_block);
  1216. if (ret < 0)
  1217. goto out;
  1218. nr_extents += ret;
  1219. page_no++;
  1220. probe_block += blocks_per_page;
  1221. reprobe:
  1222. continue;
  1223. }
  1224. ret = nr_extents;
  1225. *span = 1 + highest_block - lowest_block;
  1226. if (page_no == 0)
  1227. page_no = 1; /* force Empty message */
  1228. sis->max = page_no;
  1229. sis->pages = page_no - 1;
  1230. sis->highest_bit = page_no - 1;
  1231. done:
  1232. sis->curr_swap_extent = list_entry(sis->extent_list.prev,
  1233. struct swap_extent, list);
  1234. goto out;
  1235. bad_bmap:
  1236. printk(KERN_ERR "swapon: swapfile has holes\n");
  1237. ret = -EINVAL;
  1238. out:
  1239. return ret;
  1240. }
  1241. SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
  1242. {
  1243. struct swap_info_struct * p = NULL;
  1244. unsigned short *swap_map;
  1245. struct file *swap_file, *victim;
  1246. struct address_space *mapping;
  1247. struct inode *inode;
  1248. char * pathname;
  1249. int i, type, prev;
  1250. int err;
  1251. if (!capable(CAP_SYS_ADMIN))
  1252. return -EPERM;
  1253. pathname = getname(specialfile);
  1254. err = PTR_ERR(pathname);
  1255. if (IS_ERR(pathname))
  1256. goto out;
  1257. victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
  1258. putname(pathname);
  1259. err = PTR_ERR(victim);
  1260. if (IS_ERR(victim))
  1261. goto out;
  1262. mapping = victim->f_mapping;
  1263. prev = -1;
  1264. spin_lock(&swap_lock);
  1265. for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
  1266. p = swap_info + type;
  1267. if (p->flags & SWP_WRITEOK) {
  1268. if (p->swap_file->f_mapping == mapping)
  1269. break;
  1270. }
  1271. prev = type;
  1272. }
  1273. if (type < 0) {
  1274. err = -EINVAL;
  1275. spin_unlock(&swap_lock);
  1276. goto out_dput;
  1277. }
  1278. if (!security_vm_enough_memory(p->pages))
  1279. vm_unacct_memory(p->pages);
  1280. else {
  1281. err = -ENOMEM;
  1282. spin_unlock(&swap_lock);
  1283. goto out_dput;
  1284. }
  1285. if (prev < 0) {
  1286. swap_list.head = p->next;
  1287. } else {
  1288. swap_info[prev].next = p->next;
  1289. }
  1290. if (type == swap_list.next) {
  1291. /* just pick something that's safe... */
  1292. swap_list.next = swap_list.head;
  1293. }
  1294. if (p->prio < 0) {
  1295. for (i = p->next; i >= 0; i = swap_info[i].next)
  1296. swap_info[i].prio = p->prio--;
  1297. least_priority++;
  1298. }
  1299. nr_swap_pages -= p->pages;
  1300. total_swap_pages -= p->pages;
  1301. p->flags &= ~SWP_WRITEOK;
  1302. spin_unlock(&swap_lock);
  1303. current->flags |= PF_SWAPOFF;
  1304. err = try_to_unuse(type);
  1305. current->flags &= ~PF_SWAPOFF;
  1306. if (err) {
  1307. /* re-insert swap space back into swap_list */
  1308. spin_lock(&swap_lock);
  1309. if (p->prio < 0)
  1310. p->prio = --least_priority;
  1311. prev = -1;
  1312. for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
  1313. if (p->prio >= swap_info[i].prio)
  1314. break;
  1315. prev = i;
  1316. }
  1317. p->next = i;
  1318. if (prev < 0)
  1319. swap_list.head = swap_list.next = p - swap_info;
  1320. else
  1321. swap_info[prev].next = p - swap_info;
  1322. nr_swap_pages += p->pages;
  1323. total_swap_pages += p->pages;
  1324. p->flags |= SWP_WRITEOK;
  1325. spin_unlock(&swap_lock);
  1326. goto out_dput;
  1327. }
  1328. /* wait for any unplug function to finish */
  1329. down_write(&swap_unplug_sem);
  1330. up_write(&swap_unplug_sem);
  1331. destroy_swap_extents(p);
  1332. mutex_lock(&swapon_mutex);
  1333. spin_lock(&swap_lock);
  1334. drain_mmlist();
  1335. /* wait for anyone still in scan_swap_map */
  1336. p->highest_bit = 0; /* cuts scans short */
  1337. while (p->flags >= SWP_SCANNING) {
  1338. spin_unlock(&swap_lock);
  1339. schedule_timeout_uninterruptible(1);
  1340. spin_lock(&swap_lock);
  1341. }
  1342. swap_file = p->swap_file;
  1343. p->swap_file = NULL;
  1344. p->max = 0;
  1345. swap_map = p->swap_map;
  1346. p->swap_map = NULL;
  1347. p->flags = 0;
  1348. spin_unlock(&swap_lock);
  1349. mutex_unlock(&swapon_mutex);
  1350. vfree(swap_map);
  1351. /* Destroy swap account informatin */
  1352. swap_cgroup_swapoff(type);
  1353. inode = mapping->host;
  1354. if (S_ISBLK(inode->i_mode)) {
  1355. struct block_device *bdev = I_BDEV(inode);
  1356. set_blocksize(bdev, p->old_block_size);
  1357. bd_release(bdev);
  1358. } else {
  1359. mutex_lock(&inode->i_mutex);
  1360. inode->i_flags &= ~S_SWAPFILE;
  1361. mutex_unlock(&inode->i_mutex);
  1362. }
  1363. filp_close(swap_file, NULL);
  1364. err = 0;
  1365. out_dput:
  1366. filp_close(victim, NULL);
  1367. out:
  1368. return err;
  1369. }
  1370. #ifdef CONFIG_PROC_FS
  1371. /* iterator */
  1372. static void *swap_start(struct seq_file *swap, loff_t *pos)
  1373. {
  1374. struct swap_info_struct *ptr = swap_info;
  1375. int i;
  1376. loff_t l = *pos;
  1377. mutex_lock(&swapon_mutex);
  1378. if (!l)
  1379. return SEQ_START_TOKEN;
  1380. for (i = 0; i < nr_swapfiles; i++, ptr++) {
  1381. if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
  1382. continue;
  1383. if (!--l)
  1384. return ptr;
  1385. }
  1386. return NULL;
  1387. }
  1388. static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
  1389. {
  1390. struct swap_info_struct *ptr;
  1391. struct swap_info_struct *endptr = swap_info + nr_swapfiles;
  1392. if (v == SEQ_START_TOKEN)
  1393. ptr = swap_info;
  1394. else {
  1395. ptr = v;
  1396. ptr++;
  1397. }
  1398. for (; ptr < endptr; ptr++) {
  1399. if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
  1400. continue;
  1401. ++*pos;
  1402. return ptr;
  1403. }
  1404. return NULL;
  1405. }
  1406. static void swap_stop(struct seq_file *swap, void *v)
  1407. {
  1408. mutex_unlock(&swapon_mutex);
  1409. }
  1410. static int swap_show(struct seq_file *swap, void *v)
  1411. {
  1412. struct swap_info_struct *ptr = v;
  1413. struct file *file;
  1414. int len;
  1415. if (ptr == SEQ_START_TOKEN) {
  1416. seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
  1417. return 0;
  1418. }
  1419. file = ptr->swap_file;
  1420. len = seq_path(swap, &file->f_path, " \t\n\\");
  1421. seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
  1422. len < 40 ? 40 - len : 1, " ",
  1423. S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
  1424. "partition" : "file\t",
  1425. ptr->pages << (PAGE_SHIFT - 10),
  1426. ptr->inuse_pages << (PAGE_SHIFT - 10),
  1427. ptr->prio);
  1428. return 0;
  1429. }
  1430. static const struct seq_operations swaps_op = {
  1431. .start = swap_start,
  1432. .next = swap_next,
  1433. .stop = swap_stop,
  1434. .show = swap_show
  1435. };
  1436. static int swaps_open(struct inode *inode, struct file *file)
  1437. {
  1438. return seq_open(file, &swaps_op);
  1439. }
  1440. static const struct file_operations proc_swaps_operations = {
  1441. .open = swaps_open,
  1442. .read = seq_read,
  1443. .llseek = seq_lseek,
  1444. .release = seq_release,
  1445. };
  1446. static int __init procswaps_init(void)
  1447. {
  1448. proc_create("swaps", 0, NULL, &proc_swaps_operations);
  1449. return 0;
  1450. }
  1451. __initcall(procswaps_init);
  1452. #endif /* CONFIG_PROC_FS */
  1453. #ifdef MAX_SWAPFILES_CHECK
  1454. static int __init max_swapfiles_check(void)
  1455. {
  1456. MAX_SWAPFILES_CHECK();
  1457. return 0;
  1458. }
  1459. late_initcall(max_swapfiles_check);
  1460. #endif
  1461. /*
  1462. * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
  1463. *
  1464. * The swapon system call
  1465. */
  1466. SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
  1467. {
  1468. struct swap_info_struct * p;
  1469. char *name = NULL;
  1470. struct block_device *bdev = NULL;
  1471. struct file *swap_file = NULL;
  1472. struct address_space *mapping;
  1473. unsigned int type;
  1474. int i, prev;
  1475. int error;
  1476. union swap_header *swap_header = NULL;
  1477. unsigned int nr_good_pages = 0;
  1478. int nr_extents = 0;
  1479. sector_t span;
  1480. unsigned long maxpages = 1;
  1481. unsigned long swapfilepages;
  1482. unsigned short *swap_map = NULL;
  1483. struct page *page = NULL;
  1484. struct inode *inode = NULL;
  1485. int did_down = 0;
  1486. if (!capable(CAP_SYS_ADMIN))
  1487. return -EPERM;
  1488. spin_lock(&swap_lock);
  1489. p = swap_info;
  1490. for (type = 0 ; type < nr_swapfiles ; type++,p++)
  1491. if (!(p->flags & SWP_USED))
  1492. break;
  1493. error = -EPERM;
  1494. if (type >= MAX_SWAPFILES) {
  1495. spin_unlock(&swap_lock);
  1496. goto out;
  1497. }
  1498. if (type >= nr_swapfiles)
  1499. nr_swapfiles = type+1;
  1500. memset(p, 0, sizeof(*p));
  1501. INIT_LIST_HEAD(&p->extent_list);
  1502. p->flags = SWP_USED;
  1503. p->next = -1;
  1504. spin_unlock(&swap_lock);
  1505. name = getname(specialfile);
  1506. error = PTR_ERR(name);
  1507. if (IS_ERR(name)) {
  1508. name = NULL;
  1509. goto bad_swap_2;
  1510. }
  1511. swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
  1512. error = PTR_ERR(swap_file);
  1513. if (IS_ERR(swap_file)) {
  1514. swap_file = NULL;
  1515. goto bad_swap_2;
  1516. }
  1517. p->swap_file = swap_file;
  1518. mapping = swap_file->f_mapping;
  1519. inode = mapping->host;
  1520. error = -EBUSY;
  1521. for (i = 0; i < nr_swapfiles; i++) {
  1522. struct swap_info_struct *q = &swap_info[i];
  1523. if (i == type || !q->swap_file)
  1524. continue;
  1525. if (mapping == q->swap_file->f_mapping)
  1526. goto bad_swap;
  1527. }
  1528. error = -EINVAL;
  1529. if (S_ISBLK(inode->i_mode)) {
  1530. bdev = I_BDEV(inode);
  1531. error = bd_claim(bdev, sys_swapon);
  1532. if (error < 0) {
  1533. bdev = NULL;
  1534. error = -EINVAL;
  1535. goto bad_swap;
  1536. }
  1537. p->old_block_size = block_size(bdev);
  1538. error = set_blocksize(bdev, PAGE_SIZE);
  1539. if (error < 0)
  1540. goto bad_swap;
  1541. p->bdev = bdev;
  1542. } else if (S_ISREG(inode->i_mode)) {
  1543. p->bdev = inode->i_sb->s_bdev;
  1544. mutex_lock(&inode->i_mutex);
  1545. did_down = 1;
  1546. if (IS_SWAPFILE(inode)) {
  1547. error = -EBUSY;
  1548. goto bad_swap;
  1549. }
  1550. } else {
  1551. goto bad_swap;
  1552. }
  1553. swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
  1554. /*
  1555. * Read the swap header.
  1556. */
  1557. if (!mapping->a_ops->readpage) {
  1558. error = -EINVAL;
  1559. goto bad_swap;
  1560. }
  1561. page = read_mapping_page(mapping, 0, swap_file);
  1562. if (IS_ERR(page)) {
  1563. error = PTR_ERR(page);
  1564. goto bad_swap;
  1565. }
  1566. swap_header = kmap(page);
  1567. if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
  1568. printk(KERN_ERR "Unable to find swap-space signature\n");
  1569. error = -EINVAL;
  1570. goto bad_swap;
  1571. }
  1572. /* swap partition endianess hack... */
  1573. if (swab32(swap_header->info.version) == 1) {
  1574. swab32s(&swap_header->info.version);
  1575. swab32s(&swap_header->info.last_page);
  1576. swab32s(&swap_header->info.nr_badpages);
  1577. for (i = 0; i < swap_header->info.nr_badpages; i++)
  1578. swab32s(&swap_header->info.badpages[i]);
  1579. }
  1580. /* Check the swap header's sub-version */
  1581. if (swap_header->info.version != 1) {
  1582. printk(KERN_WARNING
  1583. "Unable to handle swap header version %d\n",
  1584. swap_header->info.version);
  1585. error = -EINVAL;
  1586. goto bad_swap;
  1587. }
  1588. p->lowest_bit = 1;
  1589. p->cluster_next = 1;
  1590. /*
  1591. * Find out how many pages are allowed for a single swap
  1592. * device. There are two limiting factors: 1) the number of
  1593. * bits for the swap offset in the swp_entry_t type and
  1594. * 2) the number of bits in the a swap pte as defined by
  1595. * the different architectures. In order to find the
  1596. * largest possible bit mask a swap entry with swap type 0
  1597. * and swap offset ~0UL is created, encoded to a swap pte,
  1598. * decoded to a swp_entry_t again and finally the swap
  1599. * offset is extracted. This will mask all the bits from
  1600. * the initial ~0UL mask that can't be encoded in either
  1601. * the swp_entry_t or the architecture definition of a
  1602. * swap pte.
  1603. */
  1604. maxpages = swp_offset(pte_to_swp_entry(
  1605. swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
  1606. if (maxpages > swap_header->info.last_page)
  1607. maxpages = swap_header->info.last_page;
  1608. p->highest_bit = maxpages - 1;
  1609. error = -EINVAL;
  1610. if (!maxpages)
  1611. goto bad_swap;
  1612. if (swapfilepages && maxpages > swapfilepages) {
  1613. printk(KERN_WARNING
  1614. "Swap area shorter than signature indicates\n");
  1615. goto bad_swap;
  1616. }
  1617. if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
  1618. goto bad_swap;
  1619. if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
  1620. goto bad_swap;
  1621. /* OK, set up the swap map and apply the bad block list */
  1622. swap_map = vmalloc(maxpages * sizeof(short));
  1623. if (!swap_map) {
  1624. error = -ENOMEM;
  1625. goto bad_swap;
  1626. }
  1627. memset(swap_map, 0, maxpages * sizeof(short));
  1628. for (i = 0; i < swap_header->info.nr_badpages; i++) {
  1629. int page_nr = swap_header->info.badpages[i];
  1630. if (page_nr <= 0 || page_nr >= swap_header->info.last_page) {
  1631. error = -EINVAL;
  1632. goto bad_swap;
  1633. }
  1634. swap_map[page_nr] = SWAP_MAP_BAD;
  1635. }
  1636. error = swap_cgroup_swapon(type, maxpages);
  1637. if (error)
  1638. goto bad_swap;
  1639. nr_good_pages = swap_header->info.last_page -
  1640. swap_header->info.nr_badpages -
  1641. 1 /* header page */;
  1642. if (nr_good_pages) {
  1643. swap_map[0] = SWAP_MAP_BAD;
  1644. p->max = maxpages;
  1645. p->pages = nr_good_pages;
  1646. nr_extents = setup_swap_extents(p, &span);
  1647. if (nr_extents < 0) {
  1648. error = nr_extents;
  1649. goto bad_swap;
  1650. }
  1651. nr_good_pages = p->pages;
  1652. }
  1653. if (!nr_good_pages) {
  1654. printk(KERN_WARNING "Empty swap-file\n");
  1655. error = -EINVAL;
  1656. goto bad_swap;
  1657. }
  1658. if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
  1659. p->flags |= SWP_SOLIDSTATE;
  1660. p->cluster_next = 1 + (random32() % p->highest_bit);
  1661. }
  1662. if (discard_swap(p) == 0)
  1663. p->flags |= SWP_DISCARDABLE;
  1664. mutex_lock(&swapon_mutex);
  1665. spin_lock(&swap_lock);
  1666. if (swap_flags & SWAP_FLAG_PREFER)
  1667. p->prio =
  1668. (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
  1669. else
  1670. p->prio = --least_priority;
  1671. p->swap_map = swap_map;
  1672. p->flags |= SWP_WRITEOK;
  1673. nr_swap_pages += nr_good_pages;
  1674. total_swap_pages += nr_good_pages;
  1675. printk(KERN_INFO "Adding %uk swap on %s. "
  1676. "Priority:%d extents:%d across:%lluk %s%s\n",
  1677. nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
  1678. nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
  1679. (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
  1680. (p->flags & SWP_DISCARDABLE) ? "D" : "");
  1681. /* insert swap space into swap_list: */
  1682. prev = -1;
  1683. for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
  1684. if (p->prio >= swap_info[i].prio) {
  1685. break;
  1686. }
  1687. prev = i;
  1688. }
  1689. p->next = i;
  1690. if (prev < 0) {
  1691. swap_list.head = swap_list.next = p - swap_info;
  1692. } else {
  1693. swap_info[prev].next = p - swap_info;
  1694. }
  1695. spin_unlock(&swap_lock);
  1696. mutex_unlock(&swapon_mutex);
  1697. error = 0;
  1698. goto out;
  1699. bad_swap:
  1700. if (bdev) {
  1701. set_blocksize(bdev, p->old_block_size);
  1702. bd_release(bdev);
  1703. }
  1704. destroy_swap_extents(p);
  1705. swap_cgroup_swapoff(type);
  1706. bad_swap_2:
  1707. spin_lock(&swap_lock);
  1708. p->swap_file = NULL;
  1709. p->flags = 0;
  1710. spin_unlock(&swap_lock);
  1711. vfree(swap_map);
  1712. if (swap_file)
  1713. filp_close(swap_file, NULL);
  1714. out:
  1715. if (page && !IS_ERR(page)) {
  1716. kunmap(page);
  1717. page_cache_release(page);
  1718. }
  1719. if (name)
  1720. putname(name);
  1721. if (did_down) {
  1722. if (!error)
  1723. inode->i_flags |= S_SWAPFILE;
  1724. mutex_unlock(&inode->i_mutex);
  1725. }
  1726. return error;
  1727. }
  1728. void si_swapinfo(struct sysinfo *val)
  1729. {
  1730. unsigned int i;
  1731. unsigned long nr_to_be_unused = 0;
  1732. spin_lock(&swap_lock);
  1733. for (i = 0; i < nr_swapfiles; i++) {
  1734. if (!(swap_info[i].flags & SWP_USED) ||
  1735. (swap_info[i].flags & SWP_WRITEOK))
  1736. continue;
  1737. nr_to_be_unused += swap_info[i].inuse_pages;
  1738. }
  1739. val->freeswap = nr_swap_pages + nr_to_be_unused;
  1740. val->totalswap = total_swap_pages + nr_to_be_unused;
  1741. spin_unlock(&swap_lock);
  1742. }
  1743. /*
  1744. * Verify that a swap entry is valid and increment its swap map count.
  1745. *
  1746. * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
  1747. * "permanent", but will be reclaimed by the next swapoff.
  1748. */
  1749. int swap_duplicate(swp_entry_t entry)
  1750. {
  1751. struct swap_info_struct * p;
  1752. unsigned long offset, type;
  1753. int result = 0;
  1754. if (is_migration_entry(entry))
  1755. return 1;
  1756. type = swp_type(entry);
  1757. if (type >= nr_swapfiles)
  1758. goto bad_file;
  1759. p = type + swap_info;
  1760. offset = swp_offset(entry);
  1761. spin_lock(&swap_lock);
  1762. if (offset < p->max && p->swap_map[offset]) {
  1763. if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
  1764. p->swap_map[offset]++;
  1765. result = 1;
  1766. } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
  1767. if (swap_overflow++ < 5)
  1768. printk(KERN_WARNING "swap_dup: swap entry overflow\n");
  1769. p->swap_map[offset] = SWAP_MAP_MAX;
  1770. result = 1;
  1771. }
  1772. }
  1773. spin_unlock(&swap_lock);
  1774. out:
  1775. return result;
  1776. bad_file:
  1777. printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
  1778. goto out;
  1779. }
  1780. struct swap_info_struct *
  1781. get_swap_info_struct(unsigned type)
  1782. {
  1783. return &swap_info[type];
  1784. }
  1785. /*
  1786. * swap_lock prevents swap_map being freed. Don't grab an extra
  1787. * reference on the swaphandle, it doesn't matter if it becomes unused.
  1788. */
  1789. int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
  1790. {
  1791. struct swap_info_struct *si;
  1792. int our_page_cluster = page_cluster;
  1793. pgoff_t target, toff;
  1794. pgoff_t base, end;
  1795. int nr_pages = 0;
  1796. if (!our_page_cluster) /* no readahead */
  1797. return 0;
  1798. si = &swap_info[swp_type(entry)];
  1799. target = swp_offset(entry);
  1800. base = (target >> our_page_cluster) << our_page_cluster;
  1801. end = base + (1 << our_page_cluster);
  1802. if (!base) /* first page is swap header */
  1803. base++;
  1804. spin_lock(&swap_lock);
  1805. if (end > si->max) /* don't go beyond end of map */
  1806. end = si->max;
  1807. /* Count contiguous allocated slots above our target */
  1808. for (toff = target; ++toff < end; nr_pages++) {
  1809. /* Don't read in free or bad pages */
  1810. if (!si->swap_map[toff])
  1811. break;
  1812. if (si->swap_map[toff] == SWAP_MAP_BAD)
  1813. break;
  1814. }
  1815. /* Count contiguous allocated slots below our target */
  1816. for (toff = target; --toff >= base; nr_pages++) {
  1817. /* Don't read in free or bad pages */
  1818. if (!si->swap_map[toff])
  1819. break;
  1820. if (si->swap_map[toff] == SWAP_MAP_BAD)
  1821. break;
  1822. }
  1823. spin_unlock(&swap_lock);
  1824. /*
  1825. * Indicate starting offset, and return number of pages to get:
  1826. * if only 1, say 0, since there's then no readahead to be done.
  1827. */
  1828. *offset = ++toff;
  1829. return nr_pages? ++nr_pages: 0;
  1830. }