urb.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920
  1. #include <linux/module.h>
  2. #include <linux/string.h>
  3. #include <linux/bitops.h>
  4. #include <linux/slab.h>
  5. #include <linux/init.h>
  6. #include <linux/log2.h>
  7. #include <linux/usb.h>
  8. #include <linux/wait.h>
  9. #include <linux/usb/hcd.h>
  10. #include <linux/scatterlist.h>
  11. #define to_urb(d) container_of(d, struct urb, kref)
  12. static void urb_destroy(struct kref *kref)
  13. {
  14. struct urb *urb = to_urb(kref);
  15. if (urb->transfer_flags & URB_FREE_BUFFER)
  16. kfree(urb->transfer_buffer);
  17. kfree(urb);
  18. }
  19. /**
  20. * usb_init_urb - initializes a urb so that it can be used by a USB driver
  21. * @urb: pointer to the urb to initialize
  22. *
  23. * Initializes a urb so that the USB subsystem can use it properly.
  24. *
  25. * If a urb is created with a call to usb_alloc_urb() it is not
  26. * necessary to call this function. Only use this if you allocate the
  27. * space for a struct urb on your own. If you call this function, be
  28. * careful when freeing the memory for your urb that it is no longer in
  29. * use by the USB core.
  30. *
  31. * Only use this function if you _really_ understand what you are doing.
  32. */
  33. void usb_init_urb(struct urb *urb)
  34. {
  35. if (urb) {
  36. memset(urb, 0, sizeof(*urb));
  37. kref_init(&urb->kref);
  38. INIT_LIST_HEAD(&urb->anchor_list);
  39. }
  40. }
  41. EXPORT_SYMBOL_GPL(usb_init_urb);
  42. /**
  43. * usb_alloc_urb - creates a new urb for a USB driver to use
  44. * @iso_packets: number of iso packets for this urb
  45. * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
  46. * valid options for this.
  47. *
  48. * Creates an urb for the USB driver to use, initializes a few internal
  49. * structures, incrementes the usage counter, and returns a pointer to it.
  50. *
  51. * If no memory is available, NULL is returned.
  52. *
  53. * If the driver want to use this urb for interrupt, control, or bulk
  54. * endpoints, pass '0' as the number of iso packets.
  55. *
  56. * The driver must call usb_free_urb() when it is finished with the urb.
  57. */
  58. struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
  59. {
  60. struct urb *urb;
  61. urb = kmalloc(sizeof(struct urb) +
  62. iso_packets * sizeof(struct usb_iso_packet_descriptor),
  63. mem_flags);
  64. if (!urb) {
  65. printk(KERN_ERR "alloc_urb: kmalloc failed\n");
  66. return NULL;
  67. }
  68. usb_init_urb(urb);
  69. return urb;
  70. }
  71. EXPORT_SYMBOL_GPL(usb_alloc_urb);
  72. /**
  73. * usb_free_urb - frees the memory used by a urb when all users of it are finished
  74. * @urb: pointer to the urb to free, may be NULL
  75. *
  76. * Must be called when a user of a urb is finished with it. When the last user
  77. * of the urb calls this function, the memory of the urb is freed.
  78. *
  79. * Note: The transfer buffer associated with the urb is not freed unless the
  80. * URB_FREE_BUFFER transfer flag is set.
  81. */
  82. void usb_free_urb(struct urb *urb)
  83. {
  84. if (urb)
  85. kref_put(&urb->kref, urb_destroy);
  86. }
  87. EXPORT_SYMBOL_GPL(usb_free_urb);
  88. /**
  89. * usb_get_urb - increments the reference count of the urb
  90. * @urb: pointer to the urb to modify, may be NULL
  91. *
  92. * This must be called whenever a urb is transferred from a device driver to a
  93. * host controller driver. This allows proper reference counting to happen
  94. * for urbs.
  95. *
  96. * A pointer to the urb with the incremented reference counter is returned.
  97. */
  98. struct urb *usb_get_urb(struct urb *urb)
  99. {
  100. if (urb)
  101. kref_get(&urb->kref);
  102. return urb;
  103. }
  104. EXPORT_SYMBOL_GPL(usb_get_urb);
  105. /**
  106. * usb_anchor_urb - anchors an URB while it is processed
  107. * @urb: pointer to the urb to anchor
  108. * @anchor: pointer to the anchor
  109. *
  110. * This can be called to have access to URBs which are to be executed
  111. * without bothering to track them
  112. */
  113. void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
  114. {
  115. unsigned long flags;
  116. spin_lock_irqsave(&anchor->lock, flags);
  117. usb_get_urb(urb);
  118. list_add_tail(&urb->anchor_list, &anchor->urb_list);
  119. urb->anchor = anchor;
  120. if (unlikely(anchor->poisoned)) {
  121. atomic_inc(&urb->reject);
  122. }
  123. spin_unlock_irqrestore(&anchor->lock, flags);
  124. }
  125. EXPORT_SYMBOL_GPL(usb_anchor_urb);
  126. /* Callers must hold anchor->lock */
  127. static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
  128. {
  129. urb->anchor = NULL;
  130. list_del(&urb->anchor_list);
  131. usb_put_urb(urb);
  132. if (list_empty(&anchor->urb_list))
  133. wake_up(&anchor->wait);
  134. }
  135. /**
  136. * usb_unanchor_urb - unanchors an URB
  137. * @urb: pointer to the urb to anchor
  138. *
  139. * Call this to stop the system keeping track of this URB
  140. */
  141. void usb_unanchor_urb(struct urb *urb)
  142. {
  143. unsigned long flags;
  144. struct usb_anchor *anchor;
  145. if (!urb)
  146. return;
  147. anchor = urb->anchor;
  148. if (!anchor)
  149. return;
  150. spin_lock_irqsave(&anchor->lock, flags);
  151. /*
  152. * At this point, we could be competing with another thread which
  153. * has the same intention. To protect the urb from being unanchored
  154. * twice, only the winner of the race gets the job.
  155. */
  156. if (likely(anchor == urb->anchor))
  157. __usb_unanchor_urb(urb, anchor);
  158. spin_unlock_irqrestore(&anchor->lock, flags);
  159. }
  160. EXPORT_SYMBOL_GPL(usb_unanchor_urb);
  161. /*-------------------------------------------------------------------*/
  162. /**
  163. * usb_submit_urb - issue an asynchronous transfer request for an endpoint
  164. * @urb: pointer to the urb describing the request
  165. * @mem_flags: the type of memory to allocate, see kmalloc() for a list
  166. * of valid options for this.
  167. *
  168. * This submits a transfer request, and transfers control of the URB
  169. * describing that request to the USB subsystem. Request completion will
  170. * be indicated later, asynchronously, by calling the completion handler.
  171. * The three types of completion are success, error, and unlink
  172. * (a software-induced fault, also called "request cancellation").
  173. *
  174. * URBs may be submitted in interrupt context.
  175. *
  176. * The caller must have correctly initialized the URB before submitting
  177. * it. Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
  178. * available to ensure that most fields are correctly initialized, for
  179. * the particular kind of transfer, although they will not initialize
  180. * any transfer flags.
  181. *
  182. * Successful submissions return 0; otherwise this routine returns a
  183. * negative error number. If the submission is successful, the complete()
  184. * callback from the URB will be called exactly once, when the USB core and
  185. * Host Controller Driver (HCD) are finished with the URB. When the completion
  186. * function is called, control of the URB is returned to the device
  187. * driver which issued the request. The completion handler may then
  188. * immediately free or reuse that URB.
  189. *
  190. * With few exceptions, USB device drivers should never access URB fields
  191. * provided by usbcore or the HCD until its complete() is called.
  192. * The exceptions relate to periodic transfer scheduling. For both
  193. * interrupt and isochronous urbs, as part of successful URB submission
  194. * urb->interval is modified to reflect the actual transfer period used
  195. * (normally some power of two units). And for isochronous urbs,
  196. * urb->start_frame is modified to reflect when the URB's transfers were
  197. * scheduled to start.
  198. *
  199. * Not all isochronous transfer scheduling policies will work, but most
  200. * host controller drivers should easily handle ISO queues going from now
  201. * until 10-200 msec into the future. Drivers should try to keep at
  202. * least one or two msec of data in the queue; many controllers require
  203. * that new transfers start at least 1 msec in the future when they are
  204. * added. If the driver is unable to keep up and the queue empties out,
  205. * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
  206. * If the flag is set, or if the queue is idle, then the URB is always
  207. * assigned to the first available (and not yet expired) slot in the
  208. * endpoint's schedule. If the flag is not set and the queue is active
  209. * then the URB is always assigned to the next slot in the schedule
  210. * following the end of the endpoint's previous URB, even if that slot is
  211. * in the past. When a packet is assigned in this way to a slot that has
  212. * already expired, the packet is not transmitted and the corresponding
  213. * usb_iso_packet_descriptor's status field will return -EXDEV. If this
  214. * would happen to all the packets in the URB, submission fails with a
  215. * -EXDEV error code.
  216. *
  217. * For control endpoints, the synchronous usb_control_msg() call is
  218. * often used (in non-interrupt context) instead of this call.
  219. * That is often used through convenience wrappers, for the requests
  220. * that are standardized in the USB 2.0 specification. For bulk
  221. * endpoints, a synchronous usb_bulk_msg() call is available.
  222. *
  223. * Request Queuing:
  224. *
  225. * URBs may be submitted to endpoints before previous ones complete, to
  226. * minimize the impact of interrupt latencies and system overhead on data
  227. * throughput. With that queuing policy, an endpoint's queue would never
  228. * be empty. This is required for continuous isochronous data streams,
  229. * and may also be required for some kinds of interrupt transfers. Such
  230. * queuing also maximizes bandwidth utilization by letting USB controllers
  231. * start work on later requests before driver software has finished the
  232. * completion processing for earlier (successful) requests.
  233. *
  234. * As of Linux 2.6, all USB endpoint transfer queues support depths greater
  235. * than one. This was previously a HCD-specific behavior, except for ISO
  236. * transfers. Non-isochronous endpoint queues are inactive during cleanup
  237. * after faults (transfer errors or cancellation).
  238. *
  239. * Reserved Bandwidth Transfers:
  240. *
  241. * Periodic transfers (interrupt or isochronous) are performed repeatedly,
  242. * using the interval specified in the urb. Submitting the first urb to
  243. * the endpoint reserves the bandwidth necessary to make those transfers.
  244. * If the USB subsystem can't allocate sufficient bandwidth to perform
  245. * the periodic request, submitting such a periodic request should fail.
  246. *
  247. * For devices under xHCI, the bandwidth is reserved at configuration time, or
  248. * when the alt setting is selected. If there is not enough bus bandwidth, the
  249. * configuration/alt setting request will fail. Therefore, submissions to
  250. * periodic endpoints on devices under xHCI should never fail due to bandwidth
  251. * constraints.
  252. *
  253. * Device drivers must explicitly request that repetition, by ensuring that
  254. * some URB is always on the endpoint's queue (except possibly for short
  255. * periods during completion callacks). When there is no longer an urb
  256. * queued, the endpoint's bandwidth reservation is canceled. This means
  257. * drivers can use their completion handlers to ensure they keep bandwidth
  258. * they need, by reinitializing and resubmitting the just-completed urb
  259. * until the driver longer needs that periodic bandwidth.
  260. *
  261. * Memory Flags:
  262. *
  263. * The general rules for how to decide which mem_flags to use
  264. * are the same as for kmalloc. There are four
  265. * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
  266. * GFP_ATOMIC.
  267. *
  268. * GFP_NOFS is not ever used, as it has not been implemented yet.
  269. *
  270. * GFP_ATOMIC is used when
  271. * (a) you are inside a completion handler, an interrupt, bottom half,
  272. * tasklet or timer, or
  273. * (b) you are holding a spinlock or rwlock (does not apply to
  274. * semaphores), or
  275. * (c) current->state != TASK_RUNNING, this is the case only after
  276. * you've changed it.
  277. *
  278. * GFP_NOIO is used in the block io path and error handling of storage
  279. * devices.
  280. *
  281. * All other situations use GFP_KERNEL.
  282. *
  283. * Some more specific rules for mem_flags can be inferred, such as
  284. * (1) start_xmit, timeout, and receive methods of network drivers must
  285. * use GFP_ATOMIC (they are called with a spinlock held);
  286. * (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
  287. * called with a spinlock held);
  288. * (3) If you use a kernel thread with a network driver you must use
  289. * GFP_NOIO, unless (b) or (c) apply;
  290. * (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
  291. * apply or your are in a storage driver's block io path;
  292. * (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
  293. * (6) changing firmware on a running storage or net device uses
  294. * GFP_NOIO, unless b) or c) apply
  295. *
  296. */
  297. int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
  298. {
  299. int xfertype, max;
  300. struct usb_device *dev;
  301. struct usb_host_endpoint *ep;
  302. int is_out;
  303. if (!urb || !urb->complete)
  304. return -EINVAL;
  305. if (urb->hcpriv) {
  306. WARN_ONCE(1, "URB %p submitted while active\n", urb);
  307. return -EBUSY;
  308. }
  309. dev = urb->dev;
  310. if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
  311. return -ENODEV;
  312. /* For now, get the endpoint from the pipe. Eventually drivers
  313. * will be required to set urb->ep directly and we will eliminate
  314. * urb->pipe.
  315. */
  316. ep = usb_pipe_endpoint(dev, urb->pipe);
  317. if (!ep)
  318. return -ENOENT;
  319. urb->ep = ep;
  320. urb->status = -EINPROGRESS;
  321. urb->actual_length = 0;
  322. /* Lots of sanity checks, so HCDs can rely on clean data
  323. * and don't need to duplicate tests
  324. */
  325. xfertype = usb_endpoint_type(&ep->desc);
  326. if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
  327. struct usb_ctrlrequest *setup =
  328. (struct usb_ctrlrequest *) urb->setup_packet;
  329. if (!setup)
  330. return -ENOEXEC;
  331. is_out = !(setup->bRequestType & USB_DIR_IN) ||
  332. !setup->wLength;
  333. } else {
  334. is_out = usb_endpoint_dir_out(&ep->desc);
  335. }
  336. /* Clear the internal flags and cache the direction for later use */
  337. urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
  338. URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
  339. URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
  340. URB_DMA_SG_COMBINED);
  341. urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
  342. if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
  343. dev->state < USB_STATE_CONFIGURED)
  344. return -ENODEV;
  345. max = usb_endpoint_maxp(&ep->desc);
  346. if (max <= 0) {
  347. dev_dbg(&dev->dev,
  348. "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
  349. usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
  350. __func__, max);
  351. return -EMSGSIZE;
  352. }
  353. /* periodic transfers limit size per frame/uframe,
  354. * but drivers only control those sizes for ISO.
  355. * while we're checking, initialize return status.
  356. */
  357. if (xfertype == USB_ENDPOINT_XFER_ISOC) {
  358. int n, len;
  359. /* SuperSpeed isoc endpoints have up to 16 bursts of up to
  360. * 3 packets each
  361. */
  362. if (dev->speed == USB_SPEED_SUPER) {
  363. int burst = 1 + ep->ss_ep_comp.bMaxBurst;
  364. int mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
  365. max *= burst;
  366. max *= mult;
  367. }
  368. /* "high bandwidth" mode, 1-3 packets/uframe? */
  369. if (dev->speed == USB_SPEED_HIGH) {
  370. int mult = 1 + ((max >> 11) & 0x03);
  371. max &= 0x07ff;
  372. max *= mult;
  373. }
  374. if (urb->number_of_packets <= 0)
  375. return -EINVAL;
  376. for (n = 0; n < urb->number_of_packets; n++) {
  377. len = urb->iso_frame_desc[n].length;
  378. if (len < 0 || len > max)
  379. return -EMSGSIZE;
  380. urb->iso_frame_desc[n].status = -EXDEV;
  381. urb->iso_frame_desc[n].actual_length = 0;
  382. }
  383. } else if (dev->speed != USB_SPEED_WIRELESS && urb->num_sgs) {
  384. struct scatterlist *sg;
  385. int i;
  386. for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
  387. if (sg->length % max)
  388. return -EINVAL;
  389. }
  390. /* the I/O buffer must be mapped/unmapped, except when length=0 */
  391. if (urb->transfer_buffer_length > INT_MAX)
  392. return -EMSGSIZE;
  393. #ifdef DEBUG
  394. /* stuff that drivers shouldn't do, but which shouldn't
  395. * cause problems in HCDs if they get it wrong.
  396. */
  397. {
  398. unsigned int allowed;
  399. static int pipetypes[4] = {
  400. PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
  401. };
  402. /* Check that the pipe's type matches the endpoint's type */
  403. if (usb_pipetype(urb->pipe) != pipetypes[xfertype])
  404. dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
  405. usb_pipetype(urb->pipe), pipetypes[xfertype]);
  406. /* Check against a simple/standard policy */
  407. allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
  408. URB_FREE_BUFFER);
  409. switch (xfertype) {
  410. case USB_ENDPOINT_XFER_BULK:
  411. if (is_out)
  412. allowed |= URB_ZERO_PACKET;
  413. /* FALLTHROUGH */
  414. case USB_ENDPOINT_XFER_CONTROL:
  415. allowed |= URB_NO_FSBR; /* only affects UHCI */
  416. /* FALLTHROUGH */
  417. default: /* all non-iso endpoints */
  418. if (!is_out)
  419. allowed |= URB_SHORT_NOT_OK;
  420. break;
  421. case USB_ENDPOINT_XFER_ISOC:
  422. allowed |= URB_ISO_ASAP;
  423. break;
  424. }
  425. allowed &= urb->transfer_flags;
  426. /* warn if submitter gave bogus flags */
  427. if (allowed != urb->transfer_flags)
  428. dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
  429. urb->transfer_flags, allowed);
  430. }
  431. #endif
  432. /*
  433. * Force periodic transfer intervals to be legal values that are
  434. * a power of two (so HCDs don't need to).
  435. *
  436. * FIXME want bus->{intr,iso}_sched_horizon values here. Each HC
  437. * supports different values... this uses EHCI/UHCI defaults (and
  438. * EHCI can use smaller non-default values).
  439. */
  440. switch (xfertype) {
  441. case USB_ENDPOINT_XFER_ISOC:
  442. case USB_ENDPOINT_XFER_INT:
  443. /* too small? */
  444. switch (dev->speed) {
  445. case USB_SPEED_WIRELESS:
  446. if (urb->interval < 6)
  447. return -EINVAL;
  448. break;
  449. default:
  450. if (urb->interval <= 0)
  451. return -EINVAL;
  452. break;
  453. }
  454. /* too big? */
  455. switch (dev->speed) {
  456. case USB_SPEED_SUPER: /* units are 125us */
  457. /* Handle up to 2^(16-1) microframes */
  458. if (urb->interval > (1 << 15))
  459. return -EINVAL;
  460. max = 1 << 15;
  461. break;
  462. case USB_SPEED_WIRELESS:
  463. if (urb->interval > 16)
  464. return -EINVAL;
  465. break;
  466. case USB_SPEED_HIGH: /* units are microframes */
  467. /* NOTE usb handles 2^15 */
  468. if (urb->interval > (1024 * 8))
  469. urb->interval = 1024 * 8;
  470. max = 1024 * 8;
  471. break;
  472. case USB_SPEED_FULL: /* units are frames/msec */
  473. case USB_SPEED_LOW:
  474. if (xfertype == USB_ENDPOINT_XFER_INT) {
  475. if (urb->interval > 255)
  476. return -EINVAL;
  477. /* NOTE ohci only handles up to 32 */
  478. max = 128;
  479. } else {
  480. if (urb->interval > 1024)
  481. urb->interval = 1024;
  482. /* NOTE usb and ohci handle up to 2^15 */
  483. max = 1024;
  484. }
  485. break;
  486. default:
  487. return -EINVAL;
  488. }
  489. if (dev->speed != USB_SPEED_WIRELESS) {
  490. /* Round down to a power of 2, no more than max */
  491. urb->interval = min(max, 1 << ilog2(urb->interval));
  492. }
  493. }
  494. return usb_hcd_submit_urb(urb, mem_flags);
  495. }
  496. EXPORT_SYMBOL_GPL(usb_submit_urb);
  497. /*-------------------------------------------------------------------*/
  498. /**
  499. * usb_unlink_urb - abort/cancel a transfer request for an endpoint
  500. * @urb: pointer to urb describing a previously submitted request,
  501. * may be NULL
  502. *
  503. * This routine cancels an in-progress request. URBs complete only once
  504. * per submission, and may be canceled only once per submission.
  505. * Successful cancellation means termination of @urb will be expedited
  506. * and the completion handler will be called with a status code
  507. * indicating that the request has been canceled (rather than any other
  508. * code).
  509. *
  510. * Drivers should not call this routine or related routines, such as
  511. * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
  512. * method has returned. The disconnect function should synchronize with
  513. * a driver's I/O routines to insure that all URB-related activity has
  514. * completed before it returns.
  515. *
  516. * This request is asynchronous, however the HCD might call the ->complete()
  517. * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
  518. * must not hold any locks that may be taken by the completion function.
  519. * Success is indicated by returning -EINPROGRESS, at which time the URB will
  520. * probably not yet have been given back to the device driver. When it is
  521. * eventually called, the completion function will see @urb->status ==
  522. * -ECONNRESET.
  523. * Failure is indicated by usb_unlink_urb() returning any other value.
  524. * Unlinking will fail when @urb is not currently "linked" (i.e., it was
  525. * never submitted, or it was unlinked before, or the hardware is already
  526. * finished with it), even if the completion handler has not yet run.
  527. *
  528. * The URB must not be deallocated while this routine is running. In
  529. * particular, when a driver calls this routine, it must insure that the
  530. * completion handler cannot deallocate the URB.
  531. *
  532. * Unlinking and Endpoint Queues:
  533. *
  534. * [The behaviors and guarantees described below do not apply to virtual
  535. * root hubs but only to endpoint queues for physical USB devices.]
  536. *
  537. * Host Controller Drivers (HCDs) place all the URBs for a particular
  538. * endpoint in a queue. Normally the queue advances as the controller
  539. * hardware processes each request. But when an URB terminates with an
  540. * error its queue generally stops (see below), at least until that URB's
  541. * completion routine returns. It is guaranteed that a stopped queue
  542. * will not restart until all its unlinked URBs have been fully retired,
  543. * with their completion routines run, even if that's not until some time
  544. * after the original completion handler returns. The same behavior and
  545. * guarantee apply when an URB terminates because it was unlinked.
  546. *
  547. * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
  548. * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
  549. * and -EREMOTEIO. Control endpoint queues behave the same way except
  550. * that they are not guaranteed to stop for -EREMOTEIO errors. Queues
  551. * for isochronous endpoints are treated differently, because they must
  552. * advance at fixed rates. Such queues do not stop when an URB
  553. * encounters an error or is unlinked. An unlinked isochronous URB may
  554. * leave a gap in the stream of packets; it is undefined whether such
  555. * gaps can be filled in.
  556. *
  557. * Note that early termination of an URB because a short packet was
  558. * received will generate a -EREMOTEIO error if and only if the
  559. * URB_SHORT_NOT_OK flag is set. By setting this flag, USB device
  560. * drivers can build deep queues for large or complex bulk transfers
  561. * and clean them up reliably after any sort of aborted transfer by
  562. * unlinking all pending URBs at the first fault.
  563. *
  564. * When a control URB terminates with an error other than -EREMOTEIO, it
  565. * is quite likely that the status stage of the transfer will not take
  566. * place.
  567. */
  568. int usb_unlink_urb(struct urb *urb)
  569. {
  570. if (!urb)
  571. return -EINVAL;
  572. if (!urb->dev)
  573. return -ENODEV;
  574. if (!urb->ep)
  575. return -EIDRM;
  576. return usb_hcd_unlink_urb(urb, -ECONNRESET);
  577. }
  578. EXPORT_SYMBOL_GPL(usb_unlink_urb);
  579. /**
  580. * usb_kill_urb - cancel a transfer request and wait for it to finish
  581. * @urb: pointer to URB describing a previously submitted request,
  582. * may be NULL
  583. *
  584. * This routine cancels an in-progress request. It is guaranteed that
  585. * upon return all completion handlers will have finished and the URB
  586. * will be totally idle and available for reuse. These features make
  587. * this an ideal way to stop I/O in a disconnect() callback or close()
  588. * function. If the request has not already finished or been unlinked
  589. * the completion handler will see urb->status == -ENOENT.
  590. *
  591. * While the routine is running, attempts to resubmit the URB will fail
  592. * with error -EPERM. Thus even if the URB's completion handler always
  593. * tries to resubmit, it will not succeed and the URB will become idle.
  594. *
  595. * The URB must not be deallocated while this routine is running. In
  596. * particular, when a driver calls this routine, it must insure that the
  597. * completion handler cannot deallocate the URB.
  598. *
  599. * This routine may not be used in an interrupt context (such as a bottom
  600. * half or a completion handler), or when holding a spinlock, or in other
  601. * situations where the caller can't schedule().
  602. *
  603. * This routine should not be called by a driver after its disconnect
  604. * method has returned.
  605. */
  606. void usb_kill_urb(struct urb *urb)
  607. {
  608. might_sleep();
  609. if (!(urb && urb->dev && urb->ep))
  610. return;
  611. atomic_inc(&urb->reject);
  612. usb_hcd_unlink_urb(urb, -ENOENT);
  613. wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
  614. atomic_dec(&urb->reject);
  615. }
  616. EXPORT_SYMBOL_GPL(usb_kill_urb);
  617. /**
  618. * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
  619. * @urb: pointer to URB describing a previously submitted request,
  620. * may be NULL
  621. *
  622. * This routine cancels an in-progress request. It is guaranteed that
  623. * upon return all completion handlers will have finished and the URB
  624. * will be totally idle and cannot be reused. These features make
  625. * this an ideal way to stop I/O in a disconnect() callback.
  626. * If the request has not already finished or been unlinked
  627. * the completion handler will see urb->status == -ENOENT.
  628. *
  629. * After and while the routine runs, attempts to resubmit the URB will fail
  630. * with error -EPERM. Thus even if the URB's completion handler always
  631. * tries to resubmit, it will not succeed and the URB will become idle.
  632. *
  633. * The URB must not be deallocated while this routine is running. In
  634. * particular, when a driver calls this routine, it must insure that the
  635. * completion handler cannot deallocate the URB.
  636. *
  637. * This routine may not be used in an interrupt context (such as a bottom
  638. * half or a completion handler), or when holding a spinlock, or in other
  639. * situations where the caller can't schedule().
  640. *
  641. * This routine should not be called by a driver after its disconnect
  642. * method has returned.
  643. */
  644. void usb_poison_urb(struct urb *urb)
  645. {
  646. might_sleep();
  647. if (!urb)
  648. return;
  649. atomic_inc(&urb->reject);
  650. if (!urb->dev || !urb->ep)
  651. return;
  652. usb_hcd_unlink_urb(urb, -ENOENT);
  653. wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
  654. }
  655. EXPORT_SYMBOL_GPL(usb_poison_urb);
  656. void usb_unpoison_urb(struct urb *urb)
  657. {
  658. if (!urb)
  659. return;
  660. atomic_dec(&urb->reject);
  661. }
  662. EXPORT_SYMBOL_GPL(usb_unpoison_urb);
  663. /**
  664. * usb_block_urb - reliably prevent further use of an URB
  665. * @urb: pointer to URB to be blocked, may be NULL
  666. *
  667. * After the routine has run, attempts to resubmit the URB will fail
  668. * with error -EPERM. Thus even if the URB's completion handler always
  669. * tries to resubmit, it will not succeed and the URB will become idle.
  670. *
  671. * The URB must not be deallocated while this routine is running. In
  672. * particular, when a driver calls this routine, it must insure that the
  673. * completion handler cannot deallocate the URB.
  674. */
  675. void usb_block_urb(struct urb *urb)
  676. {
  677. if (!urb)
  678. return;
  679. atomic_inc(&urb->reject);
  680. }
  681. EXPORT_SYMBOL_GPL(usb_block_urb);
  682. /**
  683. * usb_kill_anchored_urbs - cancel transfer requests en masse
  684. * @anchor: anchor the requests are bound to
  685. *
  686. * this allows all outstanding URBs to be killed starting
  687. * from the back of the queue
  688. *
  689. * This routine should not be called by a driver after its disconnect
  690. * method has returned.
  691. */
  692. void usb_kill_anchored_urbs(struct usb_anchor *anchor)
  693. {
  694. struct urb *victim;
  695. spin_lock_irq(&anchor->lock);
  696. while (!list_empty(&anchor->urb_list)) {
  697. victim = list_entry(anchor->urb_list.prev, struct urb,
  698. anchor_list);
  699. /* we must make sure the URB isn't freed before we kill it*/
  700. usb_get_urb(victim);
  701. spin_unlock_irq(&anchor->lock);
  702. /* this will unanchor the URB */
  703. usb_kill_urb(victim);
  704. usb_put_urb(victim);
  705. spin_lock_irq(&anchor->lock);
  706. }
  707. spin_unlock_irq(&anchor->lock);
  708. }
  709. EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
  710. /**
  711. * usb_poison_anchored_urbs - cease all traffic from an anchor
  712. * @anchor: anchor the requests are bound to
  713. *
  714. * this allows all outstanding URBs to be poisoned starting
  715. * from the back of the queue. Newly added URBs will also be
  716. * poisoned
  717. *
  718. * This routine should not be called by a driver after its disconnect
  719. * method has returned.
  720. */
  721. void usb_poison_anchored_urbs(struct usb_anchor *anchor)
  722. {
  723. struct urb *victim;
  724. spin_lock_irq(&anchor->lock);
  725. anchor->poisoned = 1;
  726. while (!list_empty(&anchor->urb_list)) {
  727. victim = list_entry(anchor->urb_list.prev, struct urb,
  728. anchor_list);
  729. /* we must make sure the URB isn't freed before we kill it*/
  730. usb_get_urb(victim);
  731. spin_unlock_irq(&anchor->lock);
  732. /* this will unanchor the URB */
  733. usb_poison_urb(victim);
  734. usb_put_urb(victim);
  735. spin_lock_irq(&anchor->lock);
  736. }
  737. spin_unlock_irq(&anchor->lock);
  738. }
  739. EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
  740. /**
  741. * usb_unpoison_anchored_urbs - let an anchor be used successfully again
  742. * @anchor: anchor the requests are bound to
  743. *
  744. * Reverses the effect of usb_poison_anchored_urbs
  745. * the anchor can be used normally after it returns
  746. */
  747. void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
  748. {
  749. unsigned long flags;
  750. struct urb *lazarus;
  751. spin_lock_irqsave(&anchor->lock, flags);
  752. list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
  753. usb_unpoison_urb(lazarus);
  754. }
  755. anchor->poisoned = 0;
  756. spin_unlock_irqrestore(&anchor->lock, flags);
  757. }
  758. EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
  759. /**
  760. * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
  761. * @anchor: anchor the requests are bound to
  762. *
  763. * this allows all outstanding URBs to be unlinked starting
  764. * from the back of the queue. This function is asynchronous.
  765. * The unlinking is just tiggered. It may happen after this
  766. * function has returned.
  767. *
  768. * This routine should not be called by a driver after its disconnect
  769. * method has returned.
  770. */
  771. void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
  772. {
  773. struct urb *victim;
  774. while ((victim = usb_get_from_anchor(anchor)) != NULL) {
  775. usb_unlink_urb(victim);
  776. usb_put_urb(victim);
  777. }
  778. }
  779. EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
  780. /**
  781. * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
  782. * @anchor: the anchor you want to become unused
  783. * @timeout: how long you are willing to wait in milliseconds
  784. *
  785. * Call this is you want to be sure all an anchor's
  786. * URBs have finished
  787. */
  788. int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
  789. unsigned int timeout)
  790. {
  791. return wait_event_timeout(anchor->wait, list_empty(&anchor->urb_list),
  792. msecs_to_jiffies(timeout));
  793. }
  794. EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
  795. /**
  796. * usb_get_from_anchor - get an anchor's oldest urb
  797. * @anchor: the anchor whose urb you want
  798. *
  799. * this will take the oldest urb from an anchor,
  800. * unanchor and return it
  801. */
  802. struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
  803. {
  804. struct urb *victim;
  805. unsigned long flags;
  806. spin_lock_irqsave(&anchor->lock, flags);
  807. if (!list_empty(&anchor->urb_list)) {
  808. victim = list_entry(anchor->urb_list.next, struct urb,
  809. anchor_list);
  810. usb_get_urb(victim);
  811. __usb_unanchor_urb(victim, anchor);
  812. } else {
  813. victim = NULL;
  814. }
  815. spin_unlock_irqrestore(&anchor->lock, flags);
  816. return victim;
  817. }
  818. EXPORT_SYMBOL_GPL(usb_get_from_anchor);
  819. /**
  820. * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
  821. * @anchor: the anchor whose urbs you want to unanchor
  822. *
  823. * use this to get rid of all an anchor's urbs
  824. */
  825. void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
  826. {
  827. struct urb *victim;
  828. unsigned long flags;
  829. spin_lock_irqsave(&anchor->lock, flags);
  830. while (!list_empty(&anchor->urb_list)) {
  831. victim = list_entry(anchor->urb_list.prev, struct urb,
  832. anchor_list);
  833. __usb_unanchor_urb(victim, anchor);
  834. }
  835. spin_unlock_irqrestore(&anchor->lock, flags);
  836. }
  837. EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
  838. /**
  839. * usb_anchor_empty - is an anchor empty
  840. * @anchor: the anchor you want to query
  841. *
  842. * returns 1 if the anchor has no urbs associated with it
  843. */
  844. int usb_anchor_empty(struct usb_anchor *anchor)
  845. {
  846. return list_empty(&anchor->urb_list);
  847. }
  848. EXPORT_SYMBOL_GPL(usb_anchor_empty);