sched.c 246 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/reciprocal_div.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/bootmem.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <trace/sched.h>
  75. #include <asm/tlb.h>
  76. #include <asm/irq_regs.h>
  77. #include "sched_cpupri.h"
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. DEFINE_TRACE(sched_wait_task);
  112. DEFINE_TRACE(sched_wakeup);
  113. DEFINE_TRACE(sched_wakeup_new);
  114. DEFINE_TRACE(sched_switch);
  115. DEFINE_TRACE(sched_migrate_task);
  116. #ifdef CONFIG_SMP
  117. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  118. /*
  119. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  120. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  121. */
  122. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  123. {
  124. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  125. }
  126. /*
  127. * Each time a sched group cpu_power is changed,
  128. * we must compute its reciprocal value
  129. */
  130. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  131. {
  132. sg->__cpu_power += val;
  133. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  134. }
  135. #endif
  136. static inline int rt_policy(int policy)
  137. {
  138. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  139. return 1;
  140. return 0;
  141. }
  142. static inline int task_has_rt_policy(struct task_struct *p)
  143. {
  144. return rt_policy(p->policy);
  145. }
  146. /*
  147. * This is the priority-queue data structure of the RT scheduling class:
  148. */
  149. struct rt_prio_array {
  150. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  151. struct list_head queue[MAX_RT_PRIO];
  152. };
  153. struct rt_bandwidth {
  154. /* nests inside the rq lock: */
  155. spinlock_t rt_runtime_lock;
  156. ktime_t rt_period;
  157. u64 rt_runtime;
  158. struct hrtimer rt_period_timer;
  159. };
  160. static struct rt_bandwidth def_rt_bandwidth;
  161. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  162. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  163. {
  164. struct rt_bandwidth *rt_b =
  165. container_of(timer, struct rt_bandwidth, rt_period_timer);
  166. ktime_t now;
  167. int overrun;
  168. int idle = 0;
  169. for (;;) {
  170. now = hrtimer_cb_get_time(timer);
  171. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  172. if (!overrun)
  173. break;
  174. idle = do_sched_rt_period_timer(rt_b, overrun);
  175. }
  176. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  177. }
  178. static
  179. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  180. {
  181. rt_b->rt_period = ns_to_ktime(period);
  182. rt_b->rt_runtime = runtime;
  183. spin_lock_init(&rt_b->rt_runtime_lock);
  184. hrtimer_init(&rt_b->rt_period_timer,
  185. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  186. rt_b->rt_period_timer.function = sched_rt_period_timer;
  187. }
  188. static inline int rt_bandwidth_enabled(void)
  189. {
  190. return sysctl_sched_rt_runtime >= 0;
  191. }
  192. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. ktime_t now;
  195. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  196. return;
  197. if (hrtimer_active(&rt_b->rt_period_timer))
  198. return;
  199. spin_lock(&rt_b->rt_runtime_lock);
  200. for (;;) {
  201. if (hrtimer_active(&rt_b->rt_period_timer))
  202. break;
  203. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  204. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  205. hrtimer_start_expires(&rt_b->rt_period_timer,
  206. HRTIMER_MODE_ABS);
  207. }
  208. spin_unlock(&rt_b->rt_runtime_lock);
  209. }
  210. #ifdef CONFIG_RT_GROUP_SCHED
  211. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  212. {
  213. hrtimer_cancel(&rt_b->rt_period_timer);
  214. }
  215. #endif
  216. /*
  217. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  218. * detach_destroy_domains and partition_sched_domains.
  219. */
  220. static DEFINE_MUTEX(sched_domains_mutex);
  221. #ifdef CONFIG_GROUP_SCHED
  222. #include <linux/cgroup.h>
  223. struct cfs_rq;
  224. static LIST_HEAD(task_groups);
  225. /* task group related information */
  226. struct task_group {
  227. #ifdef CONFIG_CGROUP_SCHED
  228. struct cgroup_subsys_state css;
  229. #endif
  230. #ifdef CONFIG_USER_SCHED
  231. uid_t uid;
  232. #endif
  233. #ifdef CONFIG_FAIR_GROUP_SCHED
  234. /* schedulable entities of this group on each cpu */
  235. struct sched_entity **se;
  236. /* runqueue "owned" by this group on each cpu */
  237. struct cfs_rq **cfs_rq;
  238. unsigned long shares;
  239. #endif
  240. #ifdef CONFIG_RT_GROUP_SCHED
  241. struct sched_rt_entity **rt_se;
  242. struct rt_rq **rt_rq;
  243. struct rt_bandwidth rt_bandwidth;
  244. #endif
  245. struct rcu_head rcu;
  246. struct list_head list;
  247. struct task_group *parent;
  248. struct list_head siblings;
  249. struct list_head children;
  250. };
  251. #ifdef CONFIG_USER_SCHED
  252. /* Helper function to pass uid information to create_sched_user() */
  253. void set_tg_uid(struct user_struct *user)
  254. {
  255. user->tg->uid = user->uid;
  256. }
  257. /*
  258. * Root task group.
  259. * Every UID task group (including init_task_group aka UID-0) will
  260. * be a child to this group.
  261. */
  262. struct task_group root_task_group;
  263. #ifdef CONFIG_FAIR_GROUP_SCHED
  264. /* Default task group's sched entity on each cpu */
  265. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  266. /* Default task group's cfs_rq on each cpu */
  267. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  268. #endif /* CONFIG_FAIR_GROUP_SCHED */
  269. #ifdef CONFIG_RT_GROUP_SCHED
  270. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  271. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  272. #endif /* CONFIG_RT_GROUP_SCHED */
  273. #else /* !CONFIG_USER_SCHED */
  274. #define root_task_group init_task_group
  275. #endif /* CONFIG_USER_SCHED */
  276. /* task_group_lock serializes add/remove of task groups and also changes to
  277. * a task group's cpu shares.
  278. */
  279. static DEFINE_SPINLOCK(task_group_lock);
  280. #ifdef CONFIG_SMP
  281. static int root_task_group_empty(void)
  282. {
  283. return list_empty(&root_task_group.children);
  284. }
  285. #endif
  286. #ifdef CONFIG_FAIR_GROUP_SCHED
  287. #ifdef CONFIG_USER_SCHED
  288. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  289. #else /* !CONFIG_USER_SCHED */
  290. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  291. #endif /* CONFIG_USER_SCHED */
  292. /*
  293. * A weight of 0 or 1 can cause arithmetics problems.
  294. * A weight of a cfs_rq is the sum of weights of which entities
  295. * are queued on this cfs_rq, so a weight of a entity should not be
  296. * too large, so as the shares value of a task group.
  297. * (The default weight is 1024 - so there's no practical
  298. * limitation from this.)
  299. */
  300. #define MIN_SHARES 2
  301. #define MAX_SHARES (1UL << 18)
  302. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  303. #endif
  304. /* Default task group.
  305. * Every task in system belong to this group at bootup.
  306. */
  307. struct task_group init_task_group;
  308. /* return group to which a task belongs */
  309. static inline struct task_group *task_group(struct task_struct *p)
  310. {
  311. struct task_group *tg;
  312. #ifdef CONFIG_USER_SCHED
  313. rcu_read_lock();
  314. tg = __task_cred(p)->user->tg;
  315. rcu_read_unlock();
  316. #elif defined(CONFIG_CGROUP_SCHED)
  317. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  318. struct task_group, css);
  319. #else
  320. tg = &init_task_group;
  321. #endif
  322. return tg;
  323. }
  324. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  325. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  326. {
  327. #ifdef CONFIG_FAIR_GROUP_SCHED
  328. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  329. p->se.parent = task_group(p)->se[cpu];
  330. #endif
  331. #ifdef CONFIG_RT_GROUP_SCHED
  332. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  333. p->rt.parent = task_group(p)->rt_se[cpu];
  334. #endif
  335. }
  336. #else
  337. #ifdef CONFIG_SMP
  338. static int root_task_group_empty(void)
  339. {
  340. return 1;
  341. }
  342. #endif
  343. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  344. static inline struct task_group *task_group(struct task_struct *p)
  345. {
  346. return NULL;
  347. }
  348. #endif /* CONFIG_GROUP_SCHED */
  349. /* CFS-related fields in a runqueue */
  350. struct cfs_rq {
  351. struct load_weight load;
  352. unsigned long nr_running;
  353. u64 exec_clock;
  354. u64 min_vruntime;
  355. struct rb_root tasks_timeline;
  356. struct rb_node *rb_leftmost;
  357. struct list_head tasks;
  358. struct list_head *balance_iterator;
  359. /*
  360. * 'curr' points to currently running entity on this cfs_rq.
  361. * It is set to NULL otherwise (i.e when none are currently running).
  362. */
  363. struct sched_entity *curr, *next, *last;
  364. unsigned int nr_spread_over;
  365. #ifdef CONFIG_FAIR_GROUP_SCHED
  366. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  367. /*
  368. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  369. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  370. * (like users, containers etc.)
  371. *
  372. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  373. * list is used during load balance.
  374. */
  375. struct list_head leaf_cfs_rq_list;
  376. struct task_group *tg; /* group that "owns" this runqueue */
  377. #ifdef CONFIG_SMP
  378. /*
  379. * the part of load.weight contributed by tasks
  380. */
  381. unsigned long task_weight;
  382. /*
  383. * h_load = weight * f(tg)
  384. *
  385. * Where f(tg) is the recursive weight fraction assigned to
  386. * this group.
  387. */
  388. unsigned long h_load;
  389. /*
  390. * this cpu's part of tg->shares
  391. */
  392. unsigned long shares;
  393. /*
  394. * load.weight at the time we set shares
  395. */
  396. unsigned long rq_weight;
  397. #endif
  398. #endif
  399. };
  400. /* Real-Time classes' related field in a runqueue: */
  401. struct rt_rq {
  402. struct rt_prio_array active;
  403. unsigned long rt_nr_running;
  404. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  405. struct {
  406. int curr; /* highest queued rt task prio */
  407. #ifdef CONFIG_SMP
  408. int next; /* next highest */
  409. #endif
  410. } highest_prio;
  411. #endif
  412. #ifdef CONFIG_SMP
  413. unsigned long rt_nr_migratory;
  414. int overloaded;
  415. struct plist_head pushable_tasks;
  416. #endif
  417. int rt_throttled;
  418. u64 rt_time;
  419. u64 rt_runtime;
  420. /* Nests inside the rq lock: */
  421. spinlock_t rt_runtime_lock;
  422. #ifdef CONFIG_RT_GROUP_SCHED
  423. unsigned long rt_nr_boosted;
  424. struct rq *rq;
  425. struct list_head leaf_rt_rq_list;
  426. struct task_group *tg;
  427. struct sched_rt_entity *rt_se;
  428. #endif
  429. };
  430. #ifdef CONFIG_SMP
  431. /*
  432. * We add the notion of a root-domain which will be used to define per-domain
  433. * variables. Each exclusive cpuset essentially defines an island domain by
  434. * fully partitioning the member cpus from any other cpuset. Whenever a new
  435. * exclusive cpuset is created, we also create and attach a new root-domain
  436. * object.
  437. *
  438. */
  439. struct root_domain {
  440. atomic_t refcount;
  441. cpumask_var_t span;
  442. cpumask_var_t online;
  443. /*
  444. * The "RT overload" flag: it gets set if a CPU has more than
  445. * one runnable RT task.
  446. */
  447. cpumask_var_t rto_mask;
  448. atomic_t rto_count;
  449. #ifdef CONFIG_SMP
  450. struct cpupri cpupri;
  451. #endif
  452. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  453. /*
  454. * Preferred wake up cpu nominated by sched_mc balance that will be
  455. * used when most cpus are idle in the system indicating overall very
  456. * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
  457. */
  458. unsigned int sched_mc_preferred_wakeup_cpu;
  459. #endif
  460. };
  461. /*
  462. * By default the system creates a single root-domain with all cpus as
  463. * members (mimicking the global state we have today).
  464. */
  465. static struct root_domain def_root_domain;
  466. #endif
  467. /*
  468. * This is the main, per-CPU runqueue data structure.
  469. *
  470. * Locking rule: those places that want to lock multiple runqueues
  471. * (such as the load balancing or the thread migration code), lock
  472. * acquire operations must be ordered by ascending &runqueue.
  473. */
  474. struct rq {
  475. /* runqueue lock: */
  476. spinlock_t lock;
  477. /*
  478. * nr_running and cpu_load should be in the same cacheline because
  479. * remote CPUs use both these fields when doing load calculation.
  480. */
  481. unsigned long nr_running;
  482. #define CPU_LOAD_IDX_MAX 5
  483. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  484. #ifdef CONFIG_NO_HZ
  485. unsigned long last_tick_seen;
  486. unsigned char in_nohz_recently;
  487. #endif
  488. /* capture load from *all* tasks on this cpu: */
  489. struct load_weight load;
  490. unsigned long nr_load_updates;
  491. u64 nr_switches;
  492. struct cfs_rq cfs;
  493. struct rt_rq rt;
  494. #ifdef CONFIG_FAIR_GROUP_SCHED
  495. /* list of leaf cfs_rq on this cpu: */
  496. struct list_head leaf_cfs_rq_list;
  497. #endif
  498. #ifdef CONFIG_RT_GROUP_SCHED
  499. struct list_head leaf_rt_rq_list;
  500. #endif
  501. /*
  502. * This is part of a global counter where only the total sum
  503. * over all CPUs matters. A task can increase this counter on
  504. * one CPU and if it got migrated afterwards it may decrease
  505. * it on another CPU. Always updated under the runqueue lock:
  506. */
  507. unsigned long nr_uninterruptible;
  508. struct task_struct *curr, *idle;
  509. unsigned long next_balance;
  510. struct mm_struct *prev_mm;
  511. u64 clock;
  512. atomic_t nr_iowait;
  513. #ifdef CONFIG_SMP
  514. struct root_domain *rd;
  515. struct sched_domain *sd;
  516. unsigned char idle_at_tick;
  517. /* For active balancing */
  518. int active_balance;
  519. int push_cpu;
  520. /* cpu of this runqueue: */
  521. int cpu;
  522. int online;
  523. unsigned long avg_load_per_task;
  524. struct task_struct *migration_thread;
  525. struct list_head migration_queue;
  526. #endif
  527. #ifdef CONFIG_SCHED_HRTICK
  528. #ifdef CONFIG_SMP
  529. int hrtick_csd_pending;
  530. struct call_single_data hrtick_csd;
  531. #endif
  532. struct hrtimer hrtick_timer;
  533. #endif
  534. #ifdef CONFIG_SCHEDSTATS
  535. /* latency stats */
  536. struct sched_info rq_sched_info;
  537. unsigned long long rq_cpu_time;
  538. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  539. /* sys_sched_yield() stats */
  540. unsigned int yld_count;
  541. /* schedule() stats */
  542. unsigned int sched_switch;
  543. unsigned int sched_count;
  544. unsigned int sched_goidle;
  545. /* try_to_wake_up() stats */
  546. unsigned int ttwu_count;
  547. unsigned int ttwu_local;
  548. /* BKL stats */
  549. unsigned int bkl_count;
  550. #endif
  551. };
  552. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  553. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  554. {
  555. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  556. }
  557. static inline int cpu_of(struct rq *rq)
  558. {
  559. #ifdef CONFIG_SMP
  560. return rq->cpu;
  561. #else
  562. return 0;
  563. #endif
  564. }
  565. /*
  566. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  567. * See detach_destroy_domains: synchronize_sched for details.
  568. *
  569. * The domain tree of any CPU may only be accessed from within
  570. * preempt-disabled sections.
  571. */
  572. #define for_each_domain(cpu, __sd) \
  573. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  574. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  575. #define this_rq() (&__get_cpu_var(runqueues))
  576. #define task_rq(p) cpu_rq(task_cpu(p))
  577. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  578. static inline void update_rq_clock(struct rq *rq)
  579. {
  580. rq->clock = sched_clock_cpu(cpu_of(rq));
  581. }
  582. /*
  583. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  584. */
  585. #ifdef CONFIG_SCHED_DEBUG
  586. # define const_debug __read_mostly
  587. #else
  588. # define const_debug static const
  589. #endif
  590. /**
  591. * runqueue_is_locked
  592. *
  593. * Returns true if the current cpu runqueue is locked.
  594. * This interface allows printk to be called with the runqueue lock
  595. * held and know whether or not it is OK to wake up the klogd.
  596. */
  597. int runqueue_is_locked(void)
  598. {
  599. int cpu = get_cpu();
  600. struct rq *rq = cpu_rq(cpu);
  601. int ret;
  602. ret = spin_is_locked(&rq->lock);
  603. put_cpu();
  604. return ret;
  605. }
  606. /*
  607. * Debugging: various feature bits
  608. */
  609. #define SCHED_FEAT(name, enabled) \
  610. __SCHED_FEAT_##name ,
  611. enum {
  612. #include "sched_features.h"
  613. };
  614. #undef SCHED_FEAT
  615. #define SCHED_FEAT(name, enabled) \
  616. (1UL << __SCHED_FEAT_##name) * enabled |
  617. const_debug unsigned int sysctl_sched_features =
  618. #include "sched_features.h"
  619. 0;
  620. #undef SCHED_FEAT
  621. #ifdef CONFIG_SCHED_DEBUG
  622. #define SCHED_FEAT(name, enabled) \
  623. #name ,
  624. static __read_mostly char *sched_feat_names[] = {
  625. #include "sched_features.h"
  626. NULL
  627. };
  628. #undef SCHED_FEAT
  629. static int sched_feat_show(struct seq_file *m, void *v)
  630. {
  631. int i;
  632. for (i = 0; sched_feat_names[i]; i++) {
  633. if (!(sysctl_sched_features & (1UL << i)))
  634. seq_puts(m, "NO_");
  635. seq_printf(m, "%s ", sched_feat_names[i]);
  636. }
  637. seq_puts(m, "\n");
  638. return 0;
  639. }
  640. static ssize_t
  641. sched_feat_write(struct file *filp, const char __user *ubuf,
  642. size_t cnt, loff_t *ppos)
  643. {
  644. char buf[64];
  645. char *cmp = buf;
  646. int neg = 0;
  647. int i;
  648. if (cnt > 63)
  649. cnt = 63;
  650. if (copy_from_user(&buf, ubuf, cnt))
  651. return -EFAULT;
  652. buf[cnt] = 0;
  653. if (strncmp(buf, "NO_", 3) == 0) {
  654. neg = 1;
  655. cmp += 3;
  656. }
  657. for (i = 0; sched_feat_names[i]; i++) {
  658. int len = strlen(sched_feat_names[i]);
  659. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  660. if (neg)
  661. sysctl_sched_features &= ~(1UL << i);
  662. else
  663. sysctl_sched_features |= (1UL << i);
  664. break;
  665. }
  666. }
  667. if (!sched_feat_names[i])
  668. return -EINVAL;
  669. filp->f_pos += cnt;
  670. return cnt;
  671. }
  672. static int sched_feat_open(struct inode *inode, struct file *filp)
  673. {
  674. return single_open(filp, sched_feat_show, NULL);
  675. }
  676. static struct file_operations sched_feat_fops = {
  677. .open = sched_feat_open,
  678. .write = sched_feat_write,
  679. .read = seq_read,
  680. .llseek = seq_lseek,
  681. .release = single_release,
  682. };
  683. static __init int sched_init_debug(void)
  684. {
  685. debugfs_create_file("sched_features", 0644, NULL, NULL,
  686. &sched_feat_fops);
  687. return 0;
  688. }
  689. late_initcall(sched_init_debug);
  690. #endif
  691. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  692. /*
  693. * Number of tasks to iterate in a single balance run.
  694. * Limited because this is done with IRQs disabled.
  695. */
  696. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  697. /*
  698. * ratelimit for updating the group shares.
  699. * default: 0.25ms
  700. */
  701. unsigned int sysctl_sched_shares_ratelimit = 250000;
  702. /*
  703. * Inject some fuzzyness into changing the per-cpu group shares
  704. * this avoids remote rq-locks at the expense of fairness.
  705. * default: 4
  706. */
  707. unsigned int sysctl_sched_shares_thresh = 4;
  708. /*
  709. * period over which we measure -rt task cpu usage in us.
  710. * default: 1s
  711. */
  712. unsigned int sysctl_sched_rt_period = 1000000;
  713. static __read_mostly int scheduler_running;
  714. /*
  715. * part of the period that we allow rt tasks to run in us.
  716. * default: 0.95s
  717. */
  718. int sysctl_sched_rt_runtime = 950000;
  719. static inline u64 global_rt_period(void)
  720. {
  721. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  722. }
  723. static inline u64 global_rt_runtime(void)
  724. {
  725. if (sysctl_sched_rt_runtime < 0)
  726. return RUNTIME_INF;
  727. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  728. }
  729. #ifndef prepare_arch_switch
  730. # define prepare_arch_switch(next) do { } while (0)
  731. #endif
  732. #ifndef finish_arch_switch
  733. # define finish_arch_switch(prev) do { } while (0)
  734. #endif
  735. static inline int task_current(struct rq *rq, struct task_struct *p)
  736. {
  737. return rq->curr == p;
  738. }
  739. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  740. static inline int task_running(struct rq *rq, struct task_struct *p)
  741. {
  742. return task_current(rq, p);
  743. }
  744. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  745. {
  746. }
  747. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  748. {
  749. #ifdef CONFIG_DEBUG_SPINLOCK
  750. /* this is a valid case when another task releases the spinlock */
  751. rq->lock.owner = current;
  752. #endif
  753. /*
  754. * If we are tracking spinlock dependencies then we have to
  755. * fix up the runqueue lock - which gets 'carried over' from
  756. * prev into current:
  757. */
  758. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  759. spin_unlock_irq(&rq->lock);
  760. }
  761. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  762. static inline int task_running(struct rq *rq, struct task_struct *p)
  763. {
  764. #ifdef CONFIG_SMP
  765. return p->oncpu;
  766. #else
  767. return task_current(rq, p);
  768. #endif
  769. }
  770. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  771. {
  772. #ifdef CONFIG_SMP
  773. /*
  774. * We can optimise this out completely for !SMP, because the
  775. * SMP rebalancing from interrupt is the only thing that cares
  776. * here.
  777. */
  778. next->oncpu = 1;
  779. #endif
  780. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  781. spin_unlock_irq(&rq->lock);
  782. #else
  783. spin_unlock(&rq->lock);
  784. #endif
  785. }
  786. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  787. {
  788. #ifdef CONFIG_SMP
  789. /*
  790. * After ->oncpu is cleared, the task can be moved to a different CPU.
  791. * We must ensure this doesn't happen until the switch is completely
  792. * finished.
  793. */
  794. smp_wmb();
  795. prev->oncpu = 0;
  796. #endif
  797. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  798. local_irq_enable();
  799. #endif
  800. }
  801. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  802. /*
  803. * __task_rq_lock - lock the runqueue a given task resides on.
  804. * Must be called interrupts disabled.
  805. */
  806. static inline struct rq *__task_rq_lock(struct task_struct *p)
  807. __acquires(rq->lock)
  808. {
  809. for (;;) {
  810. struct rq *rq = task_rq(p);
  811. spin_lock(&rq->lock);
  812. if (likely(rq == task_rq(p)))
  813. return rq;
  814. spin_unlock(&rq->lock);
  815. }
  816. }
  817. /*
  818. * task_rq_lock - lock the runqueue a given task resides on and disable
  819. * interrupts. Note the ordering: we can safely lookup the task_rq without
  820. * explicitly disabling preemption.
  821. */
  822. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  823. __acquires(rq->lock)
  824. {
  825. struct rq *rq;
  826. for (;;) {
  827. local_irq_save(*flags);
  828. rq = task_rq(p);
  829. spin_lock(&rq->lock);
  830. if (likely(rq == task_rq(p)))
  831. return rq;
  832. spin_unlock_irqrestore(&rq->lock, *flags);
  833. }
  834. }
  835. void task_rq_unlock_wait(struct task_struct *p)
  836. {
  837. struct rq *rq = task_rq(p);
  838. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  839. spin_unlock_wait(&rq->lock);
  840. }
  841. static void __task_rq_unlock(struct rq *rq)
  842. __releases(rq->lock)
  843. {
  844. spin_unlock(&rq->lock);
  845. }
  846. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  847. __releases(rq->lock)
  848. {
  849. spin_unlock_irqrestore(&rq->lock, *flags);
  850. }
  851. /*
  852. * this_rq_lock - lock this runqueue and disable interrupts.
  853. */
  854. static struct rq *this_rq_lock(void)
  855. __acquires(rq->lock)
  856. {
  857. struct rq *rq;
  858. local_irq_disable();
  859. rq = this_rq();
  860. spin_lock(&rq->lock);
  861. return rq;
  862. }
  863. #ifdef CONFIG_SCHED_HRTICK
  864. /*
  865. * Use HR-timers to deliver accurate preemption points.
  866. *
  867. * Its all a bit involved since we cannot program an hrt while holding the
  868. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  869. * reschedule event.
  870. *
  871. * When we get rescheduled we reprogram the hrtick_timer outside of the
  872. * rq->lock.
  873. */
  874. /*
  875. * Use hrtick when:
  876. * - enabled by features
  877. * - hrtimer is actually high res
  878. */
  879. static inline int hrtick_enabled(struct rq *rq)
  880. {
  881. if (!sched_feat(HRTICK))
  882. return 0;
  883. if (!cpu_active(cpu_of(rq)))
  884. return 0;
  885. return hrtimer_is_hres_active(&rq->hrtick_timer);
  886. }
  887. static void hrtick_clear(struct rq *rq)
  888. {
  889. if (hrtimer_active(&rq->hrtick_timer))
  890. hrtimer_cancel(&rq->hrtick_timer);
  891. }
  892. /*
  893. * High-resolution timer tick.
  894. * Runs from hardirq context with interrupts disabled.
  895. */
  896. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  897. {
  898. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  899. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  900. spin_lock(&rq->lock);
  901. update_rq_clock(rq);
  902. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  903. spin_unlock(&rq->lock);
  904. return HRTIMER_NORESTART;
  905. }
  906. #ifdef CONFIG_SMP
  907. /*
  908. * called from hardirq (IPI) context
  909. */
  910. static void __hrtick_start(void *arg)
  911. {
  912. struct rq *rq = arg;
  913. spin_lock(&rq->lock);
  914. hrtimer_restart(&rq->hrtick_timer);
  915. rq->hrtick_csd_pending = 0;
  916. spin_unlock(&rq->lock);
  917. }
  918. /*
  919. * Called to set the hrtick timer state.
  920. *
  921. * called with rq->lock held and irqs disabled
  922. */
  923. static void hrtick_start(struct rq *rq, u64 delay)
  924. {
  925. struct hrtimer *timer = &rq->hrtick_timer;
  926. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  927. hrtimer_set_expires(timer, time);
  928. if (rq == this_rq()) {
  929. hrtimer_restart(timer);
  930. } else if (!rq->hrtick_csd_pending) {
  931. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
  932. rq->hrtick_csd_pending = 1;
  933. }
  934. }
  935. static int
  936. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  937. {
  938. int cpu = (int)(long)hcpu;
  939. switch (action) {
  940. case CPU_UP_CANCELED:
  941. case CPU_UP_CANCELED_FROZEN:
  942. case CPU_DOWN_PREPARE:
  943. case CPU_DOWN_PREPARE_FROZEN:
  944. case CPU_DEAD:
  945. case CPU_DEAD_FROZEN:
  946. hrtick_clear(cpu_rq(cpu));
  947. return NOTIFY_OK;
  948. }
  949. return NOTIFY_DONE;
  950. }
  951. static __init void init_hrtick(void)
  952. {
  953. hotcpu_notifier(hotplug_hrtick, 0);
  954. }
  955. #else
  956. /*
  957. * Called to set the hrtick timer state.
  958. *
  959. * called with rq->lock held and irqs disabled
  960. */
  961. static void hrtick_start(struct rq *rq, u64 delay)
  962. {
  963. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
  964. }
  965. static inline void init_hrtick(void)
  966. {
  967. }
  968. #endif /* CONFIG_SMP */
  969. static void init_rq_hrtick(struct rq *rq)
  970. {
  971. #ifdef CONFIG_SMP
  972. rq->hrtick_csd_pending = 0;
  973. rq->hrtick_csd.flags = 0;
  974. rq->hrtick_csd.func = __hrtick_start;
  975. rq->hrtick_csd.info = rq;
  976. #endif
  977. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  978. rq->hrtick_timer.function = hrtick;
  979. }
  980. #else /* CONFIG_SCHED_HRTICK */
  981. static inline void hrtick_clear(struct rq *rq)
  982. {
  983. }
  984. static inline void init_rq_hrtick(struct rq *rq)
  985. {
  986. }
  987. static inline void init_hrtick(void)
  988. {
  989. }
  990. #endif /* CONFIG_SCHED_HRTICK */
  991. /*
  992. * resched_task - mark a task 'to be rescheduled now'.
  993. *
  994. * On UP this means the setting of the need_resched flag, on SMP it
  995. * might also involve a cross-CPU call to trigger the scheduler on
  996. * the target CPU.
  997. */
  998. #ifdef CONFIG_SMP
  999. #ifndef tsk_is_polling
  1000. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1001. #endif
  1002. static void resched_task(struct task_struct *p)
  1003. {
  1004. int cpu;
  1005. assert_spin_locked(&task_rq(p)->lock);
  1006. if (test_tsk_need_resched(p))
  1007. return;
  1008. set_tsk_need_resched(p);
  1009. cpu = task_cpu(p);
  1010. if (cpu == smp_processor_id())
  1011. return;
  1012. /* NEED_RESCHED must be visible before we test polling */
  1013. smp_mb();
  1014. if (!tsk_is_polling(p))
  1015. smp_send_reschedule(cpu);
  1016. }
  1017. static void resched_cpu(int cpu)
  1018. {
  1019. struct rq *rq = cpu_rq(cpu);
  1020. unsigned long flags;
  1021. if (!spin_trylock_irqsave(&rq->lock, flags))
  1022. return;
  1023. resched_task(cpu_curr(cpu));
  1024. spin_unlock_irqrestore(&rq->lock, flags);
  1025. }
  1026. #ifdef CONFIG_NO_HZ
  1027. /*
  1028. * When add_timer_on() enqueues a timer into the timer wheel of an
  1029. * idle CPU then this timer might expire before the next timer event
  1030. * which is scheduled to wake up that CPU. In case of a completely
  1031. * idle system the next event might even be infinite time into the
  1032. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1033. * leaves the inner idle loop so the newly added timer is taken into
  1034. * account when the CPU goes back to idle and evaluates the timer
  1035. * wheel for the next timer event.
  1036. */
  1037. void wake_up_idle_cpu(int cpu)
  1038. {
  1039. struct rq *rq = cpu_rq(cpu);
  1040. if (cpu == smp_processor_id())
  1041. return;
  1042. /*
  1043. * This is safe, as this function is called with the timer
  1044. * wheel base lock of (cpu) held. When the CPU is on the way
  1045. * to idle and has not yet set rq->curr to idle then it will
  1046. * be serialized on the timer wheel base lock and take the new
  1047. * timer into account automatically.
  1048. */
  1049. if (rq->curr != rq->idle)
  1050. return;
  1051. /*
  1052. * We can set TIF_RESCHED on the idle task of the other CPU
  1053. * lockless. The worst case is that the other CPU runs the
  1054. * idle task through an additional NOOP schedule()
  1055. */
  1056. set_tsk_need_resched(rq->idle);
  1057. /* NEED_RESCHED must be visible before we test polling */
  1058. smp_mb();
  1059. if (!tsk_is_polling(rq->idle))
  1060. smp_send_reschedule(cpu);
  1061. }
  1062. #endif /* CONFIG_NO_HZ */
  1063. #else /* !CONFIG_SMP */
  1064. static void resched_task(struct task_struct *p)
  1065. {
  1066. assert_spin_locked(&task_rq(p)->lock);
  1067. set_tsk_need_resched(p);
  1068. }
  1069. #endif /* CONFIG_SMP */
  1070. #if BITS_PER_LONG == 32
  1071. # define WMULT_CONST (~0UL)
  1072. #else
  1073. # define WMULT_CONST (1UL << 32)
  1074. #endif
  1075. #define WMULT_SHIFT 32
  1076. /*
  1077. * Shift right and round:
  1078. */
  1079. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1080. /*
  1081. * delta *= weight / lw
  1082. */
  1083. static unsigned long
  1084. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1085. struct load_weight *lw)
  1086. {
  1087. u64 tmp;
  1088. if (!lw->inv_weight) {
  1089. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1090. lw->inv_weight = 1;
  1091. else
  1092. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1093. / (lw->weight+1);
  1094. }
  1095. tmp = (u64)delta_exec * weight;
  1096. /*
  1097. * Check whether we'd overflow the 64-bit multiplication:
  1098. */
  1099. if (unlikely(tmp > WMULT_CONST))
  1100. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1101. WMULT_SHIFT/2);
  1102. else
  1103. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1104. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1105. }
  1106. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1107. {
  1108. lw->weight += inc;
  1109. lw->inv_weight = 0;
  1110. }
  1111. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1112. {
  1113. lw->weight -= dec;
  1114. lw->inv_weight = 0;
  1115. }
  1116. /*
  1117. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1118. * of tasks with abnormal "nice" values across CPUs the contribution that
  1119. * each task makes to its run queue's load is weighted according to its
  1120. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1121. * scaled version of the new time slice allocation that they receive on time
  1122. * slice expiry etc.
  1123. */
  1124. #define WEIGHT_IDLEPRIO 3
  1125. #define WMULT_IDLEPRIO 1431655765
  1126. /*
  1127. * Nice levels are multiplicative, with a gentle 10% change for every
  1128. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1129. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1130. * that remained on nice 0.
  1131. *
  1132. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1133. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1134. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1135. * If a task goes up by ~10% and another task goes down by ~10% then
  1136. * the relative distance between them is ~25%.)
  1137. */
  1138. static const int prio_to_weight[40] = {
  1139. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1140. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1141. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1142. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1143. /* 0 */ 1024, 820, 655, 526, 423,
  1144. /* 5 */ 335, 272, 215, 172, 137,
  1145. /* 10 */ 110, 87, 70, 56, 45,
  1146. /* 15 */ 36, 29, 23, 18, 15,
  1147. };
  1148. /*
  1149. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1150. *
  1151. * In cases where the weight does not change often, we can use the
  1152. * precalculated inverse to speed up arithmetics by turning divisions
  1153. * into multiplications:
  1154. */
  1155. static const u32 prio_to_wmult[40] = {
  1156. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1157. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1158. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1159. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1160. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1161. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1162. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1163. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1164. };
  1165. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1166. /*
  1167. * runqueue iterator, to support SMP load-balancing between different
  1168. * scheduling classes, without having to expose their internal data
  1169. * structures to the load-balancing proper:
  1170. */
  1171. struct rq_iterator {
  1172. void *arg;
  1173. struct task_struct *(*start)(void *);
  1174. struct task_struct *(*next)(void *);
  1175. };
  1176. #ifdef CONFIG_SMP
  1177. static unsigned long
  1178. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1179. unsigned long max_load_move, struct sched_domain *sd,
  1180. enum cpu_idle_type idle, int *all_pinned,
  1181. int *this_best_prio, struct rq_iterator *iterator);
  1182. static int
  1183. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1184. struct sched_domain *sd, enum cpu_idle_type idle,
  1185. struct rq_iterator *iterator);
  1186. #endif
  1187. #ifdef CONFIG_CGROUP_CPUACCT
  1188. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1189. #else
  1190. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1191. #endif
  1192. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1193. {
  1194. update_load_add(&rq->load, load);
  1195. }
  1196. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1197. {
  1198. update_load_sub(&rq->load, load);
  1199. }
  1200. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1201. typedef int (*tg_visitor)(struct task_group *, void *);
  1202. /*
  1203. * Iterate the full tree, calling @down when first entering a node and @up when
  1204. * leaving it for the final time.
  1205. */
  1206. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1207. {
  1208. struct task_group *parent, *child;
  1209. int ret;
  1210. rcu_read_lock();
  1211. parent = &root_task_group;
  1212. down:
  1213. ret = (*down)(parent, data);
  1214. if (ret)
  1215. goto out_unlock;
  1216. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1217. parent = child;
  1218. goto down;
  1219. up:
  1220. continue;
  1221. }
  1222. ret = (*up)(parent, data);
  1223. if (ret)
  1224. goto out_unlock;
  1225. child = parent;
  1226. parent = parent->parent;
  1227. if (parent)
  1228. goto up;
  1229. out_unlock:
  1230. rcu_read_unlock();
  1231. return ret;
  1232. }
  1233. static int tg_nop(struct task_group *tg, void *data)
  1234. {
  1235. return 0;
  1236. }
  1237. #endif
  1238. #ifdef CONFIG_SMP
  1239. static unsigned long source_load(int cpu, int type);
  1240. static unsigned long target_load(int cpu, int type);
  1241. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1242. static unsigned long cpu_avg_load_per_task(int cpu)
  1243. {
  1244. struct rq *rq = cpu_rq(cpu);
  1245. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1246. if (nr_running)
  1247. rq->avg_load_per_task = rq->load.weight / nr_running;
  1248. else
  1249. rq->avg_load_per_task = 0;
  1250. return rq->avg_load_per_task;
  1251. }
  1252. #ifdef CONFIG_FAIR_GROUP_SCHED
  1253. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1254. /*
  1255. * Calculate and set the cpu's group shares.
  1256. */
  1257. static void
  1258. update_group_shares_cpu(struct task_group *tg, int cpu,
  1259. unsigned long sd_shares, unsigned long sd_rq_weight)
  1260. {
  1261. unsigned long shares;
  1262. unsigned long rq_weight;
  1263. if (!tg->se[cpu])
  1264. return;
  1265. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1266. /*
  1267. * \Sum shares * rq_weight
  1268. * shares = -----------------------
  1269. * \Sum rq_weight
  1270. *
  1271. */
  1272. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1273. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1274. if (abs(shares - tg->se[cpu]->load.weight) >
  1275. sysctl_sched_shares_thresh) {
  1276. struct rq *rq = cpu_rq(cpu);
  1277. unsigned long flags;
  1278. spin_lock_irqsave(&rq->lock, flags);
  1279. tg->cfs_rq[cpu]->shares = shares;
  1280. __set_se_shares(tg->se[cpu], shares);
  1281. spin_unlock_irqrestore(&rq->lock, flags);
  1282. }
  1283. }
  1284. /*
  1285. * Re-compute the task group their per cpu shares over the given domain.
  1286. * This needs to be done in a bottom-up fashion because the rq weight of a
  1287. * parent group depends on the shares of its child groups.
  1288. */
  1289. static int tg_shares_up(struct task_group *tg, void *data)
  1290. {
  1291. unsigned long weight, rq_weight = 0;
  1292. unsigned long shares = 0;
  1293. struct sched_domain *sd = data;
  1294. int i;
  1295. for_each_cpu(i, sched_domain_span(sd)) {
  1296. /*
  1297. * If there are currently no tasks on the cpu pretend there
  1298. * is one of average load so that when a new task gets to
  1299. * run here it will not get delayed by group starvation.
  1300. */
  1301. weight = tg->cfs_rq[i]->load.weight;
  1302. if (!weight)
  1303. weight = NICE_0_LOAD;
  1304. tg->cfs_rq[i]->rq_weight = weight;
  1305. rq_weight += weight;
  1306. shares += tg->cfs_rq[i]->shares;
  1307. }
  1308. if ((!shares && rq_weight) || shares > tg->shares)
  1309. shares = tg->shares;
  1310. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1311. shares = tg->shares;
  1312. for_each_cpu(i, sched_domain_span(sd))
  1313. update_group_shares_cpu(tg, i, shares, rq_weight);
  1314. return 0;
  1315. }
  1316. /*
  1317. * Compute the cpu's hierarchical load factor for each task group.
  1318. * This needs to be done in a top-down fashion because the load of a child
  1319. * group is a fraction of its parents load.
  1320. */
  1321. static int tg_load_down(struct task_group *tg, void *data)
  1322. {
  1323. unsigned long load;
  1324. long cpu = (long)data;
  1325. if (!tg->parent) {
  1326. load = cpu_rq(cpu)->load.weight;
  1327. } else {
  1328. load = tg->parent->cfs_rq[cpu]->h_load;
  1329. load *= tg->cfs_rq[cpu]->shares;
  1330. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1331. }
  1332. tg->cfs_rq[cpu]->h_load = load;
  1333. return 0;
  1334. }
  1335. static void update_shares(struct sched_domain *sd)
  1336. {
  1337. u64 now = cpu_clock(raw_smp_processor_id());
  1338. s64 elapsed = now - sd->last_update;
  1339. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1340. sd->last_update = now;
  1341. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1342. }
  1343. }
  1344. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1345. {
  1346. spin_unlock(&rq->lock);
  1347. update_shares(sd);
  1348. spin_lock(&rq->lock);
  1349. }
  1350. static void update_h_load(long cpu)
  1351. {
  1352. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1353. }
  1354. #else
  1355. static inline void update_shares(struct sched_domain *sd)
  1356. {
  1357. }
  1358. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1359. {
  1360. }
  1361. #endif
  1362. #ifdef CONFIG_PREEMPT
  1363. /*
  1364. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1365. * way at the expense of forcing extra atomic operations in all
  1366. * invocations. This assures that the double_lock is acquired using the
  1367. * same underlying policy as the spinlock_t on this architecture, which
  1368. * reduces latency compared to the unfair variant below. However, it
  1369. * also adds more overhead and therefore may reduce throughput.
  1370. */
  1371. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1372. __releases(this_rq->lock)
  1373. __acquires(busiest->lock)
  1374. __acquires(this_rq->lock)
  1375. {
  1376. spin_unlock(&this_rq->lock);
  1377. double_rq_lock(this_rq, busiest);
  1378. return 1;
  1379. }
  1380. #else
  1381. /*
  1382. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1383. * latency by eliminating extra atomic operations when the locks are
  1384. * already in proper order on entry. This favors lower cpu-ids and will
  1385. * grant the double lock to lower cpus over higher ids under contention,
  1386. * regardless of entry order into the function.
  1387. */
  1388. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1389. __releases(this_rq->lock)
  1390. __acquires(busiest->lock)
  1391. __acquires(this_rq->lock)
  1392. {
  1393. int ret = 0;
  1394. if (unlikely(!spin_trylock(&busiest->lock))) {
  1395. if (busiest < this_rq) {
  1396. spin_unlock(&this_rq->lock);
  1397. spin_lock(&busiest->lock);
  1398. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1399. ret = 1;
  1400. } else
  1401. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1402. }
  1403. return ret;
  1404. }
  1405. #endif /* CONFIG_PREEMPT */
  1406. /*
  1407. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1408. */
  1409. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1410. {
  1411. if (unlikely(!irqs_disabled())) {
  1412. /* printk() doesn't work good under rq->lock */
  1413. spin_unlock(&this_rq->lock);
  1414. BUG_ON(1);
  1415. }
  1416. return _double_lock_balance(this_rq, busiest);
  1417. }
  1418. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1419. __releases(busiest->lock)
  1420. {
  1421. spin_unlock(&busiest->lock);
  1422. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1423. }
  1424. #endif
  1425. #ifdef CONFIG_FAIR_GROUP_SCHED
  1426. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1427. {
  1428. #ifdef CONFIG_SMP
  1429. cfs_rq->shares = shares;
  1430. #endif
  1431. }
  1432. #endif
  1433. #include "sched_stats.h"
  1434. #include "sched_idletask.c"
  1435. #include "sched_fair.c"
  1436. #include "sched_rt.c"
  1437. #ifdef CONFIG_SCHED_DEBUG
  1438. # include "sched_debug.c"
  1439. #endif
  1440. #define sched_class_highest (&rt_sched_class)
  1441. #define for_each_class(class) \
  1442. for (class = sched_class_highest; class; class = class->next)
  1443. static void inc_nr_running(struct rq *rq)
  1444. {
  1445. rq->nr_running++;
  1446. }
  1447. static void dec_nr_running(struct rq *rq)
  1448. {
  1449. rq->nr_running--;
  1450. }
  1451. static void set_load_weight(struct task_struct *p)
  1452. {
  1453. if (task_has_rt_policy(p)) {
  1454. p->se.load.weight = prio_to_weight[0] * 2;
  1455. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1456. return;
  1457. }
  1458. /*
  1459. * SCHED_IDLE tasks get minimal weight:
  1460. */
  1461. if (p->policy == SCHED_IDLE) {
  1462. p->se.load.weight = WEIGHT_IDLEPRIO;
  1463. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1464. return;
  1465. }
  1466. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1467. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1468. }
  1469. static void update_avg(u64 *avg, u64 sample)
  1470. {
  1471. s64 diff = sample - *avg;
  1472. *avg += diff >> 3;
  1473. }
  1474. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1475. {
  1476. if (wakeup)
  1477. p->se.start_runtime = p->se.sum_exec_runtime;
  1478. sched_info_queued(p);
  1479. p->sched_class->enqueue_task(rq, p, wakeup);
  1480. p->se.on_rq = 1;
  1481. }
  1482. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1483. {
  1484. if (sleep) {
  1485. if (p->se.last_wakeup) {
  1486. update_avg(&p->se.avg_overlap,
  1487. p->se.sum_exec_runtime - p->se.last_wakeup);
  1488. p->se.last_wakeup = 0;
  1489. } else {
  1490. update_avg(&p->se.avg_wakeup,
  1491. sysctl_sched_wakeup_granularity);
  1492. }
  1493. }
  1494. sched_info_dequeued(p);
  1495. p->sched_class->dequeue_task(rq, p, sleep);
  1496. p->se.on_rq = 0;
  1497. }
  1498. /*
  1499. * __normal_prio - return the priority that is based on the static prio
  1500. */
  1501. static inline int __normal_prio(struct task_struct *p)
  1502. {
  1503. return p->static_prio;
  1504. }
  1505. /*
  1506. * Calculate the expected normal priority: i.e. priority
  1507. * without taking RT-inheritance into account. Might be
  1508. * boosted by interactivity modifiers. Changes upon fork,
  1509. * setprio syscalls, and whenever the interactivity
  1510. * estimator recalculates.
  1511. */
  1512. static inline int normal_prio(struct task_struct *p)
  1513. {
  1514. int prio;
  1515. if (task_has_rt_policy(p))
  1516. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1517. else
  1518. prio = __normal_prio(p);
  1519. return prio;
  1520. }
  1521. /*
  1522. * Calculate the current priority, i.e. the priority
  1523. * taken into account by the scheduler. This value might
  1524. * be boosted by RT tasks, or might be boosted by
  1525. * interactivity modifiers. Will be RT if the task got
  1526. * RT-boosted. If not then it returns p->normal_prio.
  1527. */
  1528. static int effective_prio(struct task_struct *p)
  1529. {
  1530. p->normal_prio = normal_prio(p);
  1531. /*
  1532. * If we are RT tasks or we were boosted to RT priority,
  1533. * keep the priority unchanged. Otherwise, update priority
  1534. * to the normal priority:
  1535. */
  1536. if (!rt_prio(p->prio))
  1537. return p->normal_prio;
  1538. return p->prio;
  1539. }
  1540. /*
  1541. * activate_task - move a task to the runqueue.
  1542. */
  1543. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1544. {
  1545. if (task_contributes_to_load(p))
  1546. rq->nr_uninterruptible--;
  1547. enqueue_task(rq, p, wakeup);
  1548. inc_nr_running(rq);
  1549. }
  1550. /*
  1551. * deactivate_task - remove a task from the runqueue.
  1552. */
  1553. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1554. {
  1555. if (task_contributes_to_load(p))
  1556. rq->nr_uninterruptible++;
  1557. dequeue_task(rq, p, sleep);
  1558. dec_nr_running(rq);
  1559. }
  1560. /**
  1561. * task_curr - is this task currently executing on a CPU?
  1562. * @p: the task in question.
  1563. */
  1564. inline int task_curr(const struct task_struct *p)
  1565. {
  1566. return cpu_curr(task_cpu(p)) == p;
  1567. }
  1568. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1569. {
  1570. set_task_rq(p, cpu);
  1571. #ifdef CONFIG_SMP
  1572. /*
  1573. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1574. * successfuly executed on another CPU. We must ensure that updates of
  1575. * per-task data have been completed by this moment.
  1576. */
  1577. smp_wmb();
  1578. task_thread_info(p)->cpu = cpu;
  1579. #endif
  1580. }
  1581. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1582. const struct sched_class *prev_class,
  1583. int oldprio, int running)
  1584. {
  1585. if (prev_class != p->sched_class) {
  1586. if (prev_class->switched_from)
  1587. prev_class->switched_from(rq, p, running);
  1588. p->sched_class->switched_to(rq, p, running);
  1589. } else
  1590. p->sched_class->prio_changed(rq, p, oldprio, running);
  1591. }
  1592. #ifdef CONFIG_SMP
  1593. /* Used instead of source_load when we know the type == 0 */
  1594. static unsigned long weighted_cpuload(const int cpu)
  1595. {
  1596. return cpu_rq(cpu)->load.weight;
  1597. }
  1598. /*
  1599. * Is this task likely cache-hot:
  1600. */
  1601. static int
  1602. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1603. {
  1604. s64 delta;
  1605. /*
  1606. * Buddy candidates are cache hot:
  1607. */
  1608. if (sched_feat(CACHE_HOT_BUDDY) &&
  1609. (&p->se == cfs_rq_of(&p->se)->next ||
  1610. &p->se == cfs_rq_of(&p->se)->last))
  1611. return 1;
  1612. if (p->sched_class != &fair_sched_class)
  1613. return 0;
  1614. if (sysctl_sched_migration_cost == -1)
  1615. return 1;
  1616. if (sysctl_sched_migration_cost == 0)
  1617. return 0;
  1618. delta = now - p->se.exec_start;
  1619. return delta < (s64)sysctl_sched_migration_cost;
  1620. }
  1621. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1622. {
  1623. int old_cpu = task_cpu(p);
  1624. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1625. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1626. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1627. u64 clock_offset;
  1628. clock_offset = old_rq->clock - new_rq->clock;
  1629. trace_sched_migrate_task(p, task_cpu(p), new_cpu);
  1630. #ifdef CONFIG_SCHEDSTATS
  1631. if (p->se.wait_start)
  1632. p->se.wait_start -= clock_offset;
  1633. if (p->se.sleep_start)
  1634. p->se.sleep_start -= clock_offset;
  1635. if (p->se.block_start)
  1636. p->se.block_start -= clock_offset;
  1637. if (old_cpu != new_cpu) {
  1638. schedstat_inc(p, se.nr_migrations);
  1639. if (task_hot(p, old_rq->clock, NULL))
  1640. schedstat_inc(p, se.nr_forced2_migrations);
  1641. }
  1642. #endif
  1643. p->se.vruntime -= old_cfsrq->min_vruntime -
  1644. new_cfsrq->min_vruntime;
  1645. __set_task_cpu(p, new_cpu);
  1646. }
  1647. struct migration_req {
  1648. struct list_head list;
  1649. struct task_struct *task;
  1650. int dest_cpu;
  1651. struct completion done;
  1652. };
  1653. /*
  1654. * The task's runqueue lock must be held.
  1655. * Returns true if you have to wait for migration thread.
  1656. */
  1657. static int
  1658. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1659. {
  1660. struct rq *rq = task_rq(p);
  1661. /*
  1662. * If the task is not on a runqueue (and not running), then
  1663. * it is sufficient to simply update the task's cpu field.
  1664. */
  1665. if (!p->se.on_rq && !task_running(rq, p)) {
  1666. set_task_cpu(p, dest_cpu);
  1667. return 0;
  1668. }
  1669. init_completion(&req->done);
  1670. req->task = p;
  1671. req->dest_cpu = dest_cpu;
  1672. list_add(&req->list, &rq->migration_queue);
  1673. return 1;
  1674. }
  1675. /*
  1676. * wait_task_inactive - wait for a thread to unschedule.
  1677. *
  1678. * If @match_state is nonzero, it's the @p->state value just checked and
  1679. * not expected to change. If it changes, i.e. @p might have woken up,
  1680. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1681. * we return a positive number (its total switch count). If a second call
  1682. * a short while later returns the same number, the caller can be sure that
  1683. * @p has remained unscheduled the whole time.
  1684. *
  1685. * The caller must ensure that the task *will* unschedule sometime soon,
  1686. * else this function might spin for a *long* time. This function can't
  1687. * be called with interrupts off, or it may introduce deadlock with
  1688. * smp_call_function() if an IPI is sent by the same process we are
  1689. * waiting to become inactive.
  1690. */
  1691. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1692. {
  1693. unsigned long flags;
  1694. int running, on_rq;
  1695. unsigned long ncsw;
  1696. struct rq *rq;
  1697. for (;;) {
  1698. /*
  1699. * We do the initial early heuristics without holding
  1700. * any task-queue locks at all. We'll only try to get
  1701. * the runqueue lock when things look like they will
  1702. * work out!
  1703. */
  1704. rq = task_rq(p);
  1705. /*
  1706. * If the task is actively running on another CPU
  1707. * still, just relax and busy-wait without holding
  1708. * any locks.
  1709. *
  1710. * NOTE! Since we don't hold any locks, it's not
  1711. * even sure that "rq" stays as the right runqueue!
  1712. * But we don't care, since "task_running()" will
  1713. * return false if the runqueue has changed and p
  1714. * is actually now running somewhere else!
  1715. */
  1716. while (task_running(rq, p)) {
  1717. if (match_state && unlikely(p->state != match_state))
  1718. return 0;
  1719. cpu_relax();
  1720. }
  1721. /*
  1722. * Ok, time to look more closely! We need the rq
  1723. * lock now, to be *sure*. If we're wrong, we'll
  1724. * just go back and repeat.
  1725. */
  1726. rq = task_rq_lock(p, &flags);
  1727. trace_sched_wait_task(rq, p);
  1728. running = task_running(rq, p);
  1729. on_rq = p->se.on_rq;
  1730. ncsw = 0;
  1731. if (!match_state || p->state == match_state)
  1732. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1733. task_rq_unlock(rq, &flags);
  1734. /*
  1735. * If it changed from the expected state, bail out now.
  1736. */
  1737. if (unlikely(!ncsw))
  1738. break;
  1739. /*
  1740. * Was it really running after all now that we
  1741. * checked with the proper locks actually held?
  1742. *
  1743. * Oops. Go back and try again..
  1744. */
  1745. if (unlikely(running)) {
  1746. cpu_relax();
  1747. continue;
  1748. }
  1749. /*
  1750. * It's not enough that it's not actively running,
  1751. * it must be off the runqueue _entirely_, and not
  1752. * preempted!
  1753. *
  1754. * So if it was still runnable (but just not actively
  1755. * running right now), it's preempted, and we should
  1756. * yield - it could be a while.
  1757. */
  1758. if (unlikely(on_rq)) {
  1759. schedule_timeout_uninterruptible(1);
  1760. continue;
  1761. }
  1762. /*
  1763. * Ahh, all good. It wasn't running, and it wasn't
  1764. * runnable, which means that it will never become
  1765. * running in the future either. We're all done!
  1766. */
  1767. break;
  1768. }
  1769. return ncsw;
  1770. }
  1771. /***
  1772. * kick_process - kick a running thread to enter/exit the kernel
  1773. * @p: the to-be-kicked thread
  1774. *
  1775. * Cause a process which is running on another CPU to enter
  1776. * kernel-mode, without any delay. (to get signals handled.)
  1777. *
  1778. * NOTE: this function doesnt have to take the runqueue lock,
  1779. * because all it wants to ensure is that the remote task enters
  1780. * the kernel. If the IPI races and the task has been migrated
  1781. * to another CPU then no harm is done and the purpose has been
  1782. * achieved as well.
  1783. */
  1784. void kick_process(struct task_struct *p)
  1785. {
  1786. int cpu;
  1787. preempt_disable();
  1788. cpu = task_cpu(p);
  1789. if ((cpu != smp_processor_id()) && task_curr(p))
  1790. smp_send_reschedule(cpu);
  1791. preempt_enable();
  1792. }
  1793. /*
  1794. * Return a low guess at the load of a migration-source cpu weighted
  1795. * according to the scheduling class and "nice" value.
  1796. *
  1797. * We want to under-estimate the load of migration sources, to
  1798. * balance conservatively.
  1799. */
  1800. static unsigned long source_load(int cpu, int type)
  1801. {
  1802. struct rq *rq = cpu_rq(cpu);
  1803. unsigned long total = weighted_cpuload(cpu);
  1804. if (type == 0 || !sched_feat(LB_BIAS))
  1805. return total;
  1806. return min(rq->cpu_load[type-1], total);
  1807. }
  1808. /*
  1809. * Return a high guess at the load of a migration-target cpu weighted
  1810. * according to the scheduling class and "nice" value.
  1811. */
  1812. static unsigned long target_load(int cpu, int type)
  1813. {
  1814. struct rq *rq = cpu_rq(cpu);
  1815. unsigned long total = weighted_cpuload(cpu);
  1816. if (type == 0 || !sched_feat(LB_BIAS))
  1817. return total;
  1818. return max(rq->cpu_load[type-1], total);
  1819. }
  1820. /*
  1821. * find_idlest_group finds and returns the least busy CPU group within the
  1822. * domain.
  1823. */
  1824. static struct sched_group *
  1825. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1826. {
  1827. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1828. unsigned long min_load = ULONG_MAX, this_load = 0;
  1829. int load_idx = sd->forkexec_idx;
  1830. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1831. do {
  1832. unsigned long load, avg_load;
  1833. int local_group;
  1834. int i;
  1835. /* Skip over this group if it has no CPUs allowed */
  1836. if (!cpumask_intersects(sched_group_cpus(group),
  1837. &p->cpus_allowed))
  1838. continue;
  1839. local_group = cpumask_test_cpu(this_cpu,
  1840. sched_group_cpus(group));
  1841. /* Tally up the load of all CPUs in the group */
  1842. avg_load = 0;
  1843. for_each_cpu(i, sched_group_cpus(group)) {
  1844. /* Bias balancing toward cpus of our domain */
  1845. if (local_group)
  1846. load = source_load(i, load_idx);
  1847. else
  1848. load = target_load(i, load_idx);
  1849. avg_load += load;
  1850. }
  1851. /* Adjust by relative CPU power of the group */
  1852. avg_load = sg_div_cpu_power(group,
  1853. avg_load * SCHED_LOAD_SCALE);
  1854. if (local_group) {
  1855. this_load = avg_load;
  1856. this = group;
  1857. } else if (avg_load < min_load) {
  1858. min_load = avg_load;
  1859. idlest = group;
  1860. }
  1861. } while (group = group->next, group != sd->groups);
  1862. if (!idlest || 100*this_load < imbalance*min_load)
  1863. return NULL;
  1864. return idlest;
  1865. }
  1866. /*
  1867. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1868. */
  1869. static int
  1870. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1871. {
  1872. unsigned long load, min_load = ULONG_MAX;
  1873. int idlest = -1;
  1874. int i;
  1875. /* Traverse only the allowed CPUs */
  1876. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1877. load = weighted_cpuload(i);
  1878. if (load < min_load || (load == min_load && i == this_cpu)) {
  1879. min_load = load;
  1880. idlest = i;
  1881. }
  1882. }
  1883. return idlest;
  1884. }
  1885. /*
  1886. * sched_balance_self: balance the current task (running on cpu) in domains
  1887. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1888. * SD_BALANCE_EXEC.
  1889. *
  1890. * Balance, ie. select the least loaded group.
  1891. *
  1892. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1893. *
  1894. * preempt must be disabled.
  1895. */
  1896. static int sched_balance_self(int cpu, int flag)
  1897. {
  1898. struct task_struct *t = current;
  1899. struct sched_domain *tmp, *sd = NULL;
  1900. for_each_domain(cpu, tmp) {
  1901. /*
  1902. * If power savings logic is enabled for a domain, stop there.
  1903. */
  1904. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1905. break;
  1906. if (tmp->flags & flag)
  1907. sd = tmp;
  1908. }
  1909. if (sd)
  1910. update_shares(sd);
  1911. while (sd) {
  1912. struct sched_group *group;
  1913. int new_cpu, weight;
  1914. if (!(sd->flags & flag)) {
  1915. sd = sd->child;
  1916. continue;
  1917. }
  1918. group = find_idlest_group(sd, t, cpu);
  1919. if (!group) {
  1920. sd = sd->child;
  1921. continue;
  1922. }
  1923. new_cpu = find_idlest_cpu(group, t, cpu);
  1924. if (new_cpu == -1 || new_cpu == cpu) {
  1925. /* Now try balancing at a lower domain level of cpu */
  1926. sd = sd->child;
  1927. continue;
  1928. }
  1929. /* Now try balancing at a lower domain level of new_cpu */
  1930. cpu = new_cpu;
  1931. weight = cpumask_weight(sched_domain_span(sd));
  1932. sd = NULL;
  1933. for_each_domain(cpu, tmp) {
  1934. if (weight <= cpumask_weight(sched_domain_span(tmp)))
  1935. break;
  1936. if (tmp->flags & flag)
  1937. sd = tmp;
  1938. }
  1939. /* while loop will break here if sd == NULL */
  1940. }
  1941. return cpu;
  1942. }
  1943. #endif /* CONFIG_SMP */
  1944. /***
  1945. * try_to_wake_up - wake up a thread
  1946. * @p: the to-be-woken-up thread
  1947. * @state: the mask of task states that can be woken
  1948. * @sync: do a synchronous wakeup?
  1949. *
  1950. * Put it on the run-queue if it's not already there. The "current"
  1951. * thread is always on the run-queue (except when the actual
  1952. * re-schedule is in progress), and as such you're allowed to do
  1953. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1954. * runnable without the overhead of this.
  1955. *
  1956. * returns failure only if the task is already active.
  1957. */
  1958. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1959. {
  1960. int cpu, orig_cpu, this_cpu, success = 0;
  1961. unsigned long flags;
  1962. long old_state;
  1963. struct rq *rq;
  1964. if (!sched_feat(SYNC_WAKEUPS))
  1965. sync = 0;
  1966. #ifdef CONFIG_SMP
  1967. if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
  1968. struct sched_domain *sd;
  1969. this_cpu = raw_smp_processor_id();
  1970. cpu = task_cpu(p);
  1971. for_each_domain(this_cpu, sd) {
  1972. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1973. update_shares(sd);
  1974. break;
  1975. }
  1976. }
  1977. }
  1978. #endif
  1979. smp_wmb();
  1980. rq = task_rq_lock(p, &flags);
  1981. update_rq_clock(rq);
  1982. old_state = p->state;
  1983. if (!(old_state & state))
  1984. goto out;
  1985. if (p->se.on_rq)
  1986. goto out_running;
  1987. cpu = task_cpu(p);
  1988. orig_cpu = cpu;
  1989. this_cpu = smp_processor_id();
  1990. #ifdef CONFIG_SMP
  1991. if (unlikely(task_running(rq, p)))
  1992. goto out_activate;
  1993. cpu = p->sched_class->select_task_rq(p, sync);
  1994. if (cpu != orig_cpu) {
  1995. set_task_cpu(p, cpu);
  1996. task_rq_unlock(rq, &flags);
  1997. /* might preempt at this point */
  1998. rq = task_rq_lock(p, &flags);
  1999. old_state = p->state;
  2000. if (!(old_state & state))
  2001. goto out;
  2002. if (p->se.on_rq)
  2003. goto out_running;
  2004. this_cpu = smp_processor_id();
  2005. cpu = task_cpu(p);
  2006. }
  2007. #ifdef CONFIG_SCHEDSTATS
  2008. schedstat_inc(rq, ttwu_count);
  2009. if (cpu == this_cpu)
  2010. schedstat_inc(rq, ttwu_local);
  2011. else {
  2012. struct sched_domain *sd;
  2013. for_each_domain(this_cpu, sd) {
  2014. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2015. schedstat_inc(sd, ttwu_wake_remote);
  2016. break;
  2017. }
  2018. }
  2019. }
  2020. #endif /* CONFIG_SCHEDSTATS */
  2021. out_activate:
  2022. #endif /* CONFIG_SMP */
  2023. schedstat_inc(p, se.nr_wakeups);
  2024. if (sync)
  2025. schedstat_inc(p, se.nr_wakeups_sync);
  2026. if (orig_cpu != cpu)
  2027. schedstat_inc(p, se.nr_wakeups_migrate);
  2028. if (cpu == this_cpu)
  2029. schedstat_inc(p, se.nr_wakeups_local);
  2030. else
  2031. schedstat_inc(p, se.nr_wakeups_remote);
  2032. activate_task(rq, p, 1);
  2033. success = 1;
  2034. /*
  2035. * Only attribute actual wakeups done by this task.
  2036. */
  2037. if (!in_interrupt()) {
  2038. struct sched_entity *se = &current->se;
  2039. u64 sample = se->sum_exec_runtime;
  2040. if (se->last_wakeup)
  2041. sample -= se->last_wakeup;
  2042. else
  2043. sample -= se->start_runtime;
  2044. update_avg(&se->avg_wakeup, sample);
  2045. se->last_wakeup = se->sum_exec_runtime;
  2046. }
  2047. out_running:
  2048. trace_sched_wakeup(rq, p, success);
  2049. check_preempt_curr(rq, p, sync);
  2050. p->state = TASK_RUNNING;
  2051. #ifdef CONFIG_SMP
  2052. if (p->sched_class->task_wake_up)
  2053. p->sched_class->task_wake_up(rq, p);
  2054. #endif
  2055. out:
  2056. task_rq_unlock(rq, &flags);
  2057. return success;
  2058. }
  2059. int wake_up_process(struct task_struct *p)
  2060. {
  2061. return try_to_wake_up(p, TASK_ALL, 0);
  2062. }
  2063. EXPORT_SYMBOL(wake_up_process);
  2064. int wake_up_state(struct task_struct *p, unsigned int state)
  2065. {
  2066. return try_to_wake_up(p, state, 0);
  2067. }
  2068. /*
  2069. * Perform scheduler related setup for a newly forked process p.
  2070. * p is forked by current.
  2071. *
  2072. * __sched_fork() is basic setup used by init_idle() too:
  2073. */
  2074. static void __sched_fork(struct task_struct *p)
  2075. {
  2076. p->se.exec_start = 0;
  2077. p->se.sum_exec_runtime = 0;
  2078. p->se.prev_sum_exec_runtime = 0;
  2079. p->se.last_wakeup = 0;
  2080. p->se.avg_overlap = 0;
  2081. p->se.start_runtime = 0;
  2082. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2083. #ifdef CONFIG_SCHEDSTATS
  2084. p->se.wait_start = 0;
  2085. p->se.sum_sleep_runtime = 0;
  2086. p->se.sleep_start = 0;
  2087. p->se.block_start = 0;
  2088. p->se.sleep_max = 0;
  2089. p->se.block_max = 0;
  2090. p->se.exec_max = 0;
  2091. p->se.slice_max = 0;
  2092. p->se.wait_max = 0;
  2093. #endif
  2094. INIT_LIST_HEAD(&p->rt.run_list);
  2095. p->se.on_rq = 0;
  2096. INIT_LIST_HEAD(&p->se.group_node);
  2097. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2098. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2099. #endif
  2100. /*
  2101. * We mark the process as running here, but have not actually
  2102. * inserted it onto the runqueue yet. This guarantees that
  2103. * nobody will actually run it, and a signal or other external
  2104. * event cannot wake it up and insert it on the runqueue either.
  2105. */
  2106. p->state = TASK_RUNNING;
  2107. }
  2108. /*
  2109. * fork()/clone()-time setup:
  2110. */
  2111. void sched_fork(struct task_struct *p, int clone_flags)
  2112. {
  2113. int cpu = get_cpu();
  2114. __sched_fork(p);
  2115. #ifdef CONFIG_SMP
  2116. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2117. #endif
  2118. set_task_cpu(p, cpu);
  2119. /*
  2120. * Make sure we do not leak PI boosting priority to the child:
  2121. */
  2122. p->prio = current->normal_prio;
  2123. if (!rt_prio(p->prio))
  2124. p->sched_class = &fair_sched_class;
  2125. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2126. if (likely(sched_info_on()))
  2127. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2128. #endif
  2129. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2130. p->oncpu = 0;
  2131. #endif
  2132. #ifdef CONFIG_PREEMPT
  2133. /* Want to start with kernel preemption disabled. */
  2134. task_thread_info(p)->preempt_count = 1;
  2135. #endif
  2136. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2137. put_cpu();
  2138. }
  2139. /*
  2140. * wake_up_new_task - wake up a newly created task for the first time.
  2141. *
  2142. * This function will do some initial scheduler statistics housekeeping
  2143. * that must be done for every newly created context, then puts the task
  2144. * on the runqueue and wakes it.
  2145. */
  2146. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2147. {
  2148. unsigned long flags;
  2149. struct rq *rq;
  2150. rq = task_rq_lock(p, &flags);
  2151. BUG_ON(p->state != TASK_RUNNING);
  2152. update_rq_clock(rq);
  2153. p->prio = effective_prio(p);
  2154. if (!p->sched_class->task_new || !current->se.on_rq) {
  2155. activate_task(rq, p, 0);
  2156. } else {
  2157. /*
  2158. * Let the scheduling class do new task startup
  2159. * management (if any):
  2160. */
  2161. p->sched_class->task_new(rq, p);
  2162. inc_nr_running(rq);
  2163. }
  2164. trace_sched_wakeup_new(rq, p, 1);
  2165. check_preempt_curr(rq, p, 0);
  2166. #ifdef CONFIG_SMP
  2167. if (p->sched_class->task_wake_up)
  2168. p->sched_class->task_wake_up(rq, p);
  2169. #endif
  2170. task_rq_unlock(rq, &flags);
  2171. }
  2172. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2173. /**
  2174. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2175. * @notifier: notifier struct to register
  2176. */
  2177. void preempt_notifier_register(struct preempt_notifier *notifier)
  2178. {
  2179. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2180. }
  2181. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2182. /**
  2183. * preempt_notifier_unregister - no longer interested in preemption notifications
  2184. * @notifier: notifier struct to unregister
  2185. *
  2186. * This is safe to call from within a preemption notifier.
  2187. */
  2188. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2189. {
  2190. hlist_del(&notifier->link);
  2191. }
  2192. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2193. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2194. {
  2195. struct preempt_notifier *notifier;
  2196. struct hlist_node *node;
  2197. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2198. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2199. }
  2200. static void
  2201. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2202. struct task_struct *next)
  2203. {
  2204. struct preempt_notifier *notifier;
  2205. struct hlist_node *node;
  2206. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2207. notifier->ops->sched_out(notifier, next);
  2208. }
  2209. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2210. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2211. {
  2212. }
  2213. static void
  2214. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2215. struct task_struct *next)
  2216. {
  2217. }
  2218. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2219. /**
  2220. * prepare_task_switch - prepare to switch tasks
  2221. * @rq: the runqueue preparing to switch
  2222. * @prev: the current task that is being switched out
  2223. * @next: the task we are going to switch to.
  2224. *
  2225. * This is called with the rq lock held and interrupts off. It must
  2226. * be paired with a subsequent finish_task_switch after the context
  2227. * switch.
  2228. *
  2229. * prepare_task_switch sets up locking and calls architecture specific
  2230. * hooks.
  2231. */
  2232. static inline void
  2233. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2234. struct task_struct *next)
  2235. {
  2236. fire_sched_out_preempt_notifiers(prev, next);
  2237. prepare_lock_switch(rq, next);
  2238. prepare_arch_switch(next);
  2239. }
  2240. /**
  2241. * finish_task_switch - clean up after a task-switch
  2242. * @rq: runqueue associated with task-switch
  2243. * @prev: the thread we just switched away from.
  2244. *
  2245. * finish_task_switch must be called after the context switch, paired
  2246. * with a prepare_task_switch call before the context switch.
  2247. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2248. * and do any other architecture-specific cleanup actions.
  2249. *
  2250. * Note that we may have delayed dropping an mm in context_switch(). If
  2251. * so, we finish that here outside of the runqueue lock. (Doing it
  2252. * with the lock held can cause deadlocks; see schedule() for
  2253. * details.)
  2254. */
  2255. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2256. __releases(rq->lock)
  2257. {
  2258. struct mm_struct *mm = rq->prev_mm;
  2259. long prev_state;
  2260. #ifdef CONFIG_SMP
  2261. int post_schedule = 0;
  2262. if (current->sched_class->needs_post_schedule)
  2263. post_schedule = current->sched_class->needs_post_schedule(rq);
  2264. #endif
  2265. rq->prev_mm = NULL;
  2266. /*
  2267. * A task struct has one reference for the use as "current".
  2268. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2269. * schedule one last time. The schedule call will never return, and
  2270. * the scheduled task must drop that reference.
  2271. * The test for TASK_DEAD must occur while the runqueue locks are
  2272. * still held, otherwise prev could be scheduled on another cpu, die
  2273. * there before we look at prev->state, and then the reference would
  2274. * be dropped twice.
  2275. * Manfred Spraul <manfred@colorfullife.com>
  2276. */
  2277. prev_state = prev->state;
  2278. finish_arch_switch(prev);
  2279. finish_lock_switch(rq, prev);
  2280. #ifdef CONFIG_SMP
  2281. if (post_schedule)
  2282. current->sched_class->post_schedule(rq);
  2283. #endif
  2284. fire_sched_in_preempt_notifiers(current);
  2285. if (mm)
  2286. mmdrop(mm);
  2287. if (unlikely(prev_state == TASK_DEAD)) {
  2288. /*
  2289. * Remove function-return probe instances associated with this
  2290. * task and put them back on the free list.
  2291. */
  2292. kprobe_flush_task(prev);
  2293. put_task_struct(prev);
  2294. }
  2295. }
  2296. /**
  2297. * schedule_tail - first thing a freshly forked thread must call.
  2298. * @prev: the thread we just switched away from.
  2299. */
  2300. asmlinkage void schedule_tail(struct task_struct *prev)
  2301. __releases(rq->lock)
  2302. {
  2303. struct rq *rq = this_rq();
  2304. finish_task_switch(rq, prev);
  2305. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2306. /* In this case, finish_task_switch does not reenable preemption */
  2307. preempt_enable();
  2308. #endif
  2309. if (current->set_child_tid)
  2310. put_user(task_pid_vnr(current), current->set_child_tid);
  2311. }
  2312. /*
  2313. * context_switch - switch to the new MM and the new
  2314. * thread's register state.
  2315. */
  2316. static inline void
  2317. context_switch(struct rq *rq, struct task_struct *prev,
  2318. struct task_struct *next)
  2319. {
  2320. struct mm_struct *mm, *oldmm;
  2321. prepare_task_switch(rq, prev, next);
  2322. trace_sched_switch(rq, prev, next);
  2323. mm = next->mm;
  2324. oldmm = prev->active_mm;
  2325. /*
  2326. * For paravirt, this is coupled with an exit in switch_to to
  2327. * combine the page table reload and the switch backend into
  2328. * one hypercall.
  2329. */
  2330. arch_enter_lazy_cpu_mode();
  2331. if (unlikely(!mm)) {
  2332. next->active_mm = oldmm;
  2333. atomic_inc(&oldmm->mm_count);
  2334. enter_lazy_tlb(oldmm, next);
  2335. } else
  2336. switch_mm(oldmm, mm, next);
  2337. if (unlikely(!prev->mm)) {
  2338. prev->active_mm = NULL;
  2339. rq->prev_mm = oldmm;
  2340. }
  2341. /*
  2342. * Since the runqueue lock will be released by the next
  2343. * task (which is an invalid locking op but in the case
  2344. * of the scheduler it's an obvious special-case), so we
  2345. * do an early lockdep release here:
  2346. */
  2347. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2348. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2349. #endif
  2350. /* Here we just switch the register state and the stack. */
  2351. switch_to(prev, next, prev);
  2352. barrier();
  2353. /*
  2354. * this_rq must be evaluated again because prev may have moved
  2355. * CPUs since it called schedule(), thus the 'rq' on its stack
  2356. * frame will be invalid.
  2357. */
  2358. finish_task_switch(this_rq(), prev);
  2359. }
  2360. /*
  2361. * nr_running, nr_uninterruptible and nr_context_switches:
  2362. *
  2363. * externally visible scheduler statistics: current number of runnable
  2364. * threads, current number of uninterruptible-sleeping threads, total
  2365. * number of context switches performed since bootup.
  2366. */
  2367. unsigned long nr_running(void)
  2368. {
  2369. unsigned long i, sum = 0;
  2370. for_each_online_cpu(i)
  2371. sum += cpu_rq(i)->nr_running;
  2372. return sum;
  2373. }
  2374. unsigned long nr_uninterruptible(void)
  2375. {
  2376. unsigned long i, sum = 0;
  2377. for_each_possible_cpu(i)
  2378. sum += cpu_rq(i)->nr_uninterruptible;
  2379. /*
  2380. * Since we read the counters lockless, it might be slightly
  2381. * inaccurate. Do not allow it to go below zero though:
  2382. */
  2383. if (unlikely((long)sum < 0))
  2384. sum = 0;
  2385. return sum;
  2386. }
  2387. unsigned long long nr_context_switches(void)
  2388. {
  2389. int i;
  2390. unsigned long long sum = 0;
  2391. for_each_possible_cpu(i)
  2392. sum += cpu_rq(i)->nr_switches;
  2393. return sum;
  2394. }
  2395. unsigned long nr_iowait(void)
  2396. {
  2397. unsigned long i, sum = 0;
  2398. for_each_possible_cpu(i)
  2399. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2400. return sum;
  2401. }
  2402. unsigned long nr_active(void)
  2403. {
  2404. unsigned long i, running = 0, uninterruptible = 0;
  2405. for_each_online_cpu(i) {
  2406. running += cpu_rq(i)->nr_running;
  2407. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2408. }
  2409. if (unlikely((long)uninterruptible < 0))
  2410. uninterruptible = 0;
  2411. return running + uninterruptible;
  2412. }
  2413. /*
  2414. * Update rq->cpu_load[] statistics. This function is usually called every
  2415. * scheduler tick (TICK_NSEC).
  2416. */
  2417. static void update_cpu_load(struct rq *this_rq)
  2418. {
  2419. unsigned long this_load = this_rq->load.weight;
  2420. int i, scale;
  2421. this_rq->nr_load_updates++;
  2422. /* Update our load: */
  2423. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2424. unsigned long old_load, new_load;
  2425. /* scale is effectively 1 << i now, and >> i divides by scale */
  2426. old_load = this_rq->cpu_load[i];
  2427. new_load = this_load;
  2428. /*
  2429. * Round up the averaging division if load is increasing. This
  2430. * prevents us from getting stuck on 9 if the load is 10, for
  2431. * example.
  2432. */
  2433. if (new_load > old_load)
  2434. new_load += scale-1;
  2435. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2436. }
  2437. }
  2438. #ifdef CONFIG_SMP
  2439. /*
  2440. * double_rq_lock - safely lock two runqueues
  2441. *
  2442. * Note this does not disable interrupts like task_rq_lock,
  2443. * you need to do so manually before calling.
  2444. */
  2445. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2446. __acquires(rq1->lock)
  2447. __acquires(rq2->lock)
  2448. {
  2449. BUG_ON(!irqs_disabled());
  2450. if (rq1 == rq2) {
  2451. spin_lock(&rq1->lock);
  2452. __acquire(rq2->lock); /* Fake it out ;) */
  2453. } else {
  2454. if (rq1 < rq2) {
  2455. spin_lock(&rq1->lock);
  2456. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2457. } else {
  2458. spin_lock(&rq2->lock);
  2459. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2460. }
  2461. }
  2462. update_rq_clock(rq1);
  2463. update_rq_clock(rq2);
  2464. }
  2465. /*
  2466. * double_rq_unlock - safely unlock two runqueues
  2467. *
  2468. * Note this does not restore interrupts like task_rq_unlock,
  2469. * you need to do so manually after calling.
  2470. */
  2471. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2472. __releases(rq1->lock)
  2473. __releases(rq2->lock)
  2474. {
  2475. spin_unlock(&rq1->lock);
  2476. if (rq1 != rq2)
  2477. spin_unlock(&rq2->lock);
  2478. else
  2479. __release(rq2->lock);
  2480. }
  2481. /*
  2482. * If dest_cpu is allowed for this process, migrate the task to it.
  2483. * This is accomplished by forcing the cpu_allowed mask to only
  2484. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2485. * the cpu_allowed mask is restored.
  2486. */
  2487. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2488. {
  2489. struct migration_req req;
  2490. unsigned long flags;
  2491. struct rq *rq;
  2492. rq = task_rq_lock(p, &flags);
  2493. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2494. || unlikely(!cpu_active(dest_cpu)))
  2495. goto out;
  2496. /* force the process onto the specified CPU */
  2497. if (migrate_task(p, dest_cpu, &req)) {
  2498. /* Need to wait for migration thread (might exit: take ref). */
  2499. struct task_struct *mt = rq->migration_thread;
  2500. get_task_struct(mt);
  2501. task_rq_unlock(rq, &flags);
  2502. wake_up_process(mt);
  2503. put_task_struct(mt);
  2504. wait_for_completion(&req.done);
  2505. return;
  2506. }
  2507. out:
  2508. task_rq_unlock(rq, &flags);
  2509. }
  2510. /*
  2511. * sched_exec - execve() is a valuable balancing opportunity, because at
  2512. * this point the task has the smallest effective memory and cache footprint.
  2513. */
  2514. void sched_exec(void)
  2515. {
  2516. int new_cpu, this_cpu = get_cpu();
  2517. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2518. put_cpu();
  2519. if (new_cpu != this_cpu)
  2520. sched_migrate_task(current, new_cpu);
  2521. }
  2522. /*
  2523. * pull_task - move a task from a remote runqueue to the local runqueue.
  2524. * Both runqueues must be locked.
  2525. */
  2526. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2527. struct rq *this_rq, int this_cpu)
  2528. {
  2529. deactivate_task(src_rq, p, 0);
  2530. set_task_cpu(p, this_cpu);
  2531. activate_task(this_rq, p, 0);
  2532. /*
  2533. * Note that idle threads have a prio of MAX_PRIO, for this test
  2534. * to be always true for them.
  2535. */
  2536. check_preempt_curr(this_rq, p, 0);
  2537. }
  2538. /*
  2539. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2540. */
  2541. static
  2542. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2543. struct sched_domain *sd, enum cpu_idle_type idle,
  2544. int *all_pinned)
  2545. {
  2546. int tsk_cache_hot = 0;
  2547. /*
  2548. * We do not migrate tasks that are:
  2549. * 1) running (obviously), or
  2550. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2551. * 3) are cache-hot on their current CPU.
  2552. */
  2553. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2554. schedstat_inc(p, se.nr_failed_migrations_affine);
  2555. return 0;
  2556. }
  2557. *all_pinned = 0;
  2558. if (task_running(rq, p)) {
  2559. schedstat_inc(p, se.nr_failed_migrations_running);
  2560. return 0;
  2561. }
  2562. /*
  2563. * Aggressive migration if:
  2564. * 1) task is cache cold, or
  2565. * 2) too many balance attempts have failed.
  2566. */
  2567. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2568. if (!tsk_cache_hot ||
  2569. sd->nr_balance_failed > sd->cache_nice_tries) {
  2570. #ifdef CONFIG_SCHEDSTATS
  2571. if (tsk_cache_hot) {
  2572. schedstat_inc(sd, lb_hot_gained[idle]);
  2573. schedstat_inc(p, se.nr_forced_migrations);
  2574. }
  2575. #endif
  2576. return 1;
  2577. }
  2578. if (tsk_cache_hot) {
  2579. schedstat_inc(p, se.nr_failed_migrations_hot);
  2580. return 0;
  2581. }
  2582. return 1;
  2583. }
  2584. static unsigned long
  2585. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2586. unsigned long max_load_move, struct sched_domain *sd,
  2587. enum cpu_idle_type idle, int *all_pinned,
  2588. int *this_best_prio, struct rq_iterator *iterator)
  2589. {
  2590. int loops = 0, pulled = 0, pinned = 0;
  2591. struct task_struct *p;
  2592. long rem_load_move = max_load_move;
  2593. if (max_load_move == 0)
  2594. goto out;
  2595. pinned = 1;
  2596. /*
  2597. * Start the load-balancing iterator:
  2598. */
  2599. p = iterator->start(iterator->arg);
  2600. next:
  2601. if (!p || loops++ > sysctl_sched_nr_migrate)
  2602. goto out;
  2603. if ((p->se.load.weight >> 1) > rem_load_move ||
  2604. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2605. p = iterator->next(iterator->arg);
  2606. goto next;
  2607. }
  2608. pull_task(busiest, p, this_rq, this_cpu);
  2609. pulled++;
  2610. rem_load_move -= p->se.load.weight;
  2611. #ifdef CONFIG_PREEMPT
  2612. /*
  2613. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2614. * will stop after the first task is pulled to minimize the critical
  2615. * section.
  2616. */
  2617. if (idle == CPU_NEWLY_IDLE)
  2618. goto out;
  2619. #endif
  2620. /*
  2621. * We only want to steal up to the prescribed amount of weighted load.
  2622. */
  2623. if (rem_load_move > 0) {
  2624. if (p->prio < *this_best_prio)
  2625. *this_best_prio = p->prio;
  2626. p = iterator->next(iterator->arg);
  2627. goto next;
  2628. }
  2629. out:
  2630. /*
  2631. * Right now, this is one of only two places pull_task() is called,
  2632. * so we can safely collect pull_task() stats here rather than
  2633. * inside pull_task().
  2634. */
  2635. schedstat_add(sd, lb_gained[idle], pulled);
  2636. if (all_pinned)
  2637. *all_pinned = pinned;
  2638. return max_load_move - rem_load_move;
  2639. }
  2640. /*
  2641. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2642. * this_rq, as part of a balancing operation within domain "sd".
  2643. * Returns 1 if successful and 0 otherwise.
  2644. *
  2645. * Called with both runqueues locked.
  2646. */
  2647. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2648. unsigned long max_load_move,
  2649. struct sched_domain *sd, enum cpu_idle_type idle,
  2650. int *all_pinned)
  2651. {
  2652. const struct sched_class *class = sched_class_highest;
  2653. unsigned long total_load_moved = 0;
  2654. int this_best_prio = this_rq->curr->prio;
  2655. do {
  2656. total_load_moved +=
  2657. class->load_balance(this_rq, this_cpu, busiest,
  2658. max_load_move - total_load_moved,
  2659. sd, idle, all_pinned, &this_best_prio);
  2660. class = class->next;
  2661. #ifdef CONFIG_PREEMPT
  2662. /*
  2663. * NEWIDLE balancing is a source of latency, so preemptible
  2664. * kernels will stop after the first task is pulled to minimize
  2665. * the critical section.
  2666. */
  2667. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2668. break;
  2669. #endif
  2670. } while (class && max_load_move > total_load_moved);
  2671. return total_load_moved > 0;
  2672. }
  2673. static int
  2674. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2675. struct sched_domain *sd, enum cpu_idle_type idle,
  2676. struct rq_iterator *iterator)
  2677. {
  2678. struct task_struct *p = iterator->start(iterator->arg);
  2679. int pinned = 0;
  2680. while (p) {
  2681. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2682. pull_task(busiest, p, this_rq, this_cpu);
  2683. /*
  2684. * Right now, this is only the second place pull_task()
  2685. * is called, so we can safely collect pull_task()
  2686. * stats here rather than inside pull_task().
  2687. */
  2688. schedstat_inc(sd, lb_gained[idle]);
  2689. return 1;
  2690. }
  2691. p = iterator->next(iterator->arg);
  2692. }
  2693. return 0;
  2694. }
  2695. /*
  2696. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2697. * part of active balancing operations within "domain".
  2698. * Returns 1 if successful and 0 otherwise.
  2699. *
  2700. * Called with both runqueues locked.
  2701. */
  2702. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2703. struct sched_domain *sd, enum cpu_idle_type idle)
  2704. {
  2705. const struct sched_class *class;
  2706. for (class = sched_class_highest; class; class = class->next)
  2707. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2708. return 1;
  2709. return 0;
  2710. }
  2711. /********** Helpers for find_busiest_group ************************/
  2712. /*
  2713. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2714. * during load balancing.
  2715. */
  2716. struct sd_lb_stats {
  2717. struct sched_group *busiest; /* Busiest group in this sd */
  2718. struct sched_group *this; /* Local group in this sd */
  2719. unsigned long total_load; /* Total load of all groups in sd */
  2720. unsigned long total_pwr; /* Total power of all groups in sd */
  2721. unsigned long avg_load; /* Average load across all groups in sd */
  2722. /** Statistics of this group */
  2723. unsigned long this_load;
  2724. unsigned long this_load_per_task;
  2725. unsigned long this_nr_running;
  2726. /* Statistics of the busiest group */
  2727. unsigned long max_load;
  2728. unsigned long busiest_load_per_task;
  2729. unsigned long busiest_nr_running;
  2730. int group_imb; /* Is there imbalance in this sd */
  2731. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2732. int power_savings_balance; /* Is powersave balance needed for this sd */
  2733. struct sched_group *group_min; /* Least loaded group in sd */
  2734. struct sched_group *group_leader; /* Group which relieves group_min */
  2735. unsigned long min_load_per_task; /* load_per_task in group_min */
  2736. unsigned long leader_nr_running; /* Nr running of group_leader */
  2737. unsigned long min_nr_running; /* Nr running of group_min */
  2738. #endif
  2739. };
  2740. /*
  2741. * sg_lb_stats - stats of a sched_group required for load_balancing
  2742. */
  2743. struct sg_lb_stats {
  2744. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2745. unsigned long group_load; /* Total load over the CPUs of the group */
  2746. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2747. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2748. unsigned long group_capacity;
  2749. int group_imb; /* Is there an imbalance in the group ? */
  2750. };
  2751. /**
  2752. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2753. * @group: The group whose first cpu is to be returned.
  2754. */
  2755. static inline unsigned int group_first_cpu(struct sched_group *group)
  2756. {
  2757. return cpumask_first(sched_group_cpus(group));
  2758. }
  2759. /**
  2760. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2761. * @sd: The sched_domain whose load_idx is to be obtained.
  2762. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2763. */
  2764. static inline int get_sd_load_idx(struct sched_domain *sd,
  2765. enum cpu_idle_type idle)
  2766. {
  2767. int load_idx;
  2768. switch (idle) {
  2769. case CPU_NOT_IDLE:
  2770. load_idx = sd->busy_idx;
  2771. break;
  2772. case CPU_NEWLY_IDLE:
  2773. load_idx = sd->newidle_idx;
  2774. break;
  2775. default:
  2776. load_idx = sd->idle_idx;
  2777. break;
  2778. }
  2779. return load_idx;
  2780. }
  2781. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2782. /**
  2783. * init_sd_power_savings_stats - Initialize power savings statistics for
  2784. * the given sched_domain, during load balancing.
  2785. *
  2786. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2787. * @sds: Variable containing the statistics for sd.
  2788. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2789. */
  2790. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2791. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2792. {
  2793. /*
  2794. * Busy processors will not participate in power savings
  2795. * balance.
  2796. */
  2797. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2798. sds->power_savings_balance = 0;
  2799. else {
  2800. sds->power_savings_balance = 1;
  2801. sds->min_nr_running = ULONG_MAX;
  2802. sds->leader_nr_running = 0;
  2803. }
  2804. }
  2805. /**
  2806. * update_sd_power_savings_stats - Update the power saving stats for a
  2807. * sched_domain while performing load balancing.
  2808. *
  2809. * @group: sched_group belonging to the sched_domain under consideration.
  2810. * @sds: Variable containing the statistics of the sched_domain
  2811. * @local_group: Does group contain the CPU for which we're performing
  2812. * load balancing ?
  2813. * @sgs: Variable containing the statistics of the group.
  2814. */
  2815. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2816. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2817. {
  2818. if (!sds->power_savings_balance)
  2819. return;
  2820. /*
  2821. * If the local group is idle or completely loaded
  2822. * no need to do power savings balance at this domain
  2823. */
  2824. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2825. !sds->this_nr_running))
  2826. sds->power_savings_balance = 0;
  2827. /*
  2828. * If a group is already running at full capacity or idle,
  2829. * don't include that group in power savings calculations
  2830. */
  2831. if (!sds->power_savings_balance ||
  2832. sgs->sum_nr_running >= sgs->group_capacity ||
  2833. !sgs->sum_nr_running)
  2834. return;
  2835. /*
  2836. * Calculate the group which has the least non-idle load.
  2837. * This is the group from where we need to pick up the load
  2838. * for saving power
  2839. */
  2840. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2841. (sgs->sum_nr_running == sds->min_nr_running &&
  2842. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2843. sds->group_min = group;
  2844. sds->min_nr_running = sgs->sum_nr_running;
  2845. sds->min_load_per_task = sgs->sum_weighted_load /
  2846. sgs->sum_nr_running;
  2847. }
  2848. /*
  2849. * Calculate the group which is almost near its
  2850. * capacity but still has some space to pick up some load
  2851. * from other group and save more power
  2852. */
  2853. if (sgs->sum_nr_running > sgs->group_capacity - 1)
  2854. return;
  2855. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2856. (sgs->sum_nr_running == sds->leader_nr_running &&
  2857. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2858. sds->group_leader = group;
  2859. sds->leader_nr_running = sgs->sum_nr_running;
  2860. }
  2861. }
  2862. /**
  2863. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2864. * @sds: Variable containing the statistics of the sched_domain
  2865. * under consideration.
  2866. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2867. * @imbalance: Variable to store the imbalance.
  2868. *
  2869. * Description:
  2870. * Check if we have potential to perform some power-savings balance.
  2871. * If yes, set the busiest group to be the least loaded group in the
  2872. * sched_domain, so that it's CPUs can be put to idle.
  2873. *
  2874. * Returns 1 if there is potential to perform power-savings balance.
  2875. * Else returns 0.
  2876. */
  2877. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2878. int this_cpu, unsigned long *imbalance)
  2879. {
  2880. if (!sds->power_savings_balance)
  2881. return 0;
  2882. if (sds->this != sds->group_leader ||
  2883. sds->group_leader == sds->group_min)
  2884. return 0;
  2885. *imbalance = sds->min_load_per_task;
  2886. sds->busiest = sds->group_min;
  2887. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
  2888. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
  2889. group_first_cpu(sds->group_leader);
  2890. }
  2891. return 1;
  2892. }
  2893. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2894. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2895. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2896. {
  2897. return;
  2898. }
  2899. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2900. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2901. {
  2902. return;
  2903. }
  2904. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2905. int this_cpu, unsigned long *imbalance)
  2906. {
  2907. return 0;
  2908. }
  2909. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2910. /**
  2911. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  2912. * @group: sched_group whose statistics are to be updated.
  2913. * @this_cpu: Cpu for which load balance is currently performed.
  2914. * @idle: Idle status of this_cpu
  2915. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  2916. * @sd_idle: Idle status of the sched_domain containing group.
  2917. * @local_group: Does group contain this_cpu.
  2918. * @cpus: Set of cpus considered for load balancing.
  2919. * @balance: Should we balance.
  2920. * @sgs: variable to hold the statistics for this group.
  2921. */
  2922. static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
  2923. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  2924. int local_group, const struct cpumask *cpus,
  2925. int *balance, struct sg_lb_stats *sgs)
  2926. {
  2927. unsigned long load, max_cpu_load, min_cpu_load;
  2928. int i;
  2929. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2930. unsigned long sum_avg_load_per_task;
  2931. unsigned long avg_load_per_task;
  2932. if (local_group)
  2933. balance_cpu = group_first_cpu(group);
  2934. /* Tally up the load of all CPUs in the group */
  2935. sum_avg_load_per_task = avg_load_per_task = 0;
  2936. max_cpu_load = 0;
  2937. min_cpu_load = ~0UL;
  2938. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2939. struct rq *rq = cpu_rq(i);
  2940. if (*sd_idle && rq->nr_running)
  2941. *sd_idle = 0;
  2942. /* Bias balancing toward cpus of our domain */
  2943. if (local_group) {
  2944. if (idle_cpu(i) && !first_idle_cpu) {
  2945. first_idle_cpu = 1;
  2946. balance_cpu = i;
  2947. }
  2948. load = target_load(i, load_idx);
  2949. } else {
  2950. load = source_load(i, load_idx);
  2951. if (load > max_cpu_load)
  2952. max_cpu_load = load;
  2953. if (min_cpu_load > load)
  2954. min_cpu_load = load;
  2955. }
  2956. sgs->group_load += load;
  2957. sgs->sum_nr_running += rq->nr_running;
  2958. sgs->sum_weighted_load += weighted_cpuload(i);
  2959. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2960. }
  2961. /*
  2962. * First idle cpu or the first cpu(busiest) in this sched group
  2963. * is eligible for doing load balancing at this and above
  2964. * domains. In the newly idle case, we will allow all the cpu's
  2965. * to do the newly idle load balance.
  2966. */
  2967. if (idle != CPU_NEWLY_IDLE && local_group &&
  2968. balance_cpu != this_cpu && balance) {
  2969. *balance = 0;
  2970. return;
  2971. }
  2972. /* Adjust by relative CPU power of the group */
  2973. sgs->avg_load = sg_div_cpu_power(group,
  2974. sgs->group_load * SCHED_LOAD_SCALE);
  2975. /*
  2976. * Consider the group unbalanced when the imbalance is larger
  2977. * than the average weight of two tasks.
  2978. *
  2979. * APZ: with cgroup the avg task weight can vary wildly and
  2980. * might not be a suitable number - should we keep a
  2981. * normalized nr_running number somewhere that negates
  2982. * the hierarchy?
  2983. */
  2984. avg_load_per_task = sg_div_cpu_power(group,
  2985. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2986. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2987. sgs->group_imb = 1;
  2988. sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2989. }
  2990. /**
  2991. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  2992. * @sd: sched_domain whose statistics are to be updated.
  2993. * @this_cpu: Cpu for which load balance is currently performed.
  2994. * @idle: Idle status of this_cpu
  2995. * @sd_idle: Idle status of the sched_domain containing group.
  2996. * @cpus: Set of cpus considered for load balancing.
  2997. * @balance: Should we balance.
  2998. * @sds: variable to hold the statistics for this sched_domain.
  2999. */
  3000. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3001. enum cpu_idle_type idle, int *sd_idle,
  3002. const struct cpumask *cpus, int *balance,
  3003. struct sd_lb_stats *sds)
  3004. {
  3005. struct sched_group *group = sd->groups;
  3006. struct sg_lb_stats sgs;
  3007. int load_idx;
  3008. init_sd_power_savings_stats(sd, sds, idle);
  3009. load_idx = get_sd_load_idx(sd, idle);
  3010. do {
  3011. int local_group;
  3012. local_group = cpumask_test_cpu(this_cpu,
  3013. sched_group_cpus(group));
  3014. memset(&sgs, 0, sizeof(sgs));
  3015. update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
  3016. local_group, cpus, balance, &sgs);
  3017. if (local_group && balance && !(*balance))
  3018. return;
  3019. sds->total_load += sgs.group_load;
  3020. sds->total_pwr += group->__cpu_power;
  3021. if (local_group) {
  3022. sds->this_load = sgs.avg_load;
  3023. sds->this = group;
  3024. sds->this_nr_running = sgs.sum_nr_running;
  3025. sds->this_load_per_task = sgs.sum_weighted_load;
  3026. } else if (sgs.avg_load > sds->max_load &&
  3027. (sgs.sum_nr_running > sgs.group_capacity ||
  3028. sgs.group_imb)) {
  3029. sds->max_load = sgs.avg_load;
  3030. sds->busiest = group;
  3031. sds->busiest_nr_running = sgs.sum_nr_running;
  3032. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3033. sds->group_imb = sgs.group_imb;
  3034. }
  3035. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3036. group = group->next;
  3037. } while (group != sd->groups);
  3038. }
  3039. /**
  3040. * fix_small_imbalance - Calculate the minor imbalance that exists
  3041. * amongst the groups of a sched_domain, during
  3042. * load balancing.
  3043. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3044. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3045. * @imbalance: Variable to store the imbalance.
  3046. */
  3047. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3048. int this_cpu, unsigned long *imbalance)
  3049. {
  3050. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3051. unsigned int imbn = 2;
  3052. if (sds->this_nr_running) {
  3053. sds->this_load_per_task /= sds->this_nr_running;
  3054. if (sds->busiest_load_per_task >
  3055. sds->this_load_per_task)
  3056. imbn = 1;
  3057. } else
  3058. sds->this_load_per_task =
  3059. cpu_avg_load_per_task(this_cpu);
  3060. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3061. sds->busiest_load_per_task * imbn) {
  3062. *imbalance = sds->busiest_load_per_task;
  3063. return;
  3064. }
  3065. /*
  3066. * OK, we don't have enough imbalance to justify moving tasks,
  3067. * however we may be able to increase total CPU power used by
  3068. * moving them.
  3069. */
  3070. pwr_now += sds->busiest->__cpu_power *
  3071. min(sds->busiest_load_per_task, sds->max_load);
  3072. pwr_now += sds->this->__cpu_power *
  3073. min(sds->this_load_per_task, sds->this_load);
  3074. pwr_now /= SCHED_LOAD_SCALE;
  3075. /* Amount of load we'd subtract */
  3076. tmp = sg_div_cpu_power(sds->busiest,
  3077. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3078. if (sds->max_load > tmp)
  3079. pwr_move += sds->busiest->__cpu_power *
  3080. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3081. /* Amount of load we'd add */
  3082. if (sds->max_load * sds->busiest->__cpu_power <
  3083. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3084. tmp = sg_div_cpu_power(sds->this,
  3085. sds->max_load * sds->busiest->__cpu_power);
  3086. else
  3087. tmp = sg_div_cpu_power(sds->this,
  3088. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3089. pwr_move += sds->this->__cpu_power *
  3090. min(sds->this_load_per_task, sds->this_load + tmp);
  3091. pwr_move /= SCHED_LOAD_SCALE;
  3092. /* Move if we gain throughput */
  3093. if (pwr_move > pwr_now)
  3094. *imbalance = sds->busiest_load_per_task;
  3095. }
  3096. /**
  3097. * calculate_imbalance - Calculate the amount of imbalance present within the
  3098. * groups of a given sched_domain during load balance.
  3099. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3100. * @this_cpu: Cpu for which currently load balance is being performed.
  3101. * @imbalance: The variable to store the imbalance.
  3102. */
  3103. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3104. unsigned long *imbalance)
  3105. {
  3106. unsigned long max_pull;
  3107. /*
  3108. * In the presence of smp nice balancing, certain scenarios can have
  3109. * max load less than avg load(as we skip the groups at or below
  3110. * its cpu_power, while calculating max_load..)
  3111. */
  3112. if (sds->max_load < sds->avg_load) {
  3113. *imbalance = 0;
  3114. return fix_small_imbalance(sds, this_cpu, imbalance);
  3115. }
  3116. /* Don't want to pull so many tasks that a group would go idle */
  3117. max_pull = min(sds->max_load - sds->avg_load,
  3118. sds->max_load - sds->busiest_load_per_task);
  3119. /* How much load to actually move to equalise the imbalance */
  3120. *imbalance = min(max_pull * sds->busiest->__cpu_power,
  3121. (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
  3122. / SCHED_LOAD_SCALE;
  3123. /*
  3124. * if *imbalance is less than the average load per runnable task
  3125. * there is no gaurantee that any tasks will be moved so we'll have
  3126. * a think about bumping its value to force at least one task to be
  3127. * moved
  3128. */
  3129. if (*imbalance < sds->busiest_load_per_task)
  3130. return fix_small_imbalance(sds, this_cpu, imbalance);
  3131. }
  3132. /******* find_busiest_group() helpers end here *********************/
  3133. /**
  3134. * find_busiest_group - Returns the busiest group within the sched_domain
  3135. * if there is an imbalance. If there isn't an imbalance, and
  3136. * the user has opted for power-savings, it returns a group whose
  3137. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3138. * such a group exists.
  3139. *
  3140. * Also calculates the amount of weighted load which should be moved
  3141. * to restore balance.
  3142. *
  3143. * @sd: The sched_domain whose busiest group is to be returned.
  3144. * @this_cpu: The cpu for which load balancing is currently being performed.
  3145. * @imbalance: Variable which stores amount of weighted load which should
  3146. * be moved to restore balance/put a group to idle.
  3147. * @idle: The idle status of this_cpu.
  3148. * @sd_idle: The idleness of sd
  3149. * @cpus: The set of CPUs under consideration for load-balancing.
  3150. * @balance: Pointer to a variable indicating if this_cpu
  3151. * is the appropriate cpu to perform load balancing at this_level.
  3152. *
  3153. * Returns: - the busiest group if imbalance exists.
  3154. * - If no imbalance and user has opted for power-savings balance,
  3155. * return the least loaded group whose CPUs can be
  3156. * put to idle by rebalancing its tasks onto our group.
  3157. */
  3158. static struct sched_group *
  3159. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3160. unsigned long *imbalance, enum cpu_idle_type idle,
  3161. int *sd_idle, const struct cpumask *cpus, int *balance)
  3162. {
  3163. struct sd_lb_stats sds;
  3164. memset(&sds, 0, sizeof(sds));
  3165. /*
  3166. * Compute the various statistics relavent for load balancing at
  3167. * this level.
  3168. */
  3169. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3170. balance, &sds);
  3171. /* Cases where imbalance does not exist from POV of this_cpu */
  3172. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3173. * at this level.
  3174. * 2) There is no busy sibling group to pull from.
  3175. * 3) This group is the busiest group.
  3176. * 4) This group is more busy than the avg busieness at this
  3177. * sched_domain.
  3178. * 5) The imbalance is within the specified limit.
  3179. * 6) Any rebalance would lead to ping-pong
  3180. */
  3181. if (balance && !(*balance))
  3182. goto ret;
  3183. if (!sds.busiest || sds.busiest_nr_running == 0)
  3184. goto out_balanced;
  3185. if (sds.this_load >= sds.max_load)
  3186. goto out_balanced;
  3187. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3188. if (sds.this_load >= sds.avg_load)
  3189. goto out_balanced;
  3190. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3191. goto out_balanced;
  3192. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3193. if (sds.group_imb)
  3194. sds.busiest_load_per_task =
  3195. min(sds.busiest_load_per_task, sds.avg_load);
  3196. /*
  3197. * We're trying to get all the cpus to the average_load, so we don't
  3198. * want to push ourselves above the average load, nor do we wish to
  3199. * reduce the max loaded cpu below the average load, as either of these
  3200. * actions would just result in more rebalancing later, and ping-pong
  3201. * tasks around. Thus we look for the minimum possible imbalance.
  3202. * Negative imbalances (*we* are more loaded than anyone else) will
  3203. * be counted as no imbalance for these purposes -- we can't fix that
  3204. * by pulling tasks to us. Be careful of negative numbers as they'll
  3205. * appear as very large values with unsigned longs.
  3206. */
  3207. if (sds.max_load <= sds.busiest_load_per_task)
  3208. goto out_balanced;
  3209. /* Looks like there is an imbalance. Compute it */
  3210. calculate_imbalance(&sds, this_cpu, imbalance);
  3211. return sds.busiest;
  3212. out_balanced:
  3213. /*
  3214. * There is no obvious imbalance. But check if we can do some balancing
  3215. * to save power.
  3216. */
  3217. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3218. return sds.busiest;
  3219. ret:
  3220. *imbalance = 0;
  3221. return NULL;
  3222. }
  3223. /*
  3224. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3225. */
  3226. static struct rq *
  3227. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3228. unsigned long imbalance, const struct cpumask *cpus)
  3229. {
  3230. struct rq *busiest = NULL, *rq;
  3231. unsigned long max_load = 0;
  3232. int i;
  3233. for_each_cpu(i, sched_group_cpus(group)) {
  3234. unsigned long wl;
  3235. if (!cpumask_test_cpu(i, cpus))
  3236. continue;
  3237. rq = cpu_rq(i);
  3238. wl = weighted_cpuload(i);
  3239. if (rq->nr_running == 1 && wl > imbalance)
  3240. continue;
  3241. if (wl > max_load) {
  3242. max_load = wl;
  3243. busiest = rq;
  3244. }
  3245. }
  3246. return busiest;
  3247. }
  3248. /*
  3249. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3250. * so long as it is large enough.
  3251. */
  3252. #define MAX_PINNED_INTERVAL 512
  3253. /*
  3254. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3255. * tasks if there is an imbalance.
  3256. */
  3257. static int load_balance(int this_cpu, struct rq *this_rq,
  3258. struct sched_domain *sd, enum cpu_idle_type idle,
  3259. int *balance, struct cpumask *cpus)
  3260. {
  3261. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3262. struct sched_group *group;
  3263. unsigned long imbalance;
  3264. struct rq *busiest;
  3265. unsigned long flags;
  3266. cpumask_setall(cpus);
  3267. /*
  3268. * When power savings policy is enabled for the parent domain, idle
  3269. * sibling can pick up load irrespective of busy siblings. In this case,
  3270. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3271. * portraying it as CPU_NOT_IDLE.
  3272. */
  3273. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3274. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3275. sd_idle = 1;
  3276. schedstat_inc(sd, lb_count[idle]);
  3277. redo:
  3278. update_shares(sd);
  3279. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3280. cpus, balance);
  3281. if (*balance == 0)
  3282. goto out_balanced;
  3283. if (!group) {
  3284. schedstat_inc(sd, lb_nobusyg[idle]);
  3285. goto out_balanced;
  3286. }
  3287. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3288. if (!busiest) {
  3289. schedstat_inc(sd, lb_nobusyq[idle]);
  3290. goto out_balanced;
  3291. }
  3292. BUG_ON(busiest == this_rq);
  3293. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3294. ld_moved = 0;
  3295. if (busiest->nr_running > 1) {
  3296. /*
  3297. * Attempt to move tasks. If find_busiest_group has found
  3298. * an imbalance but busiest->nr_running <= 1, the group is
  3299. * still unbalanced. ld_moved simply stays zero, so it is
  3300. * correctly treated as an imbalance.
  3301. */
  3302. local_irq_save(flags);
  3303. double_rq_lock(this_rq, busiest);
  3304. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3305. imbalance, sd, idle, &all_pinned);
  3306. double_rq_unlock(this_rq, busiest);
  3307. local_irq_restore(flags);
  3308. /*
  3309. * some other cpu did the load balance for us.
  3310. */
  3311. if (ld_moved && this_cpu != smp_processor_id())
  3312. resched_cpu(this_cpu);
  3313. /* All tasks on this runqueue were pinned by CPU affinity */
  3314. if (unlikely(all_pinned)) {
  3315. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3316. if (!cpumask_empty(cpus))
  3317. goto redo;
  3318. goto out_balanced;
  3319. }
  3320. }
  3321. if (!ld_moved) {
  3322. schedstat_inc(sd, lb_failed[idle]);
  3323. sd->nr_balance_failed++;
  3324. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3325. spin_lock_irqsave(&busiest->lock, flags);
  3326. /* don't kick the migration_thread, if the curr
  3327. * task on busiest cpu can't be moved to this_cpu
  3328. */
  3329. if (!cpumask_test_cpu(this_cpu,
  3330. &busiest->curr->cpus_allowed)) {
  3331. spin_unlock_irqrestore(&busiest->lock, flags);
  3332. all_pinned = 1;
  3333. goto out_one_pinned;
  3334. }
  3335. if (!busiest->active_balance) {
  3336. busiest->active_balance = 1;
  3337. busiest->push_cpu = this_cpu;
  3338. active_balance = 1;
  3339. }
  3340. spin_unlock_irqrestore(&busiest->lock, flags);
  3341. if (active_balance)
  3342. wake_up_process(busiest->migration_thread);
  3343. /*
  3344. * We've kicked active balancing, reset the failure
  3345. * counter.
  3346. */
  3347. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3348. }
  3349. } else
  3350. sd->nr_balance_failed = 0;
  3351. if (likely(!active_balance)) {
  3352. /* We were unbalanced, so reset the balancing interval */
  3353. sd->balance_interval = sd->min_interval;
  3354. } else {
  3355. /*
  3356. * If we've begun active balancing, start to back off. This
  3357. * case may not be covered by the all_pinned logic if there
  3358. * is only 1 task on the busy runqueue (because we don't call
  3359. * move_tasks).
  3360. */
  3361. if (sd->balance_interval < sd->max_interval)
  3362. sd->balance_interval *= 2;
  3363. }
  3364. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3365. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3366. ld_moved = -1;
  3367. goto out;
  3368. out_balanced:
  3369. schedstat_inc(sd, lb_balanced[idle]);
  3370. sd->nr_balance_failed = 0;
  3371. out_one_pinned:
  3372. /* tune up the balancing interval */
  3373. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3374. (sd->balance_interval < sd->max_interval))
  3375. sd->balance_interval *= 2;
  3376. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3377. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3378. ld_moved = -1;
  3379. else
  3380. ld_moved = 0;
  3381. out:
  3382. if (ld_moved)
  3383. update_shares(sd);
  3384. return ld_moved;
  3385. }
  3386. /*
  3387. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3388. * tasks if there is an imbalance.
  3389. *
  3390. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3391. * this_rq is locked.
  3392. */
  3393. static int
  3394. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3395. struct cpumask *cpus)
  3396. {
  3397. struct sched_group *group;
  3398. struct rq *busiest = NULL;
  3399. unsigned long imbalance;
  3400. int ld_moved = 0;
  3401. int sd_idle = 0;
  3402. int all_pinned = 0;
  3403. cpumask_setall(cpus);
  3404. /*
  3405. * When power savings policy is enabled for the parent domain, idle
  3406. * sibling can pick up load irrespective of busy siblings. In this case,
  3407. * let the state of idle sibling percolate up as IDLE, instead of
  3408. * portraying it as CPU_NOT_IDLE.
  3409. */
  3410. if (sd->flags & SD_SHARE_CPUPOWER &&
  3411. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3412. sd_idle = 1;
  3413. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3414. redo:
  3415. update_shares_locked(this_rq, sd);
  3416. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3417. &sd_idle, cpus, NULL);
  3418. if (!group) {
  3419. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3420. goto out_balanced;
  3421. }
  3422. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3423. if (!busiest) {
  3424. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3425. goto out_balanced;
  3426. }
  3427. BUG_ON(busiest == this_rq);
  3428. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3429. ld_moved = 0;
  3430. if (busiest->nr_running > 1) {
  3431. /* Attempt to move tasks */
  3432. double_lock_balance(this_rq, busiest);
  3433. /* this_rq->clock is already updated */
  3434. update_rq_clock(busiest);
  3435. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3436. imbalance, sd, CPU_NEWLY_IDLE,
  3437. &all_pinned);
  3438. double_unlock_balance(this_rq, busiest);
  3439. if (unlikely(all_pinned)) {
  3440. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3441. if (!cpumask_empty(cpus))
  3442. goto redo;
  3443. }
  3444. }
  3445. if (!ld_moved) {
  3446. int active_balance = 0;
  3447. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3448. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3449. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3450. return -1;
  3451. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3452. return -1;
  3453. if (sd->nr_balance_failed++ < 2)
  3454. return -1;
  3455. /*
  3456. * The only task running in a non-idle cpu can be moved to this
  3457. * cpu in an attempt to completely freeup the other CPU
  3458. * package. The same method used to move task in load_balance()
  3459. * have been extended for load_balance_newidle() to speedup
  3460. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3461. *
  3462. * The package power saving logic comes from
  3463. * find_busiest_group(). If there are no imbalance, then
  3464. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3465. * f_b_g() will select a group from which a running task may be
  3466. * pulled to this cpu in order to make the other package idle.
  3467. * If there is no opportunity to make a package idle and if
  3468. * there are no imbalance, then f_b_g() will return NULL and no
  3469. * action will be taken in load_balance_newidle().
  3470. *
  3471. * Under normal task pull operation due to imbalance, there
  3472. * will be more than one task in the source run queue and
  3473. * move_tasks() will succeed. ld_moved will be true and this
  3474. * active balance code will not be triggered.
  3475. */
  3476. /* Lock busiest in correct order while this_rq is held */
  3477. double_lock_balance(this_rq, busiest);
  3478. /*
  3479. * don't kick the migration_thread, if the curr
  3480. * task on busiest cpu can't be moved to this_cpu
  3481. */
  3482. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3483. double_unlock_balance(this_rq, busiest);
  3484. all_pinned = 1;
  3485. return ld_moved;
  3486. }
  3487. if (!busiest->active_balance) {
  3488. busiest->active_balance = 1;
  3489. busiest->push_cpu = this_cpu;
  3490. active_balance = 1;
  3491. }
  3492. double_unlock_balance(this_rq, busiest);
  3493. /*
  3494. * Should not call ttwu while holding a rq->lock
  3495. */
  3496. spin_unlock(&this_rq->lock);
  3497. if (active_balance)
  3498. wake_up_process(busiest->migration_thread);
  3499. spin_lock(&this_rq->lock);
  3500. } else
  3501. sd->nr_balance_failed = 0;
  3502. update_shares_locked(this_rq, sd);
  3503. return ld_moved;
  3504. out_balanced:
  3505. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3506. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3507. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3508. return -1;
  3509. sd->nr_balance_failed = 0;
  3510. return 0;
  3511. }
  3512. /*
  3513. * idle_balance is called by schedule() if this_cpu is about to become
  3514. * idle. Attempts to pull tasks from other CPUs.
  3515. */
  3516. static void idle_balance(int this_cpu, struct rq *this_rq)
  3517. {
  3518. struct sched_domain *sd;
  3519. int pulled_task = 0;
  3520. unsigned long next_balance = jiffies + HZ;
  3521. cpumask_var_t tmpmask;
  3522. if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
  3523. return;
  3524. for_each_domain(this_cpu, sd) {
  3525. unsigned long interval;
  3526. if (!(sd->flags & SD_LOAD_BALANCE))
  3527. continue;
  3528. if (sd->flags & SD_BALANCE_NEWIDLE)
  3529. /* If we've pulled tasks over stop searching: */
  3530. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3531. sd, tmpmask);
  3532. interval = msecs_to_jiffies(sd->balance_interval);
  3533. if (time_after(next_balance, sd->last_balance + interval))
  3534. next_balance = sd->last_balance + interval;
  3535. if (pulled_task)
  3536. break;
  3537. }
  3538. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3539. /*
  3540. * We are going idle. next_balance may be set based on
  3541. * a busy processor. So reset next_balance.
  3542. */
  3543. this_rq->next_balance = next_balance;
  3544. }
  3545. free_cpumask_var(tmpmask);
  3546. }
  3547. /*
  3548. * active_load_balance is run by migration threads. It pushes running tasks
  3549. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3550. * running on each physical CPU where possible, and avoids physical /
  3551. * logical imbalances.
  3552. *
  3553. * Called with busiest_rq locked.
  3554. */
  3555. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3556. {
  3557. int target_cpu = busiest_rq->push_cpu;
  3558. struct sched_domain *sd;
  3559. struct rq *target_rq;
  3560. /* Is there any task to move? */
  3561. if (busiest_rq->nr_running <= 1)
  3562. return;
  3563. target_rq = cpu_rq(target_cpu);
  3564. /*
  3565. * This condition is "impossible", if it occurs
  3566. * we need to fix it. Originally reported by
  3567. * Bjorn Helgaas on a 128-cpu setup.
  3568. */
  3569. BUG_ON(busiest_rq == target_rq);
  3570. /* move a task from busiest_rq to target_rq */
  3571. double_lock_balance(busiest_rq, target_rq);
  3572. update_rq_clock(busiest_rq);
  3573. update_rq_clock(target_rq);
  3574. /* Search for an sd spanning us and the target CPU. */
  3575. for_each_domain(target_cpu, sd) {
  3576. if ((sd->flags & SD_LOAD_BALANCE) &&
  3577. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3578. break;
  3579. }
  3580. if (likely(sd)) {
  3581. schedstat_inc(sd, alb_count);
  3582. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3583. sd, CPU_IDLE))
  3584. schedstat_inc(sd, alb_pushed);
  3585. else
  3586. schedstat_inc(sd, alb_failed);
  3587. }
  3588. double_unlock_balance(busiest_rq, target_rq);
  3589. }
  3590. #ifdef CONFIG_NO_HZ
  3591. static struct {
  3592. atomic_t load_balancer;
  3593. cpumask_var_t cpu_mask;
  3594. } nohz ____cacheline_aligned = {
  3595. .load_balancer = ATOMIC_INIT(-1),
  3596. };
  3597. /*
  3598. * This routine will try to nominate the ilb (idle load balancing)
  3599. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3600. * load balancing on behalf of all those cpus. If all the cpus in the system
  3601. * go into this tickless mode, then there will be no ilb owner (as there is
  3602. * no need for one) and all the cpus will sleep till the next wakeup event
  3603. * arrives...
  3604. *
  3605. * For the ilb owner, tick is not stopped. And this tick will be used
  3606. * for idle load balancing. ilb owner will still be part of
  3607. * nohz.cpu_mask..
  3608. *
  3609. * While stopping the tick, this cpu will become the ilb owner if there
  3610. * is no other owner. And will be the owner till that cpu becomes busy
  3611. * or if all cpus in the system stop their ticks at which point
  3612. * there is no need for ilb owner.
  3613. *
  3614. * When the ilb owner becomes busy, it nominates another owner, during the
  3615. * next busy scheduler_tick()
  3616. */
  3617. int select_nohz_load_balancer(int stop_tick)
  3618. {
  3619. int cpu = smp_processor_id();
  3620. if (stop_tick) {
  3621. cpu_rq(cpu)->in_nohz_recently = 1;
  3622. if (!cpu_active(cpu)) {
  3623. if (atomic_read(&nohz.load_balancer) != cpu)
  3624. return 0;
  3625. /*
  3626. * If we are going offline and still the leader,
  3627. * give up!
  3628. */
  3629. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3630. BUG();
  3631. return 0;
  3632. }
  3633. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3634. /* time for ilb owner also to sleep */
  3635. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3636. if (atomic_read(&nohz.load_balancer) == cpu)
  3637. atomic_set(&nohz.load_balancer, -1);
  3638. return 0;
  3639. }
  3640. if (atomic_read(&nohz.load_balancer) == -1) {
  3641. /* make me the ilb owner */
  3642. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3643. return 1;
  3644. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3645. return 1;
  3646. } else {
  3647. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3648. return 0;
  3649. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3650. if (atomic_read(&nohz.load_balancer) == cpu)
  3651. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3652. BUG();
  3653. }
  3654. return 0;
  3655. }
  3656. #endif
  3657. static DEFINE_SPINLOCK(balancing);
  3658. /*
  3659. * It checks each scheduling domain to see if it is due to be balanced,
  3660. * and initiates a balancing operation if so.
  3661. *
  3662. * Balancing parameters are set up in arch_init_sched_domains.
  3663. */
  3664. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3665. {
  3666. int balance = 1;
  3667. struct rq *rq = cpu_rq(cpu);
  3668. unsigned long interval;
  3669. struct sched_domain *sd;
  3670. /* Earliest time when we have to do rebalance again */
  3671. unsigned long next_balance = jiffies + 60*HZ;
  3672. int update_next_balance = 0;
  3673. int need_serialize;
  3674. cpumask_var_t tmp;
  3675. /* Fails alloc? Rebalancing probably not a priority right now. */
  3676. if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
  3677. return;
  3678. for_each_domain(cpu, sd) {
  3679. if (!(sd->flags & SD_LOAD_BALANCE))
  3680. continue;
  3681. interval = sd->balance_interval;
  3682. if (idle != CPU_IDLE)
  3683. interval *= sd->busy_factor;
  3684. /* scale ms to jiffies */
  3685. interval = msecs_to_jiffies(interval);
  3686. if (unlikely(!interval))
  3687. interval = 1;
  3688. if (interval > HZ*NR_CPUS/10)
  3689. interval = HZ*NR_CPUS/10;
  3690. need_serialize = sd->flags & SD_SERIALIZE;
  3691. if (need_serialize) {
  3692. if (!spin_trylock(&balancing))
  3693. goto out;
  3694. }
  3695. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3696. if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
  3697. /*
  3698. * We've pulled tasks over so either we're no
  3699. * longer idle, or one of our SMT siblings is
  3700. * not idle.
  3701. */
  3702. idle = CPU_NOT_IDLE;
  3703. }
  3704. sd->last_balance = jiffies;
  3705. }
  3706. if (need_serialize)
  3707. spin_unlock(&balancing);
  3708. out:
  3709. if (time_after(next_balance, sd->last_balance + interval)) {
  3710. next_balance = sd->last_balance + interval;
  3711. update_next_balance = 1;
  3712. }
  3713. /*
  3714. * Stop the load balance at this level. There is another
  3715. * CPU in our sched group which is doing load balancing more
  3716. * actively.
  3717. */
  3718. if (!balance)
  3719. break;
  3720. }
  3721. /*
  3722. * next_balance will be updated only when there is a need.
  3723. * When the cpu is attached to null domain for ex, it will not be
  3724. * updated.
  3725. */
  3726. if (likely(update_next_balance))
  3727. rq->next_balance = next_balance;
  3728. free_cpumask_var(tmp);
  3729. }
  3730. /*
  3731. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3732. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3733. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3734. */
  3735. static void run_rebalance_domains(struct softirq_action *h)
  3736. {
  3737. int this_cpu = smp_processor_id();
  3738. struct rq *this_rq = cpu_rq(this_cpu);
  3739. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3740. CPU_IDLE : CPU_NOT_IDLE;
  3741. rebalance_domains(this_cpu, idle);
  3742. #ifdef CONFIG_NO_HZ
  3743. /*
  3744. * If this cpu is the owner for idle load balancing, then do the
  3745. * balancing on behalf of the other idle cpus whose ticks are
  3746. * stopped.
  3747. */
  3748. if (this_rq->idle_at_tick &&
  3749. atomic_read(&nohz.load_balancer) == this_cpu) {
  3750. struct rq *rq;
  3751. int balance_cpu;
  3752. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  3753. if (balance_cpu == this_cpu)
  3754. continue;
  3755. /*
  3756. * If this cpu gets work to do, stop the load balancing
  3757. * work being done for other cpus. Next load
  3758. * balancing owner will pick it up.
  3759. */
  3760. if (need_resched())
  3761. break;
  3762. rebalance_domains(balance_cpu, CPU_IDLE);
  3763. rq = cpu_rq(balance_cpu);
  3764. if (time_after(this_rq->next_balance, rq->next_balance))
  3765. this_rq->next_balance = rq->next_balance;
  3766. }
  3767. }
  3768. #endif
  3769. }
  3770. static inline int on_null_domain(int cpu)
  3771. {
  3772. return !rcu_dereference(cpu_rq(cpu)->sd);
  3773. }
  3774. /*
  3775. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3776. *
  3777. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3778. * idle load balancing owner or decide to stop the periodic load balancing,
  3779. * if the whole system is idle.
  3780. */
  3781. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3782. {
  3783. #ifdef CONFIG_NO_HZ
  3784. /*
  3785. * If we were in the nohz mode recently and busy at the current
  3786. * scheduler tick, then check if we need to nominate new idle
  3787. * load balancer.
  3788. */
  3789. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3790. rq->in_nohz_recently = 0;
  3791. if (atomic_read(&nohz.load_balancer) == cpu) {
  3792. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3793. atomic_set(&nohz.load_balancer, -1);
  3794. }
  3795. if (atomic_read(&nohz.load_balancer) == -1) {
  3796. /*
  3797. * simple selection for now: Nominate the
  3798. * first cpu in the nohz list to be the next
  3799. * ilb owner.
  3800. *
  3801. * TBD: Traverse the sched domains and nominate
  3802. * the nearest cpu in the nohz.cpu_mask.
  3803. */
  3804. int ilb = cpumask_first(nohz.cpu_mask);
  3805. if (ilb < nr_cpu_ids)
  3806. resched_cpu(ilb);
  3807. }
  3808. }
  3809. /*
  3810. * If this cpu is idle and doing idle load balancing for all the
  3811. * cpus with ticks stopped, is it time for that to stop?
  3812. */
  3813. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3814. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3815. resched_cpu(cpu);
  3816. return;
  3817. }
  3818. /*
  3819. * If this cpu is idle and the idle load balancing is done by
  3820. * someone else, then no need raise the SCHED_SOFTIRQ
  3821. */
  3822. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3823. cpumask_test_cpu(cpu, nohz.cpu_mask))
  3824. return;
  3825. #endif
  3826. /* Don't need to rebalance while attached to NULL domain */
  3827. if (time_after_eq(jiffies, rq->next_balance) &&
  3828. likely(!on_null_domain(cpu)))
  3829. raise_softirq(SCHED_SOFTIRQ);
  3830. }
  3831. #else /* CONFIG_SMP */
  3832. /*
  3833. * on UP we do not need to balance between CPUs:
  3834. */
  3835. static inline void idle_balance(int cpu, struct rq *rq)
  3836. {
  3837. }
  3838. #endif
  3839. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3840. EXPORT_PER_CPU_SYMBOL(kstat);
  3841. /*
  3842. * Return any ns on the sched_clock that have not yet been banked in
  3843. * @p in case that task is currently running.
  3844. */
  3845. unsigned long long task_delta_exec(struct task_struct *p)
  3846. {
  3847. unsigned long flags;
  3848. struct rq *rq;
  3849. u64 ns = 0;
  3850. rq = task_rq_lock(p, &flags);
  3851. if (task_current(rq, p)) {
  3852. u64 delta_exec;
  3853. update_rq_clock(rq);
  3854. delta_exec = rq->clock - p->se.exec_start;
  3855. if ((s64)delta_exec > 0)
  3856. ns = delta_exec;
  3857. }
  3858. task_rq_unlock(rq, &flags);
  3859. return ns;
  3860. }
  3861. /*
  3862. * Account user cpu time to a process.
  3863. * @p: the process that the cpu time gets accounted to
  3864. * @cputime: the cpu time spent in user space since the last update
  3865. * @cputime_scaled: cputime scaled by cpu frequency
  3866. */
  3867. void account_user_time(struct task_struct *p, cputime_t cputime,
  3868. cputime_t cputime_scaled)
  3869. {
  3870. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3871. cputime64_t tmp;
  3872. /* Add user time to process. */
  3873. p->utime = cputime_add(p->utime, cputime);
  3874. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3875. account_group_user_time(p, cputime);
  3876. /* Add user time to cpustat. */
  3877. tmp = cputime_to_cputime64(cputime);
  3878. if (TASK_NICE(p) > 0)
  3879. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3880. else
  3881. cpustat->user = cputime64_add(cpustat->user, tmp);
  3882. /* Account for user time used */
  3883. acct_update_integrals(p);
  3884. }
  3885. /*
  3886. * Account guest cpu time to a process.
  3887. * @p: the process that the cpu time gets accounted to
  3888. * @cputime: the cpu time spent in virtual machine since the last update
  3889. * @cputime_scaled: cputime scaled by cpu frequency
  3890. */
  3891. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3892. cputime_t cputime_scaled)
  3893. {
  3894. cputime64_t tmp;
  3895. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3896. tmp = cputime_to_cputime64(cputime);
  3897. /* Add guest time to process. */
  3898. p->utime = cputime_add(p->utime, cputime);
  3899. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3900. account_group_user_time(p, cputime);
  3901. p->gtime = cputime_add(p->gtime, cputime);
  3902. /* Add guest time to cpustat. */
  3903. cpustat->user = cputime64_add(cpustat->user, tmp);
  3904. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3905. }
  3906. /*
  3907. * Account system cpu time to a process.
  3908. * @p: the process that the cpu time gets accounted to
  3909. * @hardirq_offset: the offset to subtract from hardirq_count()
  3910. * @cputime: the cpu time spent in kernel space since the last update
  3911. * @cputime_scaled: cputime scaled by cpu frequency
  3912. */
  3913. void account_system_time(struct task_struct *p, int hardirq_offset,
  3914. cputime_t cputime, cputime_t cputime_scaled)
  3915. {
  3916. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3917. cputime64_t tmp;
  3918. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3919. account_guest_time(p, cputime, cputime_scaled);
  3920. return;
  3921. }
  3922. /* Add system time to process. */
  3923. p->stime = cputime_add(p->stime, cputime);
  3924. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3925. account_group_system_time(p, cputime);
  3926. /* Add system time to cpustat. */
  3927. tmp = cputime_to_cputime64(cputime);
  3928. if (hardirq_count() - hardirq_offset)
  3929. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3930. else if (softirq_count())
  3931. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3932. else
  3933. cpustat->system = cputime64_add(cpustat->system, tmp);
  3934. /* Account for system time used */
  3935. acct_update_integrals(p);
  3936. }
  3937. /*
  3938. * Account for involuntary wait time.
  3939. * @steal: the cpu time spent in involuntary wait
  3940. */
  3941. void account_steal_time(cputime_t cputime)
  3942. {
  3943. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3944. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3945. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3946. }
  3947. /*
  3948. * Account for idle time.
  3949. * @cputime: the cpu time spent in idle wait
  3950. */
  3951. void account_idle_time(cputime_t cputime)
  3952. {
  3953. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3954. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3955. struct rq *rq = this_rq();
  3956. if (atomic_read(&rq->nr_iowait) > 0)
  3957. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3958. else
  3959. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3960. }
  3961. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3962. /*
  3963. * Account a single tick of cpu time.
  3964. * @p: the process that the cpu time gets accounted to
  3965. * @user_tick: indicates if the tick is a user or a system tick
  3966. */
  3967. void account_process_tick(struct task_struct *p, int user_tick)
  3968. {
  3969. cputime_t one_jiffy = jiffies_to_cputime(1);
  3970. cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
  3971. struct rq *rq = this_rq();
  3972. if (user_tick)
  3973. account_user_time(p, one_jiffy, one_jiffy_scaled);
  3974. else if (p != rq->idle)
  3975. account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
  3976. one_jiffy_scaled);
  3977. else
  3978. account_idle_time(one_jiffy);
  3979. }
  3980. /*
  3981. * Account multiple ticks of steal time.
  3982. * @p: the process from which the cpu time has been stolen
  3983. * @ticks: number of stolen ticks
  3984. */
  3985. void account_steal_ticks(unsigned long ticks)
  3986. {
  3987. account_steal_time(jiffies_to_cputime(ticks));
  3988. }
  3989. /*
  3990. * Account multiple ticks of idle time.
  3991. * @ticks: number of stolen ticks
  3992. */
  3993. void account_idle_ticks(unsigned long ticks)
  3994. {
  3995. account_idle_time(jiffies_to_cputime(ticks));
  3996. }
  3997. #endif
  3998. /*
  3999. * Use precise platform statistics if available:
  4000. */
  4001. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4002. cputime_t task_utime(struct task_struct *p)
  4003. {
  4004. return p->utime;
  4005. }
  4006. cputime_t task_stime(struct task_struct *p)
  4007. {
  4008. return p->stime;
  4009. }
  4010. #else
  4011. cputime_t task_utime(struct task_struct *p)
  4012. {
  4013. clock_t utime = cputime_to_clock_t(p->utime),
  4014. total = utime + cputime_to_clock_t(p->stime);
  4015. u64 temp;
  4016. /*
  4017. * Use CFS's precise accounting:
  4018. */
  4019. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  4020. if (total) {
  4021. temp *= utime;
  4022. do_div(temp, total);
  4023. }
  4024. utime = (clock_t)temp;
  4025. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  4026. return p->prev_utime;
  4027. }
  4028. cputime_t task_stime(struct task_struct *p)
  4029. {
  4030. clock_t stime;
  4031. /*
  4032. * Use CFS's precise accounting. (we subtract utime from
  4033. * the total, to make sure the total observed by userspace
  4034. * grows monotonically - apps rely on that):
  4035. */
  4036. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  4037. cputime_to_clock_t(task_utime(p));
  4038. if (stime >= 0)
  4039. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  4040. return p->prev_stime;
  4041. }
  4042. #endif
  4043. inline cputime_t task_gtime(struct task_struct *p)
  4044. {
  4045. return p->gtime;
  4046. }
  4047. /*
  4048. * This function gets called by the timer code, with HZ frequency.
  4049. * We call it with interrupts disabled.
  4050. *
  4051. * It also gets called by the fork code, when changing the parent's
  4052. * timeslices.
  4053. */
  4054. void scheduler_tick(void)
  4055. {
  4056. int cpu = smp_processor_id();
  4057. struct rq *rq = cpu_rq(cpu);
  4058. struct task_struct *curr = rq->curr;
  4059. sched_clock_tick();
  4060. spin_lock(&rq->lock);
  4061. update_rq_clock(rq);
  4062. update_cpu_load(rq);
  4063. curr->sched_class->task_tick(rq, curr, 0);
  4064. spin_unlock(&rq->lock);
  4065. #ifdef CONFIG_SMP
  4066. rq->idle_at_tick = idle_cpu(cpu);
  4067. trigger_load_balance(rq, cpu);
  4068. #endif
  4069. }
  4070. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4071. defined(CONFIG_PREEMPT_TRACER))
  4072. static inline unsigned long get_parent_ip(unsigned long addr)
  4073. {
  4074. if (in_lock_functions(addr)) {
  4075. addr = CALLER_ADDR2;
  4076. if (in_lock_functions(addr))
  4077. addr = CALLER_ADDR3;
  4078. }
  4079. return addr;
  4080. }
  4081. void __kprobes add_preempt_count(int val)
  4082. {
  4083. #ifdef CONFIG_DEBUG_PREEMPT
  4084. /*
  4085. * Underflow?
  4086. */
  4087. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4088. return;
  4089. #endif
  4090. preempt_count() += val;
  4091. #ifdef CONFIG_DEBUG_PREEMPT
  4092. /*
  4093. * Spinlock count overflowing soon?
  4094. */
  4095. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4096. PREEMPT_MASK - 10);
  4097. #endif
  4098. if (preempt_count() == val)
  4099. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4100. }
  4101. EXPORT_SYMBOL(add_preempt_count);
  4102. void __kprobes sub_preempt_count(int val)
  4103. {
  4104. #ifdef CONFIG_DEBUG_PREEMPT
  4105. /*
  4106. * Underflow?
  4107. */
  4108. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4109. return;
  4110. /*
  4111. * Is the spinlock portion underflowing?
  4112. */
  4113. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4114. !(preempt_count() & PREEMPT_MASK)))
  4115. return;
  4116. #endif
  4117. if (preempt_count() == val)
  4118. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4119. preempt_count() -= val;
  4120. }
  4121. EXPORT_SYMBOL(sub_preempt_count);
  4122. #endif
  4123. /*
  4124. * Print scheduling while atomic bug:
  4125. */
  4126. static noinline void __schedule_bug(struct task_struct *prev)
  4127. {
  4128. struct pt_regs *regs = get_irq_regs();
  4129. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4130. prev->comm, prev->pid, preempt_count());
  4131. debug_show_held_locks(prev);
  4132. print_modules();
  4133. if (irqs_disabled())
  4134. print_irqtrace_events(prev);
  4135. if (regs)
  4136. show_regs(regs);
  4137. else
  4138. dump_stack();
  4139. }
  4140. /*
  4141. * Various schedule()-time debugging checks and statistics:
  4142. */
  4143. static inline void schedule_debug(struct task_struct *prev)
  4144. {
  4145. /*
  4146. * Test if we are atomic. Since do_exit() needs to call into
  4147. * schedule() atomically, we ignore that path for now.
  4148. * Otherwise, whine if we are scheduling when we should not be.
  4149. */
  4150. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4151. __schedule_bug(prev);
  4152. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4153. schedstat_inc(this_rq(), sched_count);
  4154. #ifdef CONFIG_SCHEDSTATS
  4155. if (unlikely(prev->lock_depth >= 0)) {
  4156. schedstat_inc(this_rq(), bkl_count);
  4157. schedstat_inc(prev, sched_info.bkl_count);
  4158. }
  4159. #endif
  4160. }
  4161. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4162. {
  4163. if (prev->state == TASK_RUNNING) {
  4164. u64 runtime = prev->se.sum_exec_runtime;
  4165. runtime -= prev->se.prev_sum_exec_runtime;
  4166. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4167. /*
  4168. * In order to avoid avg_overlap growing stale when we are
  4169. * indeed overlapping and hence not getting put to sleep, grow
  4170. * the avg_overlap on preemption.
  4171. *
  4172. * We use the average preemption runtime because that
  4173. * correlates to the amount of cache footprint a task can
  4174. * build up.
  4175. */
  4176. update_avg(&prev->se.avg_overlap, runtime);
  4177. }
  4178. prev->sched_class->put_prev_task(rq, prev);
  4179. }
  4180. /*
  4181. * Pick up the highest-prio task:
  4182. */
  4183. static inline struct task_struct *
  4184. pick_next_task(struct rq *rq)
  4185. {
  4186. const struct sched_class *class;
  4187. struct task_struct *p;
  4188. /*
  4189. * Optimization: we know that if all tasks are in
  4190. * the fair class we can call that function directly:
  4191. */
  4192. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4193. p = fair_sched_class.pick_next_task(rq);
  4194. if (likely(p))
  4195. return p;
  4196. }
  4197. class = sched_class_highest;
  4198. for ( ; ; ) {
  4199. p = class->pick_next_task(rq);
  4200. if (p)
  4201. return p;
  4202. /*
  4203. * Will never be NULL as the idle class always
  4204. * returns a non-NULL p:
  4205. */
  4206. class = class->next;
  4207. }
  4208. }
  4209. /*
  4210. * schedule() is the main scheduler function.
  4211. */
  4212. asmlinkage void __sched __schedule(void)
  4213. {
  4214. struct task_struct *prev, *next;
  4215. unsigned long *switch_count;
  4216. struct rq *rq;
  4217. int cpu;
  4218. cpu = smp_processor_id();
  4219. rq = cpu_rq(cpu);
  4220. rcu_qsctr_inc(cpu);
  4221. prev = rq->curr;
  4222. switch_count = &prev->nivcsw;
  4223. release_kernel_lock(prev);
  4224. need_resched_nonpreemptible:
  4225. schedule_debug(prev);
  4226. if (sched_feat(HRTICK))
  4227. hrtick_clear(rq);
  4228. spin_lock_irq(&rq->lock);
  4229. update_rq_clock(rq);
  4230. clear_tsk_need_resched(prev);
  4231. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4232. if (unlikely(signal_pending_state(prev->state, prev)))
  4233. prev->state = TASK_RUNNING;
  4234. else
  4235. deactivate_task(rq, prev, 1);
  4236. switch_count = &prev->nvcsw;
  4237. }
  4238. #ifdef CONFIG_SMP
  4239. if (prev->sched_class->pre_schedule)
  4240. prev->sched_class->pre_schedule(rq, prev);
  4241. #endif
  4242. if (unlikely(!rq->nr_running))
  4243. idle_balance(cpu, rq);
  4244. put_prev_task(rq, prev);
  4245. next = pick_next_task(rq);
  4246. if (likely(prev != next)) {
  4247. sched_info_switch(prev, next);
  4248. rq->nr_switches++;
  4249. rq->curr = next;
  4250. ++*switch_count;
  4251. context_switch(rq, prev, next); /* unlocks the rq */
  4252. /*
  4253. * the context switch might have flipped the stack from under
  4254. * us, hence refresh the local variables.
  4255. */
  4256. cpu = smp_processor_id();
  4257. rq = cpu_rq(cpu);
  4258. } else
  4259. spin_unlock_irq(&rq->lock);
  4260. if (unlikely(reacquire_kernel_lock(current) < 0))
  4261. goto need_resched_nonpreemptible;
  4262. }
  4263. asmlinkage void __sched schedule(void)
  4264. {
  4265. need_resched:
  4266. preempt_disable();
  4267. __schedule();
  4268. preempt_enable_no_resched();
  4269. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  4270. goto need_resched;
  4271. }
  4272. EXPORT_SYMBOL(schedule);
  4273. #ifdef CONFIG_SMP
  4274. /*
  4275. * Look out! "owner" is an entirely speculative pointer
  4276. * access and not reliable.
  4277. */
  4278. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4279. {
  4280. unsigned int cpu;
  4281. struct rq *rq;
  4282. if (!sched_feat(OWNER_SPIN))
  4283. return 0;
  4284. #ifdef CONFIG_DEBUG_PAGEALLOC
  4285. /*
  4286. * Need to access the cpu field knowing that
  4287. * DEBUG_PAGEALLOC could have unmapped it if
  4288. * the mutex owner just released it and exited.
  4289. */
  4290. if (probe_kernel_address(&owner->cpu, cpu))
  4291. goto out;
  4292. #else
  4293. cpu = owner->cpu;
  4294. #endif
  4295. /*
  4296. * Even if the access succeeded (likely case),
  4297. * the cpu field may no longer be valid.
  4298. */
  4299. if (cpu >= nr_cpumask_bits)
  4300. goto out;
  4301. /*
  4302. * We need to validate that we can do a
  4303. * get_cpu() and that we have the percpu area.
  4304. */
  4305. if (!cpu_online(cpu))
  4306. goto out;
  4307. rq = cpu_rq(cpu);
  4308. for (;;) {
  4309. /*
  4310. * Owner changed, break to re-assess state.
  4311. */
  4312. if (lock->owner != owner)
  4313. break;
  4314. /*
  4315. * Is that owner really running on that cpu?
  4316. */
  4317. if (task_thread_info(rq->curr) != owner || need_resched())
  4318. return 0;
  4319. cpu_relax();
  4320. }
  4321. out:
  4322. return 1;
  4323. }
  4324. #endif
  4325. #ifdef CONFIG_PREEMPT
  4326. /*
  4327. * this is the entry point to schedule() from in-kernel preemption
  4328. * off of preempt_enable. Kernel preemptions off return from interrupt
  4329. * occur there and call schedule directly.
  4330. */
  4331. asmlinkage void __sched preempt_schedule(void)
  4332. {
  4333. struct thread_info *ti = current_thread_info();
  4334. /*
  4335. * If there is a non-zero preempt_count or interrupts are disabled,
  4336. * we do not want to preempt the current task. Just return..
  4337. */
  4338. if (likely(ti->preempt_count || irqs_disabled()))
  4339. return;
  4340. do {
  4341. add_preempt_count(PREEMPT_ACTIVE);
  4342. schedule();
  4343. sub_preempt_count(PREEMPT_ACTIVE);
  4344. /*
  4345. * Check again in case we missed a preemption opportunity
  4346. * between schedule and now.
  4347. */
  4348. barrier();
  4349. } while (need_resched());
  4350. }
  4351. EXPORT_SYMBOL(preempt_schedule);
  4352. /*
  4353. * this is the entry point to schedule() from kernel preemption
  4354. * off of irq context.
  4355. * Note, that this is called and return with irqs disabled. This will
  4356. * protect us against recursive calling from irq.
  4357. */
  4358. asmlinkage void __sched preempt_schedule_irq(void)
  4359. {
  4360. struct thread_info *ti = current_thread_info();
  4361. /* Catch callers which need to be fixed */
  4362. BUG_ON(ti->preempt_count || !irqs_disabled());
  4363. do {
  4364. add_preempt_count(PREEMPT_ACTIVE);
  4365. local_irq_enable();
  4366. schedule();
  4367. local_irq_disable();
  4368. sub_preempt_count(PREEMPT_ACTIVE);
  4369. /*
  4370. * Check again in case we missed a preemption opportunity
  4371. * between schedule and now.
  4372. */
  4373. barrier();
  4374. } while (need_resched());
  4375. }
  4376. #endif /* CONFIG_PREEMPT */
  4377. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  4378. void *key)
  4379. {
  4380. return try_to_wake_up(curr->private, mode, sync);
  4381. }
  4382. EXPORT_SYMBOL(default_wake_function);
  4383. /*
  4384. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4385. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4386. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4387. *
  4388. * There are circumstances in which we can try to wake a task which has already
  4389. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4390. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4391. */
  4392. void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4393. int nr_exclusive, int sync, void *key)
  4394. {
  4395. wait_queue_t *curr, *next;
  4396. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4397. unsigned flags = curr->flags;
  4398. if (curr->func(curr, mode, sync, key) &&
  4399. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4400. break;
  4401. }
  4402. }
  4403. /**
  4404. * __wake_up - wake up threads blocked on a waitqueue.
  4405. * @q: the waitqueue
  4406. * @mode: which threads
  4407. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4408. * @key: is directly passed to the wakeup function
  4409. */
  4410. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4411. int nr_exclusive, void *key)
  4412. {
  4413. unsigned long flags;
  4414. spin_lock_irqsave(&q->lock, flags);
  4415. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4416. spin_unlock_irqrestore(&q->lock, flags);
  4417. }
  4418. EXPORT_SYMBOL(__wake_up);
  4419. /*
  4420. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4421. */
  4422. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4423. {
  4424. __wake_up_common(q, mode, 1, 0, NULL);
  4425. }
  4426. /**
  4427. * __wake_up_sync - wake up threads blocked on a waitqueue.
  4428. * @q: the waitqueue
  4429. * @mode: which threads
  4430. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4431. *
  4432. * The sync wakeup differs that the waker knows that it will schedule
  4433. * away soon, so while the target thread will be woken up, it will not
  4434. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4435. * with each other. This can prevent needless bouncing between CPUs.
  4436. *
  4437. * On UP it can prevent extra preemption.
  4438. */
  4439. void
  4440. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4441. {
  4442. unsigned long flags;
  4443. int sync = 1;
  4444. if (unlikely(!q))
  4445. return;
  4446. if (unlikely(!nr_exclusive))
  4447. sync = 0;
  4448. spin_lock_irqsave(&q->lock, flags);
  4449. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  4450. spin_unlock_irqrestore(&q->lock, flags);
  4451. }
  4452. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4453. /**
  4454. * complete: - signals a single thread waiting on this completion
  4455. * @x: holds the state of this particular completion
  4456. *
  4457. * This will wake up a single thread waiting on this completion. Threads will be
  4458. * awakened in the same order in which they were queued.
  4459. *
  4460. * See also complete_all(), wait_for_completion() and related routines.
  4461. */
  4462. void complete(struct completion *x)
  4463. {
  4464. unsigned long flags;
  4465. spin_lock_irqsave(&x->wait.lock, flags);
  4466. x->done++;
  4467. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4468. spin_unlock_irqrestore(&x->wait.lock, flags);
  4469. }
  4470. EXPORT_SYMBOL(complete);
  4471. /**
  4472. * complete_all: - signals all threads waiting on this completion
  4473. * @x: holds the state of this particular completion
  4474. *
  4475. * This will wake up all threads waiting on this particular completion event.
  4476. */
  4477. void complete_all(struct completion *x)
  4478. {
  4479. unsigned long flags;
  4480. spin_lock_irqsave(&x->wait.lock, flags);
  4481. x->done += UINT_MAX/2;
  4482. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4483. spin_unlock_irqrestore(&x->wait.lock, flags);
  4484. }
  4485. EXPORT_SYMBOL(complete_all);
  4486. static inline long __sched
  4487. do_wait_for_common(struct completion *x, long timeout, int state)
  4488. {
  4489. if (!x->done) {
  4490. DECLARE_WAITQUEUE(wait, current);
  4491. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4492. __add_wait_queue_tail(&x->wait, &wait);
  4493. do {
  4494. if (signal_pending_state(state, current)) {
  4495. timeout = -ERESTARTSYS;
  4496. break;
  4497. }
  4498. __set_current_state(state);
  4499. spin_unlock_irq(&x->wait.lock);
  4500. timeout = schedule_timeout(timeout);
  4501. spin_lock_irq(&x->wait.lock);
  4502. } while (!x->done && timeout);
  4503. __remove_wait_queue(&x->wait, &wait);
  4504. if (!x->done)
  4505. return timeout;
  4506. }
  4507. x->done--;
  4508. return timeout ?: 1;
  4509. }
  4510. static long __sched
  4511. wait_for_common(struct completion *x, long timeout, int state)
  4512. {
  4513. might_sleep();
  4514. spin_lock_irq(&x->wait.lock);
  4515. timeout = do_wait_for_common(x, timeout, state);
  4516. spin_unlock_irq(&x->wait.lock);
  4517. return timeout;
  4518. }
  4519. /**
  4520. * wait_for_completion: - waits for completion of a task
  4521. * @x: holds the state of this particular completion
  4522. *
  4523. * This waits to be signaled for completion of a specific task. It is NOT
  4524. * interruptible and there is no timeout.
  4525. *
  4526. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4527. * and interrupt capability. Also see complete().
  4528. */
  4529. void __sched wait_for_completion(struct completion *x)
  4530. {
  4531. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4532. }
  4533. EXPORT_SYMBOL(wait_for_completion);
  4534. /**
  4535. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4536. * @x: holds the state of this particular completion
  4537. * @timeout: timeout value in jiffies
  4538. *
  4539. * This waits for either a completion of a specific task to be signaled or for a
  4540. * specified timeout to expire. The timeout is in jiffies. It is not
  4541. * interruptible.
  4542. */
  4543. unsigned long __sched
  4544. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4545. {
  4546. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4547. }
  4548. EXPORT_SYMBOL(wait_for_completion_timeout);
  4549. /**
  4550. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4551. * @x: holds the state of this particular completion
  4552. *
  4553. * This waits for completion of a specific task to be signaled. It is
  4554. * interruptible.
  4555. */
  4556. int __sched wait_for_completion_interruptible(struct completion *x)
  4557. {
  4558. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4559. if (t == -ERESTARTSYS)
  4560. return t;
  4561. return 0;
  4562. }
  4563. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4564. /**
  4565. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4566. * @x: holds the state of this particular completion
  4567. * @timeout: timeout value in jiffies
  4568. *
  4569. * This waits for either a completion of a specific task to be signaled or for a
  4570. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4571. */
  4572. unsigned long __sched
  4573. wait_for_completion_interruptible_timeout(struct completion *x,
  4574. unsigned long timeout)
  4575. {
  4576. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4577. }
  4578. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4579. /**
  4580. * wait_for_completion_killable: - waits for completion of a task (killable)
  4581. * @x: holds the state of this particular completion
  4582. *
  4583. * This waits to be signaled for completion of a specific task. It can be
  4584. * interrupted by a kill signal.
  4585. */
  4586. int __sched wait_for_completion_killable(struct completion *x)
  4587. {
  4588. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4589. if (t == -ERESTARTSYS)
  4590. return t;
  4591. return 0;
  4592. }
  4593. EXPORT_SYMBOL(wait_for_completion_killable);
  4594. /**
  4595. * try_wait_for_completion - try to decrement a completion without blocking
  4596. * @x: completion structure
  4597. *
  4598. * Returns: 0 if a decrement cannot be done without blocking
  4599. * 1 if a decrement succeeded.
  4600. *
  4601. * If a completion is being used as a counting completion,
  4602. * attempt to decrement the counter without blocking. This
  4603. * enables us to avoid waiting if the resource the completion
  4604. * is protecting is not available.
  4605. */
  4606. bool try_wait_for_completion(struct completion *x)
  4607. {
  4608. int ret = 1;
  4609. spin_lock_irq(&x->wait.lock);
  4610. if (!x->done)
  4611. ret = 0;
  4612. else
  4613. x->done--;
  4614. spin_unlock_irq(&x->wait.lock);
  4615. return ret;
  4616. }
  4617. EXPORT_SYMBOL(try_wait_for_completion);
  4618. /**
  4619. * completion_done - Test to see if a completion has any waiters
  4620. * @x: completion structure
  4621. *
  4622. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4623. * 1 if there are no waiters.
  4624. *
  4625. */
  4626. bool completion_done(struct completion *x)
  4627. {
  4628. int ret = 1;
  4629. spin_lock_irq(&x->wait.lock);
  4630. if (!x->done)
  4631. ret = 0;
  4632. spin_unlock_irq(&x->wait.lock);
  4633. return ret;
  4634. }
  4635. EXPORT_SYMBOL(completion_done);
  4636. static long __sched
  4637. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4638. {
  4639. unsigned long flags;
  4640. wait_queue_t wait;
  4641. init_waitqueue_entry(&wait, current);
  4642. __set_current_state(state);
  4643. spin_lock_irqsave(&q->lock, flags);
  4644. __add_wait_queue(q, &wait);
  4645. spin_unlock(&q->lock);
  4646. timeout = schedule_timeout(timeout);
  4647. spin_lock_irq(&q->lock);
  4648. __remove_wait_queue(q, &wait);
  4649. spin_unlock_irqrestore(&q->lock, flags);
  4650. return timeout;
  4651. }
  4652. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4653. {
  4654. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4655. }
  4656. EXPORT_SYMBOL(interruptible_sleep_on);
  4657. long __sched
  4658. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4659. {
  4660. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4661. }
  4662. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4663. void __sched sleep_on(wait_queue_head_t *q)
  4664. {
  4665. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4666. }
  4667. EXPORT_SYMBOL(sleep_on);
  4668. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4669. {
  4670. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4671. }
  4672. EXPORT_SYMBOL(sleep_on_timeout);
  4673. #ifdef CONFIG_RT_MUTEXES
  4674. /*
  4675. * rt_mutex_setprio - set the current priority of a task
  4676. * @p: task
  4677. * @prio: prio value (kernel-internal form)
  4678. *
  4679. * This function changes the 'effective' priority of a task. It does
  4680. * not touch ->normal_prio like __setscheduler().
  4681. *
  4682. * Used by the rt_mutex code to implement priority inheritance logic.
  4683. */
  4684. void rt_mutex_setprio(struct task_struct *p, int prio)
  4685. {
  4686. unsigned long flags;
  4687. int oldprio, on_rq, running;
  4688. struct rq *rq;
  4689. const struct sched_class *prev_class = p->sched_class;
  4690. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4691. rq = task_rq_lock(p, &flags);
  4692. update_rq_clock(rq);
  4693. oldprio = p->prio;
  4694. on_rq = p->se.on_rq;
  4695. running = task_current(rq, p);
  4696. if (on_rq)
  4697. dequeue_task(rq, p, 0);
  4698. if (running)
  4699. p->sched_class->put_prev_task(rq, p);
  4700. if (rt_prio(prio))
  4701. p->sched_class = &rt_sched_class;
  4702. else
  4703. p->sched_class = &fair_sched_class;
  4704. p->prio = prio;
  4705. if (running)
  4706. p->sched_class->set_curr_task(rq);
  4707. if (on_rq) {
  4708. enqueue_task(rq, p, 0);
  4709. check_class_changed(rq, p, prev_class, oldprio, running);
  4710. }
  4711. task_rq_unlock(rq, &flags);
  4712. }
  4713. #endif
  4714. void set_user_nice(struct task_struct *p, long nice)
  4715. {
  4716. int old_prio, delta, on_rq;
  4717. unsigned long flags;
  4718. struct rq *rq;
  4719. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4720. return;
  4721. /*
  4722. * We have to be careful, if called from sys_setpriority(),
  4723. * the task might be in the middle of scheduling on another CPU.
  4724. */
  4725. rq = task_rq_lock(p, &flags);
  4726. update_rq_clock(rq);
  4727. /*
  4728. * The RT priorities are set via sched_setscheduler(), but we still
  4729. * allow the 'normal' nice value to be set - but as expected
  4730. * it wont have any effect on scheduling until the task is
  4731. * SCHED_FIFO/SCHED_RR:
  4732. */
  4733. if (task_has_rt_policy(p)) {
  4734. p->static_prio = NICE_TO_PRIO(nice);
  4735. goto out_unlock;
  4736. }
  4737. on_rq = p->se.on_rq;
  4738. if (on_rq)
  4739. dequeue_task(rq, p, 0);
  4740. p->static_prio = NICE_TO_PRIO(nice);
  4741. set_load_weight(p);
  4742. old_prio = p->prio;
  4743. p->prio = effective_prio(p);
  4744. delta = p->prio - old_prio;
  4745. if (on_rq) {
  4746. enqueue_task(rq, p, 0);
  4747. /*
  4748. * If the task increased its priority or is running and
  4749. * lowered its priority, then reschedule its CPU:
  4750. */
  4751. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4752. resched_task(rq->curr);
  4753. }
  4754. out_unlock:
  4755. task_rq_unlock(rq, &flags);
  4756. }
  4757. EXPORT_SYMBOL(set_user_nice);
  4758. /*
  4759. * can_nice - check if a task can reduce its nice value
  4760. * @p: task
  4761. * @nice: nice value
  4762. */
  4763. int can_nice(const struct task_struct *p, const int nice)
  4764. {
  4765. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4766. int nice_rlim = 20 - nice;
  4767. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4768. capable(CAP_SYS_NICE));
  4769. }
  4770. #ifdef __ARCH_WANT_SYS_NICE
  4771. /*
  4772. * sys_nice - change the priority of the current process.
  4773. * @increment: priority increment
  4774. *
  4775. * sys_setpriority is a more generic, but much slower function that
  4776. * does similar things.
  4777. */
  4778. SYSCALL_DEFINE1(nice, int, increment)
  4779. {
  4780. long nice, retval;
  4781. /*
  4782. * Setpriority might change our priority at the same moment.
  4783. * We don't have to worry. Conceptually one call occurs first
  4784. * and we have a single winner.
  4785. */
  4786. if (increment < -40)
  4787. increment = -40;
  4788. if (increment > 40)
  4789. increment = 40;
  4790. nice = TASK_NICE(current) + increment;
  4791. if (nice < -20)
  4792. nice = -20;
  4793. if (nice > 19)
  4794. nice = 19;
  4795. if (increment < 0 && !can_nice(current, nice))
  4796. return -EPERM;
  4797. retval = security_task_setnice(current, nice);
  4798. if (retval)
  4799. return retval;
  4800. set_user_nice(current, nice);
  4801. return 0;
  4802. }
  4803. #endif
  4804. /**
  4805. * task_prio - return the priority value of a given task.
  4806. * @p: the task in question.
  4807. *
  4808. * This is the priority value as seen by users in /proc.
  4809. * RT tasks are offset by -200. Normal tasks are centered
  4810. * around 0, value goes from -16 to +15.
  4811. */
  4812. int task_prio(const struct task_struct *p)
  4813. {
  4814. return p->prio - MAX_RT_PRIO;
  4815. }
  4816. /**
  4817. * task_nice - return the nice value of a given task.
  4818. * @p: the task in question.
  4819. */
  4820. int task_nice(const struct task_struct *p)
  4821. {
  4822. return TASK_NICE(p);
  4823. }
  4824. EXPORT_SYMBOL(task_nice);
  4825. /**
  4826. * idle_cpu - is a given cpu idle currently?
  4827. * @cpu: the processor in question.
  4828. */
  4829. int idle_cpu(int cpu)
  4830. {
  4831. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4832. }
  4833. /**
  4834. * idle_task - return the idle task for a given cpu.
  4835. * @cpu: the processor in question.
  4836. */
  4837. struct task_struct *idle_task(int cpu)
  4838. {
  4839. return cpu_rq(cpu)->idle;
  4840. }
  4841. /**
  4842. * find_process_by_pid - find a process with a matching PID value.
  4843. * @pid: the pid in question.
  4844. */
  4845. static struct task_struct *find_process_by_pid(pid_t pid)
  4846. {
  4847. return pid ? find_task_by_vpid(pid) : current;
  4848. }
  4849. /* Actually do priority change: must hold rq lock. */
  4850. static void
  4851. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4852. {
  4853. BUG_ON(p->se.on_rq);
  4854. p->policy = policy;
  4855. switch (p->policy) {
  4856. case SCHED_NORMAL:
  4857. case SCHED_BATCH:
  4858. case SCHED_IDLE:
  4859. p->sched_class = &fair_sched_class;
  4860. break;
  4861. case SCHED_FIFO:
  4862. case SCHED_RR:
  4863. p->sched_class = &rt_sched_class;
  4864. break;
  4865. }
  4866. p->rt_priority = prio;
  4867. p->normal_prio = normal_prio(p);
  4868. /* we are holding p->pi_lock already */
  4869. p->prio = rt_mutex_getprio(p);
  4870. set_load_weight(p);
  4871. }
  4872. /*
  4873. * check the target process has a UID that matches the current process's
  4874. */
  4875. static bool check_same_owner(struct task_struct *p)
  4876. {
  4877. const struct cred *cred = current_cred(), *pcred;
  4878. bool match;
  4879. rcu_read_lock();
  4880. pcred = __task_cred(p);
  4881. match = (cred->euid == pcred->euid ||
  4882. cred->euid == pcred->uid);
  4883. rcu_read_unlock();
  4884. return match;
  4885. }
  4886. static int __sched_setscheduler(struct task_struct *p, int policy,
  4887. struct sched_param *param, bool user)
  4888. {
  4889. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4890. unsigned long flags;
  4891. const struct sched_class *prev_class = p->sched_class;
  4892. struct rq *rq;
  4893. /* may grab non-irq protected spin_locks */
  4894. BUG_ON(in_interrupt());
  4895. recheck:
  4896. /* double check policy once rq lock held */
  4897. if (policy < 0)
  4898. policy = oldpolicy = p->policy;
  4899. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4900. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4901. policy != SCHED_IDLE)
  4902. return -EINVAL;
  4903. /*
  4904. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4905. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4906. * SCHED_BATCH and SCHED_IDLE is 0.
  4907. */
  4908. if (param->sched_priority < 0 ||
  4909. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4910. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4911. return -EINVAL;
  4912. if (rt_policy(policy) != (param->sched_priority != 0))
  4913. return -EINVAL;
  4914. /*
  4915. * Allow unprivileged RT tasks to decrease priority:
  4916. */
  4917. if (user && !capable(CAP_SYS_NICE)) {
  4918. if (rt_policy(policy)) {
  4919. unsigned long rlim_rtprio;
  4920. if (!lock_task_sighand(p, &flags))
  4921. return -ESRCH;
  4922. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4923. unlock_task_sighand(p, &flags);
  4924. /* can't set/change the rt policy */
  4925. if (policy != p->policy && !rlim_rtprio)
  4926. return -EPERM;
  4927. /* can't increase priority */
  4928. if (param->sched_priority > p->rt_priority &&
  4929. param->sched_priority > rlim_rtprio)
  4930. return -EPERM;
  4931. }
  4932. /*
  4933. * Like positive nice levels, dont allow tasks to
  4934. * move out of SCHED_IDLE either:
  4935. */
  4936. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4937. return -EPERM;
  4938. /* can't change other user's priorities */
  4939. if (!check_same_owner(p))
  4940. return -EPERM;
  4941. }
  4942. if (user) {
  4943. #ifdef CONFIG_RT_GROUP_SCHED
  4944. /*
  4945. * Do not allow realtime tasks into groups that have no runtime
  4946. * assigned.
  4947. */
  4948. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4949. task_group(p)->rt_bandwidth.rt_runtime == 0)
  4950. return -EPERM;
  4951. #endif
  4952. retval = security_task_setscheduler(p, policy, param);
  4953. if (retval)
  4954. return retval;
  4955. }
  4956. /*
  4957. * make sure no PI-waiters arrive (or leave) while we are
  4958. * changing the priority of the task:
  4959. */
  4960. spin_lock_irqsave(&p->pi_lock, flags);
  4961. /*
  4962. * To be able to change p->policy safely, the apropriate
  4963. * runqueue lock must be held.
  4964. */
  4965. rq = __task_rq_lock(p);
  4966. /* recheck policy now with rq lock held */
  4967. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4968. policy = oldpolicy = -1;
  4969. __task_rq_unlock(rq);
  4970. spin_unlock_irqrestore(&p->pi_lock, flags);
  4971. goto recheck;
  4972. }
  4973. update_rq_clock(rq);
  4974. on_rq = p->se.on_rq;
  4975. running = task_current(rq, p);
  4976. if (on_rq)
  4977. deactivate_task(rq, p, 0);
  4978. if (running)
  4979. p->sched_class->put_prev_task(rq, p);
  4980. oldprio = p->prio;
  4981. __setscheduler(rq, p, policy, param->sched_priority);
  4982. if (running)
  4983. p->sched_class->set_curr_task(rq);
  4984. if (on_rq) {
  4985. activate_task(rq, p, 0);
  4986. check_class_changed(rq, p, prev_class, oldprio, running);
  4987. }
  4988. __task_rq_unlock(rq);
  4989. spin_unlock_irqrestore(&p->pi_lock, flags);
  4990. rt_mutex_adjust_pi(p);
  4991. return 0;
  4992. }
  4993. /**
  4994. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4995. * @p: the task in question.
  4996. * @policy: new policy.
  4997. * @param: structure containing the new RT priority.
  4998. *
  4999. * NOTE that the task may be already dead.
  5000. */
  5001. int sched_setscheduler(struct task_struct *p, int policy,
  5002. struct sched_param *param)
  5003. {
  5004. return __sched_setscheduler(p, policy, param, true);
  5005. }
  5006. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5007. /**
  5008. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5009. * @p: the task in question.
  5010. * @policy: new policy.
  5011. * @param: structure containing the new RT priority.
  5012. *
  5013. * Just like sched_setscheduler, only don't bother checking if the
  5014. * current context has permission. For example, this is needed in
  5015. * stop_machine(): we create temporary high priority worker threads,
  5016. * but our caller might not have that capability.
  5017. */
  5018. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5019. struct sched_param *param)
  5020. {
  5021. return __sched_setscheduler(p, policy, param, false);
  5022. }
  5023. static int
  5024. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5025. {
  5026. struct sched_param lparam;
  5027. struct task_struct *p;
  5028. int retval;
  5029. if (!param || pid < 0)
  5030. return -EINVAL;
  5031. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5032. return -EFAULT;
  5033. rcu_read_lock();
  5034. retval = -ESRCH;
  5035. p = find_process_by_pid(pid);
  5036. if (p != NULL)
  5037. retval = sched_setscheduler(p, policy, &lparam);
  5038. rcu_read_unlock();
  5039. return retval;
  5040. }
  5041. /**
  5042. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5043. * @pid: the pid in question.
  5044. * @policy: new policy.
  5045. * @param: structure containing the new RT priority.
  5046. */
  5047. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5048. struct sched_param __user *, param)
  5049. {
  5050. /* negative values for policy are not valid */
  5051. if (policy < 0)
  5052. return -EINVAL;
  5053. return do_sched_setscheduler(pid, policy, param);
  5054. }
  5055. /**
  5056. * sys_sched_setparam - set/change the RT priority of a thread
  5057. * @pid: the pid in question.
  5058. * @param: structure containing the new RT priority.
  5059. */
  5060. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5061. {
  5062. return do_sched_setscheduler(pid, -1, param);
  5063. }
  5064. /**
  5065. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5066. * @pid: the pid in question.
  5067. */
  5068. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5069. {
  5070. struct task_struct *p;
  5071. int retval;
  5072. if (pid < 0)
  5073. return -EINVAL;
  5074. retval = -ESRCH;
  5075. read_lock(&tasklist_lock);
  5076. p = find_process_by_pid(pid);
  5077. if (p) {
  5078. retval = security_task_getscheduler(p);
  5079. if (!retval)
  5080. retval = p->policy;
  5081. }
  5082. read_unlock(&tasklist_lock);
  5083. return retval;
  5084. }
  5085. /**
  5086. * sys_sched_getscheduler - get the RT priority of a thread
  5087. * @pid: the pid in question.
  5088. * @param: structure containing the RT priority.
  5089. */
  5090. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5091. {
  5092. struct sched_param lp;
  5093. struct task_struct *p;
  5094. int retval;
  5095. if (!param || pid < 0)
  5096. return -EINVAL;
  5097. read_lock(&tasklist_lock);
  5098. p = find_process_by_pid(pid);
  5099. retval = -ESRCH;
  5100. if (!p)
  5101. goto out_unlock;
  5102. retval = security_task_getscheduler(p);
  5103. if (retval)
  5104. goto out_unlock;
  5105. lp.sched_priority = p->rt_priority;
  5106. read_unlock(&tasklist_lock);
  5107. /*
  5108. * This one might sleep, we cannot do it with a spinlock held ...
  5109. */
  5110. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5111. return retval;
  5112. out_unlock:
  5113. read_unlock(&tasklist_lock);
  5114. return retval;
  5115. }
  5116. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5117. {
  5118. cpumask_var_t cpus_allowed, new_mask;
  5119. struct task_struct *p;
  5120. int retval;
  5121. get_online_cpus();
  5122. read_lock(&tasklist_lock);
  5123. p = find_process_by_pid(pid);
  5124. if (!p) {
  5125. read_unlock(&tasklist_lock);
  5126. put_online_cpus();
  5127. return -ESRCH;
  5128. }
  5129. /*
  5130. * It is not safe to call set_cpus_allowed with the
  5131. * tasklist_lock held. We will bump the task_struct's
  5132. * usage count and then drop tasklist_lock.
  5133. */
  5134. get_task_struct(p);
  5135. read_unlock(&tasklist_lock);
  5136. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5137. retval = -ENOMEM;
  5138. goto out_put_task;
  5139. }
  5140. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5141. retval = -ENOMEM;
  5142. goto out_free_cpus_allowed;
  5143. }
  5144. retval = -EPERM;
  5145. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5146. goto out_unlock;
  5147. retval = security_task_setscheduler(p, 0, NULL);
  5148. if (retval)
  5149. goto out_unlock;
  5150. cpuset_cpus_allowed(p, cpus_allowed);
  5151. cpumask_and(new_mask, in_mask, cpus_allowed);
  5152. again:
  5153. retval = set_cpus_allowed_ptr(p, new_mask);
  5154. if (!retval) {
  5155. cpuset_cpus_allowed(p, cpus_allowed);
  5156. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5157. /*
  5158. * We must have raced with a concurrent cpuset
  5159. * update. Just reset the cpus_allowed to the
  5160. * cpuset's cpus_allowed
  5161. */
  5162. cpumask_copy(new_mask, cpus_allowed);
  5163. goto again;
  5164. }
  5165. }
  5166. out_unlock:
  5167. free_cpumask_var(new_mask);
  5168. out_free_cpus_allowed:
  5169. free_cpumask_var(cpus_allowed);
  5170. out_put_task:
  5171. put_task_struct(p);
  5172. put_online_cpus();
  5173. return retval;
  5174. }
  5175. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5176. struct cpumask *new_mask)
  5177. {
  5178. if (len < cpumask_size())
  5179. cpumask_clear(new_mask);
  5180. else if (len > cpumask_size())
  5181. len = cpumask_size();
  5182. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5183. }
  5184. /**
  5185. * sys_sched_setaffinity - set the cpu affinity of a process
  5186. * @pid: pid of the process
  5187. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5188. * @user_mask_ptr: user-space pointer to the new cpu mask
  5189. */
  5190. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5191. unsigned long __user *, user_mask_ptr)
  5192. {
  5193. cpumask_var_t new_mask;
  5194. int retval;
  5195. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5196. return -ENOMEM;
  5197. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5198. if (retval == 0)
  5199. retval = sched_setaffinity(pid, new_mask);
  5200. free_cpumask_var(new_mask);
  5201. return retval;
  5202. }
  5203. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5204. {
  5205. struct task_struct *p;
  5206. int retval;
  5207. get_online_cpus();
  5208. read_lock(&tasklist_lock);
  5209. retval = -ESRCH;
  5210. p = find_process_by_pid(pid);
  5211. if (!p)
  5212. goto out_unlock;
  5213. retval = security_task_getscheduler(p);
  5214. if (retval)
  5215. goto out_unlock;
  5216. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5217. out_unlock:
  5218. read_unlock(&tasklist_lock);
  5219. put_online_cpus();
  5220. return retval;
  5221. }
  5222. /**
  5223. * sys_sched_getaffinity - get the cpu affinity of a process
  5224. * @pid: pid of the process
  5225. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5226. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5227. */
  5228. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5229. unsigned long __user *, user_mask_ptr)
  5230. {
  5231. int ret;
  5232. cpumask_var_t mask;
  5233. if (len < cpumask_size())
  5234. return -EINVAL;
  5235. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5236. return -ENOMEM;
  5237. ret = sched_getaffinity(pid, mask);
  5238. if (ret == 0) {
  5239. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5240. ret = -EFAULT;
  5241. else
  5242. ret = cpumask_size();
  5243. }
  5244. free_cpumask_var(mask);
  5245. return ret;
  5246. }
  5247. /**
  5248. * sys_sched_yield - yield the current processor to other threads.
  5249. *
  5250. * This function yields the current CPU to other tasks. If there are no
  5251. * other threads running on this CPU then this function will return.
  5252. */
  5253. SYSCALL_DEFINE0(sched_yield)
  5254. {
  5255. struct rq *rq = this_rq_lock();
  5256. schedstat_inc(rq, yld_count);
  5257. current->sched_class->yield_task(rq);
  5258. /*
  5259. * Since we are going to call schedule() anyway, there's
  5260. * no need to preempt or enable interrupts:
  5261. */
  5262. __release(rq->lock);
  5263. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5264. _raw_spin_unlock(&rq->lock);
  5265. preempt_enable_no_resched();
  5266. schedule();
  5267. return 0;
  5268. }
  5269. static void __cond_resched(void)
  5270. {
  5271. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5272. __might_sleep(__FILE__, __LINE__);
  5273. #endif
  5274. /*
  5275. * The BKS might be reacquired before we have dropped
  5276. * PREEMPT_ACTIVE, which could trigger a second
  5277. * cond_resched() call.
  5278. */
  5279. do {
  5280. add_preempt_count(PREEMPT_ACTIVE);
  5281. schedule();
  5282. sub_preempt_count(PREEMPT_ACTIVE);
  5283. } while (need_resched());
  5284. }
  5285. int __sched _cond_resched(void)
  5286. {
  5287. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  5288. system_state == SYSTEM_RUNNING) {
  5289. __cond_resched();
  5290. return 1;
  5291. }
  5292. return 0;
  5293. }
  5294. EXPORT_SYMBOL(_cond_resched);
  5295. /*
  5296. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5297. * call schedule, and on return reacquire the lock.
  5298. *
  5299. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5300. * operations here to prevent schedule() from being called twice (once via
  5301. * spin_unlock(), once by hand).
  5302. */
  5303. int cond_resched_lock(spinlock_t *lock)
  5304. {
  5305. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  5306. int ret = 0;
  5307. if (spin_needbreak(lock) || resched) {
  5308. spin_unlock(lock);
  5309. if (resched && need_resched())
  5310. __cond_resched();
  5311. else
  5312. cpu_relax();
  5313. ret = 1;
  5314. spin_lock(lock);
  5315. }
  5316. return ret;
  5317. }
  5318. EXPORT_SYMBOL(cond_resched_lock);
  5319. int __sched cond_resched_softirq(void)
  5320. {
  5321. BUG_ON(!in_softirq());
  5322. if (need_resched() && system_state == SYSTEM_RUNNING) {
  5323. local_bh_enable();
  5324. __cond_resched();
  5325. local_bh_disable();
  5326. return 1;
  5327. }
  5328. return 0;
  5329. }
  5330. EXPORT_SYMBOL(cond_resched_softirq);
  5331. /**
  5332. * yield - yield the current processor to other threads.
  5333. *
  5334. * This is a shortcut for kernel-space yielding - it marks the
  5335. * thread runnable and calls sys_sched_yield().
  5336. */
  5337. void __sched yield(void)
  5338. {
  5339. set_current_state(TASK_RUNNING);
  5340. sys_sched_yield();
  5341. }
  5342. EXPORT_SYMBOL(yield);
  5343. /*
  5344. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5345. * that process accounting knows that this is a task in IO wait state.
  5346. *
  5347. * But don't do that if it is a deliberate, throttling IO wait (this task
  5348. * has set its backing_dev_info: the queue against which it should throttle)
  5349. */
  5350. void __sched io_schedule(void)
  5351. {
  5352. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5353. delayacct_blkio_start();
  5354. atomic_inc(&rq->nr_iowait);
  5355. schedule();
  5356. atomic_dec(&rq->nr_iowait);
  5357. delayacct_blkio_end();
  5358. }
  5359. EXPORT_SYMBOL(io_schedule);
  5360. long __sched io_schedule_timeout(long timeout)
  5361. {
  5362. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5363. long ret;
  5364. delayacct_blkio_start();
  5365. atomic_inc(&rq->nr_iowait);
  5366. ret = schedule_timeout(timeout);
  5367. atomic_dec(&rq->nr_iowait);
  5368. delayacct_blkio_end();
  5369. return ret;
  5370. }
  5371. /**
  5372. * sys_sched_get_priority_max - return maximum RT priority.
  5373. * @policy: scheduling class.
  5374. *
  5375. * this syscall returns the maximum rt_priority that can be used
  5376. * by a given scheduling class.
  5377. */
  5378. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5379. {
  5380. int ret = -EINVAL;
  5381. switch (policy) {
  5382. case SCHED_FIFO:
  5383. case SCHED_RR:
  5384. ret = MAX_USER_RT_PRIO-1;
  5385. break;
  5386. case SCHED_NORMAL:
  5387. case SCHED_BATCH:
  5388. case SCHED_IDLE:
  5389. ret = 0;
  5390. break;
  5391. }
  5392. return ret;
  5393. }
  5394. /**
  5395. * sys_sched_get_priority_min - return minimum RT priority.
  5396. * @policy: scheduling class.
  5397. *
  5398. * this syscall returns the minimum rt_priority that can be used
  5399. * by a given scheduling class.
  5400. */
  5401. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5402. {
  5403. int ret = -EINVAL;
  5404. switch (policy) {
  5405. case SCHED_FIFO:
  5406. case SCHED_RR:
  5407. ret = 1;
  5408. break;
  5409. case SCHED_NORMAL:
  5410. case SCHED_BATCH:
  5411. case SCHED_IDLE:
  5412. ret = 0;
  5413. }
  5414. return ret;
  5415. }
  5416. /**
  5417. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5418. * @pid: pid of the process.
  5419. * @interval: userspace pointer to the timeslice value.
  5420. *
  5421. * this syscall writes the default timeslice value of a given process
  5422. * into the user-space timespec buffer. A value of '0' means infinity.
  5423. */
  5424. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5425. struct timespec __user *, interval)
  5426. {
  5427. struct task_struct *p;
  5428. unsigned int time_slice;
  5429. int retval;
  5430. struct timespec t;
  5431. if (pid < 0)
  5432. return -EINVAL;
  5433. retval = -ESRCH;
  5434. read_lock(&tasklist_lock);
  5435. p = find_process_by_pid(pid);
  5436. if (!p)
  5437. goto out_unlock;
  5438. retval = security_task_getscheduler(p);
  5439. if (retval)
  5440. goto out_unlock;
  5441. /*
  5442. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  5443. * tasks that are on an otherwise idle runqueue:
  5444. */
  5445. time_slice = 0;
  5446. if (p->policy == SCHED_RR) {
  5447. time_slice = DEF_TIMESLICE;
  5448. } else if (p->policy != SCHED_FIFO) {
  5449. struct sched_entity *se = &p->se;
  5450. unsigned long flags;
  5451. struct rq *rq;
  5452. rq = task_rq_lock(p, &flags);
  5453. if (rq->cfs.load.weight)
  5454. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  5455. task_rq_unlock(rq, &flags);
  5456. }
  5457. read_unlock(&tasklist_lock);
  5458. jiffies_to_timespec(time_slice, &t);
  5459. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5460. return retval;
  5461. out_unlock:
  5462. read_unlock(&tasklist_lock);
  5463. return retval;
  5464. }
  5465. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5466. void sched_show_task(struct task_struct *p)
  5467. {
  5468. unsigned long free = 0;
  5469. unsigned state;
  5470. state = p->state ? __ffs(p->state) + 1 : 0;
  5471. printk(KERN_INFO "%-13.13s %c", p->comm,
  5472. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5473. #if BITS_PER_LONG == 32
  5474. if (state == TASK_RUNNING)
  5475. printk(KERN_CONT " running ");
  5476. else
  5477. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5478. #else
  5479. if (state == TASK_RUNNING)
  5480. printk(KERN_CONT " running task ");
  5481. else
  5482. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5483. #endif
  5484. #ifdef CONFIG_DEBUG_STACK_USAGE
  5485. free = stack_not_used(p);
  5486. #endif
  5487. printk(KERN_CONT "%5lu %5d %6d\n", free,
  5488. task_pid_nr(p), task_pid_nr(p->real_parent));
  5489. show_stack(p, NULL);
  5490. }
  5491. void show_state_filter(unsigned long state_filter)
  5492. {
  5493. struct task_struct *g, *p;
  5494. #if BITS_PER_LONG == 32
  5495. printk(KERN_INFO
  5496. " task PC stack pid father\n");
  5497. #else
  5498. printk(KERN_INFO
  5499. " task PC stack pid father\n");
  5500. #endif
  5501. read_lock(&tasklist_lock);
  5502. do_each_thread(g, p) {
  5503. /*
  5504. * reset the NMI-timeout, listing all files on a slow
  5505. * console might take alot of time:
  5506. */
  5507. touch_nmi_watchdog();
  5508. if (!state_filter || (p->state & state_filter))
  5509. sched_show_task(p);
  5510. } while_each_thread(g, p);
  5511. touch_all_softlockup_watchdogs();
  5512. #ifdef CONFIG_SCHED_DEBUG
  5513. sysrq_sched_debug_show();
  5514. #endif
  5515. read_unlock(&tasklist_lock);
  5516. /*
  5517. * Only show locks if all tasks are dumped:
  5518. */
  5519. if (state_filter == -1)
  5520. debug_show_all_locks();
  5521. }
  5522. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5523. {
  5524. idle->sched_class = &idle_sched_class;
  5525. }
  5526. /**
  5527. * init_idle - set up an idle thread for a given CPU
  5528. * @idle: task in question
  5529. * @cpu: cpu the idle task belongs to
  5530. *
  5531. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5532. * flag, to make booting more robust.
  5533. */
  5534. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5535. {
  5536. struct rq *rq = cpu_rq(cpu);
  5537. unsigned long flags;
  5538. spin_lock_irqsave(&rq->lock, flags);
  5539. __sched_fork(idle);
  5540. idle->se.exec_start = sched_clock();
  5541. idle->prio = idle->normal_prio = MAX_PRIO;
  5542. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5543. __set_task_cpu(idle, cpu);
  5544. rq->curr = rq->idle = idle;
  5545. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5546. idle->oncpu = 1;
  5547. #endif
  5548. spin_unlock_irqrestore(&rq->lock, flags);
  5549. /* Set the preempt count _outside_ the spinlocks! */
  5550. #if defined(CONFIG_PREEMPT)
  5551. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5552. #else
  5553. task_thread_info(idle)->preempt_count = 0;
  5554. #endif
  5555. /*
  5556. * The idle tasks have their own, simple scheduling class:
  5557. */
  5558. idle->sched_class = &idle_sched_class;
  5559. ftrace_graph_init_task(idle);
  5560. }
  5561. /*
  5562. * In a system that switches off the HZ timer nohz_cpu_mask
  5563. * indicates which cpus entered this state. This is used
  5564. * in the rcu update to wait only for active cpus. For system
  5565. * which do not switch off the HZ timer nohz_cpu_mask should
  5566. * always be CPU_BITS_NONE.
  5567. */
  5568. cpumask_var_t nohz_cpu_mask;
  5569. /*
  5570. * Increase the granularity value when there are more CPUs,
  5571. * because with more CPUs the 'effective latency' as visible
  5572. * to users decreases. But the relationship is not linear,
  5573. * so pick a second-best guess by going with the log2 of the
  5574. * number of CPUs.
  5575. *
  5576. * This idea comes from the SD scheduler of Con Kolivas:
  5577. */
  5578. static inline void sched_init_granularity(void)
  5579. {
  5580. unsigned int factor = 1 + ilog2(num_online_cpus());
  5581. const unsigned long limit = 200000000;
  5582. sysctl_sched_min_granularity *= factor;
  5583. if (sysctl_sched_min_granularity > limit)
  5584. sysctl_sched_min_granularity = limit;
  5585. sysctl_sched_latency *= factor;
  5586. if (sysctl_sched_latency > limit)
  5587. sysctl_sched_latency = limit;
  5588. sysctl_sched_wakeup_granularity *= factor;
  5589. sysctl_sched_shares_ratelimit *= factor;
  5590. }
  5591. #ifdef CONFIG_SMP
  5592. /*
  5593. * This is how migration works:
  5594. *
  5595. * 1) we queue a struct migration_req structure in the source CPU's
  5596. * runqueue and wake up that CPU's migration thread.
  5597. * 2) we down() the locked semaphore => thread blocks.
  5598. * 3) migration thread wakes up (implicitly it forces the migrated
  5599. * thread off the CPU)
  5600. * 4) it gets the migration request and checks whether the migrated
  5601. * task is still in the wrong runqueue.
  5602. * 5) if it's in the wrong runqueue then the migration thread removes
  5603. * it and puts it into the right queue.
  5604. * 6) migration thread up()s the semaphore.
  5605. * 7) we wake up and the migration is done.
  5606. */
  5607. /*
  5608. * Change a given task's CPU affinity. Migrate the thread to a
  5609. * proper CPU and schedule it away if the CPU it's executing on
  5610. * is removed from the allowed bitmask.
  5611. *
  5612. * NOTE: the caller must have a valid reference to the task, the
  5613. * task must not exit() & deallocate itself prematurely. The
  5614. * call is not atomic; no spinlocks may be held.
  5615. */
  5616. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5617. {
  5618. struct migration_req req;
  5619. unsigned long flags;
  5620. struct rq *rq;
  5621. int ret = 0;
  5622. rq = task_rq_lock(p, &flags);
  5623. if (!cpumask_intersects(new_mask, cpu_online_mask)) {
  5624. ret = -EINVAL;
  5625. goto out;
  5626. }
  5627. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5628. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5629. ret = -EINVAL;
  5630. goto out;
  5631. }
  5632. if (p->sched_class->set_cpus_allowed)
  5633. p->sched_class->set_cpus_allowed(p, new_mask);
  5634. else {
  5635. cpumask_copy(&p->cpus_allowed, new_mask);
  5636. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5637. }
  5638. /* Can the task run on the task's current CPU? If so, we're done */
  5639. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5640. goto out;
  5641. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  5642. /* Need help from migration thread: drop lock and wait. */
  5643. task_rq_unlock(rq, &flags);
  5644. wake_up_process(rq->migration_thread);
  5645. wait_for_completion(&req.done);
  5646. tlb_migrate_finish(p->mm);
  5647. return 0;
  5648. }
  5649. out:
  5650. task_rq_unlock(rq, &flags);
  5651. return ret;
  5652. }
  5653. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5654. /*
  5655. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5656. * this because either it can't run here any more (set_cpus_allowed()
  5657. * away from this CPU, or CPU going down), or because we're
  5658. * attempting to rebalance this task on exec (sched_exec).
  5659. *
  5660. * So we race with normal scheduler movements, but that's OK, as long
  5661. * as the task is no longer on this CPU.
  5662. *
  5663. * Returns non-zero if task was successfully migrated.
  5664. */
  5665. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5666. {
  5667. struct rq *rq_dest, *rq_src;
  5668. int ret = 0, on_rq;
  5669. if (unlikely(!cpu_active(dest_cpu)))
  5670. return ret;
  5671. rq_src = cpu_rq(src_cpu);
  5672. rq_dest = cpu_rq(dest_cpu);
  5673. double_rq_lock(rq_src, rq_dest);
  5674. /* Already moved. */
  5675. if (task_cpu(p) != src_cpu)
  5676. goto done;
  5677. /* Affinity changed (again). */
  5678. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5679. goto fail;
  5680. on_rq = p->se.on_rq;
  5681. if (on_rq)
  5682. deactivate_task(rq_src, p, 0);
  5683. set_task_cpu(p, dest_cpu);
  5684. if (on_rq) {
  5685. activate_task(rq_dest, p, 0);
  5686. check_preempt_curr(rq_dest, p, 0);
  5687. }
  5688. done:
  5689. ret = 1;
  5690. fail:
  5691. double_rq_unlock(rq_src, rq_dest);
  5692. return ret;
  5693. }
  5694. /*
  5695. * migration_thread - this is a highprio system thread that performs
  5696. * thread migration by bumping thread off CPU then 'pushing' onto
  5697. * another runqueue.
  5698. */
  5699. static int migration_thread(void *data)
  5700. {
  5701. int cpu = (long)data;
  5702. struct rq *rq;
  5703. rq = cpu_rq(cpu);
  5704. BUG_ON(rq->migration_thread != current);
  5705. set_current_state(TASK_INTERRUPTIBLE);
  5706. while (!kthread_should_stop()) {
  5707. struct migration_req *req;
  5708. struct list_head *head;
  5709. spin_lock_irq(&rq->lock);
  5710. if (cpu_is_offline(cpu)) {
  5711. spin_unlock_irq(&rq->lock);
  5712. goto wait_to_die;
  5713. }
  5714. if (rq->active_balance) {
  5715. active_load_balance(rq, cpu);
  5716. rq->active_balance = 0;
  5717. }
  5718. head = &rq->migration_queue;
  5719. if (list_empty(head)) {
  5720. spin_unlock_irq(&rq->lock);
  5721. schedule();
  5722. set_current_state(TASK_INTERRUPTIBLE);
  5723. continue;
  5724. }
  5725. req = list_entry(head->next, struct migration_req, list);
  5726. list_del_init(head->next);
  5727. spin_unlock(&rq->lock);
  5728. __migrate_task(req->task, cpu, req->dest_cpu);
  5729. local_irq_enable();
  5730. complete(&req->done);
  5731. }
  5732. __set_current_state(TASK_RUNNING);
  5733. return 0;
  5734. wait_to_die:
  5735. /* Wait for kthread_stop */
  5736. set_current_state(TASK_INTERRUPTIBLE);
  5737. while (!kthread_should_stop()) {
  5738. schedule();
  5739. set_current_state(TASK_INTERRUPTIBLE);
  5740. }
  5741. __set_current_state(TASK_RUNNING);
  5742. return 0;
  5743. }
  5744. #ifdef CONFIG_HOTPLUG_CPU
  5745. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5746. {
  5747. int ret;
  5748. local_irq_disable();
  5749. ret = __migrate_task(p, src_cpu, dest_cpu);
  5750. local_irq_enable();
  5751. return ret;
  5752. }
  5753. /*
  5754. * Figure out where task on dead CPU should go, use force if necessary.
  5755. */
  5756. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5757. {
  5758. int dest_cpu;
  5759. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  5760. again:
  5761. /* Look for allowed, online CPU in same node. */
  5762. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  5763. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5764. goto move;
  5765. /* Any allowed, online CPU? */
  5766. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  5767. if (dest_cpu < nr_cpu_ids)
  5768. goto move;
  5769. /* No more Mr. Nice Guy. */
  5770. if (dest_cpu >= nr_cpu_ids) {
  5771. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  5772. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  5773. /*
  5774. * Don't tell them about moving exiting tasks or
  5775. * kernel threads (both mm NULL), since they never
  5776. * leave kernel.
  5777. */
  5778. if (p->mm && printk_ratelimit()) {
  5779. printk(KERN_INFO "process %d (%s) no "
  5780. "longer affine to cpu%d\n",
  5781. task_pid_nr(p), p->comm, dead_cpu);
  5782. }
  5783. }
  5784. move:
  5785. /* It can have affinity changed while we were choosing. */
  5786. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  5787. goto again;
  5788. }
  5789. /*
  5790. * While a dead CPU has no uninterruptible tasks queued at this point,
  5791. * it might still have a nonzero ->nr_uninterruptible counter, because
  5792. * for performance reasons the counter is not stricly tracking tasks to
  5793. * their home CPUs. So we just add the counter to another CPU's counter,
  5794. * to keep the global sum constant after CPU-down:
  5795. */
  5796. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5797. {
  5798. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  5799. unsigned long flags;
  5800. local_irq_save(flags);
  5801. double_rq_lock(rq_src, rq_dest);
  5802. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5803. rq_src->nr_uninterruptible = 0;
  5804. double_rq_unlock(rq_src, rq_dest);
  5805. local_irq_restore(flags);
  5806. }
  5807. /* Run through task list and migrate tasks from the dead cpu. */
  5808. static void migrate_live_tasks(int src_cpu)
  5809. {
  5810. struct task_struct *p, *t;
  5811. read_lock(&tasklist_lock);
  5812. do_each_thread(t, p) {
  5813. if (p == current)
  5814. continue;
  5815. if (task_cpu(p) == src_cpu)
  5816. move_task_off_dead_cpu(src_cpu, p);
  5817. } while_each_thread(t, p);
  5818. read_unlock(&tasklist_lock);
  5819. }
  5820. /*
  5821. * Schedules idle task to be the next runnable task on current CPU.
  5822. * It does so by boosting its priority to highest possible.
  5823. * Used by CPU offline code.
  5824. */
  5825. void sched_idle_next(void)
  5826. {
  5827. int this_cpu = smp_processor_id();
  5828. struct rq *rq = cpu_rq(this_cpu);
  5829. struct task_struct *p = rq->idle;
  5830. unsigned long flags;
  5831. /* cpu has to be offline */
  5832. BUG_ON(cpu_online(this_cpu));
  5833. /*
  5834. * Strictly not necessary since rest of the CPUs are stopped by now
  5835. * and interrupts disabled on the current cpu.
  5836. */
  5837. spin_lock_irqsave(&rq->lock, flags);
  5838. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5839. update_rq_clock(rq);
  5840. activate_task(rq, p, 0);
  5841. spin_unlock_irqrestore(&rq->lock, flags);
  5842. }
  5843. /*
  5844. * Ensures that the idle task is using init_mm right before its cpu goes
  5845. * offline.
  5846. */
  5847. void idle_task_exit(void)
  5848. {
  5849. struct mm_struct *mm = current->active_mm;
  5850. BUG_ON(cpu_online(smp_processor_id()));
  5851. if (mm != &init_mm)
  5852. switch_mm(mm, &init_mm, current);
  5853. mmdrop(mm);
  5854. }
  5855. /* called under rq->lock with disabled interrupts */
  5856. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5857. {
  5858. struct rq *rq = cpu_rq(dead_cpu);
  5859. /* Must be exiting, otherwise would be on tasklist. */
  5860. BUG_ON(!p->exit_state);
  5861. /* Cannot have done final schedule yet: would have vanished. */
  5862. BUG_ON(p->state == TASK_DEAD);
  5863. get_task_struct(p);
  5864. /*
  5865. * Drop lock around migration; if someone else moves it,
  5866. * that's OK. No task can be added to this CPU, so iteration is
  5867. * fine.
  5868. */
  5869. spin_unlock_irq(&rq->lock);
  5870. move_task_off_dead_cpu(dead_cpu, p);
  5871. spin_lock_irq(&rq->lock);
  5872. put_task_struct(p);
  5873. }
  5874. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5875. static void migrate_dead_tasks(unsigned int dead_cpu)
  5876. {
  5877. struct rq *rq = cpu_rq(dead_cpu);
  5878. struct task_struct *next;
  5879. for ( ; ; ) {
  5880. if (!rq->nr_running)
  5881. break;
  5882. update_rq_clock(rq);
  5883. next = pick_next_task(rq);
  5884. if (!next)
  5885. break;
  5886. next->sched_class->put_prev_task(rq, next);
  5887. migrate_dead(dead_cpu, next);
  5888. }
  5889. }
  5890. #endif /* CONFIG_HOTPLUG_CPU */
  5891. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5892. static struct ctl_table sd_ctl_dir[] = {
  5893. {
  5894. .procname = "sched_domain",
  5895. .mode = 0555,
  5896. },
  5897. {0, },
  5898. };
  5899. static struct ctl_table sd_ctl_root[] = {
  5900. {
  5901. .ctl_name = CTL_KERN,
  5902. .procname = "kernel",
  5903. .mode = 0555,
  5904. .child = sd_ctl_dir,
  5905. },
  5906. {0, },
  5907. };
  5908. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5909. {
  5910. struct ctl_table *entry =
  5911. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5912. return entry;
  5913. }
  5914. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5915. {
  5916. struct ctl_table *entry;
  5917. /*
  5918. * In the intermediate directories, both the child directory and
  5919. * procname are dynamically allocated and could fail but the mode
  5920. * will always be set. In the lowest directory the names are
  5921. * static strings and all have proc handlers.
  5922. */
  5923. for (entry = *tablep; entry->mode; entry++) {
  5924. if (entry->child)
  5925. sd_free_ctl_entry(&entry->child);
  5926. if (entry->proc_handler == NULL)
  5927. kfree(entry->procname);
  5928. }
  5929. kfree(*tablep);
  5930. *tablep = NULL;
  5931. }
  5932. static void
  5933. set_table_entry(struct ctl_table *entry,
  5934. const char *procname, void *data, int maxlen,
  5935. mode_t mode, proc_handler *proc_handler)
  5936. {
  5937. entry->procname = procname;
  5938. entry->data = data;
  5939. entry->maxlen = maxlen;
  5940. entry->mode = mode;
  5941. entry->proc_handler = proc_handler;
  5942. }
  5943. static struct ctl_table *
  5944. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5945. {
  5946. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5947. if (table == NULL)
  5948. return NULL;
  5949. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5950. sizeof(long), 0644, proc_doulongvec_minmax);
  5951. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5952. sizeof(long), 0644, proc_doulongvec_minmax);
  5953. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5954. sizeof(int), 0644, proc_dointvec_minmax);
  5955. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5956. sizeof(int), 0644, proc_dointvec_minmax);
  5957. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5958. sizeof(int), 0644, proc_dointvec_minmax);
  5959. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5960. sizeof(int), 0644, proc_dointvec_minmax);
  5961. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5962. sizeof(int), 0644, proc_dointvec_minmax);
  5963. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5964. sizeof(int), 0644, proc_dointvec_minmax);
  5965. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5966. sizeof(int), 0644, proc_dointvec_minmax);
  5967. set_table_entry(&table[9], "cache_nice_tries",
  5968. &sd->cache_nice_tries,
  5969. sizeof(int), 0644, proc_dointvec_minmax);
  5970. set_table_entry(&table[10], "flags", &sd->flags,
  5971. sizeof(int), 0644, proc_dointvec_minmax);
  5972. set_table_entry(&table[11], "name", sd->name,
  5973. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5974. /* &table[12] is terminator */
  5975. return table;
  5976. }
  5977. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5978. {
  5979. struct ctl_table *entry, *table;
  5980. struct sched_domain *sd;
  5981. int domain_num = 0, i;
  5982. char buf[32];
  5983. for_each_domain(cpu, sd)
  5984. domain_num++;
  5985. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5986. if (table == NULL)
  5987. return NULL;
  5988. i = 0;
  5989. for_each_domain(cpu, sd) {
  5990. snprintf(buf, 32, "domain%d", i);
  5991. entry->procname = kstrdup(buf, GFP_KERNEL);
  5992. entry->mode = 0555;
  5993. entry->child = sd_alloc_ctl_domain_table(sd);
  5994. entry++;
  5995. i++;
  5996. }
  5997. return table;
  5998. }
  5999. static struct ctl_table_header *sd_sysctl_header;
  6000. static void register_sched_domain_sysctl(void)
  6001. {
  6002. int i, cpu_num = num_online_cpus();
  6003. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6004. char buf[32];
  6005. WARN_ON(sd_ctl_dir[0].child);
  6006. sd_ctl_dir[0].child = entry;
  6007. if (entry == NULL)
  6008. return;
  6009. for_each_online_cpu(i) {
  6010. snprintf(buf, 32, "cpu%d", i);
  6011. entry->procname = kstrdup(buf, GFP_KERNEL);
  6012. entry->mode = 0555;
  6013. entry->child = sd_alloc_ctl_cpu_table(i);
  6014. entry++;
  6015. }
  6016. WARN_ON(sd_sysctl_header);
  6017. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6018. }
  6019. /* may be called multiple times per register */
  6020. static void unregister_sched_domain_sysctl(void)
  6021. {
  6022. if (sd_sysctl_header)
  6023. unregister_sysctl_table(sd_sysctl_header);
  6024. sd_sysctl_header = NULL;
  6025. if (sd_ctl_dir[0].child)
  6026. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6027. }
  6028. #else
  6029. static void register_sched_domain_sysctl(void)
  6030. {
  6031. }
  6032. static void unregister_sched_domain_sysctl(void)
  6033. {
  6034. }
  6035. #endif
  6036. static void set_rq_online(struct rq *rq)
  6037. {
  6038. if (!rq->online) {
  6039. const struct sched_class *class;
  6040. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6041. rq->online = 1;
  6042. for_each_class(class) {
  6043. if (class->rq_online)
  6044. class->rq_online(rq);
  6045. }
  6046. }
  6047. }
  6048. static void set_rq_offline(struct rq *rq)
  6049. {
  6050. if (rq->online) {
  6051. const struct sched_class *class;
  6052. for_each_class(class) {
  6053. if (class->rq_offline)
  6054. class->rq_offline(rq);
  6055. }
  6056. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6057. rq->online = 0;
  6058. }
  6059. }
  6060. /*
  6061. * migration_call - callback that gets triggered when a CPU is added.
  6062. * Here we can start up the necessary migration thread for the new CPU.
  6063. */
  6064. static int __cpuinit
  6065. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6066. {
  6067. struct task_struct *p;
  6068. int cpu = (long)hcpu;
  6069. unsigned long flags;
  6070. struct rq *rq;
  6071. switch (action) {
  6072. case CPU_UP_PREPARE:
  6073. case CPU_UP_PREPARE_FROZEN:
  6074. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6075. if (IS_ERR(p))
  6076. return NOTIFY_BAD;
  6077. kthread_bind(p, cpu);
  6078. /* Must be high prio: stop_machine expects to yield to it. */
  6079. rq = task_rq_lock(p, &flags);
  6080. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6081. task_rq_unlock(rq, &flags);
  6082. cpu_rq(cpu)->migration_thread = p;
  6083. break;
  6084. case CPU_ONLINE:
  6085. case CPU_ONLINE_FROZEN:
  6086. /* Strictly unnecessary, as first user will wake it. */
  6087. wake_up_process(cpu_rq(cpu)->migration_thread);
  6088. /* Update our root-domain */
  6089. rq = cpu_rq(cpu);
  6090. spin_lock_irqsave(&rq->lock, flags);
  6091. if (rq->rd) {
  6092. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6093. set_rq_online(rq);
  6094. }
  6095. spin_unlock_irqrestore(&rq->lock, flags);
  6096. break;
  6097. #ifdef CONFIG_HOTPLUG_CPU
  6098. case CPU_UP_CANCELED:
  6099. case CPU_UP_CANCELED_FROZEN:
  6100. if (!cpu_rq(cpu)->migration_thread)
  6101. break;
  6102. /* Unbind it from offline cpu so it can run. Fall thru. */
  6103. kthread_bind(cpu_rq(cpu)->migration_thread,
  6104. cpumask_any(cpu_online_mask));
  6105. kthread_stop(cpu_rq(cpu)->migration_thread);
  6106. cpu_rq(cpu)->migration_thread = NULL;
  6107. break;
  6108. case CPU_DEAD:
  6109. case CPU_DEAD_FROZEN:
  6110. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6111. migrate_live_tasks(cpu);
  6112. rq = cpu_rq(cpu);
  6113. kthread_stop(rq->migration_thread);
  6114. rq->migration_thread = NULL;
  6115. /* Idle task back to normal (off runqueue, low prio) */
  6116. spin_lock_irq(&rq->lock);
  6117. update_rq_clock(rq);
  6118. deactivate_task(rq, rq->idle, 0);
  6119. rq->idle->static_prio = MAX_PRIO;
  6120. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6121. rq->idle->sched_class = &idle_sched_class;
  6122. migrate_dead_tasks(cpu);
  6123. spin_unlock_irq(&rq->lock);
  6124. cpuset_unlock();
  6125. migrate_nr_uninterruptible(rq);
  6126. BUG_ON(rq->nr_running != 0);
  6127. /*
  6128. * No need to migrate the tasks: it was best-effort if
  6129. * they didn't take sched_hotcpu_mutex. Just wake up
  6130. * the requestors.
  6131. */
  6132. spin_lock_irq(&rq->lock);
  6133. while (!list_empty(&rq->migration_queue)) {
  6134. struct migration_req *req;
  6135. req = list_entry(rq->migration_queue.next,
  6136. struct migration_req, list);
  6137. list_del_init(&req->list);
  6138. spin_unlock_irq(&rq->lock);
  6139. complete(&req->done);
  6140. spin_lock_irq(&rq->lock);
  6141. }
  6142. spin_unlock_irq(&rq->lock);
  6143. break;
  6144. case CPU_DYING:
  6145. case CPU_DYING_FROZEN:
  6146. /* Update our root-domain */
  6147. rq = cpu_rq(cpu);
  6148. spin_lock_irqsave(&rq->lock, flags);
  6149. if (rq->rd) {
  6150. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6151. set_rq_offline(rq);
  6152. }
  6153. spin_unlock_irqrestore(&rq->lock, flags);
  6154. break;
  6155. #endif
  6156. }
  6157. return NOTIFY_OK;
  6158. }
  6159. /* Register at highest priority so that task migration (migrate_all_tasks)
  6160. * happens before everything else.
  6161. */
  6162. static struct notifier_block __cpuinitdata migration_notifier = {
  6163. .notifier_call = migration_call,
  6164. .priority = 10
  6165. };
  6166. static int __init migration_init(void)
  6167. {
  6168. void *cpu = (void *)(long)smp_processor_id();
  6169. int err;
  6170. /* Start one for the boot CPU: */
  6171. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6172. BUG_ON(err == NOTIFY_BAD);
  6173. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6174. register_cpu_notifier(&migration_notifier);
  6175. return err;
  6176. }
  6177. early_initcall(migration_init);
  6178. #endif
  6179. #ifdef CONFIG_SMP
  6180. #ifdef CONFIG_SCHED_DEBUG
  6181. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6182. struct cpumask *groupmask)
  6183. {
  6184. struct sched_group *group = sd->groups;
  6185. char str[256];
  6186. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6187. cpumask_clear(groupmask);
  6188. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6189. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6190. printk("does not load-balance\n");
  6191. if (sd->parent)
  6192. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  6193. " has parent");
  6194. return -1;
  6195. }
  6196. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  6197. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6198. printk(KERN_ERR "ERROR: domain->span does not contain "
  6199. "CPU%d\n", cpu);
  6200. }
  6201. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6202. printk(KERN_ERR "ERROR: domain->groups does not contain"
  6203. " CPU%d\n", cpu);
  6204. }
  6205. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6206. do {
  6207. if (!group) {
  6208. printk("\n");
  6209. printk(KERN_ERR "ERROR: group is NULL\n");
  6210. break;
  6211. }
  6212. if (!group->__cpu_power) {
  6213. printk(KERN_CONT "\n");
  6214. printk(KERN_ERR "ERROR: domain->cpu_power not "
  6215. "set\n");
  6216. break;
  6217. }
  6218. if (!cpumask_weight(sched_group_cpus(group))) {
  6219. printk(KERN_CONT "\n");
  6220. printk(KERN_ERR "ERROR: empty group\n");
  6221. break;
  6222. }
  6223. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6224. printk(KERN_CONT "\n");
  6225. printk(KERN_ERR "ERROR: repeated CPUs\n");
  6226. break;
  6227. }
  6228. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6229. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6230. printk(KERN_CONT " %s", str);
  6231. group = group->next;
  6232. } while (group != sd->groups);
  6233. printk(KERN_CONT "\n");
  6234. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6235. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  6236. if (sd->parent &&
  6237. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6238. printk(KERN_ERR "ERROR: parent span is not a superset "
  6239. "of domain->span\n");
  6240. return 0;
  6241. }
  6242. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6243. {
  6244. cpumask_var_t groupmask;
  6245. int level = 0;
  6246. if (!sd) {
  6247. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6248. return;
  6249. }
  6250. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6251. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6252. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6253. return;
  6254. }
  6255. for (;;) {
  6256. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6257. break;
  6258. level++;
  6259. sd = sd->parent;
  6260. if (!sd)
  6261. break;
  6262. }
  6263. free_cpumask_var(groupmask);
  6264. }
  6265. #else /* !CONFIG_SCHED_DEBUG */
  6266. # define sched_domain_debug(sd, cpu) do { } while (0)
  6267. #endif /* CONFIG_SCHED_DEBUG */
  6268. static int sd_degenerate(struct sched_domain *sd)
  6269. {
  6270. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6271. return 1;
  6272. /* Following flags need at least 2 groups */
  6273. if (sd->flags & (SD_LOAD_BALANCE |
  6274. SD_BALANCE_NEWIDLE |
  6275. SD_BALANCE_FORK |
  6276. SD_BALANCE_EXEC |
  6277. SD_SHARE_CPUPOWER |
  6278. SD_SHARE_PKG_RESOURCES)) {
  6279. if (sd->groups != sd->groups->next)
  6280. return 0;
  6281. }
  6282. /* Following flags don't use groups */
  6283. if (sd->flags & (SD_WAKE_IDLE |
  6284. SD_WAKE_AFFINE |
  6285. SD_WAKE_BALANCE))
  6286. return 0;
  6287. return 1;
  6288. }
  6289. static int
  6290. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6291. {
  6292. unsigned long cflags = sd->flags, pflags = parent->flags;
  6293. if (sd_degenerate(parent))
  6294. return 1;
  6295. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6296. return 0;
  6297. /* Does parent contain flags not in child? */
  6298. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  6299. if (cflags & SD_WAKE_AFFINE)
  6300. pflags &= ~SD_WAKE_BALANCE;
  6301. /* Flags needing groups don't count if only 1 group in parent */
  6302. if (parent->groups == parent->groups->next) {
  6303. pflags &= ~(SD_LOAD_BALANCE |
  6304. SD_BALANCE_NEWIDLE |
  6305. SD_BALANCE_FORK |
  6306. SD_BALANCE_EXEC |
  6307. SD_SHARE_CPUPOWER |
  6308. SD_SHARE_PKG_RESOURCES);
  6309. if (nr_node_ids == 1)
  6310. pflags &= ~SD_SERIALIZE;
  6311. }
  6312. if (~cflags & pflags)
  6313. return 0;
  6314. return 1;
  6315. }
  6316. static void free_rootdomain(struct root_domain *rd)
  6317. {
  6318. cpupri_cleanup(&rd->cpupri);
  6319. free_cpumask_var(rd->rto_mask);
  6320. free_cpumask_var(rd->online);
  6321. free_cpumask_var(rd->span);
  6322. kfree(rd);
  6323. }
  6324. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6325. {
  6326. struct root_domain *old_rd = NULL;
  6327. unsigned long flags;
  6328. spin_lock_irqsave(&rq->lock, flags);
  6329. if (rq->rd) {
  6330. old_rd = rq->rd;
  6331. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6332. set_rq_offline(rq);
  6333. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6334. /*
  6335. * If we dont want to free the old_rt yet then
  6336. * set old_rd to NULL to skip the freeing later
  6337. * in this function:
  6338. */
  6339. if (!atomic_dec_and_test(&old_rd->refcount))
  6340. old_rd = NULL;
  6341. }
  6342. atomic_inc(&rd->refcount);
  6343. rq->rd = rd;
  6344. cpumask_set_cpu(rq->cpu, rd->span);
  6345. if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
  6346. set_rq_online(rq);
  6347. spin_unlock_irqrestore(&rq->lock, flags);
  6348. if (old_rd)
  6349. free_rootdomain(old_rd);
  6350. }
  6351. static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
  6352. {
  6353. memset(rd, 0, sizeof(*rd));
  6354. if (bootmem) {
  6355. alloc_bootmem_cpumask_var(&def_root_domain.span);
  6356. alloc_bootmem_cpumask_var(&def_root_domain.online);
  6357. alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
  6358. cpupri_init(&rd->cpupri, true);
  6359. return 0;
  6360. }
  6361. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  6362. goto out;
  6363. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  6364. goto free_span;
  6365. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  6366. goto free_online;
  6367. if (cpupri_init(&rd->cpupri, false) != 0)
  6368. goto free_rto_mask;
  6369. return 0;
  6370. free_rto_mask:
  6371. free_cpumask_var(rd->rto_mask);
  6372. free_online:
  6373. free_cpumask_var(rd->online);
  6374. free_span:
  6375. free_cpumask_var(rd->span);
  6376. out:
  6377. return -ENOMEM;
  6378. }
  6379. static void init_defrootdomain(void)
  6380. {
  6381. init_rootdomain(&def_root_domain, true);
  6382. atomic_set(&def_root_domain.refcount, 1);
  6383. }
  6384. static struct root_domain *alloc_rootdomain(void)
  6385. {
  6386. struct root_domain *rd;
  6387. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6388. if (!rd)
  6389. return NULL;
  6390. if (init_rootdomain(rd, false) != 0) {
  6391. kfree(rd);
  6392. return NULL;
  6393. }
  6394. return rd;
  6395. }
  6396. /*
  6397. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6398. * hold the hotplug lock.
  6399. */
  6400. static void
  6401. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6402. {
  6403. struct rq *rq = cpu_rq(cpu);
  6404. struct sched_domain *tmp;
  6405. /* Remove the sched domains which do not contribute to scheduling. */
  6406. for (tmp = sd; tmp; ) {
  6407. struct sched_domain *parent = tmp->parent;
  6408. if (!parent)
  6409. break;
  6410. if (sd_parent_degenerate(tmp, parent)) {
  6411. tmp->parent = parent->parent;
  6412. if (parent->parent)
  6413. parent->parent->child = tmp;
  6414. } else
  6415. tmp = tmp->parent;
  6416. }
  6417. if (sd && sd_degenerate(sd)) {
  6418. sd = sd->parent;
  6419. if (sd)
  6420. sd->child = NULL;
  6421. }
  6422. sched_domain_debug(sd, cpu);
  6423. rq_attach_root(rq, rd);
  6424. rcu_assign_pointer(rq->sd, sd);
  6425. }
  6426. /* cpus with isolated domains */
  6427. static cpumask_var_t cpu_isolated_map;
  6428. /* Setup the mask of cpus configured for isolated domains */
  6429. static int __init isolated_cpu_setup(char *str)
  6430. {
  6431. cpulist_parse(str, cpu_isolated_map);
  6432. return 1;
  6433. }
  6434. __setup("isolcpus=", isolated_cpu_setup);
  6435. /*
  6436. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6437. * to a function which identifies what group(along with sched group) a CPU
  6438. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6439. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6440. *
  6441. * init_sched_build_groups will build a circular linked list of the groups
  6442. * covered by the given span, and will set each group's ->cpumask correctly,
  6443. * and ->cpu_power to 0.
  6444. */
  6445. static void
  6446. init_sched_build_groups(const struct cpumask *span,
  6447. const struct cpumask *cpu_map,
  6448. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6449. struct sched_group **sg,
  6450. struct cpumask *tmpmask),
  6451. struct cpumask *covered, struct cpumask *tmpmask)
  6452. {
  6453. struct sched_group *first = NULL, *last = NULL;
  6454. int i;
  6455. cpumask_clear(covered);
  6456. for_each_cpu(i, span) {
  6457. struct sched_group *sg;
  6458. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6459. int j;
  6460. if (cpumask_test_cpu(i, covered))
  6461. continue;
  6462. cpumask_clear(sched_group_cpus(sg));
  6463. sg->__cpu_power = 0;
  6464. for_each_cpu(j, span) {
  6465. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6466. continue;
  6467. cpumask_set_cpu(j, covered);
  6468. cpumask_set_cpu(j, sched_group_cpus(sg));
  6469. }
  6470. if (!first)
  6471. first = sg;
  6472. if (last)
  6473. last->next = sg;
  6474. last = sg;
  6475. }
  6476. last->next = first;
  6477. }
  6478. #define SD_NODES_PER_DOMAIN 16
  6479. #ifdef CONFIG_NUMA
  6480. /**
  6481. * find_next_best_node - find the next node to include in a sched_domain
  6482. * @node: node whose sched_domain we're building
  6483. * @used_nodes: nodes already in the sched_domain
  6484. *
  6485. * Find the next node to include in a given scheduling domain. Simply
  6486. * finds the closest node not already in the @used_nodes map.
  6487. *
  6488. * Should use nodemask_t.
  6489. */
  6490. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6491. {
  6492. int i, n, val, min_val, best_node = 0;
  6493. min_val = INT_MAX;
  6494. for (i = 0; i < nr_node_ids; i++) {
  6495. /* Start at @node */
  6496. n = (node + i) % nr_node_ids;
  6497. if (!nr_cpus_node(n))
  6498. continue;
  6499. /* Skip already used nodes */
  6500. if (node_isset(n, *used_nodes))
  6501. continue;
  6502. /* Simple min distance search */
  6503. val = node_distance(node, n);
  6504. if (val < min_val) {
  6505. min_val = val;
  6506. best_node = n;
  6507. }
  6508. }
  6509. node_set(best_node, *used_nodes);
  6510. return best_node;
  6511. }
  6512. /**
  6513. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6514. * @node: node whose cpumask we're constructing
  6515. * @span: resulting cpumask
  6516. *
  6517. * Given a node, construct a good cpumask for its sched_domain to span. It
  6518. * should be one that prevents unnecessary balancing, but also spreads tasks
  6519. * out optimally.
  6520. */
  6521. static void sched_domain_node_span(int node, struct cpumask *span)
  6522. {
  6523. nodemask_t used_nodes;
  6524. int i;
  6525. cpumask_clear(span);
  6526. nodes_clear(used_nodes);
  6527. cpumask_or(span, span, cpumask_of_node(node));
  6528. node_set(node, used_nodes);
  6529. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6530. int next_node = find_next_best_node(node, &used_nodes);
  6531. cpumask_or(span, span, cpumask_of_node(next_node));
  6532. }
  6533. }
  6534. #endif /* CONFIG_NUMA */
  6535. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6536. /*
  6537. * The cpus mask in sched_group and sched_domain hangs off the end.
  6538. * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
  6539. * for nr_cpu_ids < CONFIG_NR_CPUS.
  6540. */
  6541. struct static_sched_group {
  6542. struct sched_group sg;
  6543. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6544. };
  6545. struct static_sched_domain {
  6546. struct sched_domain sd;
  6547. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6548. };
  6549. /*
  6550. * SMT sched-domains:
  6551. */
  6552. #ifdef CONFIG_SCHED_SMT
  6553. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  6554. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  6555. static int
  6556. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  6557. struct sched_group **sg, struct cpumask *unused)
  6558. {
  6559. if (sg)
  6560. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  6561. return cpu;
  6562. }
  6563. #endif /* CONFIG_SCHED_SMT */
  6564. /*
  6565. * multi-core sched-domains:
  6566. */
  6567. #ifdef CONFIG_SCHED_MC
  6568. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  6569. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  6570. #endif /* CONFIG_SCHED_MC */
  6571. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6572. static int
  6573. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6574. struct sched_group **sg, struct cpumask *mask)
  6575. {
  6576. int group;
  6577. cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
  6578. group = cpumask_first(mask);
  6579. if (sg)
  6580. *sg = &per_cpu(sched_group_core, group).sg;
  6581. return group;
  6582. }
  6583. #elif defined(CONFIG_SCHED_MC)
  6584. static int
  6585. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6586. struct sched_group **sg, struct cpumask *unused)
  6587. {
  6588. if (sg)
  6589. *sg = &per_cpu(sched_group_core, cpu).sg;
  6590. return cpu;
  6591. }
  6592. #endif
  6593. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  6594. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  6595. static int
  6596. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  6597. struct sched_group **sg, struct cpumask *mask)
  6598. {
  6599. int group;
  6600. #ifdef CONFIG_SCHED_MC
  6601. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  6602. group = cpumask_first(mask);
  6603. #elif defined(CONFIG_SCHED_SMT)
  6604. cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
  6605. group = cpumask_first(mask);
  6606. #else
  6607. group = cpu;
  6608. #endif
  6609. if (sg)
  6610. *sg = &per_cpu(sched_group_phys, group).sg;
  6611. return group;
  6612. }
  6613. #ifdef CONFIG_NUMA
  6614. /*
  6615. * The init_sched_build_groups can't handle what we want to do with node
  6616. * groups, so roll our own. Now each node has its own list of groups which
  6617. * gets dynamically allocated.
  6618. */
  6619. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  6620. static struct sched_group ***sched_group_nodes_bycpu;
  6621. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  6622. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  6623. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  6624. struct sched_group **sg,
  6625. struct cpumask *nodemask)
  6626. {
  6627. int group;
  6628. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  6629. group = cpumask_first(nodemask);
  6630. if (sg)
  6631. *sg = &per_cpu(sched_group_allnodes, group).sg;
  6632. return group;
  6633. }
  6634. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6635. {
  6636. struct sched_group *sg = group_head;
  6637. int j;
  6638. if (!sg)
  6639. return;
  6640. do {
  6641. for_each_cpu(j, sched_group_cpus(sg)) {
  6642. struct sched_domain *sd;
  6643. sd = &per_cpu(phys_domains, j).sd;
  6644. if (j != cpumask_first(sched_group_cpus(sd->groups))) {
  6645. /*
  6646. * Only add "power" once for each
  6647. * physical package.
  6648. */
  6649. continue;
  6650. }
  6651. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6652. }
  6653. sg = sg->next;
  6654. } while (sg != group_head);
  6655. }
  6656. #endif /* CONFIG_NUMA */
  6657. #ifdef CONFIG_NUMA
  6658. /* Free memory allocated for various sched_group structures */
  6659. static void free_sched_groups(const struct cpumask *cpu_map,
  6660. struct cpumask *nodemask)
  6661. {
  6662. int cpu, i;
  6663. for_each_cpu(cpu, cpu_map) {
  6664. struct sched_group **sched_group_nodes
  6665. = sched_group_nodes_bycpu[cpu];
  6666. if (!sched_group_nodes)
  6667. continue;
  6668. for (i = 0; i < nr_node_ids; i++) {
  6669. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6670. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6671. if (cpumask_empty(nodemask))
  6672. continue;
  6673. if (sg == NULL)
  6674. continue;
  6675. sg = sg->next;
  6676. next_sg:
  6677. oldsg = sg;
  6678. sg = sg->next;
  6679. kfree(oldsg);
  6680. if (oldsg != sched_group_nodes[i])
  6681. goto next_sg;
  6682. }
  6683. kfree(sched_group_nodes);
  6684. sched_group_nodes_bycpu[cpu] = NULL;
  6685. }
  6686. }
  6687. #else /* !CONFIG_NUMA */
  6688. static void free_sched_groups(const struct cpumask *cpu_map,
  6689. struct cpumask *nodemask)
  6690. {
  6691. }
  6692. #endif /* CONFIG_NUMA */
  6693. /*
  6694. * Initialize sched groups cpu_power.
  6695. *
  6696. * cpu_power indicates the capacity of sched group, which is used while
  6697. * distributing the load between different sched groups in a sched domain.
  6698. * Typically cpu_power for all the groups in a sched domain will be same unless
  6699. * there are asymmetries in the topology. If there are asymmetries, group
  6700. * having more cpu_power will pickup more load compared to the group having
  6701. * less cpu_power.
  6702. *
  6703. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6704. * the maximum number of tasks a group can handle in the presence of other idle
  6705. * or lightly loaded groups in the same sched domain.
  6706. */
  6707. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6708. {
  6709. struct sched_domain *child;
  6710. struct sched_group *group;
  6711. WARN_ON(!sd || !sd->groups);
  6712. if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
  6713. return;
  6714. child = sd->child;
  6715. sd->groups->__cpu_power = 0;
  6716. /*
  6717. * For perf policy, if the groups in child domain share resources
  6718. * (for example cores sharing some portions of the cache hierarchy
  6719. * or SMT), then set this domain groups cpu_power such that each group
  6720. * can handle only one task, when there are other idle groups in the
  6721. * same sched domain.
  6722. */
  6723. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6724. (child->flags &
  6725. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6726. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6727. return;
  6728. }
  6729. /*
  6730. * add cpu_power of each child group to this groups cpu_power
  6731. */
  6732. group = child->groups;
  6733. do {
  6734. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6735. group = group->next;
  6736. } while (group != child->groups);
  6737. }
  6738. /*
  6739. * Initializers for schedule domains
  6740. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6741. */
  6742. #ifdef CONFIG_SCHED_DEBUG
  6743. # define SD_INIT_NAME(sd, type) sd->name = #type
  6744. #else
  6745. # define SD_INIT_NAME(sd, type) do { } while (0)
  6746. #endif
  6747. #define SD_INIT(sd, type) sd_init_##type(sd)
  6748. #define SD_INIT_FUNC(type) \
  6749. static noinline void sd_init_##type(struct sched_domain *sd) \
  6750. { \
  6751. memset(sd, 0, sizeof(*sd)); \
  6752. *sd = SD_##type##_INIT; \
  6753. sd->level = SD_LV_##type; \
  6754. SD_INIT_NAME(sd, type); \
  6755. }
  6756. SD_INIT_FUNC(CPU)
  6757. #ifdef CONFIG_NUMA
  6758. SD_INIT_FUNC(ALLNODES)
  6759. SD_INIT_FUNC(NODE)
  6760. #endif
  6761. #ifdef CONFIG_SCHED_SMT
  6762. SD_INIT_FUNC(SIBLING)
  6763. #endif
  6764. #ifdef CONFIG_SCHED_MC
  6765. SD_INIT_FUNC(MC)
  6766. #endif
  6767. static int default_relax_domain_level = -1;
  6768. static int __init setup_relax_domain_level(char *str)
  6769. {
  6770. unsigned long val;
  6771. val = simple_strtoul(str, NULL, 0);
  6772. if (val < SD_LV_MAX)
  6773. default_relax_domain_level = val;
  6774. return 1;
  6775. }
  6776. __setup("relax_domain_level=", setup_relax_domain_level);
  6777. static void set_domain_attribute(struct sched_domain *sd,
  6778. struct sched_domain_attr *attr)
  6779. {
  6780. int request;
  6781. if (!attr || attr->relax_domain_level < 0) {
  6782. if (default_relax_domain_level < 0)
  6783. return;
  6784. else
  6785. request = default_relax_domain_level;
  6786. } else
  6787. request = attr->relax_domain_level;
  6788. if (request < sd->level) {
  6789. /* turn off idle balance on this domain */
  6790. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6791. } else {
  6792. /* turn on idle balance on this domain */
  6793. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6794. }
  6795. }
  6796. /*
  6797. * Build sched domains for a given set of cpus and attach the sched domains
  6798. * to the individual cpus
  6799. */
  6800. static int __build_sched_domains(const struct cpumask *cpu_map,
  6801. struct sched_domain_attr *attr)
  6802. {
  6803. int i, err = -ENOMEM;
  6804. struct root_domain *rd;
  6805. cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
  6806. tmpmask;
  6807. #ifdef CONFIG_NUMA
  6808. cpumask_var_t domainspan, covered, notcovered;
  6809. struct sched_group **sched_group_nodes = NULL;
  6810. int sd_allnodes = 0;
  6811. if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
  6812. goto out;
  6813. if (!alloc_cpumask_var(&covered, GFP_KERNEL))
  6814. goto free_domainspan;
  6815. if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
  6816. goto free_covered;
  6817. #endif
  6818. if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
  6819. goto free_notcovered;
  6820. if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
  6821. goto free_nodemask;
  6822. if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
  6823. goto free_this_sibling_map;
  6824. if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
  6825. goto free_this_core_map;
  6826. if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
  6827. goto free_send_covered;
  6828. #ifdef CONFIG_NUMA
  6829. /*
  6830. * Allocate the per-node list of sched groups
  6831. */
  6832. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6833. GFP_KERNEL);
  6834. if (!sched_group_nodes) {
  6835. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6836. goto free_tmpmask;
  6837. }
  6838. #endif
  6839. rd = alloc_rootdomain();
  6840. if (!rd) {
  6841. printk(KERN_WARNING "Cannot alloc root domain\n");
  6842. goto free_sched_groups;
  6843. }
  6844. #ifdef CONFIG_NUMA
  6845. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
  6846. #endif
  6847. /*
  6848. * Set up domains for cpus specified by the cpu_map.
  6849. */
  6850. for_each_cpu(i, cpu_map) {
  6851. struct sched_domain *sd = NULL, *p;
  6852. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
  6853. #ifdef CONFIG_NUMA
  6854. if (cpumask_weight(cpu_map) >
  6855. SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
  6856. sd = &per_cpu(allnodes_domains, i).sd;
  6857. SD_INIT(sd, ALLNODES);
  6858. set_domain_attribute(sd, attr);
  6859. cpumask_copy(sched_domain_span(sd), cpu_map);
  6860. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6861. p = sd;
  6862. sd_allnodes = 1;
  6863. } else
  6864. p = NULL;
  6865. sd = &per_cpu(node_domains, i).sd;
  6866. SD_INIT(sd, NODE);
  6867. set_domain_attribute(sd, attr);
  6868. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6869. sd->parent = p;
  6870. if (p)
  6871. p->child = sd;
  6872. cpumask_and(sched_domain_span(sd),
  6873. sched_domain_span(sd), cpu_map);
  6874. #endif
  6875. p = sd;
  6876. sd = &per_cpu(phys_domains, i).sd;
  6877. SD_INIT(sd, CPU);
  6878. set_domain_attribute(sd, attr);
  6879. cpumask_copy(sched_domain_span(sd), nodemask);
  6880. sd->parent = p;
  6881. if (p)
  6882. p->child = sd;
  6883. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6884. #ifdef CONFIG_SCHED_MC
  6885. p = sd;
  6886. sd = &per_cpu(core_domains, i).sd;
  6887. SD_INIT(sd, MC);
  6888. set_domain_attribute(sd, attr);
  6889. cpumask_and(sched_domain_span(sd), cpu_map,
  6890. cpu_coregroup_mask(i));
  6891. sd->parent = p;
  6892. p->child = sd;
  6893. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6894. #endif
  6895. #ifdef CONFIG_SCHED_SMT
  6896. p = sd;
  6897. sd = &per_cpu(cpu_domains, i).sd;
  6898. SD_INIT(sd, SIBLING);
  6899. set_domain_attribute(sd, attr);
  6900. cpumask_and(sched_domain_span(sd),
  6901. &per_cpu(cpu_sibling_map, i), cpu_map);
  6902. sd->parent = p;
  6903. p->child = sd;
  6904. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6905. #endif
  6906. }
  6907. #ifdef CONFIG_SCHED_SMT
  6908. /* Set up CPU (sibling) groups */
  6909. for_each_cpu(i, cpu_map) {
  6910. cpumask_and(this_sibling_map,
  6911. &per_cpu(cpu_sibling_map, i), cpu_map);
  6912. if (i != cpumask_first(this_sibling_map))
  6913. continue;
  6914. init_sched_build_groups(this_sibling_map, cpu_map,
  6915. &cpu_to_cpu_group,
  6916. send_covered, tmpmask);
  6917. }
  6918. #endif
  6919. #ifdef CONFIG_SCHED_MC
  6920. /* Set up multi-core groups */
  6921. for_each_cpu(i, cpu_map) {
  6922. cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
  6923. if (i != cpumask_first(this_core_map))
  6924. continue;
  6925. init_sched_build_groups(this_core_map, cpu_map,
  6926. &cpu_to_core_group,
  6927. send_covered, tmpmask);
  6928. }
  6929. #endif
  6930. /* Set up physical groups */
  6931. for (i = 0; i < nr_node_ids; i++) {
  6932. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6933. if (cpumask_empty(nodemask))
  6934. continue;
  6935. init_sched_build_groups(nodemask, cpu_map,
  6936. &cpu_to_phys_group,
  6937. send_covered, tmpmask);
  6938. }
  6939. #ifdef CONFIG_NUMA
  6940. /* Set up node groups */
  6941. if (sd_allnodes) {
  6942. init_sched_build_groups(cpu_map, cpu_map,
  6943. &cpu_to_allnodes_group,
  6944. send_covered, tmpmask);
  6945. }
  6946. for (i = 0; i < nr_node_ids; i++) {
  6947. /* Set up node groups */
  6948. struct sched_group *sg, *prev;
  6949. int j;
  6950. cpumask_clear(covered);
  6951. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6952. if (cpumask_empty(nodemask)) {
  6953. sched_group_nodes[i] = NULL;
  6954. continue;
  6955. }
  6956. sched_domain_node_span(i, domainspan);
  6957. cpumask_and(domainspan, domainspan, cpu_map);
  6958. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6959. GFP_KERNEL, i);
  6960. if (!sg) {
  6961. printk(KERN_WARNING "Can not alloc domain group for "
  6962. "node %d\n", i);
  6963. goto error;
  6964. }
  6965. sched_group_nodes[i] = sg;
  6966. for_each_cpu(j, nodemask) {
  6967. struct sched_domain *sd;
  6968. sd = &per_cpu(node_domains, j).sd;
  6969. sd->groups = sg;
  6970. }
  6971. sg->__cpu_power = 0;
  6972. cpumask_copy(sched_group_cpus(sg), nodemask);
  6973. sg->next = sg;
  6974. cpumask_or(covered, covered, nodemask);
  6975. prev = sg;
  6976. for (j = 0; j < nr_node_ids; j++) {
  6977. int n = (i + j) % nr_node_ids;
  6978. cpumask_complement(notcovered, covered);
  6979. cpumask_and(tmpmask, notcovered, cpu_map);
  6980. cpumask_and(tmpmask, tmpmask, domainspan);
  6981. if (cpumask_empty(tmpmask))
  6982. break;
  6983. cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
  6984. if (cpumask_empty(tmpmask))
  6985. continue;
  6986. sg = kmalloc_node(sizeof(struct sched_group) +
  6987. cpumask_size(),
  6988. GFP_KERNEL, i);
  6989. if (!sg) {
  6990. printk(KERN_WARNING
  6991. "Can not alloc domain group for node %d\n", j);
  6992. goto error;
  6993. }
  6994. sg->__cpu_power = 0;
  6995. cpumask_copy(sched_group_cpus(sg), tmpmask);
  6996. sg->next = prev->next;
  6997. cpumask_or(covered, covered, tmpmask);
  6998. prev->next = sg;
  6999. prev = sg;
  7000. }
  7001. }
  7002. #endif
  7003. /* Calculate CPU power for physical packages and nodes */
  7004. #ifdef CONFIG_SCHED_SMT
  7005. for_each_cpu(i, cpu_map) {
  7006. struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
  7007. init_sched_groups_power(i, sd);
  7008. }
  7009. #endif
  7010. #ifdef CONFIG_SCHED_MC
  7011. for_each_cpu(i, cpu_map) {
  7012. struct sched_domain *sd = &per_cpu(core_domains, i).sd;
  7013. init_sched_groups_power(i, sd);
  7014. }
  7015. #endif
  7016. for_each_cpu(i, cpu_map) {
  7017. struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
  7018. init_sched_groups_power(i, sd);
  7019. }
  7020. #ifdef CONFIG_NUMA
  7021. for (i = 0; i < nr_node_ids; i++)
  7022. init_numa_sched_groups_power(sched_group_nodes[i]);
  7023. if (sd_allnodes) {
  7024. struct sched_group *sg;
  7025. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7026. tmpmask);
  7027. init_numa_sched_groups_power(sg);
  7028. }
  7029. #endif
  7030. /* Attach the domains */
  7031. for_each_cpu(i, cpu_map) {
  7032. struct sched_domain *sd;
  7033. #ifdef CONFIG_SCHED_SMT
  7034. sd = &per_cpu(cpu_domains, i).sd;
  7035. #elif defined(CONFIG_SCHED_MC)
  7036. sd = &per_cpu(core_domains, i).sd;
  7037. #else
  7038. sd = &per_cpu(phys_domains, i).sd;
  7039. #endif
  7040. cpu_attach_domain(sd, rd, i);
  7041. }
  7042. err = 0;
  7043. free_tmpmask:
  7044. free_cpumask_var(tmpmask);
  7045. free_send_covered:
  7046. free_cpumask_var(send_covered);
  7047. free_this_core_map:
  7048. free_cpumask_var(this_core_map);
  7049. free_this_sibling_map:
  7050. free_cpumask_var(this_sibling_map);
  7051. free_nodemask:
  7052. free_cpumask_var(nodemask);
  7053. free_notcovered:
  7054. #ifdef CONFIG_NUMA
  7055. free_cpumask_var(notcovered);
  7056. free_covered:
  7057. free_cpumask_var(covered);
  7058. free_domainspan:
  7059. free_cpumask_var(domainspan);
  7060. out:
  7061. #endif
  7062. return err;
  7063. free_sched_groups:
  7064. #ifdef CONFIG_NUMA
  7065. kfree(sched_group_nodes);
  7066. #endif
  7067. goto free_tmpmask;
  7068. #ifdef CONFIG_NUMA
  7069. error:
  7070. free_sched_groups(cpu_map, tmpmask);
  7071. free_rootdomain(rd);
  7072. goto free_tmpmask;
  7073. #endif
  7074. }
  7075. static int build_sched_domains(const struct cpumask *cpu_map)
  7076. {
  7077. return __build_sched_domains(cpu_map, NULL);
  7078. }
  7079. static struct cpumask *doms_cur; /* current sched domains */
  7080. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7081. static struct sched_domain_attr *dattr_cur;
  7082. /* attribues of custom domains in 'doms_cur' */
  7083. /*
  7084. * Special case: If a kmalloc of a doms_cur partition (array of
  7085. * cpumask) fails, then fallback to a single sched domain,
  7086. * as determined by the single cpumask fallback_doms.
  7087. */
  7088. static cpumask_var_t fallback_doms;
  7089. /*
  7090. * arch_update_cpu_topology lets virtualized architectures update the
  7091. * cpu core maps. It is supposed to return 1 if the topology changed
  7092. * or 0 if it stayed the same.
  7093. */
  7094. int __attribute__((weak)) arch_update_cpu_topology(void)
  7095. {
  7096. return 0;
  7097. }
  7098. /*
  7099. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7100. * For now this just excludes isolated cpus, but could be used to
  7101. * exclude other special cases in the future.
  7102. */
  7103. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7104. {
  7105. int err;
  7106. arch_update_cpu_topology();
  7107. ndoms_cur = 1;
  7108. doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
  7109. if (!doms_cur)
  7110. doms_cur = fallback_doms;
  7111. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  7112. dattr_cur = NULL;
  7113. err = build_sched_domains(doms_cur);
  7114. register_sched_domain_sysctl();
  7115. return err;
  7116. }
  7117. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7118. struct cpumask *tmpmask)
  7119. {
  7120. free_sched_groups(cpu_map, tmpmask);
  7121. }
  7122. /*
  7123. * Detach sched domains from a group of cpus specified in cpu_map
  7124. * These cpus will now be attached to the NULL domain
  7125. */
  7126. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7127. {
  7128. /* Save because hotplug lock held. */
  7129. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7130. int i;
  7131. for_each_cpu(i, cpu_map)
  7132. cpu_attach_domain(NULL, &def_root_domain, i);
  7133. synchronize_sched();
  7134. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7135. }
  7136. /* handle null as "default" */
  7137. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7138. struct sched_domain_attr *new, int idx_new)
  7139. {
  7140. struct sched_domain_attr tmp;
  7141. /* fast path */
  7142. if (!new && !cur)
  7143. return 1;
  7144. tmp = SD_ATTR_INIT;
  7145. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7146. new ? (new + idx_new) : &tmp,
  7147. sizeof(struct sched_domain_attr));
  7148. }
  7149. /*
  7150. * Partition sched domains as specified by the 'ndoms_new'
  7151. * cpumasks in the array doms_new[] of cpumasks. This compares
  7152. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7153. * It destroys each deleted domain and builds each new domain.
  7154. *
  7155. * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
  7156. * The masks don't intersect (don't overlap.) We should setup one
  7157. * sched domain for each mask. CPUs not in any of the cpumasks will
  7158. * not be load balanced. If the same cpumask appears both in the
  7159. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7160. * it as it is.
  7161. *
  7162. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  7163. * ownership of it and will kfree it when done with it. If the caller
  7164. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  7165. * ndoms_new == 1, and partition_sched_domains() will fallback to
  7166. * the single partition 'fallback_doms', it also forces the domains
  7167. * to be rebuilt.
  7168. *
  7169. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7170. * ndoms_new == 0 is a special case for destroying existing domains,
  7171. * and it will not create the default domain.
  7172. *
  7173. * Call with hotplug lock held
  7174. */
  7175. /* FIXME: Change to struct cpumask *doms_new[] */
  7176. void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
  7177. struct sched_domain_attr *dattr_new)
  7178. {
  7179. int i, j, n;
  7180. int new_topology;
  7181. mutex_lock(&sched_domains_mutex);
  7182. /* always unregister in case we don't destroy any domains */
  7183. unregister_sched_domain_sysctl();
  7184. /* Let architecture update cpu core mappings. */
  7185. new_topology = arch_update_cpu_topology();
  7186. n = doms_new ? ndoms_new : 0;
  7187. /* Destroy deleted domains */
  7188. for (i = 0; i < ndoms_cur; i++) {
  7189. for (j = 0; j < n && !new_topology; j++) {
  7190. if (cpumask_equal(&doms_cur[i], &doms_new[j])
  7191. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7192. goto match1;
  7193. }
  7194. /* no match - a current sched domain not in new doms_new[] */
  7195. detach_destroy_domains(doms_cur + i);
  7196. match1:
  7197. ;
  7198. }
  7199. if (doms_new == NULL) {
  7200. ndoms_cur = 0;
  7201. doms_new = fallback_doms;
  7202. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  7203. WARN_ON_ONCE(dattr_new);
  7204. }
  7205. /* Build new domains */
  7206. for (i = 0; i < ndoms_new; i++) {
  7207. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7208. if (cpumask_equal(&doms_new[i], &doms_cur[j])
  7209. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7210. goto match2;
  7211. }
  7212. /* no match - add a new doms_new */
  7213. __build_sched_domains(doms_new + i,
  7214. dattr_new ? dattr_new + i : NULL);
  7215. match2:
  7216. ;
  7217. }
  7218. /* Remember the new sched domains */
  7219. if (doms_cur != fallback_doms)
  7220. kfree(doms_cur);
  7221. kfree(dattr_cur); /* kfree(NULL) is safe */
  7222. doms_cur = doms_new;
  7223. dattr_cur = dattr_new;
  7224. ndoms_cur = ndoms_new;
  7225. register_sched_domain_sysctl();
  7226. mutex_unlock(&sched_domains_mutex);
  7227. }
  7228. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7229. static void arch_reinit_sched_domains(void)
  7230. {
  7231. get_online_cpus();
  7232. /* Destroy domains first to force the rebuild */
  7233. partition_sched_domains(0, NULL, NULL);
  7234. rebuild_sched_domains();
  7235. put_online_cpus();
  7236. }
  7237. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7238. {
  7239. unsigned int level = 0;
  7240. if (sscanf(buf, "%u", &level) != 1)
  7241. return -EINVAL;
  7242. /*
  7243. * level is always be positive so don't check for
  7244. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7245. * What happens on 0 or 1 byte write,
  7246. * need to check for count as well?
  7247. */
  7248. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7249. return -EINVAL;
  7250. if (smt)
  7251. sched_smt_power_savings = level;
  7252. else
  7253. sched_mc_power_savings = level;
  7254. arch_reinit_sched_domains();
  7255. return count;
  7256. }
  7257. #ifdef CONFIG_SCHED_MC
  7258. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7259. char *page)
  7260. {
  7261. return sprintf(page, "%u\n", sched_mc_power_savings);
  7262. }
  7263. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7264. const char *buf, size_t count)
  7265. {
  7266. return sched_power_savings_store(buf, count, 0);
  7267. }
  7268. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7269. sched_mc_power_savings_show,
  7270. sched_mc_power_savings_store);
  7271. #endif
  7272. #ifdef CONFIG_SCHED_SMT
  7273. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7274. char *page)
  7275. {
  7276. return sprintf(page, "%u\n", sched_smt_power_savings);
  7277. }
  7278. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7279. const char *buf, size_t count)
  7280. {
  7281. return sched_power_savings_store(buf, count, 1);
  7282. }
  7283. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7284. sched_smt_power_savings_show,
  7285. sched_smt_power_savings_store);
  7286. #endif
  7287. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7288. {
  7289. int err = 0;
  7290. #ifdef CONFIG_SCHED_SMT
  7291. if (smt_capable())
  7292. err = sysfs_create_file(&cls->kset.kobj,
  7293. &attr_sched_smt_power_savings.attr);
  7294. #endif
  7295. #ifdef CONFIG_SCHED_MC
  7296. if (!err && mc_capable())
  7297. err = sysfs_create_file(&cls->kset.kobj,
  7298. &attr_sched_mc_power_savings.attr);
  7299. #endif
  7300. return err;
  7301. }
  7302. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7303. #ifndef CONFIG_CPUSETS
  7304. /*
  7305. * Add online and remove offline CPUs from the scheduler domains.
  7306. * When cpusets are enabled they take over this function.
  7307. */
  7308. static int update_sched_domains(struct notifier_block *nfb,
  7309. unsigned long action, void *hcpu)
  7310. {
  7311. switch (action) {
  7312. case CPU_ONLINE:
  7313. case CPU_ONLINE_FROZEN:
  7314. case CPU_DEAD:
  7315. case CPU_DEAD_FROZEN:
  7316. partition_sched_domains(1, NULL, NULL);
  7317. return NOTIFY_OK;
  7318. default:
  7319. return NOTIFY_DONE;
  7320. }
  7321. }
  7322. #endif
  7323. static int update_runtime(struct notifier_block *nfb,
  7324. unsigned long action, void *hcpu)
  7325. {
  7326. int cpu = (int)(long)hcpu;
  7327. switch (action) {
  7328. case CPU_DOWN_PREPARE:
  7329. case CPU_DOWN_PREPARE_FROZEN:
  7330. disable_runtime(cpu_rq(cpu));
  7331. return NOTIFY_OK;
  7332. case CPU_DOWN_FAILED:
  7333. case CPU_DOWN_FAILED_FROZEN:
  7334. case CPU_ONLINE:
  7335. case CPU_ONLINE_FROZEN:
  7336. enable_runtime(cpu_rq(cpu));
  7337. return NOTIFY_OK;
  7338. default:
  7339. return NOTIFY_DONE;
  7340. }
  7341. }
  7342. void __init sched_init_smp(void)
  7343. {
  7344. cpumask_var_t non_isolated_cpus;
  7345. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7346. #if defined(CONFIG_NUMA)
  7347. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7348. GFP_KERNEL);
  7349. BUG_ON(sched_group_nodes_bycpu == NULL);
  7350. #endif
  7351. get_online_cpus();
  7352. mutex_lock(&sched_domains_mutex);
  7353. arch_init_sched_domains(cpu_online_mask);
  7354. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7355. if (cpumask_empty(non_isolated_cpus))
  7356. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7357. mutex_unlock(&sched_domains_mutex);
  7358. put_online_cpus();
  7359. #ifndef CONFIG_CPUSETS
  7360. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7361. hotcpu_notifier(update_sched_domains, 0);
  7362. #endif
  7363. /* RT runtime code needs to handle some hotplug events */
  7364. hotcpu_notifier(update_runtime, 0);
  7365. init_hrtick();
  7366. /* Move init over to a non-isolated CPU */
  7367. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7368. BUG();
  7369. sched_init_granularity();
  7370. free_cpumask_var(non_isolated_cpus);
  7371. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7372. init_sched_rt_class();
  7373. }
  7374. #else
  7375. void __init sched_init_smp(void)
  7376. {
  7377. sched_init_granularity();
  7378. }
  7379. #endif /* CONFIG_SMP */
  7380. int in_sched_functions(unsigned long addr)
  7381. {
  7382. return in_lock_functions(addr) ||
  7383. (addr >= (unsigned long)__sched_text_start
  7384. && addr < (unsigned long)__sched_text_end);
  7385. }
  7386. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7387. {
  7388. cfs_rq->tasks_timeline = RB_ROOT;
  7389. INIT_LIST_HEAD(&cfs_rq->tasks);
  7390. #ifdef CONFIG_FAIR_GROUP_SCHED
  7391. cfs_rq->rq = rq;
  7392. #endif
  7393. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7394. }
  7395. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7396. {
  7397. struct rt_prio_array *array;
  7398. int i;
  7399. array = &rt_rq->active;
  7400. for (i = 0; i < MAX_RT_PRIO; i++) {
  7401. INIT_LIST_HEAD(array->queue + i);
  7402. __clear_bit(i, array->bitmap);
  7403. }
  7404. /* delimiter for bitsearch: */
  7405. __set_bit(MAX_RT_PRIO, array->bitmap);
  7406. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7407. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7408. #ifdef CONFIG_SMP
  7409. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7410. #endif
  7411. #endif
  7412. #ifdef CONFIG_SMP
  7413. rt_rq->rt_nr_migratory = 0;
  7414. rt_rq->overloaded = 0;
  7415. plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
  7416. #endif
  7417. rt_rq->rt_time = 0;
  7418. rt_rq->rt_throttled = 0;
  7419. rt_rq->rt_runtime = 0;
  7420. spin_lock_init(&rt_rq->rt_runtime_lock);
  7421. #ifdef CONFIG_RT_GROUP_SCHED
  7422. rt_rq->rt_nr_boosted = 0;
  7423. rt_rq->rq = rq;
  7424. #endif
  7425. }
  7426. #ifdef CONFIG_FAIR_GROUP_SCHED
  7427. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7428. struct sched_entity *se, int cpu, int add,
  7429. struct sched_entity *parent)
  7430. {
  7431. struct rq *rq = cpu_rq(cpu);
  7432. tg->cfs_rq[cpu] = cfs_rq;
  7433. init_cfs_rq(cfs_rq, rq);
  7434. cfs_rq->tg = tg;
  7435. if (add)
  7436. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7437. tg->se[cpu] = se;
  7438. /* se could be NULL for init_task_group */
  7439. if (!se)
  7440. return;
  7441. if (!parent)
  7442. se->cfs_rq = &rq->cfs;
  7443. else
  7444. se->cfs_rq = parent->my_q;
  7445. se->my_q = cfs_rq;
  7446. se->load.weight = tg->shares;
  7447. se->load.inv_weight = 0;
  7448. se->parent = parent;
  7449. }
  7450. #endif
  7451. #ifdef CONFIG_RT_GROUP_SCHED
  7452. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  7453. struct sched_rt_entity *rt_se, int cpu, int add,
  7454. struct sched_rt_entity *parent)
  7455. {
  7456. struct rq *rq = cpu_rq(cpu);
  7457. tg->rt_rq[cpu] = rt_rq;
  7458. init_rt_rq(rt_rq, rq);
  7459. rt_rq->tg = tg;
  7460. rt_rq->rt_se = rt_se;
  7461. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7462. if (add)
  7463. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  7464. tg->rt_se[cpu] = rt_se;
  7465. if (!rt_se)
  7466. return;
  7467. if (!parent)
  7468. rt_se->rt_rq = &rq->rt;
  7469. else
  7470. rt_se->rt_rq = parent->my_q;
  7471. rt_se->my_q = rt_rq;
  7472. rt_se->parent = parent;
  7473. INIT_LIST_HEAD(&rt_se->run_list);
  7474. }
  7475. #endif
  7476. void __init sched_init(void)
  7477. {
  7478. int i, j;
  7479. unsigned long alloc_size = 0, ptr;
  7480. #ifdef CONFIG_FAIR_GROUP_SCHED
  7481. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7482. #endif
  7483. #ifdef CONFIG_RT_GROUP_SCHED
  7484. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7485. #endif
  7486. #ifdef CONFIG_USER_SCHED
  7487. alloc_size *= 2;
  7488. #endif
  7489. /*
  7490. * As sched_init() is called before page_alloc is setup,
  7491. * we use alloc_bootmem().
  7492. */
  7493. if (alloc_size) {
  7494. ptr = (unsigned long)alloc_bootmem(alloc_size);
  7495. #ifdef CONFIG_FAIR_GROUP_SCHED
  7496. init_task_group.se = (struct sched_entity **)ptr;
  7497. ptr += nr_cpu_ids * sizeof(void **);
  7498. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7499. ptr += nr_cpu_ids * sizeof(void **);
  7500. #ifdef CONFIG_USER_SCHED
  7501. root_task_group.se = (struct sched_entity **)ptr;
  7502. ptr += nr_cpu_ids * sizeof(void **);
  7503. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7504. ptr += nr_cpu_ids * sizeof(void **);
  7505. #endif /* CONFIG_USER_SCHED */
  7506. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7507. #ifdef CONFIG_RT_GROUP_SCHED
  7508. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7509. ptr += nr_cpu_ids * sizeof(void **);
  7510. init_task_group.rt_rq = (struct rt_rq **)ptr;
  7511. ptr += nr_cpu_ids * sizeof(void **);
  7512. #ifdef CONFIG_USER_SCHED
  7513. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7514. ptr += nr_cpu_ids * sizeof(void **);
  7515. root_task_group.rt_rq = (struct rt_rq **)ptr;
  7516. ptr += nr_cpu_ids * sizeof(void **);
  7517. #endif /* CONFIG_USER_SCHED */
  7518. #endif /* CONFIG_RT_GROUP_SCHED */
  7519. }
  7520. #ifdef CONFIG_SMP
  7521. init_defrootdomain();
  7522. #endif
  7523. init_rt_bandwidth(&def_rt_bandwidth,
  7524. global_rt_period(), global_rt_runtime());
  7525. #ifdef CONFIG_RT_GROUP_SCHED
  7526. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  7527. global_rt_period(), global_rt_runtime());
  7528. #ifdef CONFIG_USER_SCHED
  7529. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7530. global_rt_period(), RUNTIME_INF);
  7531. #endif /* CONFIG_USER_SCHED */
  7532. #endif /* CONFIG_RT_GROUP_SCHED */
  7533. #ifdef CONFIG_GROUP_SCHED
  7534. list_add(&init_task_group.list, &task_groups);
  7535. INIT_LIST_HEAD(&init_task_group.children);
  7536. #ifdef CONFIG_USER_SCHED
  7537. INIT_LIST_HEAD(&root_task_group.children);
  7538. init_task_group.parent = &root_task_group;
  7539. list_add(&init_task_group.siblings, &root_task_group.children);
  7540. #endif /* CONFIG_USER_SCHED */
  7541. #endif /* CONFIG_GROUP_SCHED */
  7542. for_each_possible_cpu(i) {
  7543. struct rq *rq;
  7544. rq = cpu_rq(i);
  7545. spin_lock_init(&rq->lock);
  7546. rq->nr_running = 0;
  7547. init_cfs_rq(&rq->cfs, rq);
  7548. init_rt_rq(&rq->rt, rq);
  7549. #ifdef CONFIG_FAIR_GROUP_SCHED
  7550. init_task_group.shares = init_task_group_load;
  7551. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7552. #ifdef CONFIG_CGROUP_SCHED
  7553. /*
  7554. * How much cpu bandwidth does init_task_group get?
  7555. *
  7556. * In case of task-groups formed thr' the cgroup filesystem, it
  7557. * gets 100% of the cpu resources in the system. This overall
  7558. * system cpu resource is divided among the tasks of
  7559. * init_task_group and its child task-groups in a fair manner,
  7560. * based on each entity's (task or task-group's) weight
  7561. * (se->load.weight).
  7562. *
  7563. * In other words, if init_task_group has 10 tasks of weight
  7564. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7565. * then A0's share of the cpu resource is:
  7566. *
  7567. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7568. *
  7569. * We achieve this by letting init_task_group's tasks sit
  7570. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7571. */
  7572. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7573. #elif defined CONFIG_USER_SCHED
  7574. root_task_group.shares = NICE_0_LOAD;
  7575. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7576. /*
  7577. * In case of task-groups formed thr' the user id of tasks,
  7578. * init_task_group represents tasks belonging to root user.
  7579. * Hence it forms a sibling of all subsequent groups formed.
  7580. * In this case, init_task_group gets only a fraction of overall
  7581. * system cpu resource, based on the weight assigned to root
  7582. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7583. * by letting tasks of init_task_group sit in a separate cfs_rq
  7584. * (init_cfs_rq) and having one entity represent this group of
  7585. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7586. */
  7587. init_tg_cfs_entry(&init_task_group,
  7588. &per_cpu(init_cfs_rq, i),
  7589. &per_cpu(init_sched_entity, i), i, 1,
  7590. root_task_group.se[i]);
  7591. #endif
  7592. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7593. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7594. #ifdef CONFIG_RT_GROUP_SCHED
  7595. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7596. #ifdef CONFIG_CGROUP_SCHED
  7597. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7598. #elif defined CONFIG_USER_SCHED
  7599. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7600. init_tg_rt_entry(&init_task_group,
  7601. &per_cpu(init_rt_rq, i),
  7602. &per_cpu(init_sched_rt_entity, i), i, 1,
  7603. root_task_group.rt_se[i]);
  7604. #endif
  7605. #endif
  7606. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7607. rq->cpu_load[j] = 0;
  7608. #ifdef CONFIG_SMP
  7609. rq->sd = NULL;
  7610. rq->rd = NULL;
  7611. rq->active_balance = 0;
  7612. rq->next_balance = jiffies;
  7613. rq->push_cpu = 0;
  7614. rq->cpu = i;
  7615. rq->online = 0;
  7616. rq->migration_thread = NULL;
  7617. INIT_LIST_HEAD(&rq->migration_queue);
  7618. rq_attach_root(rq, &def_root_domain);
  7619. #endif
  7620. init_rq_hrtick(rq);
  7621. atomic_set(&rq->nr_iowait, 0);
  7622. }
  7623. set_load_weight(&init_task);
  7624. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7625. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7626. #endif
  7627. #ifdef CONFIG_SMP
  7628. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7629. #endif
  7630. #ifdef CONFIG_RT_MUTEXES
  7631. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7632. #endif
  7633. /*
  7634. * The boot idle thread does lazy MMU switching as well:
  7635. */
  7636. atomic_inc(&init_mm.mm_count);
  7637. enter_lazy_tlb(&init_mm, current);
  7638. /*
  7639. * Make us the idle thread. Technically, schedule() should not be
  7640. * called from this thread, however somewhere below it might be,
  7641. * but because we are the idle thread, we just pick up running again
  7642. * when this runqueue becomes "idle".
  7643. */
  7644. init_idle(current, smp_processor_id());
  7645. /*
  7646. * During early bootup we pretend to be a normal task:
  7647. */
  7648. current->sched_class = &fair_sched_class;
  7649. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7650. alloc_bootmem_cpumask_var(&nohz_cpu_mask);
  7651. #ifdef CONFIG_SMP
  7652. #ifdef CONFIG_NO_HZ
  7653. alloc_bootmem_cpumask_var(&nohz.cpu_mask);
  7654. #endif
  7655. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  7656. #endif /* SMP */
  7657. scheduler_running = 1;
  7658. }
  7659. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7660. void __might_sleep(char *file, int line)
  7661. {
  7662. #ifdef in_atomic
  7663. static unsigned long prev_jiffy; /* ratelimiting */
  7664. if ((!in_atomic() && !irqs_disabled()) ||
  7665. system_state != SYSTEM_RUNNING || oops_in_progress)
  7666. return;
  7667. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7668. return;
  7669. prev_jiffy = jiffies;
  7670. printk(KERN_ERR
  7671. "BUG: sleeping function called from invalid context at %s:%d\n",
  7672. file, line);
  7673. printk(KERN_ERR
  7674. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7675. in_atomic(), irqs_disabled(),
  7676. current->pid, current->comm);
  7677. debug_show_held_locks(current);
  7678. if (irqs_disabled())
  7679. print_irqtrace_events(current);
  7680. dump_stack();
  7681. #endif
  7682. }
  7683. EXPORT_SYMBOL(__might_sleep);
  7684. #endif
  7685. #ifdef CONFIG_MAGIC_SYSRQ
  7686. static void normalize_task(struct rq *rq, struct task_struct *p)
  7687. {
  7688. int on_rq;
  7689. update_rq_clock(rq);
  7690. on_rq = p->se.on_rq;
  7691. if (on_rq)
  7692. deactivate_task(rq, p, 0);
  7693. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7694. if (on_rq) {
  7695. activate_task(rq, p, 0);
  7696. resched_task(rq->curr);
  7697. }
  7698. }
  7699. void normalize_rt_tasks(void)
  7700. {
  7701. struct task_struct *g, *p;
  7702. unsigned long flags;
  7703. struct rq *rq;
  7704. read_lock_irqsave(&tasklist_lock, flags);
  7705. do_each_thread(g, p) {
  7706. /*
  7707. * Only normalize user tasks:
  7708. */
  7709. if (!p->mm)
  7710. continue;
  7711. p->se.exec_start = 0;
  7712. #ifdef CONFIG_SCHEDSTATS
  7713. p->se.wait_start = 0;
  7714. p->se.sleep_start = 0;
  7715. p->se.block_start = 0;
  7716. #endif
  7717. if (!rt_task(p)) {
  7718. /*
  7719. * Renice negative nice level userspace
  7720. * tasks back to 0:
  7721. */
  7722. if (TASK_NICE(p) < 0 && p->mm)
  7723. set_user_nice(p, 0);
  7724. continue;
  7725. }
  7726. spin_lock(&p->pi_lock);
  7727. rq = __task_rq_lock(p);
  7728. normalize_task(rq, p);
  7729. __task_rq_unlock(rq);
  7730. spin_unlock(&p->pi_lock);
  7731. } while_each_thread(g, p);
  7732. read_unlock_irqrestore(&tasklist_lock, flags);
  7733. }
  7734. #endif /* CONFIG_MAGIC_SYSRQ */
  7735. #ifdef CONFIG_IA64
  7736. /*
  7737. * These functions are only useful for the IA64 MCA handling.
  7738. *
  7739. * They can only be called when the whole system has been
  7740. * stopped - every CPU needs to be quiescent, and no scheduling
  7741. * activity can take place. Using them for anything else would
  7742. * be a serious bug, and as a result, they aren't even visible
  7743. * under any other configuration.
  7744. */
  7745. /**
  7746. * curr_task - return the current task for a given cpu.
  7747. * @cpu: the processor in question.
  7748. *
  7749. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7750. */
  7751. struct task_struct *curr_task(int cpu)
  7752. {
  7753. return cpu_curr(cpu);
  7754. }
  7755. /**
  7756. * set_curr_task - set the current task for a given cpu.
  7757. * @cpu: the processor in question.
  7758. * @p: the task pointer to set.
  7759. *
  7760. * Description: This function must only be used when non-maskable interrupts
  7761. * are serviced on a separate stack. It allows the architecture to switch the
  7762. * notion of the current task on a cpu in a non-blocking manner. This function
  7763. * must be called with all CPU's synchronized, and interrupts disabled, the
  7764. * and caller must save the original value of the current task (see
  7765. * curr_task() above) and restore that value before reenabling interrupts and
  7766. * re-starting the system.
  7767. *
  7768. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7769. */
  7770. void set_curr_task(int cpu, struct task_struct *p)
  7771. {
  7772. cpu_curr(cpu) = p;
  7773. }
  7774. #endif
  7775. #ifdef CONFIG_FAIR_GROUP_SCHED
  7776. static void free_fair_sched_group(struct task_group *tg)
  7777. {
  7778. int i;
  7779. for_each_possible_cpu(i) {
  7780. if (tg->cfs_rq)
  7781. kfree(tg->cfs_rq[i]);
  7782. if (tg->se)
  7783. kfree(tg->se[i]);
  7784. }
  7785. kfree(tg->cfs_rq);
  7786. kfree(tg->se);
  7787. }
  7788. static
  7789. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7790. {
  7791. struct cfs_rq *cfs_rq;
  7792. struct sched_entity *se;
  7793. struct rq *rq;
  7794. int i;
  7795. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7796. if (!tg->cfs_rq)
  7797. goto err;
  7798. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7799. if (!tg->se)
  7800. goto err;
  7801. tg->shares = NICE_0_LOAD;
  7802. for_each_possible_cpu(i) {
  7803. rq = cpu_rq(i);
  7804. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7805. GFP_KERNEL, cpu_to_node(i));
  7806. if (!cfs_rq)
  7807. goto err;
  7808. se = kzalloc_node(sizeof(struct sched_entity),
  7809. GFP_KERNEL, cpu_to_node(i));
  7810. if (!se)
  7811. goto err;
  7812. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  7813. }
  7814. return 1;
  7815. err:
  7816. return 0;
  7817. }
  7818. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7819. {
  7820. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7821. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7822. }
  7823. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7824. {
  7825. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7826. }
  7827. #else /* !CONFG_FAIR_GROUP_SCHED */
  7828. static inline void free_fair_sched_group(struct task_group *tg)
  7829. {
  7830. }
  7831. static inline
  7832. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7833. {
  7834. return 1;
  7835. }
  7836. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7837. {
  7838. }
  7839. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7840. {
  7841. }
  7842. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7843. #ifdef CONFIG_RT_GROUP_SCHED
  7844. static void free_rt_sched_group(struct task_group *tg)
  7845. {
  7846. int i;
  7847. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7848. for_each_possible_cpu(i) {
  7849. if (tg->rt_rq)
  7850. kfree(tg->rt_rq[i]);
  7851. if (tg->rt_se)
  7852. kfree(tg->rt_se[i]);
  7853. }
  7854. kfree(tg->rt_rq);
  7855. kfree(tg->rt_se);
  7856. }
  7857. static
  7858. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7859. {
  7860. struct rt_rq *rt_rq;
  7861. struct sched_rt_entity *rt_se;
  7862. struct rq *rq;
  7863. int i;
  7864. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7865. if (!tg->rt_rq)
  7866. goto err;
  7867. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7868. if (!tg->rt_se)
  7869. goto err;
  7870. init_rt_bandwidth(&tg->rt_bandwidth,
  7871. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7872. for_each_possible_cpu(i) {
  7873. rq = cpu_rq(i);
  7874. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7875. GFP_KERNEL, cpu_to_node(i));
  7876. if (!rt_rq)
  7877. goto err;
  7878. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7879. GFP_KERNEL, cpu_to_node(i));
  7880. if (!rt_se)
  7881. goto err;
  7882. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  7883. }
  7884. return 1;
  7885. err:
  7886. return 0;
  7887. }
  7888. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7889. {
  7890. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7891. &cpu_rq(cpu)->leaf_rt_rq_list);
  7892. }
  7893. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7894. {
  7895. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7896. }
  7897. #else /* !CONFIG_RT_GROUP_SCHED */
  7898. static inline void free_rt_sched_group(struct task_group *tg)
  7899. {
  7900. }
  7901. static inline
  7902. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7903. {
  7904. return 1;
  7905. }
  7906. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7907. {
  7908. }
  7909. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7910. {
  7911. }
  7912. #endif /* CONFIG_RT_GROUP_SCHED */
  7913. #ifdef CONFIG_GROUP_SCHED
  7914. static void free_sched_group(struct task_group *tg)
  7915. {
  7916. free_fair_sched_group(tg);
  7917. free_rt_sched_group(tg);
  7918. kfree(tg);
  7919. }
  7920. /* allocate runqueue etc for a new task group */
  7921. struct task_group *sched_create_group(struct task_group *parent)
  7922. {
  7923. struct task_group *tg;
  7924. unsigned long flags;
  7925. int i;
  7926. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7927. if (!tg)
  7928. return ERR_PTR(-ENOMEM);
  7929. if (!alloc_fair_sched_group(tg, parent))
  7930. goto err;
  7931. if (!alloc_rt_sched_group(tg, parent))
  7932. goto err;
  7933. spin_lock_irqsave(&task_group_lock, flags);
  7934. for_each_possible_cpu(i) {
  7935. register_fair_sched_group(tg, i);
  7936. register_rt_sched_group(tg, i);
  7937. }
  7938. list_add_rcu(&tg->list, &task_groups);
  7939. WARN_ON(!parent); /* root should already exist */
  7940. tg->parent = parent;
  7941. INIT_LIST_HEAD(&tg->children);
  7942. list_add_rcu(&tg->siblings, &parent->children);
  7943. spin_unlock_irqrestore(&task_group_lock, flags);
  7944. return tg;
  7945. err:
  7946. free_sched_group(tg);
  7947. return ERR_PTR(-ENOMEM);
  7948. }
  7949. /* rcu callback to free various structures associated with a task group */
  7950. static void free_sched_group_rcu(struct rcu_head *rhp)
  7951. {
  7952. /* now it should be safe to free those cfs_rqs */
  7953. free_sched_group(container_of(rhp, struct task_group, rcu));
  7954. }
  7955. /* Destroy runqueue etc associated with a task group */
  7956. void sched_destroy_group(struct task_group *tg)
  7957. {
  7958. unsigned long flags;
  7959. int i;
  7960. spin_lock_irqsave(&task_group_lock, flags);
  7961. for_each_possible_cpu(i) {
  7962. unregister_fair_sched_group(tg, i);
  7963. unregister_rt_sched_group(tg, i);
  7964. }
  7965. list_del_rcu(&tg->list);
  7966. list_del_rcu(&tg->siblings);
  7967. spin_unlock_irqrestore(&task_group_lock, flags);
  7968. /* wait for possible concurrent references to cfs_rqs complete */
  7969. call_rcu(&tg->rcu, free_sched_group_rcu);
  7970. }
  7971. /* change task's runqueue when it moves between groups.
  7972. * The caller of this function should have put the task in its new group
  7973. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7974. * reflect its new group.
  7975. */
  7976. void sched_move_task(struct task_struct *tsk)
  7977. {
  7978. int on_rq, running;
  7979. unsigned long flags;
  7980. struct rq *rq;
  7981. rq = task_rq_lock(tsk, &flags);
  7982. update_rq_clock(rq);
  7983. running = task_current(rq, tsk);
  7984. on_rq = tsk->se.on_rq;
  7985. if (on_rq)
  7986. dequeue_task(rq, tsk, 0);
  7987. if (unlikely(running))
  7988. tsk->sched_class->put_prev_task(rq, tsk);
  7989. set_task_rq(tsk, task_cpu(tsk));
  7990. #ifdef CONFIG_FAIR_GROUP_SCHED
  7991. if (tsk->sched_class->moved_group)
  7992. tsk->sched_class->moved_group(tsk);
  7993. #endif
  7994. if (unlikely(running))
  7995. tsk->sched_class->set_curr_task(rq);
  7996. if (on_rq)
  7997. enqueue_task(rq, tsk, 0);
  7998. task_rq_unlock(rq, &flags);
  7999. }
  8000. #endif /* CONFIG_GROUP_SCHED */
  8001. #ifdef CONFIG_FAIR_GROUP_SCHED
  8002. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8003. {
  8004. struct cfs_rq *cfs_rq = se->cfs_rq;
  8005. int on_rq;
  8006. on_rq = se->on_rq;
  8007. if (on_rq)
  8008. dequeue_entity(cfs_rq, se, 0);
  8009. se->load.weight = shares;
  8010. se->load.inv_weight = 0;
  8011. if (on_rq)
  8012. enqueue_entity(cfs_rq, se, 0);
  8013. }
  8014. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8015. {
  8016. struct cfs_rq *cfs_rq = se->cfs_rq;
  8017. struct rq *rq = cfs_rq->rq;
  8018. unsigned long flags;
  8019. spin_lock_irqsave(&rq->lock, flags);
  8020. __set_se_shares(se, shares);
  8021. spin_unlock_irqrestore(&rq->lock, flags);
  8022. }
  8023. static DEFINE_MUTEX(shares_mutex);
  8024. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8025. {
  8026. int i;
  8027. unsigned long flags;
  8028. /*
  8029. * We can't change the weight of the root cgroup.
  8030. */
  8031. if (!tg->se[0])
  8032. return -EINVAL;
  8033. if (shares < MIN_SHARES)
  8034. shares = MIN_SHARES;
  8035. else if (shares > MAX_SHARES)
  8036. shares = MAX_SHARES;
  8037. mutex_lock(&shares_mutex);
  8038. if (tg->shares == shares)
  8039. goto done;
  8040. spin_lock_irqsave(&task_group_lock, flags);
  8041. for_each_possible_cpu(i)
  8042. unregister_fair_sched_group(tg, i);
  8043. list_del_rcu(&tg->siblings);
  8044. spin_unlock_irqrestore(&task_group_lock, flags);
  8045. /* wait for any ongoing reference to this group to finish */
  8046. synchronize_sched();
  8047. /*
  8048. * Now we are free to modify the group's share on each cpu
  8049. * w/o tripping rebalance_share or load_balance_fair.
  8050. */
  8051. tg->shares = shares;
  8052. for_each_possible_cpu(i) {
  8053. /*
  8054. * force a rebalance
  8055. */
  8056. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8057. set_se_shares(tg->se[i], shares);
  8058. }
  8059. /*
  8060. * Enable load balance activity on this group, by inserting it back on
  8061. * each cpu's rq->leaf_cfs_rq_list.
  8062. */
  8063. spin_lock_irqsave(&task_group_lock, flags);
  8064. for_each_possible_cpu(i)
  8065. register_fair_sched_group(tg, i);
  8066. list_add_rcu(&tg->siblings, &tg->parent->children);
  8067. spin_unlock_irqrestore(&task_group_lock, flags);
  8068. done:
  8069. mutex_unlock(&shares_mutex);
  8070. return 0;
  8071. }
  8072. unsigned long sched_group_shares(struct task_group *tg)
  8073. {
  8074. return tg->shares;
  8075. }
  8076. #endif
  8077. #ifdef CONFIG_RT_GROUP_SCHED
  8078. /*
  8079. * Ensure that the real time constraints are schedulable.
  8080. */
  8081. static DEFINE_MUTEX(rt_constraints_mutex);
  8082. static unsigned long to_ratio(u64 period, u64 runtime)
  8083. {
  8084. if (runtime == RUNTIME_INF)
  8085. return 1ULL << 20;
  8086. return div64_u64(runtime << 20, period);
  8087. }
  8088. /* Must be called with tasklist_lock held */
  8089. static inline int tg_has_rt_tasks(struct task_group *tg)
  8090. {
  8091. struct task_struct *g, *p;
  8092. do_each_thread(g, p) {
  8093. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8094. return 1;
  8095. } while_each_thread(g, p);
  8096. return 0;
  8097. }
  8098. struct rt_schedulable_data {
  8099. struct task_group *tg;
  8100. u64 rt_period;
  8101. u64 rt_runtime;
  8102. };
  8103. static int tg_schedulable(struct task_group *tg, void *data)
  8104. {
  8105. struct rt_schedulable_data *d = data;
  8106. struct task_group *child;
  8107. unsigned long total, sum = 0;
  8108. u64 period, runtime;
  8109. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8110. runtime = tg->rt_bandwidth.rt_runtime;
  8111. if (tg == d->tg) {
  8112. period = d->rt_period;
  8113. runtime = d->rt_runtime;
  8114. }
  8115. #ifdef CONFIG_USER_SCHED
  8116. if (tg == &root_task_group) {
  8117. period = global_rt_period();
  8118. runtime = global_rt_runtime();
  8119. }
  8120. #endif
  8121. /*
  8122. * Cannot have more runtime than the period.
  8123. */
  8124. if (runtime > period && runtime != RUNTIME_INF)
  8125. return -EINVAL;
  8126. /*
  8127. * Ensure we don't starve existing RT tasks.
  8128. */
  8129. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8130. return -EBUSY;
  8131. total = to_ratio(period, runtime);
  8132. /*
  8133. * Nobody can have more than the global setting allows.
  8134. */
  8135. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8136. return -EINVAL;
  8137. /*
  8138. * The sum of our children's runtime should not exceed our own.
  8139. */
  8140. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8141. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8142. runtime = child->rt_bandwidth.rt_runtime;
  8143. if (child == d->tg) {
  8144. period = d->rt_period;
  8145. runtime = d->rt_runtime;
  8146. }
  8147. sum += to_ratio(period, runtime);
  8148. }
  8149. if (sum > total)
  8150. return -EINVAL;
  8151. return 0;
  8152. }
  8153. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8154. {
  8155. struct rt_schedulable_data data = {
  8156. .tg = tg,
  8157. .rt_period = period,
  8158. .rt_runtime = runtime,
  8159. };
  8160. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8161. }
  8162. static int tg_set_bandwidth(struct task_group *tg,
  8163. u64 rt_period, u64 rt_runtime)
  8164. {
  8165. int i, err = 0;
  8166. mutex_lock(&rt_constraints_mutex);
  8167. read_lock(&tasklist_lock);
  8168. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8169. if (err)
  8170. goto unlock;
  8171. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8172. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8173. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8174. for_each_possible_cpu(i) {
  8175. struct rt_rq *rt_rq = tg->rt_rq[i];
  8176. spin_lock(&rt_rq->rt_runtime_lock);
  8177. rt_rq->rt_runtime = rt_runtime;
  8178. spin_unlock(&rt_rq->rt_runtime_lock);
  8179. }
  8180. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8181. unlock:
  8182. read_unlock(&tasklist_lock);
  8183. mutex_unlock(&rt_constraints_mutex);
  8184. return err;
  8185. }
  8186. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8187. {
  8188. u64 rt_runtime, rt_period;
  8189. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8190. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8191. if (rt_runtime_us < 0)
  8192. rt_runtime = RUNTIME_INF;
  8193. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8194. }
  8195. long sched_group_rt_runtime(struct task_group *tg)
  8196. {
  8197. u64 rt_runtime_us;
  8198. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8199. return -1;
  8200. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8201. do_div(rt_runtime_us, NSEC_PER_USEC);
  8202. return rt_runtime_us;
  8203. }
  8204. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8205. {
  8206. u64 rt_runtime, rt_period;
  8207. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8208. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8209. if (rt_period == 0)
  8210. return -EINVAL;
  8211. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8212. }
  8213. long sched_group_rt_period(struct task_group *tg)
  8214. {
  8215. u64 rt_period_us;
  8216. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8217. do_div(rt_period_us, NSEC_PER_USEC);
  8218. return rt_period_us;
  8219. }
  8220. static int sched_rt_global_constraints(void)
  8221. {
  8222. u64 runtime, period;
  8223. int ret = 0;
  8224. if (sysctl_sched_rt_period <= 0)
  8225. return -EINVAL;
  8226. runtime = global_rt_runtime();
  8227. period = global_rt_period();
  8228. /*
  8229. * Sanity check on the sysctl variables.
  8230. */
  8231. if (runtime > period && runtime != RUNTIME_INF)
  8232. return -EINVAL;
  8233. mutex_lock(&rt_constraints_mutex);
  8234. read_lock(&tasklist_lock);
  8235. ret = __rt_schedulable(NULL, 0, 0);
  8236. read_unlock(&tasklist_lock);
  8237. mutex_unlock(&rt_constraints_mutex);
  8238. return ret;
  8239. }
  8240. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8241. {
  8242. /* Don't accept realtime tasks when there is no way for them to run */
  8243. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8244. return 0;
  8245. return 1;
  8246. }
  8247. #else /* !CONFIG_RT_GROUP_SCHED */
  8248. static int sched_rt_global_constraints(void)
  8249. {
  8250. unsigned long flags;
  8251. int i;
  8252. if (sysctl_sched_rt_period <= 0)
  8253. return -EINVAL;
  8254. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8255. for_each_possible_cpu(i) {
  8256. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8257. spin_lock(&rt_rq->rt_runtime_lock);
  8258. rt_rq->rt_runtime = global_rt_runtime();
  8259. spin_unlock(&rt_rq->rt_runtime_lock);
  8260. }
  8261. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8262. return 0;
  8263. }
  8264. #endif /* CONFIG_RT_GROUP_SCHED */
  8265. int sched_rt_handler(struct ctl_table *table, int write,
  8266. struct file *filp, void __user *buffer, size_t *lenp,
  8267. loff_t *ppos)
  8268. {
  8269. int ret;
  8270. int old_period, old_runtime;
  8271. static DEFINE_MUTEX(mutex);
  8272. mutex_lock(&mutex);
  8273. old_period = sysctl_sched_rt_period;
  8274. old_runtime = sysctl_sched_rt_runtime;
  8275. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  8276. if (!ret && write) {
  8277. ret = sched_rt_global_constraints();
  8278. if (ret) {
  8279. sysctl_sched_rt_period = old_period;
  8280. sysctl_sched_rt_runtime = old_runtime;
  8281. } else {
  8282. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8283. def_rt_bandwidth.rt_period =
  8284. ns_to_ktime(global_rt_period());
  8285. }
  8286. }
  8287. mutex_unlock(&mutex);
  8288. return ret;
  8289. }
  8290. #ifdef CONFIG_CGROUP_SCHED
  8291. /* return corresponding task_group object of a cgroup */
  8292. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8293. {
  8294. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8295. struct task_group, css);
  8296. }
  8297. static struct cgroup_subsys_state *
  8298. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8299. {
  8300. struct task_group *tg, *parent;
  8301. if (!cgrp->parent) {
  8302. /* This is early initialization for the top cgroup */
  8303. return &init_task_group.css;
  8304. }
  8305. parent = cgroup_tg(cgrp->parent);
  8306. tg = sched_create_group(parent);
  8307. if (IS_ERR(tg))
  8308. return ERR_PTR(-ENOMEM);
  8309. return &tg->css;
  8310. }
  8311. static void
  8312. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8313. {
  8314. struct task_group *tg = cgroup_tg(cgrp);
  8315. sched_destroy_group(tg);
  8316. }
  8317. static int
  8318. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8319. struct task_struct *tsk)
  8320. {
  8321. #ifdef CONFIG_RT_GROUP_SCHED
  8322. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8323. return -EINVAL;
  8324. #else
  8325. /* We don't support RT-tasks being in separate groups */
  8326. if (tsk->sched_class != &fair_sched_class)
  8327. return -EINVAL;
  8328. #endif
  8329. return 0;
  8330. }
  8331. static void
  8332. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8333. struct cgroup *old_cont, struct task_struct *tsk)
  8334. {
  8335. sched_move_task(tsk);
  8336. }
  8337. #ifdef CONFIG_FAIR_GROUP_SCHED
  8338. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8339. u64 shareval)
  8340. {
  8341. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8342. }
  8343. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8344. {
  8345. struct task_group *tg = cgroup_tg(cgrp);
  8346. return (u64) tg->shares;
  8347. }
  8348. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8349. #ifdef CONFIG_RT_GROUP_SCHED
  8350. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8351. s64 val)
  8352. {
  8353. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8354. }
  8355. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8356. {
  8357. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8358. }
  8359. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8360. u64 rt_period_us)
  8361. {
  8362. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8363. }
  8364. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8365. {
  8366. return sched_group_rt_period(cgroup_tg(cgrp));
  8367. }
  8368. #endif /* CONFIG_RT_GROUP_SCHED */
  8369. static struct cftype cpu_files[] = {
  8370. #ifdef CONFIG_FAIR_GROUP_SCHED
  8371. {
  8372. .name = "shares",
  8373. .read_u64 = cpu_shares_read_u64,
  8374. .write_u64 = cpu_shares_write_u64,
  8375. },
  8376. #endif
  8377. #ifdef CONFIG_RT_GROUP_SCHED
  8378. {
  8379. .name = "rt_runtime_us",
  8380. .read_s64 = cpu_rt_runtime_read,
  8381. .write_s64 = cpu_rt_runtime_write,
  8382. },
  8383. {
  8384. .name = "rt_period_us",
  8385. .read_u64 = cpu_rt_period_read_uint,
  8386. .write_u64 = cpu_rt_period_write_uint,
  8387. },
  8388. #endif
  8389. };
  8390. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  8391. {
  8392. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  8393. }
  8394. struct cgroup_subsys cpu_cgroup_subsys = {
  8395. .name = "cpu",
  8396. .create = cpu_cgroup_create,
  8397. .destroy = cpu_cgroup_destroy,
  8398. .can_attach = cpu_cgroup_can_attach,
  8399. .attach = cpu_cgroup_attach,
  8400. .populate = cpu_cgroup_populate,
  8401. .subsys_id = cpu_cgroup_subsys_id,
  8402. .early_init = 1,
  8403. };
  8404. #endif /* CONFIG_CGROUP_SCHED */
  8405. #ifdef CONFIG_CGROUP_CPUACCT
  8406. /*
  8407. * CPU accounting code for task groups.
  8408. *
  8409. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  8410. * (balbir@in.ibm.com).
  8411. */
  8412. /* track cpu usage of a group of tasks and its child groups */
  8413. struct cpuacct {
  8414. struct cgroup_subsys_state css;
  8415. /* cpuusage holds pointer to a u64-type object on every cpu */
  8416. u64 *cpuusage;
  8417. struct cpuacct *parent;
  8418. };
  8419. struct cgroup_subsys cpuacct_subsys;
  8420. /* return cpu accounting group corresponding to this container */
  8421. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  8422. {
  8423. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  8424. struct cpuacct, css);
  8425. }
  8426. /* return cpu accounting group to which this task belongs */
  8427. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  8428. {
  8429. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  8430. struct cpuacct, css);
  8431. }
  8432. /* create a new cpu accounting group */
  8433. static struct cgroup_subsys_state *cpuacct_create(
  8434. struct cgroup_subsys *ss, struct cgroup *cgrp)
  8435. {
  8436. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  8437. if (!ca)
  8438. return ERR_PTR(-ENOMEM);
  8439. ca->cpuusage = alloc_percpu(u64);
  8440. if (!ca->cpuusage) {
  8441. kfree(ca);
  8442. return ERR_PTR(-ENOMEM);
  8443. }
  8444. if (cgrp->parent)
  8445. ca->parent = cgroup_ca(cgrp->parent);
  8446. return &ca->css;
  8447. }
  8448. /* destroy an existing cpu accounting group */
  8449. static void
  8450. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8451. {
  8452. struct cpuacct *ca = cgroup_ca(cgrp);
  8453. free_percpu(ca->cpuusage);
  8454. kfree(ca);
  8455. }
  8456. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  8457. {
  8458. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8459. u64 data;
  8460. #ifndef CONFIG_64BIT
  8461. /*
  8462. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  8463. */
  8464. spin_lock_irq(&cpu_rq(cpu)->lock);
  8465. data = *cpuusage;
  8466. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8467. #else
  8468. data = *cpuusage;
  8469. #endif
  8470. return data;
  8471. }
  8472. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  8473. {
  8474. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8475. #ifndef CONFIG_64BIT
  8476. /*
  8477. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  8478. */
  8479. spin_lock_irq(&cpu_rq(cpu)->lock);
  8480. *cpuusage = val;
  8481. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8482. #else
  8483. *cpuusage = val;
  8484. #endif
  8485. }
  8486. /* return total cpu usage (in nanoseconds) of a group */
  8487. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  8488. {
  8489. struct cpuacct *ca = cgroup_ca(cgrp);
  8490. u64 totalcpuusage = 0;
  8491. int i;
  8492. for_each_present_cpu(i)
  8493. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  8494. return totalcpuusage;
  8495. }
  8496. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  8497. u64 reset)
  8498. {
  8499. struct cpuacct *ca = cgroup_ca(cgrp);
  8500. int err = 0;
  8501. int i;
  8502. if (reset) {
  8503. err = -EINVAL;
  8504. goto out;
  8505. }
  8506. for_each_present_cpu(i)
  8507. cpuacct_cpuusage_write(ca, i, 0);
  8508. out:
  8509. return err;
  8510. }
  8511. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  8512. struct seq_file *m)
  8513. {
  8514. struct cpuacct *ca = cgroup_ca(cgroup);
  8515. u64 percpu;
  8516. int i;
  8517. for_each_present_cpu(i) {
  8518. percpu = cpuacct_cpuusage_read(ca, i);
  8519. seq_printf(m, "%llu ", (unsigned long long) percpu);
  8520. }
  8521. seq_printf(m, "\n");
  8522. return 0;
  8523. }
  8524. static struct cftype files[] = {
  8525. {
  8526. .name = "usage",
  8527. .read_u64 = cpuusage_read,
  8528. .write_u64 = cpuusage_write,
  8529. },
  8530. {
  8531. .name = "usage_percpu",
  8532. .read_seq_string = cpuacct_percpu_seq_read,
  8533. },
  8534. };
  8535. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8536. {
  8537. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  8538. }
  8539. /*
  8540. * charge this task's execution time to its accounting group.
  8541. *
  8542. * called with rq->lock held.
  8543. */
  8544. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8545. {
  8546. struct cpuacct *ca;
  8547. int cpu;
  8548. if (unlikely(!cpuacct_subsys.active))
  8549. return;
  8550. cpu = task_cpu(tsk);
  8551. ca = task_ca(tsk);
  8552. for (; ca; ca = ca->parent) {
  8553. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8554. *cpuusage += cputime;
  8555. }
  8556. }
  8557. struct cgroup_subsys cpuacct_subsys = {
  8558. .name = "cpuacct",
  8559. .create = cpuacct_create,
  8560. .destroy = cpuacct_destroy,
  8561. .populate = cpuacct_populate,
  8562. .subsys_id = cpuacct_subsys_id,
  8563. };
  8564. #endif /* CONFIG_CGROUP_CPUACCT */