timer.c 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665
  1. /*
  2. * linux/kernel/timer.c
  3. *
  4. * Kernel internal timers, basic process system calls
  5. *
  6. * Copyright (C) 1991, 1992 Linus Torvalds
  7. *
  8. * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
  9. *
  10. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  11. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  12. * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
  13. * serialize accesses to xtime/lost_ticks).
  14. * Copyright (C) 1998 Andrea Arcangeli
  15. * 1999-03-10 Improved NTP compatibility by Ulrich Windl
  16. * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
  17. * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
  18. * Copyright (C) 2000, 2001, 2002 Ingo Molnar
  19. * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
  20. */
  21. #include <linux/kernel_stat.h>
  22. #include <linux/module.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/percpu.h>
  25. #include <linux/init.h>
  26. #include <linux/mm.h>
  27. #include <linux/swap.h>
  28. #include <linux/pid_namespace.h>
  29. #include <linux/notifier.h>
  30. #include <linux/thread_info.h>
  31. #include <linux/time.h>
  32. #include <linux/jiffies.h>
  33. #include <linux/posix-timers.h>
  34. #include <linux/cpu.h>
  35. #include <linux/syscalls.h>
  36. #include <linux/delay.h>
  37. #include <linux/tick.h>
  38. #include <linux/kallsyms.h>
  39. #include <asm/uaccess.h>
  40. #include <asm/unistd.h>
  41. #include <asm/div64.h>
  42. #include <asm/timex.h>
  43. #include <asm/io.h>
  44. u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
  45. EXPORT_SYMBOL(jiffies_64);
  46. /*
  47. * per-CPU timer vector definitions:
  48. */
  49. #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
  50. #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
  51. #define TVN_SIZE (1 << TVN_BITS)
  52. #define TVR_SIZE (1 << TVR_BITS)
  53. #define TVN_MASK (TVN_SIZE - 1)
  54. #define TVR_MASK (TVR_SIZE - 1)
  55. struct tvec {
  56. struct list_head vec[TVN_SIZE];
  57. };
  58. struct tvec_root {
  59. struct list_head vec[TVR_SIZE];
  60. };
  61. struct tvec_base {
  62. spinlock_t lock;
  63. struct timer_list *running_timer;
  64. unsigned long timer_jiffies;
  65. struct tvec_root tv1;
  66. struct tvec tv2;
  67. struct tvec tv3;
  68. struct tvec tv4;
  69. struct tvec tv5;
  70. } ____cacheline_aligned;
  71. struct tvec_base boot_tvec_bases;
  72. EXPORT_SYMBOL(boot_tvec_bases);
  73. static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
  74. /*
  75. * Note that all tvec_bases are 2 byte aligned and lower bit of
  76. * base in timer_list is guaranteed to be zero. Use the LSB for
  77. * the new flag to indicate whether the timer is deferrable
  78. */
  79. #define TBASE_DEFERRABLE_FLAG (0x1)
  80. /* Functions below help us manage 'deferrable' flag */
  81. static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
  82. {
  83. return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
  84. }
  85. static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
  86. {
  87. return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
  88. }
  89. static inline void timer_set_deferrable(struct timer_list *timer)
  90. {
  91. timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
  92. TBASE_DEFERRABLE_FLAG));
  93. }
  94. static inline void
  95. timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
  96. {
  97. timer->base = (struct tvec_base *)((unsigned long)(new_base) |
  98. tbase_get_deferrable(timer->base));
  99. }
  100. static unsigned long round_jiffies_common(unsigned long j, int cpu,
  101. bool force_up)
  102. {
  103. int rem;
  104. unsigned long original = j;
  105. /*
  106. * We don't want all cpus firing their timers at once hitting the
  107. * same lock or cachelines, so we skew each extra cpu with an extra
  108. * 3 jiffies. This 3 jiffies came originally from the mm/ code which
  109. * already did this.
  110. * The skew is done by adding 3*cpunr, then round, then subtract this
  111. * extra offset again.
  112. */
  113. j += cpu * 3;
  114. rem = j % HZ;
  115. /*
  116. * If the target jiffie is just after a whole second (which can happen
  117. * due to delays of the timer irq, long irq off times etc etc) then
  118. * we should round down to the whole second, not up. Use 1/4th second
  119. * as cutoff for this rounding as an extreme upper bound for this.
  120. * But never round down if @force_up is set.
  121. */
  122. if (rem < HZ/4 && !force_up) /* round down */
  123. j = j - rem;
  124. else /* round up */
  125. j = j - rem + HZ;
  126. /* now that we have rounded, subtract the extra skew again */
  127. j -= cpu * 3;
  128. if (j <= jiffies) /* rounding ate our timeout entirely; */
  129. return original;
  130. return j;
  131. }
  132. /**
  133. * __round_jiffies - function to round jiffies to a full second
  134. * @j: the time in (absolute) jiffies that should be rounded
  135. * @cpu: the processor number on which the timeout will happen
  136. *
  137. * __round_jiffies() rounds an absolute time in the future (in jiffies)
  138. * up or down to (approximately) full seconds. This is useful for timers
  139. * for which the exact time they fire does not matter too much, as long as
  140. * they fire approximately every X seconds.
  141. *
  142. * By rounding these timers to whole seconds, all such timers will fire
  143. * at the same time, rather than at various times spread out. The goal
  144. * of this is to have the CPU wake up less, which saves power.
  145. *
  146. * The exact rounding is skewed for each processor to avoid all
  147. * processors firing at the exact same time, which could lead
  148. * to lock contention or spurious cache line bouncing.
  149. *
  150. * The return value is the rounded version of the @j parameter.
  151. */
  152. unsigned long __round_jiffies(unsigned long j, int cpu)
  153. {
  154. return round_jiffies_common(j, cpu, false);
  155. }
  156. EXPORT_SYMBOL_GPL(__round_jiffies);
  157. /**
  158. * __round_jiffies_relative - function to round jiffies to a full second
  159. * @j: the time in (relative) jiffies that should be rounded
  160. * @cpu: the processor number on which the timeout will happen
  161. *
  162. * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
  163. * up or down to (approximately) full seconds. This is useful for timers
  164. * for which the exact time they fire does not matter too much, as long as
  165. * they fire approximately every X seconds.
  166. *
  167. * By rounding these timers to whole seconds, all such timers will fire
  168. * at the same time, rather than at various times spread out. The goal
  169. * of this is to have the CPU wake up less, which saves power.
  170. *
  171. * The exact rounding is skewed for each processor to avoid all
  172. * processors firing at the exact same time, which could lead
  173. * to lock contention or spurious cache line bouncing.
  174. *
  175. * The return value is the rounded version of the @j parameter.
  176. */
  177. unsigned long __round_jiffies_relative(unsigned long j, int cpu)
  178. {
  179. unsigned long j0 = jiffies;
  180. /* Use j0 because jiffies might change while we run */
  181. return round_jiffies_common(j + j0, cpu, false) - j0;
  182. }
  183. EXPORT_SYMBOL_GPL(__round_jiffies_relative);
  184. /**
  185. * round_jiffies - function to round jiffies to a full second
  186. * @j: the time in (absolute) jiffies that should be rounded
  187. *
  188. * round_jiffies() rounds an absolute time in the future (in jiffies)
  189. * up or down to (approximately) full seconds. This is useful for timers
  190. * for which the exact time they fire does not matter too much, as long as
  191. * they fire approximately every X seconds.
  192. *
  193. * By rounding these timers to whole seconds, all such timers will fire
  194. * at the same time, rather than at various times spread out. The goal
  195. * of this is to have the CPU wake up less, which saves power.
  196. *
  197. * The return value is the rounded version of the @j parameter.
  198. */
  199. unsigned long round_jiffies(unsigned long j)
  200. {
  201. return round_jiffies_common(j, raw_smp_processor_id(), false);
  202. }
  203. EXPORT_SYMBOL_GPL(round_jiffies);
  204. /**
  205. * round_jiffies_relative - function to round jiffies to a full second
  206. * @j: the time in (relative) jiffies that should be rounded
  207. *
  208. * round_jiffies_relative() rounds a time delta in the future (in jiffies)
  209. * up or down to (approximately) full seconds. This is useful for timers
  210. * for which the exact time they fire does not matter too much, as long as
  211. * they fire approximately every X seconds.
  212. *
  213. * By rounding these timers to whole seconds, all such timers will fire
  214. * at the same time, rather than at various times spread out. The goal
  215. * of this is to have the CPU wake up less, which saves power.
  216. *
  217. * The return value is the rounded version of the @j parameter.
  218. */
  219. unsigned long round_jiffies_relative(unsigned long j)
  220. {
  221. return __round_jiffies_relative(j, raw_smp_processor_id());
  222. }
  223. EXPORT_SYMBOL_GPL(round_jiffies_relative);
  224. /**
  225. * __round_jiffies_up - function to round jiffies up to a full second
  226. * @j: the time in (absolute) jiffies that should be rounded
  227. * @cpu: the processor number on which the timeout will happen
  228. *
  229. * This is the same as __round_jiffies() except that it will never
  230. * round down. This is useful for timeouts for which the exact time
  231. * of firing does not matter too much, as long as they don't fire too
  232. * early.
  233. */
  234. unsigned long __round_jiffies_up(unsigned long j, int cpu)
  235. {
  236. return round_jiffies_common(j, cpu, true);
  237. }
  238. EXPORT_SYMBOL_GPL(__round_jiffies_up);
  239. /**
  240. * __round_jiffies_up_relative - function to round jiffies up to a full second
  241. * @j: the time in (relative) jiffies that should be rounded
  242. * @cpu: the processor number on which the timeout will happen
  243. *
  244. * This is the same as __round_jiffies_relative() except that it will never
  245. * round down. This is useful for timeouts for which the exact time
  246. * of firing does not matter too much, as long as they don't fire too
  247. * early.
  248. */
  249. unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
  250. {
  251. unsigned long j0 = jiffies;
  252. /* Use j0 because jiffies might change while we run */
  253. return round_jiffies_common(j + j0, cpu, true) - j0;
  254. }
  255. EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
  256. /**
  257. * round_jiffies_up - function to round jiffies up to a full second
  258. * @j: the time in (absolute) jiffies that should be rounded
  259. *
  260. * This is the same as round_jiffies() except that it will never
  261. * round down. This is useful for timeouts for which the exact time
  262. * of firing does not matter too much, as long as they don't fire too
  263. * early.
  264. */
  265. unsigned long round_jiffies_up(unsigned long j)
  266. {
  267. return round_jiffies_common(j, raw_smp_processor_id(), true);
  268. }
  269. EXPORT_SYMBOL_GPL(round_jiffies_up);
  270. /**
  271. * round_jiffies_up_relative - function to round jiffies up to a full second
  272. * @j: the time in (relative) jiffies that should be rounded
  273. *
  274. * This is the same as round_jiffies_relative() except that it will never
  275. * round down. This is useful for timeouts for which the exact time
  276. * of firing does not matter too much, as long as they don't fire too
  277. * early.
  278. */
  279. unsigned long round_jiffies_up_relative(unsigned long j)
  280. {
  281. return __round_jiffies_up_relative(j, raw_smp_processor_id());
  282. }
  283. EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
  284. static inline void set_running_timer(struct tvec_base *base,
  285. struct timer_list *timer)
  286. {
  287. #ifdef CONFIG_SMP
  288. base->running_timer = timer;
  289. #endif
  290. }
  291. static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
  292. {
  293. unsigned long expires = timer->expires;
  294. unsigned long idx = expires - base->timer_jiffies;
  295. struct list_head *vec;
  296. if (idx < TVR_SIZE) {
  297. int i = expires & TVR_MASK;
  298. vec = base->tv1.vec + i;
  299. } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
  300. int i = (expires >> TVR_BITS) & TVN_MASK;
  301. vec = base->tv2.vec + i;
  302. } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
  303. int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
  304. vec = base->tv3.vec + i;
  305. } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
  306. int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
  307. vec = base->tv4.vec + i;
  308. } else if ((signed long) idx < 0) {
  309. /*
  310. * Can happen if you add a timer with expires == jiffies,
  311. * or you set a timer to go off in the past
  312. */
  313. vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
  314. } else {
  315. int i;
  316. /* If the timeout is larger than 0xffffffff on 64-bit
  317. * architectures then we use the maximum timeout:
  318. */
  319. if (idx > 0xffffffffUL) {
  320. idx = 0xffffffffUL;
  321. expires = idx + base->timer_jiffies;
  322. }
  323. i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
  324. vec = base->tv5.vec + i;
  325. }
  326. /*
  327. * Timers are FIFO:
  328. */
  329. list_add_tail(&timer->entry, vec);
  330. }
  331. #ifdef CONFIG_TIMER_STATS
  332. void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
  333. {
  334. if (timer->start_site)
  335. return;
  336. timer->start_site = addr;
  337. memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
  338. timer->start_pid = current->pid;
  339. }
  340. static void timer_stats_account_timer(struct timer_list *timer)
  341. {
  342. unsigned int flag = 0;
  343. if (unlikely(tbase_get_deferrable(timer->base)))
  344. flag |= TIMER_STATS_FLAG_DEFERRABLE;
  345. timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
  346. timer->function, timer->start_comm, flag);
  347. }
  348. #else
  349. static void timer_stats_account_timer(struct timer_list *timer) {}
  350. #endif
  351. #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
  352. static struct debug_obj_descr timer_debug_descr;
  353. /*
  354. * fixup_init is called when:
  355. * - an active object is initialized
  356. */
  357. static int timer_fixup_init(void *addr, enum debug_obj_state state)
  358. {
  359. struct timer_list *timer = addr;
  360. switch (state) {
  361. case ODEBUG_STATE_ACTIVE:
  362. del_timer_sync(timer);
  363. debug_object_init(timer, &timer_debug_descr);
  364. return 1;
  365. default:
  366. return 0;
  367. }
  368. }
  369. /*
  370. * fixup_activate is called when:
  371. * - an active object is activated
  372. * - an unknown object is activated (might be a statically initialized object)
  373. */
  374. static int timer_fixup_activate(void *addr, enum debug_obj_state state)
  375. {
  376. struct timer_list *timer = addr;
  377. switch (state) {
  378. case ODEBUG_STATE_NOTAVAILABLE:
  379. /*
  380. * This is not really a fixup. The timer was
  381. * statically initialized. We just make sure that it
  382. * is tracked in the object tracker.
  383. */
  384. if (timer->entry.next == NULL &&
  385. timer->entry.prev == TIMER_ENTRY_STATIC) {
  386. debug_object_init(timer, &timer_debug_descr);
  387. debug_object_activate(timer, &timer_debug_descr);
  388. return 0;
  389. } else {
  390. WARN_ON_ONCE(1);
  391. }
  392. return 0;
  393. case ODEBUG_STATE_ACTIVE:
  394. WARN_ON(1);
  395. default:
  396. return 0;
  397. }
  398. }
  399. /*
  400. * fixup_free is called when:
  401. * - an active object is freed
  402. */
  403. static int timer_fixup_free(void *addr, enum debug_obj_state state)
  404. {
  405. struct timer_list *timer = addr;
  406. switch (state) {
  407. case ODEBUG_STATE_ACTIVE:
  408. del_timer_sync(timer);
  409. debug_object_free(timer, &timer_debug_descr);
  410. return 1;
  411. default:
  412. return 0;
  413. }
  414. }
  415. static struct debug_obj_descr timer_debug_descr = {
  416. .name = "timer_list",
  417. .fixup_init = timer_fixup_init,
  418. .fixup_activate = timer_fixup_activate,
  419. .fixup_free = timer_fixup_free,
  420. };
  421. static inline void debug_timer_init(struct timer_list *timer)
  422. {
  423. debug_object_init(timer, &timer_debug_descr);
  424. }
  425. static inline void debug_timer_activate(struct timer_list *timer)
  426. {
  427. debug_object_activate(timer, &timer_debug_descr);
  428. }
  429. static inline void debug_timer_deactivate(struct timer_list *timer)
  430. {
  431. debug_object_deactivate(timer, &timer_debug_descr);
  432. }
  433. static inline void debug_timer_free(struct timer_list *timer)
  434. {
  435. debug_object_free(timer, &timer_debug_descr);
  436. }
  437. static void __init_timer(struct timer_list *timer,
  438. const char *name,
  439. struct lock_class_key *key);
  440. void init_timer_on_stack_key(struct timer_list *timer,
  441. const char *name,
  442. struct lock_class_key *key)
  443. {
  444. debug_object_init_on_stack(timer, &timer_debug_descr);
  445. __init_timer(timer, name, key);
  446. }
  447. EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
  448. void destroy_timer_on_stack(struct timer_list *timer)
  449. {
  450. debug_object_free(timer, &timer_debug_descr);
  451. }
  452. EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
  453. #else
  454. static inline void debug_timer_init(struct timer_list *timer) { }
  455. static inline void debug_timer_activate(struct timer_list *timer) { }
  456. static inline void debug_timer_deactivate(struct timer_list *timer) { }
  457. #endif
  458. static void __init_timer(struct timer_list *timer,
  459. const char *name,
  460. struct lock_class_key *key)
  461. {
  462. timer->entry.next = NULL;
  463. timer->base = __raw_get_cpu_var(tvec_bases);
  464. #ifdef CONFIG_TIMER_STATS
  465. timer->start_site = NULL;
  466. timer->start_pid = -1;
  467. memset(timer->start_comm, 0, TASK_COMM_LEN);
  468. #endif
  469. lockdep_init_map(&timer->lockdep_map, name, key, 0);
  470. }
  471. /**
  472. * init_timer - initialize a timer.
  473. * @timer: the timer to be initialized
  474. *
  475. * init_timer() must be done to a timer prior calling *any* of the
  476. * other timer functions.
  477. */
  478. void init_timer_key(struct timer_list *timer,
  479. const char *name,
  480. struct lock_class_key *key)
  481. {
  482. debug_timer_init(timer);
  483. __init_timer(timer, name, key);
  484. }
  485. EXPORT_SYMBOL(init_timer_key);
  486. void init_timer_deferrable_key(struct timer_list *timer,
  487. const char *name,
  488. struct lock_class_key *key)
  489. {
  490. init_timer_key(timer, name, key);
  491. timer_set_deferrable(timer);
  492. }
  493. EXPORT_SYMBOL(init_timer_deferrable_key);
  494. static inline void detach_timer(struct timer_list *timer,
  495. int clear_pending)
  496. {
  497. struct list_head *entry = &timer->entry;
  498. debug_timer_deactivate(timer);
  499. __list_del(entry->prev, entry->next);
  500. if (clear_pending)
  501. entry->next = NULL;
  502. entry->prev = LIST_POISON2;
  503. }
  504. /*
  505. * We are using hashed locking: holding per_cpu(tvec_bases).lock
  506. * means that all timers which are tied to this base via timer->base are
  507. * locked, and the base itself is locked too.
  508. *
  509. * So __run_timers/migrate_timers can safely modify all timers which could
  510. * be found on ->tvX lists.
  511. *
  512. * When the timer's base is locked, and the timer removed from list, it is
  513. * possible to set timer->base = NULL and drop the lock: the timer remains
  514. * locked.
  515. */
  516. static struct tvec_base *lock_timer_base(struct timer_list *timer,
  517. unsigned long *flags)
  518. __acquires(timer->base->lock)
  519. {
  520. struct tvec_base *base;
  521. for (;;) {
  522. struct tvec_base *prelock_base = timer->base;
  523. base = tbase_get_base(prelock_base);
  524. if (likely(base != NULL)) {
  525. spin_lock_irqsave(&base->lock, *flags);
  526. if (likely(prelock_base == timer->base))
  527. return base;
  528. /* The timer has migrated to another CPU */
  529. spin_unlock_irqrestore(&base->lock, *flags);
  530. }
  531. cpu_relax();
  532. }
  533. }
  534. static inline int
  535. __mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
  536. {
  537. struct tvec_base *base, *new_base;
  538. unsigned long flags;
  539. int ret;
  540. ret = 0;
  541. timer_stats_timer_set_start_info(timer);
  542. BUG_ON(!timer->function);
  543. base = lock_timer_base(timer, &flags);
  544. if (timer_pending(timer)) {
  545. detach_timer(timer, 0);
  546. ret = 1;
  547. } else {
  548. if (pending_only)
  549. goto out_unlock;
  550. }
  551. debug_timer_activate(timer);
  552. new_base = __get_cpu_var(tvec_bases);
  553. if (base != new_base) {
  554. /*
  555. * We are trying to schedule the timer on the local CPU.
  556. * However we can't change timer's base while it is running,
  557. * otherwise del_timer_sync() can't detect that the timer's
  558. * handler yet has not finished. This also guarantees that
  559. * the timer is serialized wrt itself.
  560. */
  561. if (likely(base->running_timer != timer)) {
  562. /* See the comment in lock_timer_base() */
  563. timer_set_base(timer, NULL);
  564. spin_unlock(&base->lock);
  565. base = new_base;
  566. spin_lock(&base->lock);
  567. timer_set_base(timer, base);
  568. }
  569. }
  570. timer->expires = expires;
  571. internal_add_timer(base, timer);
  572. out_unlock:
  573. spin_unlock_irqrestore(&base->lock, flags);
  574. return ret;
  575. }
  576. /**
  577. * mod_timer_pending - modify a pending timer's timeout
  578. * @timer: the pending timer to be modified
  579. * @expires: new timeout in jiffies
  580. *
  581. * mod_timer_pending() is the same for pending timers as mod_timer(),
  582. * but will not re-activate and modify already deleted timers.
  583. *
  584. * It is useful for unserialized use of timers.
  585. */
  586. int mod_timer_pending(struct timer_list *timer, unsigned long expires)
  587. {
  588. return __mod_timer(timer, expires, true);
  589. }
  590. EXPORT_SYMBOL(mod_timer_pending);
  591. /**
  592. * mod_timer - modify a timer's timeout
  593. * @timer: the timer to be modified
  594. * @expires: new timeout in jiffies
  595. *
  596. * mod_timer() is a more efficient way to update the expire field of an
  597. * active timer (if the timer is inactive it will be activated)
  598. *
  599. * mod_timer(timer, expires) is equivalent to:
  600. *
  601. * del_timer(timer); timer->expires = expires; add_timer(timer);
  602. *
  603. * Note that if there are multiple unserialized concurrent users of the
  604. * same timer, then mod_timer() is the only safe way to modify the timeout,
  605. * since add_timer() cannot modify an already running timer.
  606. *
  607. * The function returns whether it has modified a pending timer or not.
  608. * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
  609. * active timer returns 1.)
  610. */
  611. int mod_timer(struct timer_list *timer, unsigned long expires)
  612. {
  613. /*
  614. * This is a common optimization triggered by the
  615. * networking code - if the timer is re-modified
  616. * to be the same thing then just return:
  617. */
  618. if (timer->expires == expires && timer_pending(timer))
  619. return 1;
  620. return __mod_timer(timer, expires, false);
  621. }
  622. EXPORT_SYMBOL(mod_timer);
  623. /**
  624. * add_timer - start a timer
  625. * @timer: the timer to be added
  626. *
  627. * The kernel will do a ->function(->data) callback from the
  628. * timer interrupt at the ->expires point in the future. The
  629. * current time is 'jiffies'.
  630. *
  631. * The timer's ->expires, ->function (and if the handler uses it, ->data)
  632. * fields must be set prior calling this function.
  633. *
  634. * Timers with an ->expires field in the past will be executed in the next
  635. * timer tick.
  636. */
  637. void add_timer(struct timer_list *timer)
  638. {
  639. BUG_ON(timer_pending(timer));
  640. mod_timer(timer, timer->expires);
  641. }
  642. EXPORT_SYMBOL(add_timer);
  643. /**
  644. * add_timer_on - start a timer on a particular CPU
  645. * @timer: the timer to be added
  646. * @cpu: the CPU to start it on
  647. *
  648. * This is not very scalable on SMP. Double adds are not possible.
  649. */
  650. void add_timer_on(struct timer_list *timer, int cpu)
  651. {
  652. struct tvec_base *base = per_cpu(tvec_bases, cpu);
  653. unsigned long flags;
  654. timer_stats_timer_set_start_info(timer);
  655. BUG_ON(timer_pending(timer) || !timer->function);
  656. spin_lock_irqsave(&base->lock, flags);
  657. timer_set_base(timer, base);
  658. debug_timer_activate(timer);
  659. internal_add_timer(base, timer);
  660. /*
  661. * Check whether the other CPU is idle and needs to be
  662. * triggered to reevaluate the timer wheel when nohz is
  663. * active. We are protected against the other CPU fiddling
  664. * with the timer by holding the timer base lock. This also
  665. * makes sure that a CPU on the way to idle can not evaluate
  666. * the timer wheel.
  667. */
  668. wake_up_idle_cpu(cpu);
  669. spin_unlock_irqrestore(&base->lock, flags);
  670. }
  671. /**
  672. * del_timer - deactive a timer.
  673. * @timer: the timer to be deactivated
  674. *
  675. * del_timer() deactivates a timer - this works on both active and inactive
  676. * timers.
  677. *
  678. * The function returns whether it has deactivated a pending timer or not.
  679. * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
  680. * active timer returns 1.)
  681. */
  682. int del_timer(struct timer_list *timer)
  683. {
  684. struct tvec_base *base;
  685. unsigned long flags;
  686. int ret = 0;
  687. timer_stats_timer_clear_start_info(timer);
  688. if (timer_pending(timer)) {
  689. base = lock_timer_base(timer, &flags);
  690. if (timer_pending(timer)) {
  691. detach_timer(timer, 1);
  692. ret = 1;
  693. }
  694. spin_unlock_irqrestore(&base->lock, flags);
  695. }
  696. return ret;
  697. }
  698. EXPORT_SYMBOL(del_timer);
  699. #ifdef CONFIG_SMP
  700. /**
  701. * try_to_del_timer_sync - Try to deactivate a timer
  702. * @timer: timer do del
  703. *
  704. * This function tries to deactivate a timer. Upon successful (ret >= 0)
  705. * exit the timer is not queued and the handler is not running on any CPU.
  706. *
  707. * It must not be called from interrupt contexts.
  708. */
  709. int try_to_del_timer_sync(struct timer_list *timer)
  710. {
  711. struct tvec_base *base;
  712. unsigned long flags;
  713. int ret = -1;
  714. base = lock_timer_base(timer, &flags);
  715. if (base->running_timer == timer)
  716. goto out;
  717. ret = 0;
  718. if (timer_pending(timer)) {
  719. detach_timer(timer, 1);
  720. ret = 1;
  721. }
  722. out:
  723. spin_unlock_irqrestore(&base->lock, flags);
  724. return ret;
  725. }
  726. EXPORT_SYMBOL(try_to_del_timer_sync);
  727. /**
  728. * del_timer_sync - deactivate a timer and wait for the handler to finish.
  729. * @timer: the timer to be deactivated
  730. *
  731. * This function only differs from del_timer() on SMP: besides deactivating
  732. * the timer it also makes sure the handler has finished executing on other
  733. * CPUs.
  734. *
  735. * Synchronization rules: Callers must prevent restarting of the timer,
  736. * otherwise this function is meaningless. It must not be called from
  737. * interrupt contexts. The caller must not hold locks which would prevent
  738. * completion of the timer's handler. The timer's handler must not call
  739. * add_timer_on(). Upon exit the timer is not queued and the handler is
  740. * not running on any CPU.
  741. *
  742. * The function returns whether it has deactivated a pending timer or not.
  743. */
  744. int del_timer_sync(struct timer_list *timer)
  745. {
  746. #ifdef CONFIG_LOCKDEP
  747. unsigned long flags;
  748. local_irq_save(flags);
  749. lock_map_acquire(&timer->lockdep_map);
  750. lock_map_release(&timer->lockdep_map);
  751. local_irq_restore(flags);
  752. #endif
  753. for (;;) {
  754. int ret = try_to_del_timer_sync(timer);
  755. if (ret >= 0)
  756. return ret;
  757. cpu_relax();
  758. }
  759. }
  760. EXPORT_SYMBOL(del_timer_sync);
  761. #endif
  762. static int cascade(struct tvec_base *base, struct tvec *tv, int index)
  763. {
  764. /* cascade all the timers from tv up one level */
  765. struct timer_list *timer, *tmp;
  766. struct list_head tv_list;
  767. list_replace_init(tv->vec + index, &tv_list);
  768. /*
  769. * We are removing _all_ timers from the list, so we
  770. * don't have to detach them individually.
  771. */
  772. list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
  773. BUG_ON(tbase_get_base(timer->base) != base);
  774. internal_add_timer(base, timer);
  775. }
  776. return index;
  777. }
  778. #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
  779. /**
  780. * __run_timers - run all expired timers (if any) on this CPU.
  781. * @base: the timer vector to be processed.
  782. *
  783. * This function cascades all vectors and executes all expired timer
  784. * vectors.
  785. */
  786. static inline void __run_timers(struct tvec_base *base)
  787. {
  788. struct timer_list *timer;
  789. spin_lock_irq(&base->lock);
  790. while (time_after_eq(jiffies, base->timer_jiffies)) {
  791. struct list_head work_list;
  792. struct list_head *head = &work_list;
  793. int index = base->timer_jiffies & TVR_MASK;
  794. /*
  795. * Cascade timers:
  796. */
  797. if (!index &&
  798. (!cascade(base, &base->tv2, INDEX(0))) &&
  799. (!cascade(base, &base->tv3, INDEX(1))) &&
  800. !cascade(base, &base->tv4, INDEX(2)))
  801. cascade(base, &base->tv5, INDEX(3));
  802. ++base->timer_jiffies;
  803. list_replace_init(base->tv1.vec + index, &work_list);
  804. while (!list_empty(head)) {
  805. void (*fn)(unsigned long);
  806. unsigned long data;
  807. timer = list_first_entry(head, struct timer_list,entry);
  808. fn = timer->function;
  809. data = timer->data;
  810. timer_stats_account_timer(timer);
  811. set_running_timer(base, timer);
  812. detach_timer(timer, 1);
  813. spin_unlock_irq(&base->lock);
  814. {
  815. int preempt_count = preempt_count();
  816. #ifdef CONFIG_LOCKDEP
  817. /*
  818. * It is permissible to free the timer from
  819. * inside the function that is called from
  820. * it, this we need to take into account for
  821. * lockdep too. To avoid bogus "held lock
  822. * freed" warnings as well as problems when
  823. * looking into timer->lockdep_map, make a
  824. * copy and use that here.
  825. */
  826. struct lockdep_map lockdep_map =
  827. timer->lockdep_map;
  828. #endif
  829. /*
  830. * Couple the lock chain with the lock chain at
  831. * del_timer_sync() by acquiring the lock_map
  832. * around the fn() call here and in
  833. * del_timer_sync().
  834. */
  835. lock_map_acquire(&lockdep_map);
  836. fn(data);
  837. lock_map_release(&lockdep_map);
  838. if (preempt_count != preempt_count()) {
  839. printk(KERN_ERR "huh, entered %p "
  840. "with preempt_count %08x, exited"
  841. " with %08x?\n",
  842. fn, preempt_count,
  843. preempt_count());
  844. BUG();
  845. }
  846. }
  847. spin_lock_irq(&base->lock);
  848. }
  849. }
  850. set_running_timer(base, NULL);
  851. spin_unlock_irq(&base->lock);
  852. }
  853. #ifdef CONFIG_NO_HZ
  854. /*
  855. * Find out when the next timer event is due to happen. This
  856. * is used on S/390 to stop all activity when a cpus is idle.
  857. * This functions needs to be called disabled.
  858. */
  859. static unsigned long __next_timer_interrupt(struct tvec_base *base)
  860. {
  861. unsigned long timer_jiffies = base->timer_jiffies;
  862. unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
  863. int index, slot, array, found = 0;
  864. struct timer_list *nte;
  865. struct tvec *varray[4];
  866. /* Look for timer events in tv1. */
  867. index = slot = timer_jiffies & TVR_MASK;
  868. do {
  869. list_for_each_entry(nte, base->tv1.vec + slot, entry) {
  870. if (tbase_get_deferrable(nte->base))
  871. continue;
  872. found = 1;
  873. expires = nte->expires;
  874. /* Look at the cascade bucket(s)? */
  875. if (!index || slot < index)
  876. goto cascade;
  877. return expires;
  878. }
  879. slot = (slot + 1) & TVR_MASK;
  880. } while (slot != index);
  881. cascade:
  882. /* Calculate the next cascade event */
  883. if (index)
  884. timer_jiffies += TVR_SIZE - index;
  885. timer_jiffies >>= TVR_BITS;
  886. /* Check tv2-tv5. */
  887. varray[0] = &base->tv2;
  888. varray[1] = &base->tv3;
  889. varray[2] = &base->tv4;
  890. varray[3] = &base->tv5;
  891. for (array = 0; array < 4; array++) {
  892. struct tvec *varp = varray[array];
  893. index = slot = timer_jiffies & TVN_MASK;
  894. do {
  895. list_for_each_entry(nte, varp->vec + slot, entry) {
  896. found = 1;
  897. if (time_before(nte->expires, expires))
  898. expires = nte->expires;
  899. }
  900. /*
  901. * Do we still search for the first timer or are
  902. * we looking up the cascade buckets ?
  903. */
  904. if (found) {
  905. /* Look at the cascade bucket(s)? */
  906. if (!index || slot < index)
  907. break;
  908. return expires;
  909. }
  910. slot = (slot + 1) & TVN_MASK;
  911. } while (slot != index);
  912. if (index)
  913. timer_jiffies += TVN_SIZE - index;
  914. timer_jiffies >>= TVN_BITS;
  915. }
  916. return expires;
  917. }
  918. /*
  919. * Check, if the next hrtimer event is before the next timer wheel
  920. * event:
  921. */
  922. static unsigned long cmp_next_hrtimer_event(unsigned long now,
  923. unsigned long expires)
  924. {
  925. ktime_t hr_delta = hrtimer_get_next_event();
  926. struct timespec tsdelta;
  927. unsigned long delta;
  928. if (hr_delta.tv64 == KTIME_MAX)
  929. return expires;
  930. /*
  931. * Expired timer available, let it expire in the next tick
  932. */
  933. if (hr_delta.tv64 <= 0)
  934. return now + 1;
  935. tsdelta = ktime_to_timespec(hr_delta);
  936. delta = timespec_to_jiffies(&tsdelta);
  937. /*
  938. * Limit the delta to the max value, which is checked in
  939. * tick_nohz_stop_sched_tick():
  940. */
  941. if (delta > NEXT_TIMER_MAX_DELTA)
  942. delta = NEXT_TIMER_MAX_DELTA;
  943. /*
  944. * Take rounding errors in to account and make sure, that it
  945. * expires in the next tick. Otherwise we go into an endless
  946. * ping pong due to tick_nohz_stop_sched_tick() retriggering
  947. * the timer softirq
  948. */
  949. if (delta < 1)
  950. delta = 1;
  951. now += delta;
  952. if (time_before(now, expires))
  953. return now;
  954. return expires;
  955. }
  956. /**
  957. * get_next_timer_interrupt - return the jiffy of the next pending timer
  958. * @now: current time (in jiffies)
  959. */
  960. unsigned long get_next_timer_interrupt(unsigned long now)
  961. {
  962. struct tvec_base *base = __get_cpu_var(tvec_bases);
  963. unsigned long expires;
  964. spin_lock(&base->lock);
  965. expires = __next_timer_interrupt(base);
  966. spin_unlock(&base->lock);
  967. if (time_before_eq(expires, now))
  968. return now;
  969. return cmp_next_hrtimer_event(now, expires);
  970. }
  971. #endif
  972. /*
  973. * Called from the timer interrupt handler to charge one tick to the current
  974. * process. user_tick is 1 if the tick is user time, 0 for system.
  975. */
  976. void update_process_times(int user_tick)
  977. {
  978. struct task_struct *p = current;
  979. int cpu = smp_processor_id();
  980. /* Note: this timer irq context must be accounted for as well. */
  981. account_process_tick(p, user_tick);
  982. run_local_timers();
  983. if (rcu_pending(cpu))
  984. rcu_check_callbacks(cpu, user_tick);
  985. printk_tick();
  986. scheduler_tick();
  987. run_posix_cpu_timers(p);
  988. }
  989. /*
  990. * Nr of active tasks - counted in fixed-point numbers
  991. */
  992. static unsigned long count_active_tasks(void)
  993. {
  994. return nr_active() * FIXED_1;
  995. }
  996. /*
  997. * Hmm.. Changed this, as the GNU make sources (load.c) seems to
  998. * imply that avenrun[] is the standard name for this kind of thing.
  999. * Nothing else seems to be standardized: the fractional size etc
  1000. * all seem to differ on different machines.
  1001. *
  1002. * Requires xtime_lock to access.
  1003. */
  1004. unsigned long avenrun[3];
  1005. EXPORT_SYMBOL(avenrun);
  1006. /*
  1007. * calc_load - given tick count, update the avenrun load estimates.
  1008. * This is called while holding a write_lock on xtime_lock.
  1009. */
  1010. static inline void calc_load(unsigned long ticks)
  1011. {
  1012. unsigned long active_tasks; /* fixed-point */
  1013. static int count = LOAD_FREQ;
  1014. count -= ticks;
  1015. if (unlikely(count < 0)) {
  1016. active_tasks = count_active_tasks();
  1017. do {
  1018. CALC_LOAD(avenrun[0], EXP_1, active_tasks);
  1019. CALC_LOAD(avenrun[1], EXP_5, active_tasks);
  1020. CALC_LOAD(avenrun[2], EXP_15, active_tasks);
  1021. count += LOAD_FREQ;
  1022. } while (count < 0);
  1023. }
  1024. }
  1025. /*
  1026. * This function runs timers and the timer-tq in bottom half context.
  1027. */
  1028. static void run_timer_softirq(struct softirq_action *h)
  1029. {
  1030. struct tvec_base *base = __get_cpu_var(tvec_bases);
  1031. hrtimer_run_pending();
  1032. if (time_after_eq(jiffies, base->timer_jiffies))
  1033. __run_timers(base);
  1034. }
  1035. /*
  1036. * Called by the local, per-CPU timer interrupt on SMP.
  1037. */
  1038. void run_local_timers(void)
  1039. {
  1040. hrtimer_run_queues();
  1041. raise_softirq(TIMER_SOFTIRQ);
  1042. softlockup_tick();
  1043. }
  1044. /*
  1045. * Called by the timer interrupt. xtime_lock must already be taken
  1046. * by the timer IRQ!
  1047. */
  1048. static inline void update_times(unsigned long ticks)
  1049. {
  1050. update_wall_time();
  1051. calc_load(ticks);
  1052. }
  1053. /*
  1054. * The 64-bit jiffies value is not atomic - you MUST NOT read it
  1055. * without sampling the sequence number in xtime_lock.
  1056. * jiffies is defined in the linker script...
  1057. */
  1058. void do_timer(unsigned long ticks)
  1059. {
  1060. jiffies_64 += ticks;
  1061. update_times(ticks);
  1062. }
  1063. #ifdef __ARCH_WANT_SYS_ALARM
  1064. /*
  1065. * For backwards compatibility? This can be done in libc so Alpha
  1066. * and all newer ports shouldn't need it.
  1067. */
  1068. SYSCALL_DEFINE1(alarm, unsigned int, seconds)
  1069. {
  1070. return alarm_setitimer(seconds);
  1071. }
  1072. #endif
  1073. #ifndef __alpha__
  1074. /*
  1075. * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
  1076. * should be moved into arch/i386 instead?
  1077. */
  1078. /**
  1079. * sys_getpid - return the thread group id of the current process
  1080. *
  1081. * Note, despite the name, this returns the tgid not the pid. The tgid and
  1082. * the pid are identical unless CLONE_THREAD was specified on clone() in
  1083. * which case the tgid is the same in all threads of the same group.
  1084. *
  1085. * This is SMP safe as current->tgid does not change.
  1086. */
  1087. SYSCALL_DEFINE0(getpid)
  1088. {
  1089. return task_tgid_vnr(current);
  1090. }
  1091. /*
  1092. * Accessing ->real_parent is not SMP-safe, it could
  1093. * change from under us. However, we can use a stale
  1094. * value of ->real_parent under rcu_read_lock(), see
  1095. * release_task()->call_rcu(delayed_put_task_struct).
  1096. */
  1097. SYSCALL_DEFINE0(getppid)
  1098. {
  1099. int pid;
  1100. rcu_read_lock();
  1101. pid = task_tgid_vnr(current->real_parent);
  1102. rcu_read_unlock();
  1103. return pid;
  1104. }
  1105. SYSCALL_DEFINE0(getuid)
  1106. {
  1107. /* Only we change this so SMP safe */
  1108. return current_uid();
  1109. }
  1110. SYSCALL_DEFINE0(geteuid)
  1111. {
  1112. /* Only we change this so SMP safe */
  1113. return current_euid();
  1114. }
  1115. SYSCALL_DEFINE0(getgid)
  1116. {
  1117. /* Only we change this so SMP safe */
  1118. return current_gid();
  1119. }
  1120. SYSCALL_DEFINE0(getegid)
  1121. {
  1122. /* Only we change this so SMP safe */
  1123. return current_egid();
  1124. }
  1125. #endif
  1126. static void process_timeout(unsigned long __data)
  1127. {
  1128. wake_up_process((struct task_struct *)__data);
  1129. }
  1130. /**
  1131. * schedule_timeout - sleep until timeout
  1132. * @timeout: timeout value in jiffies
  1133. *
  1134. * Make the current task sleep until @timeout jiffies have
  1135. * elapsed. The routine will return immediately unless
  1136. * the current task state has been set (see set_current_state()).
  1137. *
  1138. * You can set the task state as follows -
  1139. *
  1140. * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
  1141. * pass before the routine returns. The routine will return 0
  1142. *
  1143. * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
  1144. * delivered to the current task. In this case the remaining time
  1145. * in jiffies will be returned, or 0 if the timer expired in time
  1146. *
  1147. * The current task state is guaranteed to be TASK_RUNNING when this
  1148. * routine returns.
  1149. *
  1150. * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
  1151. * the CPU away without a bound on the timeout. In this case the return
  1152. * value will be %MAX_SCHEDULE_TIMEOUT.
  1153. *
  1154. * In all cases the return value is guaranteed to be non-negative.
  1155. */
  1156. signed long __sched schedule_timeout(signed long timeout)
  1157. {
  1158. struct timer_list timer;
  1159. unsigned long expire;
  1160. switch (timeout)
  1161. {
  1162. case MAX_SCHEDULE_TIMEOUT:
  1163. /*
  1164. * These two special cases are useful to be comfortable
  1165. * in the caller. Nothing more. We could take
  1166. * MAX_SCHEDULE_TIMEOUT from one of the negative value
  1167. * but I' d like to return a valid offset (>=0) to allow
  1168. * the caller to do everything it want with the retval.
  1169. */
  1170. schedule();
  1171. goto out;
  1172. default:
  1173. /*
  1174. * Another bit of PARANOID. Note that the retval will be
  1175. * 0 since no piece of kernel is supposed to do a check
  1176. * for a negative retval of schedule_timeout() (since it
  1177. * should never happens anyway). You just have the printk()
  1178. * that will tell you if something is gone wrong and where.
  1179. */
  1180. if (timeout < 0) {
  1181. printk(KERN_ERR "schedule_timeout: wrong timeout "
  1182. "value %lx\n", timeout);
  1183. dump_stack();
  1184. current->state = TASK_RUNNING;
  1185. goto out;
  1186. }
  1187. }
  1188. expire = timeout + jiffies;
  1189. setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
  1190. __mod_timer(&timer, expire, false);
  1191. schedule();
  1192. del_singleshot_timer_sync(&timer);
  1193. /* Remove the timer from the object tracker */
  1194. destroy_timer_on_stack(&timer);
  1195. timeout = expire - jiffies;
  1196. out:
  1197. return timeout < 0 ? 0 : timeout;
  1198. }
  1199. EXPORT_SYMBOL(schedule_timeout);
  1200. /*
  1201. * We can use __set_current_state() here because schedule_timeout() calls
  1202. * schedule() unconditionally.
  1203. */
  1204. signed long __sched schedule_timeout_interruptible(signed long timeout)
  1205. {
  1206. __set_current_state(TASK_INTERRUPTIBLE);
  1207. return schedule_timeout(timeout);
  1208. }
  1209. EXPORT_SYMBOL(schedule_timeout_interruptible);
  1210. signed long __sched schedule_timeout_killable(signed long timeout)
  1211. {
  1212. __set_current_state(TASK_KILLABLE);
  1213. return schedule_timeout(timeout);
  1214. }
  1215. EXPORT_SYMBOL(schedule_timeout_killable);
  1216. signed long __sched schedule_timeout_uninterruptible(signed long timeout)
  1217. {
  1218. __set_current_state(TASK_UNINTERRUPTIBLE);
  1219. return schedule_timeout(timeout);
  1220. }
  1221. EXPORT_SYMBOL(schedule_timeout_uninterruptible);
  1222. /* Thread ID - the internal kernel "pid" */
  1223. SYSCALL_DEFINE0(gettid)
  1224. {
  1225. return task_pid_vnr(current);
  1226. }
  1227. /**
  1228. * do_sysinfo - fill in sysinfo struct
  1229. * @info: pointer to buffer to fill
  1230. */
  1231. int do_sysinfo(struct sysinfo *info)
  1232. {
  1233. unsigned long mem_total, sav_total;
  1234. unsigned int mem_unit, bitcount;
  1235. unsigned long seq;
  1236. memset(info, 0, sizeof(struct sysinfo));
  1237. do {
  1238. struct timespec tp;
  1239. seq = read_seqbegin(&xtime_lock);
  1240. /*
  1241. * This is annoying. The below is the same thing
  1242. * posix_get_clock_monotonic() does, but it wants to
  1243. * take the lock which we want to cover the loads stuff
  1244. * too.
  1245. */
  1246. getnstimeofday(&tp);
  1247. tp.tv_sec += wall_to_monotonic.tv_sec;
  1248. tp.tv_nsec += wall_to_monotonic.tv_nsec;
  1249. monotonic_to_bootbased(&tp);
  1250. if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
  1251. tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
  1252. tp.tv_sec++;
  1253. }
  1254. info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
  1255. info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
  1256. info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
  1257. info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
  1258. info->procs = nr_threads;
  1259. } while (read_seqretry(&xtime_lock, seq));
  1260. si_meminfo(info);
  1261. si_swapinfo(info);
  1262. /*
  1263. * If the sum of all the available memory (i.e. ram + swap)
  1264. * is less than can be stored in a 32 bit unsigned long then
  1265. * we can be binary compatible with 2.2.x kernels. If not,
  1266. * well, in that case 2.2.x was broken anyways...
  1267. *
  1268. * -Erik Andersen <andersee@debian.org>
  1269. */
  1270. mem_total = info->totalram + info->totalswap;
  1271. if (mem_total < info->totalram || mem_total < info->totalswap)
  1272. goto out;
  1273. bitcount = 0;
  1274. mem_unit = info->mem_unit;
  1275. while (mem_unit > 1) {
  1276. bitcount++;
  1277. mem_unit >>= 1;
  1278. sav_total = mem_total;
  1279. mem_total <<= 1;
  1280. if (mem_total < sav_total)
  1281. goto out;
  1282. }
  1283. /*
  1284. * If mem_total did not overflow, multiply all memory values by
  1285. * info->mem_unit and set it to 1. This leaves things compatible
  1286. * with 2.2.x, and also retains compatibility with earlier 2.4.x
  1287. * kernels...
  1288. */
  1289. info->mem_unit = 1;
  1290. info->totalram <<= bitcount;
  1291. info->freeram <<= bitcount;
  1292. info->sharedram <<= bitcount;
  1293. info->bufferram <<= bitcount;
  1294. info->totalswap <<= bitcount;
  1295. info->freeswap <<= bitcount;
  1296. info->totalhigh <<= bitcount;
  1297. info->freehigh <<= bitcount;
  1298. out:
  1299. return 0;
  1300. }
  1301. SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
  1302. {
  1303. struct sysinfo val;
  1304. do_sysinfo(&val);
  1305. if (copy_to_user(info, &val, sizeof(struct sysinfo)))
  1306. return -EFAULT;
  1307. return 0;
  1308. }
  1309. static int __cpuinit init_timers_cpu(int cpu)
  1310. {
  1311. int j;
  1312. struct tvec_base *base;
  1313. static char __cpuinitdata tvec_base_done[NR_CPUS];
  1314. if (!tvec_base_done[cpu]) {
  1315. static char boot_done;
  1316. if (boot_done) {
  1317. /*
  1318. * The APs use this path later in boot
  1319. */
  1320. base = kmalloc_node(sizeof(*base),
  1321. GFP_KERNEL | __GFP_ZERO,
  1322. cpu_to_node(cpu));
  1323. if (!base)
  1324. return -ENOMEM;
  1325. /* Make sure that tvec_base is 2 byte aligned */
  1326. if (tbase_get_deferrable(base)) {
  1327. WARN_ON(1);
  1328. kfree(base);
  1329. return -ENOMEM;
  1330. }
  1331. per_cpu(tvec_bases, cpu) = base;
  1332. } else {
  1333. /*
  1334. * This is for the boot CPU - we use compile-time
  1335. * static initialisation because per-cpu memory isn't
  1336. * ready yet and because the memory allocators are not
  1337. * initialised either.
  1338. */
  1339. boot_done = 1;
  1340. base = &boot_tvec_bases;
  1341. }
  1342. tvec_base_done[cpu] = 1;
  1343. } else {
  1344. base = per_cpu(tvec_bases, cpu);
  1345. }
  1346. spin_lock_init(&base->lock);
  1347. for (j = 0; j < TVN_SIZE; j++) {
  1348. INIT_LIST_HEAD(base->tv5.vec + j);
  1349. INIT_LIST_HEAD(base->tv4.vec + j);
  1350. INIT_LIST_HEAD(base->tv3.vec + j);
  1351. INIT_LIST_HEAD(base->tv2.vec + j);
  1352. }
  1353. for (j = 0; j < TVR_SIZE; j++)
  1354. INIT_LIST_HEAD(base->tv1.vec + j);
  1355. base->timer_jiffies = jiffies;
  1356. return 0;
  1357. }
  1358. #ifdef CONFIG_HOTPLUG_CPU
  1359. static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
  1360. {
  1361. struct timer_list *timer;
  1362. while (!list_empty(head)) {
  1363. timer = list_first_entry(head, struct timer_list, entry);
  1364. detach_timer(timer, 0);
  1365. timer_set_base(timer, new_base);
  1366. internal_add_timer(new_base, timer);
  1367. }
  1368. }
  1369. static void __cpuinit migrate_timers(int cpu)
  1370. {
  1371. struct tvec_base *old_base;
  1372. struct tvec_base *new_base;
  1373. int i;
  1374. BUG_ON(cpu_online(cpu));
  1375. old_base = per_cpu(tvec_bases, cpu);
  1376. new_base = get_cpu_var(tvec_bases);
  1377. /*
  1378. * The caller is globally serialized and nobody else
  1379. * takes two locks at once, deadlock is not possible.
  1380. */
  1381. spin_lock_irq(&new_base->lock);
  1382. spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
  1383. BUG_ON(old_base->running_timer);
  1384. for (i = 0; i < TVR_SIZE; i++)
  1385. migrate_timer_list(new_base, old_base->tv1.vec + i);
  1386. for (i = 0; i < TVN_SIZE; i++) {
  1387. migrate_timer_list(new_base, old_base->tv2.vec + i);
  1388. migrate_timer_list(new_base, old_base->tv3.vec + i);
  1389. migrate_timer_list(new_base, old_base->tv4.vec + i);
  1390. migrate_timer_list(new_base, old_base->tv5.vec + i);
  1391. }
  1392. spin_unlock(&old_base->lock);
  1393. spin_unlock_irq(&new_base->lock);
  1394. put_cpu_var(tvec_bases);
  1395. }
  1396. #endif /* CONFIG_HOTPLUG_CPU */
  1397. static int __cpuinit timer_cpu_notify(struct notifier_block *self,
  1398. unsigned long action, void *hcpu)
  1399. {
  1400. long cpu = (long)hcpu;
  1401. switch(action) {
  1402. case CPU_UP_PREPARE:
  1403. case CPU_UP_PREPARE_FROZEN:
  1404. if (init_timers_cpu(cpu) < 0)
  1405. return NOTIFY_BAD;
  1406. break;
  1407. #ifdef CONFIG_HOTPLUG_CPU
  1408. case CPU_DEAD:
  1409. case CPU_DEAD_FROZEN:
  1410. migrate_timers(cpu);
  1411. break;
  1412. #endif
  1413. default:
  1414. break;
  1415. }
  1416. return NOTIFY_OK;
  1417. }
  1418. static struct notifier_block __cpuinitdata timers_nb = {
  1419. .notifier_call = timer_cpu_notify,
  1420. };
  1421. void __init init_timers(void)
  1422. {
  1423. int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
  1424. (void *)(long)smp_processor_id());
  1425. init_timer_stats();
  1426. BUG_ON(err == NOTIFY_BAD);
  1427. register_cpu_notifier(&timers_nb);
  1428. open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
  1429. }
  1430. /**
  1431. * msleep - sleep safely even with waitqueue interruptions
  1432. * @msecs: Time in milliseconds to sleep for
  1433. */
  1434. void msleep(unsigned int msecs)
  1435. {
  1436. unsigned long timeout = msecs_to_jiffies(msecs) + 1;
  1437. while (timeout)
  1438. timeout = schedule_timeout_uninterruptible(timeout);
  1439. }
  1440. EXPORT_SYMBOL(msleep);
  1441. /**
  1442. * msleep_interruptible - sleep waiting for signals
  1443. * @msecs: Time in milliseconds to sleep for
  1444. */
  1445. unsigned long msleep_interruptible(unsigned int msecs)
  1446. {
  1447. unsigned long timeout = msecs_to_jiffies(msecs) + 1;
  1448. while (timeout && !signal_pending(current))
  1449. timeout = schedule_timeout_interruptible(timeout);
  1450. return jiffies_to_msecs(timeout);
  1451. }
  1452. EXPORT_SYMBOL(msleep_interruptible);