mmci.c 25 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069
  1. /*
  2. * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
  3. *
  4. * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
  5. * Copyright (C) 2010 ST-Ericsson AB.
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/moduleparam.h>
  13. #include <linux/init.h>
  14. #include <linux/ioport.h>
  15. #include <linux/device.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/kernel.h>
  18. #include <linux/delay.h>
  19. #include <linux/err.h>
  20. #include <linux/highmem.h>
  21. #include <linux/log2.h>
  22. #include <linux/mmc/host.h>
  23. #include <linux/mmc/card.h>
  24. #include <linux/amba/bus.h>
  25. #include <linux/clk.h>
  26. #include <linux/scatterlist.h>
  27. #include <linux/gpio.h>
  28. #include <linux/amba/mmci.h>
  29. #include <linux/regulator/consumer.h>
  30. #include <asm/div64.h>
  31. #include <asm/io.h>
  32. #include <asm/sizes.h>
  33. #include "mmci.h"
  34. #define DRIVER_NAME "mmci-pl18x"
  35. static unsigned int fmax = 515633;
  36. /**
  37. * struct variant_data - MMCI variant-specific quirks
  38. * @clkreg: default value for MCICLOCK register
  39. * @clkreg_enable: enable value for MMCICLOCK register
  40. * @datalength_bits: number of bits in the MMCIDATALENGTH register
  41. * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
  42. * is asserted (likewise for RX)
  43. * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
  44. * is asserted (likewise for RX)
  45. * @sdio: variant supports SDIO
  46. * @st_clkdiv: true if using a ST-specific clock divider algorithm
  47. */
  48. struct variant_data {
  49. unsigned int clkreg;
  50. unsigned int clkreg_enable;
  51. unsigned int datalength_bits;
  52. unsigned int fifosize;
  53. unsigned int fifohalfsize;
  54. bool sdio;
  55. bool st_clkdiv;
  56. };
  57. static struct variant_data variant_arm = {
  58. .fifosize = 16 * 4,
  59. .fifohalfsize = 8 * 4,
  60. .datalength_bits = 16,
  61. };
  62. static struct variant_data variant_u300 = {
  63. .fifosize = 16 * 4,
  64. .fifohalfsize = 8 * 4,
  65. .clkreg_enable = 1 << 13, /* HWFCEN */
  66. .datalength_bits = 16,
  67. .sdio = true,
  68. };
  69. static struct variant_data variant_ux500 = {
  70. .fifosize = 30 * 4,
  71. .fifohalfsize = 8 * 4,
  72. .clkreg = MCI_CLK_ENABLE,
  73. .clkreg_enable = 1 << 14, /* HWFCEN */
  74. .datalength_bits = 24,
  75. .sdio = true,
  76. .st_clkdiv = true,
  77. };
  78. /*
  79. * This must be called with host->lock held
  80. */
  81. static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
  82. {
  83. struct variant_data *variant = host->variant;
  84. u32 clk = variant->clkreg;
  85. if (desired) {
  86. if (desired >= host->mclk) {
  87. clk = MCI_CLK_BYPASS;
  88. host->cclk = host->mclk;
  89. } else if (variant->st_clkdiv) {
  90. /*
  91. * DB8500 TRM says f = mclk / (clkdiv + 2)
  92. * => clkdiv = (mclk / f) - 2
  93. * Round the divider up so we don't exceed the max
  94. * frequency
  95. */
  96. clk = DIV_ROUND_UP(host->mclk, desired) - 2;
  97. if (clk >= 256)
  98. clk = 255;
  99. host->cclk = host->mclk / (clk + 2);
  100. } else {
  101. /*
  102. * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
  103. * => clkdiv = mclk / (2 * f) - 1
  104. */
  105. clk = host->mclk / (2 * desired) - 1;
  106. if (clk >= 256)
  107. clk = 255;
  108. host->cclk = host->mclk / (2 * (clk + 1));
  109. }
  110. clk |= variant->clkreg_enable;
  111. clk |= MCI_CLK_ENABLE;
  112. /* This hasn't proven to be worthwhile */
  113. /* clk |= MCI_CLK_PWRSAVE; */
  114. }
  115. if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
  116. clk |= MCI_4BIT_BUS;
  117. if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
  118. clk |= MCI_ST_8BIT_BUS;
  119. writel(clk, host->base + MMCICLOCK);
  120. }
  121. static void
  122. mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
  123. {
  124. writel(0, host->base + MMCICOMMAND);
  125. BUG_ON(host->data);
  126. host->mrq = NULL;
  127. host->cmd = NULL;
  128. if (mrq->data)
  129. mrq->data->bytes_xfered = host->data_xfered;
  130. /*
  131. * Need to drop the host lock here; mmc_request_done may call
  132. * back into the driver...
  133. */
  134. spin_unlock(&host->lock);
  135. mmc_request_done(host->mmc, mrq);
  136. spin_lock(&host->lock);
  137. }
  138. static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
  139. {
  140. void __iomem *base = host->base;
  141. if (host->singleirq) {
  142. unsigned int mask0 = readl(base + MMCIMASK0);
  143. mask0 &= ~MCI_IRQ1MASK;
  144. mask0 |= mask;
  145. writel(mask0, base + MMCIMASK0);
  146. }
  147. writel(mask, base + MMCIMASK1);
  148. }
  149. static void mmci_stop_data(struct mmci_host *host)
  150. {
  151. writel(0, host->base + MMCIDATACTRL);
  152. mmci_set_mask1(host, 0);
  153. host->data = NULL;
  154. }
  155. static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
  156. {
  157. unsigned int flags = SG_MITER_ATOMIC;
  158. if (data->flags & MMC_DATA_READ)
  159. flags |= SG_MITER_TO_SG;
  160. else
  161. flags |= SG_MITER_FROM_SG;
  162. sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
  163. }
  164. static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
  165. {
  166. struct variant_data *variant = host->variant;
  167. unsigned int datactrl, timeout, irqmask;
  168. unsigned long long clks;
  169. void __iomem *base;
  170. int blksz_bits;
  171. dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
  172. data->blksz, data->blocks, data->flags);
  173. host->data = data;
  174. host->size = data->blksz * data->blocks;
  175. host->data_xfered = 0;
  176. mmci_init_sg(host, data);
  177. clks = (unsigned long long)data->timeout_ns * host->cclk;
  178. do_div(clks, 1000000000UL);
  179. timeout = data->timeout_clks + (unsigned int)clks;
  180. base = host->base;
  181. writel(timeout, base + MMCIDATATIMER);
  182. writel(host->size, base + MMCIDATALENGTH);
  183. blksz_bits = ffs(data->blksz) - 1;
  184. BUG_ON(1 << blksz_bits != data->blksz);
  185. datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
  186. if (data->flags & MMC_DATA_READ) {
  187. datactrl |= MCI_DPSM_DIRECTION;
  188. irqmask = MCI_RXFIFOHALFFULLMASK;
  189. /*
  190. * If we have less than the fifo 'half-full' threshold to
  191. * transfer, trigger a PIO interrupt as soon as any data
  192. * is available.
  193. */
  194. if (host->size < variant->fifohalfsize)
  195. irqmask |= MCI_RXDATAAVLBLMASK;
  196. } else {
  197. /*
  198. * We don't actually need to include "FIFO empty" here
  199. * since its implicit in "FIFO half empty".
  200. */
  201. irqmask = MCI_TXFIFOHALFEMPTYMASK;
  202. }
  203. /* The ST Micro variants has a special bit to enable SDIO */
  204. if (variant->sdio && host->mmc->card)
  205. if (mmc_card_sdio(host->mmc->card))
  206. datactrl |= MCI_ST_DPSM_SDIOEN;
  207. writel(datactrl, base + MMCIDATACTRL);
  208. writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
  209. mmci_set_mask1(host, irqmask);
  210. }
  211. static void
  212. mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
  213. {
  214. void __iomem *base = host->base;
  215. dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
  216. cmd->opcode, cmd->arg, cmd->flags);
  217. if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
  218. writel(0, base + MMCICOMMAND);
  219. udelay(1);
  220. }
  221. c |= cmd->opcode | MCI_CPSM_ENABLE;
  222. if (cmd->flags & MMC_RSP_PRESENT) {
  223. if (cmd->flags & MMC_RSP_136)
  224. c |= MCI_CPSM_LONGRSP;
  225. c |= MCI_CPSM_RESPONSE;
  226. }
  227. if (/*interrupt*/0)
  228. c |= MCI_CPSM_INTERRUPT;
  229. host->cmd = cmd;
  230. writel(cmd->arg, base + MMCIARGUMENT);
  231. writel(c, base + MMCICOMMAND);
  232. }
  233. static void
  234. mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
  235. unsigned int status)
  236. {
  237. /* First check for errors */
  238. if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
  239. u32 remain, success;
  240. /*
  241. * Calculate how far we are into the transfer. Note that
  242. * the data counter gives the number of bytes transferred
  243. * on the MMC bus, not on the host side. On reads, this
  244. * can be as much as a FIFO-worth of data ahead. This
  245. * matters for FIFO overruns only.
  246. */
  247. remain = readl(host->base + MMCIDATACNT);
  248. success = data->blksz * data->blocks - remain;
  249. dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
  250. status, success);
  251. if (status & MCI_DATACRCFAIL) {
  252. /* Last block was not successful */
  253. success -= 1;
  254. data->error = -EILSEQ;
  255. } else if (status & MCI_DATATIMEOUT) {
  256. data->error = -ETIMEDOUT;
  257. } else if (status & MCI_TXUNDERRUN) {
  258. data->error = -EIO;
  259. } else if (status & MCI_RXOVERRUN) {
  260. if (success > host->variant->fifosize)
  261. success -= host->variant->fifosize;
  262. else
  263. success = 0;
  264. data->error = -EIO;
  265. }
  266. host->data_xfered = round_down(success, data->blksz);
  267. }
  268. if (status & MCI_DATABLOCKEND)
  269. dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
  270. if (status & MCI_DATAEND || data->error) {
  271. mmci_stop_data(host);
  272. if (!data->error)
  273. /* The error clause is handled above, success! */
  274. host->data_xfered += data->blksz * data->blocks;
  275. if (!data->stop) {
  276. mmci_request_end(host, data->mrq);
  277. } else {
  278. mmci_start_command(host, data->stop, 0);
  279. }
  280. }
  281. }
  282. static void
  283. mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
  284. unsigned int status)
  285. {
  286. void __iomem *base = host->base;
  287. host->cmd = NULL;
  288. if (status & MCI_CMDTIMEOUT) {
  289. cmd->error = -ETIMEDOUT;
  290. } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
  291. cmd->error = -EILSEQ;
  292. } else {
  293. cmd->resp[0] = readl(base + MMCIRESPONSE0);
  294. cmd->resp[1] = readl(base + MMCIRESPONSE1);
  295. cmd->resp[2] = readl(base + MMCIRESPONSE2);
  296. cmd->resp[3] = readl(base + MMCIRESPONSE3);
  297. }
  298. if (!cmd->data || cmd->error) {
  299. if (host->data)
  300. mmci_stop_data(host);
  301. mmci_request_end(host, cmd->mrq);
  302. } else if (!(cmd->data->flags & MMC_DATA_READ)) {
  303. mmci_start_data(host, cmd->data);
  304. }
  305. }
  306. static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
  307. {
  308. void __iomem *base = host->base;
  309. char *ptr = buffer;
  310. u32 status;
  311. int host_remain = host->size;
  312. do {
  313. int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
  314. if (count > remain)
  315. count = remain;
  316. if (count <= 0)
  317. break;
  318. readsl(base + MMCIFIFO, ptr, count >> 2);
  319. ptr += count;
  320. remain -= count;
  321. host_remain -= count;
  322. if (remain == 0)
  323. break;
  324. status = readl(base + MMCISTATUS);
  325. } while (status & MCI_RXDATAAVLBL);
  326. return ptr - buffer;
  327. }
  328. static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
  329. {
  330. struct variant_data *variant = host->variant;
  331. void __iomem *base = host->base;
  332. char *ptr = buffer;
  333. do {
  334. unsigned int count, maxcnt;
  335. maxcnt = status & MCI_TXFIFOEMPTY ?
  336. variant->fifosize : variant->fifohalfsize;
  337. count = min(remain, maxcnt);
  338. /*
  339. * The ST Micro variant for SDIO transfer sizes
  340. * less then 8 bytes should have clock H/W flow
  341. * control disabled.
  342. */
  343. if (variant->sdio &&
  344. mmc_card_sdio(host->mmc->card)) {
  345. if (count < 8)
  346. writel(readl(host->base + MMCICLOCK) &
  347. ~variant->clkreg_enable,
  348. host->base + MMCICLOCK);
  349. else
  350. writel(readl(host->base + MMCICLOCK) |
  351. variant->clkreg_enable,
  352. host->base + MMCICLOCK);
  353. }
  354. /*
  355. * SDIO especially may want to send something that is
  356. * not divisible by 4 (as opposed to card sectors
  357. * etc), and the FIFO only accept full 32-bit writes.
  358. * So compensate by adding +3 on the count, a single
  359. * byte become a 32bit write, 7 bytes will be two
  360. * 32bit writes etc.
  361. */
  362. writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
  363. ptr += count;
  364. remain -= count;
  365. if (remain == 0)
  366. break;
  367. status = readl(base + MMCISTATUS);
  368. } while (status & MCI_TXFIFOHALFEMPTY);
  369. return ptr - buffer;
  370. }
  371. /*
  372. * PIO data transfer IRQ handler.
  373. */
  374. static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
  375. {
  376. struct mmci_host *host = dev_id;
  377. struct sg_mapping_iter *sg_miter = &host->sg_miter;
  378. struct variant_data *variant = host->variant;
  379. void __iomem *base = host->base;
  380. unsigned long flags;
  381. u32 status;
  382. status = readl(base + MMCISTATUS);
  383. dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
  384. local_irq_save(flags);
  385. do {
  386. unsigned int remain, len;
  387. char *buffer;
  388. /*
  389. * For write, we only need to test the half-empty flag
  390. * here - if the FIFO is completely empty, then by
  391. * definition it is more than half empty.
  392. *
  393. * For read, check for data available.
  394. */
  395. if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
  396. break;
  397. if (!sg_miter_next(sg_miter))
  398. break;
  399. buffer = sg_miter->addr;
  400. remain = sg_miter->length;
  401. len = 0;
  402. if (status & MCI_RXACTIVE)
  403. len = mmci_pio_read(host, buffer, remain);
  404. if (status & MCI_TXACTIVE)
  405. len = mmci_pio_write(host, buffer, remain, status);
  406. sg_miter->consumed = len;
  407. host->size -= len;
  408. remain -= len;
  409. if (remain)
  410. break;
  411. status = readl(base + MMCISTATUS);
  412. } while (1);
  413. sg_miter_stop(sg_miter);
  414. local_irq_restore(flags);
  415. /*
  416. * If we have less than the fifo 'half-full' threshold to transfer,
  417. * trigger a PIO interrupt as soon as any data is available.
  418. */
  419. if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
  420. mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
  421. /*
  422. * If we run out of data, disable the data IRQs; this
  423. * prevents a race where the FIFO becomes empty before
  424. * the chip itself has disabled the data path, and
  425. * stops us racing with our data end IRQ.
  426. */
  427. if (host->size == 0) {
  428. mmci_set_mask1(host, 0);
  429. writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
  430. }
  431. return IRQ_HANDLED;
  432. }
  433. /*
  434. * Handle completion of command and data transfers.
  435. */
  436. static irqreturn_t mmci_irq(int irq, void *dev_id)
  437. {
  438. struct mmci_host *host = dev_id;
  439. u32 status;
  440. int ret = 0;
  441. spin_lock(&host->lock);
  442. do {
  443. struct mmc_command *cmd;
  444. struct mmc_data *data;
  445. status = readl(host->base + MMCISTATUS);
  446. if (host->singleirq) {
  447. if (status & readl(host->base + MMCIMASK1))
  448. mmci_pio_irq(irq, dev_id);
  449. status &= ~MCI_IRQ1MASK;
  450. }
  451. status &= readl(host->base + MMCIMASK0);
  452. writel(status, host->base + MMCICLEAR);
  453. dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
  454. data = host->data;
  455. if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|
  456. MCI_RXOVERRUN|MCI_DATAEND|MCI_DATABLOCKEND) && data)
  457. mmci_data_irq(host, data, status);
  458. cmd = host->cmd;
  459. if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
  460. mmci_cmd_irq(host, cmd, status);
  461. ret = 1;
  462. } while (status);
  463. spin_unlock(&host->lock);
  464. return IRQ_RETVAL(ret);
  465. }
  466. static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
  467. {
  468. struct mmci_host *host = mmc_priv(mmc);
  469. unsigned long flags;
  470. WARN_ON(host->mrq != NULL);
  471. if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
  472. dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
  473. mrq->data->blksz);
  474. mrq->cmd->error = -EINVAL;
  475. mmc_request_done(mmc, mrq);
  476. return;
  477. }
  478. spin_lock_irqsave(&host->lock, flags);
  479. host->mrq = mrq;
  480. if (mrq->data && mrq->data->flags & MMC_DATA_READ)
  481. mmci_start_data(host, mrq->data);
  482. mmci_start_command(host, mrq->cmd, 0);
  483. spin_unlock_irqrestore(&host->lock, flags);
  484. }
  485. static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
  486. {
  487. struct mmci_host *host = mmc_priv(mmc);
  488. u32 pwr = 0;
  489. unsigned long flags;
  490. int ret;
  491. switch (ios->power_mode) {
  492. case MMC_POWER_OFF:
  493. if (host->vcc)
  494. ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
  495. break;
  496. case MMC_POWER_UP:
  497. if (host->vcc) {
  498. ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
  499. if (ret) {
  500. dev_err(mmc_dev(mmc), "unable to set OCR\n");
  501. /*
  502. * The .set_ios() function in the mmc_host_ops
  503. * struct return void, and failing to set the
  504. * power should be rare so we print an error
  505. * and return here.
  506. */
  507. return;
  508. }
  509. }
  510. if (host->plat->vdd_handler)
  511. pwr |= host->plat->vdd_handler(mmc_dev(mmc), ios->vdd,
  512. ios->power_mode);
  513. /* The ST version does not have this, fall through to POWER_ON */
  514. if (host->hw_designer != AMBA_VENDOR_ST) {
  515. pwr |= MCI_PWR_UP;
  516. break;
  517. }
  518. case MMC_POWER_ON:
  519. pwr |= MCI_PWR_ON;
  520. break;
  521. }
  522. if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
  523. if (host->hw_designer != AMBA_VENDOR_ST)
  524. pwr |= MCI_ROD;
  525. else {
  526. /*
  527. * The ST Micro variant use the ROD bit for something
  528. * else and only has OD (Open Drain).
  529. */
  530. pwr |= MCI_OD;
  531. }
  532. }
  533. spin_lock_irqsave(&host->lock, flags);
  534. mmci_set_clkreg(host, ios->clock);
  535. if (host->pwr != pwr) {
  536. host->pwr = pwr;
  537. writel(pwr, host->base + MMCIPOWER);
  538. }
  539. spin_unlock_irqrestore(&host->lock, flags);
  540. }
  541. static int mmci_get_ro(struct mmc_host *mmc)
  542. {
  543. struct mmci_host *host = mmc_priv(mmc);
  544. if (host->gpio_wp == -ENOSYS)
  545. return -ENOSYS;
  546. return gpio_get_value_cansleep(host->gpio_wp);
  547. }
  548. static int mmci_get_cd(struct mmc_host *mmc)
  549. {
  550. struct mmci_host *host = mmc_priv(mmc);
  551. struct mmci_platform_data *plat = host->plat;
  552. unsigned int status;
  553. if (host->gpio_cd == -ENOSYS) {
  554. if (!plat->status)
  555. return 1; /* Assume always present */
  556. status = plat->status(mmc_dev(host->mmc));
  557. } else
  558. status = !!gpio_get_value_cansleep(host->gpio_cd)
  559. ^ plat->cd_invert;
  560. /*
  561. * Use positive logic throughout - status is zero for no card,
  562. * non-zero for card inserted.
  563. */
  564. return status;
  565. }
  566. static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
  567. {
  568. struct mmci_host *host = dev_id;
  569. mmc_detect_change(host->mmc, msecs_to_jiffies(500));
  570. return IRQ_HANDLED;
  571. }
  572. static const struct mmc_host_ops mmci_ops = {
  573. .request = mmci_request,
  574. .set_ios = mmci_set_ios,
  575. .get_ro = mmci_get_ro,
  576. .get_cd = mmci_get_cd,
  577. };
  578. static int __devinit mmci_probe(struct amba_device *dev, struct amba_id *id)
  579. {
  580. struct mmci_platform_data *plat = dev->dev.platform_data;
  581. struct variant_data *variant = id->data;
  582. struct mmci_host *host;
  583. struct mmc_host *mmc;
  584. int ret;
  585. /* must have platform data */
  586. if (!plat) {
  587. ret = -EINVAL;
  588. goto out;
  589. }
  590. ret = amba_request_regions(dev, DRIVER_NAME);
  591. if (ret)
  592. goto out;
  593. mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
  594. if (!mmc) {
  595. ret = -ENOMEM;
  596. goto rel_regions;
  597. }
  598. host = mmc_priv(mmc);
  599. host->mmc = mmc;
  600. host->gpio_wp = -ENOSYS;
  601. host->gpio_cd = -ENOSYS;
  602. host->gpio_cd_irq = -1;
  603. host->hw_designer = amba_manf(dev);
  604. host->hw_revision = amba_rev(dev);
  605. dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
  606. dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
  607. host->clk = clk_get(&dev->dev, NULL);
  608. if (IS_ERR(host->clk)) {
  609. ret = PTR_ERR(host->clk);
  610. host->clk = NULL;
  611. goto host_free;
  612. }
  613. ret = clk_enable(host->clk);
  614. if (ret)
  615. goto clk_free;
  616. host->plat = plat;
  617. host->variant = variant;
  618. host->mclk = clk_get_rate(host->clk);
  619. /*
  620. * According to the spec, mclk is max 100 MHz,
  621. * so we try to adjust the clock down to this,
  622. * (if possible).
  623. */
  624. if (host->mclk > 100000000) {
  625. ret = clk_set_rate(host->clk, 100000000);
  626. if (ret < 0)
  627. goto clk_disable;
  628. host->mclk = clk_get_rate(host->clk);
  629. dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
  630. host->mclk);
  631. }
  632. host->base = ioremap(dev->res.start, resource_size(&dev->res));
  633. if (!host->base) {
  634. ret = -ENOMEM;
  635. goto clk_disable;
  636. }
  637. mmc->ops = &mmci_ops;
  638. mmc->f_min = (host->mclk + 511) / 512;
  639. /*
  640. * If the platform data supplies a maximum operating
  641. * frequency, this takes precedence. Else, we fall back
  642. * to using the module parameter, which has a (low)
  643. * default value in case it is not specified. Either
  644. * value must not exceed the clock rate into the block,
  645. * of course.
  646. */
  647. if (plat->f_max)
  648. mmc->f_max = min(host->mclk, plat->f_max);
  649. else
  650. mmc->f_max = min(host->mclk, fmax);
  651. dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
  652. #ifdef CONFIG_REGULATOR
  653. /* If we're using the regulator framework, try to fetch a regulator */
  654. host->vcc = regulator_get(&dev->dev, "vmmc");
  655. if (IS_ERR(host->vcc))
  656. host->vcc = NULL;
  657. else {
  658. int mask = mmc_regulator_get_ocrmask(host->vcc);
  659. if (mask < 0)
  660. dev_err(&dev->dev, "error getting OCR mask (%d)\n",
  661. mask);
  662. else {
  663. host->mmc->ocr_avail = (u32) mask;
  664. if (plat->ocr_mask)
  665. dev_warn(&dev->dev,
  666. "Provided ocr_mask/setpower will not be used "
  667. "(using regulator instead)\n");
  668. }
  669. }
  670. #endif
  671. /* Fall back to platform data if no regulator is found */
  672. if (host->vcc == NULL)
  673. mmc->ocr_avail = plat->ocr_mask;
  674. mmc->caps = plat->capabilities;
  675. /*
  676. * We can do SGIO
  677. */
  678. mmc->max_segs = NR_SG;
  679. /*
  680. * Since only a certain number of bits are valid in the data length
  681. * register, we must ensure that we don't exceed 2^num-1 bytes in a
  682. * single request.
  683. */
  684. mmc->max_req_size = (1 << variant->datalength_bits) - 1;
  685. /*
  686. * Set the maximum segment size. Since we aren't doing DMA
  687. * (yet) we are only limited by the data length register.
  688. */
  689. mmc->max_seg_size = mmc->max_req_size;
  690. /*
  691. * Block size can be up to 2048 bytes, but must be a power of two.
  692. */
  693. mmc->max_blk_size = 2048;
  694. /*
  695. * No limit on the number of blocks transferred.
  696. */
  697. mmc->max_blk_count = mmc->max_req_size;
  698. spin_lock_init(&host->lock);
  699. writel(0, host->base + MMCIMASK0);
  700. writel(0, host->base + MMCIMASK1);
  701. writel(0xfff, host->base + MMCICLEAR);
  702. if (gpio_is_valid(plat->gpio_cd)) {
  703. ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
  704. if (ret == 0)
  705. ret = gpio_direction_input(plat->gpio_cd);
  706. if (ret == 0)
  707. host->gpio_cd = plat->gpio_cd;
  708. else if (ret != -ENOSYS)
  709. goto err_gpio_cd;
  710. ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
  711. mmci_cd_irq, 0,
  712. DRIVER_NAME " (cd)", host);
  713. if (ret >= 0)
  714. host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
  715. }
  716. if (gpio_is_valid(plat->gpio_wp)) {
  717. ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
  718. if (ret == 0)
  719. ret = gpio_direction_input(plat->gpio_wp);
  720. if (ret == 0)
  721. host->gpio_wp = plat->gpio_wp;
  722. else if (ret != -ENOSYS)
  723. goto err_gpio_wp;
  724. }
  725. if ((host->plat->status || host->gpio_cd != -ENOSYS)
  726. && host->gpio_cd_irq < 0)
  727. mmc->caps |= MMC_CAP_NEEDS_POLL;
  728. ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
  729. if (ret)
  730. goto unmap;
  731. if (dev->irq[1] == NO_IRQ)
  732. host->singleirq = true;
  733. else {
  734. ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
  735. DRIVER_NAME " (pio)", host);
  736. if (ret)
  737. goto irq0_free;
  738. }
  739. writel(MCI_IRQENABLE, host->base + MMCIMASK0);
  740. amba_set_drvdata(dev, mmc);
  741. dev_info(&dev->dev, "%s: PL%03x rev%u at 0x%08llx irq %d,%d\n",
  742. mmc_hostname(mmc), amba_part(dev), amba_rev(dev),
  743. (unsigned long long)dev->res.start, dev->irq[0], dev->irq[1]);
  744. mmc_add_host(mmc);
  745. return 0;
  746. irq0_free:
  747. free_irq(dev->irq[0], host);
  748. unmap:
  749. if (host->gpio_wp != -ENOSYS)
  750. gpio_free(host->gpio_wp);
  751. err_gpio_wp:
  752. if (host->gpio_cd_irq >= 0)
  753. free_irq(host->gpio_cd_irq, host);
  754. if (host->gpio_cd != -ENOSYS)
  755. gpio_free(host->gpio_cd);
  756. err_gpio_cd:
  757. iounmap(host->base);
  758. clk_disable:
  759. clk_disable(host->clk);
  760. clk_free:
  761. clk_put(host->clk);
  762. host_free:
  763. mmc_free_host(mmc);
  764. rel_regions:
  765. amba_release_regions(dev);
  766. out:
  767. return ret;
  768. }
  769. static int __devexit mmci_remove(struct amba_device *dev)
  770. {
  771. struct mmc_host *mmc = amba_get_drvdata(dev);
  772. amba_set_drvdata(dev, NULL);
  773. if (mmc) {
  774. struct mmci_host *host = mmc_priv(mmc);
  775. mmc_remove_host(mmc);
  776. writel(0, host->base + MMCIMASK0);
  777. writel(0, host->base + MMCIMASK1);
  778. writel(0, host->base + MMCICOMMAND);
  779. writel(0, host->base + MMCIDATACTRL);
  780. free_irq(dev->irq[0], host);
  781. if (!host->singleirq)
  782. free_irq(dev->irq[1], host);
  783. if (host->gpio_wp != -ENOSYS)
  784. gpio_free(host->gpio_wp);
  785. if (host->gpio_cd_irq >= 0)
  786. free_irq(host->gpio_cd_irq, host);
  787. if (host->gpio_cd != -ENOSYS)
  788. gpio_free(host->gpio_cd);
  789. iounmap(host->base);
  790. clk_disable(host->clk);
  791. clk_put(host->clk);
  792. if (host->vcc)
  793. mmc_regulator_set_ocr(mmc, host->vcc, 0);
  794. regulator_put(host->vcc);
  795. mmc_free_host(mmc);
  796. amba_release_regions(dev);
  797. }
  798. return 0;
  799. }
  800. #ifdef CONFIG_PM
  801. static int mmci_suspend(struct amba_device *dev, pm_message_t state)
  802. {
  803. struct mmc_host *mmc = amba_get_drvdata(dev);
  804. int ret = 0;
  805. if (mmc) {
  806. struct mmci_host *host = mmc_priv(mmc);
  807. ret = mmc_suspend_host(mmc);
  808. if (ret == 0)
  809. writel(0, host->base + MMCIMASK0);
  810. }
  811. return ret;
  812. }
  813. static int mmci_resume(struct amba_device *dev)
  814. {
  815. struct mmc_host *mmc = amba_get_drvdata(dev);
  816. int ret = 0;
  817. if (mmc) {
  818. struct mmci_host *host = mmc_priv(mmc);
  819. writel(MCI_IRQENABLE, host->base + MMCIMASK0);
  820. ret = mmc_resume_host(mmc);
  821. }
  822. return ret;
  823. }
  824. #else
  825. #define mmci_suspend NULL
  826. #define mmci_resume NULL
  827. #endif
  828. static struct amba_id mmci_ids[] = {
  829. {
  830. .id = 0x00041180,
  831. .mask = 0x000fffff,
  832. .data = &variant_arm,
  833. },
  834. {
  835. .id = 0x00041181,
  836. .mask = 0x000fffff,
  837. .data = &variant_arm,
  838. },
  839. /* ST Micro variants */
  840. {
  841. .id = 0x00180180,
  842. .mask = 0x00ffffff,
  843. .data = &variant_u300,
  844. },
  845. {
  846. .id = 0x00280180,
  847. .mask = 0x00ffffff,
  848. .data = &variant_u300,
  849. },
  850. {
  851. .id = 0x00480180,
  852. .mask = 0x00ffffff,
  853. .data = &variant_ux500,
  854. },
  855. { 0, 0 },
  856. };
  857. static struct amba_driver mmci_driver = {
  858. .drv = {
  859. .name = DRIVER_NAME,
  860. },
  861. .probe = mmci_probe,
  862. .remove = __devexit_p(mmci_remove),
  863. .suspend = mmci_suspend,
  864. .resume = mmci_resume,
  865. .id_table = mmci_ids,
  866. };
  867. static int __init mmci_init(void)
  868. {
  869. return amba_driver_register(&mmci_driver);
  870. }
  871. static void __exit mmci_exit(void)
  872. {
  873. amba_driver_unregister(&mmci_driver);
  874. }
  875. module_init(mmci_init);
  876. module_exit(mmci_exit);
  877. module_param(fmax, uint, 0444);
  878. MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
  879. MODULE_LICENSE("GPL");