xhci-mem.c 74 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495
  1. /*
  2. * xHCI host controller driver
  3. *
  4. * Copyright (C) 2008 Intel Corp.
  5. *
  6. * Author: Sarah Sharp
  7. * Some code borrowed from the Linux EHCI driver.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15. * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  16. * for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software Foundation,
  20. * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #include <linux/usb.h>
  23. #include <linux/pci.h>
  24. #include <linux/slab.h>
  25. #include <linux/dmapool.h>
  26. #include "xhci.h"
  27. /*
  28. * Allocates a generic ring segment from the ring pool, sets the dma address,
  29. * initializes the segment to zero, and sets the private next pointer to NULL.
  30. *
  31. * Section 4.11.1.1:
  32. * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  33. */
  34. static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
  35. unsigned int cycle_state, gfp_t flags)
  36. {
  37. struct xhci_segment *seg;
  38. dma_addr_t dma;
  39. int i;
  40. seg = kzalloc(sizeof *seg, flags);
  41. if (!seg)
  42. return NULL;
  43. seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
  44. if (!seg->trbs) {
  45. kfree(seg);
  46. return NULL;
  47. }
  48. memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
  49. /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
  50. if (cycle_state == 0) {
  51. for (i = 0; i < TRBS_PER_SEGMENT; i++)
  52. seg->trbs[i].link.control |= TRB_CYCLE;
  53. }
  54. seg->dma = dma;
  55. seg->next = NULL;
  56. return seg;
  57. }
  58. static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  59. {
  60. if (seg->trbs) {
  61. dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  62. seg->trbs = NULL;
  63. }
  64. kfree(seg);
  65. }
  66. static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
  67. struct xhci_segment *first)
  68. {
  69. struct xhci_segment *seg;
  70. seg = first->next;
  71. while (seg != first) {
  72. struct xhci_segment *next = seg->next;
  73. xhci_segment_free(xhci, seg);
  74. seg = next;
  75. }
  76. xhci_segment_free(xhci, first);
  77. }
  78. /*
  79. * Make the prev segment point to the next segment.
  80. *
  81. * Change the last TRB in the prev segment to be a Link TRB which points to the
  82. * DMA address of the next segment. The caller needs to set any Link TRB
  83. * related flags, such as End TRB, Toggle Cycle, and no snoop.
  84. */
  85. static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
  86. struct xhci_segment *next, enum xhci_ring_type type)
  87. {
  88. u32 val;
  89. if (!prev || !next)
  90. return;
  91. prev->next = next;
  92. if (type != TYPE_EVENT) {
  93. prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
  94. cpu_to_le64(next->dma);
  95. /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
  96. val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
  97. val &= ~TRB_TYPE_BITMASK;
  98. val |= TRB_TYPE(TRB_LINK);
  99. /* Always set the chain bit with 0.95 hardware */
  100. /* Set chain bit for isoc rings on AMD 0.96 host */
  101. if (xhci_link_trb_quirk(xhci) ||
  102. (type == TYPE_ISOC &&
  103. (xhci->quirks & XHCI_AMD_0x96_HOST)))
  104. val |= TRB_CHAIN;
  105. prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
  106. }
  107. }
  108. /*
  109. * Link the ring to the new segments.
  110. * Set Toggle Cycle for the new ring if needed.
  111. */
  112. static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
  113. struct xhci_segment *first, struct xhci_segment *last,
  114. unsigned int num_segs)
  115. {
  116. struct xhci_segment *next;
  117. if (!ring || !first || !last)
  118. return;
  119. next = ring->enq_seg->next;
  120. xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
  121. xhci_link_segments(xhci, last, next, ring->type);
  122. ring->num_segs += num_segs;
  123. ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
  124. if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
  125. ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
  126. &= ~cpu_to_le32(LINK_TOGGLE);
  127. last->trbs[TRBS_PER_SEGMENT-1].link.control
  128. |= cpu_to_le32(LINK_TOGGLE);
  129. ring->last_seg = last;
  130. }
  131. }
  132. /* XXX: Do we need the hcd structure in all these functions? */
  133. void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
  134. {
  135. if (!ring)
  136. return;
  137. if (ring->first_seg)
  138. xhci_free_segments_for_ring(xhci, ring->first_seg);
  139. kfree(ring);
  140. }
  141. static void xhci_initialize_ring_info(struct xhci_ring *ring,
  142. unsigned int cycle_state)
  143. {
  144. /* The ring is empty, so the enqueue pointer == dequeue pointer */
  145. ring->enqueue = ring->first_seg->trbs;
  146. ring->enq_seg = ring->first_seg;
  147. ring->dequeue = ring->enqueue;
  148. ring->deq_seg = ring->first_seg;
  149. /* The ring is initialized to 0. The producer must write 1 to the cycle
  150. * bit to handover ownership of the TRB, so PCS = 1. The consumer must
  151. * compare CCS to the cycle bit to check ownership, so CCS = 1.
  152. *
  153. * New rings are initialized with cycle state equal to 1; if we are
  154. * handling ring expansion, set the cycle state equal to the old ring.
  155. */
  156. ring->cycle_state = cycle_state;
  157. /* Not necessary for new rings, but needed for re-initialized rings */
  158. ring->enq_updates = 0;
  159. ring->deq_updates = 0;
  160. /*
  161. * Each segment has a link TRB, and leave an extra TRB for SW
  162. * accounting purpose
  163. */
  164. ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
  165. }
  166. /* Allocate segments and link them for a ring */
  167. static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
  168. struct xhci_segment **first, struct xhci_segment **last,
  169. unsigned int num_segs, unsigned int cycle_state,
  170. enum xhci_ring_type type, gfp_t flags)
  171. {
  172. struct xhci_segment *prev;
  173. prev = xhci_segment_alloc(xhci, cycle_state, flags);
  174. if (!prev)
  175. return -ENOMEM;
  176. num_segs--;
  177. *first = prev;
  178. while (num_segs > 0) {
  179. struct xhci_segment *next;
  180. next = xhci_segment_alloc(xhci, cycle_state, flags);
  181. if (!next) {
  182. prev = *first;
  183. while (prev) {
  184. next = prev->next;
  185. xhci_segment_free(xhci, prev);
  186. prev = next;
  187. }
  188. return -ENOMEM;
  189. }
  190. xhci_link_segments(xhci, prev, next, type);
  191. prev = next;
  192. num_segs--;
  193. }
  194. xhci_link_segments(xhci, prev, *first, type);
  195. *last = prev;
  196. return 0;
  197. }
  198. /**
  199. * Create a new ring with zero or more segments.
  200. *
  201. * Link each segment together into a ring.
  202. * Set the end flag and the cycle toggle bit on the last segment.
  203. * See section 4.9.1 and figures 15 and 16.
  204. */
  205. static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
  206. unsigned int num_segs, unsigned int cycle_state,
  207. enum xhci_ring_type type, gfp_t flags)
  208. {
  209. struct xhci_ring *ring;
  210. int ret;
  211. ring = kzalloc(sizeof *(ring), flags);
  212. if (!ring)
  213. return NULL;
  214. ring->num_segs = num_segs;
  215. INIT_LIST_HEAD(&ring->td_list);
  216. ring->type = type;
  217. if (num_segs == 0)
  218. return ring;
  219. ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
  220. &ring->last_seg, num_segs, cycle_state, type, flags);
  221. if (ret)
  222. goto fail;
  223. /* Only event ring does not use link TRB */
  224. if (type != TYPE_EVENT) {
  225. /* See section 4.9.2.1 and 6.4.4.1 */
  226. ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
  227. cpu_to_le32(LINK_TOGGLE);
  228. }
  229. xhci_initialize_ring_info(ring, cycle_state);
  230. return ring;
  231. fail:
  232. kfree(ring);
  233. return NULL;
  234. }
  235. void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
  236. struct xhci_virt_device *virt_dev,
  237. unsigned int ep_index)
  238. {
  239. int rings_cached;
  240. rings_cached = virt_dev->num_rings_cached;
  241. if (rings_cached < XHCI_MAX_RINGS_CACHED) {
  242. virt_dev->ring_cache[rings_cached] =
  243. virt_dev->eps[ep_index].ring;
  244. virt_dev->num_rings_cached++;
  245. xhci_dbg(xhci, "Cached old ring, "
  246. "%d ring%s cached\n",
  247. virt_dev->num_rings_cached,
  248. (virt_dev->num_rings_cached > 1) ? "s" : "");
  249. } else {
  250. xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
  251. xhci_dbg(xhci, "Ring cache full (%d rings), "
  252. "freeing ring\n",
  253. virt_dev->num_rings_cached);
  254. }
  255. virt_dev->eps[ep_index].ring = NULL;
  256. }
  257. /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
  258. * pointers to the beginning of the ring.
  259. */
  260. static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
  261. struct xhci_ring *ring, unsigned int cycle_state,
  262. enum xhci_ring_type type)
  263. {
  264. struct xhci_segment *seg = ring->first_seg;
  265. int i;
  266. do {
  267. memset(seg->trbs, 0,
  268. sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
  269. if (cycle_state == 0) {
  270. for (i = 0; i < TRBS_PER_SEGMENT; i++)
  271. seg->trbs[i].link.control |= TRB_CYCLE;
  272. }
  273. /* All endpoint rings have link TRBs */
  274. xhci_link_segments(xhci, seg, seg->next, type);
  275. seg = seg->next;
  276. } while (seg != ring->first_seg);
  277. ring->type = type;
  278. xhci_initialize_ring_info(ring, cycle_state);
  279. /* td list should be empty since all URBs have been cancelled,
  280. * but just in case...
  281. */
  282. INIT_LIST_HEAD(&ring->td_list);
  283. }
  284. /*
  285. * Expand an existing ring.
  286. * Look for a cached ring or allocate a new ring which has same segment numbers
  287. * and link the two rings.
  288. */
  289. int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
  290. unsigned int num_trbs, gfp_t flags)
  291. {
  292. struct xhci_segment *first;
  293. struct xhci_segment *last;
  294. unsigned int num_segs;
  295. unsigned int num_segs_needed;
  296. int ret;
  297. num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
  298. (TRBS_PER_SEGMENT - 1);
  299. /* Allocate number of segments we needed, or double the ring size */
  300. num_segs = ring->num_segs > num_segs_needed ?
  301. ring->num_segs : num_segs_needed;
  302. ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
  303. num_segs, ring->cycle_state, ring->type, flags);
  304. if (ret)
  305. return -ENOMEM;
  306. xhci_link_rings(xhci, ring, first, last, num_segs);
  307. xhci_dbg(xhci, "ring expansion succeed, now has %d segments\n",
  308. ring->num_segs);
  309. return 0;
  310. }
  311. #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
  312. static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
  313. int type, gfp_t flags)
  314. {
  315. struct xhci_container_ctx *ctx;
  316. if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
  317. return NULL;
  318. ctx = kzalloc(sizeof(*ctx), flags);
  319. if (!ctx)
  320. return NULL;
  321. ctx->type = type;
  322. ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
  323. if (type == XHCI_CTX_TYPE_INPUT)
  324. ctx->size += CTX_SIZE(xhci->hcc_params);
  325. ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
  326. if (!ctx->bytes) {
  327. kfree(ctx);
  328. return NULL;
  329. }
  330. memset(ctx->bytes, 0, ctx->size);
  331. return ctx;
  332. }
  333. static void xhci_free_container_ctx(struct xhci_hcd *xhci,
  334. struct xhci_container_ctx *ctx)
  335. {
  336. if (!ctx)
  337. return;
  338. dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
  339. kfree(ctx);
  340. }
  341. struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
  342. struct xhci_container_ctx *ctx)
  343. {
  344. if (ctx->type != XHCI_CTX_TYPE_INPUT)
  345. return NULL;
  346. return (struct xhci_input_control_ctx *)ctx->bytes;
  347. }
  348. struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
  349. struct xhci_container_ctx *ctx)
  350. {
  351. if (ctx->type == XHCI_CTX_TYPE_DEVICE)
  352. return (struct xhci_slot_ctx *)ctx->bytes;
  353. return (struct xhci_slot_ctx *)
  354. (ctx->bytes + CTX_SIZE(xhci->hcc_params));
  355. }
  356. struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
  357. struct xhci_container_ctx *ctx,
  358. unsigned int ep_index)
  359. {
  360. /* increment ep index by offset of start of ep ctx array */
  361. ep_index++;
  362. if (ctx->type == XHCI_CTX_TYPE_INPUT)
  363. ep_index++;
  364. return (struct xhci_ep_ctx *)
  365. (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
  366. }
  367. /***************** Streams structures manipulation *************************/
  368. static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
  369. unsigned int num_stream_ctxs,
  370. struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
  371. {
  372. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  373. if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
  374. dma_free_coherent(&pdev->dev,
  375. sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
  376. stream_ctx, dma);
  377. else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
  378. return dma_pool_free(xhci->small_streams_pool,
  379. stream_ctx, dma);
  380. else
  381. return dma_pool_free(xhci->medium_streams_pool,
  382. stream_ctx, dma);
  383. }
  384. /*
  385. * The stream context array for each endpoint with bulk streams enabled can
  386. * vary in size, based on:
  387. * - how many streams the endpoint supports,
  388. * - the maximum primary stream array size the host controller supports,
  389. * - and how many streams the device driver asks for.
  390. *
  391. * The stream context array must be a power of 2, and can be as small as
  392. * 64 bytes or as large as 1MB.
  393. */
  394. static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
  395. unsigned int num_stream_ctxs, dma_addr_t *dma,
  396. gfp_t mem_flags)
  397. {
  398. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  399. if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
  400. return dma_alloc_coherent(&pdev->dev,
  401. sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
  402. dma, mem_flags);
  403. else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
  404. return dma_pool_alloc(xhci->small_streams_pool,
  405. mem_flags, dma);
  406. else
  407. return dma_pool_alloc(xhci->medium_streams_pool,
  408. mem_flags, dma);
  409. }
  410. struct xhci_ring *xhci_dma_to_transfer_ring(
  411. struct xhci_virt_ep *ep,
  412. u64 address)
  413. {
  414. if (ep->ep_state & EP_HAS_STREAMS)
  415. return radix_tree_lookup(&ep->stream_info->trb_address_map,
  416. address >> TRB_SEGMENT_SHIFT);
  417. return ep->ring;
  418. }
  419. /* Only use this when you know stream_info is valid */
  420. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  421. static struct xhci_ring *dma_to_stream_ring(
  422. struct xhci_stream_info *stream_info,
  423. u64 address)
  424. {
  425. return radix_tree_lookup(&stream_info->trb_address_map,
  426. address >> TRB_SEGMENT_SHIFT);
  427. }
  428. #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
  429. struct xhci_ring *xhci_stream_id_to_ring(
  430. struct xhci_virt_device *dev,
  431. unsigned int ep_index,
  432. unsigned int stream_id)
  433. {
  434. struct xhci_virt_ep *ep = &dev->eps[ep_index];
  435. if (stream_id == 0)
  436. return ep->ring;
  437. if (!ep->stream_info)
  438. return NULL;
  439. if (stream_id > ep->stream_info->num_streams)
  440. return NULL;
  441. return ep->stream_info->stream_rings[stream_id];
  442. }
  443. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  444. static int xhci_test_radix_tree(struct xhci_hcd *xhci,
  445. unsigned int num_streams,
  446. struct xhci_stream_info *stream_info)
  447. {
  448. u32 cur_stream;
  449. struct xhci_ring *cur_ring;
  450. u64 addr;
  451. for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
  452. struct xhci_ring *mapped_ring;
  453. int trb_size = sizeof(union xhci_trb);
  454. cur_ring = stream_info->stream_rings[cur_stream];
  455. for (addr = cur_ring->first_seg->dma;
  456. addr < cur_ring->first_seg->dma + TRB_SEGMENT_SIZE;
  457. addr += trb_size) {
  458. mapped_ring = dma_to_stream_ring(stream_info, addr);
  459. if (cur_ring != mapped_ring) {
  460. xhci_warn(xhci, "WARN: DMA address 0x%08llx "
  461. "didn't map to stream ID %u; "
  462. "mapped to ring %p\n",
  463. (unsigned long long) addr,
  464. cur_stream,
  465. mapped_ring);
  466. return -EINVAL;
  467. }
  468. }
  469. /* One TRB after the end of the ring segment shouldn't return a
  470. * pointer to the current ring (although it may be a part of a
  471. * different ring).
  472. */
  473. mapped_ring = dma_to_stream_ring(stream_info, addr);
  474. if (mapped_ring != cur_ring) {
  475. /* One TRB before should also fail */
  476. addr = cur_ring->first_seg->dma - trb_size;
  477. mapped_ring = dma_to_stream_ring(stream_info, addr);
  478. }
  479. if (mapped_ring == cur_ring) {
  480. xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
  481. "mapped to valid stream ID %u; "
  482. "mapped ring = %p\n",
  483. (unsigned long long) addr,
  484. cur_stream,
  485. mapped_ring);
  486. return -EINVAL;
  487. }
  488. }
  489. return 0;
  490. }
  491. #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
  492. /*
  493. * Change an endpoint's internal structure so it supports stream IDs. The
  494. * number of requested streams includes stream 0, which cannot be used by device
  495. * drivers.
  496. *
  497. * The number of stream contexts in the stream context array may be bigger than
  498. * the number of streams the driver wants to use. This is because the number of
  499. * stream context array entries must be a power of two.
  500. *
  501. * We need a radix tree for mapping physical addresses of TRBs to which stream
  502. * ID they belong to. We need to do this because the host controller won't tell
  503. * us which stream ring the TRB came from. We could store the stream ID in an
  504. * event data TRB, but that doesn't help us for the cancellation case, since the
  505. * endpoint may stop before it reaches that event data TRB.
  506. *
  507. * The radix tree maps the upper portion of the TRB DMA address to a ring
  508. * segment that has the same upper portion of DMA addresses. For example, say I
  509. * have segments of size 1KB, that are always 64-byte aligned. A segment may
  510. * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
  511. * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
  512. * pass the radix tree a key to get the right stream ID:
  513. *
  514. * 0x10c90fff >> 10 = 0x43243
  515. * 0x10c912c0 >> 10 = 0x43244
  516. * 0x10c91400 >> 10 = 0x43245
  517. *
  518. * Obviously, only those TRBs with DMA addresses that are within the segment
  519. * will make the radix tree return the stream ID for that ring.
  520. *
  521. * Caveats for the radix tree:
  522. *
  523. * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
  524. * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
  525. * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
  526. * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
  527. * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
  528. * extended systems (where the DMA address can be bigger than 32-bits),
  529. * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
  530. */
  531. struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
  532. unsigned int num_stream_ctxs,
  533. unsigned int num_streams, gfp_t mem_flags)
  534. {
  535. struct xhci_stream_info *stream_info;
  536. u32 cur_stream;
  537. struct xhci_ring *cur_ring;
  538. unsigned long key;
  539. u64 addr;
  540. int ret;
  541. xhci_dbg(xhci, "Allocating %u streams and %u "
  542. "stream context array entries.\n",
  543. num_streams, num_stream_ctxs);
  544. if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
  545. xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
  546. return NULL;
  547. }
  548. xhci->cmd_ring_reserved_trbs++;
  549. stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
  550. if (!stream_info)
  551. goto cleanup_trbs;
  552. stream_info->num_streams = num_streams;
  553. stream_info->num_stream_ctxs = num_stream_ctxs;
  554. /* Initialize the array of virtual pointers to stream rings. */
  555. stream_info->stream_rings = kzalloc(
  556. sizeof(struct xhci_ring *)*num_streams,
  557. mem_flags);
  558. if (!stream_info->stream_rings)
  559. goto cleanup_info;
  560. /* Initialize the array of DMA addresses for stream rings for the HW. */
  561. stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
  562. num_stream_ctxs, &stream_info->ctx_array_dma,
  563. mem_flags);
  564. if (!stream_info->stream_ctx_array)
  565. goto cleanup_ctx;
  566. memset(stream_info->stream_ctx_array, 0,
  567. sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
  568. /* Allocate everything needed to free the stream rings later */
  569. stream_info->free_streams_command =
  570. xhci_alloc_command(xhci, true, true, mem_flags);
  571. if (!stream_info->free_streams_command)
  572. goto cleanup_ctx;
  573. INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
  574. /* Allocate rings for all the streams that the driver will use,
  575. * and add their segment DMA addresses to the radix tree.
  576. * Stream 0 is reserved.
  577. */
  578. for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
  579. stream_info->stream_rings[cur_stream] =
  580. xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
  581. cur_ring = stream_info->stream_rings[cur_stream];
  582. if (!cur_ring)
  583. goto cleanup_rings;
  584. cur_ring->stream_id = cur_stream;
  585. /* Set deq ptr, cycle bit, and stream context type */
  586. addr = cur_ring->first_seg->dma |
  587. SCT_FOR_CTX(SCT_PRI_TR) |
  588. cur_ring->cycle_state;
  589. stream_info->stream_ctx_array[cur_stream].stream_ring =
  590. cpu_to_le64(addr);
  591. xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
  592. cur_stream, (unsigned long long) addr);
  593. key = (unsigned long)
  594. (cur_ring->first_seg->dma >> TRB_SEGMENT_SHIFT);
  595. ret = radix_tree_insert(&stream_info->trb_address_map,
  596. key, cur_ring);
  597. if (ret) {
  598. xhci_ring_free(xhci, cur_ring);
  599. stream_info->stream_rings[cur_stream] = NULL;
  600. goto cleanup_rings;
  601. }
  602. }
  603. /* Leave the other unused stream ring pointers in the stream context
  604. * array initialized to zero. This will cause the xHC to give us an
  605. * error if the device asks for a stream ID we don't have setup (if it
  606. * was any other way, the host controller would assume the ring is
  607. * "empty" and wait forever for data to be queued to that stream ID).
  608. */
  609. #if XHCI_DEBUG
  610. /* Do a little test on the radix tree to make sure it returns the
  611. * correct values.
  612. */
  613. if (xhci_test_radix_tree(xhci, num_streams, stream_info))
  614. goto cleanup_rings;
  615. #endif
  616. return stream_info;
  617. cleanup_rings:
  618. for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
  619. cur_ring = stream_info->stream_rings[cur_stream];
  620. if (cur_ring) {
  621. addr = cur_ring->first_seg->dma;
  622. radix_tree_delete(&stream_info->trb_address_map,
  623. addr >> TRB_SEGMENT_SHIFT);
  624. xhci_ring_free(xhci, cur_ring);
  625. stream_info->stream_rings[cur_stream] = NULL;
  626. }
  627. }
  628. xhci_free_command(xhci, stream_info->free_streams_command);
  629. cleanup_ctx:
  630. kfree(stream_info->stream_rings);
  631. cleanup_info:
  632. kfree(stream_info);
  633. cleanup_trbs:
  634. xhci->cmd_ring_reserved_trbs--;
  635. return NULL;
  636. }
  637. /*
  638. * Sets the MaxPStreams field and the Linear Stream Array field.
  639. * Sets the dequeue pointer to the stream context array.
  640. */
  641. void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
  642. struct xhci_ep_ctx *ep_ctx,
  643. struct xhci_stream_info *stream_info)
  644. {
  645. u32 max_primary_streams;
  646. /* MaxPStreams is the number of stream context array entries, not the
  647. * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
  648. * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
  649. */
  650. max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
  651. xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
  652. 1 << (max_primary_streams + 1));
  653. ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
  654. ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
  655. | EP_HAS_LSA);
  656. ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
  657. }
  658. /*
  659. * Sets the MaxPStreams field and the Linear Stream Array field to 0.
  660. * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
  661. * not at the beginning of the ring).
  662. */
  663. void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
  664. struct xhci_ep_ctx *ep_ctx,
  665. struct xhci_virt_ep *ep)
  666. {
  667. dma_addr_t addr;
  668. ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
  669. addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
  670. ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
  671. }
  672. /* Frees all stream contexts associated with the endpoint,
  673. *
  674. * Caller should fix the endpoint context streams fields.
  675. */
  676. void xhci_free_stream_info(struct xhci_hcd *xhci,
  677. struct xhci_stream_info *stream_info)
  678. {
  679. int cur_stream;
  680. struct xhci_ring *cur_ring;
  681. dma_addr_t addr;
  682. if (!stream_info)
  683. return;
  684. for (cur_stream = 1; cur_stream < stream_info->num_streams;
  685. cur_stream++) {
  686. cur_ring = stream_info->stream_rings[cur_stream];
  687. if (cur_ring) {
  688. addr = cur_ring->first_seg->dma;
  689. radix_tree_delete(&stream_info->trb_address_map,
  690. addr >> TRB_SEGMENT_SHIFT);
  691. xhci_ring_free(xhci, cur_ring);
  692. stream_info->stream_rings[cur_stream] = NULL;
  693. }
  694. }
  695. xhci_free_command(xhci, stream_info->free_streams_command);
  696. xhci->cmd_ring_reserved_trbs--;
  697. if (stream_info->stream_ctx_array)
  698. xhci_free_stream_ctx(xhci,
  699. stream_info->num_stream_ctxs,
  700. stream_info->stream_ctx_array,
  701. stream_info->ctx_array_dma);
  702. if (stream_info)
  703. kfree(stream_info->stream_rings);
  704. kfree(stream_info);
  705. }
  706. /***************** Device context manipulation *************************/
  707. static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
  708. struct xhci_virt_ep *ep)
  709. {
  710. init_timer(&ep->stop_cmd_timer);
  711. ep->stop_cmd_timer.data = (unsigned long) ep;
  712. ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
  713. ep->xhci = xhci;
  714. }
  715. static void xhci_free_tt_info(struct xhci_hcd *xhci,
  716. struct xhci_virt_device *virt_dev,
  717. int slot_id)
  718. {
  719. struct list_head *tt_list_head;
  720. struct xhci_tt_bw_info *tt_info, *next;
  721. bool slot_found = false;
  722. /* If the device never made it past the Set Address stage,
  723. * it may not have the real_port set correctly.
  724. */
  725. if (virt_dev->real_port == 0 ||
  726. virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
  727. xhci_dbg(xhci, "Bad real port.\n");
  728. return;
  729. }
  730. tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
  731. list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
  732. /* Multi-TT hubs will have more than one entry */
  733. if (tt_info->slot_id == slot_id) {
  734. slot_found = true;
  735. list_del(&tt_info->tt_list);
  736. kfree(tt_info);
  737. } else if (slot_found) {
  738. break;
  739. }
  740. }
  741. }
  742. int xhci_alloc_tt_info(struct xhci_hcd *xhci,
  743. struct xhci_virt_device *virt_dev,
  744. struct usb_device *hdev,
  745. struct usb_tt *tt, gfp_t mem_flags)
  746. {
  747. struct xhci_tt_bw_info *tt_info;
  748. unsigned int num_ports;
  749. int i, j;
  750. if (!tt->multi)
  751. num_ports = 1;
  752. else
  753. num_ports = hdev->maxchild;
  754. for (i = 0; i < num_ports; i++, tt_info++) {
  755. struct xhci_interval_bw_table *bw_table;
  756. tt_info = kzalloc(sizeof(*tt_info), mem_flags);
  757. if (!tt_info)
  758. goto free_tts;
  759. INIT_LIST_HEAD(&tt_info->tt_list);
  760. list_add(&tt_info->tt_list,
  761. &xhci->rh_bw[virt_dev->real_port - 1].tts);
  762. tt_info->slot_id = virt_dev->udev->slot_id;
  763. if (tt->multi)
  764. tt_info->ttport = i+1;
  765. bw_table = &tt_info->bw_table;
  766. for (j = 0; j < XHCI_MAX_INTERVAL; j++)
  767. INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
  768. }
  769. return 0;
  770. free_tts:
  771. xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
  772. return -ENOMEM;
  773. }
  774. /* All the xhci_tds in the ring's TD list should be freed at this point.
  775. * Should be called with xhci->lock held if there is any chance the TT lists
  776. * will be manipulated by the configure endpoint, allocate device, or update
  777. * hub functions while this function is removing the TT entries from the list.
  778. */
  779. void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
  780. {
  781. struct xhci_virt_device *dev;
  782. int i;
  783. int old_active_eps = 0;
  784. /* Slot ID 0 is reserved */
  785. if (slot_id == 0 || !xhci->devs[slot_id])
  786. return;
  787. dev = xhci->devs[slot_id];
  788. xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
  789. if (!dev)
  790. return;
  791. if (dev->tt_info)
  792. old_active_eps = dev->tt_info->active_eps;
  793. for (i = 0; i < 31; ++i) {
  794. if (dev->eps[i].ring)
  795. xhci_ring_free(xhci, dev->eps[i].ring);
  796. if (dev->eps[i].stream_info)
  797. xhci_free_stream_info(xhci,
  798. dev->eps[i].stream_info);
  799. /* Endpoints on the TT/root port lists should have been removed
  800. * when usb_disable_device() was called for the device.
  801. * We can't drop them anyway, because the udev might have gone
  802. * away by this point, and we can't tell what speed it was.
  803. */
  804. if (!list_empty(&dev->eps[i].bw_endpoint_list))
  805. xhci_warn(xhci, "Slot %u endpoint %u "
  806. "not removed from BW list!\n",
  807. slot_id, i);
  808. }
  809. /* If this is a hub, free the TT(s) from the TT list */
  810. xhci_free_tt_info(xhci, dev, slot_id);
  811. /* If necessary, update the number of active TTs on this root port */
  812. xhci_update_tt_active_eps(xhci, dev, old_active_eps);
  813. if (dev->ring_cache) {
  814. for (i = 0; i < dev->num_rings_cached; i++)
  815. xhci_ring_free(xhci, dev->ring_cache[i]);
  816. kfree(dev->ring_cache);
  817. }
  818. if (dev->in_ctx)
  819. xhci_free_container_ctx(xhci, dev->in_ctx);
  820. if (dev->out_ctx)
  821. xhci_free_container_ctx(xhci, dev->out_ctx);
  822. kfree(xhci->devs[slot_id]);
  823. xhci->devs[slot_id] = NULL;
  824. }
  825. int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
  826. struct usb_device *udev, gfp_t flags)
  827. {
  828. struct xhci_virt_device *dev;
  829. int i;
  830. /* Slot ID 0 is reserved */
  831. if (slot_id == 0 || xhci->devs[slot_id]) {
  832. xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
  833. return 0;
  834. }
  835. xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
  836. if (!xhci->devs[slot_id])
  837. return 0;
  838. dev = xhci->devs[slot_id];
  839. /* Allocate the (output) device context that will be used in the HC. */
  840. dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
  841. if (!dev->out_ctx)
  842. goto fail;
  843. xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
  844. (unsigned long long)dev->out_ctx->dma);
  845. /* Allocate the (input) device context for address device command */
  846. dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
  847. if (!dev->in_ctx)
  848. goto fail;
  849. xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
  850. (unsigned long long)dev->in_ctx->dma);
  851. /* Initialize the cancellation list and watchdog timers for each ep */
  852. for (i = 0; i < 31; i++) {
  853. xhci_init_endpoint_timer(xhci, &dev->eps[i]);
  854. INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
  855. INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
  856. }
  857. /* Allocate endpoint 0 ring */
  858. dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
  859. if (!dev->eps[0].ring)
  860. goto fail;
  861. /* Allocate pointers to the ring cache */
  862. dev->ring_cache = kzalloc(
  863. sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
  864. flags);
  865. if (!dev->ring_cache)
  866. goto fail;
  867. dev->num_rings_cached = 0;
  868. init_completion(&dev->cmd_completion);
  869. INIT_LIST_HEAD(&dev->cmd_list);
  870. dev->udev = udev;
  871. /* Point to output device context in dcbaa. */
  872. xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
  873. xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
  874. slot_id,
  875. &xhci->dcbaa->dev_context_ptrs[slot_id],
  876. le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
  877. return 1;
  878. fail:
  879. xhci_free_virt_device(xhci, slot_id);
  880. return 0;
  881. }
  882. void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
  883. struct usb_device *udev)
  884. {
  885. struct xhci_virt_device *virt_dev;
  886. struct xhci_ep_ctx *ep0_ctx;
  887. struct xhci_ring *ep_ring;
  888. virt_dev = xhci->devs[udev->slot_id];
  889. ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
  890. ep_ring = virt_dev->eps[0].ring;
  891. /*
  892. * FIXME we don't keep track of the dequeue pointer very well after a
  893. * Set TR dequeue pointer, so we're setting the dequeue pointer of the
  894. * host to our enqueue pointer. This should only be called after a
  895. * configured device has reset, so all control transfers should have
  896. * been completed or cancelled before the reset.
  897. */
  898. ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
  899. ep_ring->enqueue)
  900. | ep_ring->cycle_state);
  901. }
  902. /*
  903. * The xHCI roothub may have ports of differing speeds in any order in the port
  904. * status registers. xhci->port_array provides an array of the port speed for
  905. * each offset into the port status registers.
  906. *
  907. * The xHCI hardware wants to know the roothub port number that the USB device
  908. * is attached to (or the roothub port its ancestor hub is attached to). All we
  909. * know is the index of that port under either the USB 2.0 or the USB 3.0
  910. * roothub, but that doesn't give us the real index into the HW port status
  911. * registers. Call xhci_find_raw_port_number() to get real index.
  912. */
  913. static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
  914. struct usb_device *udev)
  915. {
  916. struct usb_device *top_dev;
  917. struct usb_hcd *hcd;
  918. if (udev->speed == USB_SPEED_SUPER)
  919. hcd = xhci->shared_hcd;
  920. else
  921. hcd = xhci->main_hcd;
  922. for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
  923. top_dev = top_dev->parent)
  924. /* Found device below root hub */;
  925. return xhci_find_raw_port_number(hcd, top_dev->portnum);
  926. }
  927. /* Setup an xHCI virtual device for a Set Address command */
  928. int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
  929. {
  930. struct xhci_virt_device *dev;
  931. struct xhci_ep_ctx *ep0_ctx;
  932. struct xhci_slot_ctx *slot_ctx;
  933. u32 port_num;
  934. u32 max_packets;
  935. struct usb_device *top_dev;
  936. dev = xhci->devs[udev->slot_id];
  937. /* Slot ID 0 is reserved */
  938. if (udev->slot_id == 0 || !dev) {
  939. xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
  940. udev->slot_id);
  941. return -EINVAL;
  942. }
  943. ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
  944. slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
  945. /* 3) Only the control endpoint is valid - one endpoint context */
  946. slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
  947. switch (udev->speed) {
  948. case USB_SPEED_SUPER:
  949. slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
  950. max_packets = MAX_PACKET(512);
  951. break;
  952. case USB_SPEED_HIGH:
  953. slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
  954. max_packets = MAX_PACKET(64);
  955. break;
  956. /* USB core guesses at a 64-byte max packet first for FS devices */
  957. case USB_SPEED_FULL:
  958. slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
  959. max_packets = MAX_PACKET(64);
  960. break;
  961. case USB_SPEED_LOW:
  962. slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
  963. max_packets = MAX_PACKET(8);
  964. break;
  965. case USB_SPEED_WIRELESS:
  966. xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
  967. return -EINVAL;
  968. break;
  969. default:
  970. /* Speed was set earlier, this shouldn't happen. */
  971. return -EINVAL;
  972. }
  973. /* Find the root hub port this device is under */
  974. port_num = xhci_find_real_port_number(xhci, udev);
  975. if (!port_num)
  976. return -EINVAL;
  977. slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
  978. /* Set the port number in the virtual_device to the faked port number */
  979. for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
  980. top_dev = top_dev->parent)
  981. /* Found device below root hub */;
  982. dev->fake_port = top_dev->portnum;
  983. dev->real_port = port_num;
  984. xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
  985. xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
  986. /* Find the right bandwidth table that this device will be a part of.
  987. * If this is a full speed device attached directly to a root port (or a
  988. * decendent of one), it counts as a primary bandwidth domain, not a
  989. * secondary bandwidth domain under a TT. An xhci_tt_info structure
  990. * will never be created for the HS root hub.
  991. */
  992. if (!udev->tt || !udev->tt->hub->parent) {
  993. dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
  994. } else {
  995. struct xhci_root_port_bw_info *rh_bw;
  996. struct xhci_tt_bw_info *tt_bw;
  997. rh_bw = &xhci->rh_bw[port_num - 1];
  998. /* Find the right TT. */
  999. list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
  1000. if (tt_bw->slot_id != udev->tt->hub->slot_id)
  1001. continue;
  1002. if (!dev->udev->tt->multi ||
  1003. (udev->tt->multi &&
  1004. tt_bw->ttport == dev->udev->ttport)) {
  1005. dev->bw_table = &tt_bw->bw_table;
  1006. dev->tt_info = tt_bw;
  1007. break;
  1008. }
  1009. }
  1010. if (!dev->tt_info)
  1011. xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
  1012. }
  1013. /* Is this a LS/FS device under an external HS hub? */
  1014. if (udev->tt && udev->tt->hub->parent) {
  1015. slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
  1016. (udev->ttport << 8));
  1017. if (udev->tt->multi)
  1018. slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
  1019. }
  1020. xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
  1021. xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
  1022. /* Step 4 - ring already allocated */
  1023. /* Step 5 */
  1024. ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
  1025. /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
  1026. ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
  1027. max_packets);
  1028. ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
  1029. dev->eps[0].ring->cycle_state);
  1030. /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
  1031. return 0;
  1032. }
  1033. /*
  1034. * Convert interval expressed as 2^(bInterval - 1) == interval into
  1035. * straight exponent value 2^n == interval.
  1036. *
  1037. */
  1038. static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
  1039. struct usb_host_endpoint *ep)
  1040. {
  1041. unsigned int interval;
  1042. interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
  1043. if (interval != ep->desc.bInterval - 1)
  1044. dev_warn(&udev->dev,
  1045. "ep %#x - rounding interval to %d %sframes\n",
  1046. ep->desc.bEndpointAddress,
  1047. 1 << interval,
  1048. udev->speed == USB_SPEED_FULL ? "" : "micro");
  1049. if (udev->speed == USB_SPEED_FULL) {
  1050. /*
  1051. * Full speed isoc endpoints specify interval in frames,
  1052. * not microframes. We are using microframes everywhere,
  1053. * so adjust accordingly.
  1054. */
  1055. interval += 3; /* 1 frame = 2^3 uframes */
  1056. }
  1057. return interval;
  1058. }
  1059. /*
  1060. * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
  1061. * microframes, rounded down to nearest power of 2.
  1062. */
  1063. static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
  1064. struct usb_host_endpoint *ep, unsigned int desc_interval,
  1065. unsigned int min_exponent, unsigned int max_exponent)
  1066. {
  1067. unsigned int interval;
  1068. interval = fls(desc_interval) - 1;
  1069. interval = clamp_val(interval, min_exponent, max_exponent);
  1070. if ((1 << interval) != desc_interval)
  1071. dev_warn(&udev->dev,
  1072. "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
  1073. ep->desc.bEndpointAddress,
  1074. 1 << interval,
  1075. desc_interval);
  1076. return interval;
  1077. }
  1078. static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
  1079. struct usb_host_endpoint *ep)
  1080. {
  1081. if (ep->desc.bInterval == 0)
  1082. return 0;
  1083. return xhci_microframes_to_exponent(udev, ep,
  1084. ep->desc.bInterval, 0, 15);
  1085. }
  1086. static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
  1087. struct usb_host_endpoint *ep)
  1088. {
  1089. return xhci_microframes_to_exponent(udev, ep,
  1090. ep->desc.bInterval * 8, 3, 10);
  1091. }
  1092. /* Return the polling or NAK interval.
  1093. *
  1094. * The polling interval is expressed in "microframes". If xHCI's Interval field
  1095. * is set to N, it will service the endpoint every 2^(Interval)*125us.
  1096. *
  1097. * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
  1098. * is set to 0.
  1099. */
  1100. static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
  1101. struct usb_host_endpoint *ep)
  1102. {
  1103. unsigned int interval = 0;
  1104. switch (udev->speed) {
  1105. case USB_SPEED_HIGH:
  1106. /* Max NAK rate */
  1107. if (usb_endpoint_xfer_control(&ep->desc) ||
  1108. usb_endpoint_xfer_bulk(&ep->desc)) {
  1109. interval = xhci_parse_microframe_interval(udev, ep);
  1110. break;
  1111. }
  1112. /* Fall through - SS and HS isoc/int have same decoding */
  1113. case USB_SPEED_SUPER:
  1114. if (usb_endpoint_xfer_int(&ep->desc) ||
  1115. usb_endpoint_xfer_isoc(&ep->desc)) {
  1116. interval = xhci_parse_exponent_interval(udev, ep);
  1117. }
  1118. break;
  1119. case USB_SPEED_FULL:
  1120. if (usb_endpoint_xfer_isoc(&ep->desc)) {
  1121. interval = xhci_parse_exponent_interval(udev, ep);
  1122. break;
  1123. }
  1124. /*
  1125. * Fall through for interrupt endpoint interval decoding
  1126. * since it uses the same rules as low speed interrupt
  1127. * endpoints.
  1128. */
  1129. case USB_SPEED_LOW:
  1130. if (usb_endpoint_xfer_int(&ep->desc) ||
  1131. usb_endpoint_xfer_isoc(&ep->desc)) {
  1132. interval = xhci_parse_frame_interval(udev, ep);
  1133. }
  1134. break;
  1135. default:
  1136. BUG();
  1137. }
  1138. return EP_INTERVAL(interval);
  1139. }
  1140. /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
  1141. * High speed endpoint descriptors can define "the number of additional
  1142. * transaction opportunities per microframe", but that goes in the Max Burst
  1143. * endpoint context field.
  1144. */
  1145. static u32 xhci_get_endpoint_mult(struct usb_device *udev,
  1146. struct usb_host_endpoint *ep)
  1147. {
  1148. if (udev->speed != USB_SPEED_SUPER ||
  1149. !usb_endpoint_xfer_isoc(&ep->desc))
  1150. return 0;
  1151. return ep->ss_ep_comp.bmAttributes;
  1152. }
  1153. static u32 xhci_get_endpoint_type(struct usb_device *udev,
  1154. struct usb_host_endpoint *ep)
  1155. {
  1156. int in;
  1157. u32 type;
  1158. in = usb_endpoint_dir_in(&ep->desc);
  1159. if (usb_endpoint_xfer_control(&ep->desc)) {
  1160. type = EP_TYPE(CTRL_EP);
  1161. } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
  1162. if (in)
  1163. type = EP_TYPE(BULK_IN_EP);
  1164. else
  1165. type = EP_TYPE(BULK_OUT_EP);
  1166. } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
  1167. if (in)
  1168. type = EP_TYPE(ISOC_IN_EP);
  1169. else
  1170. type = EP_TYPE(ISOC_OUT_EP);
  1171. } else if (usb_endpoint_xfer_int(&ep->desc)) {
  1172. if (in)
  1173. type = EP_TYPE(INT_IN_EP);
  1174. else
  1175. type = EP_TYPE(INT_OUT_EP);
  1176. } else {
  1177. type = 0;
  1178. }
  1179. return type;
  1180. }
  1181. /* Return the maximum endpoint service interval time (ESIT) payload.
  1182. * Basically, this is the maxpacket size, multiplied by the burst size
  1183. * and mult size.
  1184. */
  1185. static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
  1186. struct usb_device *udev,
  1187. struct usb_host_endpoint *ep)
  1188. {
  1189. int max_burst;
  1190. int max_packet;
  1191. /* Only applies for interrupt or isochronous endpoints */
  1192. if (usb_endpoint_xfer_control(&ep->desc) ||
  1193. usb_endpoint_xfer_bulk(&ep->desc))
  1194. return 0;
  1195. if (udev->speed == USB_SPEED_SUPER)
  1196. return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
  1197. max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
  1198. max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
  1199. /* A 0 in max burst means 1 transfer per ESIT */
  1200. return max_packet * (max_burst + 1);
  1201. }
  1202. /* Set up an endpoint with one ring segment. Do not allocate stream rings.
  1203. * Drivers will have to call usb_alloc_streams() to do that.
  1204. */
  1205. int xhci_endpoint_init(struct xhci_hcd *xhci,
  1206. struct xhci_virt_device *virt_dev,
  1207. struct usb_device *udev,
  1208. struct usb_host_endpoint *ep,
  1209. gfp_t mem_flags)
  1210. {
  1211. unsigned int ep_index;
  1212. struct xhci_ep_ctx *ep_ctx;
  1213. struct xhci_ring *ep_ring;
  1214. unsigned int max_packet;
  1215. unsigned int max_burst;
  1216. enum xhci_ring_type type;
  1217. u32 max_esit_payload;
  1218. u32 endpoint_type;
  1219. ep_index = xhci_get_endpoint_index(&ep->desc);
  1220. ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
  1221. endpoint_type = xhci_get_endpoint_type(udev, ep);
  1222. if (!endpoint_type)
  1223. return -EINVAL;
  1224. ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);
  1225. type = usb_endpoint_type(&ep->desc);
  1226. /* Set up the endpoint ring */
  1227. virt_dev->eps[ep_index].new_ring =
  1228. xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
  1229. if (!virt_dev->eps[ep_index].new_ring) {
  1230. /* Attempt to use the ring cache */
  1231. if (virt_dev->num_rings_cached == 0)
  1232. return -ENOMEM;
  1233. virt_dev->eps[ep_index].new_ring =
  1234. virt_dev->ring_cache[virt_dev->num_rings_cached];
  1235. virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
  1236. virt_dev->num_rings_cached--;
  1237. xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
  1238. 1, type);
  1239. }
  1240. virt_dev->eps[ep_index].skip = false;
  1241. ep_ring = virt_dev->eps[ep_index].new_ring;
  1242. ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
  1243. ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
  1244. | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
  1245. /* FIXME dig Mult and streams info out of ep companion desc */
  1246. /* Allow 3 retries for everything but isoc;
  1247. * CErr shall be set to 0 for Isoch endpoints.
  1248. */
  1249. if (!usb_endpoint_xfer_isoc(&ep->desc))
  1250. ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
  1251. else
  1252. ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
  1253. /* Set the max packet size and max burst */
  1254. max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
  1255. max_burst = 0;
  1256. switch (udev->speed) {
  1257. case USB_SPEED_SUPER:
  1258. /* dig out max burst from ep companion desc */
  1259. max_burst = ep->ss_ep_comp.bMaxBurst;
  1260. break;
  1261. case USB_SPEED_HIGH:
  1262. /* Some devices get this wrong */
  1263. if (usb_endpoint_xfer_bulk(&ep->desc))
  1264. max_packet = 512;
  1265. /* bits 11:12 specify the number of additional transaction
  1266. * opportunities per microframe (USB 2.0, section 9.6.6)
  1267. */
  1268. if (usb_endpoint_xfer_isoc(&ep->desc) ||
  1269. usb_endpoint_xfer_int(&ep->desc)) {
  1270. max_burst = (usb_endpoint_maxp(&ep->desc)
  1271. & 0x1800) >> 11;
  1272. }
  1273. break;
  1274. case USB_SPEED_FULL:
  1275. case USB_SPEED_LOW:
  1276. break;
  1277. default:
  1278. BUG();
  1279. }
  1280. ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
  1281. MAX_BURST(max_burst));
  1282. max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
  1283. ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
  1284. /*
  1285. * XXX no idea how to calculate the average TRB buffer length for bulk
  1286. * endpoints, as the driver gives us no clue how big each scatter gather
  1287. * list entry (or buffer) is going to be.
  1288. *
  1289. * For isochronous and interrupt endpoints, we set it to the max
  1290. * available, until we have new API in the USB core to allow drivers to
  1291. * declare how much bandwidth they actually need.
  1292. *
  1293. * Normally, it would be calculated by taking the total of the buffer
  1294. * lengths in the TD and then dividing by the number of TRBs in a TD,
  1295. * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
  1296. * use Event Data TRBs, and we don't chain in a link TRB on short
  1297. * transfers, we're basically dividing by 1.
  1298. *
  1299. * xHCI 1.0 specification indicates that the Average TRB Length should
  1300. * be set to 8 for control endpoints.
  1301. */
  1302. if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
  1303. ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
  1304. else
  1305. ep_ctx->tx_info |=
  1306. cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
  1307. /* FIXME Debug endpoint context */
  1308. return 0;
  1309. }
  1310. void xhci_endpoint_zero(struct xhci_hcd *xhci,
  1311. struct xhci_virt_device *virt_dev,
  1312. struct usb_host_endpoint *ep)
  1313. {
  1314. unsigned int ep_index;
  1315. struct xhci_ep_ctx *ep_ctx;
  1316. ep_index = xhci_get_endpoint_index(&ep->desc);
  1317. ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
  1318. ep_ctx->ep_info = 0;
  1319. ep_ctx->ep_info2 = 0;
  1320. ep_ctx->deq = 0;
  1321. ep_ctx->tx_info = 0;
  1322. /* Don't free the endpoint ring until the set interface or configuration
  1323. * request succeeds.
  1324. */
  1325. }
  1326. void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
  1327. {
  1328. bw_info->ep_interval = 0;
  1329. bw_info->mult = 0;
  1330. bw_info->num_packets = 0;
  1331. bw_info->max_packet_size = 0;
  1332. bw_info->type = 0;
  1333. bw_info->max_esit_payload = 0;
  1334. }
  1335. void xhci_update_bw_info(struct xhci_hcd *xhci,
  1336. struct xhci_container_ctx *in_ctx,
  1337. struct xhci_input_control_ctx *ctrl_ctx,
  1338. struct xhci_virt_device *virt_dev)
  1339. {
  1340. struct xhci_bw_info *bw_info;
  1341. struct xhci_ep_ctx *ep_ctx;
  1342. unsigned int ep_type;
  1343. int i;
  1344. for (i = 1; i < 31; ++i) {
  1345. bw_info = &virt_dev->eps[i].bw_info;
  1346. /* We can't tell what endpoint type is being dropped, but
  1347. * unconditionally clearing the bandwidth info for non-periodic
  1348. * endpoints should be harmless because the info will never be
  1349. * set in the first place.
  1350. */
  1351. if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
  1352. /* Dropped endpoint */
  1353. xhci_clear_endpoint_bw_info(bw_info);
  1354. continue;
  1355. }
  1356. if (EP_IS_ADDED(ctrl_ctx, i)) {
  1357. ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
  1358. ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
  1359. /* Ignore non-periodic endpoints */
  1360. if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
  1361. ep_type != ISOC_IN_EP &&
  1362. ep_type != INT_IN_EP)
  1363. continue;
  1364. /* Added or changed endpoint */
  1365. bw_info->ep_interval = CTX_TO_EP_INTERVAL(
  1366. le32_to_cpu(ep_ctx->ep_info));
  1367. /* Number of packets and mult are zero-based in the
  1368. * input context, but we want one-based for the
  1369. * interval table.
  1370. */
  1371. bw_info->mult = CTX_TO_EP_MULT(
  1372. le32_to_cpu(ep_ctx->ep_info)) + 1;
  1373. bw_info->num_packets = CTX_TO_MAX_BURST(
  1374. le32_to_cpu(ep_ctx->ep_info2)) + 1;
  1375. bw_info->max_packet_size = MAX_PACKET_DECODED(
  1376. le32_to_cpu(ep_ctx->ep_info2));
  1377. bw_info->type = ep_type;
  1378. bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
  1379. le32_to_cpu(ep_ctx->tx_info));
  1380. }
  1381. }
  1382. }
  1383. /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
  1384. * Useful when you want to change one particular aspect of the endpoint and then
  1385. * issue a configure endpoint command.
  1386. */
  1387. void xhci_endpoint_copy(struct xhci_hcd *xhci,
  1388. struct xhci_container_ctx *in_ctx,
  1389. struct xhci_container_ctx *out_ctx,
  1390. unsigned int ep_index)
  1391. {
  1392. struct xhci_ep_ctx *out_ep_ctx;
  1393. struct xhci_ep_ctx *in_ep_ctx;
  1394. out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
  1395. in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
  1396. in_ep_ctx->ep_info = out_ep_ctx->ep_info;
  1397. in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
  1398. in_ep_ctx->deq = out_ep_ctx->deq;
  1399. in_ep_ctx->tx_info = out_ep_ctx->tx_info;
  1400. }
  1401. /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
  1402. * Useful when you want to change one particular aspect of the endpoint and then
  1403. * issue a configure endpoint command. Only the context entries field matters,
  1404. * but we'll copy the whole thing anyway.
  1405. */
  1406. void xhci_slot_copy(struct xhci_hcd *xhci,
  1407. struct xhci_container_ctx *in_ctx,
  1408. struct xhci_container_ctx *out_ctx)
  1409. {
  1410. struct xhci_slot_ctx *in_slot_ctx;
  1411. struct xhci_slot_ctx *out_slot_ctx;
  1412. in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
  1413. out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
  1414. in_slot_ctx->dev_info = out_slot_ctx->dev_info;
  1415. in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
  1416. in_slot_ctx->tt_info = out_slot_ctx->tt_info;
  1417. in_slot_ctx->dev_state = out_slot_ctx->dev_state;
  1418. }
  1419. /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
  1420. static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
  1421. {
  1422. int i;
  1423. struct device *dev = xhci_to_hcd(xhci)->self.controller;
  1424. int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
  1425. xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
  1426. if (!num_sp)
  1427. return 0;
  1428. xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
  1429. if (!xhci->scratchpad)
  1430. goto fail_sp;
  1431. xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
  1432. num_sp * sizeof(u64),
  1433. &xhci->scratchpad->sp_dma, flags);
  1434. if (!xhci->scratchpad->sp_array)
  1435. goto fail_sp2;
  1436. xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
  1437. if (!xhci->scratchpad->sp_buffers)
  1438. goto fail_sp3;
  1439. xhci->scratchpad->sp_dma_buffers =
  1440. kzalloc(sizeof(dma_addr_t) * num_sp, flags);
  1441. if (!xhci->scratchpad->sp_dma_buffers)
  1442. goto fail_sp4;
  1443. xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
  1444. for (i = 0; i < num_sp; i++) {
  1445. dma_addr_t dma;
  1446. void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
  1447. flags);
  1448. if (!buf)
  1449. goto fail_sp5;
  1450. xhci->scratchpad->sp_array[i] = dma;
  1451. xhci->scratchpad->sp_buffers[i] = buf;
  1452. xhci->scratchpad->sp_dma_buffers[i] = dma;
  1453. }
  1454. return 0;
  1455. fail_sp5:
  1456. for (i = i - 1; i >= 0; i--) {
  1457. dma_free_coherent(dev, xhci->page_size,
  1458. xhci->scratchpad->sp_buffers[i],
  1459. xhci->scratchpad->sp_dma_buffers[i]);
  1460. }
  1461. kfree(xhci->scratchpad->sp_dma_buffers);
  1462. fail_sp4:
  1463. kfree(xhci->scratchpad->sp_buffers);
  1464. fail_sp3:
  1465. dma_free_coherent(dev, num_sp * sizeof(u64),
  1466. xhci->scratchpad->sp_array,
  1467. xhci->scratchpad->sp_dma);
  1468. fail_sp2:
  1469. kfree(xhci->scratchpad);
  1470. xhci->scratchpad = NULL;
  1471. fail_sp:
  1472. return -ENOMEM;
  1473. }
  1474. static void scratchpad_free(struct xhci_hcd *xhci)
  1475. {
  1476. int num_sp;
  1477. int i;
  1478. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  1479. if (!xhci->scratchpad)
  1480. return;
  1481. num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
  1482. for (i = 0; i < num_sp; i++) {
  1483. dma_free_coherent(&pdev->dev, xhci->page_size,
  1484. xhci->scratchpad->sp_buffers[i],
  1485. xhci->scratchpad->sp_dma_buffers[i]);
  1486. }
  1487. kfree(xhci->scratchpad->sp_dma_buffers);
  1488. kfree(xhci->scratchpad->sp_buffers);
  1489. dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
  1490. xhci->scratchpad->sp_array,
  1491. xhci->scratchpad->sp_dma);
  1492. kfree(xhci->scratchpad);
  1493. xhci->scratchpad = NULL;
  1494. }
  1495. struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
  1496. bool allocate_in_ctx, bool allocate_completion,
  1497. gfp_t mem_flags)
  1498. {
  1499. struct xhci_command *command;
  1500. command = kzalloc(sizeof(*command), mem_flags);
  1501. if (!command)
  1502. return NULL;
  1503. if (allocate_in_ctx) {
  1504. command->in_ctx =
  1505. xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
  1506. mem_flags);
  1507. if (!command->in_ctx) {
  1508. kfree(command);
  1509. return NULL;
  1510. }
  1511. }
  1512. if (allocate_completion) {
  1513. command->completion =
  1514. kzalloc(sizeof(struct completion), mem_flags);
  1515. if (!command->completion) {
  1516. xhci_free_container_ctx(xhci, command->in_ctx);
  1517. kfree(command);
  1518. return NULL;
  1519. }
  1520. init_completion(command->completion);
  1521. }
  1522. command->status = 0;
  1523. INIT_LIST_HEAD(&command->cmd_list);
  1524. return command;
  1525. }
  1526. void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
  1527. {
  1528. if (urb_priv) {
  1529. kfree(urb_priv->td[0]);
  1530. kfree(urb_priv);
  1531. }
  1532. }
  1533. void xhci_free_command(struct xhci_hcd *xhci,
  1534. struct xhci_command *command)
  1535. {
  1536. xhci_free_container_ctx(xhci,
  1537. command->in_ctx);
  1538. kfree(command->completion);
  1539. kfree(command);
  1540. }
  1541. void xhci_mem_cleanup(struct xhci_hcd *xhci)
  1542. {
  1543. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  1544. struct dev_info *dev_info, *next;
  1545. struct xhci_cd *cur_cd, *next_cd;
  1546. unsigned long flags;
  1547. int size;
  1548. int i, j, num_ports;
  1549. /* Free the Event Ring Segment Table and the actual Event Ring */
  1550. size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
  1551. if (xhci->erst.entries)
  1552. dma_free_coherent(&pdev->dev, size,
  1553. xhci->erst.entries, xhci->erst.erst_dma_addr);
  1554. xhci->erst.entries = NULL;
  1555. xhci_dbg(xhci, "Freed ERST\n");
  1556. if (xhci->event_ring)
  1557. xhci_ring_free(xhci, xhci->event_ring);
  1558. xhci->event_ring = NULL;
  1559. xhci_dbg(xhci, "Freed event ring\n");
  1560. if (xhci->lpm_command)
  1561. xhci_free_command(xhci, xhci->lpm_command);
  1562. xhci->cmd_ring_reserved_trbs = 0;
  1563. if (xhci->cmd_ring)
  1564. xhci_ring_free(xhci, xhci->cmd_ring);
  1565. xhci->cmd_ring = NULL;
  1566. xhci_dbg(xhci, "Freed command ring\n");
  1567. list_for_each_entry_safe(cur_cd, next_cd,
  1568. &xhci->cancel_cmd_list, cancel_cmd_list) {
  1569. list_del(&cur_cd->cancel_cmd_list);
  1570. kfree(cur_cd);
  1571. }
  1572. for (i = 1; i < MAX_HC_SLOTS; ++i)
  1573. xhci_free_virt_device(xhci, i);
  1574. if (xhci->segment_pool)
  1575. dma_pool_destroy(xhci->segment_pool);
  1576. xhci->segment_pool = NULL;
  1577. xhci_dbg(xhci, "Freed segment pool\n");
  1578. if (xhci->device_pool)
  1579. dma_pool_destroy(xhci->device_pool);
  1580. xhci->device_pool = NULL;
  1581. xhci_dbg(xhci, "Freed device context pool\n");
  1582. if (xhci->small_streams_pool)
  1583. dma_pool_destroy(xhci->small_streams_pool);
  1584. xhci->small_streams_pool = NULL;
  1585. xhci_dbg(xhci, "Freed small stream array pool\n");
  1586. if (xhci->medium_streams_pool)
  1587. dma_pool_destroy(xhci->medium_streams_pool);
  1588. xhci->medium_streams_pool = NULL;
  1589. xhci_dbg(xhci, "Freed medium stream array pool\n");
  1590. if (xhci->dcbaa)
  1591. dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
  1592. xhci->dcbaa, xhci->dcbaa->dma);
  1593. xhci->dcbaa = NULL;
  1594. scratchpad_free(xhci);
  1595. spin_lock_irqsave(&xhci->lock, flags);
  1596. list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
  1597. list_del(&dev_info->list);
  1598. kfree(dev_info);
  1599. }
  1600. spin_unlock_irqrestore(&xhci->lock, flags);
  1601. if (!xhci->rh_bw)
  1602. goto no_bw;
  1603. num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
  1604. for (i = 0; i < num_ports; i++) {
  1605. struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
  1606. for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
  1607. struct list_head *ep = &bwt->interval_bw[j].endpoints;
  1608. while (!list_empty(ep))
  1609. list_del_init(ep->next);
  1610. }
  1611. }
  1612. for (i = 0; i < num_ports; i++) {
  1613. struct xhci_tt_bw_info *tt, *n;
  1614. list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
  1615. list_del(&tt->tt_list);
  1616. kfree(tt);
  1617. }
  1618. }
  1619. no_bw:
  1620. xhci->num_usb2_ports = 0;
  1621. xhci->num_usb3_ports = 0;
  1622. xhci->num_active_eps = 0;
  1623. kfree(xhci->usb2_ports);
  1624. kfree(xhci->usb3_ports);
  1625. kfree(xhci->port_array);
  1626. kfree(xhci->rh_bw);
  1627. kfree(xhci->ext_caps);
  1628. xhci->page_size = 0;
  1629. xhci->page_shift = 0;
  1630. xhci->bus_state[0].bus_suspended = 0;
  1631. xhci->bus_state[1].bus_suspended = 0;
  1632. }
  1633. static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
  1634. struct xhci_segment *input_seg,
  1635. union xhci_trb *start_trb,
  1636. union xhci_trb *end_trb,
  1637. dma_addr_t input_dma,
  1638. struct xhci_segment *result_seg,
  1639. char *test_name, int test_number)
  1640. {
  1641. unsigned long long start_dma;
  1642. unsigned long long end_dma;
  1643. struct xhci_segment *seg;
  1644. start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
  1645. end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
  1646. seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
  1647. if (seg != result_seg) {
  1648. xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
  1649. test_name, test_number);
  1650. xhci_warn(xhci, "Tested TRB math w/ seg %p and "
  1651. "input DMA 0x%llx\n",
  1652. input_seg,
  1653. (unsigned long long) input_dma);
  1654. xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
  1655. "ending TRB %p (0x%llx DMA)\n",
  1656. start_trb, start_dma,
  1657. end_trb, end_dma);
  1658. xhci_warn(xhci, "Expected seg %p, got seg %p\n",
  1659. result_seg, seg);
  1660. return -1;
  1661. }
  1662. return 0;
  1663. }
  1664. /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
  1665. static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
  1666. {
  1667. struct {
  1668. dma_addr_t input_dma;
  1669. struct xhci_segment *result_seg;
  1670. } simple_test_vector [] = {
  1671. /* A zeroed DMA field should fail */
  1672. { 0, NULL },
  1673. /* One TRB before the ring start should fail */
  1674. { xhci->event_ring->first_seg->dma - 16, NULL },
  1675. /* One byte before the ring start should fail */
  1676. { xhci->event_ring->first_seg->dma - 1, NULL },
  1677. /* Starting TRB should succeed */
  1678. { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
  1679. /* Ending TRB should succeed */
  1680. { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
  1681. xhci->event_ring->first_seg },
  1682. /* One byte after the ring end should fail */
  1683. { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
  1684. /* One TRB after the ring end should fail */
  1685. { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
  1686. /* An address of all ones should fail */
  1687. { (dma_addr_t) (~0), NULL },
  1688. };
  1689. struct {
  1690. struct xhci_segment *input_seg;
  1691. union xhci_trb *start_trb;
  1692. union xhci_trb *end_trb;
  1693. dma_addr_t input_dma;
  1694. struct xhci_segment *result_seg;
  1695. } complex_test_vector [] = {
  1696. /* Test feeding a valid DMA address from a different ring */
  1697. { .input_seg = xhci->event_ring->first_seg,
  1698. .start_trb = xhci->event_ring->first_seg->trbs,
  1699. .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
  1700. .input_dma = xhci->cmd_ring->first_seg->dma,
  1701. .result_seg = NULL,
  1702. },
  1703. /* Test feeding a valid end TRB from a different ring */
  1704. { .input_seg = xhci->event_ring->first_seg,
  1705. .start_trb = xhci->event_ring->first_seg->trbs,
  1706. .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
  1707. .input_dma = xhci->cmd_ring->first_seg->dma,
  1708. .result_seg = NULL,
  1709. },
  1710. /* Test feeding a valid start and end TRB from a different ring */
  1711. { .input_seg = xhci->event_ring->first_seg,
  1712. .start_trb = xhci->cmd_ring->first_seg->trbs,
  1713. .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
  1714. .input_dma = xhci->cmd_ring->first_seg->dma,
  1715. .result_seg = NULL,
  1716. },
  1717. /* TRB in this ring, but after this TD */
  1718. { .input_seg = xhci->event_ring->first_seg,
  1719. .start_trb = &xhci->event_ring->first_seg->trbs[0],
  1720. .end_trb = &xhci->event_ring->first_seg->trbs[3],
  1721. .input_dma = xhci->event_ring->first_seg->dma + 4*16,
  1722. .result_seg = NULL,
  1723. },
  1724. /* TRB in this ring, but before this TD */
  1725. { .input_seg = xhci->event_ring->first_seg,
  1726. .start_trb = &xhci->event_ring->first_seg->trbs[3],
  1727. .end_trb = &xhci->event_ring->first_seg->trbs[6],
  1728. .input_dma = xhci->event_ring->first_seg->dma + 2*16,
  1729. .result_seg = NULL,
  1730. },
  1731. /* TRB in this ring, but after this wrapped TD */
  1732. { .input_seg = xhci->event_ring->first_seg,
  1733. .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
  1734. .end_trb = &xhci->event_ring->first_seg->trbs[1],
  1735. .input_dma = xhci->event_ring->first_seg->dma + 2*16,
  1736. .result_seg = NULL,
  1737. },
  1738. /* TRB in this ring, but before this wrapped TD */
  1739. { .input_seg = xhci->event_ring->first_seg,
  1740. .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
  1741. .end_trb = &xhci->event_ring->first_seg->trbs[1],
  1742. .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
  1743. .result_seg = NULL,
  1744. },
  1745. /* TRB not in this ring, and we have a wrapped TD */
  1746. { .input_seg = xhci->event_ring->first_seg,
  1747. .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
  1748. .end_trb = &xhci->event_ring->first_seg->trbs[1],
  1749. .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
  1750. .result_seg = NULL,
  1751. },
  1752. };
  1753. unsigned int num_tests;
  1754. int i, ret;
  1755. num_tests = ARRAY_SIZE(simple_test_vector);
  1756. for (i = 0; i < num_tests; i++) {
  1757. ret = xhci_test_trb_in_td(xhci,
  1758. xhci->event_ring->first_seg,
  1759. xhci->event_ring->first_seg->trbs,
  1760. &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
  1761. simple_test_vector[i].input_dma,
  1762. simple_test_vector[i].result_seg,
  1763. "Simple", i);
  1764. if (ret < 0)
  1765. return ret;
  1766. }
  1767. num_tests = ARRAY_SIZE(complex_test_vector);
  1768. for (i = 0; i < num_tests; i++) {
  1769. ret = xhci_test_trb_in_td(xhci,
  1770. complex_test_vector[i].input_seg,
  1771. complex_test_vector[i].start_trb,
  1772. complex_test_vector[i].end_trb,
  1773. complex_test_vector[i].input_dma,
  1774. complex_test_vector[i].result_seg,
  1775. "Complex", i);
  1776. if (ret < 0)
  1777. return ret;
  1778. }
  1779. xhci_dbg(xhci, "TRB math tests passed.\n");
  1780. return 0;
  1781. }
  1782. static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
  1783. {
  1784. u64 temp;
  1785. dma_addr_t deq;
  1786. deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
  1787. xhci->event_ring->dequeue);
  1788. if (deq == 0 && !in_interrupt())
  1789. xhci_warn(xhci, "WARN something wrong with SW event ring "
  1790. "dequeue ptr.\n");
  1791. /* Update HC event ring dequeue pointer */
  1792. temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  1793. temp &= ERST_PTR_MASK;
  1794. /* Don't clear the EHB bit (which is RW1C) because
  1795. * there might be more events to service.
  1796. */
  1797. temp &= ~ERST_EHB;
  1798. xhci_dbg(xhci, "// Write event ring dequeue pointer, "
  1799. "preserving EHB bit\n");
  1800. xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
  1801. &xhci->ir_set->erst_dequeue);
  1802. }
  1803. static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
  1804. __le32 __iomem *addr, u8 major_revision, int max_caps)
  1805. {
  1806. u32 temp, port_offset, port_count;
  1807. int i;
  1808. if (major_revision > 0x03) {
  1809. xhci_warn(xhci, "Ignoring unknown port speed, "
  1810. "Ext Cap %p, revision = 0x%x\n",
  1811. addr, major_revision);
  1812. /* Ignoring port protocol we can't understand. FIXME */
  1813. return;
  1814. }
  1815. /* Port offset and count in the third dword, see section 7.2 */
  1816. temp = xhci_readl(xhci, addr + 2);
  1817. port_offset = XHCI_EXT_PORT_OFF(temp);
  1818. port_count = XHCI_EXT_PORT_COUNT(temp);
  1819. xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
  1820. "count = %u, revision = 0x%x\n",
  1821. addr, port_offset, port_count, major_revision);
  1822. /* Port count includes the current port offset */
  1823. if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
  1824. /* WTF? "Valid values are ‘1’ to MaxPorts" */
  1825. return;
  1826. /* cache usb2 port capabilities */
  1827. if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
  1828. xhci->ext_caps[xhci->num_ext_caps++] = temp;
  1829. /* Check the host's USB2 LPM capability */
  1830. if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
  1831. (temp & XHCI_L1C)) {
  1832. xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n");
  1833. xhci->sw_lpm_support = 1;
  1834. }
  1835. if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
  1836. xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n");
  1837. xhci->sw_lpm_support = 1;
  1838. if (temp & XHCI_HLC) {
  1839. xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n");
  1840. xhci->hw_lpm_support = 1;
  1841. }
  1842. }
  1843. port_offset--;
  1844. for (i = port_offset; i < (port_offset + port_count); i++) {
  1845. /* Duplicate entry. Ignore the port if the revisions differ. */
  1846. if (xhci->port_array[i] != 0) {
  1847. xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
  1848. " port %u\n", addr, i);
  1849. xhci_warn(xhci, "Port was marked as USB %u, "
  1850. "duplicated as USB %u\n",
  1851. xhci->port_array[i], major_revision);
  1852. /* Only adjust the roothub port counts if we haven't
  1853. * found a similar duplicate.
  1854. */
  1855. if (xhci->port_array[i] != major_revision &&
  1856. xhci->port_array[i] != DUPLICATE_ENTRY) {
  1857. if (xhci->port_array[i] == 0x03)
  1858. xhci->num_usb3_ports--;
  1859. else
  1860. xhci->num_usb2_ports--;
  1861. xhci->port_array[i] = DUPLICATE_ENTRY;
  1862. }
  1863. /* FIXME: Should we disable the port? */
  1864. continue;
  1865. }
  1866. xhci->port_array[i] = major_revision;
  1867. if (major_revision == 0x03)
  1868. xhci->num_usb3_ports++;
  1869. else
  1870. xhci->num_usb2_ports++;
  1871. }
  1872. /* FIXME: Should we disable ports not in the Extended Capabilities? */
  1873. }
  1874. /*
  1875. * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
  1876. * specify what speeds each port is supposed to be. We can't count on the port
  1877. * speed bits in the PORTSC register being correct until a device is connected,
  1878. * but we need to set up the two fake roothubs with the correct number of USB
  1879. * 3.0 and USB 2.0 ports at host controller initialization time.
  1880. */
  1881. static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
  1882. {
  1883. __le32 __iomem *addr, *tmp_addr;
  1884. u32 offset, tmp_offset;
  1885. unsigned int num_ports;
  1886. int i, j, port_index;
  1887. int cap_count = 0;
  1888. addr = &xhci->cap_regs->hcc_params;
  1889. offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
  1890. if (offset == 0) {
  1891. xhci_err(xhci, "No Extended Capability registers, "
  1892. "unable to set up roothub.\n");
  1893. return -ENODEV;
  1894. }
  1895. num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
  1896. xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
  1897. if (!xhci->port_array)
  1898. return -ENOMEM;
  1899. xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
  1900. if (!xhci->rh_bw)
  1901. return -ENOMEM;
  1902. for (i = 0; i < num_ports; i++) {
  1903. struct xhci_interval_bw_table *bw_table;
  1904. INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
  1905. bw_table = &xhci->rh_bw[i].bw_table;
  1906. for (j = 0; j < XHCI_MAX_INTERVAL; j++)
  1907. INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
  1908. }
  1909. /*
  1910. * For whatever reason, the first capability offset is from the
  1911. * capability register base, not from the HCCPARAMS register.
  1912. * See section 5.3.6 for offset calculation.
  1913. */
  1914. addr = &xhci->cap_regs->hc_capbase + offset;
  1915. tmp_addr = addr;
  1916. tmp_offset = offset;
  1917. /* count extended protocol capability entries for later caching */
  1918. do {
  1919. u32 cap_id;
  1920. cap_id = xhci_readl(xhci, tmp_addr);
  1921. if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
  1922. cap_count++;
  1923. tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id);
  1924. tmp_addr += tmp_offset;
  1925. } while (tmp_offset);
  1926. xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
  1927. if (!xhci->ext_caps)
  1928. return -ENOMEM;
  1929. while (1) {
  1930. u32 cap_id;
  1931. cap_id = xhci_readl(xhci, addr);
  1932. if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
  1933. xhci_add_in_port(xhci, num_ports, addr,
  1934. (u8) XHCI_EXT_PORT_MAJOR(cap_id),
  1935. cap_count);
  1936. offset = XHCI_EXT_CAPS_NEXT(cap_id);
  1937. if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
  1938. == num_ports)
  1939. break;
  1940. /*
  1941. * Once you're into the Extended Capabilities, the offset is
  1942. * always relative to the register holding the offset.
  1943. */
  1944. addr += offset;
  1945. }
  1946. if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
  1947. xhci_warn(xhci, "No ports on the roothubs?\n");
  1948. return -ENODEV;
  1949. }
  1950. xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
  1951. xhci->num_usb2_ports, xhci->num_usb3_ports);
  1952. /* Place limits on the number of roothub ports so that the hub
  1953. * descriptors aren't longer than the USB core will allocate.
  1954. */
  1955. if (xhci->num_usb3_ports > 15) {
  1956. xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
  1957. xhci->num_usb3_ports = 15;
  1958. }
  1959. if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
  1960. xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
  1961. USB_MAXCHILDREN);
  1962. xhci->num_usb2_ports = USB_MAXCHILDREN;
  1963. }
  1964. /*
  1965. * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
  1966. * Not sure how the USB core will handle a hub with no ports...
  1967. */
  1968. if (xhci->num_usb2_ports) {
  1969. xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
  1970. xhci->num_usb2_ports, flags);
  1971. if (!xhci->usb2_ports)
  1972. return -ENOMEM;
  1973. port_index = 0;
  1974. for (i = 0; i < num_ports; i++) {
  1975. if (xhci->port_array[i] == 0x03 ||
  1976. xhci->port_array[i] == 0 ||
  1977. xhci->port_array[i] == DUPLICATE_ENTRY)
  1978. continue;
  1979. xhci->usb2_ports[port_index] =
  1980. &xhci->op_regs->port_status_base +
  1981. NUM_PORT_REGS*i;
  1982. xhci_dbg(xhci, "USB 2.0 port at index %u, "
  1983. "addr = %p\n", i,
  1984. xhci->usb2_ports[port_index]);
  1985. port_index++;
  1986. if (port_index == xhci->num_usb2_ports)
  1987. break;
  1988. }
  1989. }
  1990. if (xhci->num_usb3_ports) {
  1991. xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
  1992. xhci->num_usb3_ports, flags);
  1993. if (!xhci->usb3_ports)
  1994. return -ENOMEM;
  1995. port_index = 0;
  1996. for (i = 0; i < num_ports; i++)
  1997. if (xhci->port_array[i] == 0x03) {
  1998. xhci->usb3_ports[port_index] =
  1999. &xhci->op_regs->port_status_base +
  2000. NUM_PORT_REGS*i;
  2001. xhci_dbg(xhci, "USB 3.0 port at index %u, "
  2002. "addr = %p\n", i,
  2003. xhci->usb3_ports[port_index]);
  2004. port_index++;
  2005. if (port_index == xhci->num_usb3_ports)
  2006. break;
  2007. }
  2008. }
  2009. return 0;
  2010. }
  2011. int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
  2012. {
  2013. dma_addr_t dma;
  2014. struct device *dev = xhci_to_hcd(xhci)->self.controller;
  2015. unsigned int val, val2;
  2016. u64 val_64;
  2017. struct xhci_segment *seg;
  2018. u32 page_size, temp;
  2019. int i;
  2020. INIT_LIST_HEAD(&xhci->lpm_failed_devs);
  2021. INIT_LIST_HEAD(&xhci->cancel_cmd_list);
  2022. page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
  2023. xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
  2024. for (i = 0; i < 16; i++) {
  2025. if ((0x1 & page_size) != 0)
  2026. break;
  2027. page_size = page_size >> 1;
  2028. }
  2029. if (i < 16)
  2030. xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
  2031. else
  2032. xhci_warn(xhci, "WARN: no supported page size\n");
  2033. /* Use 4K pages, since that's common and the minimum the HC supports */
  2034. xhci->page_shift = 12;
  2035. xhci->page_size = 1 << xhci->page_shift;
  2036. xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
  2037. /*
  2038. * Program the Number of Device Slots Enabled field in the CONFIG
  2039. * register with the max value of slots the HC can handle.
  2040. */
  2041. val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
  2042. xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
  2043. (unsigned int) val);
  2044. val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
  2045. val |= (val2 & ~HCS_SLOTS_MASK);
  2046. xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
  2047. (unsigned int) val);
  2048. xhci_writel(xhci, val, &xhci->op_regs->config_reg);
  2049. /*
  2050. * Section 5.4.8 - doorbell array must be
  2051. * "physically contiguous and 64-byte (cache line) aligned".
  2052. */
  2053. xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
  2054. GFP_KERNEL);
  2055. if (!xhci->dcbaa)
  2056. goto fail;
  2057. memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
  2058. xhci->dcbaa->dma = dma;
  2059. xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
  2060. (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
  2061. xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
  2062. /*
  2063. * Initialize the ring segment pool. The ring must be a contiguous
  2064. * structure comprised of TRBs. The TRBs must be 16 byte aligned,
  2065. * however, the command ring segment needs 64-byte aligned segments,
  2066. * so we pick the greater alignment need.
  2067. */
  2068. xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
  2069. TRB_SEGMENT_SIZE, 64, xhci->page_size);
  2070. /* See Table 46 and Note on Figure 55 */
  2071. xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
  2072. 2112, 64, xhci->page_size);
  2073. if (!xhci->segment_pool || !xhci->device_pool)
  2074. goto fail;
  2075. /* Linear stream context arrays don't have any boundary restrictions,
  2076. * and only need to be 16-byte aligned.
  2077. */
  2078. xhci->small_streams_pool =
  2079. dma_pool_create("xHCI 256 byte stream ctx arrays",
  2080. dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
  2081. xhci->medium_streams_pool =
  2082. dma_pool_create("xHCI 1KB stream ctx arrays",
  2083. dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
  2084. /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
  2085. * will be allocated with dma_alloc_coherent()
  2086. */
  2087. if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
  2088. goto fail;
  2089. /* Set up the command ring to have one segments for now. */
  2090. xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
  2091. if (!xhci->cmd_ring)
  2092. goto fail;
  2093. xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
  2094. xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
  2095. (unsigned long long)xhci->cmd_ring->first_seg->dma);
  2096. /* Set the address in the Command Ring Control register */
  2097. val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
  2098. val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
  2099. (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
  2100. xhci->cmd_ring->cycle_state;
  2101. xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
  2102. xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
  2103. xhci_dbg_cmd_ptrs(xhci);
  2104. xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
  2105. if (!xhci->lpm_command)
  2106. goto fail;
  2107. /* Reserve one command ring TRB for disabling LPM.
  2108. * Since the USB core grabs the shared usb_bus bandwidth mutex before
  2109. * disabling LPM, we only need to reserve one TRB for all devices.
  2110. */
  2111. xhci->cmd_ring_reserved_trbs++;
  2112. val = xhci_readl(xhci, &xhci->cap_regs->db_off);
  2113. val &= DBOFF_MASK;
  2114. xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
  2115. " from cap regs base addr\n", val);
  2116. xhci->dba = (void __iomem *) xhci->cap_regs + val;
  2117. xhci_dbg_regs(xhci);
  2118. xhci_print_run_regs(xhci);
  2119. /* Set ir_set to interrupt register set 0 */
  2120. xhci->ir_set = &xhci->run_regs->ir_set[0];
  2121. /*
  2122. * Event ring setup: Allocate a normal ring, but also setup
  2123. * the event ring segment table (ERST). Section 4.9.3.
  2124. */
  2125. xhci_dbg(xhci, "// Allocating event ring\n");
  2126. xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
  2127. flags);
  2128. if (!xhci->event_ring)
  2129. goto fail;
  2130. if (xhci_check_trb_in_td_math(xhci, flags) < 0)
  2131. goto fail;
  2132. xhci->erst.entries = dma_alloc_coherent(dev,
  2133. sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
  2134. GFP_KERNEL);
  2135. if (!xhci->erst.entries)
  2136. goto fail;
  2137. xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
  2138. (unsigned long long)dma);
  2139. memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
  2140. xhci->erst.num_entries = ERST_NUM_SEGS;
  2141. xhci->erst.erst_dma_addr = dma;
  2142. xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
  2143. xhci->erst.num_entries,
  2144. xhci->erst.entries,
  2145. (unsigned long long)xhci->erst.erst_dma_addr);
  2146. /* set ring base address and size for each segment table entry */
  2147. for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
  2148. struct xhci_erst_entry *entry = &xhci->erst.entries[val];
  2149. entry->seg_addr = cpu_to_le64(seg->dma);
  2150. entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
  2151. entry->rsvd = 0;
  2152. seg = seg->next;
  2153. }
  2154. /* set ERST count with the number of entries in the segment table */
  2155. val = xhci_readl(xhci, &xhci->ir_set->erst_size);
  2156. val &= ERST_SIZE_MASK;
  2157. val |= ERST_NUM_SEGS;
  2158. xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
  2159. val);
  2160. xhci_writel(xhci, val, &xhci->ir_set->erst_size);
  2161. xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
  2162. /* set the segment table base address */
  2163. xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
  2164. (unsigned long long)xhci->erst.erst_dma_addr);
  2165. val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
  2166. val_64 &= ERST_PTR_MASK;
  2167. val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
  2168. xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
  2169. /* Set the event ring dequeue address */
  2170. xhci_set_hc_event_deq(xhci);
  2171. xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
  2172. xhci_print_ir_set(xhci, 0);
  2173. /*
  2174. * XXX: Might need to set the Interrupter Moderation Register to
  2175. * something other than the default (~1ms minimum between interrupts).
  2176. * See section 5.5.1.2.
  2177. */
  2178. init_completion(&xhci->addr_dev);
  2179. for (i = 0; i < MAX_HC_SLOTS; ++i)
  2180. xhci->devs[i] = NULL;
  2181. for (i = 0; i < USB_MAXCHILDREN; ++i) {
  2182. xhci->bus_state[0].resume_done[i] = 0;
  2183. xhci->bus_state[1].resume_done[i] = 0;
  2184. }
  2185. if (scratchpad_alloc(xhci, flags))
  2186. goto fail;
  2187. if (xhci_setup_port_arrays(xhci, flags))
  2188. goto fail;
  2189. /* Enable USB 3.0 device notifications for function remote wake, which
  2190. * is necessary for allowing USB 3.0 devices to do remote wakeup from
  2191. * U3 (device suspend).
  2192. */
  2193. temp = xhci_readl(xhci, &xhci->op_regs->dev_notification);
  2194. temp &= ~DEV_NOTE_MASK;
  2195. temp |= DEV_NOTE_FWAKE;
  2196. xhci_writel(xhci, temp, &xhci->op_regs->dev_notification);
  2197. return 0;
  2198. fail:
  2199. xhci_warn(xhci, "Couldn't initialize memory\n");
  2200. xhci_halt(xhci);
  2201. xhci_reset(xhci);
  2202. xhci_mem_cleanup(xhci);
  2203. return -ENOMEM;
  2204. }